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Overall Introduction (by Judea Pearl)

In October 2022, the journal Observational Studies published interviews with 4
causal inference contributors, James Heckman, Jamie Robins, Don Rubin and myself
[Observational Studies, 2022, 8(2):7–94. https://muse.jhu.edu/issue/48885]. My
interview (with Ian Shrier) was conducted in June 2019, and is provided below as
published. The only change made is the References section, which was incomplete in
the published version. Fundamental disagreements with the other three interviewees
and commentaries will be further discussed and posted on my blog.

General Perspective

Interviewer: Inferring causal effects from data involves many steps. Where do you
think your work fits within this overall process?

Pearl: I seek to understand the conditions under which such inference is theoretically
possible, allowing of course for partial scientific knowledge to guide the inference.
My focus has been on a class of models called “nonparametric” which enjoy two
unique features: (1) They capture faithfully the kind of scientific knowledge that is
available to empirical researchers and (2) they require no commitment to numerical
assumptions of any sort. Leveraging these models, I have focused on the problem
of identification, rather than estimation. This calls for transforming the desired
causal quantity into an equivalent probabilistic expression (called estimand) that
can be estimated from data. Once an estimand is derived, the actual estimation
step is no longer causal, and can be accomplished by standard statistical methods.
This is indeed where machine learning excels, unlike the identification step in which
machine learning and standard statistical methods are almost helpless. It is for this
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reason that I focus on identification – this is where the novelty of causal thinking
lies, and where a new calculus had to be developed.

Historical Perspective

Interviewer: What is your perspective of the history of the causal inference
movement, and how the movement came to where it is today?

Pearl: My perspective comes through the lens of a computer scientist. I look at
this movement as a struggle to develop a mathematical language for capturing
cause effect relationships, so that we can express our assumptions faithfully and
transparently, derive their logical implications and combine them with data. It’s
really a wedding between two non-intersecting languages, one is the language of
cause and effect, the other is the language of data, namely statistics [Pearl, 2019a].

The wedding occurred quite late in the history of science because science had
not been very kind to causality. It has revolved around the symmetric equality sign
‘=’ of algebra, and thus deprived us of a language to capture the asymmetry of
causal relationships. Such a language was developed in the past three decades, using
graphs, and it now enables us to answer causal and counterfactual questions with
algorithmic precision.

Graphs are new mathematical objects, unfamiliar to most researchers in the
statistical sciences, and were of course rejected as “non-scientific ad-hockery” by top
leaders in the field [Rubin, 2009]. My attempts to introduce causal diagrams to
statistics [Pearl, 1995; Pearl, 2000] have taught me that inertial forces play at least
as strong a role in science as they do in politics. That is the reason that non-causal
mediation analysis is still practiced in certain circles of social science [Hayes, 2017],
“ignorability” assumptions still dominate large islands of research [Imbens and Rubin,
2015], and graphs are still tabooed in the econometric literature [Angrist and Pischke,
2014]. While most researchers today acknowledge the merits of graph as a transparent
language for articulating scientific information, few appreciate the computational
role of graphs as “reasoning engines,” namely, bring.ing to light the logical
ramifications of the information used in their construction. Some economists even
go to great pains to suppress this computational miracle [Heckman and Pinto, 2015;
Pearl, 2013].

Although statistics began in the 1800s, Sewall Wright was the first person (in
1920) to put down mathematically the assumption that X causes Y and not the
other way around [Wright, 1921]. Using “path diagrams” he was able to articulate
causal assumptions mathematically, communicate them and defend them on scientific
grounds. Moreover, given the structure of the diagram and its path coefficients,
he could calculate correlations among measured variables. Subsequently he worked
backwards and found the coefficients from the correlations.

In retrospect, Wright’s exercise was remarkable [Pearl and Mackenzie, 2018].
Everybody jumped on him for doing the impossible, extracting causation from
correlation. But he responded admirably, claiming that his causal conclusions
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emerge not from correlations alone, but from a combination of correlations and
causal assumptions. This is the same philosophy that rules causal inference today.
Yet even today, many researchers still have a hard time understanding how path
diagrams can do things that correlations alone cannot [Sobel, 2009]; they haven’t
been taught how to read the causal assumptions that are so vividly displayed in the
diagram.

In 1923, and independently of Wright, Jersey Neyman introduced another
notation for causal effects, in the context of controlled experiments [Neyman, 1923].
His notation invoked counterfactuals (more accurately, potential outcomes): Y1

is what you would see if you apply treatment 1 and Y0 is what you would see
if you apply treatment 0. The rules of probability can now be applied to those
counterfactual entities as if they were ordinary variables.

Fisher, the inventor of randomized experiments, did not use Neyman’s notation.
He used intuition to claim, not prove, that randomization gives you what you want
[Fisher, 1926]. Note that farmers could not care less about randomization. They
want to know what the yield would be if they applied fertilizer 1 or 0 to the entire
field, not to randomly selected lots. But though he did not have the notation to
express what the farmer wants, Fisher nevertheless convinced the entire statistical
community that, if you randomize, you get (on the average) what the farmer wants
(i.e., the average treatment effect (ATE)). His argument was so compelling that
statisticians accepted it without a mathematical proof.

Within economics, the use of causal notation started in 1928 with Philip Wright
(the father of Sewall) who used structural equations to develop the method of
instrumental variables [Wright, 1928]. Haavelmo (1943) later looked at the practice
of economic modelling and noticed that the models invoked equations of peculiar
character. He was the first to ask “what does this equation say?” Before him,
people understood intuitively that the equality sign is not an ordinary equality,
and that the equation said something profound and extra-statistical about how the
economy works, but no one dared name it “causal effect.” Lacking counterfactual or
interventional notation, they could not articulate formally what causal assumptions
are conveyed by an economic equation. Haavelmo was the first to assert that,
when an economist puts down an economic equation, he/she has an experiment in
mind [Pearl, 2015a]. On the right-hand side, you have controlled variables and on
the left-hand side you have a function of those variables. He thus assigned causal
meaning to the equation, and proceeded to devise a mathematical procedure for
combining several equations and deriving causal effects. He essentially said that one
should modify the right-hand side of the equation until it reaches the specified level
of intervention, then solve the revised set of equations to obtain the desired causal
effect [Pearl, 2015a].

In 1960, Strotz and Wold “wiped out” equations from the model to simulate
price fixing [Strotz and Wold, 1960]. This was the second step in the transition
from algebraic to graphical methods. But it had to wait for Spirtes, Glymour and
Scheines in 1991 to give it graphical representation by removing arrows from the
diagram [Spirtes, Glymour, and Scheines, 2000]. This was followed by the back-door
criterion [Pearl, 1993] which solved the “covariate selection” problem, and produced
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a guaranteed bias-free estimation of causal effects.
It is interesting that these works of Wright and Haavelmo have impacted

philosophy and computer science before they revolutionized social science and
economics. In the 1960s Blalock and Duncan discovered the papers of Sewall Wright
and introduced causal inference to social science [Blalock, Jr., 1962; 1964; Duncan,
1966]. Like Wright, they used path diagrams to get partial correlations, and then
used matrix inversion to get back the path coefficients. The field exploded after
this. Every social or behavioral scientist became an expert in partial correlation,
path coefficients or path diagrams. Unfortunately, they didn’t have d-separation.
This meant they could not read vanishing partial correlations from the diagram,
and could not see all the nice things that those partials imply, like identification,
model equivalence and more. Eventually in 1975, Jöreskog invented LISREL (Linear
Structural Relations), a software package that fits a model directly to the data and
provides you with a degree of fitness [Jöreskog and Sörbom, 1986]. Practitioners
forgot the causal meaning of the equations and thought they were doing statistics.
Some even campaigned against “thinking or using terms such as cause and effect”
[Muthen, 1987]. That is the way some social scientists still operate [Bollen and
Pearl, 2013], although there has been a great revival of causal inference through the
book of Morgan and Winship (2007).

The story of economics was somewhat different. Around 1950, Jacob Marscak
and the Cowles Commission adopted Haavelmo’s interpretation of structural models,
and formulated key concepts and theories for making structural models useful
for policy making, including theories of identification, structural invariance and
parameter estimation. However, their models were tightly wedded to parametric
representations, mostly linear, and revolved around identifying parameters and
modifying parameters. They lacked distinct notational apparatus for explicating
the policy questions asked, the causal assumptions behind the equations, and the
testable implications of the models.

The influx of statisticians into econometrics, coupled with the deceptive similarity
of structural equations to regression models, caused many econometricians to doubt
the causal content of their models.. Lured by this surface similarity, some were led
to conclude: “We must first emphasize that, disturbance terms being unobservable,
the usual zero covariances “assumptions” generally reduce to mere definitions and
have no necessary causality and exogeneity implications.” [Richard, 1980, p. 3]

Others came to believe that some extra assumptions (e.g., “exogeneity [Engle,
Hendry, and Richard, 1983]) must be invoked to qualify a model for policy analysis
The equations themselves, were deemed too simplistic or “fragile” to convey
interventional information.

By the 1980-90s most economists came to believe that “An econometric model
specifies the statistical relationship that is believed to hold between economic
quantities” [Wikipedia, 2012] and econometric textbooks became laden with
merciless confusions between structural and regression equations [Chen and Pearl,
2013].

In 2000, James Heckman tried to rectify this neglect and to emphasize the
counterfactual nature of economic thinking and economic models. However, lacking
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inferential tools, and insisting on discovering “home grown” alternatives, prevented
him from closing the gap with developments that took place in neighboring
disciplines. I have illustrated the gap in vivid colors, using 28 simple examples in
[Pearl, 2015a], a paper commemorating Haavelmo’s centennial.

From Causal Effect To Counterfactuals

Interviewer: How have these ideas of Wright and Haavelmo evolved towards the
do-calculus and then towards our current understanding of counterfactuals?

Pearl: In the 1970s, Don Rubin noticed that Neyman’s notation can be used for
causal inference not only in experimental studies, but also in observational studies
[Rubin, 1974]. He was one of the first (1980) to put down the consistency rule
in the form of an equation Y = XY1 + (1 − X)Y0, which he considered to be an
“assumption” [Rubin, 1980]. This important equation connects the hypothetical
counterfactuals Y1 and Y0 with an observed quantity, namely Y . David Lewis
and Robert Stalnaker came out with a theory of counterfactuals 8 years earlier,
using possible worlds semantics [Stalnaker, 1980] and Gibbard and Harper proved
(1978) that the consistency rule is actually a theorem that follows from Lewis
semantics [Gibbard and Harper, 1978]. In the 1980s, Greenland and Robins took the
counterfactual notation and used it to classify experimental units into 4 response
types: Doomed, Causative, Preventive and Immune [Greenland and Robins, 1986].
They defined confounding in terms of those response types, which was the first
formal definition of “confounding.” Previous attempts to define confounding in
terms of statistical vocabulary failed of course because confounding is a causal
concept. Unfortunately, assessing the proportion of people in each response type is
hard, because individuals are not labeled by type. In 1986, Robins used Neyman
notation to derive his G-formula, assuming independencies among counterfactuals.
(i.e., ignorability). It provided answers to questions such as, “If you have a collection
of temporally ordered variables and you make the assumptions of ignorability at
every stage in time, what would be the effect of a sequence of interventions?” He
showed that, if you make the assumption that every variable is randomized at every
stage, given the past, you can assess the effect of interventions given pre-intervention
probabilities [Robins, 1986].

In 1991, Spirtes, Glymour and Scheines derived the same formula using Strotz
and Wold “wiping out” operation on graphs [Spirtes, Glymour, and Scheines, 2000].
This had the advantage of basing the assumptions on meaningful relationships
between observed variables, as opposed to opaque conditional independencies
among counterfactuals. The formula was still limited though to models with no
unobserved confounders, also known as “Markovian models.” Two years later, I
presented the back-door criterion which facilitated the identification of causal effects
in “Semi-Markovian models,” namely, feedback-free models loaded with unobserved
confounders [Pearl, 1993]. The back-door criterion made use of the d-separation
condition which was developed a decade earlier for Bayesian networks [Pearl, 1986].

5



Bayesian networks were developed to perform probabilistic prediction and
retrodiction (diagnosis) using graphical models of conditional independencies.
We thought about causation, but we did not dare put down causal assumptions
explicitly. Instead we wrote down probabilistic relationships between diseases,
symptoms and treatments. We believed we were doing statistics, not causation
[Pearl, 1988]. Strangely, however, the models were always arranged with parents
being causes and the child being an effect; they were actually causal diagrams. Thus,
all the knowledge acquired for Bayesian networks turned out applicable to causal
diagrams as well, which helped immensely in the development of the do-calculus and
counterfactual analysis [Balke and Pearl, 1994a; 1994b; Pearl, 1994].

I once called d-separation “A gift of the Gods,” because it is the only bridge
we have between the causal assumptions in our model and what we can expect to
observe in our data. Scientific communities that adopted the d-separation (e.g.,
epidemiology) have flourished, those that did not, have stayed behind. I am sure
historians of 21st century science will take note of this connection.

Thrilled by the power of the back-door criterion, I thought that the language of
causality deserves a calculus of its own, that is, a set of procedures to answer any
causal question from any model. Given an arbitrary graph, I sought a mechanical
procedure to get an answer to the question “If I intervene on X, what will happen
to Y ?” The do-calculus came out at the right time, because it showed us what can
be done beyond back-door adjustments [Pearl, 1994]. The front-door criterion was
one of its first fruits and The Book of Why describes the excitement caused by its
discovery [Pearl and Mackenzie, 2018]. Another fruit was the sequential version of
the back-door criterion, which Jamie Robins and myself derived in 1995. It identifies
the effects of time varying treatments [Pearl and Robins, 1995], and demystified the
conditions under which Robins’s G-formula is valid.

In 1995, Phil Dawid had the courage to overrule all negative reviewers and
publish my paper in Biometrika [Pearl, 1995]. He thought that the field needs
to hear about this new way of dealing with causal effects. Such editorial courage
is rare these days. Starting about the same time, Rubin’s potential outcome
framework became popular in several segments of the research community, mostly
among economists and political scientists. These researchers talked “conditional
ignorability” to justify their methods, though they could not tell whether it
was true or not. Conditional ignorability gave them a formal notation to state
a license to use their favorite estimation procedure even though they could
not defend the assumptions behind the license. This practice of relying on a
priori licenses continues today. It is hard to believe that something so simple
as a graph could replace the opaque concept of “conditional ignorability” that
people find agonizing and incomprehensible. The back-door criterion made
it possible, which was immediately recognized in epidemiology [Greenland,
Pearl, and Robins, 1999], though not in all fields [Heckman and Pinto, 2015;
Rubin, 2009].

By 1996, I started writing my book, Causality. Many problems have been solved
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since, and the do-calculus is now proven to be complete [Shpitser and Pearl, 2006]1.
This means that if the do-calculus tells you that it cannot identify a certain causal
effect, there is no other method that can identify it non-parametrically, unless you
strengthen or refine the assumptions. To elaborate, the do-calculus is a set of rules
for manipulating causal expressions, the aim of which is to remove the do-operator
from such expressions and reduce them to statistical estimands. For example,
if a certain pattern holds in the graph, you can exchange observation with an
action. Another pattern might allow you to remove an action, or remove a variable
all together from your expression. An analogy would be symbolic integration
in calculus. With a rich set of transformations such as integration by part and
integration by substitution, you can simplify the integrand into sums of integrable
functions. In reality, this is still a difficult problem even if you have armed yourself
with many tricks of integration, because you don’t know what trick to use at any
given point of time. Should you use the trick of integration by part or integration
by substitution? If substitution, what function should you substitute for X, cosine,
tangent, logarithm, or exponential? So, you see, having a calculus does not mean
that you have an effective procedure to get the answer. We need more than that.
The calculus is good for verifying the answer, not for finding it. If you give me a
guess of what the identified causal effect looks like, I can prove it to you immediately
using the three rules of do-calculus. But to find the sequence of rule applications is
a difficult problem. Fortunately, we now have an algorithm that just goes ahead
and gets us the answer, and exits with failure whenever the answer does not exist
(non-identifiability) [Shpitser and Pearl, 2006].

Causal inference can be classified into two distinct classes of problems: predicting
effects of interventions and reasoning about counterfactuals. The first is formalized
by the do-calculus while the second requires hypothetical, retrospective thinking,
that is, predicting what the future would be like had the past been different from
what it actually was. I consider the algorithmization of counterfactuals [Balke and
Pearl, 1994a; 1994b] to be one of the crowning achievements of contemporary work
on causality. It means that when I specify how the world works, I don’t have to
think about counterfactuals, closest worlds, ignorability, conditional ignorability
or whether one counterfactual is independent of another given a third. No mortal
can cognitively handle those counterfactual properties. Instead, a researcher simply
writes down a set of structural equations similar to those used by economists, and
all counterfactuals are then computed automatically. Every structural equation
model determines the “truth value” of every counterfactual sentence. Accordingly,
one can compute whether the counterfactual Yx is independent of any other variable
in the model, and you can condition Yx not only on pre-treatment covariates but
also on post-treatment covariates. In this way we can estimate “causes of effects”
not merely “effects of causes” [Pearl, 2015b].

1This completeness result covers the task of identifying causal effects from observational data.
Completeness results for other tasks, such as a combination of observational and interventional
distributions can be found in [Bareinboim and Pearl, 2012; Lee, Correa, and Bareinboim, 2019]; for
a survey on completeness results that include selection bias, external validity, and transportability,
see [Bareinboim and Pearl, 2016].
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This computation of counterfactuals in encapsulated in one simple formula,
which I called The First Law of Causal Inference

Yx(u) = YMx(u) (1)

It says that the counterfactuals Yx(u) in model M is defined by the solution for Y in
a modified submodel Mx, in which the equation for X is replaced by X = x [Pearl,
2015a, Definition 1]. All aspects of causal inference, prediction, intervention and
retrospections, including the rules of do-calculus, follow from this innocent equation.

Joseph Halpern, a computer scientist at Cornell, made a major contribution
in 1998. by constructing a complete set of axioms for structural counterfactuals
[Halpern, 2000]. Such a set can tell us if two interpretations of counterfactuals
are equivalent or not. In particular, Halpern’s axiomatization proved that Rubin’s
potential outcome framework is logically equivalent to that of causal graphs. This
means that two investigators who explore the same question, on the same data with
the same assumptions, will get the same result whether they use Rubin’s model
or a structural equations model. A theorem in one is a theorem in the other. An
assumption in one is an assumption in the other.

As we marvel the powers of structural causal models (SCM) and their derivative,
the do-calculus, one should be aware of the barrier between the two and the
limitations of the latter. The do-calculus was devised to identify cause-effect
relationships in strictly nonparametric problems, and it resides on Rung-2 of the
Ladder of Causation [Pearl and Mackenzie, 2018]. When it fails to provide an
answer, it means that no solution exists, given the non parametric nature of the
assumptions in the DAG. It also means that if we wish to obtain a solution, we must
relax the nonparametric restriction and invoke assumptions about the functional
form of the equations. Typical assumptions are linearity, separability, monotonicity,
effect-homogeneity, and more.

The huge econometric literature on instrumental variables (or natural
experiment), for example, relies on the (non-varifiable) assumption of monotonicity
(that a variable cannot decrease when its driver increases). This assumption can
easily be formulated in the language of SCM and yields the LATE identification
formula [Imbens and Rubin, 2015]. Numerous other tasks, including mediation,
attribution [Pearl, 2015b] and individualization [Li and Pearl, 2019] can likewise be
solved outside the province of do-calculus, using the powerful logic of counterfactuals
that Equation (1) entails.

Generalizability

Interviewer: Researchers in causal inference are starting to examine external
validity, also known as generalizability or transportability. Can you describe your
approach using selection diagrams, and what questions they address that causal
diagrams do not?
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Pearl: Causal diagrams describe one population. If you want to specify disparity
between two populations, you need to talk about two diagrams. But in many cases,
the structures of the two diagrams are the same and the disparity comes as local
differences in the strengths of some causal relationships. A selection diagram adds
a node to one of the diagrams saying: “Here is a factor that creates disparity.” We
denote such a node by a square. You add these nodes to the causal diagram to mark
where the two populations differ. In other words, if there is a square node into
variable Z, it means that the two populations may differ in terms of the response of
Z to its parents.

For example, if the age distribution in Los Angeles is different from that of
Hawaii, I would add an arrow into Age. It results is a DAG annotated with squares
wherever suspicion exists about the homogeneity of the two populations. We now
call for do-calculus to tell us what we need to know: “Can we generalize what
we learned in one population to the other?” The do-calculus will manipulate the
expressions pertaining to one population and bring them to a format that answers
the question [Pearl and Bareinboim, 2014]. Moreover, Elias Barenboim has devised
algorithmic methods to generate the answer directly, thus bypassing the do-calculus
[Bareinboim and Pearl, 2013]. In Elias’s software, the input is a selection diagram
and the output will tell us if we can answer the question or not. If we can, it will
tell us what information we must acquire from each study, and how to combine
them properly. If we combine them the way we are told, we will obtain a consistent
estimate of our target answer in the target population [Bareinboim and Pearl, 2016].

I believe history will confirm my current assessment that, following centuries of
round-about speculations and wishful thinking, the problem of external validity (and
generalizability) has finally been formalized mathematically and now has a path
forward to practical applications.

Causal Diagrams, Counterfactuals and Potential

Outcomes

Interviewer: You said the approach using DAGs and potential outcomes are similar
a couple of times. Can you outline what you believe are the differences?

Pearl: I said they are “logically equivalence,” not “similar.?” An analogy would be
solving a geometrical problem in polar vs. Cartesian coordinates. Rubin’s framework,
known as “potential outcomes,” differs from the structural account in the language
in which problems are specified, and hence, in the clarity of articulating what we
know and the mathematical tools available for deriving what we wish to know. In
the potential outcome framework, problems are defined algebraically as assumptions
about counterfactual independencies, also known as “ignorability assumptions.”
These types of assumptions are too complicated to interpret or verify by unaided
judgment. In the structural framework, on the other hand, problems are defined in
the language in which scientific knowledge is stored – causal graphs. Dependencies
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of counterfactuals, if truly needed, can be deduced from the graph, but in almost all
cases they can be replaced by causal dependencies among observables, which are
vividly displayed in the graphs.

The reasons some statisticians and economists still prefer the algebraic potential
outcome approach are puzzling to me. But as a student of the history, I attribute
them to natural resistance to a new language, conformity to traditional cultures,
and allegiance to tightly guarded communities.

The advantages of the structural approach can be summarized along three
dimensions: Transparency, Power and Testability. Transparency stands for the
ability of a researcher to a) remember assumptions, b) judge their plausibility,
c) determine their consistency and, most importantly, d) determine if a set of
articulated assumptions is compatible with the requirements of a given identification
strategy. Typical identification strategies are “adjustment for covariates” or
“instrumental variables.”

Power measures the space of problem instances for which an identification
strategy can be found. For example, DAGs together with do-calculus can discover
all identification strategies applicable to a given (nonparametric) interventional
problem. The front-door exemplifies an identification strategy that goes beyond
“adjustment for covariates.”

Testability stands for one’s ability to determine if the modeling assumptions are
compatible with the available data. In DAGs, we have the d-separation criterion,
which translate immediately into tests of compatibility with data. In potential
outcomes, testability requires non-trivial derivations [Pearl, 2014a].

When compared along these three dimensions, the advantages of the structural
framework shine uncontested. Unfortunately, only a handful of researchers have
taken the time to compare the solution of simple problems, side by side, in the two
frameworks, as they are often invited to do. Instead, the weaknesses of the potential
outcomes approach are usually glossed over by assuming conditional ignorability a
priori and leaving the identification task to the mercy of chance.

Non-Manipulable Variables and Causation

Interviewer: Can you clarify your thoughts on considering non-manipulable
variables like race as a “cause?”

Pearl: The mantra “No causation without manipulation” [Holland, 1986], represents
another hang-up of the potential outcome community, which has not been able to
liberate itself from the experimental setup in which potential outcomes were first
defined. That setup required a comparison of hypothetical outcomes of conceptually
manipulable “treatments.” Things are fundamentally different in the structural
framework where potential outcomes are defined by (surgeries over) models of
reality. There is nothing to prohibit one from taking a model, delete arrows entering
variables such as race or blood-pressure then compute and communicate properties
of the modified model, for example, Q = P (y|do(x)).
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For non-manipulable X, this scheme raises two immediate questions. First:
What useful information does Q convey aside from being a mathematical property
of our model? Second, assuming that Q conveys an important feature of reality, how
can we test it empirically? And if we cannot test it, is it part of science?

In a recent paper [Pearl, 2019b] I address precisely these two questions and
show that causal effects defined on non-manipulable variables have empirical
semantics along three dimensions. First, they provide important information about
causal effects of other manipulable variables, not necessarily those targeted by
the do-operator. Second, they may facilitate the identification of causal effects of
manipulable variables and, finally, they can be tested for validity, albeit indirectly.

Thus, doubts and trepidations concerning the effects of non-manipulable
variables and their empirical content should give way to appreciating the important
information that these theoretically-defined effects provide. Researchers need not
be concerned with the distinction between manipulable and non-manipulative
variables, except of course in the design of actual experiments. In the analytical
stage, including model specification, identification and estimation, all variables can
be treated equally.

Mediation Analyses and Cross-World Assumptions

Interviewer: What are your thoughts on decomposing total causal effects into
direct and indirect effects?

Pearl: My motivation to engage in effect decomposition was inspired by social
scientist Jacques Hagenaars (author of Categorical Longitudinal Data, 1994), who
convinced me of its importance. Jack considered the distinction between direct
and indirect effects to be the key to resolving issues of fairness and discrimination.
For example, lawyers explicitly describe sex dis.crimination as the direct effects
of sex on salary, and use counterfactual expressions such as “The candidate
income would have been higher had he or she been of different gender” [Carson
vs. Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir., 1996]. Unfortunately, I
could not do much with such expressions prior to 1994 for I could not parse the
counterfactual relation “Had he or she been.” Once I understood how counterfactuals
are derived from structural models, and felt comfortable with the algebra that
governs counterfactuals, the whole issue of effect decomposition unfolded before
my eyes. It came to me as a sudden revelation when I read the legal definition
of discrimination: “The central question in any employment-discrimination case
is whether the employer would-have taken the same action had the employee
been of a different race (age, sex, religion, national origin, etc.) and everything
else had been the same” [Carson vs. Bethlehem Steel Corp., 70 FEP Cases 921,
7th Cir., 1996]. All I had to do was to take this sentence and translate it to
the algebra of counterfactuals and, Bingo, the definitions of direct and indirect
effect came rushing out by themselves, followed by identification conditions,
mediation formula, graphical representation, and other goodies [Pearl, 2012;
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Pearl, 2014b].
I first formalized effect decomposition in 2001 but, in fact, Jamie Robins and

Sander Greenland had published a paper on mediation analysis 9 years earlier
[Robins and Greenland, 1992] which conceptualized direct and indirect effects in
the same counterfactual terms, though not enshrined in mathematical formulas.
Remarkably, they ended up concluding that we cannot identify direct and indirect
effects, not even from experimental studies. I thought the reason for the difference
was that they failed to put the counterfactuals into an equation and were thus
prevented from seeing opportunities for identification. Evidently, the reason was
more complicated. Jamie felt that it was not scientifically meaningful to make the
assumptions needed for identification, for they invoked “cross-world independencies.”

Let me explain. Whenever we say that two unobserved factors are independent,
we are likely to make cross-world assumptions. This is because non-confoundedness,
the only thing we can test empirically, does not imply ignorability, except for binary
treatments. For example, if we say that “the price of beans in China is independent
of tomorrow’s traffic in Los Angeles,” we are saying that no matter what the price
p is, it is independent of all the factors, hidden as well as visible, that may affect
tomorrow’s traffic level in LA. But we cannot guarantee that if p were different than
the one actually observed those same factors would still be independent of it. As
scientists, we feel comfortable making such assumptions because we cannot find in
our theory, or imagination a mechanism that will account for correlation between
the two hypothetical factors. Such correlations remain unverifiable however, which
make some purists uncomfortable. My perspective remains that such assumptions
represent the engine by which we conduct our lives and should not be barred from
scientific discourse.

In 2005, my students Chen Avin and Ilya Shpitser came up with a new type
of interventions which we called “path specific effects” [Avin, Shpitser, and Pearl,
2005]. Instead of interventions that fix variables to constants, their interventions
disabled links between variables. Indeed, when we seek to estimate the indirect
effect from X to Y going through a mediator M , we need to disable the direct effect.
But we cannot disable a direct effect by fixing any variable to a constant. Instead,
we sever the direct link and let all other links remain unaltered.

I called the resulting effects “natural,” a term that caught on, because the
intervention leaves the units in their natural surroundings [Pearl, 2001]. Natural
mediation analysis gives us answers to the most important questions that I thought
investigators would be concerned with: The percentage of observed effect that
could be prevented by disabling the mediating path, and the percentage that
would be sustained by the mediating path alone, with the direct effect disabled.
These two measures become identical in linear systems but diverge in the presence
of interactions, where they capture the difference between the “necessity” and
“sufficiency” aspects of mediation [Pearl, 2012].

The idea of causal mediation analysis has caught on in many fields and has led
many researchers to abandon the regression-based analysis that has dominated the
social and behavioral sciences since the seminal paper of Baron and Kenny, in 1986
(with 75,000 citations) [Baron and Kenny, 1986]. However, the transition has not
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been easy. Courses in traditional mediation analysis, which treats mediation as a
statistical problem are still offered in many universities [Hayes, 2017], and articles in
this tradition still appear in conservative publications like the Journal of Structural
Equations. Science progresses in turtle steps.
Interviewer: You previously developed Twin Networks. Can you explain when
these are useful?

Pearl: Twin Networks were devised to answer one simple question: whether one
counterfactual is independent of another, given a third. This type of question
is important in the potential outcome framework, where it is called “conditional
ignorability,” without which identification is impossible.

Things are totally different in the structural framework. Here, we can establish
identification directly from the DAG, using do-calculus or graphical criteria such
as “back-door” and “front-door.” These criteria imply “conditional ignorability”
without explicitly displaying the counterfactuals involved. So, the twin network is
not really needed.2

Non-Causal but Interesting Issues

Interviewer: Machine learning (ML) has scored many achievements in the past
decades, and many researchers are aspiring to import ML methods to causal
inference problems, as well as harnessing causal inference for achieving human level
intelligence. How do you view your work fitting into this context?

Pearl: As I evaluate the success of machine learning systems, I see that the barriers
discovered in the causal-inference arena are precisely those that prevent those
systems from achieving higher levels of intelligence. The theoretical impediments
that prevent us from going from one level of the hierarchy to a higher level also
prevent current machines from reasoning like humans about explanations, regret,
fairness, responsibility, and more.

Machine learning is a tool to get us from data to probabilities. But we still need
to make two extra steps to go from probabilities into real understanding. One is
to predict the effect of actions, and the second is counterfactual imagination. We
cannot claim to understand reality unless we make the last two steps [Pearl, 2019a].

In his insightful book Foresight and Understanding, the philosopher Stephen
Toulmin argues that the transition away from data-centric thinking is the key to
understanding the ancient rivalry between Greek and Babylonian sciences [Toulmin,
1961]. According to Toulmin, the Babylonian astronomers were masters of black-box
predictions, far surpassing their Greek rivals in accuracy and consistency of celestial
observations. Yet Science favored the creative-speculative strategy of the Greek
astronomers, which was wild with metaphorical imagery: circular tubes full of fire,
small holes through which celestial fire was visible as stars, and hemispherical

2Twin Networks are still needed though for tasks involving counterfactuals (Rung-3) such as
mediation, attribution and individualization.
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Earth riding on turtleback. It was this wild modeling strategy, not Babylonian
extrapolation, that jolted Eratosthenes (276-194 BC) to perform one of the most
creative experiments in the ancient world and calculate the circumference of the
Earth. Such an experiment would never have occurred to a Babylonian data-fitter.

Model-blind approaches impose intrinsic limitations on the cognitive tasks that
Strong AI can perform. My general conclusion is that human-level AI cannot emerge
solely from model-blind learning machines; it requires the symbiotic collaboration
of data and models. Data science is a science only to the extent that it facilitates
the interpretation of data – a two-body problem, connecting data to reality. Data
alone are hardly a science, no matter how “big” they get and how skillfully they
are manipulated. Model-blind learning systems may get us to Babylon, but not to
Athens.

Mentors

Interviewer: Who do you consider your most important mentors and why?

Pearl: My most important mentors were my high-school teachers who showed us
the fun of doing science. My classroom was always decorated with pictures of great
scientists on the wall, and I remember putting myself in the shoes of one of those
scientists and asking “How would he go about doing this or that?” So, in a sense, I
have had many mentors.

I loved Faraday. He never had a formal education. He was a self-educated
explorer who used intuition so wisely, that he did not need the aid of math or formal
definitions. I remember the day when he invented the first electric motor. When he
saw his magnet rotating around an electric wire, he jumped from joy. I danced with
him.

I also loved Maxwell because he translated Faraday’s intuition into mathematical
equations. He showed me that if you translate intuition into mathematics, the
mathematics amplifies your intuition and gives you more insight, with which you
can decide for example what experiment to try next. Faraday had the intuition of
a “field” and Maxwell took it seriously and cast it in 4 differential equations. He
then looked at the equations and said: “Wow, they seem to describe a wave. Let’s
calculate the speed of propagation of that wave. Another Wow! It is the speed of
light. Bingo, light must be an electro-magnetic wave.” Mind you, this revolutionary
discovery came from looking at the form of an equation. I had a terrific kick from
this line of thinking, and it still governs much of what I do.

Another mentor was Descartes. I was sick for three days when I learned about his
descriptive geometry in high school. The fact that you could do all the constructions
of geometry using algebra just blew my mind. I got a high fever and could not get
out of bed for three days. So, I have had many spiritual mentors.
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Publishing Technical Reports

Interviewer: Most academics publish in academic journals. You generally publish
technical reports, which sometimes come out in journals. Why?

Pearl: This is computer science culture. For a Doctoral student to get a job in
academia, you re.quire 8 publications or more in first-rate conferences; journal
publications take too long. The technical reports on my website are generally
proceedings from such conferences. Most of these were eventually converted to
journal articles though the juicy ones were not; these contain heretical ideas or bold
criticism of revered leaders in the field (http://bayes.cs.ucla.edu/csl papers.html).
They are waiting for invitation from courageous editors who understand where
science is heading.
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