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ABSTRACT 

This paper extends the applications of  belief network models to include the revision of belief 
"'commitments," i.e., the categorical acceptance of a subset of  hypotheses which, together, constitute 
the most satisfactory explanation of the evidence at hand. A coherent model of  nonmonotonic 
reasoning is introduced, and distributed algorithms for belief revision are presented. We show that, in 
singly connected networks, the most satisfactot'y explanation can be found in linear time by a 
message-passing algorithm similar to the one used in belief updating. In multiply connected 
networks, the problem may be exponentially hard but, if the network is sparse, topological 
considerations can be used to render the interpretation task tractable. In general, finding the most 
probable combination of hypotheses is no more complex than computing the degree of  belief for any 
individual hypothesis. Applications to circuit and medical diagnosis are illustrated. 

1. Introduction 

People 's  beliefs are normally cast in categorical terms, often involving not just 
one, but a composite  set of propositions which, stated together,  offer a 
satisfactory account of the observed data. For example,  a physician might 
state, "This patient apparently suffers from two simultaneous disorders A and 
B which, due to condition C, caused the deterioration of organ D . "  Except  for 
the hedging term "apparen t ly , "  such a composite s tatement  conveys a sense of 
unreserved commitment  (of beliefs) to a set of  four hypotheses.  The individual 
components  in the explanation above are meshed together by mutually enfor- 
ced cause-effect relationships, forming a cohesive whole; the removal  of any 
one component  f rom the discourse would tarnish the completeness of the 
entire explanation. 

Such a sense of cohesiveness normally suggests that a great amount  of 
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refuting evidence would have to be gathered before the current interpretation 
would undergo a revision. Moreover, once a revision is activated, it will likely 
change the entire content of the interpretation, not merely its level of 
plausibility. Another characteristic of coherent explanations is that they do not 
assign degrees of certainty to any individual hypothesis in the argument; 
neither do they contain information about alternative, next-to-best combina- 
tions of hypotheses. 

Even the certainty of the accepted composite explanation is only seldom 
consulted; most everyday activities are predicated upon beliefs which, despite 
being provisional do not seem to be muddled with varying shades of uncertain- 
ty. Consider, for example the sentence: "John decided to have a bowl of cereal 
but, finding the cupboard empty, he figured out that Mary must have finished it 
at breakfast." Routine actions such as reaching for the cupboard are normally 
performed without the slightest hesitation or reservation, thus reflecting adher- 
ence to firmly held beliefs (of finding cereal there). When new facts are 
observed, refuting current beliefs, a process of belief revision takes place; new 
beliefs replace old ones, also to be firmly held, until refuted. 

These behavioral features are somewhat at variance with past work on belief 
network models of evidential reasoning [21]. Thus far, this work has focussed 
on the task of belief updating, i.e., assigning each hypothesis in a network a 
degree of belief, BEL( . ) ,  consistent with all observations. The function BEL 
changes smoothly and incrementally with each new item of evidence. 

This paper extends the applications of Bayesian analysis and belief network 
models to include revision of belief commitments, i.e., the tentative categorical 
acceptance of a subset of hypotheses which, together, constitute the most 
satisfactory explanation of the evidence at hand. Using probabilistic terminolo- 
gy, that task amounts to finding the most probable instantiation of all hypo- 
thesis variables, given the observed data. The resulting output is an optimal list 
of jointly accepted propositions that may vary dynamically as more evidence 
obtains. 

In principle, this optimization task seems intractable because enumerating 
and rating all possible instantiations is computationally prohibitive and, in- 
stead, many heuristic techniques have been developed in various fields of 
application. In pattern recognition the problem became known as the "multi- 
membership problem" [2]; in medical diagnosis it is known as "multiple 
disorders" [1, 5, 24-26] and in circuit diagnosis as "multiple faults" [6, 27]. 

This paper departs from previous work by emphasizing a distributed compu- 
tation approach to belief revision. The impact of each new piece of evidence is 
viewed as a perturbation that propagates through the network via local 
communication among neighboring concepts, with minimum external supervi- 
sion. At equilibrium, each variable will be bound to a definite value which, 
together with all other value assignments, is the best interpretation of the 
evidence. The main reason for adopting this distributed message-passing 
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paradigm is that it provides a natural mechanism for exploiting the indepen- 
dencies embodied in sparsely constrained systems and translating them, by 
subtask decomposition, into substantial reduction in complexity. Additionally, 
distributed propagation is inherently "transparent," namely, the intermediate 
steps, by virtue of their reflecting interactions only among semantically related 
variables, are conceptually meaningful. This facilitates the use of natural, 
object-oriented programming tools and helps establish confidence in the final 
result. 

We show that, in singly connected networks, the most satisfactory explana- 
tion can be found in linear time by a message-passing algorithm similar to the 
one used in belief updating. In multiply connected networks, the problem may 
be exponentially hard but, if the network is sparse, topological considerations 
can be used to render the interpretation task tractable. In general, assembling 
the most believable combination of hypotheses is no more complex than 
computing the degree of belief for any individual hypothesis. 

This paper comprises seven sections. Section 2 provides a brief summary of 
belief updating in Bayesian networks, as described in [21]. It defines the 
semantics of network representation, describes the tasks of belief updating and 
summarizes the propagation rules which lead to coherent updating in singly 
connected networks. Section 3 illustrates the propagation scheme using a 
simple example of circuit diagnosis, and compares belief updating with belief 
revision on the same example. Section 4 develops the propagation rules for 
belief revision in singly connected networks and compares them to those 
governing belief updating. Section 5 extends the propagation scheme to 
multiply connected networks using two methods, clustering and conditioning. 
Section 6 illustrates the method of conditioning on a simple medical diagnosis 
example, involving four diseases and four symptoms. Section 7 relates the 
revision process described in this paper to previous philosophical work on 
belief acceptance, discusses the adequacy of the "most probable" criterion, and 
touches on the issues of hysteresis and consistency in belief revision. 

2. Review of Belief Updating in Bayesian Belief Networks 

Bayesian belief networks [21] are directed acyclic graphs (DAGs) in which the 
nodes represent propositional variables, the arcs signify the existence of direct 
causal influences between the linked propositions, and the strengths of these 
influences are quantified by the conditional probabilities of each variable given 
the state of its parents. Thus, if the nodes in the graph represent the ordered 
variables X1, X 2 , . . . ,  3(,, then each variable X i draws arrows from a subset S~ 
of variables perceived to be "direct causes" of X i, i.e., Si is a set of X/s  
predecessors satisfying P(xi[si)= P(xilx 1, x 2 . . . . .  x~_l). A complete and con- 
sistent parametrization of the model can be obtained by specifying, for each 
X~, an assessment of P(x~lsi). The product of all these local assessments, 
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FIG. 1. A typical Bayesian network representing the distribution 
,P(X4 IXl , x~)P(x~lx, )e(x2lx~ )P(x, ). 

P(x6Ixs)P(xslx2, x3) 

P(x1, x 2 , . . . ,  xn) = H P(xilsi)  , 
i 

constitutes a joint probability model consistent with the assessed quantities. 
Thus, for example, the distribution corresponding to the network of Fig. 1 can 
be written by inspection: 1 

P ( x , , . . . ,  x6) 

= e(x61xs)P(xsIx2, x3)e(x41x1, x2)P(x31x, )P(x2lx l )e(x , ) .  

A Bayesian network provides a clear graphical representation for the 
essential independence relationships embedded in the underlying causal model. 
These independencies can be detected by the following DAG-separation 
criterion: if all paths between X~ and Xj are "blocked" by a subset S of 
variables, then X i is independent of Xj, given the values of the variables in S. 
A path is "blocked" by S if it contains a member of S between two diverging or 
two cascaded arrows or, alternatively, if it contains two arrows converging at 
node Xk, and neither X k nor any of its descendants is in S. In particular, each 
variable X i is independent of both its grandparents and its nondescendant 
siblings, given the values of the variables in its parent set S i. In Fig. 1, for 

~ Probabilistic formulae of this kind are shorthand notation for the statement that for any 
instantiation x 1, x 2 . . . . .  x° of the variables X~, X~ . . . .  , X, ,  the probability of the joint event 
(X~ = x~) & - . .  & (X n = x , )  is equal to the product of the probabilities of the corresponding 

conditional events (9(1 = xl) ,  (X2 = x2 if X1 = x~), (X3 = x3 if 9(2 = x2 & XI = x~) . . . . .  
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example, X 2 and X 3 are independent, given either {X~} or {X l, X4}, because 
the two paths between X 2 and X 3 are blocked by either one of these sets. 
However, X 2 and X 3 may not be independent given {X 1 , X6} because X 6, as a 
descendant of X 5, "unblocks" the head-to-head connection at A'5, thus opening 
a pathway between X 2 and X 3. 

Once a Bayesian network is constructed, it can be used as an interpretation 
engine, namely, newly arriving information will set up a parallel constraint- 
propagation process which ripples multidirectionally through the networks 
until, at equilibrium, every variable is assigned a measure of belief consistent 
with the axioms of probability calculus. Incoming information may be of two 
types: specific evidence and virtual evidence. Specific evidence corresponds to 
direct observations which validate, with certainty, the values of some variables 
already in the network. Virtual evidence corresponds to judgment based on 
undisclosed observations which affect the belief of some variables in the 
network. Such evidence is modeled by dummy nodes representing the undis- 
closed observations connected to the variables affected by the observations. 

The objective of updating beliefs coherently by purely local computations 
can be fully realized if the network is singly connected, namely, if there is only 
one undirected path between any pair of nodes. These include causal trees, 
where each node has a single parent, as well as networks with multi-parent 
nodes, representing events with several causal factors. We shall first review the 
propagation scheme in singly connected networks and then discuss (in Section 
5) how it can be extended to multiply connected networks. 

Let variable names be denoted by capital letters, e.g. U, V, X, Y, Z and 
their associated values by lower case letters, e.g., u, v, x, y, z. All incoming 
information, both specific and virtual, will be denoted by e to connote evidence 
and will be represented by nodes whose values are held constant. For the sake 
of clarity, we will distinguish between the fixed conditional probabilities that 
label the links, e.g., P(xlu, o), and the dynamic values of the updated node 
probabilities. The latter will be denoted by BEL(x), which reflects the overall 
belief accorded to the proposition X = x by all evidence so far received. Thus, 

BEL(x) __a p(xle) ' (1) 

where e is the value combination of all instantiated variables. 
Consider a fragment of a singly connected Bayesian network, as depicted in 

Fig. 2. The link U---~ X partitions the graph into two: a tail subgraph, G~:x, and 
a head subgraph, G~ex, the complement of G~x. Each of these two subgraphs 

q_ 

may contain a set of evidence, which we shall call respectively eux and eux. 
Likewise, the links V--* X, X---~ Y and X---~ Z respectively define the subgraphs 

+ + - -  

Gvx, Gxv,  and Gxz , which may contain the respective evidence sets evx, exv 
and exz. 
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Gx,, Gxz 
FIG. 2. Fragment of a singly connected network with multiple parents, illustrating graph partition- 
ing and message parameters. 

The belief distribution of each variable X in the network can be computed if 
three types of parameters are made available: 

(1) the current strength of the causal support, 7r, contributed by each 
incoming link to X: 

~(u)= P(ule~x), (2) 

(2) the current strength of the diagnostic support, h, contributed by each 
outgoing link from X: 

hAx) = P(exylx),  (3) 

(3) the fixed conditional-probability matrix, P(x[u, v), which relates the 
variable X to its immediate parents. 

Using these parameters, local belief updating can be accomplished by the 
following three steps, to be executed in any order: 

Step 1: Belief updating. When node X is activated to update its parameters, 
it simultaneously inspects the Irx(U ) and Zrx(V ) communicated by its parents 
and the messages hv(x ), hz(X) , . . ,  communicated by each of its sons. Using 
this input, it then updates its belief measure as follows: 

BEL(x) = ahv(X)hz(X ) ~, P(xlu ,  v)~rx(U)~rx(V ) , (4) 
u , u  
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where a is a normalizing constant, rendering 

BEL(x)  = 1. 
x 

Step 2: Updating A. Using the messages received, each node computes new 
A messages to be sent to its parents. For example, the new message Ax(U ) that 
X sends to its parent U is computed by: 

= ° (5) 

Step 3: Updating 7r. Each node computes new 7r messages to be sent to its 
children. For example, the new try(X) message that X sends to its child Y is 
computed by: 

Try(x) = aXz(x)[ ~ P(xlu, v)Trx(u)Trx(o)]. (6) 

These three steps summarize the six steps described in [21] and can be 
executed in any order.  (Step 1 can be skipped when BEL(x)  is of no interest.) 
An alternative way of calculating BEL(x)  would be to multiply the incoming 
and outgoing messages on some link from X to any of its children, e.g., 

BEL(x)  = a~r(X)Ay(X), (7) 

where 7rr(x ) is calculated via (6). 
This concurrent message-passing process is both initiated and terminated at 

the peripheral nodes of the network, subject to the following boundary 
conditions: 

(1) An anticipatory node represents an uninstantiated variable with no 
successors. For such a node, X, we set Ar(x ) = (1, 1 . . . . .  1). 

(2) An evidence node represents a variable with instantiated value. If 
variable X assumes the value x', we introduce a dummy child Z with 

1, i fx=x' ,  
Az(X)= 0, otherwise.  

This implies that, if X has children, Y1 . . . . .  Ym, each child should receive the 
same message Try(x) = Az(X ) from X. 

(3) A root node represents a variable with no parents. For each root 
variable X, we introduce a dummy parent U, permanently instantiated to 
U = 1, and set the conditional probability on the link U ~ X equal to the prior 
probability of X, i.e., P(x]u) = P(x). 



In [21], it is shown that, in singly connected networks, the semantics of the 
messages produced via (4)-(6) are preserved, namely, 

and 

YO = 1 

A~(u) P(e~xlu) ~'y(x) + , = , = e (x lexr )  (8) 

BEL(x) = P(xle) .  (9) 

3. Illustrating the Propagation Scheme 

The simple circuit of Fig. 3(a) will be used to illustrate the propagation pattern 
of the proposed scheme, the semantics of the messages involved, as well as the 
difference between belief updating and belief revision. The circuit consists of 
three AND gates in tandem. X 1,X 2 and X 3 are binary input variables 
( X  i ~ {0, 1}), Y3 is the circuit's output (}13 = XI  A X 2 A X3)  and Y1, Y2 a r e  

intermediate, unobserved variables (Yi = I,,,._ 1 ̂  X~). Under normal operation 
all inputs are ON and so is the output I/3. A failure occurs when any of the 
inputs is OFF which would be reflected in ~ = 0 (the circuits are assumed to 
be operational). The problem is to infer which input is faulty given the 
simultaneous observations {I/3 =0 ,  X 2 = 1} and assuming that failures are 
independent events with prior probabilities 

q , = l - p i = e ( x i = o ) ,  i = 1 , 2 , 3 .  (10) 

YO = 1 

Y1 

Y2 ~ 

Y3 ~ X3 

ql 
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ql/Pl 

1-PlP2/PlP 2 

YO = 1 ql 

, /  
(a) (b) (c) 

FIG. 3. (a) Logic circuit used to demonstrate the process of belief updating. (b) The Bayesian 
network corresponding to the circuit in (a). (c) Profile of 7r messages in the initial state of the 
network; the A messages (not shown) are unit vectors. 
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The Bayesian network corresponding to this circuit diagram is shown in Fig. 
3(b). Since the output of each component is functionally determined by the 
state of its two inputs, X i and Yi- 1 are identified as the parents of Y~, i = 1, 2, 3, 
and the conditional probabilities which characterize these child-parents rela- 
tionships are given by: 

1 ,  if Yi = Yi-1 ^ xi , 

P ( Y i l Y i - ~ , x i )  = 0, otherwise. (11) 

3.1.  Distributed bel ief  updating 

In the initial, quiescent state (Fig. 3(c)), all A are unit vectors, A = (1, 1), since 
no variable has any observed descendant (see (3)) and, so, there exists no 
evidence favoring the state 1 over the state 0. The 7r messages on the links are 
computed from (6) and (10) and (11), and are given by: 

~Yi(Xi ) = { qi, Xi : 0 ,  (12) 
Pi , x i = 1 ; 

ql ,  Y l = 0 ,  (13) 
7rr2(Yl)= P l ,  y l = I ;  

7ry3(Y2) = { l - P [  p 2 ,  Y2=0 '  (14) 
PiP2  Y2 = 1 .  

They simply describe the prior ON-OFF probabilities of the corresponding 
variables. The belief measures can be computed from these messages using (4) 
or (7) and, they, too, stand for the prior probabilities associated with the 
individual variables. For example, 

B E L ( x 2 ) = I q 2 '  x 2 = 0 ,  
P2, x 2 = 1 ;  (15) 

1 - P l P 2 P 3  , 
BEL(y3) 

PlPEP3 , 

y3~---0, 
Y3 = 1. (16) 

Now imagine that two observations are conducted simultaneously, giving 
113 = 0, X 2 = 1. The first implies that at least one input is faulty while the 
second exonerates X2, leaving either X 1 or X 3 (or both) as candidate culprits. 
The problem is small enough to permit an immediate global computation of all 
probabilities. For example, the probability that input X 1 is faulty is given by: 

e(sl = 0 l e )  = B E E ( x 1  = 0)  

qlP3 + qlq3 q,  
- , (17)  

qlq3 + q lP3 + Plq3 1 - P iP3 



182 J. PEARL 

while 
P(X3 = o1,,) = BEL(x3  = O) 

qlq3 + Piq3 q3 

qlq3 + qlP3 + Plq3 1 - PiP3 
(18) 

In a large network the problem may not be as easy and we shall next 
demonstrate how the results (17) and (18) can be obtained by distributed 
computation. 

Figure 4 illustrates three successive stages of the propagation process trig- 
gered by the two observations, assuming that a processor is assigned to each 
variable and that each processor is activated if any change occurs in the 
messages incident on that processor. Each diagram displays the messages 
updated at the corresponding stage; the top-down arrows represent zr messages 
and bottom-up arrows represent 2, messages. 

In Fig. 4(a) the instantiation of }'3 and X 2 triggers the update of three 
messages:/~r3(X3), l~y3 (y2) and 7rr2(x2). Their magnifudes are computed locally 
from (5) and (6), using the 7r values in (12)-(14), giving: 

7rv2(xz) = (0, 1), 

Av3(x3) = (1, 1 - P I P 2 ) ,  

hv3(Y2) = (1, q3). 

ql ql 

l /  x''' 1/<,,1, //~x2:1 

Y3 =0 Y =0 

(a) (b) 

YO = 1 

1/1-PlP3 1 

(19) 

(20) 

(21) 

ql 

q2 
/ 

=1 

q3 
/ 

Y3 = 0 

(c) 

Fxo. 4. Propagation of updated zr and A messages after observing X 2 = 1 and 1"3 = 0. (a) Messages 
generated immediately after the observations. (b) Messages generated by the activation of I<'2. (c) 
Messages generated by the activation of Y1 and Y3. 
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At the next phase of propagation (Fig. 4(b)), If2 is activated and generates 
three new messages: Ay2(y~), Ay2(X2) and 7rr3(y2). The first incorporates the 
changes observed in both Ar3(y2) and ~ry2(X3) while the latter two reflect the 
recent changes in At3 (y2) and 7rr2(x3), respectively. Their magnitudes are given 
by: 

Ar2(y,) = (1, q3), (22) 

Ar2(X2) = (1, 1 - P , P 3 ) ,  (23) 

7rv3(y2) = (1 + q3)-~(1, q3), (24) 

The final phase of propagation is depicted in Fig. 4(c). Processors Y1 and II3 
are activated simultaneously and generate the messages Ar~(Y0), hrx(xl) and 
hY3(X3). The first is superfluous since Y0 is "clamped" to 1. The latter two are 
computed via (5), giving: 

Av,(x,) = Av2(y,) = (1, q3), (25) 

A~(x3) = (1, qa)" (26) 

They reflect the relative probabilities of the total evidence observed, con- 
ditioned on the two possible values, 0 and 1, 'of the variables X 1 and X3, 
respectively. For example, under the assumption X~ = 0 the probability of the 
total evidence e -- {X 2 = 1, I"3 = 0} is Pz; while under the assumption X~ = 1 
that probability becomes P2q3 (X3 must be faulty to explain Y3 = 0). 

From these final values of the )t and 7r messages the belief distribution BEL 
can be computed for each variable in the system, (7). For example, for X 1 we 
obtain 

BEL(x) = aTrg,(X)Ag~(X)= a ( q l ,  p l ) (1 ,  q3) 

( qa P , q 3 )  
= a(ql ,  Plq3) = ql +plq3 qx +piq3 

(27) 

identically to (17). 

3.2. Distributed belief revision 

The aim of belief revision is not to associate a measure of belief with each 
individual proposition but, rather, to identify a composite set of propositions 
(one from each variable) which "best" explains the evidence at hand. In the 
example of Fig. 3(a), the aim is to find a consistent assignment of values to the 
set of uninstantiated variables, {X1, X3, Y2}, which best explains the evidence 
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e = {Y3 = 0, X 2 = 1}. Since II2 is functionally dependen t  on X~ the space of  
consistent assignments is de te rmined  by the values assigned to X~ and X 3 and,  
since (X~ = 1, X 2 = 1) is incompatible  with Y3 = 0, the choice is be tween three 
candidates:  

11 = {X 1 = 0 ,  X 3 = 0 }  , 

12 = {X 1 = 0, X 3 = 1} , 

13 = {X I = 1, X 3 = 0} . 

Wc shall refer to such assignments,  in terchangeably ,  as explanat ions ,  ex tens ions  
or  interpretations.  

Basic probabilistic considerat ions dictate 

qlq3 
P ( l l l e ) -  1 -  p , p 2  ' 

q~P3 
P(12[e) - 1 - P lP2 ' 

Plq3 (28) 
P ( I 3 l e ) -  1 - PlP2 ' 

where ,  assuming for  simplicity 

½ > ql > q2 > q3 , (29) 

I 2 = {X I = 0, X 3 = 1} is identified as the "bes t "  explanat ion of  the evidence e. 
However ,  this opt imal  assignment cannot  be obta ined  by simply optimizing the 
beliefs of  the individual variables. For  example,  taking ql = 0.45 and q3 = 0.4 
yields ((17) and (18)). 

B E L ( x  1 = 0) = 0.672 > B E L ( x  I = 1) = 0 .328,  

B E L ( x  3 = 0) = 0.597 > B E L ( x  3 = 1) = 0 .403.  

Yet, choosing the most  p robable  value of  each variable separately yields the 
assignment 11 = {X 1 = 0, X 3 = 0} which is the least probable  explanat ion,  with 
P ( I  l [ e ) =  0.268 compared  with P( l z[e )  = 0.403 and P(I3[e ) = 0.328. 

We shall now demons t ra te  how the opt imal  explanat ion can be assembled by 
a distr ibuted message-passing scheme similar to that  used in belief updat ing  
(Fig. 4). Clearly,  the messages used in this scheme should carry a summar ized  
description of  the entire ne twork ,  sufficient to guarantee  that local choices of  
individual variables consti tute a globally opt imal  explanation.  In our  example  
(Fig. 4(a)), the final messages incidenting on processor  X 1 should locally 
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determine the choice X~ = 0 and, simultaneously, those incidenting on X 3 
should dictate X 3 = 1. 

To meet this goal we associate with each variable X a new function, 
BEL*(x), which, for each value x represents the probability o f  the best 
interpretation o f  the proposition X =  x, i.e., the interpretation in which the 
values of all other variables were adjusted so as to attain their most probable 
combination. For example, in Fig. 3(b), the best interpretation of the proposi- 
tion Y1 = 0  is the assignment {X 1 = 0 , ) ( 2 = 1 , ) ( 3 = 1 } ,  with probability 
q~P2P3, while the proposition Y2 = 1 is best interpreted by the no-fault 
condition {X 1 = 1, X 2 = 1, X 3 = 1}, with probability PlP2P3. Thus, the BEL* 
function associated with II2 will be 

qlPEP3, if Y2 = 0, 
BEL*(y2) (30) 

L PlPzP3 , if Y2 = 1, 

and, since ql < Pl (see (29)), the local choice Y2 = 1 is guaranteed to be part of 
the globally optimal explanation. 

The computation of BEL* can be accomplished by a local, message-passing 
scheme similar to that of belief updating. The propagation dynamics is identical 
to that depicted in Fig. 4, except that the information carried by the messages 
has different meaning and the computations paralleling those of (4)-(6) 
involve maximization rather than summation. 

The ability to assemble a globally optimal solution by local computations 
rests on the many conditional-independence relations embodied in the system, 
as is reflected in the network topology (see [21, 22] for formal treatment of 
conditional independence and its graphical representations). These permit us to 
decompose the task of finding a best overall explanation into smaller subtasks 
of finding best explanations in subparts of the network, then combining them 
together. In Fig. 3(b), for example, finding the best explanation for I12 = 0 can 
be decomposed into two independent subtasks: 

(1) Find a best subexplanation for II2 = 0 in the tail subgraph of the link 
Y2 --> Y3 (i.e., comprising (Xl,  ]11, X2})- 

(2) Find a best subexplanation for Y2 = 0 in the head subgraph of the link 
Y2-'* Y3 (i.e., comprising {Y3, X3}). 

The fact that these two subgraphs are joined only by the link Y2--> Y3 
guarantees that the overall best explanation (for I12 = 0) is composed precisely 
of the two subexplanations found in (1) and (2) above. Moreover, the degree 
of support that the overall best explanation extends to Y2 = 0 can be computed 
(locally) from those extended by the two subexplanations. Thus, both 
BEL*(Y 2 -- 0) and BEL*(Y 2 = 1) can be computed locally and the best value 
for I"2 decided by choosing the one with the highest value of BEL* (in our case 
Y2 -- 0). The messages carrying these partial degrees of support will be denoted 
by 7r* and A*, respectively, formally defined as 
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A~(X) = m a x  P(w2yIx, e), (31 )  
Wxr 

+ 
"n'~(x) = max P(x, Wxrle ) , (32) 

w,~r 

-- + 
where  Wxr and Wxr stand, respectively,  for  any head extension and tail 
extension of  {X = x, e}, relative to the link X---~ Y (see Fig. 2). For  example ,  

+ 
in Fig. 5(a), e = 0 and the best tail extension of  Y2 = 0 is wr# 3 = {X 1 = 0, YI = 
0 ,  X 2 = 1}, with 

7r ~,(y 2 = 0) = P ( ~  = 0, X~ = 0, Y1 = 0, X 2 = 1) = q l P 2 ,  (33) 

while its best head  extension is W~2y3 = { Y3 = 0, X 3 = 1} with 

Av3(y 2 = 0 )  = P(Y3 = 0 ,  X 3 = 11Y2 = 0 )  = p 3 .  (34) 

By similar considerat ions we obtain:  

zrr~(y z = 1) = P(Y2 = 1, X 1 = 1, Y, = 1, X 2 = 1) =P,Pz,  (35) 

Ar~(y 2 = 1) = P(Y3 = 1, X 3 = 1 IY2 = 1) = p 3 ,  (36) 

thus yielding the messages: 

~r~3(Y2) = (qlP2, P,P2), (37) 

A~3(Y2) = (P3, P3)"  (38)  

In Section 4, we shall demons t ra te  that  
(1) the 7r* and A* messages defined above  can be p ropaga ted  by local 

computa t ions ,  simply replacing the summat ions  in (5) and (6) by maximiza- 
tions (over the same set of  variables),  as in (53) and (56); 

(2) the BEL*  functions can be computed  f rom the 7r* and A* messages by 
simple products ,  e.g. ,  

BEL*(x )  = a~r~,(x)A~,(x), (39) 

or ,  al ternatively,  using a modificat ion of (4) with maximizat ion replacing the 
summat ion  (see (52)). 

The  rest of this section provides  a quali tat ive description of how the best  
explanat ions in the example  of  Fig. 3 are found by a message-passing process.  
Quant i ta t ive  account  will be pos tponed  until the propagat ion  rules are estab- 
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FXG. 5. zr* and A* message propagation under belief revision. The observation {Ya = 0, X 2 = 1} 
causes a switch from the initial default explanation {X 1 = X 2 = X 3 = 1} in (a) to a new stable (and 
maximally probable) explanation {:(1 = 0, X 2 = 1, X 3 = 1} in (d). The intermediate states in (b) 
and (c) yield temporary belief commitments based on incomplete transient information. 
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lished in Section 4 (see equations (52), (54) and (56) or, more generally, 
(59)-(61)) .  

Initially, all A* are unit vectors and the ~r* messages are given in Fig. 5(a). 
These are almost identical to the ~- messages of Fig. 3(c) except for ~r~3(y2) 
(see (14), (33) and (35)). The difference stems from the fact that while 7rr3 (y2) 

represents the total probability of all tail extensions of Y2 = Y 2 ,  7rY3(Y2) 
represents the probability of only one such tail extension, namely, the most 
probable one. The implications --~ 1 indicate the current commitments made on 
the basis of BEL* (see (39)) which, at this stage, represent the default state 
{X 1 = X 2 = X 3 = 1}. Note,  however that the initial ~r* values represent,  not 
just the currently committed explanation, but a whole set of possible system 
behaviors, each being a best explanation for some possible future observation 
of the form Y = y o r X = x .  

When nodes Y3 and X 2 are instantiated (Fig. 5(b)) they set up new 7r* and 
A* messages which, temporarily, yield suboptimal and inconsistent belief 
commitments,  such as {X t = 1, ]11 = 1, Y2 = 0, X 3 = 1} in Fig. 5(b) and {X~ = 
1, Y1 = 0, Y2 = 0, X 3 = 1} in Fig. 5(c). Eventually, however, all messages are 
absorbed at the peripheral nodes and a new consistent explanation emerges, 
{X 1 = 0, Y~ = 0, Y2 = 0, X 3 = 1}, which is also globally optimal. In general, the 
propagation process can be activated concurrently, it subsides in time propor- 
tional to the network diameter and, at equilibrium, all belief commitments are 
optimal. 

4. Bel ief  Revis ion in Singly Connected Networks  

Let W stand for the set of all variables considered, including those in e. Any 
assignment of values to the variables in W consistent with e will be called an 
extension, explanation or interpretation of e. Our problem is to find an 
extension w* which maximizes the conditional probability P(w[e). In other 
words, W= w* is the most probable explanation (MPE) of the evidence at 
hand if 

/'(w*le) = max e(wle). (40)  
w 

The task of finding w* will be executed locally, by letting each variable X 
compute the function 

BEL*(x) = max P(x, w~le), (41) 
wk 

where W~: = W - X .  Thus, BEL*(x)  stands for the probability of the most 
probable extension of e which is also consistent with the hypothetical assign- 
ment X -- x. Unlike BEL(x)  (see equation (1)), BEL*(x)  need not sum to unity 
o v e r  X. 
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The propagation scheme presented below is based on the following 
philosophy: For every value x of a singleton variable X, there is a best 
extension of the complementary variables W~.. Due to the many independence 
relationships embedded in the network, the problem of finding the best 
extension of X =  x can be decomposed into that of finding the best com- 
plementary extension to each of the neighboring variables, then using this 
information to choose the best value of X. This process of decomposition 
(resembling the principle of optimality in dynamic programming) can be 
applied recursively until, at the network's periphery, we meet evidence vari- 
ables whose values are predetermined,  and the process halts. 

4.1. Deriving the propagation rules 

We consider again the fragment of a singly connected network in Fig. 2 and 
denote by Wxr  and W x y  the subset of variables contained in the respective 
subgraphs G x r  and G x r .  Removing any node X would partition the network 
into the subgraphs G x and G x containing two sets of variables, W x and W x,  
and (possibly) two sets of evidence, e x and e x, respectively. 

Using this notation, we can write 

P ( w * [ e ) =  max  P ( w x ,  - + . Wx, xle , (42) 

+ 
The conditional independence of W x and Wx,  given X, and the entailments 

+ + 

e x C_ W x and e x C_ W x yield: 

P ( w  x ,  w x ,  x)  
P ( w * l e ) =  max 

x,w~,,w;c P ( e x ,  e x )  

a max P ( w x l x ) P ( x  I + + (43) = w x ) P ( w x )  , 
x,w~,Wx 

where a = [P(ex,  ex)] -I is a constant, independent of the uninstantiated 
variables in W and would have no influence on the maximization in (43). From 
here on we will use the symbol a to represent any constant which need not be 
computed in practice, because it does not affect the choice of w*. 

Equation (43) can be rewritten as a maximum, over x, of two factors: 

P(w*le)  = a max[max P(wxlX)][max P(xl  w x ) P ( w x ) ]  
W X X w ~  

where 

= a max A*(x)~*(x) , (44) 
x 

Z*(x) = max P ( w x l X ) ,  (45) 
w X 



190 J. PEARL 

+ 
zr*(x) = max P(x, Wx) .  (46) 

Thus, if, for each x, an oracle were to provide us the MPE values of the 
+ 

variables in Wx, together with the MPE values of the variables in W x,  we 
would be able to determine the best value of X by computing h*(x) and 7r*(x) 
and, then, maximize their product, )t*(x)~-*(x). 

We now express h*(x) and zr*(x) in such a way that they can be computed at 
node X from similar parameters available at X's neighbors. Writing 

+ 
= u W; z, = u W z, 

+ + + + 

Wv, x = W a x -  U ,  Wv,x  = W v x -  U , 

we obtain 

and 

X*(x) = max_ P(wxylX) max_ P(wxzlX ) = Xy(X)Xz(X ) *  " * 
W X y  W X Z 

7r*(x)  = m a x  [P(xlu, v)P(u, v, w~, wv) l 

(47) 

= max[P(xlu, v) m a x  P(u, Wu,x) max P(v, Wv,x)  ] 
' W U ,  X w ~ '  X 

= max P(x l u, v) 7r~.(u) "n'~v(v), (48) 
u , v  

where A~.(x) (and, correspondingly, A~(x)) can be regarded as a message that a 
child, Y, sends to its parent, X: 

Z~.(x) = m_ax P(wxrlX ) . (49) 
W X y  

Similarly, 

+ 
zr~.(u) = max P(u, w v,x) (50) 

w ~ ,  X 

can be regarded as a message that a parent U sends to its child X. Note the 
similarities between A* and 7r* and A and zr in (2) and (3). 

Clearly, if these A* and ~-* messages are available to X, it can compute its 
best value x* using (44)-(46). What we must show now is that, upon receiving 
these messages, it can send back to its neighbors the appropriate A~u),  ) t~o),  
zr~.(x) and ~r~(x) messages, while preserving their probabilistic definitions 
according to (49) and (50). 
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Updating 7r* 

Rewri t ing (41) as 

BEL*(x )  = P(x, +* Wx*le ) (51) W X , 

and using (45 ) - (50 ) ,  we have 

a E L * ( x )  = ah*(x) 7r*(x) 

= ah~,(x)A~(x) max P(x [u, v) 7r~c(u ) ~'~,(v) . (52) 

Compar ing  this expression to the definit ion of  7r~,(x), we get 

7r,~(x) = max P(x, Wx,v)+ = max P(x, w x+ , Wxz ) 
w ~,v w~,wycz 

-- A~(x)max P(xlu, v)Ir~(u)Tr~(v). (53) 

Al ternat ively ,  rr~,(x) can be obta ined  f rom BEL*(x )  by setting A,~(x) = 1 for  all 
x. Thus ,  

~'~.(x) = a B E L * ( x ) I ~ x ) =  1 = a BEL*(x )  a~.(x) (54) 

The  division by A~,(x) in (54) amounts  to discounting the contr ibut ion  of all 
variables in Gxv. Note  that  zr~,(x), unlike try(x),  need  not  sum to unity over  x. 

Updating A* 

Starting with the definit ion 

A~u)  = ma_xP(w~xl u) (55) 
w UX 

we part i t ion W~x into its const i tuents  

+ 

W U X = X [..J W x y ~-J W X Z [..J W v , X [,.J V 

and obtain 

_ _ + 

A].(u) = max P(x, Wxv, Wxz, v, Wv,x) _ _ + 
X,W x y , W  x z  , W v ' x , O  

+ 
= max P(wxv, Wxz Iwv, x, v, u)P(x, v, Wv,x[U ) 

.. . . .  ~v,,,~z,W~,,x 

= max[a~.(x)X~(x)e(xlu, v) m+ax P(v, Wv,xlu)]. 
x , o  i¢ V ' X  
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Finally, using the marginal independence of U and Wvx,  we have 

a u) = maxl (56) 

4.2. Summary of propagation rules 

In general, if X has n parents, U 1, U 2 , . . . ,  U,, and m children, 
YJ, I12, . . .  , Ym, node X receives the messages 7rx(Ui), i = 1 . . . .  , n, from its 
parents and Ar,(x), j = 1 . . . . .  m, from its children. 

7r~(ui) stands for the probability of the most probable tail extension of the 
proposition U~ = u~ relative the link /2,.---> X. This subextension is sometimes 
called an "explanat ion,"  or a "causal argument ."  

A rj(x ) stands for the conditional probability of the most probable head 
extension of the proposition X = x relative of the link X---> Yj. This subexten- 
sion is sometimes called a "prognosis" or a "forecast ."  

Using these n + rn messages together with the fixed probability 
P(x lu, . . . . .  un), X can identify its best value and further propagate these 
messages using the following three steps: 

Step 1: Updating BEL*. When node X is activated to update its parameters,  
it simultaneously inspects the 7r~(ui) and A rj(x ) messages communicated by 
each of its parents and children and forms the product 

g ( x , / ~ 1 , . - . ,  U n ) :  f i  /~I(X)P(XIul, " ' ' ,  Un) ~ I  7T~((Ui). 
j=l i=1 

(57) 

This F function enables X to compute its BEL*(x)  function and, simultaneous- 
ly, identify the best value x* from the domain of X: 

where 

x* = max -1 BEL*(x)  , (58) 
x 

BEL*(x) = a max F(x, u, . . . . .  un) (59) 
uk: l<~k~n 

and a is a constant, independent of x, which need not be computed in practice. 
Step 2: Updating A*. Using the F function computed in Step 1, node X 

computes the parent-bound messages by performing n vector maximizations, 
one for each parent: 

A~v(ui) = [F(x, . .  . .  max u 1, . , u n ) / I r } ( u i )  ], i = 1 ,  . , n .  (60) 
x,u k: k~i 

Step 3: Updating ~r*. Using the BEL*(x)  function computed in Step 1, node 
X computes the children-bound messages: 
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1rrj(x ) = a BEL*(x) 
Af(x) (61) 

and posts these on the links to Y~ . . . . .  Ym" 

These steps are identical to those governing belief updating, equations 
(4)-(6),  with maximization replacing the summation. They can be viewed as 
tensor operations, using max for inner product, i.e., (AB)ik = maxj AqBjk [4]; 
each outgoing message is computed by taking the max inner products of the 
tensor P(xlu,,..., u,) with all incoming messages posted on the other links. 

The boundary conditions are identical to those of belief updating and are 
summarized below for completeness: 

(1) An anticipatory node represents an uninstantiated variable with no 
successors. For such a node, X, we set Ayj(X) = (1, 1 . . . . .  1). 

(2) An evidence node represents a variable with instantiated value. If 
variable X assumes the value x', we introduce a dummy child Z with 

1, i f x = x ' ,  
A~(x) = O, otherwise. 

This implies that, if X has children, Y1 . . . .  , Ym, each child should receive the 
* = A~(x) from X. same message 1rD(x) 

(3) A root node represents a variable with no parents. For each root 
variable X, we introduce a dummy parent U, permanently instantiated to 
U --- 1, and set the conditional probability on the link U--> X equal to the prior 
probability of X, i.e., P(xlu)= P(x). 

These boundary conditions ensure that the messages defined in (49) and (50) 
retain their semantics on peripheral nodes. 

4.3. Reaching equilibrium and assembling a composite solution 

To prove that the propagation process terminates, consider a parallel and 
autonomous control scheme whereby each processor is activated whenever any 
of its incoming messages changes value. Note that, since the network is singly 
connected, every path must eventually end at either a root node having a single 
child or a leaf node having a single parent. Such single-port nodes act as 
absorption barriers; updating messages received through these ports get ab- 
sorbed and do not cause subsequent updating of the outgoing messages. Thus, 
the effect of each new piece of evidence would subside in time proportional to 
the longest path in the network. 

To prove that, at equilibrium, the selected x* values do, indeed, represent 
the most likely interpretation of the evidence at hand, we can reason by 
induction on the depth of the underlying tree, taking an arbitrary node X as a 
root. The A* or ~r* messages emanating from any leaf node of such a tree 
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certainly comply with the definitions of (49) and (50). Assuming that the A* (or 
~-*) messages at any node of depth k of the tree comply with their intended 
definitions of equations (49) and (50), the derivation of (51)-(56) guarantees 
that they continue to comply at depth k -  1, and so on. Finally, at the root 
node, aBEL*(x*) actually coincides with P(w*le), as in (42), which means that 
BEL*(x) computed from (59) must induce the same rating on x as does 
maxwk P(x ,  w~le) (see (41)). This proves that each local choice of x* is part of 
some optimal extension w*. 

Had the choice of each x* value been unique, this would also guarantee that 
the assembly of x* values constitutes the (unique) most probable extension w*. 
However, when several assignments X = x yield the same optimal BEL*(x), a 
pointer system must be consulted to ensure that the ties are not broken 
arbitrarily but cohere with choices made at neighboring nodes. 

For example, in the circuit of Fig. 3, had we assumed q~ = q3 < ½, the 
optimal interpretations {X~ = 1, X 3 = 0} and {X~ = 0, X 1 = 1} would be equal- 
ly meritorious, both yielding BEL*(X 3 = 0) = BEL*(X 3 = 1) = q3Pl = P3ql,  as 
reflected in the rr*(x3) and Ar~(x3) messages of Fig. 5(d). Breaking the tie 
arbitrarily might result in choosing a suboptimal extension {X1 = 0, X 3 = 0} or 
even an inconsistent one {X~ = 1, X 3 = 1}. To enforce a selection of values 
within the same optimal extension, local pointers should be saved to mark the 
neighbor's values at which the maximization is achieved. (In singly connected 
networks the relevant neighborhood consists of parents, children and spouses, 
i.e., parents of common children [21].) For example, node Y3 (Fig. 5(d)) 
should maintain a pointer from ]12--0 to X 3 = 1 and another pointer from 
]I2 = 1 to X 2 = 0, to indicate that these two value pairs are compatible members 
in the same optimal extension. These compatible combinations are found 
during the local maximization required for calculating Ar3(x3), as in (56) or 
(61). 

Having these pointers available at each node provides a simple mechanism 
for retrieving the overall optimal extension; we solve for x* at some arbitrary 
node X and then recursively follow the pointers attached to x*. Additionally, 
we can retrieve an optimal extension compatible with any instantiation (say 
second best) of some chosen variable X and, comparing the merits of several 
such extensions, the globally second-best explanation can be identified [12]. 
Another use of this mechanism is facilitating sensitivity analysis; to analyze the 
merit of testing an unknown variable, we can simply follow the links attached 
to each of its possible instantiations and examine its impact on other proposi- 
tions in the system. 

4.4. Comparison to belief updating 

The propagation scheme described in this section bears many similarities to 
that used in belief updating (equations (4)-(6)).  In both cases, coherent global 
equilibria are obtained by local computations in time proportional to the 
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network's diameter. Additionally, the messages 7r* and A* bear both formal 
and semantic similarities to their 7r and A counterparts, and the local computa- 
tions required for updating them involve, roughly, the same order of com- 
plexity. 

It is instructive, however, to highlight the major differences in the two 
schemes. First, belief updating involves summation, whereas in belief revision, 
maximization is the dominant operation. Second, belief updating involves more 
absorption centers than belief revision. In the former, every anticipatory node 
acts as an absorption barrier in the sense that it does not permit the passage of 
messages between its parents. This is clearly shown in (5); substituting 
Ar(x ) = Az(x ) = 1 yields Ax(u ) = 1, which means that evidence in favor of one 
parent (V) has no bearing on another parent (U) as long as their common 
child (X) receives no evidential support (A(x) = 1). This matches our intuition 
about how frames should interact; data about one frame (e.g., seismic data 
indicating the occurrence of an earthquake) should not evoke a change of 
belief about another unrelated frame (say, the possibility of a burglary in my 
home) just because the two may give rise to a common consequence sometimes 
in the future (e.g., triggering the alarm system). This frame-to-frame isolation 
no longer holds for belief revision, as can be seen from (56). Setting A~(x) = 
A~(x) -- 1 still renders A~(u) sensitive to Try(v). 

Such endless frame-to-frame propagation raises both psychological and 
computational issues. Psychologically, in an attempt to explain a given 
phenomenon, the mere mental act of imagining the likely consequences of the 
hypotheses at hand will activate other, remotely related, hypotheses just 
because the latter could also cause the imagined consequence. We simply do 
not encounter that mode of behavior in ordinary reasoning; in trying to explain 
the cause of a car accident, we do not interject the possibility of lung cancer 
just because the two (accidents and lung cancer) could lead to the same 
eventual consequence--death. 

Computationally, it appears that, in large systems, the task of finding the 
most satisfactory explanation would require an excessive amount of computa- 
tion; the propagation process would spread across loosely coupled frames until 
every variable in the system reexamines its selected value x*. 

These considerations, together with other epistemological issues (see Section 
7), require that the set of variables, w, over which P is maximized be 
circumscribed in advance to a privileged set called explanation corpus. In 
addition to the evidence e, W should contain those variables only which both 
stand in clear causal relation to e (i.e., ancestors of e) and have significant 
impact on pending decisions. For example, if Y2 were the only observed 
variable in Fig. 3, then the explanation corpus would consist of W= 
{X1, X2, Y2}, excluding X 3 and Y3. If, in addition, X 1 and X z were outputs of 
two complex digital circuits and our only concern were to find out whether any 
of these circuits should be replaced, then the ancestors of X~ and X 2, too, 
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should be excluded from W. In other words, if there is no practical utility in 
finding which particular gate in those circuits is faulty, then it would be both 
wasteful and erroneous to enter these ancestors into W (see Section 7). 

Circumscribing an explanation corpus partitions the variables in the system 
into two groups, W and its complement W'. The computation of w* now 
involves mixed operations; maximization over W and summation over W': 

P(w*le ) = max P(wle) = max ~ P(wlw' ,  e )P(w' te)  . 
w w 

w '  

The propagation rules, likewise, should be mixed; variables in W should follow 
the revision rules of (57)-(61), while those in W' the updating rules of (5)-(6).  
The interaction between the A* and ~-* messages produced by the former and 
the A and 7r messages produced by the latter should conform to their 
probabilistic semantics and will not be elaborated here. 

5. Coping with Loops 

Loops are undirected cycles in the underlying network, i.e., the Bayesian 
network without the arrows. When loops are present, the network is no longer 
singly connected, and local propagation schemes invariably run into trouble. 
The two major methods for handling loops while still retaining some of the 
flavor of local computation are: clustering and conditioning (also called assump- 
tion-based reasoning). 

5.1. Clustering methods 

Clustering involves forming compound variables in such a way that the 
topology of the resulting network is singly connected. For example, if in the 
network of Fig. 1 we define the compound variables, 

v ,  = x : } ,  = { x : ,  

the following tree ensues: X 4 ~ Y1 ~ Y2 ~ )(5 ~ X6. In the network of Fig. 7 
(Section 6) defining the variables D234 = {De, 03, D4} and M123 = 
{M1, Me, M3} , we obtain a singly connected network of the form: 

D 1 ~ M123 < --D234  -'-~ M 4 • 

A popular method of selecting clusters is to form clique-trees [3, 30, 32]. If 
the clusters are allowed to overlap each other until they cover all the links of 
the original network, then the interdependencies between any two clusters are 
mediated solely by the variables which they share. If we further insist that 
these clusters grow until their interdependencies form a tree structure (called a 
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join tree [3]) then the tree-propagation scheme of Section 4 will be applicable. 
For example, in the network of Fig. 1, if wo define Z1 = {X 1, X 2, X4), 
Z 2 = {X1, X2, X3}, Z 3 = {X2, )(3, )(5} and Z 4 = {X 5, X6}, the dependencies 
among the Z variables will be described by the chain, 

{X 1 ,g 2 } {X2,X 3 } {g 5 } 
Z I - -  Z 2 - -  Z 3 - -  Z 4 , 

where the X symbols on the links identify the set of elementary variables 
common to any pair of adjacent Z clusters. 

These clustered networks can be easily processed with the propagation 
techniques of Section 4, except that the multiplicity of each compound variable 
increases exponentially with the number of elementary variables it contains. 
Consequently, the size of either the link matrices or the messages transmitted 
may become prohibitively large. 

An extreme case of clustering would be to represent all ancestors of the 
observed findings by one compound variable. For example, if X 6 and X 4 are the 
observed variables in the network of Fig. 1, we can define the compound 
variable Z = ( X 1 ,  X 2 ,  X 3 ,  X s )  and obtain the t r e e  X 4 <----Z -----~ X 6. Assigning a 
definite value to the compound variable Z would constitute an explanation for 
the findings observed. Indeed, this is the approach taken by Cooper [5] and 
Peng and Reggia [24]. To search for the best explanation through the vast 
domain of possible values associated with the explanation variable, admissible 
heuristic strategies had to be devised, similar to that of the A* algorithm [15]. 
Yet the complexity of these algorithms is still exponential [20] since they do not 
exploit the interdependencies among the variables in Z. Another disadvantage 
of this technique is the loss of conceptual flavor; the optimization procedure 
does not reflect familiar mental processes and, consequently, it is hard to 
construct meaningful arguments to defend the final conclusions. 

5.2. The method of conditioning (reasoning by assumptions) 

Conditioning is an attempt to both reduce complexity by exploiting the 
structural independencies embodied in the network and preserve, as much as 
possible, the conceptual nature of the interpretation process. This is accom- 
plished by performing the major portion of the optimization using local 
computations at the knowledge level itself, i.e., using the links provided by the 
network as communication channels between simple, autonomous and semanti- 
cally related processors. 

The basic idea behind conditioning can be illustrated using Fig. 1. It is based 
on our ability to change the connectivity of a network and render it singly 
connected by instantiating a selected group of variables, called a cycle cutset. 
For example, instantiating node X 1 to some value would block all pathways 
through X~ and would render the rest of the network singly connected, amiable 
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to the propagation technique of Section 4. Thus, if we wish to find the most 
likely interpretation of some evidence e, say e = {X 6 = 1}, we first assume 
X 1 = 0 (as in Fig. 6(a)), propagate A* and ~-* to find the best interpretation, I0, 
under this assumption, repeat the propagation to find the best interpretation, 
I1, under the assumption X 1 = 1 (as in Fig. 6(b)) and, finally, compare the two 
interpretations and choose the one with the highest probability. For example, if 
I 0 and I 1 are realized by the vectors 

I0 ~-(Xl = O , x ~ , x ° , x ~ , x ° ) ,  

I i = ( S l = l , x 1 2 ,  x13,x4, x , 
(62) 

then the best overall interpretation is determined by comparing the two 
products 

l l xOP(xs l x2 ,  = o, x °) P(lole )= ap(x 6= o o o o o x3)P(x4[X1 

• e(x lX, = o ) P ( x ° l x 1  = o ) P ( X ,  = o ) ,  

llxs)P(xsIx , I x ,  = 1, e ( I  1 [e) = ct P ( X  6 1 1 1 1 1 = x 3 ) e ( x  4 

• e(x~lx, = 1 ) e ( x 1 2 1 X l  = 1)P(X1 -- 1 ) ,  

w h e r e  a = [P(e)]  -1 is a c o n s t a n t .  S ince ,  all  t he  fac tors  in  the  p r o d u c t s  a b o v e  

are available from the initial specification of the link's probabilities, the 
comparison can be conducted by simple computations. 

Such globally supervised comparisons of products are the basic computa- 
tional steps used in the diagnostic method of Peng and Reggia [24]. However, 
we use them to compare only two candidates from the space of 25 possible 

X 1 : 0 ~  

= 0 X 1 = 0 X 1 = 1 X 1 = 1 

X 1 = 1 

X 6 = 1 X 6 = 1 

(a) (b) 

Fro. 6. Instantiating variable X 1 renders the network of Fig. 1 singly connected. 
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value combinations. Most of the interpretation work was conducted by local 
propagation, selecting the appropriate match for each of the two assumptions 
X 1 = 0 and X 1 = 1. Thus, we see that, even in multiply connected networks, 
local propagation provides computationally effective and conceptually mean- 
ingful method of trimming the space of interpretations down to a manageable 
size. 

The effectiveness of conditioning depends heavily on the topological proper- 
ties of the network. In general, a set of several nodes (a cycle cutset) must be 
instantiated before the network becomes singly connected. This means that 2 c 
candidate interpretations will be generated by local propagation, where c is the 
size of the cycle cutset chosen for conditioning. Since each propagation phase 
takes only time linear with the number of variables in the system (n), the 
overall complexity of the optimal interpretation problem is exponential with 
the size of the cycle cutset that we can identify. If the network is sparse, 
topological considerations can be used to find a small cycle cutset and render 
the interpretation task tractable. Although the problem of finding the minimal 
cycle cutset is NP hard, simple heuristics exist for finding close-to-minimal sets 
[18]. Identical complexity considerations apply to the task of belief updating 
[22], so finding the globally best explanation is no more complex than finding 
the degree of belief for any individual proposition. 

A third method of sidestepping the loop problem is that of stochastic 
simulation [23]. It amounts to generating a random population of scenarios 
agreeing with the evidence, then selecting the most probable scenario from that 
population. This is accomplished distributedly by having each processor inspect 
the current state of its neighbors, compute the belief distribution of its host 
variable, then randomly select one value from the computed distribution. The 
most likely interpretation is then found by identifying either the global state 
which has been selected most frequently or the one possessing the highest 
probability (computed by taking the product of n conditional probabilities). 

It is important to note that the difficulties associated with the presence of 
loops are not unique to probabilistic formulations but are inherent to any 
problem where globally defined solutions are produced by local computations, 
be it probabilistic, deterministic, logical, numerical or hybrids thereof. Identi- 
cal computational issues arise in Dempster-Shafer's formalism [29], constraint- 
satisfaction problems [7], truth maintenance systems [9], diagnostic reasoning 
[6], database management [3], matrix inversion [31], distributed optimization 
[10] and logical deduction. 

The importance of network representation, though, is that it uncovers the 
core of these difficulties, and provides a unifying abstraction that encourages 
the exchange of solution strategies across domains. The cycle-cutset condition- 
ing method, for example, has been used successfully in nonprobabilistic circuit 
diagnostics [11] and for improving the efficiency of backtracking in constraint- 
satisfaction problems [8]. 
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6. A Medical Diagnosis Example 

6.1. The model 

To illustrate the mechanics of the propagation scheme described in Section 4, 
let us consider the diagnosis network of Fig. 7 (after Peng and Reggia [24]), 
where the nodes at the top row, {D1, D2, D3, D4}, represent four hypothetical 
diseases and the nodes at the bottom row, {M 1, M 2, M 3, M4}, four manifesta- 
tions (or symptoms) of these diseases. The parameters c~j, shown on the links 
of Fig. 7, represent the strength of causal connection between disease D i and 
symptom Mj, 

cij = P ( M j  observed ]only Dj present) .  (63) 

All four diseases are assumed to be independent and their prior probabilities, 
7r~ = P ( D  i = T R U E ) ,  are shown in Fig. 7. When several diseases give rise to 
the same symptom, their combined effect is assumed to be of the "noisy 
OR-gate" type [21], i.e., 

(1) a symptom can be triggered only if at least one of its causes is present 
(mandatory causation), 

(2) the mechanism capable of masking a symptom in the presence of one 
disease is assumed to be independent of that masking it in the presence of 
another (exception independence).  

Given this causal model, we imagine a patient showing symptoms {M1, M 3} 
but no t  {M 2, M4}. Our task is to find that disease c o m b i n a t i o n  which best 
explains the observed findings, namely, to find a T R U E - F A L S E  assignment to 
variables {D 1, D 2, D3, D4} which constitutes the most probable extension of 
the evidence 

e = {M I = TRUE,  M z = FALSE,  M 3 = T R U E ,  M 4 = FALSE} . 

~'1 = 0.01 ~'2 = 0.10 ~'3 = 0.20 ~ 4  = 0.20 

\ ~  D4 

M1 M 2 M 3 M 4 

T F T F 

FIG. 7. Network representing causal relations between four diseases and four manifestations. The 
link parameters, c,, measure the strength of causal connection. 



DISTRIBUTED REVISION OF COMPOSITE BELIEFS 201 

Let D i and Mj denote the propositional variables associated with disease D i 

and manifestation Mj, respectively; each may assume a TRUE or FALSE 
value. Additionally, for each propositional variable X, we let +x and 7 x  
denote the propositions X = TRUE and X = FALSE, respectively. Thus, for 
example, 

P(mmjl + d j )  = P(Mj = FALSEID i = TRUE) 

would stand for the probability that a patient definitely having disease Dg will 
not develop symptom Mj. 

Let X stand for some manifestation variable and { U 1 , . . . ,  U~} its parents 
set. The OR-gate interaction assumed above permits us to construct the 
combined parents-child relationship P(xlu, . . . . .  u°) from the individual 
parent-child relations parametrized by C~x (equation (63)). If I v stands for the 
set of (indices of) parents with value TRUE, 

I T = {i: U~ = T R U E } ,  (64) 

then X is FALSE iff all its TRUE parents simultaneously fail to trigger the 
manifestation corresponding to X. Thus, 

and 

where 

P(TX[Ul , . . . ,  tin)= I-I qix (65) 
i~E1 T 

P(+XlUl , . . . ,  u,) = 1 -  1-[ qix, (66) 
i E l  T 

qix = 1 - -  f i x "  (67) 

Substitution in (57), the function F(x, u I . . . .  , u,) obtains the form: 

F(-[-x, U 1 . . . .  ,Un) = [ 1 -  I-[ qix] f i  ;t~,j(+x) f i  7r~(ui), 
i E 1  T j = l  i=1 

F(Tx, Ul , . . .  , u , )= 1-I qix f i  h~.j(Tx)IeI zr~ui). 
i E l  T j = l  i= l  

(68) 

(69) 

These product forms would permit the calculation of the ~'* and A* messages 
according to (58)-(61). In particular, for every negatively instantiated symp- 
tom node X we have 

A TUl) = qlx (70) 
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independently of rr~c(uk), k ~ i .  For every disease node X, setting 
P(xlul,..., u,) to the prior probability 7r(x), (53) yields 

1rr~(x ) = It(x) I~ A~k(x) • (71) 
k c j  

6.2. Message propagation 

For convenience, let us adopt the following notation: 

= * + / A m j ( ' - q d i )  ( 7 2 )  Aji AMj( di) 

- -  * .Jr-  * • 7r~j- ~rMj ( d~)/TrMj(-ld~) (73) 

The network in Fig. 7 becomes singly connected upon instantiating D 1. We 
shall first instantiate D~ to T R U E ,  find its best extension, then repeat the 
process under the assumption D1 = FALSE. Figure 8(a) shows the network's 
message-passing topology, together with the initial messages posted by the 
instantiated variables { + d~, e}: 

AI2 ( 1 -  qllq,2) _ ( 1 - 0 . 8 . 0 . 1 )  
= (1 - q, , )  ( 1 - 0 . 8 )  = 4.600, 

(1 - q,3q33) (1 - 0 .2 .0 .1)  
A33- ( l - q , 3 )  - ( 1 - 0 . 2 )  - 1 . 2 2 5 ,  

A24 = q42  = 0 . 5  , A43 = q34  = 0 . 8  , 

A44 = q 4 4  = 0.2,  A42 = q 2 4  = 0.7.  

The last four values are direct consequence of (70). 
At the second phase, each D i processor inspects the A* messages posted on 

its links and performs the operation specified in (71). This leads to the message 
distribution shown in Fig. 8(b), with: 

_ "n'2 A12 _ "/r2 A42 
rre4 (1 - ¢r2) - 0.510, ~r21 (1 - ~'2) = 0.077, 

_ 7r3A43 
T/'3 •33 - -  0.305 7/'33 = 0.200 

77"34 = ( 1  - -  7/'3' ) ' ( 1 - "/7" 3 ) ' 

"77"4 A24 ~ 4 A 4 4  - -  0 . 0 5 0  
7/ ' / '44- ( 1  - -  77'1"4) - - 0 . 1 2 5 ,  77'/'42 ~ ( 1  - -  '/'/'4~-"'~ " 
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D 2 D 3 

/ 
+m 1 

3 4 

0.2 

m 2 +m 3 --~ m 4 

(a) 

d 2 = F d3=  F d 4 = F 

0110"125 

+ m  I - ~  m 2 + m  3 ~ m 4 

(b) 

d 2 

+m 1 

,1# -~ 

= F d 3 = F d 4 = F 

10.2 

m 2 +m 3 ---1 m 4 

(c) 

FIG. 8. (a) A* messages after instantiating D~ and all four symptoms. (b) 7r* messages after 
activating all D nodes. (c) A* messages after activating M4; the best explanation is d~ = d~ = d* = 
FALSE. 

The  x* va lue  chosen  by  each  o f  the  D i processo r s  is F A L S E  (see (58))  
because ,  for  each  i = 2, 3, 4, we have  

B E L * ( + d i )  4 
B E L * ( ~ d , )  - I-I  Aj, Iri < ½. 

j=l 1 ~r~ 
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For example, processor D 2 receives: A12 = 4.6, A42 = 0.7; so, 

BEL*(+d2)  _ Ale " / ~ 4 2 "  7r2 - -  4.6"0.7-0 .1  
BEL*(~d2)  1 . 1 .  ( 1 -  %)  1 . 1 - 0 . 9  

= 0.358 < ½ . (74) 

The messages 7r21, %3 and 7r42 will eventually get absorbed at node D1, while 
7r24, %4 and 7r44 are now posted on the ports entering node M 4. Again, since 
M 4 is instantiated to -~m4, the A* messages generated by M 4 on the next 
activation phase remain unchanged (Fig. 8(c)), and the process halts with the 
current w* values: D 2 = D 3 = D 4 = FALSE.  

Let us now retract the assumption D 1 = T R U E  and posit the converse: 
D 1 = FALSE. This results in the messages 77"11 = 7]'12 = 7T13 = ~ being posted on 
all those links emanating from node D 1 which get translated to A12 = ~, AI3 = oc 

and A24 = q42 = 0.5. This means that D 2 and D 3 will switch simultaneously and 
permanently to state T R U E  while D4, by virtue of 

BEL*(+d4)  /~24 " /~44" 7]'4 0 . 5 0 "  0 . 2 0 "  0 . 2 0  

BEL*(-qd4) (1 - rr4) 0.80 
= 0 . 0 2 5  < 

tentatively remains at the state FALSE,  as illustrated in Fig. 9(a). 
During the next activation phase (Fig. 9(b)), D: and D 3 post the messages 

rr:4 = %4 = ~, which M 4 inspects for possible updating of A44. However,  these 
new messages will not cause any change in A44 because, according to (60) and 
(65), the ratio A44 remains 

P(~m4[ + d 4, d2, d3) 
/~44 = p(~ma[~d4,  d2 ' d3 ) = q44, 

independently of 7]'24 and 7/34. 
Thus, under the current premise ~ d l ,  the best interpretation of the observed 

symptoms is { + d2, + d3, -1 d4}, which is to be expected, in view of the network 
topology. 

6.3. Choosing the best interpretation 

We see that the assumption ÷ d  I yields the interpretation { - - l d 2 , - l d 3 , - - l d 4 }  , 

while -1 d I yields { + d 2, + d3, 7-1 d 4 } .  The question now is to decide which of the 
two interpretations is more plausible or, in other words, which has the highest 
posterior probability given the evidence e = { ÷ m l , - ' 1 m 2 ,  ÷ m 3 ,  --lm4} at hand. 
A direct way to decide between the two candidates is to calculate the two 
posterior probabilities, P(I + [e) and P(I -  l e), where 

I + = {+d l ,  ~d2 ,  --qd3, "-ld4} and I -  = (-qdl,  + d  2, + d  3, 7d4} • 
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d 2 = T d 3 = T d4= F 

~ 0 . 2  

+m I --1 m2 +m3 --~ m4 

(a) 

, d 3 = T  D d 4 = F  

+m I ~ m 2 +m 3 ~ m 4 

(b) 

205 

FxG. 9. (a) Message profile after instantiating D 1 to FALSE; the best explanation switches to 
{d~ = d~ = TRUE, d* = FALSE}. (b) Message profile after activating M4; the best explanation 
remains {d~ = d~ = TRUE, d* = FALSE}. 

T h e s e  ca l cu l a t i ons  a re  qu i t e  s imp le ,  b e c a u s e  i n s t a n t i a t i n g  the  D va r i ab l e s  
separates t he  M va r i a b l e s  f r o m  each  o t h e r ,  so tha t  the  p o s t e r i o r  p r o b a b i l i t i e s  

i n v o l v e  o n l y  p r o d u c t s  o f  P ( m j  [ p a r e n t s  o f  Mj )  o v e r  the  i n d i v i d u a l  s y m p t o m s  
a n d  a p r o d u c t  o f  the  p r i o r  p r o b a b i l i t i e s  o v e r  the  i n d i v i d u a l  d iseases .  F o r  
e x a m p l e ,  

P(I + le) = ap(l  +)P(ell +) 

= O / ' / T I ( 1  - -  7r2)(1 - 7%)(1 - 7r4)(1 - q,1)q12(1 - q13) 

= a • 0 . 0 1 . 0 . 9 0 "  0 .80 -  0 . 8 0 -  0 .20" 0 . 9 0 . 0 . 8 0  

= a • 8 . 2 9 4 4 . 1 0  -4 , 

P(I- le)  =  P(I-)P(elI-) 

= 4 ( 1  - ,rrl)-B'2 ~3(1 - -  1 7 " 4 ) ( 1  - -  q21)(1 - q33)q24q34 

= ot • 0 . 9 9 . 0 . 1 0 - 0 . 2 0 . 0 . 8 0 . 0 . 9 0 . 0 . 9 0 . 0 . 7 0 . 0 . 8 0  

= a . 7 . 1 8 . 1 0  -3 . 
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Since a = [P(e)] -t is a constant, we conclude that I -  is the most plausible 
interpretation of the evidence e. 

6.4. Generating explanations 

The propagation pattern of the A* and rr* messages can also be instrumental in 
mechanically generating verbal explanations. When belief in a certain proposi- 
tion is supported (or undermined) from several directions, the 7r* and A* 
messages can be consulted to determine the factors most influential in the 
current selection of x*. Tracing the most influential ~r* and A* messages back 
to the generating evidence would yield a skeleton subgraph from which verbal 
explanation can be structured. For example, the messages loading the graphs 
of Figs. 9(a) and (b) should be summarized by: 

Since we have ruled out disease D~, the only possible explanation 
for observing symptoms M 1 and M 3 is that the patient suffers, 
simultaneously, from D 2 and D 3. The fact that M 2 and M 4 both 
came out negative indicates that disease D 4 is absent. Moreover, 
even if M 4 w e r e  positive, it would be completely explained away by 
D 2 and D 3. 

The last sentence is a result of running a hypothetical positive instantiation 
of M 4 and realizing that, due to the strong (~) 7r* messages from D 2 and 
D3,  M 4 cannot deliver a/~42 high enough to switch D 4 to  TRUE.  

Conflicting evidence is identified by the presence of strongly supportive and 
strongly opposing messages, simultaneously impinging on the same proposi- 
tion. For example, the proposition D 2 = TRUE in Fig. 8(a) receives a strong 
support from h~2 = 4.6 and a strong denial from 7r 2 = 0.2. The two balance 
each other out and yield BEL*(+ d2) very close to BEL*(~d2)  (see (74)). The 
following explanation would then be appropriate: 

Although symptom M 1 strongly suggests D 2, it is partly explained 
by D 1 (which we assumed TRUE)  and, in view of the rarity of D2, 
this patient probably does not suffer from D 2. 

6.5. Reversibility versus perseverance 

It is interesting to note that there is a definite threshold value for 7rl, zr 1 = 
0.0804, at which the two interpretations, I ÷ and I - ,  are equiprobable. That 
means that, as evidence in favor of +d l  accumulates and 7'1" 1 increases beyond 
the value 0.0804, the system will switch abruptly from interpretation I -  to 
interpretation 1% This abrupt "change of view" is a collective phenomenon, 
characteristic of massively parallel systems, and is reminiscent of the way 
people's beliefs undergo complete reversal in response to a minor clue. Note, 
though, that the transition is reversible, i.e., as 7rl decreases, the system will 
switch back to the I -  interpretation at exactly the same threshold value, 
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7r~ = 0.0804. No hysteresis occurs because, although the computations are done 
locally, w* is globally optimal and is, therefore, a unique function of all 
systems' parameters. 

This reversibility differs from human behavior in that, once we commit our 
belief to a particular interpretation, it often takes more convincing evidence to 
make us change our mind than the evidence which got us there in the first 
place. Simply discrediting a piece of evidence would not, in itself, make us 
abandon the beliefs which that evidence induced [13, 28]. The phenomenon is 
very pronounced in perceptual tasks; once we adopt one view of Necker's cube 
or an Escher sketch, it takes a real effort to break ourselves loose and adopt 
alternative interpretations. Irreversibility (or hysteresis) of that kind is charac- 
teristic of systems with local feedback, similar to the one responsible for 
magnetic hysteresis in metals. If the magnetic spin of one atom heads north, it 
sets up a magnetic field which encourages its neighbors to follow suit; when the 
neighbors' spins eventually turn north, they generate a magnetic field which 
further "locks" the original atom in its north-pointing orientation. 

The hysteresis characteristic of human belief revision may have several 
sources. One possibility is that local feedback loops are triggered between 
evoked neighboring concepts; e.g., if I suspect fire, I expect smoke, and that 
very expectation of smoke reinforces my suspicion of fire--as if I actually saw 
smoke. This is a rather unlikely possibility because it would mean that even in 
simple cases (e.g., the fire and smoke example), people are likely to confuse 
internal thinking with genuine evidence. A more reasonable explanation is 
that, by and large, the message-passing process used is feedback-free and 
resembles that of Section 4, where the 7r* and A* on the same link are 
orthogonal to each other. However, in complex situations, where loops are 
rampant, people simply cannot afford the overhead computations required by 
conditioning or clustering. As an approximation, then, they delegate the 
optimization task to local processes and continue to pass messages as if the 
belief network were singly connected. The resultant interpretation, under these 
conditions, is locally, not globally, optimal, and this yields irreversible belief 
revision. 

Another source of belief perseverance may lie in the difficulty of keeping 
track of all justifications of ones beliefs and tracing them back to all evidence, 
past and present, upon which beliefs are founded [13]. For computational 
reasons people simply forget the evidence and retain its conclusion. More 
formally, propositional networks such as those treated in this paper, are not 
maintained as stable mental constructs but, rather, are created and destroyed 
dynamically, to meet pragmatic needs. For example, connections may be 
formed for the immediate purpose of explaining some strange piece of evi- 
dence or for supporting a hypothesis of high immediate importance. Once the 
evidence imparts its impact onto other propositions, we tend to break the 
mediating connection, forget the evidence itself and retain only the conclusion. 
When that evidence is later discredited, the connection to the induced conclu- 
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sions is no longer in vivid memory while the discrediting information, in itself, 
may not be perceived to be of sufficient pragmatic importance for reestablish- 
ing old connections. 

7. Discussion 

7.1. Accepting versus assessing beliefs 

The method described in this paper constitutes a bridge between probabilistic 
reasoning and nonmonotonic logics. Like the latter, the method provides 
systematic rules that lead from a set of factual sentences (the evidence) to a set 
of conclusion sentences (the accepted beliefs) in a way that need not be 
truth-preserving. For example, in Fig. 3, we start with the sentence "all inputs 
are ON,"  we obtain the sentence "II3 = OFF, X 2 = ON,"  and we output the 
conclusion " X  1 = OFF, X 3 = ON."  True, the medium through which these 
inferences are made is probabilistic (e.g., the assumption ql > q3 was critical 
for the conclusion) but the input-output pairs are categorical. Seeking the most 
probable extension parallels the default-logic aim of minimizing abnormal 
assumptions and this paper shows how and when the minimization can be 
realized by local computations. 

Unlike the scheme expounded in this paper, the dominant "logicist" 
paradigm has been the formalization of belief revision as direct logical relation- 
ships between evidence and conclusions, unmediated by numerical measures of 
belief. The entire notion of "degree of belief" plays only a minor role in these 
endeavors and likelihood judgments are often regarded as secondary by- 
products of symbolic manipulations on categorical knowledge bases. 

Many philosophers of science, especially those studying inductive logic, have 
taken a different tack. They hold that the bulk of human knowledge is 
probabilistic in nature, i.e., there is a set Q of confirmation functions which 
measure the degree to which statements are confirmed by the evidence at 
hand. Some statements, however, enjoy a special status--they are accepted as 
true in almost every respect, except for the fact that they can have this status 
revoked at a later time, perhaps in light of new evidence. This corpus of 
statements, K, is called "accepted beliefs" and the essential test testifying its 
formation is that an agent accepting K would behave as though all statements 
in K were "practically certain," for example, behavior predicated on any 
accepted statement will not be different if more evidence were to support that 
statement [19]. 

In this view, accepted beliefs can be regarded as local and temporary 
crystallization in a continuous fluid of partial beliefs. Belief revision is viewed 
as the rules that govern the dynamics of this crystallization process, namely, 
the condition under which a given statement would be promoted to the 
privileged membership in the "acceptance" corpus. 

Philosophers disagree over what constitutes a "good,"  rational rule of 
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acceptance. At first glance it appears that knowing the confirmation functions 
in Q would, in itself, be sufficient for defining acceptance rules. This, however, 
turns out not to be the case. The obvious rule of acceptance is the high- 
probability or "thresholding" rule: Accept a statement h iff P(hle ) > 1 - e, for 
some small e. The problem is that, for any nonzero e, this rule leads to 
knowledge bases that are grossly inconsistent. This came to be known as the 
"lottery paradox" [16]: A large number of people buy tickets to a lottery 
having a single winner. The probability that the ith person wins the lottery is 
clearly very small and, by thresholding, should lead us to accept the statement 
"person i is not the winner," for every i. Yet, this collection of statements is 
inconsistent with the given fact that one person is definitely destined to be the 
winner. Many other acceptance rules have been proposed but none seem to 
satisfy both our criterion that behavior should remain invariant to evidence 
confirming an accepted statement and our desire that the acceptance corpus, to 
some extent, be deductively closed and consistent. 

Levi [17] argues that rules of acceptance cannot be formulated on the basis 
of confirmation functions alone, but must take into account pragmatic 
considerations as well, namely, what is going to be done with the statement 
once it is accepted. An extreme example for the importance of pragmatics can 
be found in betting behavior. No matter how sure a person is in the truth of a 
(factual) statement, if sufficient heavy penalties are imposed on wrong deci- 
sions, that person is bound to show hesitation acting in accordance with his/her 
beliefs. 

Harsanyi [14] and Loui [19] include computational considerations within the 
pragmatics of belief acceptance. The crystallization of partial beliefs into crisp 
corpus of logical statements has computational advantages which overshadow 
the incurred loss of details. An obvious advantage is the economy gained in 
both storage and communication. A more subtle advantage is the utilization of 
beliefs in inferential schemata. In many reasoning tasks, use is made of 
prestored schemata that turned successful in the past. These schemata need to 
be matched to distinct classes of situations, e.g., the antecedent part of any 
decision rule identifies the situations to which the action part is applicable. 
Commitment to a categorical set of beliefs facilitates an efficient symbolic 
encoding of the classes of situations to which the inferential schemata are 
applicable. 

Pragmatic considerations of this sort help explain the vast disparity between 
AI and the management sciences, in their treatment of uncertainty. The reason 
that the management sciences have embraced probabilistic approaches and 
have emphasized measures of beliefs and uncertainty is that the domain of 
management decisions involves a wide spectrum of critical payoffs and penal- 
ties. Thus, even very unlikely events cannot be ignored off-hand but must be 
brought into comparison against the more likely (and moderately paidoff) 
events. 

In AI applications, on the other hand, the variability of the payoffs is often 
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rather narrow and the number of decisions enormous, so, even just likely 
events can be treated as a sure thing. For example, John's walk towards the 
cupboard reaching for the box of cereal is an action involving no high risk; the 
cost of failure is a meager exertion of a few extra steps. Had the stakes been 
higher, John could have embarked on lengthier deliberation prior to taking the 
action. For example, recalling Mary's breakfast he could have possibly assessed 
the chances that the cereal is finished. However, given the noncritical nature of 
the actions involved, there is no pressing need for such deliberation, John can 
safely proceed toward the cupboard without considering all relevant evidence, 
i.e., refraining from propagating the evidence to the entire belief network. 
When contradictory evidence arrives, some beliefs switch abruptly from "al- 
most surely true" to "almost surely false," apparently skipping the phase of 
numerical evaluation. In summary, common everyday activities are character- 
ized by firmly held beliefs because violated expectations involve relatively mild 
risks, there is a definite computational advantage for accepting these expecta- 
tions as firm beliefs and there is no practical danger of even letting some of 
these beliefs turn inconsistent. 

7.2. Is a most probable explanation adequate? 

The most probable explanation (MPE) criterion used in this paper reflects the 
following acceptance rule: 

A statement h is accepted iff h is entailed by I*, where I* is a 
conjunction of primitive sentences forming the most probable ex- 
planation of the available evidence. 

An equivalent acceptance rule is: 

Out of all world models consistent with the evidence, choose the 
one with the highest overall probability. 

In the case of Kyburg's lottery, for example, the set of consistent world 
models consists of all choices of a single winner from the population of ticket 
holders. If the lottery is absolutely fair, all models are equally likely and no 
acceptance can be invoked. However, assuming that one person is known to 
have a higher chance of winning than the rest (say by virtue of possessing a 
larger number of tickets), we fully commit our entire belief to the world model 
in which that person is the one and only winner. 

Like every acceptance rule based solely on confirmation, this, too, has its 
drawbacks. For example, if I were asked to bet $1,000 on a would-be winner, I 
would resist endorsing even the one holding dozens of tickets. Indeed, if payoff 
information is available, the MPE criterion loses its viability. It should give 
way, then, to maximum-utility or minimum-risk type of alternatives. However, 
when the payoffs are either unknown or insignifieant, the MPE criterion offers 
a reasonable compromise. It is not uncommon for people to adopt the 



DISTRIBUTED REVISION OF COMPOSITE BELIEFS 211 

following hypotheses based on rather tenuous evidence: 

h: I am going to be the winner, because I feel I have a slightly better 
chance than anybody else. 

or ,  

h: Did you say my uncle bought a ticket too, the bastard? I bet he is 
going to be the winner, he's been just damned lucky all his life. 

Similarly, it is not uncommon for people to switch abruptly from one 
interpretation of Necker's cube to the opposite, as a result of a slight change in 
visual clues. 

There are two situations where the MPE criterion is justifiable even on 
pragmatic grounds: 

(1) If the difference between the best and the second-best explanation is 
appreciable. 

(2) When one is forced to choose a definite, terminal action and the risks 
associated with wrong choices are all equal. 

For example, in answering multiple-choice examinations, the student's best 
strategy is to select the answer most likely to be correct. Similarly, technicians 
engaged in troubleshooting electronic circuits would do well if, at every phase 
of the diagnosis, they replace or test the unit most likely to account for the 
faults observed. The truth maintenance strategy of resolving contradictions by 
retracting the minimum number of assumptions is also a variant of the MPE 
criterion, where all assumptions are assumed to be equally probable. 

When it comes to scientific or causal explanations, the MPE criterion carries 
a special weight of yielding a neutral explanation, i.e. unbiased by pragmatic 
considerations such as payoffs and risks. Still, even in purely scientific settings, 
an explanation is always translated into some action and actions always lead to 
consequences and payoffs. It is desirable, therefore, that the most likely 
explanation not be issued in isolation, but be accompanied with additional 
information such as: the absolute probability of the best explanation, the 
probability of the second-best explanations and how likely are these measures 
to change in the face of new, pending tests. Having an efficient way of 
propagating beliefs in causal networks is a necessary and, often, sufficient step 
toward computing these auxiliary measures, [12]. 

7.3. Circumscribing explanations 

So far we have assumed that every consistent instantiation of the variables in 
the system constitutes an explanation of the evidence and, consequently, the 
optimization was conducted over all nonevidence variables in the network. 
Unfortunately, this leads to both computational and conceptual difficulties. 

Computationally, this means that one needs to propagate the impact of every 
piece of evidence to the entire network and, since unconfirmed consequences 
no longer serve as absorption centers (as they do in belief updating, see Section 
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4), we are running the risk of spending valuable resources in totally irrelevant 
sections of one's knowledge base. Conceptually, this unchecked frame-to- 
frame propagation might lead to paradoxical results. 

Suppose I am very concerned about having a certain fatal disease and, by a 
strike of good luck, the results of a medical test reveal that there is an 80% 
chance that I am totally healthy. According to the MPE acceptance rule, I 
should commit all my belief to a world model in which I am healthy. So, I start 
imagining all kinds of possible scenarios associated with my newly adopted 
belief. For example, I imagine 10 mutually exclusive scenarios, S~, S 2 . . . . .  S~0 
(e.g. trip to Bahama, trip to Afghanistan . . . .  ), each having a probability 0.1 of 
getting realized. Now I repeat the MPE exercise, but this time on a larger 
world scale, consisting of the earlier facts about the disease, plus the newly 
imagined scenarios. Lo and behold, any world model in which I am healthy 
now receives only an 8% chance of getting realized so, the most probable 
"explanation" of the evidence is that I do suffer from that horrible disease, and 
all for being a hasty daydreamer! 

In everyday discourse we would exclude such scenarios from being part of 
the explanation because they do not stand in causal relation to observed 
evidence, i.e., the symptoms or the test outcome. This is indeed a form of 
circumscription which is easily implementable in belief networks by insisting 
that an "explanation" of evidence e should consist only of ancestors of e, all 
other variables excluded. Thus, the maximization exercise should range only 
over the set of variables that are ancestors of some observed facts. 

This circumscription, however, does not go far enough as it does not insist 
that the relation between e and its causal ancestors pass some test of strength 
or rationality. The spectrum of everyday observations is so rich that with a 
little stretch of the imagination one can always proclaim any proposition h to 
be supported by some observation e', however feeble the support. Thus, at 
least in theory, every proposition would qualify for admittance into the 
explanation corpus, and we are back where we started. 

The solution to this dilemma relies, again, on the notion of payoffs. In every 
practical situation, when we seek an explanation for some experience e, we 
have a fairly good idea which collections of hypotheses should be included in 
that explanation, namely, what set of variables should be subjected to optimi- 
zation. This is determined by pragmatic considerations: we know which set of 
hypotheses would influence those consequences that stand at the center of our 
concern. For example, partitioning the hypothesis "I  am healthy" into ten 
specific scenarios would be a rational thing to do if I were pressed by my travel 
agent to make payment on a plane ticket and must decide on a specific 
destination. It would not be rational if my main concern were knowing whether 
I am sick or not. 

In order to apply the MPE scheme described in this paper, one must assume 
that the network contains only "interesting" partitions of world models; 
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"interesting" being relevant to a set of consequences at the center of one's 
practical concerns. For example, if disease H 1 has ten (equally likely and 
mutually exclusive) prognoses while a competing hypothesis H 2 has only one 
clear prognosis, should we partition H1 prior to maximization, or should we 
maximize over the space H 1 versus H 2, then, if H~ turns out to be accepted, 
maximize again over its components? That depends on the circumstances: if 
the ten prognoses call for only minor variations in treatment we should do the 
latter, else, if each calls for drastically different action and every error can be 
devastating, we should do the former. (Harsanyi [14] calls it "the principle of 
small disparate risks.") 

In conclusion, one can justify the MPE acceptance rule only relative to small 
worlds, precompiled by a fairly astute decision maker. Such compilation 
involves preanalytical judgments to decide the tradeoff between the gain in 
simplicity and loss of utility associated with carving and delimiting these 
worlds. 

8. Conclusions 

This paper develops a distributed scheme for finding the most probable 
composite explanation of a body of evidence. 

We show that, in singly connected networks, globally optimal explanations 
can be configured by local and autonomous message-passing processes, similar 
to those used in belief updating; conceptually related propositions communi- 
cate with each other via a simple protocol, and the process converges to the 
correct solution in time proportional to the network diameter. In multiply 
connected networks, the propagation method must be assisted either by 
clustering (i.e., locally supervised groups of variables) or conditioning (i.e. 
reasoning by assumptions); each exploiting different aspects of the network 
topology. 

The implications of these results are several. First, from a psycho-philosophi- 
cal viewpoint, they provide a clear demonstration of how cognitive constructs 
exhibiting global coherence can be assembled by local, neuron-like processors 
without external supervision. Second, along a more practical dimension, the 
message-passing method developed offers substantial reduction in complexity 
compared with previous optimization techniques, achieving linear complexity 
in singly connected networks and exp(c) in general networks, where c is the 
size of the cycle cutset. This is accomplished by subtask decomposition, 
supervised solely by the network topology. Third, the paper establishes a clear 
paradigmatic link between probabilistic and logical formalisms of non- 
monotonic reasoning. It demonstrates how numerical probabilities can be used 
as a concealed inferencing fuel for performing coherent transformations be- 
tween evidence sentences and conclusion sentences. It also identifies the kind 



214 J. PEARL 

of structures where such transformations can be executed by autonomous 
production rules and those that invite problems of intractability and /o r  in- 
stability, unless treated with care. 
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