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Abstract

Assumptions about equality of effects are
commonly made in causal inference tasks.
For example, the well-known “difference-
in-differences” method assumes that con-
founding remains constant across time pe-
riods. Similarly, it is not unreasonable to
assume that causal effects apply equally to
units undergoing interference. Finally, sen-
sitivity analysis often hypothesizes equality
among existing and unaccounted for con-
founders. Despite the ubiquity of these
“equality constraints,” modern identification
methods have not leveraged their presence
in a systematic way. In this paper, we de-
velop a novel graphical criterion that ex-
tends the well-known method of generalized
instrumental sets to exploit such additional
constraints for causal identification in lin-
ear models. We further demonstrate how it
solves many diverse problems found in the lit-
erature in a general way, including difference-
in-differences, interference, as well as bench-
marking in sensitivity analysis.

1 Introduction

The assumption that certain causal effects are equal
is present in a number of diverse causal inference
problems. For example, many popular identification
strategies, including the widely known “difference-in-
differences” technique, rely on the assumption that
confounding mechanisms remain invariant over differ-
ent time periods (Angrist and Pischke, 2009; Kim and
Steiner, 2019). Similarly, while interference among
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subjects can complicate identification, sometimes it
may be defensible to assume that certain causal ef-
fects apply equally to each subject. Lastly, a common
practice in sensitivity analysis is to benchmark the
strength of a potential, unaccounted for confounder to
the strength of observed confounders (Cinelli and Ha-
zlett, 2020). In each of these cases, equality constraints
between structural parameters play an important role
to identify or bound causal effects.

However, despite the ubiquity of these “equality con-
straints,” currently there is no known efficient algo-
rithm that is able to systematically exploit them for
identification.1 While in the past few decades sig-
nificant progress has been made in developing effi-
cient identification algorithms for linear causal mod-
els (Brito and Pearl, 2012; Foygel et al., 2012; Chen
et al., 2017; Weihs et al., 2018; Kumor et al., 2019,
2020), such techniques can only systematically handle
two types of assumptions encoded in a causal diagram:
(i) the absence of a direct effect between certain vari-
ables; and (ii) the absence of association between error
terms.

As a result, the current literature handling equality
constraints has mostly worked with ad-hoc structures
on a case-by-case basis. For example, Kim and Steiner
(2019) discuss the gain-score method for solving cer-
tain models; Chalak (2013, 2019) provides a more gen-
eral method in which difference-in-differences is a spe-
cial case, but still restricted to few cases; and while
Cinelli et al. (2018) demonstrate that benchmarking
in sensitivity analysis can be reduced to an identifica-
tion problem with equality constraints, they only do
so for specific model structures.

In this paper, we develop a novel graphical criterion
that extends generalized instrumental sets (Brito and
Pearl, 2012) to exploit external equality constraints
for causal identification in linear models. We prove

1One could use methods from computer algebra
(Garćıa-Puente et al., 2010), but these are often compu-
tationally intractable, making it practically infeasible for
models larger than 4 or 5 nodes.
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the soundness of our method and demonstrate that
it generalizes various known identification strategies
such as difference-in-differences, improves our ability
to identify effects under interference, and refines ex-
isting results for benchmarking in sensitivity analy-
sis. Moreover, since most modern linear identification
algorithms build upon generalized instrumental sets
(Kumor et al., 2019, 2020), our results may be used
towards an algorithmic approach to exploit equality
constraints in linear causal identification.

2 Preliminaries

Linear Structural Causal Models. In this paper,
we restrict our attention to acyclic semi-Markovian lin-
ear structural causal models (SCMs) (Wright, 1921;
Pearl, 2009). Formally, linear SCMs are represented
by a system of linear equations X = ΛTX+ε where X
is a vector of observed variables, ε is a vector of latent
variables, and Λ is an upper triangular matrix of direct
effects, whose ijth element, λvivj gives the magnitude
of the direct causal effect of vi on vj . Without loss
of generality, we assume variables have been standard-
ized to have mean 0 and variance 1. In linear models,
the error term ε is commonly assumed to be normally
distributed with covariance matrix E . This means that
the covariance matrix of the observed data Σ := XXT

fully characterizes the observational distribution. This
matrix can be linked to the underlying structural pa-
rameters through the system of polynomial equations
Σ = XXT = (I−Λ)−TE(I−Λ)−1, and the problem of
identification reduces then to finding the elements of Λ
that are uniquely determined by the above system. In
this paper, we deal with the problem of identification
“almost everywhere” (Brito and Pearl, 2012).

Causal Graph. The causal graph of an SCM is
defined as a triple G = (V,D,B), representing the
nodes, directed, and bidirected edges, respectively. We
will use the terms node and variable interchangeably,
where they can denote the variables in the SCM or
the nodes in the causal graph. There is a directed
edge from vi to vj for each non-zero λvivj ∈ Λ, and
a bidirected edge between vi and vj for each non-zero
εvivj ∈ E . For convenience, we will often refer to a
structural parameter using its associated edge, or, con-
versely, use the structural parameters λvivj and εvivj
to refer to the corresponding directed and bidirected
edges between vi and vj in the graph. We will use θ
to denote a generic structural parameter of the model
(either a directed edge or a bidirected edge). If there
are unobserved variables in the graph, we will usually
work with its latent projection (Verma, 1993; Pearl,
2009), where we use bidirected edges to denote unob-
served confounders. We also borrow the following def-

initions from Brito and Pearl (2012) and Chen et al.
(2017): Inc(y) for some variable y denotes the set of
edges that have an arrowhead at y; GE− where E is
a set of edges denotes the graph G with the edges E
removed; and p[v1 ∼ v2] where p is a path and v1, v2
are two variables on p denotes the subpath between v1
and v2 (both v1 and v2 included).

Wright’s Rules. We use ρvivj ·W to denote the par-
tial correlation between two variables, vi and vj , given
a set of variables, W . We will extensively use Wright’s
path tracing rules. Wright’s rules (Wright, 1921) al-
lows us to equate the model-implied correlation ρvivj
between any pair of variables, vi and vj , to the sum of
products of parameters along unblocked paths between
vi and vj . For example, in Figure 1, Wright’s rules
gives us ρxy = εxy + λxmλmy, ρmy = λxmεxy + λmy,
and ρxm = λxm.

x m y

λxm λmy

εxy

Figure 1: DAG illustrating Wright’s rules.

Instrumental Variables and Instrumental Sets.
A useful method for causal identification in linear mod-
els is the instrumental variable (IV) (Bowden and
Turkington, 1990). An example is given in Figure 2.
Note that λxy is not identified without z, due to the
unobserved confounder between x and y. However, if z
is observed, λxy can be identified by solving the linear
equation, ρzy = ρzxλxy.

z x y

λzx λxy

εxy

Figure 2: z is an IV for λxy.

A generalization of the traditional IV is the method
of generalized instrumental sets (IV sets) proposed by
Brito and Pearl (2012). IV sets allow the simultaneous
use of multiple IVs to construct a full-rank system of
linear equations, and the causal parameters are iden-
tified by solving the system. An example is given in
Figure 8(a), which we discuss in detail in Section 5.
Our method extends generalized instrumental sets, by
relaxing the need of finding a full-rank system of equa-
tions, which is then supplemented by external equality
constraints.
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3 Motivating Examples and Related
Work

3.1 Equiconfounding

A number of identification techniques use the assump-
tion of equiconfounding, where observed variables are
equally affected by an unobserved confounder. Chalak
(2013) discusses some special types of equiconfounding
where point-identification is possible, including when
two joint responses are equiconfounded, and when two
causes and one response are equiconfounded.

The most widely applied special case of equiconfound-
ing is “difference-in-differences” (Angrist and Pischke,
2009; Kim and Steiner, 2019), which assumes two
joint responses are equally affected by unobserved con-
founding. A commonly cited example involves esti-
mating the effect of raising the minimum wage on un-
employment. In this case, the change in employment
after minimum wage was increased in New Jersey (NJ)
was compared to the change in employment in Penn-
sylvania (PA) over the same time period, where mini-
mum wage was not changed (Card and Krueger, 1993).
The usual structure can be depicted as in Figure 3,
where x represents minimum wage, y represents unem-
ployment after the change in minimum wage, w repre-
sents unemployment before the change in minimum
wage, and u represents the unobserved confounder.
The equality constraint of this model is that λuw = λuy
(DAG on the left), without which the causal effect is
not identifiable. In the latent projection (Pearl, 2009)
(DAG on the right) the equality constraint becomes
εxw = εxy.

(u)

x y

w

λuw
λ
uy

w

x y
λxy

ε
w
yε x

w

εxy

Figure 3: When two joint responses are equicon-
founded (λuy = λuw) this can aid in identification.
Left: Latent variable DAG. Right: Latent projection.

As discussed in (Chalak, 2013, Chapter 4), another
common case of equiconfounding happens when two
joint causes and one response are affected by the un-
observed confounder by the same or proportional mag-
nitude. For example, in Figure 4 (left), we have an
equality constraint on three edges, λux1

= λux2
= λuy

(in the latent projection (right), this translates to the
equality constraint εx1x2 = εyx1 = εx2y). The causal
effect λx1y is not identifiable without this constraint.

(u)

x1 y

x2λux2

λ
uy

λ x
2
yλ u

x1

λx1y

x2

x1
y

λx1y

λ
x
2 y

ε
x
2 yε x1

x2

εyx1

Figure 4: If two joint causes and one response are
equiconfounded (λux1 = λux2 = λuy) this enables
identification. Left: Latent variable DAG. Right: La-
tent projection.

3.2 Interference

In causal analysis, interference is often used to de-
scribe settings in which one subject’s exposure may
affect another subject’s outcome. A common assump-
tion when dealing with interference is that it occurs
only within subgroups or blocks of subjects, such as,
for instance, a household (Sobel, 2006; Rosenbaum,
2007; Hudgens and Halloran, 2008; Tchetgen and Van-
derWeele, 2012). Ogburn et al. (2014) demonstrate
how interference in such cases can be represented and
solved graphically.

However, these approaches usually do not handle un-
observed confounders, which complicates identification
and, in some cases, makes it impossible. Luckily, if
equality constraints can be defended, they can help
identification even under the presence of confounding.
For instance, perhaps one could argue that the effect
of the treatment on the outcome should be equivalent
for subjects within the block. Alternatively, one could
also surmise that effects of one subject on another sub-
ject (i.e. the interference) is similar within the block.

Figure 5 graphically depicts the interference structure
within a block (Ogburn et al., 2014), where three sub-
jects are interfering with one another. In this case, x1,

y3

x1 x2

z t

x3

y1 y2

λ
x
1 y

3

λ
x
3
y
3 λ x

2
y3

Figure 5: The assumption that x1 and x2 have
equal effects on y3 allows the identification of
λx1y3 , λx2y3 , and λx3y3 . Bidrected edges between other
xi and yj omitted for clarity.
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x2, and x3 represent treatments for different subjects,
and y1, y2, and y3 represent their outcomes; z and t are
two instrumental variables (e.g, randomized incentive
for taking the treatment) applied to the whole block
(e.g, the household). Here, if one posits that the ef-
fects of x1 and x2 on y3 are the same, this enables the
identification of λx1y3 , λx2y3 , and λx3y3 . Of course,
such strict equality may not always be assumed. In
these cases, one could relax the degree of equality, and
obtain bounds on the causal effects instead of point
identification.

3.3 Benchmarking in Sensitivity Analysis

Causal inference requires knowledge or assumptions
about the data generating process, and sensitivity
analysis aims to understand the extent of bias when
these assumptions are violated (Rosenbaum, 2010,
2017). Often, these violations render the causal effect
of interest unidentifiable, and, therefore, additional
constraints are needed to identify the causal effect and
derive the bias (Cinelli et al., 2019).

A common practice is to “benchmark” the extent to
which the assumption is violated (Cinelli and Hazlett,
2020). For example, if we want to assess the sensitiv-
ity of our estimate to omitted variable bias, we might
ask what the bias would be if the missing confounder
were as strong as an observable confounder. One could
then argue that, as long as the strongest confounders
have been accounted for, this value represents an upper
bound on the potential bias due to a missing variable.

Solving this problem again reduces to identification in
the presence of an equality constraint. For example,
suppose that we wanted to determine the bias if an un-
observed confounder, depicted by the bidirected edge
in Figure 6 right, were k times as strong as strong
as the observed confounder, z, for some known con-
stant k. In this case, we posit that εxy = kλzxλzy.
This equality constraint permits the identification of
λxy, enabling us to compute the bias under this hy-
pothesized relative strength of confounding.

z

x y

λ
zx

λxy

λ z
y

εxy

z

x y

λ
zx

λxy

λ z
y

εxy

Figure 6: Left: Original DAG. Right: Potential viola-
tion with unobserved confounders εxy. The assump-
tion that εxy = kλzxλzy allows identifying λxy.

4 Problem Setup

The three types of problems presented in the pre-
vious section have one commonality: the identifica-
tion of causal effects of interest only becomes possible
when equality amongst certain structural parameters
is known a priori. In this section, we formally de-
fine the problem of identification using equality con-
straints.

We first define C-identifiability, denoting identifiabil-
ity of model parameters of a linear SCM, M , given
a set of external constraints C, beyond those already
induced by the causal graph G.

Definition 1 (C-identifiability). Let M be a linear
SCM (as specified by G) and let C be a set of additional
constraints on the parameters of M . A causal quantity
θ is said to be C-identifiable if θ is uniquely computable
from C and the covariance matrix of M .

In this paper, we consider the problem of C-
identifiability specifically when C is composed of
equality constraints on two structural parameters
where one parameter is a multiple of the other. We
restrict our attention to two edges because this is the
type of equality constraint of interest in the applica-
tions cited, and also the main focus of our results in
Section 6.

Formally, we have the following definition.

Definition 2 (External Equality Constraint). An ex-
ternal equality constraint for a model M is a con-
straint of the form

cθ1 + θ2 = 0, (1)

where c is a constant, and θ1 and θ2 are structural
parameters of M .

Here, the two structural parameters θ1 and θ2 can
be two directed edges, two bidirected edges, or one
directed edge and another bidirected edge. In fact,
benchmarking in sensitivity analysis involves con-
straints where directed edges are equal to bidirected
edges. We discuss that in detail in Section 7.

We use an example to illustrate the idea of C-
identification. Suppose we are given the SCM of Fig-
ure 7. If we do not know the value of any of the edges,
and we are given only the graph as well as the cor-
relations among the three variables, then neither λac
nor λbc can be identified. To demonstrate, λac, λbc,
εab, εbc could be 0.4, 0.25, 0.4, 0.41 respectively, and
this model implies the same correlations as those of
the SCM of Figure 7 (this can be easily checked us-
ing Wright’s rules). However, if we know the equality
constraint between λac, λbc, i.e., −5/3λac + λbc = 0,
then we can uniquely solve for λac and λbc. Thus, λac
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a
c

b

0.3

0.5 0.2

0.4

Figure 7: Numerical example of C-identifiability. In
this model, λac and λbc are not identified just with
the constraints provided by the DAG. However, they
become identified if the constraint cλac + λbc = 0 is
added.

and λbc are not identifiable but are both C-identifiable
with C being −5/3λac + λbc = 0.

As we see, our goal is to find cases where the provided
external equality constraints can supplement the lim-
ited information we have from the graph G alone, and
thus help with the identification of more structural pa-
rameters of the model. As we discuss next, we tackle
this problem by finding the linear constraints induced
by the graph G and combining them with the external
equality constraints C. This allows the construction
of a system of linear equations that can solve for the
parameters of interest.

5 Searching for Graph-Induced Linear
Constraints

Given a DAG G and the covariance matrix of the mod-
eled variables, some relationships between structural
parameters can be deduced. Here we are interested in
finding linear equations among the structural param-
eters, since these equations can be used to solve for
the structural parameters using linear algebra. In this
section, we provide graphical conditions to find such
linear constraints on the graph.

We first formally define this type of linear relationship,
which we name graph-induced linear constraint.

Definition 3. Let θ1, . . . , θp be structural parameters
of a linear model M . If the graph G = (V,D,B) in-
duces a linear equation of the type,

lθ1,...,θp := a1θ1 + a2θ2 + · · ·+ apθp = c

where a1 . . . ap and c are functions of Σ, then we
say lθ1,...,θp is a graph-induced linear constraint on
θ1 . . . , θp from G.

One way to search for graph-induced linear constraints
is through searching for generalized instrumental sets
(IV sets) of Brito and Pearl (2012). If an IV set can
be found in the graph, one can then use them to con-
struct a full-rank system of linear equations on certain

structural parameters. Instead of aiming for a full-
rank system that guarantees point identification, the
basic idea of our method is simply to search for such
linear relationships among edges, even if we cannot
have as many equations as there are unknowns (here
including directed and bidirected edges).

For example, in Figure 5, if we search for a generalized
instrumental set on the edges λx1y3 , λx2y3 , λx3y3 , we
will not be able to find one, since there are only two
possible instruments, z and t, while all other variables
violate the requirements for a generalized instrumental
set. However, although it is not possible to identify
any of the three edges, we can still construct two linear
constraints on these three edges:

ρzy3 = ρzx1
λx1y3 + ρzx3

λx3y3 + ρzx2
λx2y3 (2)

ρty3 = ρtx1
λx1y3 + ρtx3

λx3y3 + ρtx2
λx2y3 (3)

Now note that those linear constraints can still be used
to identify the three edges, provided we have a third
external equality constraint to supplement the missing
information.

Below we define partial-instrumental sets, which re-
laxes the traditional definition of generalized instru-
mental sets of Brito and Pearl (2012), by allowing
the inclusion of a larger set of directed and bidirected
edges.

Definition 4 (Partial-Instrumental Set). In a graph
G = (V,D,B), let y be a variable in V and let E be
a set of n edges where E ⊆ Inc(y). Given a set of n′

edges, E′ = {e1, e2, . . . , en′} where E′ ⊆ E, and a set
of n′ variables, Z = {z1, z2, . . . , zn′}, Z is a partial-
instrumental set for E on E′ if there exists triples
(z1,W1, p1), . . . , (zn′ ,Wn′ , pn′) such that:

1. For i = 1, . . . , n′, the elements of Wi are non-
descendants of y, and either:

(a) (zi⊥⊥y|Wi)G(E∩D)− , or

(b) if there exists a bidirected edge between zi and
y: εi, and εi ∈ E, Wi are non-descendants
of zi, and (zi⊥⊥y|Wi)G(E∩D)∪{εi}−

.

2. for i = 1, . . . , n′, pi is a path between zi and y that
is not blocked by Wi and passes through ei, and

3. for 1 ≤ i < j ≤ n′, variable zj does not appear
in path pi, and if paths pi and pj have a common
variable v, then both pi[v ∼ y] and pj [zj ∼ v] point
to v.

In this definition, the set of edges, E, contains the
edges we are interested in solving for and might not be
able to be removed from consideration by conditioning.
Note |E′| number of linear constraints on E can be
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z1 z2

x1 x2
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x
1 y λx2

y

λz2z1

(a) Distinct constraints

z1 z2

x1 x2

y

λz2z1

λ
x
1 y λx2

y

(b) Redundant constraints

Figure 8: Different numbers of independent linear con-
straints can be constructed in different graphs.

generated if such a partial-instrumental set exists. The
set of edges, E′, is considered a “critical set” for the
constraints generated, where each constraint matches
to an edge in E′. For each i in 1, . . . , n′, we say that
the constraint li generated from zi “matches to” the
edge ei. The constraint li matching to ei indicates that
li has additional information about ei, which cannot
be deduced from other constraints.

We explain the matching between constraints and
edges using the example in Figure 8. Starting with
Figure 8(a), using Wright’s rules, we can find two lin-
ear equations on the edges, λx1y and λx2y. They are

l1 : ρz1x1
λx1y + ρz1x2

λx2y = ρz1y (4)

l2 : ρz2x1
λx1y + ρz2x2

λx2y = ρz2y (5)

When we have two graph-induced linear constraints on
two parameters, we have a system of linear equations
to solve for both parameters. However, now moving
to Figure 8(b), note that here the two equations are
in fact “equivalent,” since the coefficients (ρz1x1

, ρz1x2
,

and ρz1y) in Eq. (4) multiplied with λz2z1 are equal to
the corresponding coefficients (ρz2x1

, ρz2x2
, and ρz2y)

in Eq. (5). The reason behind this is, given z1, there
is no additional information z2 can provide on λx1y

or λx2y, because z2 is connected to λx1y or λx2y only
through z1. Hence, l2 cannot be “matched to” λx1y or
λx2y, which makes z2 an invalid candidate instrument
when z1 is present. Condition 3 in Definition 4 is used
to guarantee that each constraint generated will have
unique information on one edge in E′, since it disallows
the path for one instrument to subsume the path for
another instrument.

Nevertheless, Figure 8(b) is still an example of partial-
instrumental set. One possible choice of Z, E, E′ is
Z = {z2}, E = {λx1y, λx2y}, E′ = {λx1y}, so that
Z is a partial-instrumental set for E on E′. In this
case, W1 = ∅ and p1 is z2 → z1 → x1 → y. In other
words, although we cannot solve the system, we can
still extract one non-redundant linear equation on the
two parameters. This may still be useful, as such equa-

z1

z2 z4

x1 a

y

x2

b z3

x3

Figure 9: It is possible to construct 4 linear equations
on 5 edges, E = {λx1y, λx2y, λx3y, εz2y, εz4y}.

tion may be combined with an external equality con-
straint on those parameters to build a full-rank system
of equations.

Another example is given in Figure 9. If we define
Z = {z1, z2, z3, z4}, E = {λx1y, λx2y, λx3y, εz2y, εz4y},
and E′ = {λx1y, εz2y, λx2y, λx3y}, then Z is a
partial-instrumental set for E on E′. The con-
straints generated from z1, z2, z3, z4 are matched to
λx1y, εz2y, λx2y, λx3y, respectively, with conditioning
sets W = {{a, b}, {b}, ∅, ∅}, and the paths P = {z1 →
x1 → y, z2 ↔ y, z3 → z2 → x2 → y, z4 → x3 → y}.

Note that when E′ = E and E contains only directed
edges, Definition 4 degenerates to the traditional gen-
eralized instrumental set. Lemma 1 below states that
we can construct graph-induced linear constraints on
edges in E, which might contain both directed and
bidirected edges. The number of constraints con-
structed, |E′|, might be fewer than the number of edges
involved in the equations, when E′ is a strict subset
of E. For example, for the DAG in Figure 9, we can
construct 4 linear equations on 5 edges.

Lemma 1. For an SCM M with graph
G = (V,D,B), if there exists a partial-instrumental
set Z = {z1, . . . , zn′} for E = {θ1, . . . , θn} on E′

where |E| = n and |Z| = |E′| = n′, then there
exists a set of n′ graph-induced linear constraints
on E. Specifically, given the triples in Definition 4 as
(z1,W1, p1), . . . , (zn′ ,Wn′ , pn′), for each i = 1, . . . , n′,
we have a constraint,

li : ρziy·Wi
= ci1θ1 + · · ·+ cinθn, (6)

where cij is a function on the correlations of variables
in M for all j = 1, . . . , n.

See Brito and Pearl (2012) for how to compute the
coefficients ci1, . . . , cin.
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6 Incorporating External Equality
Constraints

Given a set of linear constraints, it is important to
check for the uniqueness of such constraints given the
model M—is a newly found constraint equivalent to a
previously found one, or can it be deduced from sev-
eral previously found ones? In other words, what are
the criteria for a set of constraints to be “full-rank?”
This question becomes harder when external equality
constraints and known edges are provided, since it is
not trivial to decide whether one constraint can be a
linear combination of several other constraints of any
type. As discussed, each constraint of an instrumen-
tal set can be “matched to” an edge. The same idea
applies to partial-instrumental sets, where more edges
of both types are involved. We now show that we
can also apply this simple strategy when combining
graph-induced linear constraints with external equal-
ity constraints and known edges.

To begin with, we have the following lemma.

Lemma 2. Given only n′ constraints constructed in
Lemma 1 from the partial-instrumental set Z for E on
E′, no edge in E \ E′ can be solved.

The correctness of this lemma is evident for the reason
that, if an edge is not “matched to” by any constraint
constructed from a partial-instrumental set, then it
cannot be solved given those constraints. In other
words, the value of any variable in E \ E′ cannot be
deduced from L. Hence, we can combine external in-
formation on the edges E \ E′ with the constraints of
L, without worrying about such external constraints
being redundant.

Building on top of this, we have the main theorem of
this paper. Theorem 1 provides a sufficient condition
that, when satisfied, guarantees a full-rank set system
of linear equations can be constructed by combining a
set of graph-induced linear constraints, external equal-
ity constraints, and the values of known edges.

Theorem 1. For an SCM M with graph
G = (V,D,B), let y be a variable in V and
let E be a set of n edges where E ⊆ Inc(y). Suppose
there exists a partial-instrumental set, Z, for E on E′

where |Z| = |E′| = n′, and we are given the following
external information:

1. a set of nk edges, Ek ⊆ E, whose coefficients are
known, and

2. a set of ne linearly independent external equality
constraints, Le, on edges Ee, where Ee ⊆ E.

If Ek∩E′ = ∅, and there exists a way to simultaneously
select one edge from each constraint l ∈ Le such that
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Figure 10: Variables z1, z2, z3 form a partial in-
strument set for E = {λx1y, λx2y, εx2y, εz3y} on
E′ = {λx1y, εx2y, εz3y}.

the selected edges 1) are not repetitive, 2) do not con-
tain any edge in E′ ∪ Ek, then there exists a full-rank
set of n′ + nk + ne linear constraints on E.

The intuition behind Theorem 1 is that a full-rank set
of constraints can be constructed if we can find an
edge for each constraint, where that constraint con-
tains some unique information on that edge. Specif-
ically, the constraints are given by: n′ constraints
constructed from the partial-instrumental set as in
Lemma 1, nk constraints in the form of θi = ci
where θi ∈ Ek and ci is the known value of θi for
i = 1, . . . , nk, and ne external equality constraints.
A special case of Theorem 1 is when there exists no
partial-instrumental set—we can still construct a full-
rank constraint set from known edges and equality con-
straints only. For example, given θ1 = θ2 and θ1 = k,
they form a full-rank set and we immediately have
θ2 = k.

An immediate result from Theorem 1 is that when
n′ + nk + ne = |E|, i.e., the number of linear con-
straints we can find is equal to the number of struc-
tural parameters E that those constraints are on, then
we can solve for all the structural parameters in E.
We use Figure 10 to show how to apply Theorem 1.
The set of variables Z = {z1, z2, z3} is a partial-
instrumental set for E = {λx1y, λx2y, εx2y, εz3y} on
E′ = {λx1y, εx2y, εz3y}. We can construct three con-
straints using the instruments z1, z2, z3, and those con-
straints are matched to λx1y, εx2y, εz3y, with the paths
z1 → z2 → x1 → y, z2 ↔ y, z3 ↔ y, respectively.

Now we analyze different possible types of external
information given. Let k, l,m denote constants:

1. the constraint εx2y = kεx3y cannot be combined
with our graph-induced linear constraints, since
both εx2y and εz3y are in E′, and there is no way
to select an edge from this equality constraint that
is not in E′ ∪ Ek;



Exploiting equality constraints in causal inference

2. the constraint λx1y = lλx2y can be combined with
our graph-induced linear constraints, since λx2y is
not in E′, so we can select the edge λx2y from this
equality constraint that is not in E′ ∪ Ek;

3. the constraint λx2y = m (either from previous
identification or prior knowledge) can be com-
bined with our graph-induced linear constraints,
since λx2y is not in E′, so Ek ∩ E′ = ∅.

The three graph-induced linear constraints are:

ρz1y = ρz1x1λx1y + ρz1x2λx2y (7)

ρz2y·{z3} =
ρz2x1 + ρz3x1

(1− ρ2z2z3)1/2(1− ρ2z3y)1/2
λx1y

+
ρz2x2 + ρz3x2

(1− ρ2z2z3)1/2(1− ρ2z3y)1/2
λx2y

+
1

(1− ρ2z2z3)1/2(1− ρ2z3y)1/2
εx2y

(8)

ρz3y = ρz3x1
λx1y + ρz3x2

λx2y + εz3y (9)

By Wright’s rules, all three equations above have the
equal ratio of the coefficient for λx1y to the coefficient
for λx2y. Hence, λx1y and λx2y can be eliminated to-
gether, and εx2y and εz3y can thus both be solved.
This again explains why we cannot combine the ex-
ternal information εx2y = kεz3y with the three graph-
induced linear constraints: this external constraint can
be deduced from the three graph-induced linear con-
straints. On the other hand, if the external informa-
tion is λx1y = kλx2y, since neither edge can be solved
from the graph-induced linear constraints, the equality
constraint cannot be deduced from the system, and is
therefore not redundant.

Though in this paper we present our method based on
generalized instrumental sets, we conjecture that this
approach can be generalized to combine with most of
existing linear causal identification methods. This is
due to the nature of identification methods for linear
models, most of which construct a system of linear
equations to solve for a set of structural parameters, E.
We hence believe that we can match each equation to
one parameter in E as required by Theorem 1. Proving
this conjecture is beyond the scope of this paper and
we leave it for future work.

7 Case Studies

In this section, we revisit the applications in Section 3
and show how our method can be used to solve them.

7.1 Equiconfounding

The first example we showed is Figure 3, the well-
known “difference-in-differences” graph, or the case

when two joint responses are equiconfounded (Cha-
lak, 2013). First, we can see that the bidirected edge,
εxw is identified in this latent projection DAG and is
equal to ρxw, since x↔ w is the only unblocked path
between x and w. So we can plug it in to the equal-
ity constraint, εxw = εxy and get εxy = ρxw. Next,
we see that Z = {x} is a partial-instrumental set for
E = {λxy, εxy} on E′ = {λxy}, so we have the graph-
induced linear constraint λxy + εxy = ρyx. Together
with the known edge constraint εxy = ρxw, we have a
full-rank set of two constraints on two variables, and
λxy can be solved, which gives λxy = ρyx − ρxw.

The second example is when two joint causes and one
response are equiconfounded, as in Figure 4. This case
is similar to the previous one. εx1x2 can be identi-
fied (εx1x2

= ρx1x2
), and plugging into the equality

constraint identifies εx2y and εyx1
. Next, we observe

that Z = {x1, x2} is a partial-instrumental set for
E = {εx2y, λx1y, λx2y, εyx1} on E′ = {λx1y, λx2y}. As
a result, we have a full-rank set of four constraints,
including two graph-induced constraints and two con-
stant (known edge) constraints, and we can thus solve
for all the four edges in E.

Another more complex example, (Chalak, 2013,
Graph 2), can be solved similarly using our method,
and we skip the discussion of that. Our method can
solve all the cases where point identification is possi-
ble in Chalak (2013). We can also solve other simple
generic cases of equiconfounding which have not been
discussed in Chalak (2013). For instance, by replacing
the equality constraint with λux = λuw or λux = λuy
in Figure 3 left, we have two different examples that
we can both solve. We leave the discussion to the ap-
pendix.

7.2 Interference

For the interference example in Figure 5, there is an
equality constraint λx1y3 = λx2y3 . Z = {z, t} is a
partial-instrumental set for E = {λx1y3 , λx2y3 , λx3y3}
on E′ = {λx1y3 , λx3y3}. Note that here we can ei-
ther choose E′ to be {λx1y3 , λx3y3} or {λx2y3 , λx3y3}
but not {λx1y3 , λx2y3}. Otherwise, the equality con-
straint has no edge to select from for it to match
to, so the condition in Theorem 1 will fail. If we
choose E′ = {λx1y3 , λx3y3}, we have a full-rank set of
three equations on λx1y3 , λx2y3 , λx3y3 , with two graph-
induced linear constraints generated from z and t, and
one external equality constraint.

7.3 Benchmarking in Sensitivity Analysis

For the example of benchmarking in sensitivity analy-
sis of Figure 6, we have the external information that
εxy = kλzxλzy. First notice that the edge, λzx
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can be identified using z as an instrument to itself,
and we get λzx = ρzx. Hence, the equality con-
straint reduces to εxy = kρzxλzy, which is now in the
form of θ1 = k′θ2 that our method can handle. We
next examine the DAG and see the set Z = {x, z} is
a partial-instrumental set for E = {εxy, λxy, λzy} on
E′ = {λxy, λzy}. We can thus construct two graph-
induced linear constraints, as follows.

εxy + λxy + ρzxλzy = ρxy (10)

ρzxλxy + λzy = ρzy (11)

Together with the equality constraint εxy = kρzxλzy,
we have a full-rank set of linear constraints from The-
orem 1, where the equality constraint is matched to
the edge εxy. Note that this is just one possible choice
of E′, and we can also choose E′ = {εxy, λxy}, where
the equality constraint will be matched to λzy. Either
way, we have three equations on three unknowns, and
all of them are solved. Specifically,

λxy =
ρzxρzy(k + 1)− ρxy

(k + 1)ρ2zx − 1
(12)

λzy =
ρxyρzx − ρzy

(k + 1)ρ2zx − 1
(13)

εxy = kρzx
ρxyρzx − ρzy

(k + 1)ρ2zx − 1
. (14)

As we see, those parameters are point-identified if we
know the value of k, which is how strong the unob-
served confounder is compared to an observed con-
founder, z. If one does not know the exact value of k,
but only its plausible range (for instance, k ≤ 2), it
is still possible to use this result to bound the target
parameters.

8 Conclusion

We developed a novel graphical criterion that allows
researchers to leverage equality constraints for iden-
tification in linear systems. We showed how several
apparently diverse problems in the literature can be re-
duced to identification with equality constraints, con-
sisting of special cases handled by our method. We
hope the results of this paper can be used towards the
construction of a systematic, algorithmic approach to
exploit equality constraints in causal inference. Ex-
tensions to more general forms of equality constraints,
and incorporating such results into state-of-the art lin-
ear identification algorithms are promising directions
for future work.
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