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ABSTRACT: We consider 3-place relations / (x, z,y) where, x, ¥,and z are three non-intersecting sets
of elements (e.g., propositions), and I (x, z, y) stands for the statement; ‘*Knowing z renders x irrelevant
toy.”’ We give sufficient conditions on / for the existence of a (minimal) graph G such that / (x, z, ¥y)can
be validated by testing whether z separates x from y in G. These conditions define a GRAPHOID. The
theory of graphoids uncovers the axiomatic basis of information relevance (e.g., probabilistic dependen-
cies) and ties it to vertex-separation conditions in graphs. The defining axioms can also be viewed as
inference rules for deducing which propositions are relevant to each other, given a certain state of
knowledge. '

1. INTRODUCTION

Any system that reasons about knowledge and beliefs must make use of information about relevancies. If
we have acquired a body of knowledge z and now wish to assess the truth of proposition x, it is important
to know whether it would be worthwhile to consult another proposition y, which is not in z. In other
words, before we consult y we need to know if its truth value can potentially generate new information re-
lative to x, information not available from z. For example, in trying to predict whether I am going to be
late for a meeting, it is normally a good idea to ask somebody on the street for the time. However, once I
establish the precise time by listening to the radio, asking people for the time becomes superfluous and
their responses would be irrelevant. Similarly, knowing the color of X ’s car normally tells me nothing
about the color of ¥’s. However, if X were to tell me that he almost mistook ¥ ’s car for his own, the two
pieces of information become relevant to each other. What logic would facilitate this type of reasoning?

In probability theory, the notion of relevance is given precise quantitative underpinning using the device
of conditional independence. A variable x is said to be independent of y given the information z if

P(x,ylz)=P(x|z)P(y |2)

However, it is rather unreasonable to expect people or machines to resort to numerical verification of
equalities in order to extract relevance information. The ease and conviction with which people detect
relevance relationships strongly suggest that such information is readily available from the organizational
structure of human memory, not from numerical values assigned to its components. Accordingly, it
would be interesting to explore how assertions about relevance can be tested in various models of memory
and, in particular, whether such assertions can be derived by simple manipulations on graphs.

Graphs offer useful representations for a variety of phenomena. They give vivid visual display for the

essential relations in the phenomenon and provide a convenient medium for people to communicate and
reason about it. Graph-related concepts are so entrenched in our language that one wonders whether peo-
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ple can in fact reason any other way, except by tracing links and arrows and paths in some mental
representation of concepts and relations. Therefore, if we aspire to use non-numeric logic to mimic human
reasoning about knowledge and beliefs, we should make sure that most derivational steps in that logic
correspond to simple operations on some graphs.

When we deal with a phenomenon where the notion of neighborhood or connectedness is explicit (e.g.,
family relations, electronic circuits, communication networks, etc.) we have no problem configuring a
graph which represents the main features of the phenomenon. However, in modelling conceptual relations
such as causation, association and relevance, it is often hard to distinguish direct neighbors from indirect
neighbors; so, the task of constructing a graph representation then becomes more delicate.

This paper studies the feasibility of devising graphoid representations for relational structures in which the
notion of neighborhood is not specified in advance. Rather, what is given explicitly is the relation of *‘in
betweenness.”’ In other words, we are given the means to test whether any given subset S of elements in-
tervenes in a relation between elements x and y, but it remains up to us to decide how to connect the ele-
ments together in a graph that accounts for these interventions.

The notion of conditional independence in probability theory is a perfect example of such a relational
structure. For a given probability distribution P and any three variables x, y, z, while it is fairly easy to
verify whether knowing z renders x independent of y, P does not dictate which variables should be re-
garded as direct neighbors. Thus, many topologies might be used to display the dependencies embodied
inP,

The theory of graphoids establishes a clear correspondence between probabilistic dependencies and graph
representation. It tells us how to construct a unique edge-minimum graph G such that each time we ob-
serve a vertex x separated from y by a subset S of vertices, we can be guaranteed that variables x and y
are independent given the values of the variables in S. Moreover, the set of neighbors assigned by G to
each x coincides exactly with the boundary of x, i.e., the smallest set of variables needed to shield x from
the influence of all other variables in the system. This construction is further extended by the theory of
graphoids to cases where the notion of independence is not given probabilistically or numerically. We
now ask what logical conditions should constrain the relationship: Ix,z,y)=
“knowing z renders x irrelevantto y’’ so that we can validate it by testing whether z separates x from y
in some graph G. We show that two main conditions (together with symmetry and subset closure) are
sufficient:

weak closure for intersection: Ix,z gw,y) & I(x,z Uy, w) ==1(x,z,y | UwW) (1)
weak closure for union: /(x,z,y \yw) == I(x,z\_w,y). 2)

Loosely speaking, (1) states that if y does not affect x when w is held constant and if, simultaneously, w
does not affectx when y is held constant, then neither w nor y can affectx. (2) states that learning an ir-
relevant fact (w) cannot help another irrelevant fact (y) become relevant. Condition (1) is sufficient to
guarantee a unique construction of an edge-minimum graph G that validates / (x, z, y) by vertex separa-
tion. Condition (2) guarantees that the neighborhoods defined by the edges of G coincide with the
relevance boundaries defined by /. These two conditions are chosen as the defining axioms of graphoids,
and are shown to account for the graphical properties of probabilistic dependencies.

This paper is organized as follows: In Section 2 we exemplify a graphoid system using probabilistic
dependencies and their graphical representations. Section 3 introduces an axiomatic definition of gra-
phoids, and states (without proofs) their graph-representation properties; the proofs can be found in [Pearl
and Paz 1985]. Section 4 discusses a few extensions and outlines open problems.
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2. PROBABILISTIC DEPENDENCIES AND THEIR GRAPHICAL REPRESENTATION

Let U ={a, B, ‘- - } be a finite set of discrete-valued random variables characterized by a joint probability
function P (), and let x, y, and z stand for any three subsets of variables in U. We say that x and y are

conditionally independent given z if
P(x,ylz)=P(x|2)P(y|z) when P(z)>0 3)

Eq.(3) is a terse notation for the assertion that for any instantiation z; of the variables in z and for any in-
stantiation x; and y; of x and y, we have

P(x=x; and y=yj|z=2;) =P (x=x;|z=2;) P (y=y; | z=2() CY)
The requirement P (z) > O guarantees that all the conditional probabilities are well defined, and we shall
henceforth assume that P > 0 for any instantiation of the variables in U. This rules out logical and func-
tional dependencies among the variables a case which would require special treatment.
We shall use (x | z | y)p orsimply (x | z | ¥) to denote the independence of x and y given z. Thus,
(x |z |y)p <=> P(x,y|z)=P(x | 2)P(y|z)<=>P(x |y,z)=P(x]| z) (5)

Note that (x | z | y) implies the conditional independence of all pairs of variables c.ex and Bey, but
the converse is not necessarily true.

The relation (x | z | y) satisfies the following logical independent properties:

Symmetry: (xlz |y)<=>(@ ]z |x) (6.a)
Closure for Subsets: xlz]yw)=>x]z|y)&x ]z ]|w) (6.b)
Weak Closure for Intersection: (x [y,z [w)&(x |y, w [2)=>{x |y | z,w) (6.c)
Weak Closure for Union: xlylz,w)y=>(xly,z [w) (6.d)
Contraction: xly,zIw)&x ]y |z)=>(x ]y |z,w) (6.e)

While the properties in (S) characterize the numeric representation of P, those in (6) are purely logical,
void of any association with numerical forms and can be viewed, therefore, as an axiomatic definition of
conditional independence. A graphical interpretation for properties (6.c) through (6.¢) can be obtained by
envisioning the chain x —y—z —w and associating the triplet (x | z | y) with the statement *‘z separates
x from y’’ or *‘z intervenes betweenx and y.”’

Ideally, dependent variables should be displayed as connected nodes in some graph G and independent
variables as unconnected nodes. We would also like to require that if the removal of some subset S of
nodes from the graph renders nodes x and y disconnected, written <x |S |y >¢, then this separation
should comrespond to conditional independence between x and y given §, namely,
<x|S |y>G=>(x | S | y)p and conversely, (x | § | y)p => <x|§ | y>s.

This would provide a clear graphical representation for the notion that x does not affecty directly, that its
influence is mediated by the variables in §. Unfortunately, we shall next see that these two requirements
might be incompatible; there might exist no way to display all the dependencies and independencies em-
bodied in P by vertex separation in a graph.

Definition: An undirected graph G is a dependency map (D -map) of P if there is a one-to-one
correspondence between the variables in P and the nodes of G, such that for all non-intersecting subsets,

x,y, S of variables we have:
(x 1S [yp=><x|Sy>c @)
Similarly, G is an Independency map (I -map) of P if: (x 1§ [y)p <= <x|§|y>¢ (8)
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A D -map guarantees that vertices found to be connected are indeed dependent; however, it may occasion-
ally display dependent variables as separated vertices. An/-map works the opposite way: it guarantees
that vertices found to be separated always correspond to genuinely independent variables but does not
guarantee that all those shown to be connected are in fact dependent. Empty graphs are trivial D -maps,
while complete graphs are trivial / -maps.

Given an arbitrary graph G, the theory of Markov Fields [Lauritzen 1982] tells us how to construct a pro-
babilistic model P for which G is both a D -map and an / -map. We now ask whether the converse con-
struction is possible.

Lemma: There are probability distributions for which no graph can be both a D -map and an / -map.

Proof:  Graph separation always satisfies <x |.§ | y>¢ =><x |81\ S2|y>g for any two subsets S,
and S, of vertices. Some P’s, however, may induce both (x | 5§, ] y)p and NOT (x | §; US21y)p.
Such P’s cannot have a graph representation which is both an / -map and a D -map because D -mapness
forces G to display S as a cutset separating x and y, while / -mapness prevents S 1 {_j Sz from separating
x and y. No graph can satisfy these two requirements simultaneously. Q.E.D.

An example illustrating the conditions of the proof is an experiment with two coins and a bell that rings
whenever the outcomes of the two coins are the same. If we ignore the bell, the coin cutcomes are mutual-
ly independent, i.e., S$;=@. However, if we notice the bell (S 2), then learning the outcome of one coin
should change our opinion about the other coin.

Being unable to provide a graphical description for all independencies, we settle for the following
compromise: we will consider only /-maps but will insist that the graphs in those maps capture as many
of P’s independencies as possible, i.e., they should contain no superfluous edges.

Definition: A graph G is a minimal I -map of P if no edge of G can be deleted without destroying its
I -mapness.

Theorem 1: Every P has a (unique) minimal 7 -map G g (called the MARKOV-NET of P ) constructed by
connecting only pairs (o, B) for which

(o | U—o—B |B)p is FALSE ®
(i.e., deleting from the complete graph al! edges (o, B) for which (o] U—o—B | B)p).

Definition: A Markov boundary Bp(0:) of variable o is a minimal subset S that renders o independent
of all other variables, i.e.,

(]S | U-S-o)p, e § (10

and simultaneously, no proper subset S’ of S satisfies (@ | S’ | U—S'—0)p. If no S satisfies (10), define
Bp(a)=U - a. ‘

Theorem 2: Each variable o has a unique Markov boundary Bp(¢) that coincides with the set of ver-
tices Bg (o) adjacent to o in the Markov net G .

The usefulness of Theorem 2 lies in the fact that in many cases it is the Markov boundaries Bp(o) that
define the organizational structure of human memory. People find it natural to identify the immediate
consequences and/or justifications of each action or event, and these relationships constitute the neighbor-
hood semantics for inference nets used in expert systems [Duda et al. 1976). The fact that Bp(c) coin-
cides with Bg (o) guarantees that many independencies can be validated by tests for graph separation at

the knowledge level itself [Pear] 1985].
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3. GRAPHOIDS

Definition: A graphoid is a set [ of triplets (x, z,y) where x, z, y are three non-intersecting subsets of
elements drawn from a finite collection U ={a, B, - - }, having the following four properties. (We shall
write / (x, y, z) to state that the triplet (x, y, z) belongs to graphoid /.)

Symmetry Ix,z,y)<=>1(y,z,x) . (11.a)
Subset Closure {(x,z,y \w)=>1(x,z,y) & (x,z,w) (1L.b)
Intersection  I(x,z (w,y) & I(x,z QYy,w)=>I(x,z,y UW) (Il.c)
Union Ix,z,y gw)=>1(x,z \w,y) (11.d)

For technical convenience we shall adopt the convention that / contains all triplets in which either x ory
are empty, i.e., ! (x, z, @).

If U stands for the set of vertices in some graph G, and if we equate [ (x, z, y) with the statement: ‘‘z
separates between x and y,’’ written <x |z |y >¢, then the conditions in (11) are clearly satisfied. How-
ever, not all properties of graph separation are required for graphoids. For example, in graphs we always
have [<a|z |B>g & <alz |y>g ] iff <a| z | B Y>g while property (11.b) requires only the *‘if”’
part. Similarly, graph separation dictates <x |z [y>g=><x |z \Uw|y>g, Vw, while (11.d)
severely restricts the conditions under which a separating set z can be enlarged by w .

Definition: A graph G is said to be an [ -map of I if there is a one-to-one correspondence between the
elements in U and the vertices of G, such that, for all non-intersecting subsets x, y, S we have:
<x|S|ly>¢=>1(x,5,y) (12)

Theorem 3: Every graphoid / has a unique edge-minimum /-map Go. G o= (U, E ) is constructed by
connecting only pairs (¢, B) for which the triplet (o, U —ot—f, B) is notin/, i.e.,

(,B)e Eo  iff I(a, U~a—, B) (13)
Definition: A relevance sphere Ry(ct) of an element & € U is any subset S of elements for which
I(a,S,U-S—) and e S (14)

Let R;*(cr) stand for the set of all relevance spheres of .. A set is called a relevance boundary of o, denot-
ed By(a), if it is in R;* (o) and if, in addition, none of its proper subsets is in R/*(ct).

By(¢) is to be interpreted as the smallest set that ‘‘shields’’ o from the influence of all other elements.
Note that R*(ct) is non-empty because I (x, z, (J) guarantees that the set § = U —¢¢ satisfies (14).

Theorem 4: Every element o. e U in a graphoid / has a unique relevance boundary B;(c). B;(ct) coin-
cides with the set of vertices B (o) adjacent to . in the minimal graph G o.

Corollary 1: The set of relevance boundaries By(a) forms a neighbor system, ie., a collection
Bf={Bi(c):ooe U} of subsets of U such that (i) o¢ By(o), and (ii) oe Bi(f) iff
Be Bi(o), a,BelU

Corollary 2: The edge-minimum /-map G ¢ can be constructed by connecting each ¢ to all members of
its relevance boundary B; (o).

Thus we see that the major graphical properties of probabilistic dependencies are consequences of the in-
tersection and union propertes, (11.c) and (11.d), and will therefore be shared by all graphoids.
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4. SPECIAL GRAPHOIDS AND OPEN PROBLEMS
4.1 Graph-induced Graphoids

The most restricted type of graphoid is that which is isomorphic to some underlying graph, i.e., all triplets

(x,z,y)in[ reflect vertex-separation conditions in an actual graph.

Definition: A graphoid / is said to be graph-induced if there exists a graph G such that
I(x,2,y)<==><x|zly >¢ (15)

Theorem 5: A necessary and sufficient condition for a graphoid / to be graph induced is that it satisfies
the following five independent axioms:

I(x,z,y)<=>Hy,z,x) (symmetry) (16.a)
Ix,z,y Uw)=> I(x,z,y) & I(x,z,w) (subset closure}  (16.b)
I(x,z Uw,y) & I(x,z Uy,w)=> I(x,z,y UW) (intersection) (16.0)
I(x,z,y)=>1I(x,z Uw,y) YwealU (strong union)  (16.d)
I(x,z,y)=>1(x,z,7) or I(y,z,y) Vydx 2 Yy (transitivity)  (16.e)

Remarks: (16.c) and ( 16.d) imply the converse of (16.b), The union axiom (16.d) is unconditional and
therefore stronger than the one required for general graphoids (11.d). It allows us to construct G ¢ by sim-
ply deleting from a complete graph every edge (a, B) for which a triplet of the form (c. S, B) appearsin /.

4.2 Probabilistic Graphoids
Definition: A graphoid is called probabilistic if there exists a probability distribution P on the variables
inU suchthat/(x,z,y)iff x is independent of y given z, i.e.,
Ix,z,y)<=>(x |z | y)p (an

In other words, probabilistic graphoids capture the notion of conditional independence in Probability
Theory (see Section 2).
Theorem 6: Every graph-induced graphoid is probabilistic.
Since every probabilistic-independence relation satisfies (6.2)-(6.e), a necessary condition for a graphoid
to be probabilistic is that, in addition to (11), it also satisfies the contraction property (6.e),i.e.,

Ix,y Uz,w) & Ix,y,2)=>1(x,y,z \Jw) (18)

(18) can be interpreted to state that if we judge w to be irrelevant (to x ) after learning some irrelevant facts
z, then w must have been irrelevant before learning z. Together with the union property (11.d) it means
that learning irrelevant facts should not alter the relevance status of other propositions in the system;
whatever was relevant remains relevant and what was irrelevant remains irrelevant.

Conjecture: The contraction property (18) is sufficient for a graphoid to be probabilistic.

Unlike the sufficiency condition for graph-induced graphoids, we found no way of constructing a distribu-
tion P that yields 7 (x,z,y)=> (x 1z ] y)p forevery I that satisfies (18).

43 Correlational Graphoids

Let U consist of n random variables u ;,u 2, -+, Hp, and let z be a subset of U such that |z [<n—2. The
partial correlation coefficient of u; and u; with respect to z, denoted p;;z, measures the correlation
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between u; and u; after subtracting from them the best linear estimates using the variables in z (Cramér,
1946). In other words, p;;., measures the correlation that remains after removal of any part of the varia-
tion due to the influence of the variables in z.

Definition:  Let x,y,z be three nonintersecting subsets of U. A relaton [.(x,y,z) is said to be
correlation-based if for every u;ex and ujey we have:

I.(x,z,y) <=>pij; =0 (19)

In other words, x is considered irrelevant to y relative to z if every variable in x is uncorrelated with
every variable in y, after removing the (linear) influence of the variablesin z.

Theorem 7:  Every correlation-based relation is a graphoid which, in addition to axioms (11), also
satisfies the contraction property (18) and the converse of (11.b), i.e.,

I(x,z,y)and [ (x,z,w)=> I{x,z,y\_w) (20)

Conjecture: Every graphoid satisfying (18) and (20) is isomorphic to some correlation-based relation.
5. CONCLUSIONS

We have shown that the essential qualities characterizing the probabilistic notion of conditional indepen-
dence are captured by two logical axioms: weak closure for intersection (6.c), and weak closure for union
(6.d). These two axioms enable us to construct an edge-minimum graph in which every cutset
corresponds to a genuine independence condition, and these two axioms were chosen therefore as the logi-
cal basis for graphoid systems — a more general, nonprobabilistic formalism of relevance. Vertex separa-
tion in graphs, probabilistic independence and partial uncorrelatedness are special cases of graphoid sys-
tems where the two defining axioms are augmented with additional requirements.

The graphical properties associated with graphoid systems offer an effective inference mechanism for
deducing, in any given state of knowledge, which propositional variables are relevant to each other. If we
identify the relevance boundaries associated with each proposition in the system, and treat them as neigh-

borhood relations defining a graph G o, then we can correctly deduce irrelevance relationships by testing
whether the set of currently known propositions constitutes a cutset in G .
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