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ABSTRACT

This paper examines the adequacy of the entropy concept as an economically
relevant measure of information in a decision-making framework. Some difficulties
of relating the entropy to the traditional notions of information value are highlighted.
Entropy-based concepts are shown to retain their economic significance in situations
where binary inquiries are answerable at uniform cost, regardless of the payoffs. In
these cases, entropy seems to govern the balance between the cost of acquiring useful
information and the risks of acting uninformedly.

I. INTRODUCTION

The prospect that the subtle, intangible concept of information might lend itself to
measurement in a way similar to the measurement of commodities by money (Renyi [1])
has captured the enthusiasm of many workers in various fields since the inception of
information theory two decades ago (Shannon, [02]). Entropic measures of information,
uncertainty, disorder and complexity have been applied, with various degrees of accep-
tance in such diverse fields as psychology (Miller [3]), philosophy (Carnap [4]), music
(Goguen [5]), chess (Good [6]), and physics (Brillouin [7]). However, it is in the fields
of economics and decision-analysis that controversies concerning the appropriateness of
entropybased information measures have raged most intensely.

Beginning with Bagno [8] [9] and pursued by Theil [10] and many others, entropy
has been taxed with the job of capturing the essential aspects in the distribution of many
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economic indicators, This approach has been surveyed and criticized by Horowitz
et al [11]., In decision-analysis, both constrained maximization of prior entropies
(Jaynes [12], Tribus [13]) and ranking of measurements by entropy considerations
were advocated (Bremerman [14], Chien et al [15], Danskin [16] ). This train of thought
was criticized by Marschak [17], MacQueen et al [18] and White [19].

The purpose of this paper is to explore in detail the boundaries which delimit the
applicability of the entropy concept in the general framework of decision making
problems.

There are two major approaches to justifying the use of mathematical measures of
qualitative phenomena - an axiomatic and a modeling approach. The axiomatic approach
begins with a set of intuitively appealing axioms which any candidate measure should be
expected to satisfy, then verifies that the measure it advocates satisfies the axiom and is,
to some degree, unique. The modeling approach analyzes a simplified yet typical model
of the class of phenomena under study and attempts to show that the measure advocated
emerges as a natural feature of the model. Khinchin [20], following the axiomatic
approach, proved that the entropy function

H(P) 2 — = P(z)log P(z) & H(Z) (1)

is the only function (to within a positive multiplier) which satisfies a set of axioms
tailored for coding theory. This set of axioms, in particular, the additivity property of
H, was shown to be inappropriate in general decision situations (White [19]).

In this paper we pursue the modeling approach. We will start with the simplest
decision-model possible, search for a formal interpretation of the notion of information
value, gradually expand the model and examine at what point the entropy can be
introduced into the picture as a significant determinant. Section II highlights and
analyses the difficulties of tying entropy to pragmatic measures of information in
decision problems;Section III recasts the basic structure of communication problems in
decision-analytic terms and uncovers the conditions under which entropy-based concepts
would retain their economic significance.

Our general conclusion is that the major confusion in this subject stems from
conceiving entropy as a measure of the uncertainty content of various entities (e.g.,
signals, probabilities, etc.). A much clearer picture would obtain if, instead, entropy
was regarded as a measure of the effort necessary for removing uncertainty using a given
system of information gathering resources.

Il. ENTROPY AND THE VALUE OF INFORMATIVE DECISIONS

We assume that the decision problem at hand can be characterized by the following
elements:
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Z={2y,2,,...2y }-aset of N, mutually exclusive states of nature, one of which is
z
sure to occur.

A= {31’ 3y, ... 8y } a finite set of N, mutually exclusive terminal actions from which
a

one must be selected.

P(Z) = {P(zl), P(z,), ... Pz )} set of prior probability weights on the states, where
z
each P(z) measures the likelihood that event ztZ will occur next.

u(z,a) - a payoff matrix on AxZ, where each u(z,a) entry represents the terminal benefit
or expected utility associated with the joint occurrence of a€ A and z€Z.

T- a set of tests or information sources where each test t€T is characterized by a condi-
tional probability matrix P (y|z), giving the likelihood that an outcome yeY, will
be observed if t is examined and z is about to occur. The elements of T will be
interchangeably referred to as tests, information sources, experiments, or inquiries.

C(t) - acost function, where C(t) measures the cost of acquiring access to the outcome
of test t.

The objective of a decision-maker operating in this environment is -to design a plan
of sequential testing, followed by a terminal action which would maximize the expected
payoff minus the cost of testing.

Intuitively we expect the more informative decision maker, i.e., the one who can
predict which state will occur with greater accuracy, to secure himself a higher overall
benefit. An examination of some difficulties in making this notion of informativeness
more precise follows, especially in regard to coupling it with the entropy concept.

1.a. Informativeness, Value of Information-and Information Sources

If our state of knowledge concerning an event can be characterized by the set of
probabilities P(Z), then it is natural to ask what it is worth to be given these probabilities.
The answer clearly would depend on both the payoff, u(z,a), and the detailed content
and cost of the test space T. If all these details are available one can, in principle, find
an optimal solution to the sequential testing problem above, calculate the overall
expected utility given P(Z) and interpret the result as the value of the information
represented by P(Z). Yet, aside from the difficulties of finding such a solution, it is
very unlikely that the answer would closely match our intuitive notion of informative-
ness. For these reasons simpler and more direct approaches have been attempted to
capture the notion of information value.

A good place to start simplifying the decision problem above is to eliminate the
test set altogether and assume that a terminal action is to be taken on the basis of P(Z)
and u(z,a) alone. The maximum expected utility in this situation is given by:
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U(P) = max 2 P(z) u(z,2) (2)

which might be interpreted as the value of the information contained in P(Z). Equation
(2) does not mean, of course, that U(Pl) > U(PZ) implies that a person with a probability
P,(Z) is guaranteed a higher expected benefit than a person with probability P,(Z).
It does imply that Person 1 perceives the opportunities offered by the situation at hand
to be more attractive than those perceived by Person 2. Therefore, a more appropriate
name for the quantity U(P) would be the Perceived Value of Belief.

But aside from the fact that U(P) does not have even a remote resemblance to H(P)
(being piecewise linear and highly dependent on u(z,a) ), it also fails to capture our
intuitive notion of informativeness or certainty. For example, the majority of people
would agree that regardless of any payoffs, the probability vector (1,0,0) represents a
“more certain” individual than the vector (1/3,1/3,1/3). Similarly, we would agree that
the following set of vectors represents, from left to right, an increasing degree of
uncertainty:

(1,0,0) (2/3,1/3,0) (1/2,1/2,0) (1/2,1/4,1/4) (1/3,1/3,1/3) " (3)

However, this order is not retained by all U(P) measures; given any two vectors P, and
P,, one can always find a matrix u(z,a) that would yield either Up,) > U(Pz) or (using
another matrix) U(P,) < U(P,). Hence, we must abandon efforts to link the relation
“more certain than’’ to the value of terminal decisions.

As is well known (DeGroot [21]), the order of the vectors in (3) would be
reproduced by any function of P which is both concave and symmetric (e.g., H(Z) or
% [P(z)]1/2), One may wonder, however, whether any such function can be shown to
represent a significant economic factor within the framework of terminal decision
problems with arbitrary payoffs.

An attempt may be made to generate such a function in a slightly different direc-
tion, not as a representative of terminal benefits, but as a measure of the decision maker’s
willingness to purchase additional information instead. It is intuitively suggestive that the
“more certain” individual normally would be less willing to pay for additional informa-
tion; consequently, the question arises if the need for more information is a symmetric
concave function of P, regardless of u? The answer is, no. In the face of a terminal
decision, the value V(t) of a given test t is given by the expected increase in the posterior
utility beyond U(P):

Vp(t) = Ey U[P(Zly)] — U(P) .
4)
= ? § P(z) P(ylz) max [E} P (z'ly) u(z',a)] — U(P)

V,(t) is again highly dependent on u(z,a) and P(ylz); it is concave in P but not necessarily
symmetric. Marschak [22] brings an example where the highest value of a perfect
information source occurs at P = (1/2,1/3,1/6), not at P = (1/3,1/3,1/3).

The relation ‘“more informative than,” when applied to information sources
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(probability matrices), is much better understood than when applied to states of
knowledge (probability vectors). From Blackwell’s theorem [23], we know that if we
interpret the former relation as the requirement that Vp(tl) > vp(tz) holds for all u apd
P, then it forms a partial order on the test set which agrees with our intuition (e.g., t, is
not “less informative than” t, cascaded with t,).

The assignment of the relation ‘more informative’ or ‘more certain’ to states of
knowledge is less fortunate. We could not find in the context of terminal decisions an
economically meaningful function which could capture our intuition that these relations
form payoff-independent partial orders on P. Needless to say, attempts to couple the
entropy with the terminal value of information would face similar difficulties.

1.b. Standard Payoff Structures

Any attempt to link entropy-based concepts to the value of information must cope
with two difficulties, first it must remove the dependency of U(P) on u(z,a) and, second,
it must provide a rationale for the appearance of the logarithm function. A simple
method of constructing payoff-independent information measures is to limit the analysis
to special cases of symmetric payoff structures which contain a minimal number of
parameters and, at the same time, are typical of a large class of problem situations. The
most commonly used such structure is the square matrix:

(2.2) = 1 a=z

u(za) = 2tz

representing the task of predicting z with unit reward for correct prediction and no re-
ward for all errors. Under this standard we obtain:

UP) = mzalx P(z)

and

Vp(t)=E max [P(ylz) P(z)] — max P(z)
Ly oz z

Thus, while this standard structure yields a symmetric concave function for U(P), it is
still far from resembling H(P).

The question one may raise at this point is: can we find a standard payoff structure
for which U(P) is characterized by the entropy H(P)? Any such attempt must deal with
a basic disparity between the two; while H(P) is a strictly concave function of P, U(P)
(see equation 2) is piecewise linear in P as long as u(z,a) represents a finite set of actions.
Therefore, no finite action payoffs exist which lead to U(P) = aH(P) + 8.

Kelly [24] and more recently, Cover [25] have explored the construction of
entropy from a continuous action set. Kelly, motivated by the desire “to take
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some real-life situation which seems to possess the essential features of a Com-
muncation problem, and to analyze it without the introduction of an arbitrary cost
function” has considered a gambler who has to decide in advance what portion r of his
capital Q to bet on one of the two outcomes of the bet. In this case, the monetary
payoffs, are given by rQ if the gambler wins and -rQ if he loses. At this point, Kelly
assumes that the gambler wishes to maximize not the expected monetary gains but the
(expected) logarithm of the ratio between the capital after and before the bet, ie.,
u = log(1+r) if the gambler wins and u = log(1-r) if he loses. Under this assumption Kelly
shows that U(P) is proportional to -H(P). A similar device was used by Cover [25].
However, although the continuous action model considered is realistic (many real-life
decisions require the allocation of continuous resources) and successfully eliminates the
piece-wise linearity of U(P), it still falls short of making a convincing argument for the
entropy, as the introduction of the logarithm utility function is rather ad-hoc.

Several workers, discouraged by the difficulties above, use entropy merely as a
convenient, heuristic estimate for U(P). In the field of pattern recognition, where the
payoff matrix in (5) is a realistic representation of the systems’ performances, it has
often been the practice to rank pattern features (playing the role of information
sources) by entropy-based measures (Andrews [26]). A feature is considered more
valuable if it leads to a higher difference between the prior entropy and expected
posterior entropy pertaining to the set of classes. This practice was justified by the
argument that the true performance measure, i.c., the probability of mis-classification
P_=1-U(P), can be bounded by entropy-based measures. Specifically, P, can be upper
bounded by (Ben Bassat et al [27] ):

P, <1/2 H(P)

and lower bounded by:

N,—1

H(P) < (1—Pe) log(1-P,) — P, log

(unless stated otherwise, logarithms are to the base 2). Thus, in situations where these
bounds are tight and under a probability of error performance criterion, entropy could
provide realistic estimates to the value of information and information sources.

2.3 Uncertain Payoffs

The piecewise linearity of U(P) can also be “smoothed out” within a finite action
model if the payoffs u(z,a) are considered random variables whose exact values become
known to tune decision maker just before he is about to select a terminal action. At the
phase of data gathering, however, only a distribution over a possible range of payoffs
is available to him. The expected utility, in this case, is obtained by taking the expecta-
tion of expression (2) with respect to the given payoff distribution.

This model is not unrealistic. There is hardly a decision problem where the exact
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values of the payoffs are known at the time that information is collected. The weather
predictor, for example, has only an aggregate knowledge of the stakes which his clients,
the radio listeners, have in future weather conditions. A college student, gathering
knowledge in preparation for his professional career, has only a vague notion of the
nature of the circumstances where his knowledge will stand a critical trial. Yet both he
and the weather forecaster must be able to assess the value of the information which
they already possess in order to select information sources judicously.

Pearl [28] has analyzed simple models with uncertain payoffs for the purpose of
finding an economic basis for probability scoring rules. Imagine a decision situation with
two states ze{ 0,1} , and two actions 2€ {0,1} , and let the payoff matrix be:

0 a =1z
u(a,z) = X, z=1,a=0
X, z=0,a=1"

Now assume that x;, and x, are two independent random variables, both distributed
according to a probability density function f(x) It can be shown that if f(x) is given by
the Cauchy density

p
2l1r2 < <0
f(x) = 1+x
0 x>0
the expected utility becomes:
2

UP) = - H(P)

Other densities would, of course, given rise to different value functions. For example,
an exponential density:

AeAx x>0,
f(x) = |
0 x<0,

yields a quadratic value function:
1
U(P) = (1-p(1—p)]

where p = P(1). _
Thus, the use of the entropy as a measure of information values would be justified
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in situations where the decision-maker perceives Cauchy-like payoff distributions in
future decisions. It gives Shannon’s entropy some realistic economical interpretation
outside the field of communication.

This result, however, was limited to the case of a 2 x 2 payoff matrix. Attempts to
extend it to arbitrary matrices have met with substantial difficulties; ad-hoc assumptions
regarding the statistical dependence between the various payoff variables must be made
in order for U(P) to assume an entropy-like form.

IIl. INFORMATION THEORY AND THE ECONOMICS OF
INFORMATION GATHERING POLICIES

The difficulties thus encountered in justifying the use of entropy-based measure in
the analysis of simple decision situations behoove us to take a fresh look at the com-
munication problems which gave rise to information theory in the late 1940’s. After all,
the problem faced by the communication engineer can also be regarded as an exercise
in rational decision making and so, by carefully examining the emergence of the entropy
function in communication related problems one may hope to uncover the more
general conditions under which entropy would serve as a natural measure of the
economical value of information.

Many decision analysts have discarded information thecry on the ground that it is
-preoccupied with the overly narrow objective of transmitting information symbols with
maximum fidelity, with no regard to the meaning or purpose carried by the symbols.
With this narrow view, the essential ingredients of decision-making, i.e., selecting actions
and buying information, seem to disappear. We will carry out our analyses in a wider
context, preserving all the features making up a general decision problem and show that
some information-theoretic concepts still retain their significance when the test space
is suitably constrained.

3.1 Standardization of the Test Space T

The essential element necessary to bring a general decision problem (Z, A, P, u, T, C)
in line with the conditions prevailing in common communication problems is the uniform
cost structure assumed by the test space T and its associated cost function C(t). First
assume that T contains the entire set of binary tests on Z. In other words, each test is
characterized by a two column stochastic matrix: T ={P(ylz)lye{0,1}}. Second,
assume that the usage of each test consumes a fixed cost of c units, i.e., C(t) = c. We will
denote this test space by the symbol T,. The problem now faced by the decision-maker
is to devise a strategy for selecting tests and actions so as to maximize the expected
value of the terminal payoffs minus the cost of testing. -

The assumption limiting T, to contain binary tests only is not too severe, and serves
primarily as a standard to distinguish complex questions from simple ‘yes’ or ‘no’ type
questions. The answer to an arbitrary question could be regarded as a concatenation of
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binary answers.

The other assumption though, that all binary queries are answcrable at equal
cost, is unique to information transmission problems. Equal cost represents the fact
that the major cost of information transmission is the message length and that each bit
in the message occupies the same time duration regardless of what it represents. In
many common economical problems the cost of queries is certainly not uniform, as
some queries simply require much higher expenditure of resources than others. For
example, to determine whether the majority of voters favor candidate A is much more
costly than to determine whether a given individual favors candidate A. In some other
applications, as when the main cost of obtaining information lies in the need to store
the answers in a computer memory, the uniform cost structure prowdes a reasonable
model for the information acquisition system.

3.2 Entropy as the Perceived Cost of Removing Uncertainty

In order to see how the entropy enters the economical environment defined above,
let us begin by making additional assumptions regarding the payoff matrix u(z,a) (these
assumptions will be relaxed later on in the paper). Assume that for every state z there
exists a unique best action a, ie,u(z,a)= m].R u(z, a), and a, = 372 =>1z, =z,. Assume
further that the losses assoc1ated with selectmg a subopnmal action are much higher
than the information cost unit ¢, i.e., for all z and a # a, u(z, az) u(z, a)>>c. Under
these high stakes conditions the decision—ma.ker should not risk acting suboptimally but
rather purchase all the information needed for complete state identification. Any
residual uncertainty regarding z would result in losses greater than the cost of removing
that uncertainty and, so, the decision-makers objective must be to plan an information

gathering strategy that identifies z at 2 minimum expected cost.

Any information gathering strategy consists of a procedure for selecting an informa-
tion source from T,, testing its outcome and on that basis, deciding on the next test until
the sequence of outcomes from the selected tests is sufficient to determine z unequivocal-
ly. Such a sequential testing procedure can be represented by a binary tree where the
terminal nodes represent the identified states, the non-terminal nodes represent the
various tests chosen, and the arcs represent the tests outcomes. Thus, the task of
designing an optimal information gathering policy reduces to that of configuring a tree
with minimum expected path length (the probability of traversing a given path being
given by the probability of the state terminating that path). This minimization problem
was solved by Huffman and the resultant test procedure became known as the Huffman
coding scheme [29]. Let the optimal expected path length obtained by Huffman’s
procedure be designated by L,. One of the earliest results of information theory states
that L, satisfies the inequality:

H(Z) <L, <H(Z)+1

Thus, the entropy H(Z) provides a good approximation to the optimal mean path length.
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Correspondingly, ¢ times the entropy can be taken as a good approximation to the
expected minimum cost of buying the information required for optimal decision-making.
If U is the expected utility associated with perfect knowledge:

U° = Z, P(z) max u(z,3) ,

then the overall expected utility U associated with the decision problem at hand,
including the cost of information, is bounded by

U’ —c[H(Z) — 1] <UU° — cH(Z)

Note that unlike the attempts made in section II, the entropy no longer measures the
terminal economical losses caused by uncertainty but rather the cost of eliminating
that uncertainty (given a uniform cost test space).! Thus, the economical significance
of this measure stems from the fact that a decision-maker with a high entropic uncertain-
ty is expected to spend more money on information gathering devices than the more
knowledgeable (low entropy) decision maker. If the probabilities P(Z) are subjective
in nature, there is of course, no guarantee that Z can in fact be identified at an estimated
mean cost of cH(Z); in this case cH(Z) represents the minimum mean information cost
as perceived by the decision-maker.

Note, also, that we are now in possession of a meaningful interpretation of the
relation ‘“more certain than’, which caused insurmountable difficulties in Section 2.1.
Uncertainty can be captured not only by the entropy function, but also by the minimum
expected text-costs under high-stakes conditions and any symmetric (not necessarily
uniform) cost function C(t) (i.e., C(t,) = C(t,) if t, differs from t, by a permutation of
states or outcomes). The minimum expected test-costs under these conditions would
be a concave symmetric function of P and could, therefore, reproduce the partial
order expressed by the term “more uncertain than.”

It is important to mention that the bounds on L, can be significantly tightened in
case the decision problem involves not a single event but a sequence of independent and
identically distributed events z(1), z(2) ... z(N), z(i)eZ. If the test space is cor-
respondingly augmented to include all binary tests on N-sequences (at equal cost), and
the problem circumstance permits withholding action until such tests are performed,
then the bounds above ean be tightened to yield:

cH(Z) < C <c[H(Z) + IF]

where C is the expected cost per event. Information theory is primarily interested in
coding long sequences of data, and therefore, the entropy becomes an almost .exact
measure of the mean code length. In fact, most information-theoretical results are valid
only asymptotically, for N =, In most economical decision problems, on the other
hand, observations must be made separately on each individual event and actions



Entropy, Information and Rational Decisions 103

must be selected before the next event takes place. In such cases, the entropy only
provides an estimate for the mean number of tests, the quality of which improves with
increasing N, .

In the remaining parts of this paper, we shall treat this approximation as an
equality with the understanding that the results may vary within the ranges defined by
the bounds above.

3.3 Channel Capacity — The Cost Reduction Potential of an Information Source

Suppose that the decision-maker, still having access to a uniform cost binary test
space T, , is offered an extra information source t, not necessarily binary. How much
should he be willing to pay for the option of using t?

Clearly, if teT,, then he should not purchase it for a price higher than c, because
he can always find an equivalent source within T, for a cost c. However, t may be worth
less than c. If the outcomes y of t are only loosely related to the states z than t may be
replaced by a more effective member of T, , at a price c.

In general, the worth of any information source should now be judged not by its
potential for improving decisions, but rather by that for reducing the necessary cost of
identifying z, i.e., reducing H(Z). If the outcome y is observed, then the expected
residual cost of identifying z is cH(Zly), and the overall expected residual cost after
consulting t (denoted by cH(Z|Y) ) would be cEy H(Zly). Therefore, the value of tis
given by the reduction in the expected cost:

Vp(t)

cl(Z,Y) & c[H(Z) — H(Z|Y)]

P(zly)
P(z)

_ P(ylz)
=cZ, Ey P(z) P(ylz) log 3, Plyl2)

cZ, z, Pzy) log

Note that I(Z,Y) (known as Shannon’s mutual information) depends on both the
matrix P(y|z) and the prior probabilities P(z), implying that two different users may rank
information sources in different order. 1(Z,Y) can also be shown to be a strictly concave
function of P(z) and a strictly convex function of P(y/z). The former implies that the
perceived value of any information source averaged over a group of decision-makers is
lower than the value of the source based on the group’s averaged priors. The latter
implies that if the corresponding outcomes of several information sources are mixed by
a random device, then the worth of the mixed source is less than the average worth of
the individual sources.

We may now wish to ask what is the highest price that a user may possibly be willing
to pay for a given information source? The answer is obtained by maximizing I(Z,Y)
over all prior probabilities, and the resulting quantity
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Cap(t) = max I(Z,Y)
P(Z)

was termed the channel capacity, Itis clearly an intrinsic property of the information
source or the channel P(ylz). In communication theory, the capacity represents the
maximum information transfer capability of a given (noisy) channel, and is therefore of
utmost importance. This results from the communication engineer’s ability (having the
option of coding the input messages before they enter a transmission channel) to adjust
the probabilities P(z) to make I(Z,Y) achieve its highest value Cap(t). Such an option is
not available in the decision-making environment we are considering; the prior P(z) is
determined by the decision-maker’s previous experience and background knowledge, and
cannot be tampered with,

It is interesting to note, though, that the highest price for t would not always be
offered by the most ignorant (i.e., P(z) = 1/N,) user, since the expression for I(Z,Y) is
not invariant under state permutation. If, however, the outcomes (columns) of the
matrix P(Y|Z) can be partitioned into subsets in such a way that in each submatrix each
row is a permutation of each other row and each column is a permutation of each other
column, then I(Z,Y) achieves its highest value under equally distributed state probability
(complete ignorance).

3.4 Tradeoffs Between Performance Degradation and Information Costs

So far, we have assumed that the unit information cost ¢ is much lower than the
terminal stakes involved, and that the condition of high stakes necessitates the removal
of all uncertainties concerning state identity. We now wish to relax these two assump-
tions. It quite often happens that the cost of acquiring information is of the same order
of magnitude as the terminal payoffs, and moreover, the choice of the optimal action
may not require a complete state identification, as two or more states may require the
same optimal action.

In the more general case, one may be willing to settle for a certain degradation in
terminal payoffs if that would cut substantially the cost of information: the problem that
then arises is finding the proper balance between the two. Mathematically, we can
formulate the problem as follows: consider a decision problem with an arbitrary u(z,a),
T=T,, C(t)=c, and let U° be the maximum expected utility achievable with complete
knowledge of z. What is the minimum expected cost of information which would
guarantee an expected payoff of at least U°-D, where D is the maximally tolerable
degradation in terminal performance?

The formulation above no longer ignores the economical significance of information
symbols but rather brings into focus the tight coupling between the information
purchased and its consequences, the payoff matrix u(z,a). In this sense, we now possess
a more representative model of a typical decision-making problem. The solution to this
problem was developed by information theorists under the topic of rate-distortion
theory.

Rate distortion theory was introduced by Shannon [30] as early as 1959, and
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although it has become a major focus of research in more recent years (Berger [31]) it
remains largely unknown outside the field of information-theory. Some applications of
rate-distortion theory to pattern-recognition and computational complexity can be
found in references [32], [33], and [34].

In order to see the role played by the entropy in the general problem of arbitrary
payoffs, assume that the decision-maker adopts an arbitrary information gathering policy
S for selecting and inspecting information sources from T, and that S costs him an
expected cost C(S), enabling him to produce an expected utility of at least U°- D.
The action a€A finally taken by the decision-maker after observing the outcomes of the
sources chosen by S is a random variable whose dependence on the state z can be
characterized by a conditional probability matrix P4(alz), satisfying:

U°—Z 2 P(2) P (alz) u(z,a) <D

We will call any conditional probability matrix satisfying the inequality above D- admis-
sible and designate the set of all such matrices by P, .

Imagine now that a hypothetical forecaster attempts to predict the state z by
examining the final actions taken by the decision-maker. The forecaster would be
able to determine the exact state if he purchases additional information at a cost of:

cH (Z|A) = —c ‘Zé T P(z) Ps(z!a') log P(zla)

thus enabling the decision-maker and the forecaster as a team to identify z at a total
cost of C(S) + cHS(ZlA). However, since the complete identification of z must cost at
least cH(Z) we have:

C(S) = c [H(Z) — Hg(Z|A)] = cI(Z,A)

Taking the minimum of C(S) over all policies which yield D-admissible performances
gives the minimum cost C(D) of the information needed to achieve such a performance,
Thus:

C(D) & min C(S) = ¢ min I(Z,A)
$: Pglal2) €Rpy - Plalo)ERy

The function defined by the minimization of I(Z,A) is called the rated-distortion function
R(D) which, in communication theory, gives the minimum expected code length (in
bits per symbol) required to produce a mean distortion not exceeding D. Shannon
proved also that codes do exist which achieve a mean distortion D with a mean code
length arbitrarily closed to R(D), provided that very large blocks of data are coded
simultaneously. In our application though, where each observation sequence serves a
separate decision, only the inequality
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C(D) = cR(D)

carries economical significance.

For an arbitrary probability vector P(Z) and an arbitrary payoff matrix u(z,a) the
exact calculation of R(D) is not a trivial matter. Analytic expressions for R(D) are
available in only a few special cases (e.g., P(z) = 1/N, and u(z,a) = 6(z,a) yields R(D) =
log N, + D log D + (1-D) log (1-D)—D log (N, — 1). However, good bounds to R(D)
can be readily obtained using the following procedure (Berger [31]): let M(s) be any
function of s satisfying:

M(s) = max ¥ 254z2)
a 1
where

d(z,a) = U° —u(z,a)

The rate-distortion function is lower bounded by R, (D) where:

R, (D) = H(Z) + sD(s) — log M(s) —<S<0 s (1962).
and
D(s)--(—i—logM(s) —~0<s<0
T ds

The last two equations provide a parametric representation for a curve R, (D) lying on
or below R(D), with s as the variable parameter.

From an economic viewpoint, the merit of a given information gathering strategy S
is judged by the expected terminal utility U(S) minus the expected information cost
C(S).2 Using the lower bound RL(D) above, we can find an absolute upper limit on
U(S) — C(S) for all information gathering strategies:

" max[U(S) — C(S)] <U°— mgn[cRL(D) + D]
s :
< U° — cH(Z) + c log max £ 2-d@ale

U° — cH(Z) is the maximum expected utility when the user resolves to purchase all the
information required for state identification. The logarithmic term represents a potential-
ly extra gain due to the user’s willingness to make suboptimal decisions in order to save
information costs. It reduces to zero under high-stakes conditions ¢ << d(z,a).

Thus, by a simple inspection of the payoff matrix and prior to any optimization
procedures, one can determine a ceiling on the overall expected utility of a decision
situation, including both terminal payoffs and information costs.
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IV. CONCLUSION

The major cause of misunderstanding about the meaning of the entropy measure and
its indiscriminate usage stem from the misconception that entropy was developed to
measure the benefits of information. In fact, even in communication theory proper,
where more information invariably implies more benefits, the entropic-measure of
uncertainty has never been meant to measure the evils of uncertainty but rather the cost
of its removal. Likewise, it is not the assumption of equal penalty for all errors which
keeps entropy-based concepts from breaking the confines of communication problems
and becoming more universally applicable, but rather the assumption of equal cost for all
(binary) tests. |

The paper shows that in situations where this latter assumption represents a
reasonable approximation, entropy plays a significant role under all payoff structures.
Conversely, when the assumption of uniform test-costs is not valid, only loose connec-
tions can be established between entropic measures and the pragmatic value of informa-
tion.
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FOOTNOTES

This distinction is highly related to what Marschak [22] called demand and supply values of

information.
We assume here that testing costs do not fluctuate much beyond the linear range of the utility

function.




