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Abstract

Electric vehicles (EVs) are generally considered more envi-
ronmentally sustainable than internal combustion engine ve-
hicles (ICEVs). Government and policy makers may want to
incentivize multi-vehicle households who, if they purchase a
new EV, would use their EV to replace a large portion of their
ICEV mileage. Therefore, it is important to analyze how EV
procurement affects annual EV mileage for different house-
holds. Given that many relevant data, especially experimental
data, are often unavailable in the real world, we need causal
analysis tools to answer this question. Additionally, our aim
is to compare the expected EV mileage of different combina-
tions of vehicles a household owns. Observing multiple com-
binations in an individual household is impossible since only
one combination can exist, making causal inference challeng-
ing. In this paper, we construct a causal AI framework utiliz-
ing counterfactual reasoning methods to address this issue.

Introduction
The transportation industry contributes to more than a quar-
ter of total greenhouse gas (GHG) emissions in the United
States, and light-duty vehicles alone are responsible for
more than half of these emissions (EPA 2023). There is a
widespread consensus that the adoption of electrified vehi-
cles will be a significant factor in future initiatives to achieve
carbon neutrality (Jenn 2020; Burnham et al. 2021). When
targeting individual choices and when the interventions have
a corresponding cost associated with them it is important to
take into account the possibility for heterogeneous treatment
effects. The benefits from intervening on some groups, or on
some individuals, might be smaller or larger than the benefits
of intervening on other groups or individuals. Understand-
ing the heterogeneity of driving patterns across individuals,
households and groups is important when trying to maxi-
mize the desired outputs. A recent paper (Nunes, Woodley,
and Rossetti 2022) compares the benefits from from target-
ing different types of households. The main difference be-
tween households the authors considered in their model was
in the number of current vehicles in a household. The re-
sults indicated that the advantages of acquiring an EV could
drastically vary depending on the current vehicle mix.
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Nowadays many households own more than one vehicle.
In particular, many people choose to purchase an EV as a
complementary vehicle, not driving it much while primar-
ily relying on their ICEV (Burlig et al. 2021). This could
be due to various reasons including their personal prefer-
ence towards their ICEVs, insufficient EV mileage ranges,
and charging inconvenience. As a result, the carbon emis-
sion benefit is not as large as households who drive their
EVs as primary vehicles. In the interest of budget, policy
makers may want to target EV purchase incentives on those
who, upon purchasing new EVs, would use their EVs to re-
place a large portion of their ICEV driving mileage. To solve
this optimization problem, we need to answer the ques-
tion, “what is the expected difference in EV mileage among
households convinced to purchase a new EV versus not con-
vinced?” This gives policy makers a useful criterion for pri-
oritizing incentives.

Note that this question, at the individual household level,
is counterfactual. We can never observe or test both actions,
one of them cannot occur. There are significant caveats with
not treating this at the individual level (Mueller and Pearl
2022). Li and Pearl detail the sometimes severely subopti-
mal decision making that results from a traditional analysis
(Li and Pearl 2019).

In this paper, we focus on multi-vehicle households, and
develop a causal AI framework to estimate the counterfac-
tual effects of adding an additional EV to a household on the
increment of their EV driving mileage.

Preliminaries
Causal Inference
A causal model is composed of a causal directed acyclic
graph (DAG) G(V,E) and a set of structural equations. V
are nodes representing model variables and E are edges
representing causal relations between two nodes. Directed
edges encode the direction of causality, i.e., if a variable A
is in the structural equation that determines another variable
B, an edge is drawn from A to B.

In this paper, we follow the notation in (Pearl 2009), and
use uppercase letters to denote variables, and lowercase let-
ters (combined with symbols and numbers) to denote the
values a variable can take on. For example, the values of a
binary variable A can be denoted as a and a′, and the values
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of a non-binary variable B can be denoted as b1, b2, . . . , bn.
A variable C with subscript D = d represents the event of
C with the intervention D = d. This is denoted as CD=d;
where appropriate, Cd is used as a shorthand. In addition,
when the time a variable is measured is not the time of in-
terest, we will parenthesize the variable with an offset from
baseline time t; i.e. X(t−2) represents the variable X mea-
sured 2 time units in the past.

Causal AI Framework for EV Driving
Analysis

Causal Model
We are interested in learning about what happens to a house-
hold’s total miles on EV if they purchase an additional EV.
We first build a graphical representation of the causal rela-
tionships using a DAG.
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Figure 1: Causal DAG with observed confounder C and un-
observed confounder U .

Since our analysis is not based on real-world data and is
for illustration purposes, we limit our focus by assuming the
variables are categorical and can only take on specific val-
ues. Our approach can be easily generalized for larger sets
of values. For the same reason, we model one observed con-
founder and one unobserved confounder while this frame-
work applies to more confounders of either type.

In this model, variable X represents the numbers and
types of cars a household owns. We focus our discussion
on cases where a household has 1) two EVs and one ICEV
or 2) one EV and one ICEV. Cases 1 and 2 are represented
by X = x and X = x′, respectively. Variable Y repre-
sents the annual miles driven on all the EVs for a household,
which lies in one of the five ranges: y1 = [0, 5000), y2 =
[5000, 10000), y3 = [10000, 15000), y4 = [15000, 20000),
y5 = [20000,∞). Variables C and U are two confounders
causing both X and Y . C is observed (assumed available in
the data), which represents the annual total travel needs for
a household using all available vehicles. C = c or C = c′

denotes a household needs to travel more or less than 15000
miles per year, respectively. U is unobserved (assumed not
available in the data), which represents whether the typi-
cal trip types of a household favors EVs. U = u indicates
that the household mainly drives trips that favor EVs (e.g.,
shorter trips or trips with easy charging options), and U = u′

indicates that the household mainly drives trips that favor

ICEVs (e.g., longer trips or trips to cold places). Note that,
although U is unobserved for single households, we might
have an estimate of what percentage of the population has
U = u or U = u′. Hence, we assume that the prior P (U) is
given.

Problem Setting
We are interested in selecting households from a population
which may benefit the environment the most from adding an
additional EV. There are two aspects to this, selecting house-
holds with a larger difference in average treatment effects, or
selecting households with certain “response types” (Li and
Pearl 2019). For the first aspect, we want to optimize selec-
tion of households that will replace the most of their ICEV
mileages. For the second aspect, we optimize selection by
taking into consideration how each household responds to
the treatment. For example, selecting a household whose EV
usage will decrease with the addition of a new EV is strongly
not preferred (and is weighted negatively). Similarly, select-
ing households with a larger EV usage increment is strongly
preferred (and is weighted positively). One major challenge
is that the unit response type is unobserved. This is known
as the fundamental problem of causal inference, namely, that
we can only ever observe a single outcome for an individual.
We can, however, use observations from the past to gain in-
formation about the unit response type. We discuss the two
aspects separately next.

Aspect 1: We are interested in assessing for a household
their expected annual EV miles driven if an additional EV is
added to their household fleet, where we observe they drove
one EV and one ICEV that drove a certain number of EV
miles for the past year. To put this into a causal expression
(Pearl 2009), we have

P (YX=x = ya | X(t− 1) = x′, Y (t− 1) = yp), (1)
where X(t−1) and Y (t−1) are the variables X and Y at the
previous timestamp, when the observational data are given.
ya and yp are values of Y and Y (t − 1), respectively, with
1 ≤ a, p ≤ 5. Y and Y (t−1) are different variables that take
on the same set of values. Here, our goal is to estimate, for
a household with one EV and one ICEV that drove yp EV
miles last year, what the probability is that they would drive
ya this year if they added a new EV. We want to estimate
this probability for all a and p.

Aspect 2: We are interested in selecting certain house-
holds depending on their response types. For instance, we
want to know if a household would respond a certain way
with one intervention, and would respond another way with
another intervention. This is a counterfactual question be-
cause when we observe a household with some combination
of vehicles (e.g., one EV and one ICEV), we do not simuta-
neously observe them with a different combination of vehi-
cles (e.g., two EVs and one ICEV).To put this into a coun-
terfactual expression (Pearl 2009; Li and Pearl 2022a), we
have
P (YX=x = ya, YX=x′ = yb|X(t− 1) = x′, Y (t− 1) = yp),

(2)
where X(t − 1) and Y (t − 1) are the variables X and Y
at the previous timestamp where the observational data are



given. ya, yb, yp are values of Y (or Y (t − 1)) with 1 ≤
a, b, p ≤ 5. Y and Y (t−1) are different variables but take on
the same set of values. Note that this expression is the non-
binary probability of necessity and sufficiency (PNS(2)) (Li
and Pearl 2022a) of X on Y . Here, our goal is to estimate,
for a household with one EV and one ICEV that drove yp

EV miles last year, what the probability is that they would
drive yb this year if they do not add a new EV, and would
drive ya if they do add a new EV. We want to estimate this
probability for all a, b, and p.

Estimation
Aspect 1: Average Treatment Effect of Subpopulations
One challenge of this problem is the unavailability of exper-
imental data. It is prohibitively costly to conduct an exper-
iment to provide households with EVs. Fortunately, we can
use observational data to provide insights on what would be
experimental results. Another challenge of causal estimation
in this case is that the observational data are from the past,
while we are trying to infer the behaviors for the future. To
make use of the available observational data, assumptions
need to be made about how past observational data predicts
future states. Causal inference frameworks, when applied to
real-world problems, often implicitly assume that what we
observe in the past continues to apply in the future. To this
end, we will discuss two assumptions that hold in specific
scenarios. It is up to the practitioner to choose which as-
sumption is more plausible for their setting (or come up with
their own assumption along with updates to our formulae).

Assumption 1: Future is the past A simple assumption is
to assume that observations from the past have not changed
as of the time the study is being conducted. Formally, this
means for each household, X = X(t − 1), Y = Y (t − 1).
Hence, (1) can be simplified as follows.

P (YX=x = ya | X(t− 1) = x′, Y (t− 1) = yp)

=P (YX=x = ya | X = x′, Y = yp) (3)
This becomes the non-binary probability of necessity (Li
and Pearl 2022a) of X on Y . Under this assumption, (3) can
be bounded using the Theorem 7 in (Li and Pearl 2022a)
(referred to as Li-Pearl’s probability of necessity bounds).

Assumption 2: Constant pattern A relaxed assumption
is to permit change in observations each year, but assume
the changes follow the same pattern. Under this assumption,
in addition to the observational data from the previous year
P (X(t − 1), Y (t − 1)), we additionally need the observa-
tional data P (X(t− 2), Y (t− 2)) from the year before the
previous year. Formally, this assumption translates to

P (X(t− 1) = x, Y (t− 1) = yp|X(t− 2) = x′,

Y (t− 2) = ypp)

= P (X = x, Y = yp|X(t− 1) = x′,Y (t− 1) = ypp).

Hence, we have the observational data P (X,Y |X(t −
1), Y (t − 1)) for (2). We can then use the observational
data to bound the experimental probabilities to obtain
P (YX |X(t−1), Y (t−1)). Given both observational and ex-
perimental data, we can use Li-Pearl’s PNS bounds to bound
(1).

Aspect 2: Unit Response Type Optimization of Subpop-
ulations Without additional assumptions, counterfactual
queries can rarely be point estimated, even with both obser-
vational and experimental data (Tian and Pearl 2000). How-
ever, it may be possible to sufficiently bound the query us-
ing observational and/or experimental data (Tian and Pearl
2000; Li and Pearl 2022a; Mueller, Li, and Pearl 2022;
Zhang, Tian, and Bareinboim 2022; Dawid, Musio, and
Murtas 2017; Li and Pearl 2022b). These existing works ap-
ply bounding methods to different settings, such as binary,
continuous, monotonic, and other scenarios. We will adapt
methods from (Li and Pearl 2022a) to bound (2) since the
equation is a non-binary probability of causation. Specifi-
cally, we will apply Li and Pearl’s Theorem 8, referred to as
Li-Pearl’s PNS bounds. In this setting, we will discuss the
two assumptions above.

Assumption 1: Future is the past (2) can be simplified as
follows.

P (YX=x = ya, YX=x′ = yb | X(t− 1) = x′, Y (t− 1) = yp)

=P (YX=x = ya, YX=x′ = yb | X = x′, Y = yp) (4)

This is the non-binary probability of necessity and suffi-
ciency (Li and Pearl 2022a) of X on Y . When b = p, (4)
becomes the probability of necessity and can be bounded
using Theorem 7 in (Li and Pearl 2022a). When b ̸= p, (4)
becomes 0.

Assumption 2: Constant pattern Under this assumption,
similar to above, we have the observational data P (X,Y |
X(t − 1), Y (t − 1)) for (2). We can then use the observa-
tional data to bound the experimental probabilities to ob-
tain P (YX | X(t− 1), Y (t− 1)). Given both observational
and experimental data, we can use Li-Pearl’s PNS bounds to
bound (2).

Computing the Benefit
Once we have the bounds of (2) (if assumption 2 holds) or
(4) (if assumption 1 holds), there are multiple ways where
the results can be used. For example, for each household,
we can compute the bound of the expected EV mileage if
added an additional EV and the bound of the expected EV
mileage if not added an additional EV. So for each house-
hold, the difference in the two expectations is the expected
EV mileage increment. We can identify which households
are expected to have large mileage increments, and which
are not. Another way the bounds of (2) or (4) can be used
is to find what most likely to happen for each household,
which means finding the PNS or PN bound with the highest
probability. The practitioner can decide which way best fits
their needs.

Aspect 1: Average Treatment Effect of Subpopulations
The expected improvements for a subpopulation with X(t−
1) = x′ and Y (t− 1) = yp can be computed as follows.

E[YX=x − YX=x′ |X(t− 1) = x′, Y (t− 1) = yp]

=
∑
y

[P (YX=x = y|X(t− 1) = x′, Y (t− 1) = yp) −

P (YX=x′ = y|X(t− 1) = x′, Y (t− 1) = yp)] · y



Aspect 2: Unit Response Type Optimization of Subpopu-
lations Given the counterfactual quantities, we can com-
pute a generalized version (with higher dimensional out-
come variables) of the benefit function (Li and Pearl 2019).
In the setting of this paper, Y has 5 categories, hence there
are 5 · 5 = 25 total response types. A household is of re-
sponse type Rij if the household’s Y would be yi if inter-
vened with X = x and Y would be yj if intervened with
X = x′, where i and j both have 5 possible values.

Let wij be the weight for the response type Rij . The gen-
eralized expected benefit function for a subpopulation with
X(t − 1) = x′ and Y (t − 1) = yp can be computed as
follows.∑

i,j∈{1,...,5}

P [YX=x = yi, YX=x′ = yj |

X(t− 1) = x′, Y (t− 1) = yp] · wij

We can also compute the weighted probability of benefit,
which represents that for a subpopulation with X(t−1) = x′

and Y (t− 1) = y′, what the probability is that an interven-
tion of X = x would result in larger Y compared to an
intervention of X = x′.

P (benefit) =
∑

1⩽j<i⩽5

P [YX=x > YX=x′ |

X(t− 1) = x′, Y (t− 1) = yp] · wij

Experiment and Results
Aspect 2
Assumption 1: Future is the past In this section, we
simulated the following example to illustrate our proposed
framework under the first assumption.

We generated P (X,Y,C) and P (U) uniformly, as shown
in Tables 1 and 2. We then applied Li-Pearl’s causal effect
bounds to derive the experimental (RCT) data P (Yx) using
the data from Tables 1 and 2. The results are presented in Ta-
ble 3. Subsequently, we used Li-Pearl’s PN bounds to calcu-
late the non-binary Probability of Necessity, with the results
displayed in Table 4. Note that we are only presenting the
upper bounds because the lower bounds for this randomly
generated example are all zero, which provides no additional
information.

Table 1: Scenario 1: Simulated observational distribution of
the whole population.

2 EV & 1 ICEV 1 EV & 1 ICEV
≥ 15, 000 < 15, 000 ≥ 15, 000 < 15, 000

y1 0.019 0.008 0.043 0.038
y2 0.014 0.061 0.178 0.045
y3 0.016 0.007 0.051 0.043
y4 0.089 0.018 0.017 0.142
y5 0.021 0.086 0.033 0.071

From Table 3, we have obtained narrow bounds on causal
effects. However, according to our reasoning, the causal ef-
fects are not the correct queries we need. In Table 4, al-
though there are only 10 entries that are not 1, we still gather

Table 2: Assumption 1: Prior knowledge about the trip type.

Typical trip type (U ) Percentage
More long trips (u) 6.7%

More short trips (u′ ) 93.3%

Table 3: Assumption 1: Bounds of the experimental distri-
bution.

Lower bound Upper bound
P (y1x) 0.027 0.117
P (y2x) 0.075 0.283
P (y3x) 0.023 0.100
P (y4x) 0.184 0.472
P (y5x) 0.164 0.438

useful information for decision making. For instance, we can
determine that the probability of the population having 1
EV and 1 ICEV, with an EV miles level of y2, and increas-
ing their EV drive to level y3 with one more EV, is at most
34.5%.

Assumption 2: Constant pattern In this section, we
simulated another example to illustrate our proposed
framework under the second assumption. We generated
P (X,Y,C|X(t− 1) = x′, Y (t− 1) = y1) and P (U |X(t−
1) = x′, Y (t − 1) = y1) uniformly, as shown in Tables 5
and 6. We then applied Li-Pearl’s causal effect bounds to
derive the experimental (RCT) data P (YX=x|X(t − 1) =
x′, Y (t− 1) = y1) using the data from Tables 5 and 6. The
results are presented in Table 7. Subsequently, we used Li-
Pearl’s PNS bounds to calculate the non-binary Probability
of Necessity and Sufficiency, with the results displayed in
Table 8. Note that we are only presenting the upper bounds
because the lower bounds for this randomly generated exam-
ple are all zero, which provides no additional information.

From Table 7, we have obtained narrow bounds on causal
effects. However, according to our reasoning, the causal ef-
fects are not the correct queries we need and should not be
directly used to answer our question. In Table 8, for instance,
we can determine that the probability of an individual house-
hold who has 1 EV and 1 ICEV, that would have EV miles
level y5 if they had 2 EV and 1 ICEV and would have EV
miles level y2 if remained with 1 EV and 1 ICEV, is at most
32.6%.

Conclusion
In this paper, we focus on the problem of optimizing electric
vehicle procurement for maximizing environmental sustain-
ability. We showed how to estimate how much each house-
hold benefits from an additional EV. This question is a causal
question, and may need counterfactual reasoning, which is
hard to solve using available observational or experimental
data. To approach this problem, we developed a causal AI
framework based on counterfactual tools. We showed how to
apply this framework using a simulated experiment. For both
assumptions discussed, we obtained bounds on the query of
interest.



Table 4: Assumption 1: Upper bounds of non-binary Proba-
bility of Necessity.

P (yax|x′, yp) p = 1 p = 2 p = 3 p = 4 p = 5
a = 1 1 0.404 0.957 0.566 0.865
a = 2 1 0.933 1 1 1
a = 3 0.951 0.345 0.819 0.484 0.740
a = 4 1 1 1 1 1
a = 5 1 1 1 1 1

Table 5: Assumption 2: Simulated observational distribution
of the population X(t− 1) = x′, Y (t− 1) = y1.

2 EV & 1 ICEV 1 EV & 1 ICEV
≥ 15, 000 < 15, 000 ≥ 15, 000 < 15, 000

y1 0.110 0.062 0.066 0.035
y2 0.066 0.009 0.030 0.072
y3 0.142 0.047 0.006 0.063
y4 0.010 0.098 0.029 0.098
y5 0.004 0.013 0.012 0.028

Table 6: Assumption 2: Prior knowledge about the trip type.

Typical trip type (U ) Percentage
More long trips (u) 10.8%

More short trips (u′ ) 89.2%

Table 7: Assumption 2: Bounds of the experimental distri-
bution of the population X(t− 1) = x′, Y (t− 1) = y1.

Lower bound Upper bound
P (y1x) 0.173 0.393
P (y2x) 0.075 0.139
P (y3x) 0.211 0.395
P (y4x) 0.108 0.303
P (y5x) 0.017 0.051
P (y1x′) 0.101 0.476
P (y2x′) 0.102 0.394
P (y3x′) 0.069 0.260
P (y4x′) 0.127 0.521
P (y5x′) 0.040 0.188

Table 8: Assumption 2: Upper bounds of non-binary Proba-
bility of Necessity and Sufficiency of the population X(t −
1) = x′, Y (t− 1) = y1.

P (yax, y
b
x′) b = 1 b = 2 b = 3 b = 4 b = 5

a = 1 0.596 0.513 0.412 0.615 0.369
a = 2 0.439 0.356 0.255 0.458 0.212
a = 3 0.581 0.498 0.397 0.590 0.354
a = 4 0.570 0.487 0.386 0.589 0.343
a = 5 0.409 0.326 0.225 0.428 0.182
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