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ABSTRACT OF THE DISSERTATION
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by
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Personalized and situation-specific decision making is a framework that optimizes both

population-based and individual-based utilities by leveraging causal knowledge and coun-

terfactual reasoning. This dissertation addresses the shortfalls of traditional decision strate-

gies, which often overlook crucial individual heterogeneity. It develops novel methods of

estimating how specific people or cases would respond under alternative actions or treat-

ments, then uses those estimates to optimize decisions. By combining evidence from both

experiments and observational studies, the approach side-steps the fundamental limitation

of observing only one outcome per individual. As a result, an individual’s probability of

benefiting from, or being harmed by, an intervention can be estimated more precisely than

previously possible.

The proposed methods also incorporate domain knowledge through causal models, and

culminate in a practical way to handle non-binary ordinal outcomes, substantially expanding

the usefulness of counterfactual reasoning. This framework is validated on real-world data

from Tennessee’s STAR project. Population-level data is distilled into individual-level prob-

abilities, which in turn sharpen both broad policy decisions and personalized choices. I show

ii



how the benefits of this framework extend across virtually every industry and discipline.
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GLOSSARY

ATE Average Treatment Effect; average effect of a treatment across a population.

CATE Conditional Average Treatment Effect; ATE conditioned on one or more covariates.

CoE Causes of Effects; counterfactual probabilities of causation.

DAG Directed Acyclic Graph; graph whose nodes are connected by directed edges and

where its edges do not form any directed cycles or loops.

EoC Effects of Causes; probability or expectation of an outcome given an interventional or

observational cause.

Exogeneity X is exogenous for Y iff the way Y would potentially respond to experimental

conditions x or x′ is independent of the actual value of X.

ITE Individual Treatment Effect; difference in outcomes that an individual would attain

under different decisions.

LoTP Law of Total Probability;
∑

b∈B P (a,b) = P (a).

MITE Monotonic Incremental Treatment Effect; stronger version of monotonicity, where

treatment X does not decrease the level of Y and increases Y by at most one level.

PN Probability of Necessity; P (y′x′ |x, y).

PNS Probability of Necessity and Sufficiency; P (yx, y
′
x′), also known as Probability of Ben-

efit (P (benefit)).

PoC Probability of Causation; counterfactual probability of an event being the cause of an

effect.

PoCs Probabilities of Causation; plural of Probability of Causation.
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PS Probability of Sufficiency; P (yx|x′, y′).

RCT Randomized Controlled Trial; experimental research study design where participants

are randomly assigned to different groups (treatment or control) to assess the effec-

tiveness of an intervention or treatment.

Utility Usefulness, value, preference level, or profit that is placed on something.
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CHAPTER 1

Introduction

1.1 Background

Decision-making systems across domains like healthcare, business, and policy typically rely

on averages and broad trends. However, what works on average for a group may not be

optimal for a specific individual or situation. Moreover, average effects rarely incorporate

the utility associated with different counterfactual outcomes, frequently turning seemingly

optimal decisions into severely suboptimal ones. This utility utilization frequently turns

what appears to be an optimal decision into a severely suboptimal one. Personalized and

situation-specific decision-making focuses on tailoring choices to the unique characteristics

of a person or unit and the context at hand. The motivation for this approach stems from

everyday observations: one patient might respond very well to a treatment that yields only

modest benefits in the average clinical trial, or a marketing incentive that usually boosts

sales might backfire for certain customers. Traditional population-based decision policies,

which optimize the outcome for an average subgroup, can obscure these nuances.

Consider a motivating example from public health. Imagine a scenario in which a new

vaccine is in short supply during a pandemic, and officials must decide who should be vacci-

nated first. An initial causal analysis might find that elderly patients have a higher average

survival rate with the vaccine versus without the vaccine (70%) compared to younger patients

(60%), suggesting that the elderly benefit more. This is a classic population-level conclu-

sion. Yet, a closer, individualized look reveals a different story. We want to know who would
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survive if vaccinated but not survive if not vaccinated. Answering this question requires

counterfactual reasoning: comparing an outcome for the same person under two alternative

choices (vaccinate vs. not vaccinate). Since we cannot directly observe both outcomes for

any single individual, we must infer them through data and models. When researchers ap-

plied such counterfactual analysis to the vaccine scenario, they found a puzzling result. It

was not at all clear which age group should be prioritized. The probability that an elderly

person’s life is saved because of the vaccine (and would be lost without it) had such wide

uncertainty (70% to 85%) that it overlapped with that of a younger person (60% to 80%).

In fact, with additional real-world data, the analysis indicated that the younger group, in

reality, had the higher benefit probability (75% to 80% versus 70% to 74%), flipping the

policy recommendation. This example highlights the crux of the problem. A decision policy

based purely on group averages can be misleading, whereas a personalized, situation-aware

analysis can unveil insights that change who we decide to help first.

The above scenario underscores why this research is necessary. Many high-stakes de-

cisions in medicine, economics, and public policy suffer from the fundamental limitation

that we only see one outcome per individual. We rarely get to rewind the clock and see

counterfactual outcomes (e.g., how a patient would have fared under an alternative treat-

ment). As a result, conventional analytics give us population effects, such as an Average

Treatment Effect (ATE) from a trial, but cannot directly tell us what would happen to a

specific person. Counterfactual reasoning provides the language and tools to bridge this gap

by estimating quantities like an individual’s probability of benefit or harm from an action.

However, early methods to do this were often impractical. Without strong assumptions or

knowledge of the underlying data generating process, one could only derive very wide bounds

on an individual’s benefit probability, too broad to guide decisions. This dissertation builds

a foundation to overcome those hurdles. Leveraging recent advances in causal inference, I

integrate multiple data sources and domain knowledge to estimate individual-specific effects

more precisely than previously possible. By combining experimental trial data with obser-
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vational data, valuable information about individual behavior is obtained that a randomized

trial alone would miss. Furthermore, by incorporating causal models of the decision scenario,

structural knowledge is added that helps refine estimates even more. In sum, I use reasonable

assumptions, including all available evidence and causal structure, to answer “What is the

likelihood that an individual responds in a specific way if we do X and, at the same time, this

individual responds in a specific alternative way if we do an alternative to X?” as reliably as

possible.

Ultimately, the significance of personalized and situation-specific decision-making is its

potential to improve outcomes across a wide range of fields. I will show how better estimates

of counterfactual Probabilities of Causation (PoCs) in a heterogeneous population leads to

decisions that are not just more optimal for a particular set of preferences, but are also fairer,

more efficient, and more transparent.

1.2 Decisions

Decision making underpins progress in domains ranging from education, healthcare, and

public policy to choosing what to eat for dinner. In almost every facet of life, we are

confronted with the task of choosing an option that leads to the best future outcome.

Early approaches relied on predictive models, using historical data to forecast outcomes.

This is effective for trends but blind to causality. Unfortunately, predictive decision making

is still prevalent in industry, academia, and certainly among people not trained in causal

inference. This makes sense as our intuition tells us to predict the future for each option

and select the one that seems to lead to the best future. Conditional probabilities tell us

how often something happens, but does not tell us what will happen if we intervene. The

supplement industry, valued at over half a trillion dollars in 2025 [Res], thrives on decisions

based on observations like, “People taking this supplement seem super healthy, so I’ll buy

it.” Of course, many of those supplement buyers are doing plenty of other things to make
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themselves healthy, such as exercising. This is level 1 thinking in the Pearl Causal Hierarchy

[BCI22]. Decision making is fundamentally causal. We should not be making predictions,

we should be understanding the consequences of actions.

The advent of interventional methods, such as Randomized Controlled Trials (RCTs),

shifted focus to causal effects, typically measured via the ATE. This was a big step forward.

A decision is an intervention. Choices represent potential actions. To make good decisions,

we need to understand what would happen if we intervene. However, while robust for

population-level insights, ATE masks individual variability. This is a critical shortfall when

decisions must suit specific people, situations, or contexts [MP23c]. Interventional methods

correspond to level 2 in the Pearl Causal Hierarchy.

Modern decision challenges demand counterfactual reasoning. This dissertation advances

this paradigm through PoCs, measures of an action’s causal impact on individuals (e.g.,

benefit or harm), building upon frameworks like those in Tian and Pearl’s work [TP00].

Unlike ATE, PoCs capture individual heterogeneity, but their estimation is complicated

by the fundamental problem of causal inference: only one outcome per individual is ever

observable.

Optimal decision making involves three key components:

1. Determine utility of actions on each counterfactual response type

2. Estimate counterfactual probabilities

3. Apply utilities to counterfactual probabilities

4. Choose action with highest utility

where utility is the usefulness, value, preference level, or profit that is placed on something.

A counterfactual response type is how a unit simultaneously responds to different actions.

For example, a patient would recover with medicine A and, simultaneously, remain sick with
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medicine B. I will tackle the first three optimal decision-making components in the rest of

this dissertation, leaving the reader with the challenge of the fourth component.

1.3 Contributions

The work presented in this dissertation makes several novel contributions to the theory and

practice of decision science.

In Chapter 3, the counterfactual probabilities focused on in this dissertation are intro-

duced. These PoCs are analyzed mathematically and intuitively, providing insights into how

they can be estimated and used. Chapter 9 will expand on these PoCs with non-binary

outcomes, greatly enhancing their usefulness.

Chapters 4 and 5 present methods to estimate PoCs. Because to their counterfactual

nature, PoCs have historically been difficult to estimate. However, with reasonable assump-

tions, domain knowledge, causal structure, or covariate date, estimates can be precise enough

to make better decisions from.

Chapter 6 presents another way, potentially in combination with other techniques in this

dissertation and elsewhere, to narrow bounds and better estimate PoCs. The insight here is

to use the intention to treat or not treat as evidence. Once a decision has been made, but

before it is actually enforced, probabilities change, which could affect decisions before it is

too late.

Monotonicity is an assumption that outputs cannot decrease with increasing inputs. If

this assumption can legitimately be made, many causal inference problems become simple.

Chapter 7 presents tests for necessary conditions on data in order for monotonocity to possi-

bly hold and sufficient conditions on data for monotonicity to definitely hold. Consequences

of violations of monotonicity are explored. This leads to potential better estimates on PoCs.

Similar to monotonicity, selection bias can be difficult to detect or refute. Unfortunately,

7



selection bias can also be difficult to avoid. Chapter 8 quantifies severity of selection bias,

derives its bounds, and incorporates those bounds in causal analysis.

Finally, a cornerstone contribution is extending PoC to non-binary ordinal outcomes,

moving beyond binary success and failure. In Chapter 9, new bounds and estimates, along

with conditions for point estimates, are derived. Existing concepts, such as ATE and mono-

tonicity, are analyzed and adjusted in light of non-binary outcomes. While non-binary

outcomes increase decision-making complexity, several techniques help manage it. The final

chapter and the dissertation end with a simple benefit function crucial for making optimal

decisions using counterfactual reasoning with non-binary ordinal outcomes. That formula

can be point estimated if the utility matrix passes a basic mathematical test. An algorithm

is presented to then compute the overall utility of a decision using counterfactual reasoning.

A real-world dataset will be used as a practical illustration where appropriate. This

includes chapter 9, where the outcome is discretized into binary and quaternary levels and

compared. This will demonstrate the value of these new decision-making methods with

counterfactual reasoning.
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CHAPTER 2

Real-World Dataset (STAR)

2.1 Introduction

This dissertation leverages data from the STAR-and-Beyond database [ABB08], a longitu-

dinal educational experiment initiated by the Tennessee State Department of Education in

1985. The original experiment tracked a cohort of students from kindergarten through third

grade (1985–1989), collecting annual data on student achievement and related measures. Al-

though the study continued gathering data into high school, this dissertation focuses solely

on the primary cohort (grades K–3).

The experimental phase included 11,601 students who participated for at least one year.

The dataset captures:

• Demographic characteristics

• School and classroom identifiers

• School and teacher attributes

• Experimental conditions (“class types”)

• Norm- and criterion-referenced achievement test scores

• Motivation and self-concept assessments

To enhance causal analyses by combining experimental and observational data, records

from 1,780 students in 21 non-STAR comparison schools (matched demographically to STAR
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schools) are utilized. These observational data, however, are limited by fewer demographic

and experimental condition details.

2.2 Overview and Goals of Project STAR

In May 1985, the Tennessee legislature initiated Project STAR (House Bill 544) to study

the impact of reduced class sizes on primary school student achievement. The legislature

mandated three key research questions:

• What effect does smaller class size have on student achievement and development in

grades K–3?

• Do effects accumulate over multiple years in small classes compared to a single year?

• Does specialized teacher training for smaller classes or teacher aides influence student

outcomes compared to teachers without such training

Small classes were defined as having 13–17 students. The study involved 79 schools across

42 districts, encompassing a diverse mix of inner-city, suburban, urban, and rural schools.

2.3 Selection Bias Considerations

Due to deliberate sampling methods, STAR schools were slightly larger and had marginally

lower initial math and reading scores than statewide averages. Figure 2.1 compares the

distribution of initial math scaled scores in STAR and non-STAR schools, illustrating this

mild selection bias.

10



Figure 2.1: Total math scaled scores among STAR schools and non-STAR schools.

2.4 Observational Comparison Schools

Twenty-one non-participating schools, matched to STAR schools across 13 STAR school dis-

tricts, formed a comparison group. These schools did not implement class-size interventions

but administered identical achievement tests in grades 1–3 during the study period. Initial

comparisons on academic achievement measured in second grade, prior to the experiment’s

start, confirmed that STAR and comparison schools were closely aligned in performance

[WJB90, Table I-4]. However, unlike the randomized classroom assignments used in STAR

schools, the comparison schools employed traditional, often non-random methods. Differ-

ences between these assignment strategies were analyzed by Zaharias, Achilles, and Cain

[ZAC95].
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2.5 Experimental Design

The STAR experiment followed one student cohort over four years, beginning with randomly

assigning students entering kindergarten (1985) or first grade (1986) into three conditions:

1. Small class (13–17 students)

2. Regular class (22–25 students)

3. Regular class with a full-time teacher aide (22–25 students)

Initially, 128 small classes, 101 regular classes, and 99 regular-aide classes were formed.

Kindergarten was not compulsory at the time, so many students entered in first grade.

Students remained in their assigned condition throughout the project. Overall, 26.6% par-

ticipated all four years, while another 22.0% joined in first grade and stayed through grade

three.

2.6 Binary Treatment Simplification

There were initially three treatment levels, as described above: small class, regular class, and

regular class with a teacher aide. After the kindergarten year showed negligible differences

between regular classes and aide-assisted regular classes, these two groups were combined

randomly into a single “regular” class type. About half of the students initially in regular

classes were randomly moved to teacher-aide classes for subsequent years, and vice versa.

No students were intentionally moved into or out of small classes.

2.7 Data

This dissertation employs the primary STAR cohort as experimental data and matched non-

project schools as observational data. Unfortunately, the observational dataset contained far
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fewer covariates. Therefore, the analyses in this dissertation focuses on second-grade total

math scaled scores as the outcome variable M , class size as the treatment S, and first-grade

total math scaled scores as the sole confounding variable F . This is diagrammed in Figure

2.2.

S M

F

Figure 2.2: DAG for class size (S), first grade math score (F ), and second grade math score

(M).

Since the STAR consortium found no achievement differences between regular and teacher-

aide classes, as described above, these two class types were randomly combined. Therefore,

ternary treatment became binary.

Total math scale scores from the Stanford Achievement Test (SAT) ranged from 422

to 676. Those were discretized into binary and quaternary values. The specific cut points

are shown in Table 2.1. First grade math scores were only transformed with quaternary

discretization, while second grade math scores were transformed with both binary and qua-

ternary discretizations. This allowed comparing binary results with the non-binary ordinal

outcome methods presented in Chapter 9.

Range Quaternary Discretization Binary Discretization

422 to 487 0
0

488 to 550 1

551 to 613 2
1

614 to 676 3

Table 2.1: SAT math scale score discretization
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One simplifying assumption was made due to the very small number of students in small

classes. After removing problematic rows (primarily missing fields for second grade class

size, first grade math score, and second grade math score), there were only 15 students in

the comparison schools (observational data) in small classrooms during second grade. The

assumption is, on average, that all students can be combined, from both observational and

experimental datasets, to create the conditional probability table (CPT) of first grade math

scores. This eliminated the problem of only 15 students in small classrooms. Although this

assumption is significant, the observational data closely aligns with experimental data for

this CPT, suggesting the impact on the analysis would be minimal. The DAG in Figure 2.2

also aligns with this strategy. The resulting distribution of grade 1 math scores is shown in

Table 2.2 and Figure 2.3.

Grade 1 Math Score (F ) P (F )

0 0.1011

1 0.5303

2 0.3375

3 0.0311

Table 2.2: CPT for F : grade 1 math scores.

As a comparison, Table 2.3 and Figure 2.4 show the distribution of math scores among

second graders. The distributions between first and second graders differ notably, with

second graders performing considerably better on average. This increase was seen in both

the limited data among the non-STAR project comparison schools and the STAR schools.

Thus, the experimental intervention itself appeared not to substantially affect student scores.

Participation in the study, even as a comparison school, may have been a factor.

Due to the small number of students in small class sizes in the comparison non-STAR

schools, there were no students in small classes that had either the lowest or the highest

quarter (according to the discretization in Table 2.1) of math scores in first grade. Table 2.4
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Figure 2.3: Histogram of discretized grade 1 math scores.

and Figure 2.5 show this.

To overcome this issue, an additional assumption was made. For non-STAR schools,

class sizes were given for each class instead of class type (small or regular). Originally, I

took the same ranges of students as the STAR schools to categorize students into small (13

to 17 students) or regular (22 to 25 students) size classes. Increasing the upper limit for

small class size from 17 to 20 produced a more reasonable distribution of students. Like the

assumption above about combining observational and experimental first grade math scores,

this had negligible effect on the small number of students with grade 1 math scores of 1 and

2. Therefore, this appears to be a reasonable assumption. The updated CPT and chart are

in Table 2.5 and Figure 2.6.

For the STAR schools, the distribution of second grade class sizes did not depend on first

grade math scores at all. This is because the STAR school data is experimental. However,

randomization did not produce evenly sized groups. Table 2.6 and Figure 2.7 show the
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Grade 2 Math Score (M) P (M)

0 0.0083

1 0.2155

2 0.5209

3 0.2330

Table 2.3: Distribution of grade 2 math scores.

Grade 1 Math (F ) P (S = regular) P (S = small)

0 1.0000 0.0000

1 0.9594 0.0406

2 0.9622 0.0378

3 1.0000 0.0000

Table 2.4: Original CPT for S: proportion of students per grade 2 class size in non-STAR

schools.

distribution.

This dissertation will require causal effect probabilities of the form P (Y = y|do(X = x)).

Tables 2.7 and 2.8 and Figures 2.8 and 2.9 show the distribution of STAR school second grade

math scores (quaternary and binary discretized) by which class size they were randomly

assigned to. This corresponds to the probability P (M = m|do(S = s)).

Tables 2.9, 2.10, 2.11, and 2.12 and Figures 2.10, 2.11, 2.12, and 2.13 represent the

quaternary and binary discretized second grade math scores for STAR schools (experimental

data) and non-STAR schools (observational data).
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Figure 2.4: Histogram of discretized grade 2 math scores.

Grade 1 Math (F ) P (S = regular) P (S = small)

0 0.8846 0.1154

1 0.7875 0.2125

2 0.8128 0.1872

3 0.8750 0.1250

Table 2.5: CPT for S: proportion of students per grade 2 class size in non-STAR schools

after increasing upper limit of class size for small classes from 17 to 20.

Grade 2 Class Size (S) P (S)

regular 0.6778

small 0.3222

Table 2.6: Experimental distribution for S: proportion of students per grade 2 class size in

STAR schools.
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Figure 2.5: Stacked histogram of proportion of students per original grade 2 class size in

non-STAR schools.

Grade 2 Class Type (S) P (0) P (1) P (2) P (3)

regular 0.0103 0.2437 0.5306 0.2154

small 0.0062 0.2023 0.5290 0.2624

Table 2.7: Experimental CPT for M : proportion of students with particular grade 2 math

scores (quaternary discretized) per grade 2 class size in STAR schools.

Grade 2 Class Type (S) P (0) P (1)

regular 0.2540 0.7460

small 0.2086 0.7914

Table 2.8: Experimental CPT for M : proportion of students with particular grade 2 math

scores (binary discretized) per grade 2 class size in STAR schools.
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Figure 2.6: Stacked histogram of proportion of students per grade 2 class size in non-STAR

schools.

Grade 1 Math (F ) Grade 2 Class (S) P (0) P (1) P (2) P (3)

0
regular 0.0714 0.6905 0.2302 0.0079

small 0.0531 0.6726 0.2743 0.0000

1
regular 0.0029 0.2793 0.6227 0.0950

small 0.0039 0.2584 0.6382 0.0995

2
regular 0.0000 0.0178 0.5058 0.4764

small 0.0000 0.0333 0.4549 0.5118

3
regular 0.0000 0.0000 0.1833 0.8167

small 0.0000 0.0000 0.1765 0.8235

Table 2.9: Experimental CPT for M : proportion of students with particular grade 2 math

scores (quaternary discretized) per grade 1 math score and grade 2 class size in STAR schools.
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Figure 2.7: Histogram of students in grade 2 class sizes in STAR schools.

Grade 1 Math (F ) Grade 2 Class (S) P (0) P (1)

0
regular 0.7619 0.2381

small 0.7257 0.2743

1
regular 0.2822 0.7178

small 0.2623 0.7377

2
regular 0.0178 0.9822

small 0.0333 0.9667

3
regular 0.0000 1.0000

small 0.0000 1.0000

Table 2.10: Experimental CPT for M : proportion of students with particular grade 2 math

scores (binary discretized) per grade 1 math score and grade 2 class size in STAR schools.
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Figure 2.8: Side-by-side histogram of grade 2 math scores (quaternary discretized) by grade

1 score and class type in STAR schools.

Grade 1 Math (F ) Grade 2 Class (S) P (0) P (1) P (2) P (3)

0
regular 0.0000 0.4091 0.5909 0.0000

small 0.0000 0.6667 0.3333 0.0000

1
regular 0.0054 0.1075 0.6774 0.2097

small 0.0000 0.3137 0.5686 0.1176

2
regular 0.0000 0.0636 0.4624 0.4740

small 0.0000 0.0789 0.5526 0.3684

3
regular 0.0000 0.0556 0.2222 0.7222

small 0.0000 0.0000 0.0000 1.0000

Table 2.11: Observational CPT for M : proportion of students with particular grade 2 math

scores (quaternary discretized) per grade 1 math score and grade 2 class size in non-STAR

schools.
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Figure 2.9: Side-by-side histogram of grade 2 math scores (binary discretized) by grade 1

score and class type in STAR schools.

Grade 1 Math (F ) Grade 2 Class (S) P (0) P (1)

0
regular 0.4091 0.5909

small 0.6667 0.3333

1
regular 0.1129 0.8871

small 0.3137 0.6863

2
regular 0.0636 0.9364

small 0.0789 0.9211

3
regular 0.0556 0.9444

small 0.0000 1.0000

Table 2.12: Observational CPT for M : proportion of students with particular grade 2 math

scores (binary discretized) per grade 1 math score and grade 2 class size in non-STAR schools.
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Figure 2.10: Stacked histogram of grade 2 math scores (quaternary discretized) by grade 1

score and class type in STAR schools.
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Figure 2.11: Stacked histogram of grade 2 math scores (binary discretized) by grade 1 score

and class type in STAR schools.
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Figure 2.12: Stacked histogram of grade 2 math scores (quaternary discretized) by grade 1

score and class type in non-STAR schools.
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Figure 2.13: Stacked histogram of grade 2 math scores (binary discretized) by grade 1 score

and class type in non-STAR schools.
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CHAPTER 3

Probabilities of Causation

3.1 Introduction

This chapter examines the distinction between personalized and population-based decision-

making and demonstrates the advantages of the former and how it can be achieved.

Formally, personalized decision making optimizes the Individual Treatment Effect (ITE)

in Definition 3.1.1.

Definition 3.1.1 (Individual Treatment Effect (ITE)).

ITE(u) ≜ Y (1, u)− Y (0, u) (3.1)

where Y (x, u) stands for the outcome that individual u would attain had decision x ∈ {1, 0}

been taken.

The formal definitions of ITE (or Individual Causal Effect (ICE)), based on structural

causal models, are given in [Pea09, §3]. However, these definitions are not necessary for

understanding the Probabilities of Causation (PoCs) in this dissertation. A “unit” means

any entity (e.g., a patient, a customer, or an agricultural plot) whose behavior affects deci-

sions. Beyond its measured features C(u), u contains all characteristics of an individual u,

measured and unmeasured, known and unknown, sufficiently detailed to make the response

Y a deterministic function of the treatment. In contrast, population-based decision making

optimizes the CATE in Definition 3.1.2.
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Definition 3.1.2 (Conditional Average Treatment Effect (CATE)).

CATE(u) ≜ E[Y (1, u′)− Y (0, u′)|C(u′) = C(u)] (3.2)

where C(u) represents observed pretreatment characteristics of individual u, and the average

is taken over all units u′ that share these characteristics.

Theoretically, CATE can be viewed as a function of c, the vector of pretreatment char-

acteristics observed on individual u, since CATE will be equal for two different u and u′

such that C(u) = C(u′) = c. However, in order to emphasize the distinction between u,

the individual for whom a decision is contemplated, and the individuals u′ in the study,

CATE(u) = CATE(C(u) = c) is explicitly written. Clearly, an individual u with character-

istics C(u) = c obtains a unique CATE measure, given by Equation (3.2).

This chapter shows that the two objective functions, ITE and CATE, lead to different de-

cision strategies and that, although ITE(u) is in general not identifiable, informative bounds

on the probability distribution of ITE(u), for any given individual u, can nevertheless be ob-

tained from aggregate data by combining experimental and observational studies. Formally,

bounds will be derived and explained for the proportion of individuals having particular

values for ITE (e.g., P (ITE(u) = t)). When Y is binary, bounds will be analyzed for the

following values:

• P (ITE(u) = 1) = P (Y (1, u) > Y (0, u)): the proportion of individuals benefiting from

treatment,

• P (ITE(u) = −1) = P (Y (1, u) < P (Y (0, u)): the proportion of individuals harmed by

treatment,

• P (ITE(u) = −1) = P (Y (1, u) = P (Y (0, u)): the proportion of individuals either

immune from or doomed regardless of treatment.

In this way, the information usually provided by the RCT, ATE(u), is supplemented with

two additional parameters that may be crucial for individual decision making. Notably, these
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aggregate data allow us to improve decision making at the individual level. These bounds

can improve decisions that would otherwise be taken using CATE(u) alone as an objective

function.

Both ITE(u) and CATE(u) are properties of an individual u and are defined in terms of

counterfactual expressions. However, ITE(u) is in general non-identifiable, while CATE(u)

is a do-expression:

CATE(u) = E[Y |do(X = 1), C(u)]− E[Y |do(X = 0), C(u)]. (3.3)

Equation (3.3) is estimable directly from experimental data without invoking counterfactual

assumptions. Note that the words “individual” and “personalized” used in this chapter refer

to the individual for whom a decision is contemplated and, although ITE(u) is the same for

all individuals u′ sharing measured characteristics C(u) with u, decisions should vary from u

to u′ depending on their distinct, often unmeasured, personal utilities and beliefs. The aim

here is to inform decision makers of the likely behavior of a randomly chosen individual in

the population, so as to match decisions to the distinct preferences and beliefs of individuals

u and u′.

For conceptual clarity, well-designed RCTs and observational studies are assumed through-

out this dissertation. As such, RCTs are considered as having 100% compliance and no selec-

tion bias or any other imperfections that often plague them (e.g., placebo effects). Similarly,

observational studies are assumed to provide unbiased estimates of the statistical associations

or conditional expectations they are designed to assess.

Trialists are usually suspicious of observational studies because they are either bias-prone

or rely on subjective assumptions of “no confounding,” which are hardly testable. There are

two reasons not to worry. First, this analysis makes no modeling assumptions whatsoever

when interpreting observational studies, and second, the presence of confounding in the

observational studies actually helps narrow bounds on PoCs.
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3.2 Qualitative Example

The target of analysis in this chapter and throughout this dissertation is an individual

response to a given treatment, namely, how an individual would react if given treatment and

if denied treatment. Since no individual can be subjected to both treatment and its denial,

its response function must be inferred from population data, originating from one or several

studies. Therefore, the question is, “To what degree can population data inform us about

an individual response?”

First, there are two conceptual hurdles. First, why should population data provide any in-

formation whatsoever on the individual response, and second, why should non-experimental

data add any information (regarding individual response) to what we can learn with an RCT

alone? The next simple example will demonstrate both points.

An RCT is conducted and no difference between treatment (drug) and control (placebo)

is found. Let us say 10% in both treatment and control groups die, while the rest (90%)

survive. This makes us conclude that the drug is ineffective, but also leaves us uncertain

between a range of competing models. Let us just consider the following two models:

• Model A: the drug has no effect whatsoever on any individual and

• Model B: the drug saves 10% of the population and kills another 10%.

From a policy maker viewpoint, the two models may be deemed equivalent; the drug

has zero average effect on the target population. But from an individual viewpoint, the two

models differ substantially in the sets of risks and opportunities they offer. According to A,

the drug is useless but safe. According to B, however, the drug may be deemed dangerous

by some and a life-saver by others.

Greenland and Robins [GR86] named four types of individuals with binary treatment

and outcome: doomed, exposure causative, exposure preventative, and immune. To be more

in line with the research presented in this dissertation and the expansions on these PoCs
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in Chapter 9, I have named the probabilities corresponding to these four response types as

follows:

• P (benefit): probability that treatment will benefit an individual,

• P (harm): probability that treatment will harm an individual,

• P (immunity): probability that an individual is immune, regardless of treatment,

• P (doom): probability that an individual is doomed, regardless of treatment.

Models A and B can now be classified according to these PoCs, as shown in Table 3.1.

Model A Model B

P (benefit) 0 0.1

P (harm) 0 0.1

P (immunity) 0.9 0.8

P (doom) 0.1 0

Table 3.1: PoCs for models A and B

To see how attitudes about counterfactual effects may emerge, assume, for the sake of

argument, that the drug also provides temporary pain relief. Model A would be deemed

desirable and safe by all, whereas model B will scare away those who do not urgently

need the pain relief, while offering a glimpse of hope to those whose suffering has become

unbearable and who would be ready to risk death for the chance (10%) of recovery (hoping,

of course, they are among the lucky beneficiaries).

Another reason for diverse individual decisions in the face of B is individual beliefs. For

example, a person may believe the drug will not be harmful to them even though it has a

10% probability of harm in the population at large. Maybe a family member took the drug

and recovered. In that case, the drug certainly was not harmful to that family member. This
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person would choose to take the drug under B (the drug saves 10% of the population and

kills another 10%) and reject it under A because, assuming immunity, there are still factors

of pain, expense, and discomfort to consider. A different person, whose cousin happened to

die after taking the drug, may not have confidence in natural immunity and will choose to

refuse the drug under B.

It should now be clear that individuals can have unique preferences for how they weigh

the probability of benefit and the probability of harm. They may additionally place weights

on the probability of being doomed (death, regardless of taking the drug or not) and the

probability of being immune (recovery, regardless of taking the drug or not). Li and Pearl

[LP19] provide bounds, or point estimates when certain assumptions can be made, on a linear

combination of the probabilities of benefit, harm, immunity, and doom. They demonstrate

how the ATE is a sub-optimal criterion for decision making in light of the weights pertaining

to individual preferences. Mueller and Pearl [MP20] supply an example of this weighting of

probability of benefit and probability of harm in assessing which Covid-19 patients are in

greatest need of treatment.

This simple example will also serve to illustrate the crucial role of observational studies.

Supplementing the RCT with an observational study on the same population (conducted,

for example, by an independent survey of patients who have the option of taking or avoid-

ing the drug) would allow a determination between the two models, totally changing the

understanding of what risks await an individual taking the drug.

Consider an extreme case where the observational study shows 100% survival in both

drug-choosing and drug-avoiding patients, as if each patient knew in advance where danger

lies and managed to avoid it. Such a finding, though extreme and unlikely, immediately rules

out A which claims no treatment effect on any individual. This is because the mere fact that

patients succeed 100% of the time to avoid harm where harm does exist (revealed through

the 10% death in the randomized trial) means that choice makes a difference, contrary to

A’s claim that choice makes no difference.
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The same argument applies when the probability of survival among option-having indi-

viduals is not precisely 100% but simply higher (or lower) than the probability of survival

in the RCT. Using the RCT study alone, in contrast, we were unable to rule out A, or even

to distinguish A from B.

Consider another edge case where B, rather than A, is ruled out as impossible. Assume

the observational study informs us that all those who chose the drug died and all who avoided

the drug survived. It seems that drug-choosers were unfortunately bad decision makers

while drug-avoiders knew precisely what was good for them. This is perfectly feasible, one

possibility is that 10% of people who would be doomed regardless of their drug choice chose

to take the drug (not knowing that they are doomed anyway and could have saved themselves

the cost, pain, and trouble) and the remaining 90% of people who are immune regardless

of their drug choice chose not to take the drug (smart). However, this also tells us that no

one can be cured by the drug, contrary to the assertion made by B, that the drug cures

10% and kills 10%. To be cured, a person must survive if treated and die if not treated.

But none of the drug-choosers could have been cured, because they all died, and none of the

drug avoiders could have been cured, because they all survived (they might have survived

had they taken the drug, but then it would not have been the drug that cured them). Thus,

B cannot explain these observational results, and must be ruled out.

Although B tells an individual that she has a 10% chance of being killed by the drug and

a 10% chance of being saved by the drug, she cannot know which outcome pertains to her

specifically. All she knows is that 10% of people with her characteristics are killed by the

drug and another 10% will be cured due to the drug. This is information that is suppressed

by the RCT which does not distinguish between A and B.

Now that it has been demonstrated conceptually how certain combinations of obser-

vational and experimental data can provide information on individual behavior that each

study alone cannot, the next step is a more realistic motivating example which, based on

theoretical bounds derived in [TP00], establishes individual behavior for any combination of
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observational and experimental data and, moreover, demonstrates critical decision making

ramifications of the information obtained. Note that the example below happened to be

identifiable due to particular combinations of data, though, in general, the data will not

permit point estimates of individual causal effects and the bounds will not necessarily be

narrow. This motivating example is merely an extreme case concocted to explain the origin

of the bound-narrowing effect.

3.3 Motivating Numerical Example

Consider the effect of a drug on two subpopulations, males and females. Unlike the extreme

case considered in Section 3.2, the drug is found to be somewhat effective for both males and

females and, in addition, deaths are found to occur in the observational study as well. Al-

though men and women are totally indistinguishable in the RCT study, adding observational

data proves men to react markedly different than women, calling for two different treatment

policies in the two groups. Whereas a woman has a 28% chance of benefiting from the drug

and no danger at all of being harmed by it, a man has a 49% chance of benefiting from it

and as much as a 21% chance of dying because of it.

To cast the story in a realistic setting, imagine the testing of a new drug, aimed to

help patients suffering from a deadly disease. An RCT is conducted to evaluate the efficacy

of the drug and it is found to be 28% effective in both males and females; in other words,

CATE(male) = CATE(female) = 0.28. To simplify matters, assume each experimental study

data as an ideal RCT, with 100% compliance and no selection bias or any other biases that

often plague RCTs.

The RCT tells us that there was a 28% improvement, on average, in taking the drug

compared to not taking the drug. This was the case among both females and males:

CATE(female) = CATE(male) = 0.28, where do(drug) and do(no-drug) are the treatment

and control arms in the RCT. It thus appears reasonable to conclude that the drug has a
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Female Survivals Male Survivals

do(drug) 489/1000 (49%) 490/1000 (49%)

do(no drug) 210/1000 (21%) 210/1000 (21%)

CATE 28% 28%

Table 3.2: Female versus male CATE

net remedial effect on some patients and that every patient, be it male or female, should be

advised to take the drug and benefit from its promise of increasing one’s chances of recovery

by 28%.

At this point, the drug manufacturer ventured to find out to what degree people actually

buy the approved drug, following its recommended usage. A market survey was conducted

(observational study) and revealed that only 70% of men and 70% of women actually chose

to take the drug; problems with side effects and rumors of unexpected deaths may have

caused the other 30% to avoid it. As with the experimental studies, observational studies

are assumed to provide unbiased estimates for the conditional probabilities involved. Note

that observational studies provide an easier arena for obtaining representative samples of

the target population, partly due to the ease of recruiting units and partly due to their

non-invasive nature. A careful examination of the observational study has further revealed

substantial differences in survival rates of men and women who chose to use the drug (shown

in Tables 3.3 and 3.4). The rate of recovery among drug-choosing men was exactly the

same as that among the drug-avoiding men (70% for each), but the rate of recovery among

drug-choosing women was 43% lower than among drug-avoiding women (0.27 versus 0.70,

in Table 3.3). It appears as though many women who chose the drug were already in an

advanced stage of the disease, which may account for their low recovery rate of 27%.

At this point, having data from both experimental and observational studies we can

estimate the probability P (ITE(u) > 0|C(u) = c) = P (benefit|C(u) = c) for both a typical

man and a typical woman. Quantitative analysis shows (see Section 3.5) that, with the data
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Survivals Deaths Total

Experimental
do(drug) 489 (49%) 511 (51%) 1,000 (50%)

do(no drug) 210 (21%) 790 (79%) 1,000 (50%)

Observational
drug 378 (27%) 1,022 (73%) 1,400 (70%)

no drug 420 (70%) 180 (30%) 600 (30%)

Table 3.3: Female survival and recovery data

Survivals Deaths Total

Experimental
do(drug) 490 (49%) 510 (51%) 1,000 (50%)

do(no drug) 210 (21%) 790 (79%) 1,000 (50%)

Observational
drug 980 (70%) 420 (30%) 1,400 (70%)

no drug 420 (70%) 180 (30%) 600 (30%)

Table 3.4: Male survival and recovery data

above, the drug affects men markedly differently from the way it affects women. Whereas a

woman has a 28% chance of benefiting from the drug and no danger at all of being harmed

by it, a man has a 49% chance of benefiting from it and as much as a 21% chance of dying

because of it — a serious cause for concern. Note that based on the experimental data alone

(Table 3.2), no difference at all can be noticed between men and women.

The ramifications of these findings on personal decision making are broad. First, they

tell us that the drug is not as safe as the RCT would have us believe; it may cause death

in a sizable fraction of patients. Second, they tell us that a woman is totally clear of such

dangers, and should have no hesitation to take the drug, unlike a man, who faces a decision;

a 21% chance of being harmed by the drug is cause for concern. Physicians, likewise, should

be aware of the risks involved before recommending the drug to a man. Third, the data tell

policy makers what the overall societal benefit would be if the drug is administered to women

only; 28% of the drug-takers would survive who would otherwise die. Finally, knowing the
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relative sizes of the benefiting versus harmed subpopulations opens the door to finding the

mechanisms responsible for the differences, as well as to identifying measurable markers that

characterize those subpopulations.

Additional measured features, other than gender, can be leveraged, such as family history,

a genetic marker, or a side-effect, and checked whether they shrink the sizes of susceptible

subpopulations. The results would be a set of features that approximate responses at the

individual level. Note that absent observational data and a calculus for combining them

with the RCT data, we would not be able to identify such informative features. A feature

like gender would be deemed irrelevant, since men and women were indistinguishable in the

RCT studies.

The ability to identify relevant informative features can be leveraged to amplify the

potential benefits of the drug. For example, if we identify a marker that characterizes

men who would die only if they take the drug and prevent those patients from taking the

drug, the drug would cure 62% of male patients who would be allowed to use it. This is

because we would not administer the drug to the 21% who would have been killed by the

drug. Those patients will now survive, so a total of 70% of patients will be cured because of

this combination of marker identification and drug administration. This unveils an enormous

potential of the drug at hand, which was totally concealed by the 28% effectiveness estimated

in the RCT studies.

3.4 Notation

The following notational conventions will be adopted for the remainder of this dissertation

until an expansion is necessary for Chapter 9 or when otherwise specified. Let random

variable X represent a binary treatment, with x = true and x′ = false. Similarly, let the

random variable Y represent binary outcome, with y = true and y′ = false. In clinical study

settings, the analogous might be assigned: x = treated, x′ = untreated, y = recovered, and
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y′ = unrecovered.

The counterfactual notation used in Pearl’s Causality [Pea09] will be adopted. Yx = y

denotes the counterfactual sentence, “Variable Y would have the value y, had X been x.”

This event is further simplified with the notation yx, such that P (Yx = y) ≜ P (yx). There

are four probabilities of this form with binary treatment and binary outcome: P (yx), P (yx′),

P (y′x), and P (y′x′).

3.5 How the Results Were Obtained

Let us denote the outcome variable Y as recovery and the treatment variable X as treated.

The causal effects for treatment and control groups, P (yx|Gender) and P (yx′ |Gender), were

the same. No differences were noted between males and females. Note that P (yx|female) was

rounded up from 48.9% to 49%. The 0.001 difference between P (yx|female) and P (yx|male)

wasn’t necessary, but was constructed to allow for clean point estimates.

In addition to the above RCT, an observational study (survey) was conducted on the

same population. Let us denote P (y|x,Gender) and P (y|x′,Gender) as recovery among the

drug-choosers and recovery among the drug-avoiders, respectively.

With this notation at hand, let us define the probability of benefit.

Definition 3.5.1 (Probablity of Benefit (P (benefit))).

P (benefit) ≜ P (yx, y
′
x′) (3.4)

The probability P (benefit) will be computed from the following data sources: P (yx),

P (yx′), P (y|x), P (y|x′), and P (x). The first two denote the data obtained from the RCT

and the last three, data obtained from the survey. Non-recovery is represented by y′, so y′x′

is non-recovery among the RCT control group. Equation (3.4) should be interpreted as the

probability that an individual would both recover if assigned to the RCT treatment arm and

die if assigned to control. Tian and Pearl [TP00] called P (benefit), “Probability of Necessity
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and Sufficiency” (PNS).

The results of the observational and experimental studies are not independent of each

other since, barring selection bias, participants in the two studies are selected from the same

overall population, ideally consisting of the eventual users of the drug. At the individual

level, the connection between behaviors in the two studies relies on an assumption known

as consistency [Pea09, Pea10], asserting that an individual’s response to treatment depends

entirely on biological factors, unaffected by the settings in which treatment is chosen. In

other words, the outcome of a person choosing the drug would be the same had this person

been assigned to the treatment group in an RCT study. Similarly, if we observe someone

avoiding the drug, their outcome is the same as if they were in the control group of our RCT.

Consistency is a property imposed at the individual level, often written as

Y = X · Y (1) + (1−X) · Y (0)

for binary X and Y. Rubin [Rub74] considered consistency to be an assumption in SUTVA,

which defines the potential outcome (PO) framework. Pearl [Pea10] considered consistency

to be a theorem of Structural Equation Models (SCMs), a violation of which reflects imper-

fections (e.g., placebo effects) in RCT practices.

In medical practices, clinical experts rarely rely on the assumption of biological equiva-

lence. The very participation in a study tends to create fears and expectations that affect

patients’ response to treatment. Moreover, selection bias [BTP14] is a major problem in

clinical trials, since subjects are recruited by stringent health criteria and, unlike those in

observational studies, they must undergo consent procedures. For these two reasons, RCT

practitioners compare only patients that undergo the same recruitment procedure and, ac-

cordingly, report only the difference P (yx) − P (yx′). More elaborate procedures [BTP14]

must be deployed to overcome both selection bias and placebo effects when experimental

and observational studies are to be combined.
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Consistency implies:

P (yx|x) = P (y|x), P (yx′ |x′) = P (y|x′). (3.5)

In words, the probability that a drug-chooser would recover in the treatment arm of the

RCT, P (yx|x), is the same as the probability of recovery in the observational study, P (y|x).

Based on this assumption, and leveraging both experimental and observational data,

Tian and Pearl [TP00] derived the following tight bounds on the probability of benefit, as

defined in (3.4):

max



0,

P (yx)− P (yx′),

P (y)− P (yx′),

P (yx)− P (y)


⩽ P (benefit) ⩽ min



P (yx),

P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′)

+ P (x, y′) + P (x′, y)


. (3.6)

Here P (y′x′) is equivalent to 1−P (yx′), namely the probability of death in the control group.

The same bounds hold for any subpopulation, say males or females, if every term in (3.6) is

conditioned on the appropriate class.

Applying these expressions to the female data from Table 3.3 gives the following bounds

on P (benefit|female):

max{0, 0.279, 0.09, 0.189} ⩽ P (benefit|female) ⩽ min{0.489, 0.79, 0.279, 1},

0.279 ⩽ P (benefit|female) ⩽ 0.279. (3.7)

Similarly, for men we get:

max{0, 0.28, 0.49,−0.21} ⩽ P (benefit|male) ⩽ min{0.49, 0.79, 0.58, 0.7},

0.49 ⩽ P (benefit|male) ⩽ 0.49. (3.8)

40



Thus, the bounds for both females and males, in (3.7) and (3.8), collapse to point esti-

mates:

P (benefit|female) = 0.279,

P (benefit|male) = 0.49.

We aren’t always so fortunate to have a complete set of observational and experimental

data at our disposal. When some data is absent, we are allowed to discard arguments to

max or min in (3.6) that depend on that data. For example, if we lack all experimental

data, the only applicable lower bound in (3.6) is 0 and the only applicable upper bound is

P (x, y) + P (x′, y′):

0 ⩽ P (benefit) ⩽ P (x, y) + P (x′, y′). (3.9)

Applying these observational data only bounds to males and females yields:

0 ⩽ P (benefit|female) ⩽ 0.279,

0 ⩽ P (benefit|male) ⩽ 0.58.

Naturally, these are far more loose than the point estimates when combined experimental

and observational data is fully available. Let’s similarly examine what can be computed with

purely experimental data. Without observational data, only the first two arguments to max

of the lower bound and min of the upper bound of P (benefit) in (3.6) are applicable:

max{0, P (yx)− P (yx′)} ⩽ P (benefit) ⩽ min{P (yx), P (y′x′)}. (3.10)

Applying these bounds (using only experimental data) to males and females yields:

0.279 ⩽ P (benefit|female) ⩽ 0.489,

0.28 ⩽ P (benefit|male) ⩽ 0.49.

Again, these are fairly loose bounds, especially when compared to the point estimates ob-

tained with combined data. Notice that the overlap between the female bounds using ob-

servational data, 0 ⩽ P (benefit|female) ⩽ 0.279, and the female bounds using experimental
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data, 0.279 ⩽ P (benefit|female) ⩽ 0.489 is the point estimate P (benefit|female) = 0.279.

The more comprehensive Tian-Pearl bounds formula (3.6) wasn’t necessary. However, the

intersection of the male bounds using observational data, 0 ⩽ P (benefit|male) ⩽ 0.58, and

the male bounds using experimental data, 0.28 ⩽ P (benefit|male) ⩽ 0.49, does not provide

us with narrower bounds beyond what the experimental data provides. For males, the com-

prehensive Tian-Pearl bounds in (3.6) was necessary for narrower bounds (in this case, a

point estimate).

Having seen this mechanism of combining observational and experimental data in (3.6)

work so well, it is natural to ask, “what’s behind this?” The intuition comes from the fact

that observational data incorporates individuals’ whims, and whims are proxies for hidden

factors that may affect that individual’s response to treatments. Such “confounding” factors

are usually problematic in causal inference, since they lead to biased conclusions, sometimes

completely reversing a treatment’s effect [Pea13]. Confounding then needs to be adjusted

for. However, here confounding helps us, exposing the underlying mechanisms its associated

whims and desires are a proxy for.

Finally, as noted in Section 3.3, knowing the relative sizes of the benefiting versus harmed

subpopulations demands investment in finding mechanisms responsible for the differences as

well as characterizations of those subpopulations. For example, women above a certain age

might be affected differently by the drug, which could be detected by investigating how

age affects the bounds on the individual response. Such characteristics can potentially be

narrowed repeatedly until the drug’s efficacy can be predicted for an individual with certainty

or the underlying mechanisms of the drug can be fully understood.

None of this was possible with only the RCT. Yet, remarkably, an observational study,

however sloppy and uncontrolled, provides a deeper perspective on a treatment’s effective-

ness. It incorporates individuals’ whims and desires that govern behavior under free-choice

settings. And, since such whims and desires are often proxies for factors that also affect

outcomes and treatments (i.e., confounders), we gain additional insight hidden by RCTs.
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3.6 STAR Real World Example

As a real world example, let us consider STAR project from Chapter 2 with binary discretized

outcomes. The experimental and observational probabilities are:

P (yx) = 0.7914 P (y′x) = 0.2086, (3.11)

P (yx′) = 0.7460 P (y′x′) = 0.2540, (3.12)

P (y|x) = 0.7789 P (y′|x) = 0.2211, (3.13)

P (y|x′) = 0.8947 P (y′|x′) = 0.1053, (3.14)

P (x) = 0.1925 P (x′) = 0.8075, (3.15)

where y is a high second grade math score, y′ is a low second grade math score, x is a small

second grade class size, and x′ is a regular second grade class size.

We can now estimate P (benefit) from Equation (3.6):

max{0, 0.0454, 0.1264,−0.081} ⩽ P (benefit) ⩽ min{0.7914, 0.254, 0.235, 0.8104},

0.1264 ⩽ P (benefit) ⩽ 0.235, (3.16)

where

P (y) = P (y|x) · P (x) + P (y|x′) · P (x)

≈ 0.8724.

It is interesting to note that the ATE for how small class sizes affect math performance is

P (yx)−P (yx′) = 0.0454. This is notably smaller than even the lower bound of P (benefit) in

Equation (3.16). The Tennessee State Department of Education may have determined that

small classes do have a small positive effect. However, they may have increased funding for

this project, and other states may have taken notice, had they known that at least 12.64%

up to almost a quarter of students benefited.

43



Furthermore, combining both experimental and observational data was necessary to show

how much better students benefited than the ATE indicated. By only taking into account

observational data, the lower bound of P (benefit) is 0:

0 ⩽ P (benefit) ⩽ 0.235.

While only taking into account experimental data, the lower bound is the ATE:

0.0454 ⩽ P (benefit) ⩽ 0.235.

3.7 Probability of Benefit Intuition

The Tian-Pearl bounds on P (benefit) in Equation (3.6) were discovered through linear pro-

gramming using constraints on observational probabilities, interventional probabilities, and

consistency. It is instructive to dissect these bounds and understand why they hold and

why they are tight. This will provide necessary background for the rest of this dissertation

where the tightness of these bounds is overcome with reasonable assumptions and then these

bounds are generalized beyond binary outcomes.

Lower Bound

The first two arguments to max in Equation (3.6) come from Fréchet Inequalities [MP19]

for two events:

max(0, P (A) + P (B)− 1) ⩽ P (A,B) ⩽ min(P (A), P (B)) (3.17)

where A = yx and B = y′x′ .

Let us now assume, w.l.o.g., that x represents treatment and x′ represents no treatment,

while y represents successful outcome and y′ represents unsuccessful outcome.

For the third argument to the max function, P (y)−P (yx′), we can imagine the individuals

represented by y and the individuals represented by yx′ . The outcome Y = y (successful
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outcome in an observational study) consists of some individuals who benefit from treatment

(the ones who chose treatment), some individuals who are harmed by treatment (the ones

who chose no treatment), and all individuals who have a positive outcome regardless of

treatment (the immune). The outcome Yx′ = y (successful outcome had no treatment

been administered) consists of all individuals who are harmed by treatment (yx′ , y′x) and

all individuals who have a positive outcome regardless of treatment (the immune, yx′ , yx).

Therefore,

P (y)− P (yx′) = P (some benefiters + some harmed + all immune)

− P (all harmed + all immune)

= P (some benefiters) + [P (some harmed)− P (all harmed)]

= (number ⩽ P (benefit)) + non-positive number

⩽ P (benefit).

Similarly, for the fourth argument to the max function

P (yx)− P (y) = P (all benefiters + all immune)

− P (some benefiters + some harmed + all immune)

= [P (all benefiters)− P (some benefiters)]− P (some harmed)

= number less than P (benefit)− non-negative number

⩽ P (benefit).

Upper Bound

Just like the lower bound, the first two arguments to min come from Fréchet Inequalities,

where A = yx and B = y′x′ .

For the third argument to the min function, P (x, y) + P (x′, y′), we can dissect these

probabilities similar to how we dissected the third argument to the max function. The

probability P (x, y) is the proportion of people who chose treatment and had a successful
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outcome, which includes benefiters who chose treatment and those immune to the negative

outcome who chose treatment. The probability P (x′, y′) is the proportion of people who

chose no treatment and had an unsuccessful outcome, which includes benefiters who chose

no treatment and those doomed to the negative outcome who chose no treatment. Note that

the other two possible scenarios, (x, y′) and (x′, y), cannot contain any benefiters. Therefore,

P (x, y) + P (x′, y′) = P (benefiters choosing treatment + some immune)

+ P (benefiters choosing no treatment + some harmed)

= P (benefit) + [P (some immune) + P (some harmed)] (3.18)

= P (benefit) + non-negative number

⩽ P (benefit).

For the fourth argument to the min function, P (yx)− P (yx′) + P (x, y′) + P (x′, y), let us

rewrite the expression to aid intuition:

P (benefit) ⩽ P (yx)− P (yx′) + P (x, y′) + P (x′, y)

= P (yx)− [1− P (y′x′)] + (1− [P (x, y) + P (x′, y′)])

= P (yx) + P (y′x′)− [P (x, y) + P (x′, y′)].

Now we can use the fact that yx represents all benefiters and all immune individuals, while y′x′

represents all benefiters and all doomed individuals. Combining that with Equation (3.18),

P (benefit) ⩽ P (benefiters + immune) + P (benefiters + doomed)

− P (benefiters + some immune + some harmed)

= P (benefit) + [P (some immune) + P (some harmed)]

= P (benefit) + non-negative number

⩽ P (benefit).
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3.8 ATE and Probabilities of Harm, Immunity, and Doom

It may seem like P (benefit) is the true probability that matters in decision making and

counterfactual reasoning. However, as will be shown in Chapters 6, 7, and 9, the probabilities

of harm, immunity, and doom are critical to more precise and narrow bounds on results of

interest and personalized decision making.

The bounds on these remaining PoCs can be derived through linear programming, alge-

braically, or qualitatively as above. However, there’s an easier approach. First, let us define

these remaining PoCs formally.

Definition 3.8.1 (Probablity of Harm (P (harm))).

P (harm) ≜ P (y′x, yx′) (3.19)

Definition 3.8.2 (Probablity of Immunity (P (immunity))).

P (immunity) ≜ P (yx, yx′) (3.20)

Definition 3.8.3 (Probablity of Doom (P (doom))).

P (doom) ≜ P (y′x, y
′
x′) (3.21)

The probabilities P (benefit) and P (harm) are related to the ATE:

ATE ≜ E[Yx − Yx′ ]

= P (yx)− P (yx′)

= [P (yx, yx′) + P (yx, y
′
x′)]− [P (yx′ , yx) + P (yx′ , y′x)]

= P (yx, yx′)− P (yx′ , y′x)

= P (benefit)− P (harm). (3.22)

Note that the second equality only applies when the outcome variable, Y , is binary. In that

case, it can always be transformed to take on the values Y = y = 1 and Y = y′ = 0. This

will significantly affect our derivations in Chapter 9, when we consider non-binary outcomes.
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Equation (3.22) helps in two ways. First, it tells us immediately that when no harm is

possible (i.e., P (harm) = 0), P (benefit) coincides with ATE, or, in other words, ATE con-

stitutes a point estimate of P (benefit). The concept of zero harm is known as monotonicity

and will play a significant role in Chapters 7 and 9. Second, it allows us to compute P (harm)

from P (benefit) and ATE in cases where monotonicity does not hold, as was the case for

men in the numeric example of Section 3.3.

For each of females and males, in the above example, their respective P (benefit) and

ATE are known. Therefore their probabilities of harm are known as well:

P (harm|female) = P (benefit|female)− CATE(female)

= 0.279− 0.279 = 0,

P (harm|male) = P (benefit|male)− CATE(male)

= 0.49− 0.28 = 0.21.

Deriving P (harm) involves simply subtracting P (yx)−P (yx′) from each argument of the

min and max functions of Equation (3.6):

max



0,

P (yx′)− P (yx),

P (y)− P (yx),

P (yx′)− P (y)


⩽ P (harm) ⩽ min



P (yx′),

P (y′x),

P (x, y′) + P (x′, y),

P (yx′)− P (yx)

+ P (x, y) + P (x′, y′)


. (3.23)

The astute reader may have noticed that simply swapping x for x′ and vice-versa from

Equation (3.6) would have sufficed.

The probabilities of immunity and doom can similarly be derived through their relation-

ships with P (benefit) and P (harm):

P (immunity) = P (yx)− P (benefit), (3.24)

P (doom) = P (y′x)− P (harm), (3.25)
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The bounds on P (immunity) and P (immunity) are then computed straightforwardly from

Equations (3.24) and (3.25):

max



0,

P (yx)− P (y′x′),

P (yx)− P (x, y)− P (x′, y′)

P (yx′)− P (x, y′)− P (x′, y)


⩽P (immunity) ⩽ min



P (yx),

P (yx′),

P (yx) + P (yx′)− P (y),

P (y)


,

(3.26)

max



0,

P (y′x)− P (yx′),

P (y′x)− P (x, y′)− P (x′, y)

P (y′x′)− P (x, y)− P (x′, y′)


⩽P (doom) ⩽ min



P (y′x),

P (y′x′),

P (y′x) + P (y′x′)− P (y′),

P (y′)


.

(3.27)

Notice that deriving P (doom) from P (immunity) and vice-versa simply requires swapping y

for y′ and vice-versa.

3.8.1 Visualization

I developed a visualization of P (harm) and the Tian-Pearl bounds of P (benefit) at https:

//learn.ci/bounds.html, shown in Figure 3.1, in order to allow users to gain an intuition

around bounds on probabilities of causation. Currently this visualization does not visualize

other PoCs, nor does it incorporate covariates, mediators, ATE, intention or treatment

evidence (presented in Chapter 6), or other mechanisms in upcoming chapters to narrow or

modify the bounds. Future visualizations should incorporate some, all of, or more than these

capabilities.

Note that the top left of the visualization, as well as the hover box upon clicking “Display

data when hovering”, displays P (Yx > Yx′) for P (benefit) instead of the P (yx, yx′) discussed

in this and the previous chapters. The reason for this alternative notation is to account for
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non-binary ordinal outcomes. This will be presented in Chapter 9. Currently this visualiza-

tion only supports binary treatment and outcomes. Future visualizations should support at

least non-binary ordinal outcomes. Visualizing non-binary ordinal treatments is a bit more

challenging and will require some clever user interface and graphical mechanisms.

An additional aspect of this visualization to notice is that there is a “Possible region”

window. Any points outside of this window are incompatible. This means that the interven-

tional probability values of P (yx) and P (yx′) that make up a coordinate outside the possible

region cannot occur while the observational probability values of P (x), P (y|x), and P (y|x′)

are set to their specific values through their associated sliders. For example, it is impossible

for the probability of success had treatment occurred to be 100% (P (yx) = 1) while nobody

succeeded among people who chose treatment (P (y|x) = 0) and everyone chose treatment

(P (x) = 1).

3.9 Summary

Most causal inference research has focused on the ATE, a population quantity that is es-

timable directly from RCTs, but provides no information on how individuals who respond

one way under treatment would respond under an alternative. Theoretical results in this

dissertation show that we can go beyond ATE, to estimate (or bound) the entire distribution

of individual causal effects. The bounds estimated can be quite narrow and allow us to make

accurate personalized decisions. In other words, a randomly chosen individual would be able

to assess how she would respond both to treatment and to its negation and, accordingly,

decide on a course of action that best fits both her personal preferences and societal needs.

The key to getting accurate information on individual causal effects lies in combining

observational and experimental data. While the mathematics of this combination was de-

veloped two decades ago [Pea99, TP00], this chapter explains the mechanism behind it,

and the rest of this dissertation demonstrates its implications in decision making situations
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and updates the math in various ways to get more precise bounds. Observational data

reveal individual idiosyncrasies that are masked in experimental settings. In other words,

the unobserved confounding factors that usually affect both treatments and outcomes in

observational studies are proxies for individual idiosyncrasies, often emanating from unique

experience, beliefs, or desires that also govern individual treatment effects.

Having established the mechanism of combining observational and experimental data,

this chapter demonstrated the added value of observational studies in situations where ex-

perimental data are available. For example, gaining access to observational data may flip

individual decisions from treatment to no-treatment and vice versa. From a policy-making

viewpoint, information obtained from observational studies may reveal significant hetero-

geneity among subpopulations (e.g., males versus females) that are totally indistinguishable

in experimental settings. Such information can identify which subpopulations are most sus-

ceptible to harmful treatment effects and thus assist in differential policy making. Finally,

identifying susceptible subpopulations opens the possibility of searching for the mechanisms

responsible for their differences as well as identifying new predictive markers associated with

those differences.

While these findings illuminate individual responses to treatment and may help individual

decision making, they apply equally to all individuals sharing u’s measured characteristics,

C(u). Conditioning on additional characteristics of the individual involved should provide,

of course, additional person-specific information. However, such additions are accompanied

with increased variance and must therefore be limited by the sample size available in each

stratum. The bounds in this chapter and the rest of this dissertation are not subject to this

limitation and takes full advantage of the large sample size usually available in observational

studies. These methods provide the key for next-generation personalized decision making.
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Figure 3.1: Visualization of P (harm) and the Tian-Pearl bounds of P (benefit).
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CHAPTER 4

Estimating Probabilities of Causation

4.1 Introduction

Most analyses in the past three decades have been concerned with estimating effects of causes

(EoC). Less emphasis has been placed on identifying causes of effects (CoE), despite their

critical importance in science, medicine, public policy, legal reasoning, AI, and epidemiology

[Pea15].

One reason for this imbalance is that without strong assumptions or knowledge of the

underlying functional form, we can generally only obtain bounds, as opposed to point es-

timates, on PoCs from statistical data. Unfortunately, bounds on these probabilities, such

as those in Equations (3.6), (3.23), (3.26), and (3.27), are often too loose to be informative,

assumptions necessary for point estimates are often too strong to be applicable, and the

functional form is seldom known. These issues may constitute some of the reasons CoE is

used and researched far less than EoC.

Learning functions of EoC has been greatly aided by significant advances in machine

learning. Huge quantities of very high-dimensional data can be processed for accurate EoC.

This enables us to create better policies for a population, such as whether a mRNA vaccine,

a protein subunit vaccine, or a vector vaccine is most effective for a particular subpopulation

of given age, sex, and other characteristics. However, these results can be surprisingly

misleading in the context of personal decision making. A randomized controlled trial (RCT)

doesn’t eliminate this deception. The following is an example of this scenario that was
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presented in [MP20].

Sadly, many regions in the world experienced shortages of SARS-CoV-2 vaccines during

times of high infection rates. Ideally, they would administer their limited supply to those

most in need. In order to do this, they would need to identify subpopulations with the

highest probabilities of both surviving if vaccinated and dying if unvaccinated.

A first step is to determine which characteristics or variables are highly correlated with

recovery. The analyses in [MP20] and Chapter 3 focused on gender. However, [MLP22]

used the following, more realistic, scenario of a machine learning algorithm discovering a

high correlation between age and recovery. We classified ages into two groups: under sixty

years old and over 59 years old. From an RCT, it was determined that older people have an

ATE of 20% (or 0.2), as 57% survive when vaccinated and 37% survive when unvaccinated.

These survival rates are artificially low for demonstration purposes, but we can imagine a

region with extremely high infection rates for a particularly virulent strain. The same clinical

study finds the ATE among younger people to be 10%, as 55% survive when vaccinated and

45% survive when unvaccinated. If just comparing ATEs, it would seem that the vaccine is

20%−10% = 10 percentage points more effective among older people. In this case we would

be comparing effects of the vaccine cause, an EoC analysis.

The quantity of interest we really care about is whether the vaccine is the cause of

survival, a CoE analysis. This quantity is P (benefit). We can then compare P (benefit) for

elders versus young. Traditional counterfactual analysis [TP00] yields bounds on P (benefit)

among the sixty-and-over group of 20% to 57%. This is a large range and it starts to become

clear that our true quantity of interest is not necessarily what we would think with an EoC

analysis. Bounds on P (benefit) among the younger group is calculated to be between 10%

and 55%. This is also a large range and it significantly overlaps with the P (benefit) bounds

among the older subpopulation. Which group should receive priority for vaccination?

As discussed in Chapter 3, we have an additional tool in our CoE arsenal, the ability to

use observational data in addition to experimental data. Remarkably, taking into account
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individuals’ whims and desires, such as their willingness to get vaccinated, through observa-

tional data, can narrow bounds on probabilities of causation. In some cases, this narrowing

can be so acute that it leads to point estimates. As will be seen in Section 4.2, realistic

observational data can result in bounds of [20%, 40%] for over-fifty-niners and [40%, 55%] for

under-sixtiers. This would reverse our näıve vaccine prioritization under the EoC analysis

above.

While the above demonstrates value in existing methods to compute bounds on P (benefit),

often these existing methods cannot sufficiently narrow the bounds enough to improve poli-

cies or decisions. However, additional population-level data on covariates and mild structural

assumptions on the causal graph can further narrow those bounds significantly.

This chapter presents methods to compute narrower bounds on the PoCs mentioned in

Chapter 3 as well as another two PoCs: Probability of Necessity (PN) and Probability of

Sufficiency (PS). Beyond causal effects, it is surprising that the structure of the causal graph

allows us to narrow these bounds. The graph describes properties of the population, yet

adds information about individuals. In this way, individual level effects are obtained from

population data. Section 4.3 will demonstrate this with covariates even when they are not

needed for identification of causal effects.

The next sections are organized as follows. Section 4.2 offers descriptions and existing

analyses of the six PoCs. Section 4.3 covers narrowing these PoCs using covariate data,

including formulas, proofs, and graphical criterion. Section 4.4 provides the same type of

analyses for mediators. Section 4.5 gives tools to combine multiple covariate and mediator

data with more complicated graphs to further narrow bounds. Finally, Section 4.6 concludes

with a discussion of the results.
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4.2 Probability of Necessity and Probability of Sufficiency

Two important PoCs, as defined in [Pea99], are PN and PS. Causal diagrams [PEA95,

SGS01, Pea09, KF09] and the language of counterfactuals in its structural model semantics,

as given in [BP95, GP98, Hal00] are used in the following sections.

4.2.1 Probability of Necessity

Assume you went to the beach and acquired Covid-19. Was it necessarily the exposure you

had at the beach which caused you to acquire the disease? The probability that you would

not have acquired Covid-19 had you not gone to the beach, given that you did in fact go

to the beach and acquired it, is called the Probability of Necessity (PN). This clearly has

important implications for public health policy, as for risk assessment and reflection on a

personal level.

Definition 4.2.1 (Probability of Necessity (PN)). PN is defined [Pea99] as the expression:

PN ≜ P (Yx′ = false|X = true, Y = true)

= P (y′x′ |x, y). (4.1)

In other words, PN stands for the probability that event y would not have occurred in

the absence of event x, given that x and y did in fact occur.

PN has applications in epidemiology, legal reasoning, and artificial intelligence. Epi-

demiologists have long been concerned with estimating the probability that a certain case

of disease is attributable to a particular exposure, which is normally interpreted counterfac-

tually as “the probability that disease would not have occurred in the absence of exposure,

given that disease and exposure did in fact occur.” This counterfactual notion is also used

frequently in lawsuits, where legal responsibility is at the center of contention.
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4.2.2 Probability of Sufficiency (PN)

Contrary to the scenario above with PN, assume you stayed home and didn’t acquire Covid-

19. Would going to the beach have been sufficient to acquire the disease? The probability

that you would have acquired Covid-19 had you gone to the beach, given that you stayed

home and did not acquire it, is called the Probability of Sufficiency (PS). This is essentially

the converse of PN.

Definition 4.2.2 (Probability of Sufficiency (PS)). [Pea99]

PS ≜ P (yx|y′, x′). (4.2)

PS finds applications in policy analysis, artificial intelligence, and psychology. A policy

maker may well be interested in the dangers that a certain exposure may present to the

healthy population [KFG89]. Counterfactually, this notion is expressed as the “probability

that a healthy unexposed individual would have gotten the disease had he/she been exposed.”

In psychology, PS serves as the basis for Cheng’s [Che97] causal power theory [Gly13],

which attempts to explain how humans judge causal strength among events. In artificial

intelligence, PS plays a major role in the generation of explanations [Pea09].

4.2.3 Bounds

The two probabilities mentioned above, PN and PS, as well as the four PoCs mentioned

previously, P (benefit), P (harm), P (immunity), and P (doom), are counterfactual notions,

for they pertain to the behavior of an individual patient under two incompatible conditions.

As such, they usually can’t be estimated precisely from group data, even when experimental

and observational data are available for all variables, regardless of how big the data is. As

was the case the the four previous PoCs, informative bounds for PN and PS can be derived

when experimental and observational data are available. However, informative bounds are

not available for PN and PS if only experimental or only observational data are available,
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unlike the four previous PoCs. These bounds were produced and proven tight, in the sense

of being the narrowest possible given the data, by Tian and Pearl [TP00, Pea09] through a

linear program. Li and Pearl [LP19] provide a theoretical proof of the tight bounds for PN,

PS, and P (benefit) (equivalent to P (benefit)), and other probabilities of causation without

a causal diagram.

The following bounds will be referred to as Tian-Pearl bounds for the remainder of this

dissertation:

max

{
0,

P (y)− P (yx′)

P (x, y)

}
⩽PN ⩽ min

{
1,

P (y′x′)− P (x′, y′)

P (x, y)

}
, (4.3)

max

{
0,

P (yx)− P (y)

P (x′, y′)

}
⩽PS ⩽ min

{
1,

P (yx)− P (x, y)

P (x′, y′)

}
. (4.4)

Bounds for a specific subpopulation, defined by a set C of pretreatment characteristics,

can be obtained by simply conditioning each probability in the bounds above on C = c.

4.2.3.1 Exogeneity

Definition 4.2.3 (Exogeneity). A variable X is said to be exogenous for Y in model M iff

[TP00]

Yx ⊥⊥ X and Yx′ ⊥⊥ X. (4.5)

In other words, the way Y would potentially respond to experimental conditions x or x′

is independent of the actual value of X.

If exogeneity holds, then the bounds on PN, PS, and P (benefit) become:

max {0, P (y|x)− P (y|x′)}
P (y|x)

⩽ PN ⩽
min {P (y|x), P (y′|x′)}

P (y|x)
, (4.6)

max {0, P (y|x)− P (y|x′)}
P (y′|x′)

⩽ PS ⩽
min {P (y|x), P (y′|x′)}

P (y′|x′)
, (4.7)

max {0, P (y|x)− P (y|x′)} ⩽ P (benefit) ⩽ min {P (y|x), P (y′|x′)}. (4.8)

Remarkably, Tian and Pearl [TP00] proved that strong exogeneity, {Yx, Yx′} ⊥⊥ X, does not

improve the bounds.
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Because P (harm) is related to P (benefit) through the ATE, which is P (y|x) − P (y|x′)

under exogeneity, and P (immunity) and P (doom) are really to P (benefit) through causal

effects P (yx) = P (y|x) and P (y′x) = P (y′|x) (under exogeneity), the remaining three PoCs

are easily derivable under exogeneity:

max {0, P (y|x′)− P (y|x)} ⩽P (harm) ⩽ min {P (y′|x), P (y|x′)}, (4.9)

max {0, P (y|x)− P (y′|x′)} ⩽P (immunity) ⩽ min {P (y|x), P (y|x′)}, (4.10)

max {0, P (y′|x)− P (y|x′)} ⩽P (doom) ⩽ min {P (y′|x), P (y′|x′)}. (4.11)

Conceptually, causal models should be informative for P (benefit), P (harm), P (immunity),

and P (doom) whenever they enable the identification of causal effects, for then they allow

us to substitute those effects for experimental data that are needed for computing the Tian-

Pearl bounds. This substitution, however, is only one way in which causal models can be

leveraged to assess these PoCs.

Sections 4.3, 4.4, and 4.5 will go a step further and derive even narrower bounds when

structural information is available in the form of a causal model, or properties of such a

model. Model-based information was used in estimating the extent to which radiation was

responsible for leukemia [Pea09, pages 299-301] and, more recently, for attributing individual

responsibility in legal settings [DMM17].

4.2.4 Benefit Example

Imagine a randomized controlled trial (RCT) for a new treatment of a disease conducted

with a treatment group and a non-treatment (control) group for one week. Among the

treated, 40% are cured and 60% remain sick or die. Exactly the same proportions are found

in the control group (those who were denied treatment), 40% are cured, and 60% remain

sick or die. This treatment would be deemed ineffective by the FDA and other public policy

makers. If you had the disease, you would probably be reluctant to undertake this treatment,

especially if there are significant costs or side-effects. However, given the severity of your
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condition, your family history, and other idiosyncratic dispositions you may be inclined to

try it anyhow. Isn’t it possible, you might hope, that this treatment actually cures 40% of

patients in a category similar to yours and kills 40% of patients which are dissimilar to you.

What you really want to know, and an RCT usually can’t tell us, is the probability that you

are in need of such treatment, i.e., cured if treated and and not cured when not treated.

Is it possible that the treatment actually cured 40% of patients? The ATE is zero, but

the Tian-Pearl bounds can be calculated to see what the possible P (benefit) probabilities

are. Observational data are unavailable, so only the first two arguments to min and max of

Equations (3.6) will be used:

max {0, P (yx)− P (yx′)} ⩽ P (benefit) ⩽ min {P (yx), P (y′x′)}

max {0, 0.4− 0.4} ⩽ P (benefit) ⩽ min {0.4, 0.6)}

0 ⩽ P (benefit) ⩽ 0.4.

Therefore, the probability that an individual would be cured with treatment and not cured

without treatment is between 0 and 0.4. Since this includes 40%, it is possible the treatment

cured 40% of patients. That’s a significant portion of the population, while a näıve inter-

pretation of the RCT results would have deemed the treatment ineffective. A lesson from

Causal Inference: What If [HR20, page 6] is, “Absence of an average causal effect does not

imply absence of individual effects.”

If the treatment does cure 40% of patients, the reason this 40% is not reflected in the

ATE is that the treatment must have caused 40% of patients to not be cured. Had they not

been treated they would have naturally been cured. The beneficial effects of the treatment

were canceled out by the harmful effects. The ramifications on personal decision making are

serious [MP21] and the RCT hid this information. The treatment is not so safe with up to

40% of patients being harmed by it. Physicians and policy makers would need to be aware

of this. With the potential to save 40% of patients’ lives, further research certainly warrants

attention and investment to distinguish subpopulations benefiting from subpopulations being
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harmed by treatment.

4.2.5 Identification

Monotonicity is the condition that treatment never harms patients:

Definition 4.2.4 (Monotonicity). A variable Y is said to be monotonic relative to variable

X in a causal model M iff [TP00]

y′x ∧ yx′ = false. (4.12)

In the RCT above, monotonicity is satisfied when it is impossible for an individual to

be not cured if given treatment and cured if not given treatment. In other words, when

P (harm) = 0. In this case, point estimates, rather than bounds, can be found for all six

PoCs discussed so far:

PN =
P (y)− P (yx′)

P (x, y)
, (4.13)

PS =
P (yx)− P (y)

P (x′, y′)
, (4.14)

P (benefit) = P (yx)− P (yx′), (4.15)

P (harm) = P (yx′)− P (yx),

P (immunity) = P (yx)− P (y′x′),

P (doom) = P (y′x)− P (yx′).

The intuition behind this is best exemplified in the P (benefit) estimate. Individuals in the

treatment group with a positive outcome could be benefiters or immune. Which type is

unknown because of the inability to peek at how those individuals would have behaved had

they not been treated. Therefore, P (yx) is the proportion of individuals belonging to the
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benefit or immunity groups. Similarly, P (y′x) is the proportion of individuals belonging to

the harm or immunity groups.

The ATE, defined as P (yx) − P (yx′), is the proportion of benefiters and immune minus

the proportion of harmed and immune, leaving us with the proportion of benefiters minus

the proportion of harmed. Therefore, P (benefit) = P (yx)− P (yx′) + P (harm). This is why

the ATE was only a lower bound for P (benefit). If monotonicity is assumed, then we finally

arrive at the point estimate P (benefit) = P (yx)− P (yx′).

Note that in the Tian-Pearl bounds, bounds under exogeneity, and identification, PN

and PS are swapped by simply exchanging x with x′ and y with y′ due to their con-

verse nature. Since equations and algorithms for PN can so easily be converted to be for

PS, and similarly, the equations and algorithms for P (benefit) can be converted to be for

P (harm), P (immunity), and P (doom), the remainder of this chapter will only consider PN

and P (benefit) and consider PS only sparingly.

4.3 Leveraging Covariate Data

The techniques profiting from covariate data will commence with identification of PN and

P (benefit) under monotonicity, as defined in Definition 4.2.4. This will be followed by

an exploration of formulas to compute narrower bounds with an admissible covariate set

[PP10]. A set of covariates is admissible when they satisfy the back-door criterion. Without

an admissible covariate set, bounds can still be narrowed with an inadmissible covariate set,

especially if both experimental and observational data are available.

4.3.1 Observational Data Under Monotonicity

Tian and Pearl [TP00] pointed out that the PN, PS, and P (benefit) are identifiable, under

the monotonicity assumption, if the causal effects P (yx) and P (yx′) are identifiable. Those

causal effects could be directly obtained through experimental data or they could be identified
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through adjustment from covariate data. For example, if covariate set Z satisfies the back-

door criterion [Pea93], then we can identify P (yx) and P (yx′) and, therefore, PN, PS, and

P (benefit) under monotonicity:

P (yx) =
∑
z

P (y|x, z) · P (z),

P (yx′) =
∑
z

P (y|x′, z) · P (z).

PN only requires P (yx′) to be identified, while PS only requires P (yx) to be identified:

PN =
P (y)−

∑
z P (y|x′, z) · P (z)

P (x, y)
,

PS =

∑
z P (y|x, z) · P (z)− P (y)

P (x′, y′)
,

P (benefit) = Ez[P (y|x, z)− P (y|x′, z)]. (4.16)

Kuroki and Cai [KC11] simplified these equations for PN and P (benefit) by first defining

a PN and P (benefit) stratified by a set of covariates Z:

PN(z) = P (y′x′|x, y, z), (4.17)

P (benefit|z) = P (yx, y
′
x′|z). (4.18)

Under monotonicity, these become:

PN(z) =
P (y|z)− P (yx′ |z)

P (x, y|z)
,

P (benefit|z) = P (yx|z)− P (yx′|z).

Let PNz and P (benefit)z be the PN and P (benefit), respectively, when evaluating with

the set of covariates Z:

PNz =
∑
z

PN(z) · P (z|x, y), (4.19)

P (benefit|z) =
∑
z

P (benefit|z) · P (z)). (4.20)

63



When Z satisfies the back-door criterion, PN, PS (through an easy derivation from PN),

and P (benefit) require only observational data:

PNz = Ez[P (y|z)− P (y|x′, z)] · P (x, y)−1, (4.21)

P (benefit)z = Ez[P (y|x, z)− P (y|x′, z)]. (4.22)

In this way, covariate data has enabled us to identify PN, PS, and P (benefit) in the

absence of experimental data. However, monotonicity is a strong and necessary assumption.

Kuroki and Cai’s stratified PN and P (benefit) will next be used to relax this monotonicity

assumption.

4.3.2 Admissible Covariates

Following the observations of settings [DMM17], the role of causal models will be shown

to extend beyond identification; they may actually enable us to narrow the PN, PS, and

P (benefit) bounds even in situations where identification is neither feasible nor needed, such

as when experimental data are available. The purpose of this chapter is to understand the

role that causal models can play in the transition from group data to individual behavior

and, more concretely, to define the conditions under which measurements of covariates in the

model may narrow the bounds for PN, PS, and P (benefit). A typical covariate, in the context

of the beach-going RCT study of sections 4.2.1 and 4.2.2, would be pre-treatment variables in

both treatment and control groups and asking whether it provides a more accurate assessment

of PN, PS, and P (benefit) for a typical individual not in the study. Section 4.4 will examine

the same question for post-treatment side effects.

The following analysis is based on the bounds derived in [TP00] and parallels and extends

the analyses of [MLP22, DMM17] for the models described in Figure 4.1. More complex

models can be constructed from the graphical criterion presented below.
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(a) Collider (b) Confounder (c) Confounding (d) Effect Modifier

(e) Effect of Effect (f) M-bias (g) Pre-treatment (h) Treatment Effect

Figure 4.1: Core conditional ignorability DAG structures

Exogeneity holds in each stratum z of Z iff

P (yx|z) = P (y|x, z) and P (yx′ |z) = P (y|x′, z),

in other words, when conditional ignorability holds. Conditional ignorability imposes a

demand on a causal structure in order to measure P (yx|z) and P (yx′|z). In particular, Z

cannot contain any descendants of X, unless Yx ⊥⊥ ZX-descendant, where ZX-descendant is the

subset of Z consisting of descendants of X. The reason for this constraint is if X was

set to x and Z contains a descendant of X, then Z could be altered. Then P (yx|z) and

P (yx′ |z) would likely be unmeasurable counterfactual terms. A more explicit probability

equivalent to P (yx|z) is P (yx,Zx|z), where Zx makes P (yx,Zx|z) the probability of Y = y

had X been set to x and Z was set to its natural value after setting X to x, conditioned

on Z = z. One scenario that allows a causal Bayesian network to infer P (yx|z) when

Z contains descendants of X are when the conditional probability tables (CPTs) for Z

and their ancestors are deterministic (probabilities are 0 or 1). If all endogenous variables
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are deterministic and marginal probabilities of exogenous variables are known, then the

original counterfactual probability is estimable. Another scenario where P (yx|z) is estimable

is when P (zx) = 1. If the descendants in Z are independent of Yx, then P (yx|z) would be

measurable, but those descendants would not contribute to any narrowing of bounds. In the

rare circumstance that the functional model or SCM is available, counterfactual terms can be

computed. However, an SCM also allows direct computation of the PN, PS, and P (benefit),

so the bounds described below are unnecessary. Descendants ofX are allowed in the covariate

set if Yx ⊥⊥ ZX-descendant, as in Figure 4.1h, because, coupled with conditional ignorability,

this implies P (yx|z) = P (y|x, z) and P (yx′|z) = P (y|x′, z), which are measurable.

However, it will be clear below that there is no bound-narrowing advantage in including

ZX-descendant among the set of covariates. In fact, Cinelli, Forney, and Pearl [CFP24, page 7]

point out that conditioning on Z of Figure 4.1h reduces variation in X. This can hurt ATE

precision in finite samples.

In the case of figures 4.1d, 4.1e, and 4.1f it seems that measurements of Z are superfluous,

since they are not needed for deconfounding X and Y . However, it will be shown that such

measurement may nevertheless improve the bounds (4.6), (4.7), and (4.8).

Sections 4.3.2.1 and 4.3.2.2 assume Z satisfies the back-door criterion, rendering X ex-

ogenous for Y in each stratum z of Z.

4.3.2.1 PN Bounds

With the assumption that conditioning on Z leaves X exogenous, the bounds (4.6) can be

applied to PN(z) in order to obtain:

max

{
0, 1− P (y|x′, z)

P (y|x, z)

}
⩽ PN(z) ⩽ min

{
1,

P (y′|x′, z)

P (y|x, z)

}
. (4.23)

The task is now to bound PNz, the population PN evaluated with covariate set Z, using

the bounds derived at (4.23) for the z-specific PN(z). By replacing PN(z) in the summation
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within Equation (4.19) by its lower bound in (4.23), the lower bound for PN is as follows:

PNz ⩾
∑
z

PNlower-bound(z) · P (z|x, y)

= P (y|x)−1 ·
∑
z

max {0, P (y|x, z)− P (y|x′, z)} · P (z|x). (4.24)

Similarly, PN(z) in the summation within Equation (4.19) can be replaced by its upper

bound in (4.23) to obtain an upper bound as follows:

PNz ⩽
∑
z

PNupper-bound(z) · P (z|x, y)

= 1− P (y|x)−1 ·
∑
z

max {0, P (y|x, z)− P (y′|x′, z)} · P (z|x). (4.25)

Note that P (z|x) can be simplified to P (z) in (4.24) and (4.25) if Z ⊥⊥ X, as in figures

4.1d and 4.1f.

Bounds taking advantage of Z will always be within Tian-Pearl bounds. In parts, the

lower bound of PNz will be greater or equal to the Tian-Pearl lower bound and the upper

bound of PNz will be less than or equal to the Tian-Pearl upper bound. The following lemma

is necessary to show this superiority:

Lemma 4.3.1. Given two n-length sequences, ⟨a1, a2, . . . , an⟩ and ⟨b1, b2, . . . , bn⟩, the max-

imum between the summation of ⟨a1, a2, . . . , an⟩ and the summation of ⟨b1, b2, . . . , bn⟩ will

always be less than or equal to the summation of the maximum between each ai and bi, where

i is the index in the sequence:

max

{∑
i

ai,
∑
i

bi

}
⩽
∑
i

max {ai, bi}. (4.26)

Similarly, the minimum between the summation of ⟨a1, a2, . . . , an⟩ and the summation of

⟨b1, b2, . . . , bn⟩ will always be greater than or equal to the summation of the minimum between

each ai and bi:

min

{∑
i

ai,
∑
i

bi

}
⩾
∑
i

min {ai, bi}. (4.27)

Both (4.26) and (4.27) will be equality when ∀i : ai ⩽ bi or ∀i : ai ⩾ bi.
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Let us compare the Tian-Pearl PN lower bound of (4.6) with PNz’s lower bound:

PN ⩾ max

{
0, 1−

∑
z

P (y|x′, z)

P (y|x, z)
P (z|x, y)

}

= max

{
0,
∑
z

P (y|x, z)
P (y|x, z)

P (z|x, y)−
∑
z

P (y|x′, z)

P (y|x, z)
P (z|x, y)

}

= max

{
0,
∑
z

P (y|x, z)− P (y|x′, z)

P (y|x)
P (z|x)

}

= P (y|x)−1max

{
0,
∑
z

[P (y|x, z)− P (y|x′, z)] · P (z|x)

}
, (4.28)

PNz ⩾ P (y|x)−1 ·
∑
z

max {0, [P (y|x, z)− P (y|x′, z)] · P (z|x)} (4.29)

The inequality (4.26), with ai = 0 and bi = [P (y|x, zi) − P (y|x′, zi)] · P (zi|x), shows the

Tian-Pearl lower bound in (4.28) is inferior to PNz’s lower bound in (4.29). Let us now

compare the Tian-Pearl PN upper bound in (4.6) with PNz’s upper bound in (4.25):

PN ⩽ min

{
1,
∑
z

P (y′|x′, z)

P (y|x, z)
· P (z|x, y)

}

= min

{∑
z

P (z|x),
∑
z

P (y′|x′, z)

P (y|x)
· P (z|x)

}
, (4.30)

PNz ⩽
∑
z

min

{
1,

P (y′|x′, z)

P (y|x)

}
· P (z|x)

=
∑
z

min

{
P (z|x), P (y′|x′, z)

P (y|x)
· P (z|x)

}
. (4.31)

The inequality (4.27), with ai = P (zi|x) and bi =
P (y′|x′,zi)
P (y|x) · P (zi|x), shows the Tian-Pearl

upper bound in (4.30) is inferior to PNz’s lower bound in (4.31).

From lemma 4.3.1, there is no bounds narrowing advantage using covariate set Z when

∀i : ai ⩽ bi or ∀i : ai ⩾ bi. For the lower bound of PNz this means, ∀i:

0 ⩽ [P (y|x, zi)− P (y|x′, zi)] · P (zi|x),

P (y|x′, zi) ⩽ P (y|x, zi),
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or ∀i : P (y|x′, zi) ⩾ P (y|x, zi).

There is no smaller upper bound advantage using covariate set Z when, ∀i:

P (zi|x) ⩽
P (y′|x′, zi)

P (y|x)
· P (zi|x),

P (y|x) ⩽ P (y′|x′, zi),

or ∀i : P (y|x) ⩾ P (y′|x′, zi).

With the assumption that Z satisfies the back-door criterion, bounds on PN can be

narrowed from observational data on X, Y , and Z. Kuroki and Cai [KC11] extended the

monotonicity assumption to conditional monotonicity, expressed as P (yx′ , y′x|z) = 0. In

stratum where conditional monotonicity holds, both the lower and upper PN bound can

improve further by using Equation 4.13 instead of min or max.

Attention now turns to the next probability of causation with back-door criterion sat-

isfying covariates. Then graphical criterion in Section 4.3.2.3 will graphically demonstrate

when these bounds can be used. Finally, examples will illustrate the application of covariate-

benefiting bounds.

4.3.2.2 P (benefit) Bounds

Tian and Pearl [TP00] provided bounds on P (benefit) for observational-only data with no

assumptions of exogeneity. While there is no effective lower bound (the lower bound remains

0, as with all probabilities), an upper bound can be informative:

0 ⩽ P (benefit) ⩽ P (x, y) + P (x′, y′).

Narrower bounds than this cannot be obtained using the summation of maximums or min-

imums technique in lemma 4.3.1 because there different minimum or maximum options to

choose from do not exist in each stratum of Z.

With the same conditional ignorability assumption of Section 4.3.2.1, the bounds in
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Equation (4.8) can be applied to P (benefit|z) in order to obtain:

max {0, P (y|x, z)− P (y|x′, z)} ⩽ P (benefit|z) ⩽ min {P (y|x, z), P (y′|x′, z)}. (4.32)

With the same approach taken in Section 4.3.2.1, the P (benefit)z lower bound is as

follows:

P (benefit)z ⩾
∑
z

P (benefit|z)lower-bound · P (z)

=
∑
z

max {0, P (y|x, z)− P (y|x′, z)} · P (z) (4.33)

=
∑
z

max {0, [P (y|x, z)− P (y|x′, z)] · P (z)}. (4.34)

The P (benefit)z upper bound is analogously:

P (benefit)z ⩽
∑
z

P (benefit|z)upper-bound · P (z)

=
∑
z

min {P (y|x, z), P (y′|x′, z)} · P (z) (4.35)

=
∑
z

min {P (y|x, z) · P (z), P (y′|x′, z) · P (z)}. (4.36)

In comparison with Tian-Pearl bounds:

P (benefit) ⩾ max{0,
∑
z

[P (y|x, z)− P (y|x′, z)] · P (z)},

P (benefit) ⩽ min{P (y|x, z) · P (z), P (y′|x′, z) · P (z)}.

Lemma 4.3.1 makes the superiority of the new bounds clear. The lower bound will be

higher than the Tian-Pearl P (benefit) lower bound when P (yx|Z = z) − P (yx′ |Z = z) is

greater than 0 for some Z and less than 0 for other Z. Similarly, the upper bound will be

lower than the Tian-Pearl P (benefit) upper bound when P (yx|Z = z) > P (y′x′ |Z = z) for

some Z and P (yx|Z = z) < P (y′x′|Z = z) for other Z.
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4.3.2.3 Graphical Criterion

The only assumptions made in this section for bounds on PNz and P (benefit)z are:

• Z satisfies the back-door criterion relative to (X, Y )

• No node in Z is a descendant of X, unless they are independent of Yx

In Section 4.3.3 the first assumption will be relaxed. Additionally, no advantage can be

expected on narrowing bounds if Y ⊥⊥ Z | X, as in figures 4.1g and 4.1h. This is because all

of the probabilities inside the max and min functions of the form P (y|x, z) become P (y|x),

reducing bounds on PNz and P (benefit)z to the Tian-Pearl bounds on PN and P (benefit).

4.3.2.4 PN Example

A new pharmaceutical drug purportedly has a side effect of debilitating pain for months. A

particular person takes the drug and, unfortunately, experiences outrageous pain that affects

their job, family, and sanity. What is it necessarily the drug that caused this person to suffer

so much?

This is a PN query. Let Y represent this horrible pain with y meaning the pain was

experienced and y′ meaning the pain was not experienced. Let X represent the drug with

x meaning the drug was taken and x′ meaning the drug was not taken. For simplicity,

this example will use a single binary covariate. Let Z represent a medical condition with z

meaning the condition is present and z′ meaning the condition is absent. Researchers are

confident that Z satisfies conditional ignorability. The graph associated with this scenario is

depicted in Figure 4.1b. This means Z can be used as a covariate to more narrowly bound

PN through observational data alone.

Among people highly susceptible to these excruciating and lengthy bouts of pain, it turns

out that this medical condition Z acts as a protective agent: 20% will endure the severe

suffering if they have the medical condition versus 80% without the condition. Doctors
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observe that people with this medical condition who take the new pharmaceutical drug

experience debilitating pain 60% of the time, so it seems the drug might remove some of

the protective mechanism. Of those without the medical condition, only 40% of drug-takers

endure the pain. The same number of people who take drug have the medical condition

and do not have the medical condition. These proportions are reflected in the conditional

probabilities of Table 4.1.

Conditioned on x Conditioned on x′

P (z) 0.5 unknown

P (y|z) 0.6 0.2

P (y|z′) 0.4 0.8

Table 4.1: Conditional probabilities for PN example

First, the Tian-Pearl bounds will be calculated from this data. Then the narrower bounds

that take advantage of conditioning on Z will be calculated. Tian-Pearl bounds yield,

max

{
0,

0.5− 0.5

0.5

}
⩽ PN ⩽

min {0.5, 0.5}
0.5

,

0 ⩽ PN ⩽ 1.

Thus, Tian-Pearl bounds provide no information for PN. Utilizing measurements of Z, on

the other hand, gives the lower bound from (4.24):

PNz ⩾ P (y|x)−1 ·
∑
z

max {0, P (y|x, z)− P (y|x′, z)} · P (z|x)

= 0.5−1 · (max {0, 0.6− 0.2} · 0.5 + max {0, 0.4− 0.8} · 0.5)

= 0.4.
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The upper bound from (4.25) is:

PNz ⩽ 1− P (y|x)−1 ·
∑
z

max {0, P (y|x, z)− P (y′|x′, z)} · P (z|x)

= 1− 0.5−1 · (max {0, 0.6− 0.8} · 0.5 + max {0, 0.4− 0.2} · 0.5)

= 0.8.

Thus, the new bounds are 0.4 ⩽ PNz ⩽ 0.8, thanks to measurement of Z. This is

tremendously more informative than the Tian-Pearl bounds. More extreme examples can

demonstrate a range reduction of 1 (0 ⩽ PN ⩽ 1) to 0, namely, a precise value for PN.

Clearly the bounds narrowing can be significant.

A person might be making a decision of whether to blame the pharmaceutical company

for their long-lasting debilitating pain. Blame might mean suing the company or, at least,

publicly shaming the company. But first, they need to know the true probability that the

drug was a necessary cause. Traditional PN bounds were uninformative. The PNz bounds

made the likelihood reasonable enough to pursue the company.

Note that the person doesn’t know their medical condition Z. This is a crucial point.

Had they known their medical condition status, they would just use that data. This matter

will be revisited in Section 4.3.5.

4.3.3 Combined Data

One of the remarkable results of Tian-Pearl bounds with combined observational and exper-

imental data is that it is not only valid to have confounding, but confounding can actually

narrow the bounds. This section will mirror the analysis in Section 4.3.2 with the conditional

ignorability requirement waived. A non-null set of covariates will still need to be used, but

additional unobserved confounding can exist. An example of remaining confounding after

conditioning on a covariate is displayed in Figure 4.2.
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Y

Figure 4.2: Remaining confounding after conditioning on Z.

4.3.3.1 PN Bounds

With data in both observational and experimental settings, conditioning on Z no longer

needs to invoke exogeneity. The bounds of PN(z) are now:

max

{
0,

P (y|z)− P (yx′|z)
P (x, y|z)

}
⩽ PN(z) ⩽ min

{
1,

P (y′x′ |z)− P (x′, y′|z)
P (x, y|z)

}
. (4.37)

Applying the same technique of summing the minimums and maximums of Section 4.3.2,

PNz is obtained:

PNz ⩾
∑
z

max

{
0,

P (y|z)− P (yx′|z)
P (x, y|z)

}
· P (z|x, y),

PNz ⩽
∑
z

min

{
1,

P (y′x′|z)− P (x′, y′|z)
P (x, y|z)

}
· P (z|x, y).

Using lemma 4.3.1, superiority over the Tian-Pearl PN lower bound is not obtained when,

∀i:

0 ⩽
P (y|zi)− P (yx′ |zi)

P (x, y|zi)
,

P (yx′|zi) ⩽ P (y|zi),

or ∀i : P (yx′|zi) ⩾ P (y|zi).
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Similarly, superiority over the Tian-Pearl PN lower bound is not obtained when, ∀i:

1 ⩽
P (y′x′|z)− P (x′, y′|z)

P (x, y|z)
,

P (x, y|z) ⩽ P (y′x′ |z)− P (x′, y′|z),

or ∀i : P (x, y|z) ⩾ P (y′x′ |z)− P (x′, y′|z).

4.3.3.2 P (benefit) Bounds

The bounds of P (benefit|z) are:

P (benefit|z) ⩾ max



0,

P (yx|z)− P (yx′|z),

P (y|z)− P (yx′|z),

P (yx|z)− P (y|z)


, (4.38)

P (benefit|z) ⩽ min



P (yx|z),

P (y′x′|z),

P (x, y|z) + P (x′, y′|z),

P (yx|z)− P (yx′|z) + P (x′, y|z) + P (x, y′|z)


. (4.39)

Again, the summation of the minimums and maximums technique is applied to bound

P (benefit)z:

P (benefit)z ⩾
∑
z

max



0,

P (yx|z)− P (yx′ |z),

P (y|z)− P (yx′|z),

P (yx|z)− P (y|z)


· P (z), (4.40)

P (benefit)z ⩽
∑
z

min



P (yx|z),

P (y′x′ |z),

P (x, y|z) + P (x′, y′|z),

P (yx|z)− P (yx′|z) + P (x′, y|z) + P (x, y′|z)


· P (z). (4.41)
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As in the Tian-Pearl P (benefit) bounds of (3.6), the P (benefit)z bounds have four ar-

guments to the max function and four arguments to the min function. This requires a

generalized summation of maximums and minimums lemma:

Lemma 4.3.2. Given m n-length sequences of values, ⟨⟨x1,1, x1,2, . . . , x1,n⟩,

⟨x2,1, x2,2, . . . , x2,n⟩, . . . , ⟨xm,1, xm,2, . . . , xm,n⟩⟩, the maximum between the summations of each

sequence will always be less than or equal to the summation of the maximum between each

element of every sequence at the same index:

max

{∑
i

x1,i,
∑
i

x2,i, . . . ,
∑
i

xm,i

}
⩽
∑
i

max {x1,i, x2,i, . . . , xm,i}. (4.42)

This will be equality when ∃j,∀k : j ̸= k, each xj,i is greater than or equal to xk,i.

Similarly, the minimum between the summations of each sequence will always be greater

than or equal to the summation of the minimum between each element of every sequence at

the same index:

min

{∑
i

x1,i,
∑
i

x2,i, . . . ,
∑
i

xm,i

}
⩾
∑
i

min {x1,i, x2,i, . . . , xm,i}. (4.43)

This will be equality when ∃j,∀k : j ̸= k, each xj,i is less than or equal to xk,i

The P (benefit)z lower bound equals the Tian-Pearl P (benefit) lower bound when the

same expression in the max function is the maximum for every stratum of Z. Similarly,

the P (benefit)z upper bound equals the Tian-Pearl P (benefit) upper bound when the same

expression in the min function is the minimum for every stratum of Z.

4.3.3.3 Graphical Criterion

The graphical criterion for Z to be advantageous in bounds calculations remains as in Section

4.3.2, with the exception of Z satisfying the back-door criterion requirement:

• No node in Z is a descendant of X, unless they are independent of Yx
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4.3.3.4 Pandemic Example

Imagine a terrible pandemic that hits a particular region hard. If unvaccinated, only 37.5%

survive. Fortunately, there’s a vaccine. While not completely effective, a person has a 75%

of survival if vaccinated. Difficult policy decisions need to be made for this vaccine, which

is in limited supply. What is the probability of benefiting from this vaccine?

Let X represent vaccination with x being vaccinated and x′ being unvaccinated, Y rep-

resent survival with y being surviving and y′ being succumbing to the pandemic, and Z

represent ancestry with z being one ancestral line and z′ being the other in this region. The

causal graphs in figures 4.1b and 4.1d are examples of this scenario. RCT and observational

data reveal P (z) = P (z′) = 0.5 and the conditional probabilities of Table 4.2.

Conditioned on z Conditioned on z′

P (yx) 0.75 0.75

P (yx′) 0.25 0.5

P (y|x) 0.9 0.6

P (y|x′) 0.8 0.5

P (x) 0.8 0.25

Table 4.2: Conditional probabilities for pandemic example

The Tian-Pearl bounds are:

max



0,

0.75− 0.375,

0.7025− 0.375,

0.75− 0.7025


⩽ P (benefit) ⩽ min



0.75,

0.625,

0.435 + 0.2075,

0.75− 0.375 + 0.2675 + 0.09


,

0.375 ⩽ P (benefit) ⩽ 0.625.
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The P (benefit)z bounds are:

P (benefit)z ⩾ max



0,

0.75− 0.25,

0.88− 0.25,

0.75− 0.88


· 0.5 + max



0,

0.75− 0.5,

0.525− 0.5,

0.75− 0.525


· 0.5

= 0.44,

P (benefit)z ⩽ min



0.75,

0.75,

0.72 + 0.04,

0.75− 0.25 + 0.16 + 0.08


· 0.5 + min



0.75,

0.5,

0.15 + 0.375,

0.75− 0.5 + 0.375 + 0.1


· 0.5

= 0.62.

This example demonstrates Tian-Pearl P (benefit) bounds of 0.375 ⩽ P (benefit) ⩽ 0.625

and P (benefit)z bounds of 0.44 ⩽ P (benefit) ⩽ 0.62. This vaccine is more effective than one

might have thought looking at the Tian-Pearl bounds. The range decreased as well from

0.25 to 0.18.

4.3.3.5 STAR Real World Example

In Section 3.6, bounds on P (benefit) was estimated, using Tian-Pearl bounds, for the STAR

project from Chapter 2. Let us see if we can narrow those bounds further by taking into

account the quaternary variable F for first grade math scores (0 to 3 from worst to best).

From the DAG in Figure 2.2, it appears that F is an admissible set, satisfying the back-door

criterion. However, as noted in Chapter 2, this is a simplified diagram and we do not know

if there are other confounders. The lower and upper bounds in Equations (4.40) and (4.41),

respectively should be applied to the STAR data laid out in Table 4.3. The notation will use

the variable names from the STAR data in Chapter 2, namely outcome variable M (grade 2

math score with m being a high score and m′ being a low score), treatment variable S (grade
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2 class size with s being a small class size and s′ being a regular class size), and confounding

variable F .

F = 0 F = 1 F = 2 F = 3

P (ms|F ) 0.2743 0.7377 0.9667 1

P (ms′ |F ) 0.2381 0.6908 0.9822 1

P (m′
s′ |F ) 0.7619 0.3092 0.0178 0

P (m|s, F ) 0.3333 0.6863 0.9211 1

P (m|s′, F ) 0.5909 0.8871 0.9364 0.9444

P (s|F ) 0.1154 0.2125 0.1872 0.125

P (s′|F ) 0.8846 0.7875 0.8128 0.875

P (m, s|F ) 0.04 0.1477 0.1659 0.1429

P (m, s′|F ) 0.52 0.6962 0.7678 0.8095

P (m′, s|F ) 0.08 0.0675 0.0142 0

P (m′, s′|F ) 0.36 0.0886 0.0521 0.0476

P (m|F ) 0.56 0.8439 0.9336 0.9524

P (F ) 0.1011 0.5303 0.3375 0.0311

Table 4.3: Conditional probabilities for STAR real world example
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P (benefit)z ⩾ max {0, 0.0362, 0.3219,−0.2857} · 0.1011

+ max {0, 0.0469, 0.1531,−0.1062} · 0.5303

+ max {0,−0.0155,−0.0486, 0.0331} · 0.3375

+ max {0, 0,−0.0476, 0.0476} · 0.0311

= 0.3219 · 0.1011 + 0.1531 · 0.5303 + 0.0331 · 0.3375 + 0.0476 · 0.0311

≈ 0.1264,

P (benefit)z ⩽ min {0.2743, 0.7619, 0.4, 0.6362} · 0.1011

+ min {0.7377, 0.3092, 0.2363, 0.8106} · 0.5303

+ min {0.9667, 0.0178, 0.218, 0.7665} · 0.3375

+ min {1, 0, 0.1905, 0.8095} · 0.0311

= .2743 · 0.1011 + 0.2363 · 0.5303 + 0.0178 · 0.3375 + 0 · 0.0311

≈ 0.159.

Let us compare these results with the Tian-Pearl bound results in Equation (3.16):

0.1264 ⩽ P (benefit) ⩽ 0.235,

0.1264 ⩽ P (benefit)z ⩽ 0.159.

We see that the lower bound was unchanged. However, the upper bound has come down

considerably. We are now significantly more precise in our estimate of the proportion of

students that benefit from smaller class sizes.

4.3.4 Additional Information Paradox

Let us revisit the pandemic example of Section 4.3.3.4 to mirror the discussion in [MLP22].

This time there is only RCT data and the population is evenly split by ancestry, referenced

in conditional probabilities Table 4.4.
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Conditioned on z Conditioned on z′

P (yx) 0.75 0.25

P (yx′) 0.2 0.6

Table 4.4: Conditional probabilities for pandemic example RCT

Four different bounds can be calculated for P (benefit):

Tian-Pearl =⇒ 0.1 ⩽ P (benefit) ⩽ 0.5

Covariate-improved =⇒ 0.275 ⩽ P (benefit)z ⩽ 0.5

Person has ancestry z =⇒ 0.55 ⩽ P (benefit|z) ⩽ 0.75

Person has ancestry z′ =⇒ 0 ⩽ P (benefit|z′) ⩽ 0.25

As expected, bounds on P (benefit)z are narrower than the Tian-Pearl P (benefit) bounds.

Surprisingly, if a person knows their ancestry, then their P (benefit) bounds are completely

outside the P (benefit)z bounds. Basically, knowing your ancestry gives you very different,

not necessarily narrower, P (benefit) bounds than not knowing your ancestry.

The paradox is that additional information of ancestral knowledge violates the heuristic

that additional information should narrow the bounds or keep them the same. If someone’s

ancestry is unknown, the probability they benefit from this vaccine is between 0.275 and 0.5.

Once the additional information is acquired that the person is of ancestry z, the probability

they benefit from this treatment becomes between 0.55 and 0.75. It seems their probability

of benefiting never really was between 0.275 and 0.5.

The reason for this seeming inconsistency is that there are two different questions. With-

out knowing the ancestry, the question is, “what is the probability of benefiting for a person

regardless of ancestry?” With knowing the ancestry, the question becomes, “what is the

probability of benefiting for a person of ancestry Z?” The additional information of the

person’s ancestry didn’t help the first question and the second question is not answerable

81



without the additional information.

The following example will illuminate the reasons for this phenomenon [Pea09, page

296]. Let the covariate Z stand for the outcome of a fair coin toss, so P (Z = heads) = 0.5.

Without knowing what treatment X and success Y represent, let P (yx) = P (yx′) = 0.5. The

remaining probabilities are in Table 4.5.

Conditioned on heads Conditioned on tails

P (yx) 1 0

P (yx′) 0 1

Table 4.5: Conditional probabilities for coin toss example

Tian-Pearl P (benefit) bounds are 0 ⩽ P (benefit) ⩽ 0.5 and P (benefit)z bounds are

0.5 ⩽ P (benefit) ⩽ 0.5 or P (benefit)z = 0.5.

Now, let us uncover the functional mechanism, x represents betting $1 on heads, x′

represents betting $1 on tails, y represents winning $1, and y′ represents losing $1. It should

now be clear why P (yx) = P (yx′) = 0.5. Without knowing the coin toss result, the odds of

winning $1 are 50/50 whether you bet on heads or tails. The P (benefit) is also 0.5 because

benefiting from betting on heads is true only when the coin toss was heads and the coin toss

is heads 50% of the time.

This brings us back to the P (benefit) bounds when we have the additional information

of what the coin toss result was. If we know the coin toss resulted in heads, then the

probability of benefiting from betting on heads is 100%. Similarly, if we know the coin toss

resulted in tails, then the probability of benefiting from betting on heads is 0%. In other

words, P (benefit|heads) = 1 and P (benefit|tails) = 0. If the coin toss is heads, winning only

happens when betting on heads. Even though the bounds are completely different when

we provided with the very useful additional information of the coin toss, there is clearly no

contradiction here. There was a 50% probability of benefiting from betting on heads when
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we didn’t know the coin toss result and a 100% probability of benefiting from betting on

heads when we knew the coin toss resulted in heads. We were asking two separate questions.

The first question was, “what is the probability of benefiting without knowing the coin toss

result?” The second question was, “what is the probability of benefiting for a coin toss of

heads?”

4.3.5 Practical Usage

Knowledge of a causal structure enables narrower PN, PS, and P (benefit) bounds to be

estimated compared with the tight bounds of Tian and Pearl which were derived without

such knowledge. This mechanism can be used whenever the graphical criterion of sections

4.3.2.3 and 4.3.3.3 are satisfied. These are weighted averages of the Z-specific probabilities

of causation. If an individual’s Z values are known, the bounds of PN(z) and P (benefit|z)

in equations 4.23, 4.32, 4.37, 4.38, and 4.39 should be consulted.

Examples in sections 4.3.2.4 and 4.3.3.4 showcase the situation where data for a covariate

is available on the population, but not on the individual we are trying to answer the query

for. This is important to note. If an individual knows their covariate set values, then the

data should be conditioned on and Tian-Pearl bounds should be consulted. Personal decision

making only benefits from the techniques in this chapter when population data is known,

but individual covariate data is unknown.

Another scenario where covariates can improve bounds using the techniques presented

in this chapter is when covariate data for an individual is known, but the sample size in

that stratum is too small. For example, natural hair color affects effectiveness of some

medication. The person of interest has red hair. There’s only one other person that has

taken the medication and had red hair. It is not possible to get an accurate P (benefit)

estimate, so a weighted average of P (benefit|z) will be most accurate and informative. This

is analogous to using ATE instead of CATE because of too little data in the conditioning

set.
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4.4 Leveraging Mediation Data

Section 4.3 discussed evaluation of PN, PS, and P (benefit) using a set of covariates, as long as

that set did not include any descendants of the treatment. Descendants were allowed, though

not helpful, if they were independent of the potential outcome given a particular treatment.

These assumptions exclude mediators, variables within a causal path from treatment to

outcome. However, mediators lend themselves well to practical usage of narrowing bounds

on probabilities of causation.

Section 4.3.5 considered situations which work well for incorporating covariates to narrow

bounds. The scenario most conducive is when population data is available and individual

covariate data is unavailable. Unfortunately, this is not always the situation confronting us.

We typically either have covariate data on both the population and the individual under

consideration or we lack covariate data for both the population and the individual.

However, we frequently need to know the probability of a cause for an individual where

mediator data on the population is available, but mediator data on that individual is not.

This is because a mediator is a descendant of the treatment, which makes it necessarily

post-treatment. In the case of personal decision making, it is critical to know the benefit of

treatment, whether the treatment will provide a favorable outcome and no treatment will

yield an unfavorable outcome. This P (benefit) query is posed before treatment is taken,

when post-treatment data availability would be rare or impossible.

4.4.1 Pure Mediator

This section will examine mediator sets M with the simplifying assumption that binary

treatment X affects binary outcome Y only through M. In the context of IVs, this is known

as the exclusion restriction [LS18], where X plays the role of an instrument. Let us repurpose

exclusion restriction here. Let M be referred to as a pure mediator when X affects Y only

through M . In Section 4.4.2, this assumption will be relaxed. Figure 4.3 depicts example
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causal graphs of this scenario.

X M Y

(a) Simple pure mediator M

X M Y

(b) X, Y , and mediator M pairwise confounded

Figure 4.3: Mediators where X affects Y only through M .

4.4.1.1 P (benefit) Bounds

The following analysis will start with the P (benefit) instead of starting with the PN as in

previous sections. The reason is that the PN can be easily derived from the P (benefit) with

an additional assumption.

For simplicity, M is a single binary mediator with values m and m′. Section 4.4.1.4

will generalize the following bounds with non-binary mediator sets. Intuition around using

mediators to narrow bounds will be introduced, followed by formulas and graphical criteria.

The probability of benefiting, P (benefit) = P (yx, y
′
x′), is the probability of recovery had

the individual been treated and non-recovery had the individual not been treated. This can

happen through a binary pure mediator in two ways. The first is that X benefits M and

M benefits Y . In other words, M = m upon treatment and M = m′ upon no treatment.

And Y = y upon m and Y = y′ upon m′. The probability of X benefiting M is simply

the P (benefit) for X and M , P (mx,m
′
x′). Similarly, the probability of M benefiting Y

is the P (benefit) for M and Y , P (ym, y
′
m′). The quantity of interest, P (benefit), is the

probability of a unit or individual being a benefiter from X to Y . This happens when units

or individuals who are benefiters from X to M and also benefiters from M to Y . Let us call

these individuals double-benefiters.

The second way X can benefit Y is when X harms M and M harms Y . In other words,
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a unit or individual is harmed from X to M and also harmed from M to Y . Let us call these

individuals double-harmed.

Let PNm and P (benefit)m be the PN and P (benefit), respectively, when evaluating with

the mediator M . The probability of an individual being a double-benefiter or a double-

harmed is the P (benefit):

P (benefit)m = P (yx, y
′
x′)

= P (ym, y
′
m′ ,mx,m

′
x′) + P (y′m, ym′ ,m′

x,mx′). (4.44)

In addition to the assumption of X affecting Y only through M , the second assumption

to be made is (Ym, Ym′) ⊥⊥ (Mx,Mx′). This allows splitting (4.44):

P (benefit)m = P (ym, y
′
m′) · P (mx,m

′
x′) + P (y′m, ym′) · P (m′

x,mx′). (4.45)

The Fréchet inequalities for two events in Equation (3.17) will be used in the bound-

narrowing techniques below.

Using the following technique, the P (benefit)m upper bound can sometimes be smaller

than the Tian-Pearl upper bound. However, the P (benefit)m lower bound receives no such

advantage. To see why, let us apply the left side of (3.17) to the probability of being a

double-benefiter:

P (double-benefiter) = P (ym, y
′
m′ ,mx,m

′
x′)

= P (ym, y
′
m′) · P (mx,m

′
x′)

⩾ max {0, P (ym)− P (ym′)} ·max {0, P (mx)− P (mx′)}

= max {0, [P (ym)− P (ym′)] · [P (mx)− P (mx′)]}. (4.46)
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Next, let us apply the left side of (3.17) to the probability of being a double-harmed:

P (double-harmed) = P (y′m, ym′ ,m′
x,mx′)

= P (y′m, ym′) · P (m′
x,mx′)

⩾ max {0, P (y′m)− P (y′m′)} ·max {0, P (m′
x)− P (m′

x′)}

= max {0, [P (ym)− P (ym′)] · [P (mx)− P (mx′)]}. (4.47)

Equations (4.46) and (4.47) are the same. Lemma 4.3.1 tells us that we can expect no

advantage for P (benefit)m over the Tian-Pearl P (benefit) in this case.

The upper bound, on the other hand, can be lowered. As before, let us start with the

right side of (3.17):

P (double-benefiter) = P (ym, y
′
m′ ,mx,m

′
x′)

= P (ym, y
′
m′) · P (mx,m

′
x′)

⩽ min {P (ym), P (y′m′)} ·min {P (mx), P (m′
x′)}

=



P (ym) · P (mx), P (ym) ⩽ P (y′m′) ∧ P (mx) ⩽ P (m′
x′),

P (ym) · P (m′
x′), P (ym) ⩽ P (y′m′) ∧ P (mx) ⩾ P (m′

x′),

P (y′m′) · P (mx), P (ym) ⩾ P (y′m′) ∧ P (mx) ⩽ P (m′
x′),

P (y′m′) · P (m′
x′), P (ym) ⩾ P (y′m′) ∧ P (mx) ⩾ P (m′

x′),

P (double-harmed) = P (y′m, ym′ ,m′
x,mx′)

= P (y′m, ym′) · P (m′
x,mx′)

⩽ min {P (ym′), P (y′m)} ·min {P (mx′), P (m′
x)}

=



P (ym′) · P (mx′), P (ym) ⩽ P (y′m′) ∧ P (mx) ⩽ P (m′
x′),

P (ym′) · P (m′
x), P (ym) ⩽ P (y′m′) ∧ P (mx) ⩾ P (m′

x′),

P (y′m) · P (mx′), P (ym) ⩾ P (y′m′) ∧ P (mx) ⩽ P (m′
x′),

P (y′m) · P (m′
x), P (ym) ⩾ P (y′m′) ∧ P (mx) ⩾ P (m′

x′).

(4.48)
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Combining P (double-benefiter)+P (double-harmed) yields the upper bound of P (benefit)m:

P (benefit)m ⩽ min



P (ym) · P (mx) + P (ym′) · P (mx′),

P (ym) · P (m′
x′) + P (ym′) · P (m′

x),

P (y′m′) · P (mx) + P (y′m) · P (mx′),

P (y′m′) · P (m′
x′) + P (y′m) · P (m′

x)


. (4.49)

If there is no pairwise confounding between X, M , and Y , as in Figure 4.3a, then this

simplifies to observational probabilities:

P (benefit)m ⩽ min



P (y|m) · P (m|x) + P (y|m′) · P (m|x′),

P (y|m) · P (m′|x′) + P (y|m′) · P (m′|x),

P (y′|m′) · P (m|x) + P (y′|m) · P (m|x′),

P (y′|m′) · P (m′|x′) + P (y′|m) · P (m′|x)


. (4.50)

This upper bound for P (benefit)m is sometimes worse than Tian-Pearl’s P (benefit) upper

bound. So, the overall upper bound is:

P (benefit)m ⩽ min



P (yx),

P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′) + P (x′, y) + P (x, y′),

P (ym) · P (mx) + P (ym′) · P (mx′),

P (ym) · P (m′
x′) + P (ym′) · P (m′

x),

P (y′m′) · P (mx) + P (y′m) · P (mx′),

P (y′m′) · P (m′
x′) + P (y′m) · P (m′

x)



. (4.51)

The third and fourth arguments are eliminated if observational data is unavailable.

4.4.1.2 PN Bounds

Under strong exogeneity [TP00], P (benefit) and PN are related with:

PN =
P (benefit)

P (y|x)
.
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This means the bounds for PNm with the models depicted in figures 4.3a and 4.4 are simply

the bounds for P (benefit)m divided by P (y|x).

X M Y

Figure 4.4: Pure mediator with X →M and X → Y confounding

However, strong exogeneity does not hold in the graphs of figures 4.3b and 4.4. The

reasons will be seen in Section 4.4.1.3. Strong exogeneity does hold in the graph of Figure

4.5.

X M Y

Figure 4.5: Pure mediator with M → Y confounding

The same bounds were obtained in [DMM17] for PNm on the simple pure mediator of

Figure 4.3a.

4.4.1.3 Graphical Criterion

Two constraints were declared in the derivation to obtain potentially smaller upper bounds

on P (benefit)m:

• Binary treatment X affects binary outcome Y only through M (exclusion restriction)

• (Ym, Ym′) ⊥⊥ (Mx,Mx′)

The first constraint is easy to visualize with a conventional DAG. Simply ensure all directed

unblocked paths from X to Y contain M.
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The second constraint is impossible to visualize and even difficult to intuit with con-

ventional DAGs due to its counterfactual terms. Alternative graphical methods have been

devised to process and visualize counterfactual criterion like this, such as Single-World In-

tervention Graphs (SWIG) [RR13], Twin Networks [BP94], and the Parallel Worlds graph

[SP12, SP08]. A SWIG is appropriate for this scenario as it requires a single hypothetical

world, one in which X is either x or x′ and M is either m or m′. Partial mediators of Section

4.4.2 will require multiple hypothetical worlds.

This SWIG is drawn in Figure 4.6 for Figure 4.3b. The X node is split into its random

component, X, and its fixed component, x. Random component parts inherit incoming

edges, while the fixed component parts inherit outgoing edges. Because x then points to M ,

the random component of M becomes Mx.

X x Mx m Ym

Figure 4.6: Pure mediator SWIG with pairwise confounding

Notice that Ym and Mx are d-separated when the red bidirectional dashed arrow between

them is removed.

The graphical criterion for PNm has an additional constraint:

• Yx ⊥⊥ X

The SWIG in Figure 4.7 visualizes this counterfactual independency.
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X x Mx Yx

Figure 4.7: Pure mediator SWIG with Yx ⊥⊥ X violations in red

It is clear from this SWIG that the X and Y cannot have any shared ancestors [GP07]

(represented as the red bidirectional dashed arrows) and neither can X and M have any

shared ancestors in order for Yx ⊥⊥ X. To use the techniques in this section to narrow

bounds on PN, there also cannot be any shared ancestors between M and Y .

4.4.1.4 Non-binary

The P (benefit)m upper bound of Section 4.4.1.1 can be generalized to non-binary mediator

sets:

P (benefit)m =
∑

mi,mj∈M

P (ymi
, y′mj

) · P (mix ,mjx′
)

⩽
∑

mi,mj∈M

min{P (ymi
), P (y′mj

)} ·min{P (mix), P (mjx′
)} (4.52)

=
∑

mi,mj∈M:i<j

min



P (ymi
) · P (mix) + P (ymj

) · P (mix′
),

P (ymi
) · P (mjx′

) + P (ymj
) · P (mjx),

P (y′mj
) · P (mix) + P (y′mi

) · P (mix′
),

P (y′mj
) · P (mjx′

) + P (y′mi
) · P (mjx)


. (4.53)

Each term in the summation of (4.53) comprises two terms in the summation of (4.52).

This is because Equation (4.49) works for each pair of values in M, where m = mi ∈ M,
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m′ = mj ∈ M, and i ̸= j. The constraint of i < j in the summation ensures these terms

aren’t added twice.

4.4.1.5 Example

Imagine a vaccine that protects from a disease purely by producing antibodies. Let x and

x′ represent getting and not getting the vaccine, respectively, m and m′ represent high

antibody count and low antibody count, respectively, and y and y′ represent avoiding and

acquiring the disease, respectively. Researchers have consensus that high antibody count is

only possible through the vaccine or, surprisingly, completely at random. And acquiring the

disease depends completely on antibody count and randomness. This implies there is no

pairwise confounding between X, Y , and M . The casual graph is depicted in Figure 4.3a.

The following data are collected:

P (y|m) = 0.5,

P (y|m′) = 0.5,

P (m|x) = 0.1,

P (m|x′) = 0.1.
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Comparing Tian-Pearl’s P (benefit) with P (benefit)m is straightforward:

P (benefit) ⩽ min

 P (y|m) · P (m|x) + P (y|m′) · P (m′|x),

P (y′|m) · P (m|x′) + P (y′|m′) · P (m′|x′)


= min

 0.5 · 0.1 + 0.5 · 0.9,

0.5 · 0.1 + 0.5 · 0.9


= 0.5,

P (benefit)m ⩽ min



P (y|m) · P (m|x) + P (y|m′) · P (m|x′),

P (y|m) · P (m′|x′) + P (y|m′) · P (m′|x),

P (y′|m′) · P (m|x) + P (y′|m) · P (m|x′),

P (y′|m′) · P (m′|x′) + P (y′|m) · P (m′|x)



= min



0.5 · 0.1 + 0.5 · 0.1,

0.5 · 0.9 + 0.5 · 0.9,

0.5 · 0.1 + 0.5 · 0.1,

0.5 · 0.9 + 0.5 · 0.9


= 0.1.

The P (benefit)m upper bound is significantly smaller than what the Tian-Pearl upper bound

provides, 0.1 versus 0.5. This means the benefit to taking the vaccine is at best 10%.

Since Figure 4.3a satisfies strong exogeneity:

P (y|x) = P (y|m) · P (m|x) + P (y|m′) · P (m′|x)

= 0.5.

Therefore, the Tian-Pearl upper bound is PN ⩽ 0.5
0.5

= 1 and PNm ⩽ 0.1
0.5

= 0.2. The

Tian-Pearl bounds offered no information on the probability that the vaccine was necessary

to avoid acquiring the disease for a person who took the vaccine and avoided the disease.

While PNm was very informative in that there was a maximum of 20% chance the vaccine

was necessary.
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4.4.2 Partial Mediator

With partial mediation, the requirement that the treatment X affects the outcome Y only

through a mediator M is relaxed. An example partial mediator is shown in Figure 4.8.

X

M

Y

Figure 4.8: Partial mediator M with X →M confounding

4.4.2.1 P (benefit) Bounds

The following derivation for P (benefit)m uses three assumptions to obtain measurable prob-

abilities:

• Yx ⊥⊥Mx′ | Mx

• Yx′ ⊥⊥Mx | Mx′

• Yx ⊥⊥ X | Mx
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This derivation is equivalent to the proof of theorem 6 in [MLP22]:

P (benefit)m = P (yx, y
′
x′)

=
∑

mi,mj∈M

P (yx, y
′
x′ ,mix ,mjx′

) (4.54)

=
∑

mi,mj∈M

P (yx, y
′
x′|mix ,mjx′

) · P (mix ,mjx′
)

⩽
∑

mi,mj∈M

min{P (yx|mix ,mjx′
), P (y′x′ |mix ,mjx′

)} ·min{P (mix), P (mjx′
)}

(4.55)

=
∑

mi,mj∈M

min{P (yx|mix), P (y′x′ |mjx′
)} ·min{P (mix), P (mjx′

)} (4.56)

=
∑

mi,mj∈M

min{P (yx|mix , x), P (y′x′|mjx′
, x′)} ·min{P (mix), P (mjx′

)} (4.57)

=
∑

mi,mj∈M

min{P (y|mi, x), P (y′|mj, x
′)} ·min{P (mix), P (mjx′

)}.

Equation (4.54) is a simple application of total probability, Equation (4.55) splits the condi-

tional P (benefit) using the Fréchet upper bound, Equation (4.56) relies on the assumptions

declared above, Yx ⊥⊥ Mx′ | Mx and Yx′ ⊥⊥ Mx | Mx′ , and Equation (4.57) relies on the

above assumption, Yx ⊥⊥ X | Mx.

Note that if there is no confounding between X and M , then only observational data is

used in this P (benefit)m upper bound.

Just like the pure mediator case of Section 4.4.1, sometimes Tian-Pearl upper bounds are
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smaller than this P (benefit)m upper bound. So, the overall upper bound is:

P (benefit)m ⩽ min



P (yx),

P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′) + P (x′, y) + P (x, y′),∑
mi,mj∈M

min{P (y|mi, x), P (y′|mj, x
′)} ·min{P (mix), P (mjx′

)}


,

(4.58)

with the third and fourth arguments eliminated if observational data is unavailable.

4.4.2.2 PN Bounds

As in Section 4.4.1.2, strong exogeneity allows easily computing PNm from P (benefit)m

by dividing by P (y|x). The X → M confounding of Figure 4.8 does not satisfy strong

exogeneity, while the graph in Figure 4.9 does.

X

M

Y

Figure 4.9: Partial mediator M with no confounding among any variable pair

4.4.2.3 Graphical Criterion

The following criterion was stated for the derivation of P (benefit)m in this section:

• Yx ⊥⊥Mx′ | Mx

• Yx′ ⊥⊥Mx | Mx′
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• Yx ⊥⊥ X | Mx

The SWIGs in the figures of Section 4.4.1.3 are no longer sufficient to visualize and verify

these assumptions. The counterfactual terms of the first two assumptions involve multiple

hypothetical worlds. Figure 4.8 is drawn as a Parallel Worlds graph in Figure 4.10.

Figure 4.10: Partial mediator Parallel Worlds graph

Confounding between two variables must now be drawn as confounding between those two

variables in all worlds. For example, confounding between X and M becomes confounding

between X, M , Mx, andMx′ . Square boxes enclosing x and x′ indicate they are held fixed. It

can then be seen that Yx is d-separated from Mx′ given Mx, symmetrically Yx′ is d-separated

from Mx given Mx′ , and Yx is d-separated from X given Mx.

4.5 Leveraging Combinations of Covariates

Sections 4.3 and 4.4 described how to apply sets of covariates and how to apply sets of

mediators, respectively, under different criteria, to narrow bounds on PN, PS, and P (benefit).
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This section will briefly analyze how to overcome criterion violations with mediators and

combining covariates and mediators.

4.5.1 Mediator with Confounding

Figure 4.11 shows a causal graph where the criterion for bounds on P (benefit)m using medi-

ator M is not satisfied. In particular, (Ym, Ym′) ⊥⊥ (Mx,Mx′) is violated by the confounder

Z.

X M

Z

Y

Figure 4.11: Pure mediator with M → Y confounded by Z

4.5.1.1 Pure Mediator

Since blocking on Z allows (Ym, Ym′) ⊥⊥ (Mx,Mx′), the upper bound on P (benefit)m can be

computed for each stratum of Z. The final result is a weighted average on the upper bounds

by P (z):

P (benefit)m ⩽ EZ


∑

mi,mj∈M:i<j

min



P (ymi
|z) · P (mix|z) + P (ymj

|z) · P (mix′
|z),

P (ymi
|z) · P (mjx′

|z) + P (ymj
|z) · P (mjx|z),

P (y′mj
|z) · P (mix |z) + P (y′mi

|z) · P (mix′
|z),

P (y′mj
|z) · P (mjx′

|z) + P (y′mi
|z) · P (mjx|z)



 .

This can be compared with the Tian-Pearl upper bound to find the smallest upper bound.
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4.5.1.2 Partial Mediator

Similarly, Figure 4.12 shows a partial mediator where the P (benefit)m upper bound cannot

easily be computed due to the violations of Yx ⊥⊥Mx′ | Mx and Yx′ ⊥⊥Mx | Mx′ .

X

M Z

Y

Figure 4.12: Pure mediator with M → Y confounded by Z

Taking the weighted average of the upper bound on P (benefit)m for each stratum of Z

yields:

P (benefit)m ⩽ EZ

 ∑
mi,mj∈M

min{P (y|mi, x, z), P (y′|mj, x
′, z)} ·min{P (mix|z), P (mjx′

|z)}

 .

This can be compared with the Tian-Pearl upper bound to find the smallest upper bound.

4.5.2 Covariates and Mediators

Figure 4.13 presents a causal graph with the possibility of deriving bounds on P (benefit)m

using the mediator M or the covariate Z.

Whenever multiple possibilities exist for computing bounds, simply use the largest lower

bound and smallest upper bound.

4.6 Summary

This chapter analyzed and presented methods of computing narrower bounds on probabilities

of causation, PN, PS, and P (benefit). It demonstrates how significant narrowing of bounds
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X M

Z

Y

Figure 4.13: Pure mediator M with X → Y confounded by Z

on probabilities of causation can be attained and how this impacts decision making at every

level and in almost every discipline.

Given the fertile ground for improvement and their significant impact, the question arises,

why hasn’t there been more formal research in this area? One possibility is that researchers

often care about effects instead of causes. Hypotheses, core to the scientific method, are

typically in the form of EoC. This can possibly account for the reason that more effort has

gone into the development of curricula, pedagogy, tools, and software around EoC. This in

turn reinforced the focus on EoC – that is what they were taught.

Another reason for the lopsided emphasis on EoC, alluded to in Section 4.1, is the dif-

ficulty or rarity of obtaining point estimates or sufficiently narrow bounds on CoE. Section

4.2.5 reviewed how PN, PS, and P (benefit) point estimates can be obtained if the strong

assumption of monotonicity holds. However, even when monotonicity holds, it can be a chal-

lenge to be convinced of it and monotonicity is generally untestable. Point estimates, or any

counterfactual term, can be computed if the SCM is known. Unfortunately, this knowledge

is rare. Tian and Pearl [TP00] derived bounds on PN, PS, and P (benefit) and proved their

tightness. The inability of improving on these bounds to result in sufficiently narrow bounds

may have contributed to the lack of research interest in CoE. We should be reminded, “We

learned from Simpson’s Paradox that certain decisions cannot be made on the basis of data

alone, but instead depend on the story behind the data” [PGJ16, page 24]. Population data

alone can never improve bounds on CoE, however, the story behind the data can.
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Valuable CoE work, like Li and Pearl’s Unit Selection based on Counterfactual Logic

[LP19], that depend on P (benefit), P (harm), P (immunity), and P (doom), is significantly

enhanced with better accuracy by narrowing these bounds.
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CHAPTER 5

Leveraging Concurrent-Controlled RCT Data

5.1 Background

This chapter introduces an important restriction on data obtained from RCTs. It is often

assumed that RCTs provide estimates of two causal effects, P (yx) and P (yx′), standing for the

probability of the outcome Y under treatment and control, respectively. In medical practices,

however, these two quantities are rarely reported separately; only their difference ATE =

P (yx)−P (yx′) is measured, estimated, and reported. The reason is that the individual effects,

P (yx) and P (yx′), are suspect of contamination by selection bias and placebo effects. These

two imperfections are presumed to cancel out by a method called “Concurrent Control”

[Sen10] in which subjects in both treatment and control arms are measured simultaneously

and only the average difference, ATE, is counted.

This chapter establishes bounds on P (benefit), P (harm), P (immunity), and P (doom)

under the restriction that RCTs provide only an assessment of ATE, not of the individual

causal effects P (yx) and P (yx′). It will be shown that the new restriction, though leading

to less narrow bounds than obtained with both causal effects, still permits the extraction of

meaningful information on individual benefit, harm, immunity, and doom and, when com-

bined with observational data, can be extremely valuable in personalized decision making.
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5.2 P (benefit) Bounds

With just the ATE, P (benefit) is bounded as:

max{0,ATE} ⩽ P (benefit) ⩽ min{1,ATE + 1}. (5.1)

The lower bound is above zero when ATE is positive, and the upper bound is lower than 1

when ATE is negative.

When we combine ATE with observational data, the lower bound remains the same, but

the upper bound changes to yield:

max{0,ATE} ⩽ P (benefit) ⩽ min

 P (x, y) + P (x′, y′),

ATE + P (x, y′) + P (x′, y)

 . (5.2)

The upper bound in (5.2), is always lower than (or equal to) the one in (5.1), because

both P (x, y) + P (x′, y′) ⩽ 1 and P (x, y′) + P (x′, y) ⩽ 1.

The lower and upper bounds in Equation (5.2) follow directly from the Tian-Pearl bounds

on P (benefit). There are two additional possible lower bounds on P (benefit):

• P (yx)− P (y) and

• P (y)− P (yx′).

Notice that,

P (yx)− P (y) = ATE + P (yx′)− P (y). (5.3)

Since it is possible that P (yx′) − P (y) ⩾ 0, it might appear that we should add the right

side of the equality in Equation (5.3) to the max function of the lower bound in equation

(5.2). However, remember that we do not have access to any causal effects, including P (yx′),

only the ATE and observational data. The causal effect P (yx′) could simply be removed

and a lower bound of ATE − P (y) could be added to the max function. However, the
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existing lower bound ATE subsumes it because P (y) ⩾ 0. Similarly, since P (y) − P (yx′) =

ATE − P (yx) + P (y) and P (yx) ⩽ 1, a potential lower bound of ATE − P (y′) could be

added to inequalities (5.2). Again, the existing lower bound ATE subsumes it. Since it

is possible that P (yx′) − P (y) ⩾ 0, it might appear that we should add the right side of

the equality in Equation (5.3) to the max function of the lower bound in equation (5.2).

However, remember that we do not have access to any causal effects, including P (yx′), only

the ATE and observational data. A potential lower bound of ATE − P (y) could not be

added to the max function of the left inequality (5.2). However, the existing lower bound

ATE subsumes it because P (y) ⩾ 0. Similarly, since P (y)− P (yx′) = ATE− P (yx) + P (y)

and P (yx) ⩽ 1, a potential lower bound of ATE−P (y′) could be added to inequalities (5.2).

Again, the existing lower bound ATE subsumes it. In the following section, we discuss some

of the ramifications of these bounds.

There are two additional possible upper bounds on P (benefit) as well:

• P (yx) and

• P (y′x′).

Since P (yx) = ATE + P (yx′) and P (yx′) ⩽ 1, a potential upper bound of ATE + 1 could

be added to the min function of the right inequality (5.2). However, the existing upper

bound ATE+P (x, y′)+P (x′, y) subsumes it because P (x, y′)+P (x′, y) ⩽ 1. Similarly, since

P (y′x′) = ATE+1−P (yx) = ATE+P (y′x) and P (y′x) ⩽ 1, a potential upper bound of ATE+1

could be added to inequalities (5.2). Again, the existing upper bound ATE+P (x, y′)+P (x′, y)

subsumes it.

It may appear that the upper bound might dip below the lower bound, which would be

problematic. In particular, either of the following two cases would cause this situation:

P (x, y) + P (x′, y′) < ATE, or (5.4)

ATE + P (x, y′) + P (x′, y) < 0. (5.5)
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Neither of these inequalities can occur because of the inequalities in (5.10). Inequality (5.4)

cannot occur because of the right inequality of (5.10). Similarly, inequality (5.5) cannot

occur because of the left inequality of (5.10).

5.3 How Observational Data Inform P (benefit)

The bounds on P (benefit) produced by Eqs. (5.1) and (5.2) can be visualized interactively

at https://ate-bounds.streamlit.app to develop an intuitive feel for these bounds. The

graphs in this chapter are taken directly from this visualization tool I created.

To show the contrast between Eq. (5.1) and Eq. (5.2), Fig. 5.1 displays the allowable

values of P (benefit) for various levels of ATE, assuming no observational information is

available (i.e., Eq. (5.1)). We see, for example, that for ATE = 0 (left vertical dashed line),

the bound is vacuous (0 ⩽ P (benefit) ⩽ 1), while for ATE = 0.5 (right vertical dashed line),

we have 1
2
⩽ P (benefit) ⩽ 1 — a somewhat more informative bound, but still rather trivial.

Figure 5.2 displays the allowable values of P (benefit) when observational data are avail-

able. We see that for ATE = 0 (left vertical dashed line), we now have 0 ⩽ P (benefit) ⩽

1
2
, whereas for ATE = 0.5 (right vertical dashed line), we now have a point estimate

P (benefit) = 1
2
, assuring us that exactly 50% of all subjects will benefit from the treat-

ment (and none will be harmed by it).

When observational data become less symmetric, say P (x) = 0.5, P (y|x) = 0.9, and

P (y|x′) = 0.1, the regions of possible and impossible P (benefit) values shift significantly.

Moving the sliders for P (x), P (y|x), and P (y|x′) to the above values produces the graph

shown in Figure 5.3. This time, when ATE = 0 (left vertical dashed line), the bounds on

P (benefit) narrow down to 0 ⩽ P (benefit) ⩽ 0.1, telling us that subjects have a maximum

10% chance of benefiting from the treatment. When ATE = 0.5 (right vertical dashed line),

we have 1
2
⩽ P (benefit) ⩽ 0.6, still a narrow width of 0.1, with an assurance of at least 50%

chance of benefiting from the treatment.
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Figure 5.1: The green area represents possible P (benefit) values for the given ATE, while

the white areas represent values not achievable by P (benefit).

It should be clear now that consequential information on individual benefit can be ob-

tained even when separate causal effects, P (yx) and P (yx′), are unavailable. The same

situation holds for P (harm) as well.

5.4 How Observational Data Inform the Probability of P (harm)

The probability of harm is the converse of P (benefit). We can bound this probability with

ATE and with observational data similar to Eqs. (5.1) and (5.2). With just the ATE,
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Figure 5.2: The green area represents possible P (benefit) values for the given ATE, while

the gray areas represent values of ATE that are incompatible with the assumed observational

information: P (y|x) = P (y|x′) = P (x) = 0.5.

P (harm) is bounded as:

max{0,−ATE} ⩽ P (harm) ⩽ min{1, 1− ATE}. (5.6)

The lower bound is positive when ATE is positive, and the upper bound is less than 1 when

ATE is negative. When we combine observational data, a smaller upper bound is possible:

max{0,ATE} ⩽ P (harm) ⩽ min

 P (x, y′) + P (x′, y),

P (x, y) + P (x′, y′)− ATE

 . (5.7)

Again, the upper bound in (5.7), is always lower than (or equal to) the one in (5.6), since
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Figure 5.3: The green area represents possible P (benefit) values for the given ATE and

observational probabilities: P (x) = 0.5, P (y|x) = 0.9, P (y|x′) = 0.1.

P (x, y) + P (x′, y′) ⩽ 1 and P (x, y′) + P (x′, y) ⩽ 1. See Appendix 1 for the derivations of

Eqs. (5.6) and (5.7).

Figures 5.4a and 5.4b depict these bounds under the same conditions as Figures 5.1 and

5.2, respectively.

Figure 5.5, on the other hand, shows very different sets of bounds for the asymmetric

case: P (x) = 0.5, P (y|x) = 0.9, and P (y|x′) = 0.1, used in Figure 5.3. This time, 0 ⩽

P (harm) ⩽ 0.1 when ATE = 0 or ATE = 0.5. This has the same width of 0.1 as in the case

of P (benefit), but with a substantially different shape.
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(a) No observational data (b) P (x) = P (y|x) = P (y|x′) = 0.5

Figure 5.4: P (harm) graphs corresponding to Figures 5.1 and 5.2 for P (benefit)

5.5 Probability of Immunity and Doom Bounds

As learned in Chapter 3, P (immunity) is a simple function of P (yx) and P (benefit) in

Equation (3.24) and P (doom) is a simple function of P (yx′) and P (harm) in Equation (3.25).

Unfortunately, since the causal effects P (yx) and P (yx′) are unknown, this leaves no room

for ATE to play a role in narrowing bounds on P (immunity) and P (doom). We are left with

their observational-data-only bounds:

0 ⩽P (immunity) ⩽ P (y) + P (x, y) + P (x′, y′),

0 ⩽P (doom) ⩽ P (y′) + P (x, y) + P (x′, y′).

5.6 Intuition

The intuition behind the P (benefit) lower bound is that the probability of benefiting cannot

be less than the positive part of the difference in causal effects. That difference must be

explained by benefiting from treatment.

The intuition behind the P (benefit) upper bound is split into two parts. First, the
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Figure 5.5: The green area represents possible P (harm) values for the given ATE and ob-

servational probabilities: P (x) = 0.5, P (y|x) = 0.9, P (y|x′) = 0.1.

benefiters must be among the individuals who chose treatment and had a successful out-

come, (x, y), or those who avoided treatment and had an unsuccessful outcome, (x′, y′).

Therefore, one potential upper bound is P (x, y) + P (x′, y′). Alternatively, since ATE =

P (benefit)− P (harm), we get an upper bound on P (benefit) by adding at least the propor-

tion of individuals harmed to ATE. This is precisely the upper bound ATE+P (x, y′)+P (x′, y)

because the proportion of individuals choosing treatment and having an unsuccessful out-

come, P (x, y′), and the proportion of individuals avoiding treatment and having a successful

outcome, P (x′, y), comprise all individuals harmed by treatment as well as some additional

individuals.
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Similar reasoning holds for the lower and upper bounds of P (harm), P (immunity), and

P (doom).

5.7 Bounds on ATE

In addition to informing P (benefit) and P (harm), observational data also impose restrictions

on ATE, violations of which imply experimental imperfections. We start with Tian and

Pearl’s bounds on causal effects [TP00]:

P (x, y) ⩽ P (yx) ⩽ 1− P (x, y′), (5.8)

P (x′, y) ⩽ P (yx′) ⩽ 1− P (x′, y′). (5.9)

If we multiply Equation (5.9) by −1 and add it to Equation (5.8), we get the following

bounds on ATE:

P (x, y) + P (x′, y′)− 1 ⩽ ATE ⩽ P (x, y) + P (x′, y′). (5.10)

While the range of ATE values has a width of 1, the location of this range can still alert

the experimenter to possible incompatibilities between the observational and experimental

data.
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CHAPTER 6

Intention as Evidence

6.1 Introduction

The practical value that knowledge of individualized probabilities of benefit, harm, immu-

nity, and doom brings has been expressed in prior chapters. More practical use of these

probabilities of causation can be obtained if an individual’s treatment choice is known. This

notion is often captured in the Effect of Treatment on the Treated (ETT):

ETT = E[Yx − Yx′|x]

= E[Yx|x]− E[Yx′ |x].

Like the ATE, ETT hides information that could be crucial to decision making.

6.2 Treatment Informs PS

To uncover the vital information that ETT hides, ATE can be decomposed into P (benefit)

and P (harm) when X and Y are binary:

ATE = P (benefit)− P (harm). (6.1)
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ETT can similarly be decomposed:

ETT = P (benefit|x)− P (harm|x), (6.2)

P (benefit|x) = P (yx, y
′
x′ |x)

= P (y, y′x′|x)

= P (y′x′ |x, y) · P (y|x)

= PN · P (y|x), (6.3)

P (harm|x) = P (y′x, yx′|x)

= P (y′, yx′|x)

= P (yx′|x, y′) · P (y′|x)

= PNy′ · P (y′|x) (6.4)

where PNy′ is PN with y′ swapped with y.

This allows a decision maker to understand the probability of benefiting or being harmed

the moment after a decision for treatment has been made. These probabilities of causation

can be particularly useful when a decision has been made for no treatment. The analogous

situation to the ATE is referred to as the Effect of Treatment on the Untreated (ETU):

ETU = P (benefit|x′)− P (harm|x′), (6.5)

P (benefit|x′) = P (yx, y
′
x′ |x′)

= P (yx, y
′|x′)

= P (yx|x′, y′) · P (y′|x′)

= PS · P (y′|x′), (6.6)

P (harm|x′) = P (y′x, yx′ |x′)

= P (y′x, y|x′)

= P (y′x|x′, y) · P (y|x′)

= PSy′ · P (y|x′) (6.7)
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where PSy′ is PS with y′ swapped with y.

Without assumptions, such as monotonicity, or knowledge of the underlying structural

equations, PN and PS can generally only be bounded according to Tian-Pearl bounds:

max

{
0,

P (y)− P (yx′)

P (x, y)

}
⩽ PN ⩽ min

{
1,

P (y′x′)− P (x′, y′)

P (x, y)

}
, (6.8)

max

{
0,

P (yx)− P (y)

P (x′, y′)

}
⩽ PS ⩽ min

{
1,

P (yx)− P (x, y)

P (x′, y′)

}
. (6.9)

Combining Equations (6.3), (6.4), and (6.8) provides P (benefit) and P (harm) on the

treated, and combining Equations (6.6), (6.7), and (6.9) provides P (benefit) and P (harm)

on the untreated:

max

{
0,

P (y)− P (yx′)

P (x)

}
⩽ P (benefit|x) ⩽ min

{
P (y|x), P (y′x′)− P (x′, y′)

P (x)

}
, (6.10)

max

{
0,

P (y′)− P (y′x′)

P (x)

}
⩽ P (harm|x) ⩽ min

{
P (y′|x), P (yx′)− P (x′, y)

P (x)

}
, (6.11)

max

{
0,

P (yx)− P (y)

P (x′)

}
⩽ P (benefit|x′) ⩽ min

{
P (y′|x′),

P (yx)− P (x, y)

P (x′)

}
, (6.12)

max

{
0,

P (y′x)− P (y′)

P (x′)

}
⩽ P (harm|x′) ⩽ min

{
P (y|x′),

P (y′x)− P (x, y′)

P (x′)

}
. (6.13)

6.3 Example

Consider the following hypothetical scenario. A doctor decides to perform surgery on a

patient. Before he does, we can analyze the effectiveness of this treatment with the knowledge

that surgery has been decided. From experimental data, we know the probabilities of success

(y) for surgery (x) and no surgery (x′):

P (yx) = 0.8,

P (yx′) = 0.6.
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Additionally, historical electronic health records show the following observational data:

P (x) = 0.4,

P (y|x) = 0.5,

P (y|x′) = 0.7

where X represents the doctor’s decision.

Many decision-makers would look at the ATE to make a decision for or against surgery:

ATE = P (yx)− P (yx′)

= 0.2.

The ATE is positive and, neglecting other costs such as financial, pain, and recovery, doctors

would choose surgery.

The ATE|X is known in literature as ETT, though it is rarely applied in medical contexts.

In many cases, it is not the probability of recovery or probability of death that counts. The

P(harm) and P(benefit) are often the true quantities of interest.

A physician might have conscious and unconscious clues informing their opinion. For

example, they might see their patient is sweating, the parents are highly educated, or other

indirect thoughts the physician is unaware of. These clues might sway the doctor on the

basis of their personal experience, to be taken into account in an undisclosed way. How do

we combine the hunches of this doctor with the rigorously researched standard of care to

come up with a decision that is better than each of the two in isolation?

We can compute the posteriors P (benefit|X) and P (harm|X) by treating intention as

evidence. Within the time between making a decision and acting on that decision, the

updated beliefs in PoCs might make it clear to reverse a decision.

First, let us compute the standard Tian-Pearl bounds on P (benefit). Equation (6.1)
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allows a quick derivation of P (harm):

max{0, 0.2, 0.18, 0.02} = 0.2 ⩽ P (benefit) ⩽ 0.38 = min{0.8, 0.4, 0.38, 0.82},

0.2− 0.2 = 0 ⩽ P (harm) ⩽ 0.18 = 0.38− 0.2.

Since our hypothetical doctor has already decided on surgery, this decision can be used to

obtain more accurate bounds on P (benefit) and P (harm) with Equations (6.10) and (6.11):

max

{
0,

0.62− 0.6

0.4

}
= 0.05 ⩽ P (benefit|x) ⩽ 0.5 = min

{
0.5,

0.4− 0.18

0.4

}
,

max

{
0,

0.38− 0.4

0.4

}
= 0 ⩽ P (harm|x) ⩽ 0.45 = min

{
0.5,

0.6− 0.42

0.4

}
.

Surprisingly, both PoCs above have far looser bounds than when not conditioning on x.

The extra information about the doctor’s decision for surgery counter-intuitively opens up

more possibilities for the probabilities of benefit and harm. One way to think about this is

that the decision could be a poor decision or a good decision. A poor decision will lower

the probability of benefiting, while a good decision will raise it, thus widening the original

bounds.

On the other hand, an interesting result appears if the surgeon decides against surgery.

Point estimates for both P (benefit|x′) and P (harm|x′) are computed:

max

{
0,

0.8− 0.62

0.6

}
= 0.3 ⩽ P (benefit|x′) ⩽ 0.3 = min

{
0.3,

0.8− 0.2

0.6

}
,

max

{
0,

0.2− 0.38

0.6

}
= 0 ⩽ P (harm|x′) ⩽ 0 = min

{
0.7,

0.2− 0.2

0.6

}
.

Both point estimates are within the original bounds on P (benefit) and P (harm) before

any surgery decisions were made. This makes it clear that the original bounds are an average

of when surgery is decided and surgery is decided against:

P (benefit) = P (benefit|x) · P (x) + P (benefit|x′) · P (x′),

P (harm) = P (harm|x) · P (x) + P (harm|x′) · P (x′).
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6.4 No Treatment as Evidence

If we can make the assumption that a decision not to treat can be revisited later with no

consequences to the outcome, then we can treat the no treatment decision as evidence. This

may be the case when a decision for no surgery means the patient remains with their disease

and all else is equal.

The question now becomes, “if I chose not to treat and nothing improved, will I see

improvement if I choose treatment now?” This is precisely the PS: P (yx|x′, y′). The bounds

on PS has already been determined in Equation (6.9) and throughout Chapter 4 it was

narrowed in various ways.

If we were able to use no treatment as evidence in the motivating numerical example of

Section 3.3, we could save lives. Notice that 9$ of women chose no treatment and did not

recover. The PS for men and women are:

P (yx|x′, y′, female) = 1,

P (yx|x′, y′,male) = 0.

Applying treatment to women after their no-recovery saves 9% of women’s lives. On the

other hand, there is clearly no need to subject men to the expense, pain, and frustration of

treatment as they will surely not recover.
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6.4.1 Narrowing P (benefit) and PN

There is another benefit to follow-up decisions that are unaffected by their previous decisions.

Notice that P (benefit) is a function of PN, PS, and observational probabilities:

P (benefit) = P (yx, y
′
x′)

= P (yx, y
′
x′ , x) + P (yx, y

′
x′ , x′)

= P (y′x′ , x, y) + P (yx, x
′, y′)

= PN · P (x, y) + PS · P (x′, y′). (6.14)

Not treating and then treating, under the assumption that the latter is not affected by

the former, provides empirical data for PS. This also assumes that the decision to treat the

second time is not confounded with the outcome.

Computing an empirical point estimate of PS allows for potentially narrower bounds on

P (benefit) and PN, according to Equation (6.14).

6.5 Summary

There is always a gap between decision and action. This gap allows critical information to

stop a bad decision. We can imagine one day that a wearable device can guide us the moment

decisions are made. If we find that section of our brain which commits to decisions, this

guidance might even be oblivious to us. It will simply seem like we are all just phenomenal

decision makers.

Sometimes we are afforded the opportunity to redo our decisions. A mistaken decision is

evidence we can compute posteriors from. Even the poorest decision makers among us can

still have great outcomes.
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CHAPTER 7

Monotonicity

7.1 Introduction

Many reasoning tasks in healthcare, marketing, and economics are plagued with indetermi-

nacies in the sense that point estimates of some probabilities cannot be obtained even with

infinite data. Instead, ranges of values can be derived, but these are often too wide to be

useful.

A common thread among these tasks is that indeterminacies are alleviated or eliminated

when monotonicity is assumed (i.e. that outputs can never decrease when inputs increase).

For example, that no patient can be harmed by a certain treatment, or that no customer

will churn only when offered an incentive. A formal definition of this notion will be given in

Section 7.2 together with formulas that connect this to the observed data.

To illustrate the role of monotonicity, we first discuss the problem of unit selection [LP19].

Here the goal is to maximize the gain f associated with a set of units (e.g. patients, cus-

tomers, or voters) each of them may either benefit from, be harmed by, or remain unaffected

by an action under consideration (e.g. treatment, advertisement, or policy). The overall

gain, f(β, γ, θ, δ), depends on four parameters: the gain of selecting a unit benefiting from

treatment (β), the gain of selecting a unit always having a positive outcome regardless of

treatment (γ), the gain of selecting a unit always having a negative outcome regardless of

treatment (θ), and the gain of selecting a unit harmed by treatment (δ). Li showed that when

monotonicity does not hold, the overall gain f cannot be point estimated from experimental
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data alone, as practiced in A/B testing. Moreover, A/B testing, which has been the main-

stay of marketing, product development, and other business optimizations, may be grossly

sub-optimal, leading to regrettable decisions. Fortunately, the assumption of monotonicity

renders optimizations based on A/B testing equivalent to optimizing f(β, γ, θ, δ) over its four

parameters. Given data from several sources we can identify when this equivalence holds.

Z X Y

Figure 7.1: Typical structure for IV methods where Z is an instrument for the relationship

between X and Y , shown to be marred by unobserved confounders (bidirectional arrow).

A second task demanding the assumption of monotonicity is Instrumental Variable (IV)

analysis. IV analysis is also possible if effect homogeneity holds instead of monotonicity.

However, [HR20] notes that, “homogeneity is often an implausible condition,” whereas,

“monotonicity [appears] credible in many settings.” The purpose of IV analysis is to es-

timate the ATE in situations where unobserved confounders exist between treatment X

and outcome Y , as shown in Figure 7.1. When monotonocity can be assumed between the

instrument, Z, and the treatment variable, X, the ATE can be identified in certain subpop-

ulations, called “compliers”. A unit is called a complier if treatment is taken if and only if

it is assigned to that unit. This ATE among compliers is referred to as the Local Average

Treatment Effect (LATE) and is computed by:

LATE = E[Yx − Yx′ |complier] =
E[Y |z]− E[Y |z′]
E[X|z]− E[X|z′]

(7.1)

where Yx is the value of Y had X been x (treatment) and Yx′ is the value of Y had X been

x′ (non-treatment). Naturally, this is vital in disciplines where confounding is difficult to

deal with, such as experimental econometrics [IA94] and social sciences [MW14].

Monotonicity is required to assure the validity of Equation (7.1). Absent monotonity,

the denominator of (7.1) may blow up LATE, which further distances LATE from ATE. For
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a formal definition of IV and its various extensions using graphs see [Pea09, Chapter 7] and

[Pea11].

A third task where monotonicity plays an important role is Causes of Effects (CoE)

analysis, which aims to estimate the probability that one event is a “cause” of an observed

outcome. This was discussed in Chapter 4. Examples are assigning credit and blame in

legal situations, medical diagnosis, and system troubleshooting. These applications invoke

counterfactual reasoning and therefore the desired probabilities cannot be determined from

either experimental or observational data. Counterfactual probabilities in common use are

PN, PS, and PNS (aka P (benefit).

Tian and Pearl [TP00] derived tight bounds on Probabilities of Causation on the basis

of experimental and observational data and this dissertation has explored many techniques

to further narrow those bounds by, in part, appealing to the causal structure when such is

available. These bounds are often still too loose to be useful. If monotonicity can be assumed,

however, the bounds collapse to a point [Pea99] based on experimental data alone, even

without considering the causal structure. If an identifiable causal structure can additionally

be assumed on top of monotonicity then these PoCs are identified with just observational

data.

Given its ubiquity in interpreting experimental studies, the need arises to determine

when monotonicity is violated, when it can possibly be presumed to hold, and when it

definitely holds. In some cases monotonicity is self-evident, for example, in advertising a

new product. The control group, not given the information about the product, has no way

of purchasing it. Monotonicity must hold because P (Yno ad = purchase) = 0. In general,

however, monotonicity cannot be assured a priori. In medicine, for example, a person might

have a 5% chance of being harmed by treatment and a 10% chance of benefiting from it,

which may result in a lawsuit if an autopsy proves the former.

This chapter shows how data can be assessed for monotonicity. A necessary test indicates

when monotonicity is possible and a sufficiency test indicates when monotonicity is assured
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(Section 7.2). An accompanying interactive plot visualizes how necessity and sufficiency

depend on experimental and observational data available (Section 7.3).

7.2 Monotonicity Tests, Sufficiency and Necessity

Let us denote the variables X ∈ {x, x′} and Y ∈ {y, y′} as binary treatment and recovery,

respectively. The values x and x′ may represent treatment and no treatment, and the

values y and y′ may represent recovery and no recovery. I will further use yx to denote the

counterfactual sentence, “Variable Y would have the value y, had X been x.” Extensions to

multi-valued ordinal outcomes will be discussed in Chapter 9.

Using these binary variables, in addition to Definition 4.2.4, monotonicity is defined as,

P (y′x, yx′)
def
= P (harm) = 0. (7.2)

A properly conducted RCT yields unbiased estimates of P (yx) and P (yx′), from which

we can obtain the ATE. In contrast, observational studies provide estimates of the joint dis-

tribution P (X, Y ), from which we can obtain P (x), P (y), P (y|x), and P (y|x′). As discussed

in Chapter 3 an RCT does not directly inform us about P (harm), nor about the other three

response types:

P (benefit)
def
= P (yx, y

′
x′), (7.3)

P (immunity)
def
= P (yx, yx′), (7.4)

P (doom)
def
= P (y′x, y

′
x′). (7.5)

As a consequence, in contrary to a prevailing myth, ATE does not represent the proportion

of people benefiting from treatment. Note also that the four probabilities above must sum to

1 and that ATE is related to P (harm) and P (benefit) (this derivation was shown in Equation

(3.22)) via:

P (harm) = P (benefit)− ATE. (7.6)
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Equation (7.6) tells us immediately that under monotonicity, P (benefit) coincides with

ATE, or, in other words, ATE constitutes a point estimate of P (benefit). More generally,

it allows us to compute P (harm) from P (benefit) and ATE, which we will use to define the

level of monotonicity violation.

Given these definitions, the question of whether monotonicity is testable can be answered

by examining the bounds on P (harm) and asking what conditions would guarantee an up-

per bound of 0. Given both observational and experimental studies, the bounds on the

probability of harm, derived in Equation (3.23), are:

max



0,

P (yx′)− P (yx),

P (y)− P (yx),

P (yx′)− P (y)


⩽ P (harm) ⩽ min



P (yx′),

P (y′x),

P (x, y′) + P (x′, y),

P (yx′)− P (yx) +

P (x, y) + P (x′, y′)


. (7.7)

We see that, when P (yx) ⩾ P (yx′) (or ATE is non-negative), a sufficient condition for

monotonicity to hold is that at least one of the arguments to the min function be 0. We can

summarize this in a theorem.

Theorem 7.2.1 (Monotonicity Sufficiency Test). Y is monotonic relative to X if

P (yx′) = 0, or (7.8)

P (yx) = 1, or (7.9)

P (x, y′) = P (x′, y) = 0, or (7.10)

P (yx)− P (yx′) = P (x, y) + P (x′, y′). (7.11)

Note that the left side of Equation (7.11) is the ATE. When P (yx) < P (yx′) (ATE is

negative), monotonicity must fail because Equation (7.6) shows that P (harm) must turn

positive.
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Unfortunately, conditions (7.8), (7.9), (7.10), and (7.11) are in the form of equalities

and therefore can only materialize in rare cases. In contrast, lack of monotonicity is easier

to verify. For this purpose I devise a necessary test for monotonicity, which identifies the

requirements for monotonicity to be possible. This test is more informative and is derived by

checking if all arguments to the max function in the lower bound of P (harm) are non-positive:

P (yx′) ⩽ P (yx), and

P (y) ⩽ P (yx), and

P (yx′) ⩽ P (y).

This can be put into a more succinct form [Pea09, p. 294], as shown in Theorem 7.2.2.

Theorem 7.2.2. (Monotonicity Necessity Test) Y is monotonic relative to X only if

P (yx) ⩾ P (y) ⩾ P (yx′). (7.12)

This is useful for two reasons. First, it can quickly eliminate the possibility of monotonic-

ity by checking for three simple parameters in the data. Second, non-monotonicity implies

the existence of subpopulations whose reaction to treatment is substantially different, which,

in turn, informs us where the mechanism responsible for that variability could be.

7.3 Interactive Plot

At the webpage https://lbmaps.web.app/mns.html, I provide an interactive plot that

visualizes regions of data which are necessary or sufficient for monotonicity, as we navigate

the terrain of experimental and observational data available.

Figure 7.2 provides a snapshot of this interactive plot. The white regions represent

conditions that are required for monotonicity to hold. In other words, finding data outside
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Figure 7.2: Assuming no observational data, it is necessary for (P (yx), P (yx′)) to be in the

white region for monotonicity to hold. The color bands represent the minimum degree to

which monotonicity is violated for each (P (yx), P (yx′)) combination.
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this region implies the existence of units which can be harmed by treatment. Figure 7.2

shows this “necessary” region which, in the absence of observational data, is lying below

the dashed diagonal line (P (yx) ⩾ P (yx′)). Colored bands indicate data regions where

monotonicity definitely does not hold and the color in each band indicates the minimum

fraction of violation realizable in that band.

Figure 7.3 shows how the “necessary region” changes when observational data are added.

For example, having obtained the additional information of P (x) = P (y|x) = P (y|x′) = 0.5,

the necessary region shrinks to 0.5 ⩽ P (yx) ⩽ 0.75 and 0.25 ⩽ P (yx′) ⩽ 0.5. The transparent

gray region indicates areas where P (yx) and P (yx′) are incompatible with the observational

data. This could happen, for example, when the population recruited for the experiments

is totally different than the one used in the observational study, perhaps due to selection

bias. Techniques for detection (see Chapter 8) and overcoming selection bias, under certain

conditions, are reported in [BTP14].

In comparison, to identify the vanishingly small regions of sufficiency (where monotonicity

must hold), we have to look at the lines marked in red in Figure 7.4. The rarity of this

condition is clear since the region is confined to the edges of the purple band (P (yx′) = 0 or

P (yx) = 1). With observational data of P (x) = P (y|x) = P (y|x′) = 0.5, this region shrinks

to a single point at the bottom right of the compatible region, as seen in Figure 7.5.

7.4 Utilizing Causal Models

We can detect and refute monotonicity with versions of the Monotonicity Sufficiency Test

(MST) and Monotonicity Necessity Test (MNT) that take into account a causal model.

7.4.1 Monotonicity Sufficiency Test with Causal Model

One way to utilize a causal model to improve the Monotonicity Sufficiency Test involves

decomposing the upper bound of P (harm) in a manner similar to how P (benefit) was de-
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Figure 7.3: Chart showing the impact of observational data on minimum probability of

harm. The square in the middle, labeled “Compatible region”, indicates values of P (yx) and

P (yx′) which are compatible with the observational data P (x) = P (y|x) = P (y|x′) = 0.5.

Incompatibility implies experimental imperfections. The white square, labeled “Necessary

region”, indicates where monotonicity may hold. The colors in each band indicate the

minimum probability of harm (Equation (3.19)).
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Figure 7.4: Chart showing maximum probability of harm with no observational data. To

guarantee monotonicity (P (harm) = 0), (P (yx), P (yx′)) must be on the bottom or right edge

of the chart (outlined in red).
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Figure 7.5: Chart showing the impact of observational data on maximum probability of harm.

(P (yx), P (yx′)) is only possible in the center square region if P (x) = P (y|x) = P (y|x′) =

0.5 and it is sufficient for monotonicity at only one point, the bottom right corner of this

compatible region.
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composed in Theorem 4 of [MLP22].

Lemma 7.4.1. Given a causal diagram G and distribution compatible with G, let Z be a set

of variables not including X and Y , then P (harm)’s upper bound is as follows:

P (harm) ⩽
∑
z

min



P (yx′|z),

P (y′x|z),

P (x, y′|z) + P (x′, y|z),

P (yx′|z)− P (yx|z) + P (x, y|z) + P (x′, y′|z)


× P (z). (7.13)

Lemma 7.4.1 allows us to check whether P (harm) is definitely 0 by finding a single

argument to the min function in (7.13) that equals 0 for every instantiation of Z. Theorem

7.2.1 can now be enhanced to take into account a causal model and detect monotonicity

more often.

Theorem 7.4.1. (Monotonicity Sufficiency Test with Covariates) Given a causal diagram

G and distribution compatible with G, let Z be a set of variables not including X and Y ,

then Y is monotonic relative to X if ∀z ∈ Z:

P (z) = 0, or

P (yx′|z) = 0, or (7.14)

P (yx|z) = 1, or (7.15)

P (x, y′|z) = P (x′, y|z) = 0, or (7.16)

P (yx|z)− P (yx′|z) = P (x, y|z) + P (x′, y′|z). (7.17)

Theorem 7.4.1 supersedes Theorem 7.2.1 because they are equivalent when Z = ∅. As

mentioned in [MLP22], a significant qualification to the causal model needs to be addressed.

P (YX |Z) will often be unmeasurable if Z contains descendants of X. This is because if X
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Z

X Y

(a) Yx ⊥⊥ Z and Z are descendants of X

Z

X Y

(b) Z satisfies the back-door criterion

Figure 7.6: Covariate Z as a descendant of X or confounder of X and Y

was set to x and Z contains a descendant of X, then Z could be altered as well. In this case,

P (YX |Z) would be a counterfactual query, with a conflict between the observed value of Z

and the value of Z had X been set to x. A more explicit probability equivalent to P (yx|z)

is P (yx,Zx|z), where Zx makes P (yx,Zx|z) the probability of Y = y had X been set to x and

Z was set to its natural value after setting X to x, conditioned on Z = z. Therefore, if Z

contains descendants of X and P (YX |Z) cannot be measured because of those descendants,

then those descendants should be removed from Z.

One scenario that allows a causal Bayesian network to infer P (yx|z) when Z contains

descendants of X is when the conditional probability tables (CPTs) for Z and their ancestors

are deterministic (probabilities are all 0 or 1). If all endogenous variables are deterministic

and marginal probabilities of exogenous variables are known, then the original counterfactual

probability is estimable. Another scenario where P (yx|z) is estimable is when P (zx) = 1.

Lastly, if the descendants of X in Z are independent of Yx, such as in Figure 7.6a, then

P (yx|z) would be measurable. However, those descendants would not contribute to any

narrowing of bounds. To see this, recognize that P (yx|z∗) = P (yx) if Z
∗ ⊥⊥ Yx, where Z∗ is

the set of descendants of X in Z.

If Z satisfies the back-door criterion [Pea09], such as in Figure 7.6b, then observational

data alone is sufficient to potentially detect monotonicity. Similar to how P (benefit) was de-

composed with a set of variables satisfying the back-door criterion in Theorem 5 of [MLP22],

we can decompose the upper bound of P (harm).
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U Z

X Y

(a) X → Y and no Z− Y confounding

Z

X Y

(b) X ̸→ Y and no confounding

Figure 7.7: Mediator Z

Lemma 7.4.2. Given a causal diagram G and distribution compatible with G, let Z be a set

of variables satisfying the back-door criterion, then P (harm)’s upper bound is as follows:

P (harm) ⩽
∑
z

min{P (y|x′, z), P (y′|x, z)} × P (z). (7.18)

This leads directly to the next theorem.

Theorem 7.4.2. (Monotonicity Sufficiency Test with Covariates Satisfying Back-door Cri-

terion) Given a causal diagram G and distribution compatible with G, let Z be a set of

variables satisfying the back-door criterion, then Y is monotonic relative to X if ∀z ∈ Z:

P (z) = 0, or

P (y|x′, z) = 0, or (7.19)

P (y|x, z) = 1. (7.20)

7.4.1.1 Partial Mediators

Due to the qualification noted above for Theorem 7.4.1 involving descendants of X in Z,

along with the exclusion of descendants of X in Z for Theorem 7.4.2, the MSTs in Theorems

7.4.1 and 7.4.2 are often not applicable. Instead, we can improve on the MST in Theorem

7.2.1 when Z consists of mediators of X and Y .
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In the absence of confounders between Z and Y and between X and Y , such as in Figure

7.7a, we can bound P (benefit) as follows:

Lemma 7.4.3. Given a causal diagram G and distribution compatible with G, let Z be a set

of variables such that ∀x, x′ ∈ X : x ̸= x′, (Yx ⊥⊥ X ∪Zx′ | Zx) in G, then P (harm) is upper

bounded as follows:

P (harm) ⩽ min



P (yx′),

P (y′x),

P (x, y′) + P (x′, y),

P (yx′)− P (yx) + P (x, y) + P (x′, y′),∑
z

∑
z′ min{P (y|x′, z), P (y′|x, z′)} ×

min{P (zx′), P (z′x)}


. (7.21)

This leads directly to the next theorem.

Theorem 7.4.3. (Monotonicity Sufficiency Test with Partial Mediators) Given a causal

diagram G and distribution compatible with G, let Z be a set of variables such that ∀x, x′ ∈

X : x ̸= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx) in G. Then Y is monotonic relative to X if ∀z ∈ Z:

P (y|x, z′) = 1, or (7.22)

P (y|x′, z) = 0, or (7.23)

P (zx) = 1, or (7.24)

P (zx′) = 0. (7.25)

7.4.1.2 Complete Mediators

If Z is a complete mediator, such that X affects Y only through Z, there is no confounding

between X and Z, and there is no confounding between Z and Y , then we can obtain a lower

upper bound on P (harm).
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Lemma 7.4.4. Given a causal diagram G and distribution compatible with G, let Z be a

set of variables such that (Y ⊥⊥ X | Z) ∧ (∀x ∈ X : Zx ⊥⊥ X) ∧ (∀z ∈ Z : Yz ⊥⊥ Z), then

P (harm) is upper bounded as follows:

P (harm) ⩽ min



P (yx′),

P (y′x),

P (x, y′) + P (x′, y),

P (yx′)− P (yx) + P (x, y) + P (x′, y′),∑
z

∑
z′ ̸=z min{P (y|z), P (y′|z′)} ×

min{P (z|x′), P (z′|x)}


. (7.26)

This leads directly to the next theorem.

Theorem 7.4.4. (Monotonicity Sufficiency Test with Complete Mediators) Given a causal

diagram G and distribution compatible with G, let Z be a set of variables such that ∀x, x′ ∈

X : x ̸= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx) and completely mediates all direct effects of X on Y in G.

Then Y is monotonic relative to X if ∀z ∈ Z:

P (y|z′) = 1, or (7.27)

P (y|z) = 0, or (7.28)

P (z|x) = 1, or (7.29)

P (z|x′) = 0, (7.30)

where z′ ̸= z.

Note that Theorem 7.4.4 only involves observational data.

7.4.2 Monotonicity Necessity Test with Causal Model

The corresponding lower bound to P (harm) for the upper bound in Lemma 7.4.1 is the

following.
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Lemma 7.4.5. Given a causal diagram G and distribution compatible with G, let Z be a set

of variables not including X and Y , then P (harm)’s lower bound is as follows:

P (harm) ⩾
∑
z

max



0,

P (yx′ |z)− P (yx|z),

P (y|z)− P (yx|z),

P (yx′|z)− P (y|z)


× P (z). (7.31)

Lemma 7.4.5 allows us to check whether P (harm) is possibly 0 by checking whether every

argument to the max function in (7.31) is less than or equal to 0 (or P (z) = 0) for every

instantiation of Z. Theorem 7.2.2 can now be enhanced to take into account a causal model

and detect violations of monotonicity more often.

Theorem 7.4.5. (Monotonicity Necessary Test with Covariates) Given a causal diagram G

and distribution compatible with G, let Z be a set of variables not including X and Y , then

Y is monotonic relative to X only if ∀z ∈ Z:

P (z) = 0, or

P (yx|z) ⩾ P (y|z) ⩾ P (yx′ |z). (7.32)

If Z satisfies the back-door criterion, such as in Figure 7.6b, then observational data

alone is sufficient to potentially detect violations of monotonicity. Similar to how P (benefit)

was decomposed with a set of variables satisfying the back-door criterion in Theorem 5 of

[MLP22], we can decompose the lower bound of P (harm).

Lemma 7.4.6. Given a causal diagram G and distribution compatible with G, let Z be a set

of variables satisfying the back-door criterion, then P (harm)’s lower bound is as follows:

P (harm) ⩾
∑
z

max{0, P (y|x′, z)− P (y|x, z)} × P (z). (7.33)
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This leads directly to the next theorem.

Theorem 7.4.6. (Monotonicity Necessity Test with Covariates Satisfying Back-door Crite-

rion) Given a causal diagram G and distribution compatible with G, let Z be a set of variables

satisfying the back-door criterion, then Y is monotonic relative to X only if ∀z ∈ Z:

P (z) = 0, or

P (y|x, z) ⩾ P (y|x′, z). (7.34)

7.5 ϵ-Limited Harm

In the event that monotonicity exists between two variables, proving monotonicity from

data, even with the luxury of both experimental and observational data, can be difficult, as

demonstrated by the edges of the plot in Figure 7.4 above and Theorem 7.2.1. With the

additional assumption of causal structure, Theorems 7.4.1, 7.4.2, 7.4.3, and 7.4.4 allow for

more opportunities to detect monotonicity, however, detection may still elude us.

Allowing for some units or individuals to be harmed, or only part of the population to

be monotonic, may result in a more informed distribution of the beneficiaries, which can be

utilized in policy making. Let us call the new bounds induced by such allowance ϵ-bounds.

Theorems 7.5.1 and 7.5.2 reflect this less restrictive form:

Theorem 7.5.1. (Sufficiency Test for ϵ-Limited Harm) If the following conditions hold,

then ϵ must be a maximum proportion of units harmed:

P (yx′) ⩽ ϵ, or (7.35)

P (yx) ⩾ 1− ϵ, or (7.36)

P (x, y′) + P (x′, y) ⩽ ϵ, or (7.37)

P (yx)− P (yx′) ⩾ P (x, y) + P (x′, y′)− ϵ. (7.38)
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Theorem 7.5.2. (Necessary Test for ϵ-Limited Harm) If ϵ is a maximum proportion of units

harmed, then the following conditions must hold:

P (yx′) ⩽ P (yx) + ϵ, and

P (y) ⩽ P (yx) + ϵ, and

P (yx′) ⩽ P (y) + ϵ.

The proof of Theorems 7.5.1 and 7.5.2 follow directly from the bounds expressed in

Equation (3.23).

7.5.1 ϵ-Bounds on P (benefit)

Assumptions of ϵ-limited harm can be used to narrow the bounds on P (benefit). From

Equation (7.6), P (benefit) can be expressed in terms of ATE and P (harm):

P (benefit) = ATE + P (harm). (7.39)

Assuming the inequality 0 ⩽ P (harm) ⩽ ϵ gives:

ATE ⩽ P (benefit) ⩽ ATE + ϵ,

P (yx)− P (yx′) ⩽ P (benefit) ⩽ P (yx)− P (yx′) + ϵ. (7.40)

Tian and Pearl’s tight bounds on PNS [TP00] resemble those in Equation (3.23), with x and

x′ swapped, and are expressed as:

max



0,

P (yx)− P (yx′),

P (yx)− P (y),

P (y)− P (yx′)


⩽ P (benefit) ⩽ min



P (yx),

P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′) +

P (x, y′) + P (x′, y)


. (7.41)
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The lower bound of P (benefit) in (7.41) already includes ATE as an argument to its max

function, so Equation (7.40) cannot help with the lower bound. However, Equation (7.40)

can potentially lower the upper bound of P (benefit) in (7.41) by adding the right side of

(7.40) as an argument to the min function in (7.41):

max



0,

P (yx)− P (yx′),

P (yx)− P (y),

P (y)− P (yx′)


⩽ P (benefit) ⩽ min



P (yx),

P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′) +

P (x, y′) + P (x′, y),

P (yx)− P (yx′) + ϵ


. (7.42)

Note that any reduced bounds on P (benefit) due to ϵ-limited harm must come from

domain-specific knowledge outside the experimental and observational data. The ϵ obtained

from data will merely replicate Tian-Pearl bounds. Applying argminϵ to Theorem 7.5.1

will provide a ϵ that will not narrow P (benefit) bounds beyond the Tian-Pearl bounds of

(7.41). These ϵ-bounds will be an improvement on the Tian-Pearl bounds in (7.41) when

ϵ < P (x, y′) + P (x′, y).

7.6 Examples

The following three examples demonstrate the value of refuting and confirming monotonicity

in a mental health context.

7.6.1 Harmful Effects

A man is suing a pharmaceutical company claiming that he remained depressed because of

their anti-depressant drug. While the company claims that the drug cannot worsen depres-

sion, the plaintiff asserts that he would’ve been cured on his own but the drug prolonged his

depression. He presents the following data from an independent third party’s observational
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study. Does he have a case?

P (x) = 0.6, (7.43)

P (y|x) = 0.3, (7.44)

P (y|x′) = 0.5. (7.45)

This data shows that 30% of people choosing to take the drug recovered, while 50% of

people choosing not to take the drug recovered. The pharmaceutical company conducts a

Randomized Controlled Trial (RCT), suggesting that the reason people choosing their drug

fared worse was because their willingness to incur the large expense of the drug was due to

more severe depression where psychotherapy was ineffective. The RCT results showed the

drug to be 11% effective in all categories measured, demonstrating that the above observa-

tional results were, in fact, biased due to confounding:

P (yx) = 0.58,

P (yx′) = 0.47.

The pharmaceutical company’s experts further state that none of the drug’s chemical

mechanisms would make it possible for depression to be extended due to the drug itself. Our

analysis, however, gives a different story.

Since P (y) = P (y|x) · P (x) + P (y|x′) · P (x′) = 0.38, the data fails the Monotonicity

Necessity Test of Theorem 7.2.2. Specifically, 0.38 = P (y) ̸⩾ P (yx′) = 0.47. After plugging

the data into Equation (3.23), the lower bound is P (yx′) − P (y) = 0.47 − 0.38 = 0.09.

Therefore, P (harm) ⩾ 9%, contrary to the company’s claim.

The interactive plot confirms this. After check-marking “Necessary” and “Observational

data” and adjusting the probability sliders to match probabilities (7.43), (7.44), and (7.45),

the coordinates (P (yx), P (yx′)) = (0.58, 0.47) point to the upper part of the purple band.

Therefore, the pharmaceutical company is wrong and there is a risk of people staying de-

pressed due to their drug.
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The man has a strong claim in his lawsuit. Furthermore, market research may determine

that, among potential customers, half of them would not purchase if they knew some people

would remain depressed because of the drug. The anxiety induced by this knowledge could

also make the drug less effective.

7.6.2 Confirming No Harm Claim

An ethical pharmaceutical company wants to proclaim that their drug to combat depression

does not harm users. They believe that none of their users would simultaneously be cured

without the drug and remain with depression after using the drug. However, they want to

be responsible and confirm this before announcing anything. An RCT and observational

study is conducted for this purpose, yielding the following:

P (x) = 0.55,

P (y|x) = 0.4,

P (y|x′) = 0.6,

P (yx) = 0.67,

P (yx′) = 0.27.

One of the conditions of the sufficient test, Equation (7.11), is true:

P (x, y) + P (x′, y′) = P (y|x) · P (x) + P (y′|x′) · P (x′)

= P (y|x) · P (x) + [1− P (y|x′)] · [1− P (x)]

= 0.4

= ATE = P (yx)− P (yx′).

Therefore, the pharmaceutical company can assure their customers of monotonicity. The

interactive plot confirms this sufficient condition with the coordinates (P (yx), P (yx′)) =

(0.67, 0.27) pointing to the bottom right of the purple band.
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7.6.3 Improved Probability of Benefit

Remaining on our depression-drug theme, a third pharmaceutical company wishes to market

their anti-depression drug as having a minimum 50% efficacy level for curing depression.

They define efficacy as the proportion of people benefiting. The RCT they conducted for

FDA approval yielded the following results:

P (yx) = 0.55,

P (yx′) = 0.46.

With only a paltry difference between experimental probabilities, P (yx) and P (yx′), the

ATE is 0.55−0.46 = 0.09, which naively suggests low efficacy. Far below the hoped-for 50%.

Even though this average treatment effect is low, the proportion of individuals benefiting

may still be high. This is apparent when combing the RCT results above with the following

observational study results:

P (x) = 0.35,

P (y|x) = 0.95,

P (y|x′) = 0.7,

P (y) = 0.95 · 0.35 + 0.7 · 0.65 = 0.7875.

It appears as though individuals are good at assessing whether they should consume this

drug. Both the group choosing the drug and the group avoiding the drug fared better than

both the treatment and control arms of the RCT. We can now compute bounds on P (benefit)

using Equation (7.41), which represents the proportion of individuals benefiting from this

drug:

max{0, 0.09,−0.2375, 0.3275} ⩽ P (benefit) ⩽ min{0.55, 0.54, 0.5275, 0.5625},

0.3275 ⩽ P (benefit) ⩽ 0.5275.
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These results do not allow the pharmaceutical company to lay a legitimate claim to minimum

50% efficacy. However, they can claim potentially up to 52.75% efficacy. This is a vague claim,

but may sway some hopeful depression sufferers to buy the drug.

Psychiatrists report that they believe many of their depressed patients are not getting

better because of the drug, despite their belief that the drug is effective for an abundance

of their other patients. The pharmaceutical company investigates and determines that the

molecular mechanism does allow for some patients to be harmed by the drug. However, this

mechanism only allows for a maximum of 24% of depressed people to be harmed. While this

0.24-limited harm is not ideal, the ATE is still positive, so psychiatrists and patients are

largely amenable to continuing with the medication.

Unfortunately for the pharmaceutical company, 0.24-limited harm affects the P (benefit)

bounds. Using Equation (7.42):

0.3275 ⩽ P (benefit)ϵ ⩽ min{0.5275, 0.09 + 0.24},

0.3275 ⩽ P (benefit)ϵ ⩽ 0.33,

where P (benefit)ϵ is the probability of benefit incorporating ϵ-limited harm. P (benefit) is

now shrunken to nearly a point estimate. The pharmaceutical company can no longer claim

even a possibility of 50% efficacy.

7.7 Summary

Many reasoning tasks, such as unit selection, A/B testing, quasi-experimental econometrics,

and, more generally, identification of Probabilities of Causation, benefit substantially from

an assumption of monotonicity. This chapter showed how monotonicity can be detected (or

refuted) from observational, experimental, or combined data. I then identify when mono-

tonicity is definitely violated, when it definitely holds, and when it is undetermined. The

consequences of monotonicity violations are further shown when the degree of violation is
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limited.
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CHAPTER 8

Selection Bias

8.1 Introduction

Selection bias occurs when a sample is not representative of the target population. It is

induced by preferential selection of units for data analysis [BTP14]. There are two challenges

selection bias poses to causal and statistical inference. First, selection bias can be difficult

to avoid, or even detect. Second, analysis may be robust up to a certain level of selection

bias. It can be important to ascertain how sensitive a result is to selection bias along with

the severity of selection bias involved.

In order to tackle these challenges, we must first quantify the severity of selection bias.

Then we obtain bounds on the selection bias involved in a sample. Finally, analysis can

incorporate these bounds in its result.

S

X

Z

Y

(a) Z blocks path from S to Y

S

X

Z

Y

(b) Confounder Z influences selection

Figure 8.1: Selection bias induced by Z

The selection mechanism can be represented in a causal graph with an S node. The DAG

in figure 8.1a portrays a scenario where Z influences the outcome Y as well as whether the

unit is selected into the sample. In order to block the selection mechanism’s influence on the
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outcome, the path from S to Y must be blocked. This can be accomplished by conditioning

on or adjusting for Z. However, Z may be unobserved or even unknown.

8.2 Selection Bias Severity

The ATE is often the quantity of interest in an RCT. However, in an RCT, the sample’s

units would be conditioned on S = 1 (denoted by s for simplicity): P (yx|s)−P (yx′ |s). Let’s

call this CATE because it’s conditional on having been selected. If there’s a path from S to

the outcome Y , as in figures 8.1a and 8.1b, then the difference between the population ATE

and the CATE may be non-zero. This difference is how we can quantify SBS (selection bias

severity):

SBS ≜ ATE− CATE

= [P (yx)− P (yx′)]− [P (yx|s)− P (yx′ |s)].

This number will measure the degree to which the ideal situation is violated. Bounds

on SBS and bounds on the magnitude of SBS can be computed non-parametrically with

five inputs: P (yx|s), P (yx′ |s), P (x), P (y|x), and P (y|x′). The population-level counterfac-

tual probabilities P (yx) and P (yx′) are often estimated with RCTs as long as no selection

bias occurs. An RCT yields estimates for P (yx|s) and P (yx′ |s), so those quantities can be

experimentally provided or computed using tools of causal inference. Population-level ob-

servational probabilities, P (x), P (y|x), and P (y|x′), are often much easier to estimate as no

experiments are necessary.

If the ATE is identifiable from observed data, as in figure 8.1a, then SBS is directly

calculable. However, the practical value of SBS, in this case, is limited as the RCT was

unnecessary. On the other hand, figure 8.1b represents a scenario where the ATE is not

identifiable when Z is unknown or unobserved. In this case, we can calculate bounds on the

ATE.
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Tian and Pearl [TP00] derived the following bounds on the causal effects P (yx) and

P (yx′):

P (x, y) ⩽ P (yx) ⩽ 1− P (x, y′),

P (x′, y) ⩽ P (yx′) ⩽ 1− P (x′, y′).

These inequalities allow us to obtain the lower bound of ATE:

ATE = P (yx)− P (yx′)

⩾ P (x, y)− [1− P (x′, y′)]

= P (x, y) + P (x′, y′)− 1.

The upper bound of ATE is similarly derived:

ATE ⩽ [1− P (x, y′)]− P (x′, y)

= 1− P (x, y′)− P (x′, y)

= P (x, y) + P (x′, y′).

The range of ATE, based solely on the probability distribution P (X, Y ), is always 1. The

SBS is computed from ATE− CATE:

SBSlower-bound = P (x, y) + P (x′, y′)− 1− [P (yx|s)− P (yx′ |s)],

SBSupper-bound = P (x, y) + P (x′, y′)− [P (yx|s)− P (yx′ |s)].

The quantity of interest is often the magnitude of selection bias. The absolute value of

SBS is:

|SBS| ∈


[SBSlb, SBSub], if SBSlb > 0,

[−SBSub,−SBSlb], if SBSub < 0,

[0,max(−SBSlb, SBSub)], if 0 ∈ [SBSlb, SBSub].

(8.1)
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These bounds are visualized at https://sel-bias.vercel.app.

Care must be taken when conditioning SBS on covariates. The causal effects of the ATE,

P (yx) and P (yx′), are not always equivalent to the interventional probabilities, P (y|do(x))

and P (y|do(x′)), when conditioning on a covariate Z [PGJ16, §4.3.1]. In particular, Z is a

preintervention variable in the counterfactual probabilities P (yx|z) and P (yx′|z), while Z is a

postintervention variable in the interventional probabilities, P (y|do(x), z) and P (y|do(x′), z).

There’s a difference if there exists a directed path from X to Z. Notably, the CATE, defined

above, conditions on S. However, for most RCTs, the above counterfactual and interven-

tional probabilities are equivalent as treatment assignment shouldn’t influence inclusion in

the sample. If it does, use the interventional probabilities.

8.3 Under Monotonicity

Tian and Pearl [TP00] derived narrower bounds on causal effects P (yx) and P (yx′) under

the condition of monotonicity:

P (y) ⩽ P (yx) ⩽ 1− P (x, y′),

P (x′, y) ⩽ P (yx′) ⩽ P (y).

This offers an opportunity for narrower bounds on SBS by narrowing the bounds on ATE:

ATE = P (yx)− P (yx′)

⩾ P (y)− P (y)

= 0.

The upper bound of ATE remains the same as the non-parametric upper bound:

ATE ⩽ [1− P (x, y′)]− P (x′, y)

= 1− P (x, y′)− P (x′, y)

= P (x, y) + P (x′, y′).
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The range of ATE under monotonicity, based solely on the probability distribution

P (X, Y ), is P (x, y) + P (x′, y′). This range is always less than or equal to 1, thus providing

superior SBS bounds to the non-parametric SBS bounds. The SBS bounds are:

SBSlower-bound = −[P (yx|s)− P (yx′ |s)]

= P (yx′|s)− P (yx|s),

SBSupper-bound = P (x, y) + P (x′, y′)− [P (yx|s)− P (yx′|s)].

Because of monotonicity, SBSlower-bound ⩽ 0. The magnitude of SBS is:

|SBS| ∈


[SBSlb, SBSub], if P (yx′|s) > P (yx|s),

[−SBSub,−SBSlb], if P (yx|s) > P (x, y) + P (x′, y′) + P (yx′|s),

[0,max(−SBSlb, SBSub)], otherwise.

(8.2)
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CHAPTER 9

Probabilities of Causation with Non-Binary Ordinal

Outcomes

9.1 Introduction

This dissertation has presented methods to estimate PoCs more precisely than previously

possible. These PoCs have a limitation, the outcomes are binary. This restriction either

prevents these counterfactual probabilities from informing decisions effectively or it requires

quantizing outputs to binary, which loses valuable information and can even cause us to

answer the wrong question.

New methods have expanded on PoC bounds, particularly PN and P (benefit), to include

non-binary outcomes [HFH19], though without incorporating observational data. Li and

Pearl advanced PoC bounds to exploit observational data and work with both non-binary

treatment and outcomes [LP24a]. In addition, Li and Pearl have applied these new bounds

to the unit selection problem [LP24b].

This final chapter presents novel methods and an algorithm for more general bounds

and identification of PoCs that encompass binary and non-binary ordinal outcomes, along

with the consequences and redefining of the ATE, monotonicity, and unit selection. The

restriction to ordinal outcomes allows for strong intuition behind the PoCs, monotonicity,

and utility values, along with tractable bounds and identification strategies.
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9.2 Probability of Benefit

We can define the Probability of Benefit with ordinal outcomes in an analogous way to

Definition 3.5.1 and Pearl’s Probability of Necessity and Sufficiency (PNS) [Pea09] with

binary outcomes.

Definition 9.2.1 (Probability of Benefit). Y ∈ (y1, y2, . . . , yn), where yis are in increasing

order. X ∈ (x1, x2), where xis are in increasing order.

P (benefit) ≜ P (Yx2 > Yx1) (9.1)

= P

 ∨
1⩽i,j⩽n
s.t. i>j

(
yix2

, yjx1

) (9.2)

=
∑

1⩽i,j⩽n
s.t. i>j

P
(
yix2

, yjx1

)
. (9.3)

Equation (9.1) has an intuitive appeal that, as we will see below, also lends itself well to

extensions of the previous analyses. It is the probability that, for an individual, the outcome

under treatment x2 is better than the outcome under treatment x1. The binary definition

of the probability of benefiting from treatment, first described by Tian and Pearl [TP00],

would be better served with this notation.

The disjunction in Equation (9.2) simply enumerates all counterfactual possibilities that

comprise P (Yx2 > Yx1). The final summation in Equation (9.3) follows from the fact that

the counterfactual events in Equation (9.2) are mutually exclusive.
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9.2.1 Bounds

We cannot simply replace P (yx, y
′
x′) with P (yix2

, yjx1
) in the Tian-Pearl bounds for the

binary-outcome P (benefit), as in

max



0,

P (yix2
) + P (yjx1

)− 1,

P (yi)− P (yix1
),

P (yix2
)− P (yi),


⩽ P (yix2

, yjx1
) ⩽ min



P (yix2
),

P (yjx1
),

P (x2, yi) + P (x1, yj),

P (yix2
)− P (yix1

) +

P (x2, yj) + P (x1, yi)


(9.4)

because Tian-Pearl bounds depend on y and y′ being exhaustive of all outcome values.

Although the individual joint probability components of P (benefit) cannot be bounded

according to (9.4), their sum can be bounded according to Theorem 9.2.2.

Theorem 9.2.2 (Bounds on P (benefit) with Ordinal Outcomes).

P (benefit) ⩾ max



∑
1⩽i,j⩽n
s.t. i>j

max

 0,

P (yix2
) + P (yjx1

)− 1

 ,

P (y1x1
)− P (y1),

P (yn)− P (ynx1
),

P (y1)− P (y1x2
),

P (ynx2
)− P (yn),

max1⩽i<n

∑i
j=1

[
P (yjx1

)− P (yjx2
)
]



, (9.5)

P (benefit) ⩽ min



∑
1⩽i,j⩽n
s.t. i>j

min
{
P (yix2

), P (yjx1
)
}
,

1− P (x2, y1)− P (x1, yn),

1− P (y1x2
)− P (ynx1

) + P (x2, y1) + P (x1, yn),

1−max1⩽i⩽n

{∑i
j=1

[
P (yjx2

)− P (yjx1
)
]
+ P

(
yix1

)}


. (9.6)

Compared with the Tian-Pearl bounds, there are more arguments to the outer min and

max functions, and therefore more opportunities to narrow the bounds of P (benefit) with
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ordinal outcomes where |Y | ⩾ 3. This does not mean that discretizing your outcome to a

larger number of outcomes yields more precise bounds. This is both because the bounds are

net necessarily narrower and also because we are asking a different question when P (benefit)

is over a different number of outcomes. We will return to this matter at the end of this

chapter.

The proofs in Appendix Sections 11.3.1.1 and 11.3.1.2 provide both qualitative conceptual

proofs and mathematical proofs for both the lower and upper bounds.

9.2.2 Ternary Ordinal Outcome Example

Let us consider a fictional university organization, called GoGrad, with a mission to promote

graduate school to undergraduate students. They devise a strategy of campus events and

advertisements. Students would walk by their events at which point they could take an

advertisement. At the same time, advertisements were randomly targeted to some students

and explicitly prevented from other students.

There are |Y | = 3 outcomes for undergraduate students that were analyzed:

• y1 = pursue Bachelor’s degree

• y2 = pursue Master’s degree

• y3 = pursue Ph.D. degree

The treatments were x2 = received advertisement and x1 = no advertisement.
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Here is the data they collected after one year:

P (y1x1
) = 0.6, P (y1x2

) = 0.4,

P (y2x1
) = 0.3, P (y2x2

) = 0.45,

P (y3x1
) = 0.1, P (y3x2

) = 0.15,

P (y1|x1) = 0.7, P (y1|x2) = 0.3,

P (y2|x1) = 0.3, P (y2|x2) = 0.5,

P (y3|x1) = 0, P (y3|x2) = 0.2,

P (x1) = 0.6, P (x2) = 0.4.

The following additional probabilities are calculated for plugging into Equations (9.5)

and (9.6):

P (x1, y3) = P (y3|x1) · P (x1) = 0 · 0.6 = 0,

P (x2, y1) = P (y1|x2) · P (x2) = 0.3 · 0.4 = 0.12,

P (y1) = P (x2, y1) + P (y1|x1) · P (x1) = 0.12 + 0.7 · 0.6 = 0.54,

P (y3) = P (x1, y3) + P (y3|x2) · P (x2) = 0 + 0.2 · 0.4 = 0.08.

GoGrad wants to understand what proportion of students benefited from their efforts. In

other words, how many students would have pursued a Bachelor’s or Master’s degree without

their advertising and would have pursued a higher degree with their advertising:

P (benefit) = P
[
(y2x2

, y1x1
) ∨ (y3x2

, y1x1
) ∨ (y3x2

, y2x1
)
]
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Let us now determine the lower bound on P(benefit) using Equation (9.5):

P (benefit) ⩾ max



max{0, P (y2x2
) + P (y1x1

)− 1}

+max{0, P (y3x2
) + P (y1x1

)− 1}

+max{0, P (y3x2
) + P (y2x1

)− 1},

P (y1x1
)− P (y1),

P (y3)− P (y3x1
),

P (y1)− P (y1x2
),

P (y3x2
)− P (y3),

max{
∑1

j=1

[
P (yjx1

)− P (yjx2
)
]
,∑2

j=1

[
P (yjx1

)− P (yjx2
)
]
}



= max



max{0, 0.05}+max{0,−0.25}+max{0,−0.55},

0.6− 0.54,

0.08− 0.1,

0.54− 0.4,

0.15− 0.08,

max{0.6− 0.4, (0.6− 0.4) + (0.3− 0.45)}


= max

{
0.05, 0.06,−0.02, 0.14, 0.07, 0.2

}
= 0.2.
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The upper bound on P(benefit) using Equation (9.6) is similarly calculated:

P (benefit) ⩽ min



max{P (y2x2
), P (y1x1

)}

+max{P (y3x2
), P (y1x1

)}

+max{P (y3x2
), P (y2x1

)},

1− P (x2, y1)− P (x1, y3),

1− P (y1x2
)− P (y3x1

) + P (x2, y1) + P (x1, y3),

1−max{
∑1

j=1

[
P (yjx2

)− P (yjx1
)
]
+ P

(
y1x1

)
,∑2

j=1

[
P (yjx2

)− P (yjx1
)
]
+ P

(
y2x1

)
}



= min



max{0.45, 0.6}+max{0.15, 0.6}+max{0.15, 0.3},

1− 0.12− 0,

1− 0.4− 0.1 + 0.12 + 0,

1−max{0.4− 0.6 + 0.6, (0.4− 0.6 + 0.3) + (0.45− 0.3 + 0.3)}


= min{1.5, 0.88, 0.62, 1−max{0.4, 0.55}}

= 0.45.

Therefore, the probability that any particular student benefits from receiving a GoGrad

advertisement is between 20% and 45%.

9.2.3 Collapsing to Tian-Pearl Bounds

Bounds on P (benefit) with ordinal outcomes should supersede the Tian-Pearl bounds that

are based on binary outcomes. As a base case verification of non-binary P (benefit) with

ordinal outcomes, we can compare its bounds in Equations (9.5) and (9.6) when |Y | = 2

to the Tian-Pearl lower and upper bounds. The updated lower bound in Equation (9.5),
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setting n = 2, is:

P (benefit) ⩾ max



∑
1⩽i,j⩽2
s.t. i>j

max

 0,

P (yix2
) + P (yjx1

)− 1

 ,

P (y1x1
)− P (y1),

P (y2)− P (y2x1
),

P (y1)− P (y1x2
),

P (y2x2
)− P (y2),

max2⩽i⩽2

∑2
j=i

[
P (yjx2

)− P (yjx1
)
]



= max



max

 0,

P (y2x2
) + P (y1x1

)− 1

 ,

1− P (y2x1
)− [1− P (y2)] ,

P (y2)− P (y2x1
),

1− P (y2)−
[
1− P (y2x2

)
]
,

P (y2x2
)− P (y2),

P (y2x2
)− P (y2x1

)



= max



0,

P (y2x2
)− P (y2x1

)

P (y2)− P (y2x1
),

P (y2)− P (y2x1
),

P (y2x2
)− P (y2),

P (y2x2
)− P (y2),

P (y2x2
)− P (y2x1

)



= max



0,

P (y2x2
)− P (y2x1

)

P (y2)− P (y2x1
),

P (y2x2
)− P (y2),


. (9.7)
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Replacing y2 with y, y1 with y′, x2 with x, and x1 with x′ yields equivalent lower bounds

between Equation (9.7) and Tian-Pearl’s lower bound.

Similarly, the updated upper bound in Equation (9.6), setting n = 2, is:

P (benefit) ⩽ min



min
{
P (y2x2

), P (y1x1
)
}
,

1− P (x2, y1)− P (x1, y2),

1− P (y1x2
)− P (y2x1

) + P (x2, y1) + P (x1, y2),

1 + min


∑2

j=1

[
P (yjx2

)− P (yjx1
)
]
− P (y1x2

),

P (y2x2
)− P (y2x1

)− P (y2x2
)





= min



P (y2x2
),

P (y1x1
),

P (x2, y2) + P (x1, y1),

P (y2x2
)− P (y2x1

) + P (x2, y1) + P (x1, y2),

1 +
∑2

j=1

[
P (yjx2

)− P (yjx1
)
]
− P (y1x2

),

1− P (y2x1
)



= min



P (y2x2
),

P (y1x1
),

P (x2, y2) + P (x1, y1),

P (y2x2
)− P (y2x1

) + P (x2, y1) + P (x1, y2),

P (y2x2
) + P (y1x2

)− P (y1x1
) + P (y2x2

)− P (y2x1
),

P (y1x1
)



= min



P (y2x2
),

P (y1x1
),

P (x2, y2) + P (x1, y1),

P (y2x2
)− P (y2x1

) + P (x2, y1) + P (x1, y2),

1− 1 + P (y2x2
),


. (9.8)

The last argument of the min function in Equation (9.8) is equivalent to the first argument

and can be eliminated. As in the lower bound, this upper bound is equivalent to Tian-Pearl’s
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upper bound.

9.3 Probability of Harm

Using the same notation as in Section 9.2, we define the Probability of Harm.

Definition 9.3.1 (Probability of Harm). Y ∈ (y1, y2, . . . , yn), where yis are in increasing

order. X ∈ (x1, x2), where xis are in increasing order.

P (harm) ≜ P (Yx2 < Yx1)

= P

 ∨
1⩽i,j⩽n
s.t. i<j

(
yix2

, yjx1

)
=

∑
1⩽i,j⩽n
s.t. i<j

P
(
yix2

, yjx1

)
.

Simply swapping x1 and x2 allows for an easy derivation of bounds on P (harm) from

P (benefit).
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Theorem 9.3.2 (Bounds on P (harm) with Ordinal Outcomes).

P (harm) ⩾ max



∑
1⩽i,j⩽n
s.t. i>j

max

 0,

P (yix1
) + P (yjx2

)− 1

 ,

∑n
i=2

[(
P (yi)− P (yix2

)
)]

,

P (yn)− P (ynx2
),∑n

i=2

[(
P (yix1

)− P (yi)
)]

,

P (ynx1
)− P (yn),

max2⩽i⩽n

∑n
j=i

[
P (yjx1

)− P (yjx2
)
]



, (9.9)

P (harm) ⩽ min



∑
1⩽i,j⩽n
s.t. i>j

min
{
P (yix1

), P (yjx2
)
}
,∑n

i=2 P (x1, yi) +
∑n−1

j=1 P (x2, yj),∑n
i=2

[
P (yix1

)− P (x1, yi)
]
+
∑n−1

i=1

[
P (yix2

)− P (x2, yj)
]
,

1 + min1⩽i⩽n

{∑n
j=i

[
P (yjx1

)− P (yjx2
)
]
− P (yix1

)
}


. (9.10)

9.4 Probability of Immunity

In previous literature, the binary outcome counterfactual (yx, yx′) has been referred to as

immune, always-taker, and always cured [HS95]. Similarly, (y′x, y
′
x′) has been referred to as

doomed, never-taker, and never cured. With non-binary ordinal outcomes, these adjectives

are insufficient. There are |Y | levels a unit can have with and without treatment, so we

would need |Y | adjectives. Instead, we will label every unit that is unaffected by treatment

as immune.

Definition 9.4.1 (Probability of Immunity). Y ∈ (y1, y2, . . . , yn), where yis are in increasing
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order. X ∈ (x1, x2), where xis are in increasing order.

P (immunity) ≜ P (Yx2 = Yx1)

= P

(
n∨

i=1

(
yix2

, yix1

))

=
n∑

i=1

P
(
yix2

, yix1

)
.

Let βlb, βub, ηlb, and ηub refer to the lower and upper bounds of P (benefit) and P (harm)

in Equations (9.5), (9.6), (9.9), and (9.10), respectively.

Theorem 9.4.2 (Bounds on P (immunity) with Ordinal Outcomes).

max {0, 1− βub − ηub} ⩽ P (immunity) ⩽ 1− βlb − ηlb.

This is easily derivable by recognizing that

P (Yx2 = Yx1) = 1− P (Yx2 > Yx1)− P (Yx2 < Yx1)

= 1− P (benefit)− P (harm).

9.5 ATE

The non-binary ordinal outcome probabilities of causation naturally accommodate both

ordinal categorical outcomes and numerical outcomes, including those in which distances

between numerical outcome values carry no meaningful interpretations. In contrast, the

ATE is designed for numerical outcomes where differences between values directly reflect

meaningful magnitudes. Although ATE is valuable in summarizing the effect of a treatment,

its interpretation often becomes meaningless or nonsensical when dealing with categorical

ordered outcomes. For example, consider numerical assignments to military ranks (e.g.,

1 = Private, 2 = Corporal, 3 = Sergeant, 4 = Lieutenant). While the ordering conveys
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progression in rank, the numerical differences between these ranks do not represent consistent

or meaningful increments in advancement. Even when the outcome variable is numeric

with meaningful differences between values, the ATE no longer aligns with the intuitive

concept of causation as represented by the difference between probabilities P (benefit) and

P (harm). The following mathematical derivation demonstrates why the equality ATE =

P (benefit)− P (harm) breaks down when |Y | > 2.

ATE = E[Yx2 − Yx1 ]

= E[Yx2 ]− E[Yx1 ]

=
∑
y∈Y

y · P (Yx2 = y)−
∑
y∈Y

y · P (Yx1 = y)

=
∑
y∈Y

y ·

[∑
k∈Y

P (yx2 , ykx1
)

]
−
∑
y∈Y

y ·

[∑
k∈Y

P (ykx2
, yx1)

]

=


y1

y2
...

yn



T 
P (y1x2

, y1x1
) P (y1x2

, y2x1
) · · · P (y1x2

, ynx1
)

P (y2x2
, y1x1

) P (y2x2
, y2x1

) · · · P (y2x2
, ynx1

)
...

...
. . .

...

P (ynx2
, y1x1

) P (ynx2
, y2x1

) · · · P (ynx2
, ynx1

)

1n

−


y1

y2
...

yn



T 
P (y1x2

, y1x1
) P (y1x2

, y2x1
) · · · P (y1x2

, ynx1
)

P (y2x2
, y1x1

) P (y2x2
, y2x1

) · · · P (y2x2
, ynx1

)
...

...
. . .

...

P (ynx2
, y1x1

) P (ynx2
, y2x1

) · · · P (ynx2
, ynx1

)



T

1n

where n = |Y |. All of the component counterfactual probabilities that make up P (benefit)

and P (harm) in Definitions 9.2.1 and 9.3.1 have differences of Y values as coefficients. These

differences should equal 1 from P (benefit) components and −1 for P (harm) components in

order for ATE = P (benefit) − P (harm) to hold. However, this system of linear equations

has no solution. This is demonstrated below when |Y | = 3, with components of P (benefit)

161



in teal and components of P (harm) in red:

ATE = y1 · [P (y1x2
, y1x1

) + P (y1x2
, y2x1

) + P (y1x2
, ynx1

)]

+ y2 · [P (y2x2
, y1x1

) + P (y2x2
, y2x1

) + P (y2x2
, ynx1

)]

+ y3 · [P (y3x2
, y1x1

) + P (y3x2
, y2x1

) + P (y3x2
, y3x1

)]

− y1 · [P (y1x2
, y1x1

) + P (y2x2
, y1x1

) + P (y3x2
, y1x1

)]

− y2 · [P (y1x2
, y2x1

) + P (y2x2
, y2x1

) + P (y3x2
, y2x1

)]

− y3 · [P (y1x2
, y3x1

) + P (y2x2
, y3x1

) + P (y3x2
, y3x1

)]

= (y1 − y2) · [P (y1x2
, y2x1

)] + (y1 − y3) · [P (y1x2
, y3x1

)]

+ (y2 − y1) · [P (y2x2
, y1x1

)] + (y2 − y3) · [P (y2x2
, y3x1

)]

+ (y3 − y1) · [P (y3x2
, y1x1

)] + (y3 − y2) · [P (y3x2
, y2x1

)]. (9.11)

In order for ATE = P (benefit)− P (harm), the following must hold:

y1 − y2 = −1, (9.12)

y1 − y3 = −1, (9.13)

y2 − y3 = −1, (9.14)

y2 − y1 = 1,

y3 − y1 = 1,

y3 − y2 = 1.

Equations (9.12), (9.13), and (9.14) ensure that the red components of P (harm) all have coef-

ficient −1. Similarly, the remaining equations ensure that the teal components of P (benefit)

all have coefficient 1.

ATE = (−1) · [P (y1x2
, y2x1

)] + (−1) · [P (y1x2
, y3x1

)]

(1) · [P (y2x2
, y1x1

)] + (−1) · [P (y2x2
, y3x1

)]

(1) · [P (y3x2
, y1x1

)] + (1) · [P (y3x2
, y2x1

)].
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However, this system of linear equations has no solution. Subtracting Equation (9.14) from

Equation (9.13) yields y1 − y2 = 0. This is in conflict with Equation (9.12). Therefore

ATE ̸= P (benefit)− P (harm) for non-binary ordinal outcomes.

Theorem 9.5.1 (ATE Function of PoCs).

ATE =
∑

1⩽i,j⩽n

(yi − yj) · P (yix2
, yjx1

). (9.15)

Equation (9.11) can be generalized to show the new relationship of ATE and PoCs:

ATE = (y1 − y2) · p12 + (y1 − y3) · p13 + . . .+ (y1 − yn) · p1n

+ (y2 − y1) · p21 + (y2 − y3) · p23 + . . .+ (y2 − yn) · p2n

+
... +

... +
. . . +

...

+ (yn − y1) · pn1 + (yn − y2) · pn2 + . . .+ (yn − yn−1) · pn(n−1)

=
∑

1⩽i,j⩽n
s.t. i ̸=j

(yi − yj) · P (yix2
, yjx1

)

where pij = P (yix2
, yjx1

). Note that the summation in Equation (9.15) should be over all i

and j such that i ̸= j. However, (yi − yj) = 0 when i = j, so the condition i ̸= j is removed

for simplicity.

Ju and Geng [JG10] proposed the following alternative to ATE to overcome some of the

above challenges corresponding to counterfactual probabilities.

Definition 9.5.2 (Distributional Causal Effect (DCE)).

DCEk = P (Yx2 ⩾ yk)− P (Yx1 ⩾ yk)

=
∑
j⩾k

P (yjx2
)−

∑
j⩾k

P (yjx1
)

=
∑
j⩾k

[
P (yjx2

)− P (yjx1
)
]
.

However, DCE is not great as a summary treatment effect for two reasons. First, it does

not incorporate values of outcome Y in cases where there are meaningful distances between
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numeric values of Y . Second, there could be a mix of negative, zero, and positive average

causal effects for different ordinal levels. For example, assume |Y | = 3 and

P (y2x1
) + P (y3x1

) ⩾ P (y2x2
) + P (y3x2

),

P (y3x1
) ⩽ P (y3x2

).

Then the 3 values for DCE are:

DCE1 = 0,

DCE2 = P (y2x2
) + P (y3x2

)−
[
P (y2x1

) + P (y3x1
)
]

< 0,

DCE3 = P (y3x2
)− P (y3x1

)

> 0.

9.6 Monotonicity

With non-binary ordinal outcomes, monotonicity is defined as,

P (harm) = P (Yx2 < Yx1) = 0. (9.16)

Under this monotonicity assumption,

P (immunity) = 1− P (Yx2 > Yx1)− P (Yx2 < Yx1)

= 1− P (Yx2 > Yx1)

= 1− P (benefit)

With binary outcomes, assuming monotonicity allows identification of P (benefit), P (harm),

and P (immunity). Unfortunately, with non-binary ordinal outcomes, monotonicity, as de-

fined in (9.16), is no longer sufficient for identification of those PoCs.

The reason monotonicity is sufficient to identify binary outcome PoCs is demonstrated
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in the following relationship between the ATE, which is identifiably, and P (benefit):

ATE = P (benefit)− P (harm)

= P (benefit).

However, under non-binary ordinal outcomes, ATE is no longer necessarily equivalent to

the difference between P(benefit) and P (harm), as shown in Section (9.5).

All is not lost. We just need a stronger notion of monotonicity.

9.6.1 Monotonic Incremental Treatment Effect

Zhang et al. [ZGL24] defined monotonic incremental treatment effect for ordinal outcomes,

which places an additional constraint on monotonicity. This assumption is reasonable to

make in many real-world scenarios.

Definition 9.6.1 (Monotonic Incremental Treatment Effect (MITE)). The treatment X does

not decrease the level of Y and increases Y by at most one level, that is, 0 ⩽ Yx2 − Yx1 ⩽ 1.

Under the MITE assumption, the space of all counterfactual probabilities with binary

treatment and ordinal outcomes becomes simplified to:

P (y1x2
, y1x1

) 0 0 · · · 0 0

P (y2x2
, y1x1

) P (y2x2
, y2x1

) 0 · · · 0 0

0 P (y3x2
, y2x1

) P (y3x2
, y3x1

) · · · 0 0

0 0 P (y4x2
, y3x1

) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · P (yn−1x2
, yn−1x1

) 0

0 0 0 · · · P (ynx2
, yn−1x1

) P (ynx2
, ynx1

)


(9.17)

The only non-zero entries are the diagonal and subdiagonal.

Using the Law of Total Probability (LoTP), summing the whole first row of entries in

matrix (9.17) in order to sum out the event y1x1
from P (y1x2

, y1x1
). This is because all entries
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aside from P (y1x2
, y1x1

) in the first row are 0.

P (y1x2
, y1x1

) =
n∑

i=1

P (y1x2
, ynx1

)

= P (y1x2
).

We are unable to use this same technique for the second row of (9.17) because there are

two counterfactual PoCs. However, we sum the first column instead of row. There are still

two counterfactual PoCs, but we just identified the first one.

P (y2x2
, y1x1

) =
n∑

i=1

P (ynx2
, y1x1

)− P (y1x2
, y1x1

)

= P (y1x1
)− P (y1x2

).

Now that we have the first entry of the second row, we can sum the second row to identify

P (y2x2
, y2x1

):

P (y2x2
, y2x1

) =
n∑

i=1

P (y2x2
, ynx1

)− P (y2x2
, y1x1

)

= P (y2x2
)− P (y1x1

) + P (y1x2
).

We started with the first row, which identified its first element. Then we summed the

first column, yielding its second element. Then we summed the second row, providing its

second element. The second column can now be summed in order to identify P (y3x2
, y2x1

):

P (y3x2
, y2x1

) =
n∑

i=1

P (ynx2
, y2x1

)− P (y2x2
, y2x1

)

= P (y2x1
)− P (y2x2

) + P (y1x1
)− P (y1x2

).

Continuing in this zig-zag fashion, we can recursively identify every counterfactual probabil-

ity in (9.17):

P (yix2
, yjx1

) = (i− j) ·
[
P (yjx1

)− P (yi−1x2
, yjx1

)
]

+ (1− i+ j) ·
[
P (yjx2

)− P (yix2
, yj−1x1

)
]
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with the initial condition

P (y1x2
, y1x1

) = P (y1x2
),

where i ∈ {j, j + 1}. If i < j or i > j + 1, then P (yix2
, yjx1

) = 0. The closed form solution

of this linear recurrence relation is shown in Theorem 9.6.2.

Theorem 9.6.2 (Identification of Probabilities of Causation under MITE).

P (yix2
, yjx1

) =



∑j
k=1 P (ykx2

)−
∑j−1

k=1 P (ykx1
) if i = j∑j

k=1

[
P (ykx1

)− P (ykx2
)
]

if i = j + 1

0 otherwise

With binary outcomes, MITE is equivalent to monotonicity. We know that under mono-

tonicity the binary outcome P (benefit) = ATE = P (y2x2
)− P (y2x1

). Theorem 9.6.2 agrees:

P (benefit) = P (y2x2
, y1x1

)

= P (y2x2
)− P (y2x1

).

We can also verify that binary outcome P (immunity) and P (doom) are satisfied with Theo-

rem 9.6.2. Since P (harm) = 0 under monotonicity, P (immunity) = P (y2x1
) and P (doom) =

P (y1x2
). This is because under treatment x1, the better outcome, y2, is enjoyed by units

that are harmed by treatment x2 or immune, and, by assumption, no units are harmed.

P (immunity) = P (y2x2
, y2x1

)

= P (y2x1
).

Similarly, under treatment x2, the lesser outcome, y1, is suffered by units that are harmed

by treatment x2 or doomed, and, by assumption, no units are harmed.

P (doom) = P (y1x2
, y1x1

)

= P (y1x2
).

More generally, MITE is equivalent to monotonicity for binary treatment and outcomes.
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9.6.2 Tests

The Monotonicity Necessity Test and the Monotonicity Sufficiency Test for binary outcomes

are useful because we do not always know when monotonicity holds or when it cannot hold.

The same challenge exists for MITE. Either MITE is true in the underlying data generating

process but it is not justifiable, in which case a sufficiency test can be helpful, or MITE is

not true in the underlying data generating process but it cannot be ruled out, in which case

a necessary test can be helpful.

Theorem 9.6.3 (MITE Sufficiency Test). Y is monotonic, with incremental treatment ef-

fect, relative to X if

ηub = 0, and

[∀i, j ∈ [n]
(
i > j + 1 =⇒ P (yix2

) = 0 ∨ P (yjx1
) = 0

)
, or

P (x2, y1) + P (x1, yn) = 1, or

1 + P (x2, y1) + P (x1, yn) = P (y1x2
) + P (ynx1

), or

max
1⩽i⩽n

{
i∑

j=1

[
P (yjx2

)− P (yjx1
)
]
+ P

(
yix1

)}
= 1].

The first term ensures that P (harm) = 0. The second term ensures all other probabilities

of causation where treatment increases Y by more than one level are 0. The expression comes

from the Fréchet Inequality upper bound. The remaining terms come from P (benefit). While

MITE does not require benefit to be 0, this does suffice and is added with an or condition.

Theorem 9.6.4 (MITE Necessity Test). Y is monotonic, with incremental treatment effect,
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relative to X only if

ηlb = 0, and

∀i, j ∈ [n]
(
i > j + 1 =⇒ P (yix2

) + P (yjx1
) = 1

)
, and

P (y1x1
) = P (y1), and

P (yn) = P (ynx1
), and

P (y1) = P (y1x2
), and

P (ynx2
) = P (yn), and

max
1⩽i<n

i∑
j=1

[
P (yjx1

)− P (yjx2
)
]
= 0.

The first term ensures it is possible that P (harm) = 0. The second term ensures all other

probabilities of causation where treatment increases Y by more than one level are possibly

0. The expression comes from the Fréchet Inequality lower bound. For the same reason as

the MITE Sufficiency Test, the remaining terms come from P (benefit).

9.7 Unit Selection

Li and Pearl [LP19] formulated the following benefit function, dependent on PoCs with

binary outcomes.

f(β, γ, θ, δ) ≜ βP (y2x2
, y1x1

) + γP (y2x2
, y2x1

) + θP (y1x2
, y1x1

) + δP (y1x2
, y2x1

).

They showed that this benefit function is identifiable under monotonicity or gain equality.

Definition 9.7.1 (Gain Equality).

β + δ = γ + θ. (9.18)
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9.7.1 Linear Benefit Function with Ordinal Outcomes

With non-binary ordinal outcomes, the Li-Pearl benefit function, f(β, γ, θ, δ), needs to be

generalized. With binary treatment and outcomes, there are 4 ways that individuals respond

to the 2 treatments. They could be benefiters, harmed, immune, or doomed. The utility

of selecting each of the counterfactual responder types needs to be expanded from 4 utility

values corresponding to 4 responder types to |Y ||X| = |Y |2 utility values corresponding to

|Y |2 responder types.

A new benefit function is required.

Definition 9.7.2 (Linear Benefit Function with Ordinal Outcomes).

b(Υ) ≜ 1T
n (Υ ◦ P )1n, (9.19)

where Υ ∈ Rn×n is a matrix of utility values, P ∈ Rn×n is a corresponding matrix of ordinal

outcome probabilities of causation, and Υ ◦ P is the element-wise Hadamard product of Υ

and P .

Each element υij of Υ corresponds to the utility of selecting a unit (yix2
, yjx1

):

Υ =


υ11 υ12 · · · υ1n

υ21 υ22 · · · υ2n
...

...
. . .

...

υn1 υn2 · · · υnn

 ,

P =


P (y1x2

, y1x1
) P (y1x2

, y2x1
) · · · P (y1x2

, ynx1
)

P (y2x2
, y1x1

) P (y2x2
, y2x1

) · · · P (y2x2
, ynx1

)
...

...
. . .

...

P (ynx2
, y1x1

) P (ynx2
, y2x1

) · · · P (ynx2
, ynx1

)

 .
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9.7.2 Utility Matrix Creation

Let us consider three different personas and how they would reason about the construction

of a utility matrix Υ. First, Jack is a board member of GoGrad, the fictional university or-

ganization from Section 9.2.2. There are |Y | = 3 outcome possibilities, Bachelor’s, Master’s,

and Ph.D. degrees. Therefore, Υ ∈ R32×32 . The top row consists of numerical quantities

that have some meaning to Jack as weights or preferences for counterfactual outcomes where

students pursue Bachelor’s degrees only after receiving a GoGrad advertisement. The first

element is the value Jack places on advertising to a student who would have also pursued a

Bachelor’s degree only even if they had not received an advertisement. Jack figures GoGrad

would have wasted an advertisement on them, so he choose a small negative dollar amount

for υ11. To the right is υ12, where a student would have pursued a Master’s degree without a

GoGrad advertisement. Jack does not like this situation, the advertisement actually turned

this student away from grad school. So Jack considers this a -$20 loss to the organization.

Next is υ13, where a student would have pursued a Ph.D. without a GoGrad advertisement.

This really infuriates Jack and he determines, since this is against everything GoGrad stands

for, this is worth -$60. The first row and the rest of the rows look like the following:

Υ =


−$0.50 −$20 −$60

$15 $1 −$30

$40 $10 −$0.50


Notably, at $40, Jack really values causing a student to pursue a Ph.D. when they would have

otherwise pursued a Bachelor’s degree. However, that benefit is not a harmful, in Jack’s eyes,

as causing the opposite (going from Ph.D. to Bachelor’s). This asymmetric utility selection

is entirely reasonable and is what separates great decision making from potentially severely

sub-optimal decision making.

Second, consider Rebecca, head of the Ministry of Tourism for a beautiful mountain

town. She has a great idea to incentivize travelers coming to her town with cryptocurrency

in order to bring along friends and family. There are |Y | = 3 outcomes: traveler goes by

171



themselves, traveler brings 1 to 5 people, and traveler brings 6 or more people. If every

traveler brought along 6 or more people, the town would be inundated and its reputation

will be hurt. So Rebecca needs to be careful. She constructs her utility matrix as follows:

Υ =


−1 −50 −10

100 −5 10

−10 −20 −30


Rebecca’s reasoning is not so obvious and there doesn’t appear to be a clear pattern to her

utilities. I will point out the notable points to help clarify her choices. The diagonal contains

utilities for where the cryptocurrency incentive had no effect. They are negative because the

incentive costs money and costs more money the more friends and family the traveler brings.

This is why the utilities are negative and increase in magnitude towards the bottom right.

The scenario in the second row and first column, where travelers would have came along

without the incentive but bring 1 to 5 friends and family with the incentive, is worth the

maximum value Rebecca awards. This is because it is the best outcome and exactly what

her incentive program was designed for. The worst outcome is when a traveler was going

to bring 1 to 5 people without the incentive but the incentive caused him to go alone. This

is worth -50, which isn’t as negative as 100 is positive, indicating that Rebecca cares more

about a traveler benefiting her town than a traveler hurting her town. Finally, it may seem

odd that Rebecca assigns a positive 10 to the situation when her incentive disencentivizes

someone from bringing many people to now bring fewer people. Remember, she has to be

cautious not to inundate her town with tourists.

Lastly, let us consider the STAR project (Chapter 2) utility matrix, Υ, with |Y | = 4 for

the quaternary discretized outcomes. It is important that smaller class sizes benefit students’

math scores, but even more important that they do not harm students’ math scores. The

Education Board of Directors decide to reward schools who take some intervention and

benefit students. In the STAR case, the intervention was smaller class sizes. The following

numbers are monetary rewards in thousands of dollars, written as single digits for space and
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readability considerations.

Υ =


−2 −3 −5 −10

2 1 −1 −5

4 3 1 −1

5 4 2 0

 .

Notice the diagonal now increases in values when going towards the bottom right. This

is because the Board feels that a poor math achieving student who remains a poor math

achieving student with or without the intervention is not desirable. This desires a penalty

of $2,000. Whereas a below- or above-average math student who remains as such whether

placed in a regular or small class is not a problem. The Board is completely fine with that

and will even reward this with its smallest reward. This is because that student was not

harmed and maybe was impossible to become a higher-achieving math student. On the other

hand, a top performing math student who remains top performing with or without a small

class is neutral. There is no reward or penalty. It was impossible to benefit this student with

a smaller class as this student was already at the top. At least the student did not suffer

with a small class. However, that is offset by the spot taken in the small class by a student

who did not need it.

9.7.3 Identifiability

Under the assumption of MITE, all of P is identifiable, which makes b(Υ) identifiable. Since

the new benefit function in Definition 9.7.2 requires |Y |2 utility values, the gain equality in

Equation (9.18) does not work to make the benefit function identifiable when |Y | > 2.

The utility values can still offer opportunities to identify b(Υ). Notice the columns and
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the rows in the following Hadamard product of Υ and P :

Υ ◦ P =


υ11 · P (y1x2

, y1x1
) υ12 · P (y1x2

, y2x1
) · · · υ1n · P (y1x2

, ynx1
)

υ21 · P (y2x2
, y1x1

) υ22 · P (y2x2
, y2x1

) · · · υ2n · P (y2x2
, ynx1

)
...

...
. . .

...

υn1 · P (ynx2
, y1x1

) υn2 · P (ynx2
, y2x1

) · · · υn3 · P (ynx2
, ynx1

)

 .

If all of the utility values in a column are equal, that column collapses into an identifiable

probability:

υ1j = υ2j = . . . = υnj =⇒
n∑

i=1

υij · P (yix2
, yjx1

) = υ1j · P (yjx1
).

The same is true of the utility values in a row:

υi1 = υi2 = . . . = υin =⇒
n∑

j=1

υij · P (yix2
, yjx1

) = υi1 · P (yix2
).

Unfortunately, it is unusual for the utility values to all be equal along a row or column.

That would mean benefiting, harmed, and immune units all have the same utility, except at

the edges of the matrix. Fortunately, the following is a simple test in O(n2) time to determine

whether the utility values make b(Υ) identifiable, followed by a method to compute it.

Theorem 9.7.3 (Utility Equality Test (UET)).

∀i, j ∈ {2, 3, . . . , n} (υi1 − υij = υ11 − υ1j) . (9.20)

To see why Theorem 9.7.3 works, we can split each utility value into the sum of two

values: υij = αi + βj, where αis have the same value across each row and βjs have the same

value across each column. For space considerations, let pij = P (yix2
, yjx1

):

Υ ◦ P =


(α1 + β1) · p11 (α1 + β2) · p12 · · · (α1 + βn) · p1n

(α2 + β1) · p21 (α2 + β2) · p22 · · · (α2 + βn) · p2n
...

...
. . .

...

(αn + β1) · pn1 (αn + β2) · pn2 · · · (αn + βn) · pnn

 . (9.21)
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Notice that the sum of the diagonals of (9.21), multiplied by n−1 (the number of elements

in a row or column minus 1 for the diagonal), equal the sum of the non-diagonals of (9.21):

(n− 1) · (υ11 + υ22 + · · ·+ υnn) =��υ11 + υ12 + · · ·+ υ1n

+ υ21 +��υ22 + · · ·+ υ2n

+
... +

... +
. . . +

...

+ υn1 + υn2 + · · ·+��υnn

(n− 1) · (α1 + β1 + α2 + β2 + · · ·+ αn + βn) = (n− 1) · α1 + (n− 1) · α2

+ (n− 1) · β1 + (n− 1) · β2

+
...

+ (n− 1) · αn + (n− 1) · βn

This constitutes a necessary test, but it is not a sufficient test. The more strict constraint

of Equation (9.20) is required.

The UET states that column differences are constant across rows and row differences are

constant across columns. Consider an arbitrary difference between two υ elements on the

same row:

υij − υik = (αi + βj)− (αi + βk)

= βj − βk.

Since the difference in υ values on the same row do not depend on αi, and therefore the

specific row, that difference should be the same for every row between the same columns.

The same invariant must hold for the difference between υs on the same column:

υij − υkj = (αi + βj)− (αk + βj)

= αi − αk.

We do not need to test both column differences across rows and row differences across

columns, since one implies the other. Additionally, if the differences between the first column

175



and any column is constant across rows, that implies the difference between any pair of

columns is constant across rows. Therefore, we only need to test the condition in (9.20).

This is seen in the following derivation:

υij − υi1 = υ1j − υ11, rows i, 1; same column differences

υkj − υk1 = υ1j − υ11, rows k, 1; same column differences

υij − υkj = υi1 − υk1. columns i, k; same row differences

The first two equalities come from the UET condition and the third equality is the difference

of the first two equalities. Note that there is never a need for the UET condition to test

i = 1 or j = 1 because then the statement becomes a tautology.

When |Y | = 2, the UET simplifies to the Li-Pearl Gain Equality in Equation (9.18):

υ21 − υ22 = υ11 − υ12,

β = υ21,

γ = υ22,

θ = υ11,

δ = υ12,

β − γ = θ − δ,

γ + θ = β + δ.

Note that the utility matrix Υ decomposition can easily be extended into non-binary

treatment scenarios with an (|X| = m)-dimensional tensor comprised of m (|Y | = n)-

dimensional vectors whose components are summed at each tensor location. The math

in this chapter easily generalizes to accommodate this.
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9.7.4 Identification Example

As an example, let us revisit the STAR project utility matrix constructed in Section 9.7.2.

This does not pass the UET:

υ13 − υ14 = −5−−10 = 5,

υ23 − υ24 = −1−−5 = 4,

υ13 − υ14 ̸= υ23 − υ24.

Therefore, the STAR benefit is not identifiable. However, it is very close. Let us examine

what happens if we simply change υ14 to -7 and υ24 to -3:

Υ =


−2 −3 −5 −7

2 1 −1 −3

4 3 1 −1

5 4 2 0

 . (9.22)

The UET tells us that the benefit function b(Υ) is now identifiable since Υ passes condition

(9.20):

2− 1 = −2−−3 =⇒ 1 = 1,

2−−1 = −2−−5 =⇒ 3 = 3,

2−−3 = −2−−7 =⇒ 5 = 5,

4− 3 = −2−−3 =⇒ 1 = 1,

4− 1 = −2−−5 =⇒ 3 = 3,

4−−1 = −2−−7 =⇒ 5 = 5,

5− 4 = −2−−3 =⇒ 1 = 1,

5− 2 = −2−−5 =⇒ 3 = 3,

5− 0 = −2−−7 =⇒ 5 = 5.
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It might seem strange why we should be able to simply change one’s preference for

certain outcomes or response types. In some circumstances this makes sense. In particular,

the Tennessee Education Board wanted to incentivize schools based on the counterfactual

responses of their students. However they cannot do this effectively without being able to

point-estimate the associated PoCs. By simply lowering the penalty a little on two response

types, the Board is able to achieve its objective.

9.7.5 Algorithm to Identify b(Υ) under Utility Equality

Given a utility matrix Υ ∈ Rn×n that passes the UET in Theorem 9.7.3, we want to find

vectors α,β ∈ Rn such that υij = ai + bj. Then we can use α and β to identify Υ ◦ P and

finally compute b(Υ). This process is performed in Algorithm 1.

The algorithm starts by simply assigning α1 = 0. Then all the βjs are easy to calculate,

they are simply equal to υ1j. We only need β1 to find the αis, αi are equal to υi1 − β1.

The reason we’re allowed to assign α1 = 0, or any arbitrary value, is that you can always

add any real value r to α1 as long as you subtract r from β1. In this way, α1 + β1 =

υ11 continues to hold. However, υ12, υ13, . . . , υ1n now need their corresponding βis to be

decremented by r as well. Similarly, because we decremented β1 by r, υ21, υ31, . . . , υn1 need

their corresponding αis to be incremented by r. Ultimately, every αi is incremented by r

and every βi is decremented by r, leaving all αi + βj = υij to remain true. Therefore, there

are an infinite number of solutions for the vectors α and β.

Note that although the UET is an O(n2) algorithm due to the need to check every element

of an n× n matrix, the identification of the linear benefit function in Algorithm 1, once the

UET is passed, is only a O(n) algorithm. This can be computationally beneficial if we have a

stable utility matrix, that passes the UET, applied to many different probabilistic scenarios.

Step 2 in Algorithm 1 does call for checking the consistency of α, β, and all elements of Υ,

which is a O(n2) check, but this can be skipped when Υ passes the UET.
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Algorithm 1 Identify b(Υ) under Utility Equality

Require:

• Utility matrix Υ ∈ Rn×n.

• Marginal probability vectors Px2 , Px1 ∈ Rn of Probability of Causation matrix

P ∈ Rn×n.

Ensure: Υ passes the UET in Theorem 9.7.3.

1: (1) Solve for α,β ∈ Rn, where υij = αi + βj.

2: Set α1 ← 0

3: for j = 1 to n do

4: βj ← υ1j − α1 = υ1j

5: end for

6: for i = 2 to n do

7: αi ← υi1 − β1

8: end for

9: (2) Check consistency for all υij (optional).

10: for i = 1 to n do

11: for j = 1 to n do

12: if υij ̸= αi + βj then

13: Reject: no valid decomposition exists. Stop.

14: end if

15: end for

16: end for

17: (3) Compute the linear function of marginal probabilities of P.

18: Set b← αTPx2 + βTPx1

19: return b

20: Accept: The decomposition exists with the found α and β vectors and b(Υ) has been

computed.
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9.7.6 Simplification to Gain Equality

Algorithm 1, with |Y | = 2 and under the assumption of Gain Equality, simplifies to:

α1 = 0,

β1 = υ11 = θ,

β2 = υ12 = δ,

α2 = υ21 − υ11 = β − θ,

b(Υ) = (β − θ) · P (y2x2
) + θ · P (y1x1

) + δ · P (y2x1
)

= (β − θ) · P (y2x2
) + θ + (δ − θ) · P (y2x1

). (9.23)

Equation (9.23) matches Li and Pearl’s benefit function identification [Li and Pearl 2019,

§5.1] when replacing (δ − θ) by (γ − β) due to Gain Equality.

9.7.7 Computation Example

Continuing with the quaternary discretized outcome STAR project utility matrix, Υ, in

Equation (9.22), we can now compute a point-estimate of b(Υ) using Algorithm 1. The first

step requires finding the α and β vectors:

α1 = 0,

β1 = υ11 = −2,

β2 = υ12 = −3,

β3 = υ13 = −5,

β4 = υ14 = −7,

α2 = υ21 − υ11 = 2−−2 = 4,

α3 = υ31 − υ11 = 4−−2 = 6,

α4 = υ41 − υ11 = 5−−2 = 7.
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The next step in Algorithm 1 checks consistency for α, β, and all elements of Υ. However,

Υ has already passed the UET, so we can skip this step.

Finally, the benefit function b(Υ) can be computed as the sum of two matrix multiplica-

tions:

b(Υ) = αTPx2 + βTPx1

=
[
0 4 6 7

]

P (y1x2

)

P (y2x2
)

P (y3x2
)

P (y4x2
)

+
[
−2 −3 −5 −7

]

P (y1x1

)

P (y2x1
)

P (y3x1
)

P (y4x1
)


= 0(0.0062) + 4(0.2023) + 6(0.5290) + 7(0.2624)

+−2(0.0103) +−3(0.2437) +−5(0.5306) +−7(0.2154)

= 0.9075.

The benefit is positive, so small classrooms are a good idea. The units and interpretation

of b(Υ) = 0.9075 depends on the units and interpretation of the utility matrix Υ.

Now let us see what the result would have been with binary discretized outcome. We

will need a new utility matrix, which we will derive from the quaternary discretized utility

matrix in Equation (9.22) by summing each of the four quadrants:

Υ =

−2 −16
16 2

 . (9.24)

We can immediately see this passes the UET because it satisfies Gain Equality in Equation

(9.18):

16 +−16 = 2 +−2.
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Let us find α and β:

α1 = 0,

β1 = υ11 = −2,

β2 = υ12 = −16,

α2 = υ21 − υ11 = 16−−2 = 18.

The overall benefit is then,

b(Υ) =
[
0 18

]P (y1x2
)

P (y2x2
)

+
[
−2 −16

]P (y1x1
)

P (y2x1
)


= 0(0.2086) + 18(0.7914) +−2(0.2540) +−16(0.7460)

= 1.8012.

It is interesting that the same STAR project, with the same data, yields two different

benefits, 0.9075 when using a quaternary discretization and 1.8012 when using a binary dis-

cretization. This begs the question, why should we get almost double the benefit depending

on how we discretize the outcome? Which result should we look at when making a decision?

We lose information when we discretize and when we compress the utility matrix. More

importantly, we are answering a different benefit question when we consider different dis-

cretizations. This is similar to the additional information paradox of Section 4.3.4, where

the explanation to the paradox is that we are answering different questions about bounds.

For a binary ordinal outcome discretization, we are concerned with the benefit of overcoming

some threshold. For a quaternary ordinal outcome discretization, we are concerned with how

units would respond in 16 different ways, assuming binary treatment. The answer to the

above question is to always use the largest possible discretization where the utility matrix

can be decided and the Probability of Causation matrix can be estimated or causal effects

can be estimated in the case that identification is possible.
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9.7.8 Starting with α and β

We have seen how to assign utilities to counterfactual response types in Section 9.7.2, how

to test if a utility assignment is identifiable with the UET in Theorem 9.7.3, and how to find

the α and β vectors in order to compute the benefit function if utility equality is met in

Algorithm 1. It is interesting to note that we do not need the UET or algorithm if we first

start by creating α and β instead of creating the utility matrix Υ.

There are two reasons to start with utility matrix creation versus α and β construction.

First, we may not know that the utility values that define our decision strategy passes the

UET and, therefore, allows the benefit function to be identified. If the UET fails, then it is

impossible to construct corresponding α and β vectors.

Second, it is easier to reason about the value of a unit that responds in a particular way

to treatment 1 and in a particular way to treatment 2. To reason about α and β, one must

place values on causal effect probabilities under a particular treatment without regard to

the response to the other treatment. For example, how would you place a utility value on

treating someone who recovers when being administered this treatment? They might have

recovered regardless of whether the treatment was administered and, for this utility, there is

no information on how likely that is.

Some scenarios may lend themselves to effectively choosing α and β values. Consider

what happens when α = −β:

b(Υ) = αTPx2 + βTPx1

= αTPx2 −αTPx1

= αT (Px2 − Px1) .

The benefit function is then a version of ATE where the values of Y have been replaced

with α. To go a step further, if the values of Y are numeric with meaningful distances, then

α =
[
y1 y2 · · · yn

]
makes the benefit function exactly the ATE.
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We now know how to create our utility matrix by starting with α and β and guaranteeing

identifiability of the benefit function for a version of ATE or exactly the ATE. However,

if someone wanted to set α = −β, they could simply and directly use the ATE instead

of the framework presented in this chapter. One valuable benefit they would receive is

an examination of the constructed utility matrix. This would tell them the counterfactual

response types they are really valuing, offering a deeper understanding of the often subjective

values we place on things. Upon seeing the utility matrix, many people may wish to revise

their utilities.

9.8 Continuous Outcome

The largest possible discretization of ordinal outcomes is when the cardinality of our outcome

variable becomes infinite with either fine-grained values or by the nature of the outcome. In

this case, we need a utility function, ω, of the number of treatment values analogous to the

utility matrix Υ. Since this dissertation has focused on binary treatment, we can consider

ω(µ, υ) to be a binary continuous function, where µ represents the outcome had treatment

x2 occurred and υ represents the outcome had treatment x1 occurred. Similarly, f(µ, υ) is

defined as the counterfactual joint probability distribution function with the same meaning

given to its two parameters.

Definition 9.8.1 (Continuous Benefit Function with Ordinal Outcomes).

B(ω) ≜
∫∫ ∞

−∞
ω(µ, υ) · f(µ, υ) dµ dυ.

It may be a challenge to specify the utility, preferences, or weights for ω(µ, υ) in a

continuous mechanism, but many scenarios can allow this to be legitimately constructed. For

example, an investment scenario can assign a financial utility as a function of the different

outcomes under two different treatments.

The bigger challenge may be specifying the continuous joint probability distribution
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function f(µ, υ). Access to an underlying Structural Causal Model (SCM) can allow for this

function to be constructed for point estimates at every µ and υ. Digital circuit analysis is

an example scenario that can potentially identify f(µ, υ).
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CHAPTER 10

Conclusion

The research presented in this dissertation provides significant advancements in decision

science by introducing and refining methods for personalized and situation-specific decision

making using causal inference and counterfactual reasoning. Central to these advancements

are several novel contributions.

Foundational counterfactual probabilities, called Probabilities of Causation (PoCs), were

introduced and analyzed both mathematically and intuitively, offering techniques to esti-

mate and apply them. Recognizing the historical difficulty of estimating these inherently

counterfactual quantities, I demonstrated that, under reasonable assumptions and leveraging

domain knowledge, causal structures, and covariate data, it is possible to derive sufficiently

precise estimates to substantially improve decision quality.

I provided additional insight into refining decisions by demonstrating how the intention

to act, as distinct from the action itself, can inform causal inference. Incorporating inten-

tions and follow-through decisions as evidence offers deeper insights, helping further narrow

counterfactual bounds and improve decisions.

Monotonicity, an assumption simplifying counterfactual estimation by constraining out-

comes, was thoroughly examined. Necessary and sufficient conditions for monotonicity were

tested, and the consequences of violations were analyzed. These results directly improved

the accuracy and reliability of PoC estimates. Similarly, I addressed selection bias, provid-

ing methods to quantify, detect, and incorporate its effects into causal analyses, thereby

enhancing the robustness of real-world decision making processes.
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This dissertation culminated in generalized theorems that extended PoCs, unit selection,

and decision making to scenarios with non-binary ordinal outcomes, moving beyond the bi-

nary success/failure paradigm. This cornerstone contribution derived new bounds, estimates,

and conditions for point estimates, while adapting concepts like the Average Treatment Ef-

fect (ATE) and monotonicity to this more complex setting. A simple benefit function was

introduced to guide optimal decision making, accompanied by an algorithm to compute

overall utility.

The practical value of these methods was illustrated using a real-world dataset from

Tennessee’s STAR project. By combining observational and experimental data and apply-

ing these methodological innovations, clearer individual-level probabilities were produced,

resulting in improved recommendations for educational decision making.

These contributions not only provide immediate tools for optimal decision making but

also set the stage for future research and practical applications, including the transformative

potential of integrating causal and counterfactual reasoning into AI systems.

10.1 Future Work

The findings and methods introduced in this dissertation pave the way for several promising

future research directions:

• Explore richer combinations of covariates and mediators, beyond the scenarios inves-

tigated so far, to further narrow PoC bounds.

• Introduce new reasonable assumptions to achieve even narrower bounds on PoCs with

both binary and non-binary ordinal outcomes.

• Formulate alternative monotonicity assumptions that allow for bound narrowing and

point-estimating PoCs with non-binary ordinal outcomes.
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• Narrow non-binary ordinal outcome PoC bounds utilizing the causal structure, using

techniques in Chapter 4.

• Narrow non-binary ordinal outcome PoC bounds when the assumption of monotonicity

is warranted, but MITE is not.

• Analyze consequences of partial violations of monotonicity and how that allows for

bound narrowing of non-binary ordinal outcome PoCs.

• Extend the non-binary ordinal outcome framework to include non-binary ordinal treat-

ments, in addition to outcomes. This would broaden the applicability of PoCs to more

complex decision contexts.

• Narrow bounds on utility function based on the degree the UET fails

• Develop continuous benefit functions, building upon preliminary ideas discussed in

Section 9.8, allowing for this decision making calculus to be applied to a wider range

of scenarios.

• Create intuitive visualizations and interactive tools, similar to those available at https:

//learn.ci/bounds.html, to facilitate broader understanding and adoption of PoCs.

• Develop and publish software libraries to compute PoC bounds and integrate them with

other Causes of Effects (CoE) algorithms and decision making algorithms. This would

make these methods accessible to a wider audience of researchers and practitioners.

10.2 Artificial Intelligence

Achieving genuinely intelligent decision making in AI systems and agents demands the abil-

ity to reason about counterfactual scenarios and outcomes. Although state-of-the-art AI

today is astonishing in prediction and pattern recognition, it often struggles to understand
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causality or meaningfully incorporate counterfactual analysis. This is something us humans

do instinctively, even as infants at a basic level [GG24].

To realize the full potential of AI, we should not wait until true causal and counterfactual

reasoning become emergent properties. First, that day may never come. Second, even if

current AI models can scale and be tweaked and trained to develop these capabilities on

their own, we can dramatically accelerate progress now.

We need to integrate causal and counterfactual reasoning and decision making into the

models. This might entail rearchitecting the fundamental framework and algorithms that

comprise state of the art models. Instead of, or in addition to, that level of integration,

embedding counterfactual thinking may take the form of careful selection and curation of

pre-training data, fine-tuning models with a focus on causality, creating benchmarks that

are only passable with a deep understanding of counterfactual reasoning, and ensuring the

context of every interaction includes the math and algorithms of personalized and situation-

specific decision making with counterfactual reasoning.

The methods presented and developed in this dissertation accomplish two goals. First

they allow for optimal decision making with reasonable assumptions utilizing all available

data. Second, they provide the math and algorithms for a machine to make the best possible

choices.
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CHAPTER 11

Appendices

11.1 Appendix for Chapter 3

11.1.1 Bounds of P (harm)

The bounds of P (harm) in Equation (3.23) come from

P (harm) = P (benefit)− ATE

= P (benefit)− [P (yx)− P (yx′)]

= P (benefit)− P (yx) + P (yx′)

and the bounds of P (benefit):

max



0,

P (yx)− P (yx′),

P (y)− P (yx′),

P (yx)− P (y)


⩽ P (benefit) ⩽ min



P (yx),

P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′)

+ P (x, y′) + P (x′, y)


.
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We can now bound P (harm):

P (harm) ⩾ max



0− P (yx) + P (yx′),

P (yx)− P (yx′)− P (yx) + P (yx′),

P (y)− P (yx′)− P (yx) + P (yx′),

P (yx)− P (y)− P (yx) + P (yx′)



= max



P (yx′)− P (yx),

0,

P (y)− P (yx),

P (yx′)− P (y)


,

P (harm) ⩽ min



P (yx)− P (yx) + P (yx′),

P (y′x′)− P (yx) + P (yx′),

P (x, y) + P (x′, y′)− P (yx) + P (yx′),

P (yx)− P (yx′)

+ P (x, y′) + P (x′, y)− P (yx) + P (yx′)



= min



P (yx′),

[1− P (yx′)]− P (yx) + P (yx′),

P (yx′)− P (yx)

+ P (x, y) + P (x′, y′),

P (x, y′) + P (x′, y)



= min



P (yx′),

P (y′x),

P (x, y′) + P (x′, y),

P (yx′)− P (yx)

+ P (x, y) + P (x′, y′)


.
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11.1.2 Relationships of P (immunity) and P (doom) to Benefit and Harm

Equations (3.24) and (3.25) are derived as follows:

P (immunity) = P (yx, yx′)

= P (yx, yx′) + [P (yx, y
′
x′)− P (yx, y

′
x′)]

= P (yx)− P (yx, y
′
x′) (11.1)

= P (yx)− P (benefit),

P (doom) = P (y′x, y
′
x′)

= P (y′x, y
′
x′) + [P (y′x, yx′)− P (y′x, yx′)]

= P (y′x)− P (y′x, yx′) (11.2)

= P (y′x)− P (harm).

The LoTP allows for Equations (11.1) and (11.2).
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11.1.3 Bounds of P (immunity) and P (harm)

The lower bound of Equation (3.26) is derived using Equation (3.24) as follows:

P (immunity) ⩾ P (yx)−min



P (yx),

P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′)

+ P (x, y′) + P (x′, y)



= max



P (yx)− P (yx),

P (yx)− P (y′x′),

P (yx)− [P (x, y) + P (x′, y′)],

P (yx)− [P (yx)− P (yx′)

+ P (x, y′) + P (x′, y)]



= max



0,

P (yx)− P (y′x′),

P (yx)− P (x, y)− P (x′, y′)

P (yx′)− P (x, y′)− P (x′, y)


.
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The upper bound of Equation (3.26) is derived using Equation (3.24) as follows:

P (immunity) ⩽ P (yx)−max



0,

P (yx)− P (yx′),

P (y)− P (yx′),

P (yx)− P (y)



= min



P (yx)− 0,

P (yx)− [P (yx)− P (yx′)],

P (yx)− [P (y)− P (yx′)],

P (yx)− [P (yx)− P (y)]



= min



P (yx),

P (yx′),

P (yx) + P (yx′)− P (y),

P (y)


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Similarly, the lower bound of (3.27) is derived using Equation (3.25) as follows:

P (doom) ⩾ P (y′x)−min



P (yx′),

P (y′x),

P (x, y′) + P (x′, y),

P (yx′)− P (yx)

+ P (x, y) + P (x′, y′)



= max



P (y′x)− P (yx′),

P (y′x)− P (y′x),

P (y′x)− [P (x, y′) + P (x′, y)],

P (y′x)− [P (yx′)− P (yx)

+ P (x, y) + P (x′, y′)]



= max



P (y′x)− P (yx′),

0,

P (y′x)− P (x, y′)− P (x′, y)

P (y′x) + P (yx)− P (yx′)

− P (x, y)− P (x′, y′)



= max



0,

P (y′x)− P (yx′),

P (y′x)− P (x, y′)− P (x′, y)

P (y′x′)− P (x, y)− P (x′, y′)


.

The last argument to max in the final equality is a result of P (y′x)+P (yx) = 1 and 1−P (yx′) =

P (y′x′).
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Finally, the upper bound of (3.27) is derived using Equation (3.25) as follows:

P (doom) ⩽ P (y′x)−max



0,

P (yx′)− P (yx),

P (y)− P (yx),

P (yx′)− P (y)



= min



P (y′x)− 0,

P (y′x)− [P (yx′)− P (yx)],

P (y′x)− [P (y)− P (yx)],

P (y′x)− [P (yx′)− P (y)]



= min



P (y′x),

P (y′x) + P (yx)− P (yx′),

P (y′x) + P (yx)− P (y),

P (y′x)− P (y) + P (yx′)



= min



P (y′x),

P (y′x′),

P (y′),

P (y′x) + P (y′x′)− P (y′)


.

The second-to-last argument to max in the final equality is a result of P (y′x) + P (yx) = 1

and 1− P (y) = P (y′).

11.2 Appendix for Chapter 4

11.2.1 P (harm) Under Exogeneity

The ATE under exogeneity becomes:

ATE = P (yx)− P (yx′)

= P (y|x)− P (y|x′). (11.3)
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We can now derive P (harm) under exogeneity in Equation (4.9) from P (benefit) under

exogeneity through their relationship with the ATE in Equation (3.22) and Equation (11.3):

max {0, P (y|x)− P (y|x′)} ⩽ P (benefit) ⩽ min {P (y|x), P (y′|x′)},
max {0,P (y|x)−P (y|x′)}

−[P (yx)−P (yx′ )]
⩽ P (benefit)

−[P (yx)−P (yx′ )]
⩽ min {P (y|x),P (y′|x′)}

−[P (yx)−P (yx′ )]
,

max {0,P (y|x)−P (y|x′)}
−P (y|x)+P (y|x′) ⩽ P (harm) ⩽ min {P (y|x),P (y′|x′)}

−P (y|x)+P (y|x′) ,

max {P (y|x′)− P (y|x), 0} ⩽ P (harm) ⩽ min {P (y|x′), 1− P (y|x)},

max {0, P (y|x′)− P (y|x)} ⩽ P (harm) ⩽ min {P (y′|x), P (y|x′)}.

11.2.2 P (immunity) Under Exogeneity

We can derive P (immunity) Under Exogeneity in Equation (4.10) using Equation (3.24):

max {0, P (y|x)− P (y|x′)} ⩽ P (benefit) ⩽ min {P (y|x), P (y′|x′)},

−min {P (y|x), P (y′|x′)} ⩽ −P (benefit) ⩽ −max {0, P (y|x)− P (y|x′)},

P (yx)−min {P (y|x), P (y′|x′)} ⩽ P (immunity) ⩽ P (yx)−max {0, P (y|x)− P (y|x′)},

P (y|x) + max {−P (y|x),−P (y′|x′)} ⩽ P (immunity) ⩽ P (y|x) + min {0, P (y|x′)− P (y|x)},

max {0, P (y|x)− P (y′|x′)} ⩽ P (immunity) ⩽ min {P (y|x), P (y|x′)}.

11.2.3 P (doom) Under Exogeneity

We can derive P (doom) Under Exogeneity in Equation (4.11) using Equation (3.25):

max {0, P (y|x′)− P (y|x)} ⩽ P (harm) ⩽ min {P (y′|x), P (y|x′)},

−min {P (y′|x), P (y|x′)} ⩽ −P (harm) ⩽ −max {0, P (y|x′)− P (y|x)},

P (y′x)−min {P (y′|x), P (y|x′)} ⩽ P (doom) ⩽ P (y′x)−max {0, P (y|x′)− P (y|x)},

P (y′|x) + max {−P (y′|x),−P (y|x′)} ⩽ P (doom) ⩽ P (y′|x) + min {0, P (y|x)− P (y|x′)},

max {0, P (y′|x)− P (y|x′)} ⩽ P (doom) ⩽ min {P (y′|x), P (y′|x′)}.
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The last argument of min in the last inequality is a result of P (y′|x) + P (y|x) = 1, followed

by 1− P (y|x′) = P (y′|x′).

11.2.4 P (benefit) From Admissible Set and Monotonicity

If covariate set Z satisfies the back-door criterion and Y is monotonic relative to X, then

Equation (4.16) can be derived as follows:

P (benefit) =
∑
z

P (y|x, z) · P (z)−
∑
z

P (y|x′, z) · P (z))

=
∑
z

[P (y|x, z)− P (y|x′, z)] · P (z)

= Ez[P (y|x, z)− P (y|x′, z)].

11.2.5 Z-Stratified PN from Admissible Set and Monotonicity

If covariate set Z satisfies the back-door criterion and Y is monotonic relative to X, then

Equation (4.21) can be derived as follows:

PNz =
∑
z

P (y|z)− P (y|x′, z)

P (x, y|z)
· P (z|x, y)

=
∑
z

P (y|z)− P (y|x′, z)

P (x, y)
· P (z) (11.4)

= Ez[P (y|z)− P (y|x′, z)] · P (x, y)−1.

The simplification in (11.4) follows from:

P (z|x, y)
P (x, y|z)

=

P (x,y,z)
P (x,y)

P (x,y,z)
P (z)

=
P (z)

P (x, y)
.

203



11.2.6 Z-Stratified P (benefit) from Admissible Set and Monotonicity

If covariate set Z satisfies the back-door criterion and Y is monotonic relative to X, then

Equation (4.22) can be derived as follows:

P (benefit)z =
∑
z

P (y|x, z) · P (z)−
∑
z

P (y|x′, z) · P (z))

=
∑
z

[P (y|x, z)− P (y|x′, z)] · P (z)

= Ez[P (y|x, z)− P (y|x′, z)].

11.2.7 Z-Stratified PN from Admissible Set Bounds

If covariate set Z satisfies the back-door criterion, then the lower bound in Equation (4.24)

can be derived as follows:

PNz ⩾
∑
z

PNlower-bound(z) · P (z|x, y)

=
∑
z

max

{
0, 1− P (y|x′, z)

P (y|x, z)

}
· P (z|x, y) (11.5)

=
∑
z

max {0, P (y|x, z)− P (y|x′, z)} · P (z|x, y)
P (y|x, z)

= P (y|x)−1 ·
∑
z

max {0, P (y|x, z)− P (y|x′, z)} · P (z|x). (11.6)

If covariate set Z satisfies the back-door criterion, then the upper bound in Equation
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(4.25) can be derived as follows:

PNz ⩽
∑
z

PNupper-bound(z) · P (z|x, y)

=
∑
z

min

{
1,

P (y′|x′, z)

P (y|x, z)

}
· P (z|x, y)

= 1−

(
1−

∑
z

min

{
1,

P (y′|x′, z)

P (y|x, z)

}
· P (z|x, y)

)

= 1−

(
1 +

∑
z

max

{
−1,−P (y′|x′, z)

P (y|x, z)

}
· P (z|x, y)

)
(11.7)

= 1−
∑
z

(
P (z|x, y) + max

{
−1,−P (y′|x′, z)

P (y|x, z)

}
· P (z|x, y)

)
= 1−

∑
z

max

{
1− 1, 1− P (y′|x′, z)

P (y|x, z)

}
· P (z|x, y)

= 1− P (y|x)−1 ·
∑
z

max {0, P (y|x, z)− P (y′|x′, z)} · P (z|x). (11.8)

The simplifications in (11.6) and (11.8) follow from

P (z|x, y)
P (y|x, z)

=

P (y,z|x)
P (y|x)
P (y,z|x)
P (z|x)

=
P (z|x)
P (y|x)

. (11.9)

The transition from min to max in (11.7) follows from

−min {a, b} = max {−a,−b}.
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11.2.8 P (double-harmed) with Pure Mediator Lower Bound

Equation (4.47) is derived as follows:

P (double-harmed) = P (y′m, ym′ ,m′
x,mx′)

= P (y′m, ym′) · P (m′
x,mx′)

⩾ max {0, P (y′m)− P (y′m′)} ·max {0, P (m′
x)− P (m′

x′)}

= max {0, P (ym′)− P (ym)} ·max {0, P (mx′)− P (mx)}

= max {0, [P (ym′)− P (ym)] · [P (mx′)− P (mx)]}

= max {0, [P (ym)− P (ym′)] · [P (mx)− P (mx′)]}.

11.2.9 P (double-harmed) with Pure Mediator Upper Bound

Equation (4.48) is derived as follows:

P (double-harmed) = P (y′m, ym′ ,m′
x,mx′)

= P (y′m, ym′) · P (m′
x,mx′)

⩽ min {P (ym′), P (y′m)} ·min {P (mx′), P (m′
x)}

=



P (ym′) · P (mx′), P (ym′) ⩽ P (y′m) ∧ P (mx′) ⩽ P (m′
x),

P (ym′) · P (m′
x), P (ym′) ⩽ P (y′m) ∧ P (mx′) ⩾ P (m′

x),

P (y′m) · P (mx′), P (ym′) ⩾ P (y′m) ∧ P (mx′) ⩽ P (m′
x),

P (y′m) · P (m′
x), P (ym′) ⩾ P (y′m) ∧ P (mx′) ⩾ P (m′

x).

=



P (ym′) · P (mx′), P (ym) ⩽ P (y′m′) ∧ P (mx) ⩽ P (m′
x′),

P (ym′) · P (m′
x), P (ym) ⩽ P (y′m′) ∧ P (mx) ⩾ P (m′

x′),

P (y′m) · P (mx′), P (ym) ⩾ P (y′m′) ∧ P (mx) ⩽ P (m′
x′),

P (y′m) · P (m′
x), P (ym) ⩾ P (y′m′) ∧ P (mx) ⩾ P (m′

x′).
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11.3 Appendix for Chapter 9

11.3.1 Bounds on P (benefit) with Non-Binary Ordinal Outcomes

The following lower and upper bound proofs provide conceptual and mathematical proofs of

the bounds on P (benefit) with non-binary ordinal outcomes.

11.3.1.1 Lower Bound

The first arguments to the outer max and min of Equations (9.5) and (9.6) and their cor-

responding expressions in Equation (9.4) all come from Fréchet Inequalities (Section 3.17),

where A = yix2
and B = yjx1

.

Equation (9.4) can now serve as a base for deriving tight bounds on the overall P (benefit).

For the third argument to the max function, P (yi) − P (yix1
), we can imagine the individ-

uals represented by yi and the individuals represented by yix1
. Y = yi (outcome yi in an

observational study) consists of some individuals who benefit from treatment (the ones who

chose treatment and had outcome yi but would have had outcome yj where j < i if they

chose no treatment, and the ones who chose no treatment and had outcome yi but would

have had outcome yk where k > i if they chose treatment), some individuals who are harmed

by treatment (the ones who chose no treatment and had outcome yi but would have had

outcome yj where j < i, and the ones who chose treatment and had outcome yi but would

have had outcome yk where k > i if they chose no treatment), and all individuals who have

outcome yi regardless of treatment (the unaffected). Yx1 = yi (outcome yi had no treatment

been administered) consists of all individuals who benefit from treatment and would have

had outcome yk where k > i had they been administered treatment (yix1
, ykx2

), all individ-

uals who are harmed by treatment and would have had outcome yj where j < i had they

been administered treatment (yix1
, yjx2

), and all individuals who have outcome yi regardless
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of treatment (the immune, yix1
, yix2

). Therefore,

P (yi) = P (benefiters avoiding treatment, would’ve had outcome yk

+ benefiters choosing treatment, would’ve had outcome yj

+ harmed avoiding treatment, would’ve had outcome yj

+ harmed choosing treatment, would’ve had outcome yk

+ all immune with outcome yi),

P (yi) = P (y>ix2
, yix1
|x1) · P (x1) + P (yix2

, y<ix1
|x2) · P (x2)

+ P (y<ix2
, yix1
|x1) · P (x1) + P (yix2

, y>ix1
|x2) · P (x2)

+ P (yix2
, yix1

, x1) + P (yix2
, yix1

, x2),

P (yix1
) = P (all benefiters who would’ve had outcome yk if treated

+ all harmed who would’ve had outcome yj if treated

+ all immune with outcome yi),

P (yix1
) = P (y>ix2

, yix1
) + P (y<ix2

, yix1
) + P (yix2

, yix1
),

P (yi)− P (yix1
) = P (y<>ix2

, yix1
, x1)− P (y<>ix2

, yix1
) + P (yix2

, y<>ix1
, x2)

= P (yix2
, y<>ix1

, x2)− P (y<>ix2
, yix1

, x2),

n∑
i=2

[
P (yi)− P (yix1

)
]
= P (y2x2

, y<>2x1
, x2)− P (y<>2x2

, y2x1
, x2)

+ P (y3x2
, y<>3x1

, x2)− P (y<>3x2
, y3x1

, x2)

+
... − ...

+ P (ynx2
, y<nx1

, x2)− P (y<nx2
, ynx1

, x2), (11.10)

where j < i < k; y<m means any yi such that i < m; y>m means any yi such that i > m;

and y<>m means any yi such that i < m or i > m.

Two lower bounds on P (benefit) can be obtained from Equation (11.10). First, the last

row consists of all benefiting units that have outcome Y = yn and were treated with X = x2

subtracted by all harmed units who would have had outcome Y = yn had they been treated
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with X = x1 but were treated with X = x2. This doesn’t include all benefiters and subtracts

some quantity of non-benefiters, but it is sufficient to be a lower bound.

Second, observe that the harmed units, (ymx2
, y>mx1

), get added in the (m − 1)th row

of left column and subsequently subtracted in the entire right column starting at the mth

row. We end up with some benefiters, but not all, and a negative proportion of individuals

harmed according to (y1x2
, y2x1

). This is sufficient to be a lower bound. We can further

simplify this expression:

n∑
i=2

[
P (yi)− P (yix1

)
]
=

n∑
i=2

P (yi)−
n∑

i=2

P (yix1
)

= 1− P (y1)−
[
1− P (y1x1

)
]

= P (y1x1
)− P (y1).
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Similarly, for the fourth argument to the max function of Equation (9.4),

P (yix2
) = P (yix2

, y>ix1
) + P (yix2

, y<ix1
)

+ P (yix2
, yix1

),

P (yi) = P (y>ix2
, yix1
|x1) · P (x1) + P (yix2

, y<ix1
|x2) · P (x2)

+ P (y<ix2
, yix1
|x1) · P (x1) + P (yix2

, y>ix1
|x2) · P (x2)

+ P (yix2
, yix1

, x1) + P (yix2
, yix1

, x2),

P (yix2
)− P (yi) = P (yix2

, y<>ix1
, x1)− P (y<>ix2

, yix1
, x1),

n∑
i=2

[
P (yix2

)− P (yi)
]
= P (y2x2

, y<>2x1
, x1)− P (y<>2x2

, y2x1
, x1)

+ P (y3x2
, y<>3x1

, x1)− P (y<>3x2
, y3x1

, x1)

+
... − ...

+ P (ynx2
, y<nx1

, x1)− P (y<nx2
, ynx1

, x1)

=
n∑

i=2

P (yix2
)−

n∑
i=2

P (yi)

= 1− P (y1x2
)− [1− P (y1)]

= P (y1)− P (y1x2
).

The final term in the non-binary ordinal outcome P (benefit)’s lower bound is unrelated

to any terms in the Tian-Pearl lower bound. Following a similar type of strategy in [LDD18],
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a potential lower bound can be derived in the following way:

∀k ∈ [n]

P (benefit) =
∑

1⩽i,j⩽n
s.t. i>j

P
(
yix2

, yjx1

)

⩾
k∑

j=1

n∑
i=k+1

P
(
yix2

, yjx1

)
=

k∑
j=1

n∑
i=1

P
(
yix2

, yjx1

)
−

k∑
j=1

k∑
i=1

P
(
yix2

, yjx1

)
⩾

k∑
j=1

n∑
i=1

P
(
yix2

, yjx1

)
−

n∑
j=1

k∑
i=1

P
(
yix2

, yjx1

)
=

k∑
j=1

P
(
yjx1

)
−

k∑
i=1

P
(
yix2

)
=

k∑
j=1

P
(
yjx1

)
−

k∑
j=1

P
(
yjx2

)
.

Since k can be any value between 1 and n,

P (benefit) ⩾ max
1⩽i<n

i∑
j=1

[
P (yjx1

)− P (yjx2
)
]
. (11.11)

Note the max function in Equation (11.11) ranges over all indices of yi except yn. This

is because the entire expression for the lower bound would equate to 1 − 1 = 0, which the

Fréchet Inequality for the lower bound already covers.

11.3.1.2 Upper Bound

Let us continue to use Equation (9.4) as a base for deriving a tight upper bound on P (benefit).

Just like the lower bound, the first two arguments to min come from the right-side Fréchet

Inequality in Eq. (3.17).

The third argument evolves into an upper bound according to the following derivation.
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P (x2, yi) = P (some treated benefiters, untreated outcome is y<i

+ some treated harmed, untreated outcome is y>i

+ all immune with outcome yi)

= P (yix2
, y<ix1

, x2) + P (yix2
, y>ix1

, x2)

+ P (yix2
, yix1

, x2),

P (x1, yj) = P (some untreated benefiters, treated outcome is y>j

+ some untreated harmed, treated outcome is y<j

+ all immune with outcome yj)

= P (y>jx2
, yjx1

, x1) + P (y<jx2
, yjx1

, x1)

+ P (yjx2
, yjx1

, x1),

P (x2, yi) + P (x1, yj) = P (yix2
, y<>ix1

, x2) + P (y<>jx2
, yjx1

, x1)

+ P (yix2
, yix1

, x2) + P (yjx2
, yjx1

, x1),

n∑
i=2

P (x2, yi) +
n−1∑
j=1

P (x1, yj) = P (all treated and untreated benefiters

+ all treated harmed except y1x2

+ all untreated harmed except ynx1

+ all treated immune except y1x2
, y1x1

+ all untreated immune except ynx2
, ynx1

) (11.12)

= P (x2)− P (x2, y1) + P (x1)− P (x1, yn)

= 1− P (x2, y1)− P (x1, yn),

where j < i < k; y < m means any yi such that i < m; y > m means any yi such that i > m;

and y <> m means any yi such that i < m or i > m.
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Let us rewrite the fourth argument to the min function of Equation (9.4):

P
(
yix2

, yjx1

)
⩽ P (yix2

)− P (yix1
) + P (x2, yj) + P (x1, yi)

= P (yix2
)− [1− P (y<>ix1

)] + (1− [P (x2, yi) + P (x1, yj)])

= P (yix2
) + P (y<>ix1

)− [P (x2, yi) + P (x1, yj)].

Now we can use the fact that
∑n

i=2 yix2
represents all benefiting individuals, all harmed in-

dividuals except y1x2
, and all immune individuals except (y1x2

, y1x1
), while y<>nx1

= y<nx1

represents all benefiters, all harmed except ynx1
, and all immune except (ynx2

, ynx1
). Com-
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bining that with Equation (11.12),

n∑
i=2

P (yix2
) +

n−1∑
i=1

P (yix1
)−

[
n∑

i=2

P (x2, yi) +
n−1∑
j=1

P (x1, yj)

]

=
n∑

i=2

[
P (yix2

)− P (x2, yi)
]
+

n−1∑
i=1

[
P (yix1

)− P (x1, yj)
]

= P (all benefiters + all harmed except y1x2

+ all immune except y1x2
, y1x1

)

+ P (all benefiters + all harmed except ynx1

+ all immune except (ynx2
, ynx1

))

− P (all benefiters

+ all treated harmed except y1x2

+ all untreated harmed except ynx1

+ all treated immune except (y1x2
, y1x1

)

+ all untreated immune except (ynx2
, ynx1

))

= P (benefit) + P (untreated harmed except y1x2
)

+ P (treated harmed except ynx1
)

+ P (untreated immune except (y1x2
, y1x1

))

+ P (treated immune except (ynx2
, ynx1

))

⩽ P (benefit).

Let us simplify:

n∑
i=2

[
P (yix2

)− P (x2, yi)
]
+

n−1∑
i=1

[
P (yix1

)− P (x1, yj)
]

= 1− P (y1x2
)− [P (x2)− P (x2, y1)] + 1− P (ynx1

)− [P (x1)− P (x1, yn)]

= 2− P (x2)− P (x1)− P (y1x2
)− P (ynx1

) + P (x2, y1) + P (x1, yn)

= 1− P (y1x2
)− P (ynx1

) + P (x2, y1) + P (x1, yn).
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The final term in the non-binary ordinal outcome P (benefit)’s upper bound is unrelated

to any terms in the Tian-Pearl upper bound. Following the same strategy as the derivation

of Equation (11.11), a potential upper bound can be derived in the following way:

∀k ∈ [n]

P (benefit) =
∑

1⩽i,j⩽n
s.t. i>j

P
(
yix2

, yjx1

)

⩽ 1−
k∑

i=1

n∑
j=k

P
(
yix2

, yjx1

)
= 1−

[
k∑

i=1

n∑
j=1

P
(
yix2

, yjx1

)
−

k∑
i=1

k−1∑
j=1

P
(
yix2

, yjx1

)]

⩽ 1−

[
k∑

i=1

n∑
j=1

P
(
yix2

, yjx1

)
−

n∑
i=1

k−1∑
j=1

P
(
yix2

, yjx1

)]

= 1−

[
k∑

i=1

P
(
yix2

)
−

k−1∑
j=1

P
(
yjx1

)]

= 1−

[
k∑

j=1

P
(
yjx2

)
−

k∑
j=1

P
(
yjx1

)
+ P

(
ykx1

)]

= 1−

[
k∑

i=1

P
(
yix2

)
−

k∑
j=1

P
(
yjx1

)
+ P

(
ykx1

)]
.

Since k can be any value between 1 and n,

P (benefit) ⩽ 1− max
1⩽i⩽n

{
i∑

j=1

[
P (yjx2

)− P (yjx1
)
]
+ P

(
yix1

)}
.
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11.3.2 Binary Outcome P (benefit) under MITE

Theorem 9.6.2 is applied to P (benefit):

P (benefit) = P (y2x2
, y1x1

)

=
1∑

k=1

[
P (ykx1

)− P (ykx2
)
]

= P (y1x1
)− P (y1x2

)

=
[
1− P (y2x1

)
]
−
[
1− P (y2x2

)
]

= P (y2x2
)− P (y2x1

).

11.3.3 Binary Outcome P (immunity) under MITE

Theorem 9.6.2 is applied to P (immunity):

P (immunity) = P (y2x2
, y2x1

)

=
2∑

k=1

P (ykx2
)−

1∑
k=1

P (ykx1
)

= P (y1x2
) + P (y2x2

)− P (y1x1
)

= 1− P (y1x1
) (11.13)

= P (y2x1
).

Equality (11.13) is due to the second probability axiom: P (y1x2
) + P (y2x2

) = 1.
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11.3.4 Binary Outcome P (doom) under MITE

Theorem 9.6.2 is applied to P (doom):

P (doom) = P (y1x2
, y1x1

)

=
1∑

k=1

P (y1x2
)−

0∑
k=1

P (y1x1
)

= P (y1x2
).
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