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ABSTRACT: We consider 3-place relatons { (x, z, y ) where, x, y,
and z are sets of propositional variables, and / (x, z, y) stands for the
statement: ‘‘Knowing z renders x independent of y.”" We give
sufficient conditions on / for the existence of a (minimal) graph G
such that (xl z,y) can be validated by testing whether z separaies x
fromy inG. These conditions define a GRAPHOID. The theory of
graphmds uncovcrs the axiomatic basis of informational dependen-
cies and ities it to vertex-separation conditions in graphs. The
defining axioms can also be viewed as inference rules for deducing
which propositions are relevant to each other, given a certain state of
knowledge.

1. INTRODUCTION

Any gystem that reasons about knowledge and beliefs must
make use of information about dependencies and relevancies. If we
have acqﬁired a body of knowledge z and now wish to assess the
truth of pmpbsition x, it is important to know whether it would be
worthwhile to consult another proposition y, which is not in z. In
other words, before we examine y, we need to know if its truth value
can potentially generate new information relative to x, information
not available ffrom z. For example, in trying to predict whether I am
going to be lam for a meeting, it is normally a good idea to ask some-
body on the street for the time. However, once I establish the precise
time by liste?ing to the radio, asking people for the time becomes
superfluous and their responses would be irrelevant. Similarly,
knowing fhe color of x’s car normally tells me nothing about the
color of ¥’s.| However, if X were to tell me that he almost mistook
¥’s car for his own, the two pieces of information become relevant to
each other —| whatever I learn about the color of X's car will have
bearing on what 1 believe the color of ¥’s car to be. What logic
would facilitate this type of reasoning?

In probability theory, the notion of relevance is given precise
quantitative 'undarpimﬁng using the device of conditional indepen-
dence. A vapable x is said to be independent of y given the informa-
tion z if P(x,y |z)=P(x |z) P(y |z). However, it is rather unrea-
sonable to expect people or machines to resort to numerical
verification of equalities in order to extract relevance information,
The ease and conviction with which people detect relevance relation-
ships strongly suggest that such information is readily available from
the organizational structure of human memory, not from numerical
values assigned to its components. Accordingly, it would be interest-
ing to explore how assertions about relevance can be inferred qualita-
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tively from various models of memory and, in particular, whether the
logic of such assertions can be characterized axiomatically.

Since models of human knowledge are often porirayed in
terms of various associational networks (e.g. semantic networks
[Woods 1975], constraint networks [Montanari 1974] inference nets
[Duda, Hart and Nilsson 1976]), a natural starting point would be to
examine what types of dependency relations can be captured by a
network representation, in the sense that all assertions about depen-
dencies (and independencies) in a given model be deducible from the
topological properties of some network,

When we deal with a phenomenon where the notion of
neighborhood or connectedness is explicit (e.g., family relatons,
electronic circuits, communication networks, etc.), we have no prob-
lem configuring a graph which represents the main features of the
phenomenon. However, in modeling conceptual relations such as
causation, association and relevance, it is often hard to distinguish
direct neighbors from indirect neighbors; so, the task of constructing
a graph representation then becomes more delicate. The notion of
conditional independence in probability theory is a perfect example
of such a relational structure. For a given probability distribution P
and any three variables x,y, z, while it is fairly easy to verify wheth-
er knowing z renders x independent of y, P does not dictate which
variables should be regarded as direct neighbors. Thus, many topolo-
gies might be used to display the dependencies embodied in P.

This paper studies the feasibility of devising graphical
representations for dependency models in which the notion of neigh-
borhood is not specified in advance. Rather, what is given explicitly
is the relation of ‘‘in betweenness.” In other words, we are given the
means to test whether any given subset § of elements intervenes in a
relation between elements x and y, but it remains up to us to decide

how to connect the elements together in a graph that accounts for
these interventions.

Section 1 uncovers the axiomatic basis of dependency
models which are isomorphic to vertex separation in graphs. The ax-
ioms established can be used both for testing whether a given model
lends itself to a complete graphical representation, and for inferring
new dependencies from a given initial set. Section 2 examines
dependency models called graphoids which may have no graph iso-
morphism yet possess an effective graphical representation; all their
dependencies together with the highest possible number of indepen-
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dencies can be displayed by some graph. The theory of graphoids, of
which probabilistic dependence is a special case, provides methods
for constructing such optimal graphs.

2. GRAPH REPRESENTATTON - SEMANTICS AND SYNTAX

21 What’s in a Link? Suppose we have a collection U of in-
teracting elements and we decide to represent their interactions by an
undirected graph G in which the nodes correspond to individual ele-
ments of U. Naturaily, we would like to display independence
between elements by the lack of connectivity between their
corresponding nodes in G and, conversely, dependent elements
should correspond to connected nodes in G. This requirement alone,
however, does not take full advantage of the expressive power of
graph representation. It treats all connected components of G as
equivalence classes and does not attribute any special significance to
the topological configuration within each connected component of G.

Clearly, if graph topology is to convey meaning beyond its
connectedness, a semantic distinction must be made between *‘direct
connecnqn"‘ and ‘‘indirect connection’’ in the sense that arbitrarily
adding a link between otherwise connected elements should
conespond toa totally different state of dependency. This means that
the model which governs our understanding of the interactions
between the elements of U/ must also provide us with a criterion for
testing 3-place, conditional independence relations of the form
I(x, z,y)—‘ ‘x is independent of y conditioned on z."”” While a
variety of interpretations might be given to the terms *‘independent’’
and “‘conditioned on,’” we shall see that some reasonable general
constraints can be imposed on the relation / (x, z, y) if we associate it
with the intuitive statement: **knowing y would tell me nothing new
about x, if I already know z."'

Ideally, we would like to require that if the removal of some
subset § of nodes from the graph G renders nodes x and y discon-
nected (written <x | S |y >¢g), then this separation should
correspond to conditional independence between x and y given S,
namely,

<z |S|y>eg=>I@xS.y)
and, conversely,
I(x,5,y)=><x|S |y>¢

This would provide a clear graphical representation for the notion
that x does not affecty directly, that its influence is mediated by the
variables in §. Unfortunately, we shall next see that these two re-
quirements are too strong; there is often no way of using vertex
separation in a graph to display all dependencies and independencies
embodied in the common notion of information relevancy.

Let U ={c,p,...} be a finite set of elements (e.g. proposi-
tions, variables etc.) and let x,y, and z stand for three non intersect-
ing subsets of elements in /. Let M be a model which assigns truth
values to the 3-place predicate / (x, z,y) or, in other words, M deter-
mines a subset / of triplets (x,, z) for which the assertion *‘x is in-
dependent of y givenz'’ is true.

Definition: An undirected graph G is a dependency map (D -map)
of M if there is a one-to-one correspondence between the variables in
U and the podes of G, such that for all non-intersecting subsets,

x,¥,z,of variables we have:
Ix,z,ylu=><x|z|y>g (1)
Similarly, G is an Independency map (I -map) of M if:
Ix,z.yues<x|z]y>¢ 2

A D -map guarantees that vertices found to be connected are, indeed,
dependent, but it may occasionally display dependent variables as
separated vertices. An /-map works the opposite way: it guarantees
that vertices found to be separated always correspond to genuinely
independent variables but does not guarantee that all those shown to
be connected are, in fact, dependent. Empty graphs are trivial D -
maps, while complete graphs are trivial / -maps.

It is not hard to see that in many reasonable models of infor-
mational dependency no graph can be both a D-map and and [ -map
of M. For example, in models where [(x,z,y) means “‘y is ir-
relevant to x once we learn z ™, we often find nonmonotonic behavior
-- totally unrelated propositions can become relevant to each other
upon learning new facts, For instance, whether it is cloudy or
sunshine outside has nothing to do with the type of paper I am
currently writing on. However, upon learning that I have difficulty
reading my pencil marks, seeing the sun shining through the window
makes me doubt the quality of the paper. Such a nonmonotonic
model M, implying both I(x,zy,y)y and NOT-I(x,z1 Uz, ¥y,
cannot have a graph representation which is both an /-map and a D -
map, because graph separation always satisfies
<xl|lzy|ly>g=><x|21Uz;3|y >¢ for any two subsets z|
and z, of vertices, Thus, D -mapness forces G to display z; as a
cutset separating x and y, while /-mapness prevents z; Uz from
separating x and y. No graph can satisfy these two requirements
simultaneously.

Being unable to provide graphical representations to some
(e.g. nonmonotonic) interpretations of f(x, z, y), raises the question
of whether we can formally delineate the class of models which do
lend themselves to graphical representation. This is accomplished in
the following substitutien by establishing an axiomatic characteriza-
tion of the type of dependency relations which are isomorphic to ver-
tex separation in graphs.

2.2 Axiomatic Characterization of Graph-Isomorph
Dependencies

Definition: A dependency model M is said to be graph-isomorph if
there exists a graph G = (U, E) which is both an /-map and a D -map
of M, i.e., for every three non-intersecting subsets x, y and z of U
we have:

Ix,z,yy <=> <x |z |y>¢ (3)

Theorem 1: A necessary and sufficient condition for a dependency
model M to be graph-isomorph is that /(x, z, y)y satisfies the fol-
lowing five independent axioms (the subscript M dropped for clari-
ty):

(symmetry)

Ix,z,y)<=>1(y,2,x) (4.a)
(subset closure)

Iz,z,y w)=>1(x,z,y) & I(x,z,w) (4.b)



(intersection)

T,z gw,y) & I(x,z Yy, w)=>1(x,z,y Uw) (4c)
(strong union)

Ix,z,y)=>I(x,z yw,y) YwclU (4.d)
(transitivity)
I(x,z,y)=>1(x,z,¥) or I(Y,2,y) Vyex iz iy (4.e)

The axioms in (4) are clearly satisfied for vertex separation in
graphs. (4.e) is the counter-positive form of connectedness transitivi-
ty, stating that, if x is connected to y and v is connected to y, then x
must alse he connected to y, (4.d) states that, if z is a vertex cutset
separating x from y, then removing additional vertices w from the
graph still leaves x and y separated. (4.c) claims that, if x is separat-
ed from w with y removed and, simultaneously, x is separated from
¥ with w removed, then x must be separated from both y and w.

The logical independence of the five axioms can be demon-
strated by letting U contain four elements and showing that it is al-
ways possible to contrive a subset / of triplets (from the subsets of
U) which violates one axiom and satisfies the other four. The proof
of Theorem | [Pearl and Paz 1985] also provides a simple method of
constructing the unique graph G , which is isomorphic to I -- starting
with a complete graph, we simply delete every edge (o, B) for which
a triplet of the form (a, £, B) appearsin /.

Having a complete characterization for vertex separation in
graphs makes it easy to test whether a given model of dependency
lends itself tg graphical representation. In fact, it is easy to show that
the unrestricted intuitive notion of informational relevancy will, in
some context, violate each of the last three axioms. Axiom (4.d) is
clearly violated in the non-monotonic example of the preceding sub-
section, Transitivity (4.¢) is violated by that same example because
reading difficulties may depend on both the paper quality and the am-
bient light; yet the latter two are independent of each other. (4.c) is
violated in contexts where the propositions y and w logically con-
strain on= another. For instance, if y stands for the proposition ‘‘The
water temperature is above freezing,” and w stands for *“The water
temperature is above 32°F,” then, clearly, knowing the truth of ei-
ther one of them renders the other superfluous. Yet, contrary to (4.c),
this should not render both y and w irrelevant to a third proposition
x, say, whether we will enjoy swimming in that water.

Having failed to provide isomorphic graphical representa-
tions for even the most elementary models of informational depen-
dency, we settle for the following compromise: Instead of insisting
on complete graph isomorphism, we will consider ] -maps which may
not be D -maps. However, succumbing to the fact that some indepen-
dencies may escape representation, we will insist that their number
be kept at a minimum or, in other words, that the graphs in those
maps should contain no superfluous edges.

3. DEPENDENCY MODELS WITH MINIMAL I-MAPS
3.1 Formal Characterization

Definition: A graph G is a minimal I -map of dependency model
M if no eage of G can be deleted without destroying its / -mapness.

We now define a class of dependency models which possess
unique, easily constructed minimal / -maps.

Definition: A graphoid is a set I of triplets (x,z,y) where x,z, y
are three non-intersecting subsets of elements drawn from a finite
collection U = (e, B, -+ }, having the following four properties.
(We shall write /(x, y, z) to state that the triplet (x, y, z) belongs to
graphoid /.)

Symmetry

I(x,z,y)<==>1(y,z,x) (5.a)
Subset Closure

Ix,z,y yw)=>1I(x,2,y) &J(x,z,w) (5.b)
Intersection

T,z gw,y) & I(x,z Yy, w)=>I(x,z,y Uw) (5.0)
Union
Tx,z,y yw)=>1(x,z \yw,y) (5.d)

Obviously, every graph-isomorphic dependency is a gra-
phoid, but not vice-versa. The first three properties in (5) are identi-
cal to those in (4), while the transitivity requirement (4.¢) is waived.
Moreover, the union property (5.d) is weaker (hat (4.d) in that it
severely restricts the conditions under which a cutset z can be en-
larged by w. In the context of informational dependency, this restric-
tion amounts to saying that learning new facts w will not help an ir-
relevant fact (y) become relevant if the learned facts (w) were, them-
selves, irrelevant to begin with,

Theorem 2: Every graphoid / has a unique edge-minimum J -map,
Go=(U, Eg), constructed by connecting only pairs (¢, ) for which
the triplet (o, U—0—B, B)is notin/, i.e.,

(wPre Eq iff 1(o U0, P) (6)

Definition: A relevance sphere R;(0) of an element cce U is any
subset § of elements for which

I(o,S,U~S—0) and oé S €))

Let R/"(cx) stand for the set of all relevance spheres of o A set is
called a relevance boundary of a, denoted By (@), if it is in Ry*(c) and
if, in addition, none of its proper subsets is in R;"(cx).

By(at) is to be interpreted as the smallest set that '‘shields’’ o from
the influence of all other elements, Note that R/*(c) is non-empty be-
cause I (x, z, ) guarantees that the set S = U —t satisfies (7).

Theorem 3: Every element c.e U in a graphoid / has a unique
relevance boundary B;(t). Bj(0) coincides with the set of vertices
Bg (o) adjacent to c in the minimal graph G o.

Corollary 1: The set of relevance boundaries B;(ct) forms a neigh-
bor system, i.e., a collection By* = {B;(c): o.e U} of subsets of U
such that

(i) o€ By(o),and

(i) aeBipf) iff Pe B(a), ow,Ppel

Corollary 2: The edge-minimum /-map G o can be constructed by
connecting each o to all members of its relevance boundary B;(ct).

The usefulness of Corollary 2 lies in the fact that in many cases it is
the relevance boundaries By(a) that define the organizational struc-
ture of human memory. People find it natural to identify the immedi-
ate consequences and/or justifications of each action or event, and



these relationships constitute the neighborhood semantics for infer-
ence nets used in expert systems [Duda et al. 1976]. The fact that
Bi(0o) coincides with Bg (o) guarantees that many independencies
can be validated by tests for graph separation at the knowledge level
itself (Pearl, 1985).

3.2 AnIllustration: To illustrate the role of these axioms consider
a simple graphoid defined on a set of four integers U ={ (1, 2,3,4 }.
Let ! be the set of twelve triplets listed below:

I = {(1,2,3),(1,3,4),(2,3,4),
({1,2},3,4)(1,(2,3},4),
(2,{1,3},4), + symmetrical images}

It is easy to see that / satisfies (5.a)-(5.d) and thus it has a unique
minimal . -map G o, shown in Figure 1. This graph can be construct-
ed either by deleting the edges (1, 4) and (2, 4) from the complete
graph or byicompnn’ng from / the relevance boundary of each ele-
ment, ie., Bi(1)={2,3}), Bi(2Q)=(1,3}, Bi(3)=(1,2,4},
Bi(4)y=(3}

Figure 1: Tha Minimal I-Map, G, of |

Suppose that the list contained only the last two triplets (and
their symmetrical images):
I"={(1, {2, 3},4),(2, {1, 3}, 4) + symmetrical images}

I’ is clearly not a graphoid because the absence of the triplets (1, 3, 4)
and (2, 3, 4) violates the intersection axiom (5.c). Indeed, if we try to
construct G p by the usual criterion of edge deletion, the graph in Fig-
ure 1 ensues, but it is no longer an / -map of I’; it shows 3 separating
1 from 4 while (1, 3, 4) is notin 7’. In fact, the only 7 -maps of I are
the thres graphs in Figure 2, and the edge-minimum graph is clearly
not unique.

1 1 1

Figure 2: The Three I-Maps of | *

Now consider the list
1”=1{(1,2,3),(1,3,4),(2,3,4),( (1,2}, 3, 4), + images }

1" satsfies the first three axic.ns (5.a)-(5.c) but not the union axiom
(5.d). Since no triplet of the form (o, U—o~f, B) appears in [”, the

only /-map for this list is the complete graph. However, the
relevance boundaries of /” do not form a neighbor set; e.g.,
BrA4)=3, B;(2)=(1, 3, 4}, so 2¢ By~ (4) while 4 B;~(2).
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An Example: Probabilistic Dependencies and
Their Graphical Representation

Let U ={a, B, - - } be a finite set of discrete-valued random
variables characterized by a joint probability function P (), and let x,
¥, and z stand for any three subsets of variables in I7. We say that x
and y are conditionally independent given z if

P(x,ylz)=P(x|z)P(y|z) when P(z)>0 (8)

Eq.(B) is a terse notation for the assertion that for any instantiation z,

of the variables in z and for any instantiation x; and y; of x and y,
we have

P(x=x; & y=y;jlz=0)=P (x=x;{z=g;) Py=yjlz=2s) (9)

The requirement P (z) > 0 guarantees that all the conditional proba-
bilities are well defined, and we shall henceforth assume that P > 0
for any instantiation of the variables in . This rules out logical and
functional dependencies among the variables a case which would re-
quire special treatment,

We shall use the notation (x | z | y)p orsimply (x {z | y)
to denote the independence of x and y givenz. Thus,

(x1z1y)pif P(xy|z)=P(x|2)P(y|2) (10)

Note that (x | z | y) implies the conditional independence of all
pairs of variables ccex and B ey, but the converse is not necessarily
true.

The relaton (x | z | y) satisfies the following properties
[Lauritzen 1982]:

(x 1z ]y)<=>P(xly,z)=P(x|z) (1La)

(xlz|y)e=>Px,z|y)=Px|2)P(z|y) (11b)

(x J.Z J_y)<'=> af,g :P(I.y'2)=f(xsz)8()’:z) (11.c)

(x |z [y)<=>P(x,y,2)=Px|2)P(y,2) (11.d)
(xlzly)=>x1z.fO)Ly) (12.2)
xlz]y)=>{&x,2)1z1y) (12.b)

These properties are based on the numeric representation of P and,
therefore, would not be adequate for characterzing its graphical
representation.

We now ask what logical conditions, void of any reference to
numerical forms, should constrain the relationship (x| z| y). The
next set of properties constitute such a logical basis.

Theorem 4: Let x, y, and z be three non-intersecting subsets of
variables from U, and let (x | z | y) stand for the relation *x is in-
dependent of y, given z'* in some probabilistic mode! P . The fol-
lowing five independent conditions must then hold:



Symmetry
xlzly)e=>(@ 1z ]|x) (13.a)
Closure for subsets:
xlzly.w)=>@x1z]y)& (x]z|w)
Weak closure for intersection:
xlz.wly) & & lz,y [W)=>(x]z]y,w) (13.c)
Weak closure for union:
(xlz ]y, w)=>(xlz,w |y)
Contraction:
(xizylw) &

(13.b)

{13.d)

Glzly)=>@&1z1y.w) (13.¢)

The |ntuitive interpretation of Eqs. (13.c) through (13.e) fol-
lows. (13.c) states that if y does not affectx when w is held constant
and if, simultaneously, w does not affect x when y is held constant,
then neither w nor y can affect x. (13.d) states that learning an ir-
relevant fact (w) cannot help another irrelevant fact (y) become
relevant. : (13.e) can be interpreted to state that if we judge w to be ir-
relevant (to x) after learning some imelevant facts y, then w must
have been irrelevant before learning y. Together, the expansion and
construction properties mean that learning irrelevant facts should not
alter the relevance status of other propositions in the system; whatev-
er was relevant remains relevant, and what was irrelevant remains ir-

relevant.
The proof of Theorem 1 can be derived by elementary means

from the. definition (8) and from the basic axioms of probability
theory, The intersection property is the only one which requires the
assumption P (x)>0 and will not hold when the variables in U are
constrained by logical dependencies. In such a case, Theorem 1 will
still retain its validity if we regard each logical constraint as having
some small probability € of being violated and let £ -> 0.

QObviously, probabilistic dependencies form a graphoid and,
therefore, possess the graph properties of Theorems 2 and 3. In par-
ticular, we have;

Corollary 3: To every probability distribution P, there
corresponds & unique minimal .J-map G, =(U, E,) constructed by
the criterion

(o P) ¢ E, iff (a)U——P|B).
Equivalently, G, canbe constructed by connecting each variable o to
the smallest set S of variables satisfying

P(a|S)=P(a|U-a)

4. CONCLUSIONS

‘We have established an axiomatic characterization of depen-
dency models which are representable by graphs, and we have
identified two essential properties: weak closure for intersection
(5.¢), and weak closure for union (5.d). These two axioms enable us
to construct an edge-minimum graph in which every cutset
corresponds to a genuine independence condition, and these were
chosen, therefore, as the formal definition of graphoid systems — a
general model of informational dependency. Vertex separation in
graphs, probabilistic independence and partial uncorrelatedness are
special cases of graphoid systems where the two defining axioms are
augmented with additional requirements.

The graphical properties associated with graphoid systems
offer an effective inference mechanism for deducing, in any given
state of knowledge, which propositional variables are relevant to each
other. If we identify the relevance boundaries associated with each
proposition in the system, and treat them as neighborhood relations
defining a graph G, then we can correctly deduce irrelevance rela-
tionships by testing whether the set of currently known propositions
constitutes a cutset in G o.
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