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ABSTRACT

The purpose of this note is to draw attention to certain aspects of causal reasoning which are
pervasive in ordinary discourse yet, based on the author's scan of the literature, have not received
due treatment by logical formalisms of common-sense reasoning. In a nutshell, it appears that almost
every default rule falls into one of two categories: expectation-evoking or explanation-evoking. The
former describes association among events in the outside world (e.g., fire is typically accompanied
by smoke); the latter describes how we reason about the world (e.g., smoke normally suggests fire).
This distinction is consistently recognized by people and serves as a tool for controlling the
invocation of new default rules. This note questions the ability of formal systems to reflect
common-sense inferences without acknowledging such distinction and outlines a way in which the
flow of causation can be summoned within the formal framework of default logic.

1. How Old Beliefs Were Established Determines Which
New Beliefs Are Evoked

Let A and B stand for the following propositions:

A “Joec is over 7 years old.”
B “Joe can read and write.”

Case 1. Consider a reasoning system with the default rule
def,: B—> A.
* This is a revised version of a paper presented at the AAAI-87 Conference, Seattle, WA.
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A new fact now becomes available,
e, ‘“Joe can recite passages from Shakespeare,”
together with a new default rule:
defy: e;—> B
Case 2. Consider a reasoning system with the same default rule,
defg,:B—> A .
A new fact now becomes available,
e, ‘“Joe’s father is a Professor of English,”
together with a new default rule,
def,:e,— B.
(To make def, more plausible, one might add that Joe is known to be over 6
years old and is not a moron.)

Common sense dictates that Case 1 should lead to conclusions opposite to
those of Case 2. Learning that Joe can recite Shakespeare should evoke belief
in Joe’s reading ability, B, and, consequently, a correspondingly mature age,
A. Learning of his father’s profession, on the other hand, while still inspiring

belief in Joe’s reading ability, should not trigger the default rule B— A
because it does not support the hypothesis that Joe is over 7. On the contrary;

Joe’s father is
Joe is over 7 years old. Joe is over 7 years old. an English professor.

—def 5 of~def »
Joe can read and write.

Joe recites Shakespeare. J

Joe can read and write.

Case 1 Case 2

Fic. 1. The default rule B— A should be invoked when B is established by evidential information
(Case 1) and inhibited when B is established by prediction (Case 2). Causal rules point downwards
and evidential rules upwards.
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whatever evidence we had of Joe’s literary skills could now be partially
attributed to the specialty of his father rather than to Joe’s natural state of
development. Thus, if a belief were previously committed to A, and if
measures of belief were permitted, it would not seem unreasonable that e,
would somewhat weaken the belief in A.

From a purely syntactic viewpoint, Case 1 is identical to Case 2. In both
cases we have a new fact triggering B by default. Yet, in Case 1 we wish to
encourage the invocation of B— A while, in Case 2, we wish to inhibit it. Can
a default-based reasoning system distinguish between the two cases?

The advocates of existing systems may argue that the proper way of
inhibiting A in Case 2 would be to employ a more elaborate default rule, where
more exceptions are stated explicitly. For example, rather than B— A, the
proper default rule should read: B— A|UNLESS e,. Such exceptions can be
encoded as nonnormal defaults in Reiter’s logic [11] or as out justifiers in
truth-maintenance systems [2].

Unfortunately, this cure is inadequate on several grounds. First, it requires
that every default rule be burdened with an unmanageably large number of
conceivable exceptions. Second, it misses the intent of the default rule
def,: B— A, the primary aim of which was to evoke belief in A whenever the
truth of B can be ascertained; it would be very disturbing for the rule author
having to dream up far-fetched exceptions instead of simply articulating
everyday knowledge that children with reading ability are typically over seven
years old. Third, while correctly inhibiting A in Case 2, the UNLESS cure would
also inhibit A in many other cases where it should be encouraged. For
example, suppose we actually test Joe’s reading ability and find out that it is at
the level of a 10-year old child, unequivocally establishing the truth of B. Are
we to suppress the natural conclusion that Joe is over 7 on the basis of his
father being an English professor? There are many other conditions under
which even a 5-year-old boy can be expected to acquire reading abilities, yet,
these should not be treated as exceptions in the default-logical sense because
those same conductive conditions are also available to a 7-year old; and,
consequently, they ought not to preclude the natural conclusion that a child
with reading ability is, typically, over 7. They may lower, somewhat, our
confidence in the conclusion but should not be allowed to totally and perma-
nently suppress it.

To summarize, what we want is a mechanism that is sensitive to how B was
established. If B is established by direct observation or strong evidence
supporting it (Case 1), the default rule B— A should be invoked. If, on the
other hand, B was established by expectation, anticipation or prediction (Case
2), then B— A should not be invoked, no matter how strong the expectation.

The asymmetry between expectation-evoking and explanation-evoking rules
is not merely that of temporal ordering, but is more a product of human
memory organization. For example, age evokes expectations of certain abilities
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not because it precedes them in time (in many cases it does not) but because
the concept called “child of age 7~ was chosen by the culture to warrant a
name for bona fide frame, while those abilities were chosen as expectational
slots in that frame. Similar asymmetries can be found in object-property,
class-subclass and action-consequence relationships.

2. More on the Distinction between Causal versus
Evidential Support

Consider the following two sentences:

Joe seemed unable to stand up; so, I believed he was injured. (1)

Harry seemed injured; so, I believed he would be unable to
stand up. (2)

Any reasoning system that does not take into account the direction of causality
or, at least, the source and mode by which beliefs are established is bound to
conclude that Harry is as likely to be drunk as Joe. Our intuition, however,
dictates that Joe is more likely to be drunk than Harry because Harry’s
inability to stand up, the only indication for drunkenness mentioned in his
case, is portrayed as an expectation-based property emanating from injury, and
injury is a perfectly acceptable alternative to drunkenness. In Joe’s case, on the
other hand, not-standing-up is described as a primary property supported by
direct observations, while injury is brought up as an explanatory property,
inferred by default.

Note that the difference between Joe and Harry is not attributed to a
difference in our confidence in their abilities to stand up. Harry will still appear
less likely to be drunk than Joe when we rephrase the sentences to read:

Joe showed slight difficulties standing up; so, I believed he was

injured. (1)
Harry seemed injured; so, I was sure he would be unable to
stand up. (2"

Notice the important role played by the word “so.” It clearly designates the
preceding proposition as the primary source of belief in the proposition that
follows. Natural languages contain many connectives for indicating how conclu-
sions are reached (e.g., therefore, thus, on the other hand, nevertheless, etc.).
Classical logic, as well as known versions of default logic, appears to stubborn-
ly ignore this vital information by treating all believed facts and facts derived
from other believed facts on equal footing. Whether beliefs are established by
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external means (e.g., noisy observations), by presumptuous expectations, or by
quest for explanation does not matter.

But even if we are convinced of the importance of the sources of one’s
belief; the question remains how to store and use such information. In the
Bayesian analysis of belief networks [5], this is accomplished using numerical
parameters; each proposition is assigned two parameters, w and A, one
measuring its accrued causal support and the other its accrued evidential
support. These parameters then play decisive roles in routing the impacts of
new evidence throughout the network. For example, Harry’s inability to stand
up will accrue some causal support, emanating from injury, and zero evidential
support, while Joe’s story will entail the opposite support profile. As a result,
having observed blood stains on the floor would contribute to a reduction in
the overall belief that Joe is drunk but would not have any impact on the belief
that Harry is drunk. Similarly, having found a whiskey bottle nearby would
weaken the belief in Joe’s injury but leave no impact on Harry’s.

These inferences are in harmony with intuition. Harry’s inability to stand up
was a purely conjectural expectation based on his perceived injury, but it is
unsupported by a confirmation of any of its own, distinct predictions. As such,
it ought not to pass information between the frame of injury and the frame of
drunkenness. The mental act of imagining the likely consequences of an
hypothesis does not activate other, remotely related, hypotheses just because
the latter could also cause the imagined consequence. For an extreme example,
we would not interject the possibility of a lung cancer in the context of a car
accident just because the two (accidents and cancer) could lead to the same
eventual consequence—death.

Can a nonnumeric logic capture and exploit these nuances? I think, to some
degree, it can. True, it cannot accommodate the notions of “weak” and
“strong’’ expectations, nor the notion of “‘accrued” support, but this limitation
may not be too severe in some applications, e.g., one in which belief or
disbelief in a proposition is triggered by just a few decisive justifications. What
we can still maintain, though, is an indication of how a given belief was
established—by expectational or evidential considerations, or both, and use
these indications for deciding which default rules can be activated in any given
state of knowledge.

3. The C-E System: A Coarse Logical Abstraction of
Causal Directionality

Evidently, common-sense reasoning involves two types of default rules: expec-
tation evoking (e.g., if fire then smoke), and explanation evoking (e.g., if
smoke then fire). We call the first causal rules, and the second evidential rules.
The semantics that default logics associate with a default rule A— B is usually
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given in terms of a license to presume B, if A is believed, as long as B is
consistent with currently held beliefs [11]. This semantics fits the nature of
causal rules but not that of evidential rules. Rules of the type, “if observation
A then hypothesis B,” should be blocked not only when B is inconsistent with
current beliefs, but also whenever an alternative explanation is available for
the observation A, even when B is perfectly consistent with current beliefs.
The problems described in the preceding sections stem from subjecting the two
types of defaults to the same operational semantics: presume B unless it is
contradictory.

There are two ways of handling these problems; one is to admit default rules
of only one kind, the second is to admit a mixture of causal and evidential
rules, tab each rule by its type, and manage them accordingly. The first method
is certainly easier to implement. The MYCIN [13] system, for example, admits
only evidential rules (always pointing from evidence to hypothesis); it can
perform simple diagnoses but cannot combine diagnosis with prediction [12].
Alternatively, one can admit as input only causal rules, as is indeed the
prevailing practice in Bayes’ analysis; input information is given in a if-cause-
then-effect format, while diagnoses are derived by explanation-seeking proce-
dures (e.g. minimization), rather than by explicit diagnostic rules [6, 7]. Poole
[10] has, likewise, devised a logic-based system where default rules are
restricted to causal type, and reasoning from evidence to hypotheses is
accomplished by specialized “theory formation™ procedures. Such causal-based
systems (often called “model-based” or “first-principles-based”) enjoy the
features of parsimony, stability and modularity, and facilitate a more natural,
declarative representation of world knowledge.

In practice, however, most default-handling systems in Al admit a mixture of
causal and evidential rules. For example, truth-maintenance systems would
accept both causal justifiers, as in (IS FRED PROFESSOR) — (POOR FRED), and
evidential justifiers as in (PAIN FRED SIDE)— (HAS FRED APPENDICITIS) [1].
The reason being that, despite the advantages of causal systems, it is hard for
rule authors to resist the temptation of articulating compiled procedural
knowledge, leading from familiar situations to previously successful actions or
guesses, e.g., that smoke suggests fire, that symptons suggest diseases, etc. The
C-E logic proposed here is an attempt to maintain plausibility in a mixed
system, where causal and evidential rules reside side by side, each labeled by
its type.

Let each default rule in the system be labeled as either C-def (connoting
“causal”) or E-def (connoting “‘evidential”’). The former will be distinguished
by the symbol — ., as in “FIRE—.SMOKE,” meaning “FIRE causes SMOKE,”
and the latter by —, as in “SMOKE — ,. FIRE,” meaning “SMOKE is evidence
for FIRE.” Correspondingly, let each believed proposition be labeled by a
distinguishing symbol, “E” or “C.” A proposition P is E-believed, written
E(P), if it is a direct consequence of some E-def rule. Otherwise, if P can be
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established as a direct consequence of only C-def rules, it is said to be
C-believed, written C(P), supported solely by expectation or anticipation. The
semantics of the C-E distinction are captured by the following three inference
rules:

P—.0 P—.Q P—=:0Q
@ ) ® Ep) © k)
Q) c(Q) E(Q)
Note that we purposely precluded the inference rule:
Ps0
C(pP)
Q

which led to counter-intuitive conclusions in Case 2 of Joe’s story.

Inference rules (a), (b) and (c) imply that E-believed conclusions can only
attain E-believed status by a chain of purely E-def rules. C-believed conclu-
sions, on the other hand, may be obtained from a mix of C-def and E-def
rules. For example, an E-def rule may (viz., (c)) yield an E-believed conclusion
which can feed into a C-def rule (viz., (b)) and yield a C-believed conclusion.
Note, also, that the three inference rules above would license the use of A— B
and B— A without falling into the circular reasoning trap. Iterative application
of these two rules would never cause a C-believed proposition to become
E-believed because at least one of the rules must be of type C.

The distinction between the two types of rules can be demonstrated using the
following example (see Fig. 2).

P -- "It rained last night"

P, --"The sgrinkler was on

ast night”

Q --"The grass is wet"

AN

R ;--"The grass is cold and shiny" R ,--"My shoes are wet"

Fig. 2. P, is invoked as an explanation when ( is established by observing R, or R,, but not by
observing P,.
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Let P, P,, O, R,, and R, stand for the propositions:

P, “It rained last night,”

P, “The sprinkler was on last night,”
(0  “The grass is wet,”

R, “The grass is cold and shiny,”

R, *“My shoes are wet.”

The causal and evidential relationships between these propositions would be
written:

Pi=.0, Q—p P,
P,—.0, Q—3uP;;
OQ—¢R,, Ri—:0,
Q—¢R,, R,—.0.

If ( is established by an E-def rule such as R, — £ @, then it can trigger both
P, as explanation, and R, as prediction. However, if Q is established merely by
a C-def rule, say P,— . Q, then it can trigger R, (and R,) but not P,.

The essence of the causal asymmetry stems from the fact that two causes of a
common consequence interact differently than two consequences of a common
cause; in the absence of direct links between the two, the former compete with
each other, while the latter support each other. Moreover, the former interact
when their connecting proposition is confirmed, the latter interact only when
their connecting proposition is unconfirmed. In our example, the state of the
sprinkler would influence our belief in rain only when the grass wetness is
confirmed by observation. However, knowing whether the shoes are wet or dry
can influence the prediction “the grass is cold” only prior to confirming the
wetness of the grass. A logic of causal dependencies is given in [9].

Let us see how this C-E system resolves the problem of Joe’s age (see Fig.
1). defy and def, will be classified as E-def rules, while def, will be proclaimed
a C-def rule. All provided facts (e.g., e, and e,) will naturally be E-believed.
In Case 1, B will become E-believed (via rule (c)) and, subsequently, after
invoking def, in rule (c), A4, too, will become E-believed. In Case 2, however
B will only become C-believed (via rule (b)) and, as such, cannot invoke def o
leaving A undetermined, as expected.

To handle retraction we can employ a mechanism of “justification mainte-
nance,” similar to that used in truth-maintenance systems [2]. We define an
extension to be an assignment of C/E/OUT status to the propositions in the
system that is closed under rules (a), (b) and (¢). An extension X is said to be
well-founded if all its labels could be justified by the three inference rules
above. In other words, every E-believed proposition Q in X is either given as a
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fact or is a conclusion of some E-def rule P—, O where P is labeled E; every
C-believed proposition Q in X is a conclusion of some C-def rule P—.Q
where P is labeled either E or C. Newly added facts propagate their impact on
the beliefs of other propositions by maintaining the well-foundedness of the
extension. For example, if in Joe’s story we first learn facts ¢, and e,, then the
only well-founded extension is X, = {E(e,), E(e,), E(B), E(A)}, namely all
propositions are E-believed. If we later learn a new fact that suppresses the
default def, (e.g., e, “Joe is blind and always repeats what he hears™), then
extension X, gives place to X, = {E(e,), E(e,), E(e;), C(B), oUT(A)}. Thus,
suppressing def, causes B to become C-believed (causally justified by the truth
of e,) which further suppresses the rule defy, and retracts the belied in
A—Joe’s being over 7 years old.

The merits of this definition of well-foundedness can be demonstrated when
applied to the so-called “Yale shooting problem” [3]. In its simplest version,
the problem involves shooting a person known to be alive at time ¢, (ALIVE(Z,))
with a gun known to be loaded at £, (LOADED(¢,)). Normally, we would expect
the gun to remain loaded at ¢, and the victim to be dead at time ¢,. Yet, if one
expresses the natural tendency of things to persist over time by the default
rules:

LOADED(#,) — LOADED(#,) , (3)

ALIVE(#,)— ALIVE(L,) , (4)
and the impact of shooting a loaded gun, by the rule:

LOADED(t,)— DEAD(¢,) (5)
an anomalous extension ensues, whereby the victim is alive at ¢, and the gun is

unloaded at ;. The anomalous extension is assembled by applying rule (4) to
the fact ALIVE(¢,), followed by the contrapositive form of rule (5)

ALIVE(t,) —LOADED(t, ) . (5"

The way the C-E system handles this problem would be to label (3)-(5) as
causal rules and (5') as an evidential rule. Starting with the facts LOADED(Z,)
and ALIVE(#;), if we first apply rules (3) and (5), we get the intended
well-founded extension

X, = {E[LOADED(t,)], E[ALIVE(?,)] , C[LOADED(¢,)], C[DEAD(#,)]} ,

while applying rules (3) and (4) yields another anomalous well-founded
extension:
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X, = {E[LOADED(t,)], E[ALIVE(t,)],
C[LOADED(t,)], C[ALIVE(t,)]} .

The anomalous extension of Hanks and McDermott, entaining ILOADED(%,),
would not be well-founded because ALIVE(?,) is C-believed, hence, it cannot
serve as a justification for an E-def rule like (5').

Although the C-E system yields an anomalous extension X,, it is not an
unreasonable extension considering the syntax of the rules used. Indeed,
exchanging ALIVE(#;) with the predicate WEARING-BULLETPROOF-VEST(Z, )
would satisty rules (3)-(5) and (5') and would render X, a more acceptable
extension than X,. In other words, there is no syntactic way of inferring from
rules (3)-(5) that being alive at 7, does not constitute protection against gun
fire. (The purpose of rule (5) would then be to assert that dead people cannot
be revived by being shot). To convey the disruptive effect of gun fire over the
persistence of life, one can use, for example, the rule

ALIVE(!;) A LOADED(t,) — DEAD(Z,)

instead of (5) (see [7]). However, unlike the reasoning presented by Hanks and
McDermott and regardless of the mechanism one chooses to represent the
volatility of life under gun shots, the C-E logic will never allow the hypothetical
prediction ALIVE(t,)— ALIVE(t,) to turn backwards and trigger doubts in the
loadness of the gun at ;. Again, this asymmetry is not unique to temporal
ordering but is applicable to property inheritance and class-subclass relation-
ships in general [4].

4. Implicit Suppressors and the Need for Finite Abstractions

E-believed status enjoys some advantages over C-believed status. The former
can invoke both C-def and E-def rules, while the latter, no matter how strong
the belief, invokes only C-def rules. On the other hand, C-def rules are more
powerful than E-def rules, since the former can be applied to both E-believed
and C-believed propositions, while E-def rules can be applied only to E-
believed propositions. More generally, E-def rules are weaker because they
can be undermined by propositions that, in themselves, do not contradict nor
oppose the conclusion of the rules, if only they offer alternative explanations
for the antecedent. In Fig. 2, for example, P, deactivates the rule Q— B
despite the fact that is is perfectly consistent for a sprinkler, P,, to turn on on a
rainy night, P,. This suppression reflects the natural tendency of people to
prefer simpler explanations (i.c., involving fewer assumptions), and, hence,
can be regarded as a local filtering scheme, serving some grand minimization
policy.

The computational advantages of such suppression can be demonstrated in
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the context of the “frame problem” associated with the E-def rule: “If the car
does not start, assume the battery is dead.” Obviously, there are many
exceptions to this rule, e.g., ““...unless the starter is burned,” “. .. unless
someone pulled the spark plugs,” *“. . . unless the gas tank is empty,” etc., and,
if any of these conditions is believed to be true, people would suppress the
invocation of the battery as an explanation for having a car-starting problem.
What is equally obvious is that people do not store all these hypothetical
conditions explicitly with each conceivable explanation of car-starting problems
but treat them as unattached, implicit suppressors, namely, conditions which
exert their influence only upon becoming actively believed and, when they do,
would uniformly suppress every E-def rule having “car not starting” as its sole
antecedent.

But if the list of suppressors is not prepared in advance, how do people
distinguish a genuine suppressor from one in disguise. In other words, by what
criterion could people discriminate between the suppressor ‘“‘the starter is
burmed” and the candidate suppressor “I hear no motor sound”? Either of
these two inspires strong belief in “the car won’t start” and “I’ll be late for the
meeting”’; yet, the burned-out starter is licensed to suppress the conclusion
“the battery is dead,” while the motor’s silence is licensed to evoke it. I submit
that it is in the causal directionality of the suppressor-suppressed relationship
which provides the identification criterion: the antecedents of causal rules do
qualify as suppressors while those of evidential rules do not. It is hard to see
how implicit suppression could be realized, had people not been blessed with
clear distinction between explanation-evoking and expectation-evoking rules.
So, why stifle this distinction in formal reasoning systems?

Formally, implicit suppression can be defined in terms of a metarule that
qualifies the viability of every E-def rule P—; Q in the system:

P—, Q|UNLESS 3(Q’'): (Q'—P) and [E(Q") or C(Q")].

The rule says that the default rule P—,Q can be invoked only when no
alternative explanation Q' of P is believed. One may, in fact, turn things
around and take this vulnerability to implicit suppression as the defining
criterion for evidential rules. Accordingly, a rule P— Q will be said to be
evidential if there exists another rule Q' — P, such that Q' & P is a reason to
believe 10, while Q' alone is not a reason to believe =1 Q. Otherwise, the rule
will be called causal.

The main benefit of this suppression scheme is that we no longer need to
prepare the name of each potential suppressor next to that of a would-be
suppressed; the connection between the two will be formed ““on the fly,” once
the suppressor becomes actively believed. The mere fact that a belief in a
proposition P can be justified by some explanation Q' would automatically and
precisely block all the rules we wished suppressed. More ambitiously, it should
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also lead to retracting all conclusions drawn from premature activation of such
rules as is demonstrated in Section 3. This is one of the computational benefits
offered by the organizational instrument called causation. It has so far been
realized using the numerical representation of Bayesian inference, but, since
human reasoning is mostly qualitative, it would be interesting to embody in
nonnumeric systems as well.

Unfortunately the benefit of implicit suppression is hindered by some
fundamental issue, and it is not clear how it might be realized in purely
categorical systems which preclude any representation for the degree of
support that a premise imparts to a conclusion. Treating all C-def rules as
implicit suppressors would be inappropriate, as was demonstrated in the
starting theme of this note. In Case 1 of Joe’s story, we correctly felt
uncomfortable letting his father’s profession inhibit the E-def rule

CAN-READ(JOE)—, OVER-7(JOE) ,

while now we claim that certain facts (e.g., burned starter), by virtue of having
such compelling predictive influence over other facts (e.g., car not starting),
should be allowed to inhibit all E-def rules emanating from the realization of
such predictions (e.g., dead battery). Apparently there is a sharp qualitative
difference between strong C-def rules such as

HAS(z, BURNED-STARTER) — . WON'T-START(z)
and weak C-def rules such as

ENGLISH-PROFESSOR(FATHER(Z)) —> ~ CAN-READ(z)

or
HAS(z, OLD-STARTER) — . WON'T-START(z) .

Strong C-def rules, if invoked, should inhibit all E-def rules emanating from
their consequences. On the other hand, weak C-def rules should allow these
E-def rules to fire (via rule (c)).

This distinction is exactly the role played by the numerical parameters in
Bayesian inference; they measure the accrued strength of causal support, and
serve to distribute the impact of newly observed facts among those propositions
which had predicted the observations. Normally, those propositions which
generated strong prior expectations of the facts observed would receive the
major share of support imparted by the observation [8]. It is primarily due to
this strong versus weak distinction that Bayesian inference rarely leads to
counter-intuitive conclusions, and this is also why it is advisable to consult
Bayes’ analysis as a standard for abstracting more refined logical systems.
However, the purpose of this note is not to advocate the merits of numerical
schemes but, rather, to emphasize the benefits we can draw from the distinc-
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tion between causal and evidential default rules. It is quite feasible that with
just a rough quantization of rule strength, the major computational benefits of
causal reasoning could be tapped.

5. Conclusion

The distinction between C-believed and E-believed propositions allows us to
properly discriminate between rules that should be invoked (e.g., Case 1 of
Joe’s story) and those that should not (e.g., Case 2 of Joe’s story), without
violating the original intention of the rule provider. While the full power of this
distinction can, admittedly, be unleashed only in systems that are sensitive to
the relative strength of the default rules, there is still a lot that causality can
offer to systems lacking this sensitivity.

ACKNOWLEDGMENT

I thank H. Geffner, V. Lifschitz, D. McDermott, P. Morris, J. Minker, D. Perlis and C. Petrie for
their comments on an earlier version of this paper, and two anonymous reviewers for suggesting

significant improvements.
This work was supported in part by the National Science Foundation, Grant DCR 8644931.

REFERENCES

1. Charniak, E., Riesbeck, C.K. and McDermott, D.V., Artificial Intelligence Programming
(Erlbaum, Hillsdale, NJ, 1980).

2. Doyle, J., A truth maintenance system, Artificial Intelligence 12 (1979) 231-272.

3. Hanks, S. and McDermott, D., Nonmonotonic logic and temporal projection, Artificial
Intelligence 33 (1987) 379-412.

4. Morris, P., Curing anomalous extensions, in: Proceedings AAAI-87, Seattle, WA (1987)
437-442.

5. Pearl, J., Fusion, propagation, and structuring in belief networks, Artificial Intelligence 29
(1986) 241-288.

6. Pearl, J., Distributed revision of composite beliefs, Arrificial Intelligence 33 (2) (1987)
173-215.

7. Pearl, J., A probabilistic treatment of the Yale shooting problem, Tech. Rept. R-100,
Cognitive Systems Laboratory, UCLA (1987).

8. Pearl, J., Canonical models for causal interactions, Tech. Rept. R-104, Cognitive Systems
Laboratory, Computer Science Department, UCLA (1987); also in: J. Pearl, Networks of
Belief: Probabilistic Reasoning in Intelligent Systems (Morgan Kaufman, Los Altos, CA, 1988)
Ch. 4.

9. Pearl, J. and Verma, T., The logic of representing dependencies by directed graphs, in:
Proceedings AAAI-87, Seattle, WA (1987) 374-379.

10. Poole, D.L., Defaults and conjectures: Hypothetical reasoning for explanation and prediction,
Research Rept. CS-87-54, University of Waterloo, Waterloo, Ont. (1987).

11. Reiter, R. and Cricuolo, G., Some representational issues in default reasoning, Int. J.
Comput. Math. 9 (1983) 1-13.

12. Schachter, R.D. and Heckerman, D., A backward view for assessment, Al Mag. 8 (3) (1987)
55-61.

13. Shortliffe, E.H., Computer-Based Medical Consultation: MYCIN (Elsevier, New York, 1976).

Received June 1987; revised version received January 1988





