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All accounts of rational behavior presuppose knowledge of how actions
affect the state of the world and how the world would change had alternative
actions been taken. If the options available to an agent are specified in terms
of their immediate consequences, as in “make him laugh,” “paint the wall red,”
“raise taxes” or, in general, do(X = x), then a rational agent is instructed to
maximize the expected utility

EU(x) =
∑
y

Px(y)U(y) (1)

over all options x. Here, U(y) stands for the utility of outcome Y = y and
Px(y) – the focus of this paper - stands for the (subjective) probability that
outcome Y = y would prevail, had action do(X = x) been performed so as to
establish condition X = x.

Most studies of decision theory have dealt with the utility function U(y), its
behavior under various shades of uncertainty, and the adequacy of the expecta-
tion operator in Eq. (1). Relatively little has been said about the probability
Px(y) that governs outcomes Y = y when an action do(X = x) is contem-
plated. Yet regardless of what criterion one adopts for rational behavior, it
must incorporate knowledge of how our actions affect the world. We must
therefore define the function Px(y) and explicate the process by which it is
assessed or inferred, be it from empirical data or from world knowledge. We
must also ask what mental representation and thought processes would permit
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a rational agent to combine world knowledge with empirical observations and
compute Px(y).

It has long been recognized that Bayesian conditionalization, i.e., Px(y) =
P (y|x), is inappropriate for serving in Eq. (1), for it leads to paradoxical
results of several kinds (see Pearl 2000, pp. 108–9; Skyrms 1980). For example,
patients would avoid going to the doctor to reduce the probability that one is
seriously ill; barometers would be manipulated to reduce the chance of storms;
doctors would recommend a drug to male and female patients, but not to
patients with undisclosed gender, and so on. Yet the question of what function
should substitute for Px(y), despite decades of thoughtful debates (Cartwright,
1983; Harper et al., 1981; Jeffrey, 1965) seems to still baffle philosophers in
the 21st century (Arlo-Costa, 2007; Weirich, 2020; Woodward, 2003). Modern
discussion over evidential vs. causal decision theory (Weirich, 2020) echo these
debates.

Causal inference research in the past 3 decades has settled this debate
by defining Px(y) in terms of Structural Causal Models (SCM) which allows
one to compute counterfactuals directly from the way people store knowledge
about the world.

The theory that emerges from SCM offers several conceptual and oper-
ational advantages over Lewis’s closest-world semantics of counterfactuals.
First, it does not rest on a metaphysical notion of “similarity,” which may
differ from person to person and, thus, could not explain the uniformity with
which people interpret causal utterances. Instead, causal relations are defined
in terms of our scientific understanding of how variables interact with one
another. Second, it offers a plausible resolution of the “mental representa-
tion” puzzle: How do humans represent “possible worlds” in their minds and
compute the closest one, when the number of possibilities is far beyond the ca-
pacity of the human brain? Any credible theory of rationality must account for
the astonishing ease with which humans comprehend, derive and communicate
counterfactual information. Finally, it results in practical algorithms for solv-
ing some of the most critical and difficult causal problems that have challenged
data analysts and experimental researchers in the past century (see Pearl and
Mackenzie (2018) for extensive historical account). These include: the control
confounding and predicting effects of interventions and policies, defining and
estimating direct and indirect effects, generating explanations and estimat-
ing causes of effect, managing missing data, and generalizing empirical results
across diverse environments.
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