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Abstract

We show how experimental results can be generalized across di-
verse populations by leveraging knowledge of local mechanisms that
produce the outcome of interest, only some of which may differ in
the target domain. We use Structural Causal Models (SCM) and a
refined version of selection diagrams to represent such knowledge, and
to decide whether it entails the invariance of probabilities of causation
across populations, which then enables generalization. We further
provide: (i) bounds for the target effect when some of these condi-
tions are violated; (ii) new identification results for probabilities of
causation and the transported causal effect when trials from multi-
ple source domains are available; as well as (iii) a Bayesian approach
for estimating the transported causal effect from finite samples. We
illustrate these methods both with simulated data and with a real ex-
ample that transports the effects of Vitamin A supplementation on
childhood mortality across different regions.
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1 Introduction

Generalizing results of randomized control trials (RCT) is critical in many
empirical sciences and demands an understanding of the conditions under
which such generalizations are feasible. When the mechanisms that de-
termine the outcome differ between the study population and the target
population, generalization requires measuring the variables responsible for
such differences or, if this is not possible, isolating them away by measuring
other variables (Pearl and Bareinboim, 2014). Recent work (Huitfeldt et al.,
2018, 2019; Huitfeldt, 2019) describes an interesting situation under which
transportability across populations is feasible without such measurements.
This feasibility, however, is not immediately inferable using a standard (non-
parametric) selection diagram (Pearl and Bareinboim, 2014; Bareinboim and
Pearl, 2016), because it relies on the invariance of only some components of
the outcome mechanism, but not all.

In this paper, we use the theory of Structural Causal Models (SCM)
(Pearl, 2009) to show how generalization in these settings can be modeled
using ordinary structural equations, counterfactual logic and selection dia-
grams. We demonstrate that it requires two key assumptions: (i) the in-
dependence of causal factors that affect the outcome; and, (ii) functional
constraints on how these factors interact to produce the outcome. The com-
bination of these assumptions may entail the invariance of certain probabil-
ities of causation (Pearl, 1999; Tian and Pearl, 2000) across domains, thus
allowing the transport of causal effects in settings where non-parametric gen-
eralization is otherwise impossible.

We further extend the results of existing literature by: (i) relaxing the
monotonicity assumption and providing bounds for the causal effect in the
target domain; (ii) deriving novel identification and over-identification re-
sults for probabilities of causation, as well as the transported causal effect,
when trials from multiple source domains are available; and, (iii) providing
a Bayesian framework for estimating the transported causal effect from fi-
nite samples. We illustrate these methods both in simulated data and in a
real example that generalizes the effects of Vitamin A supplementation on
childhood mortality across different regions (Sommer et al., 1986; Muhilal
et al., 1988; West Jr et al., 1991). Open source software for R implements
the methods discussed in this paper.1

1Available in https://github.com/carloscinelli/generalizing.
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2 Motivating example

To fix ideas, we borrow the “Russian Roulette” example from Huitfeldt
(2019). Although stylized, this intuitive example illustrates the key features
of the problem.

A Russian Roulette trial

Suppose the city of Los Angeles decides to run a randomized control trial
(RCT) to assess the effect of playing “Russian Roulette” on mortality.2 After
running the experiment, the mayor of Los Angeles discovers that “Russian
Roulette” is harmful: among those assigned to play Russian Roulette, 17.5%
of the people died, as compared to only 1% among those who were not
assigned to play the game (people can die due to other causes during the
trial, for example, prior poor health conditions).

After hearing the news about the Los Angeles experiment, the mayor of
New York City (a dictator) wonders what the overall mortality rate would be
if the city forced everyone to play Russian Roulette. Currently, the practice
of Russian Roulette is forbidden in New York, and its mortality rate is at 5%
(4% higher than LA). The mayor thus asks the city’s statistician to decide
whether and how one could use the data from from Los Angeles to predict
the mortality rate in New York, once the new policy is implemented.

Intuitively, our causal knowledge of the domain permits us to answer
the question posed by the NYC mayor. Mortality is a consequence of two
“independent” processes (the game of Russian Roulette and prior health con-
ditions of the individual), and while the first factor remains unaltered across
cities, the second intensifies by a known amount (5% vs 1%). Moreover, we
can safely assume that the two processes interact disjunctively, namely, that
death occurs if and only if at least one of the two processes takes effect. From
these two assumptions and elementary probability theory, we can conclude
that mortality in NYC would be 20.8%. In section 3 we will cast this intu-
ition into a formal setting, define this notion of “independence,” and show
how the data from NYC and LA should be combined to match our expec-
tation. But before that, let us examine how this intuition clashes with the
conclusion of a coarse analysis using selection diagrams.

2Russian Roulette consists of loading a bullet into a revolver, spinning the cylinder,
pointing the gun at one’s own head and then pulling the trigger. We do not recommend
attempting this.
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An “impossibility” result

Selection diagrams are causal diagrams enriched with “selection nodes” S,
usually represented by square nodes (�). These new nodes are used by the
analyst to indicate which local mechanisms are suspected to differ between
two environments (in our example, the mortality mechanism is suspected to
differ between Los Angeles and New York). More importantly, the absence
of a selection node pointing to a variable represents the assumption that the
local mechanism responsible for assigning the value to that variable is the
same in the two populations (Pearl, 1995, 2009; Pearl and Bareinboim, 2014;
Bareinboim and Pearl, 2016).

To build our selection diagram, we need to introduce some notation. The
population of Los Angeles will be denoted by Π (the “source population”) and
that of New York by Π∗ (the “target population”). The random variable Y
stands for mortality, with events Y = 1 denoting “death” and Y = 0 denoting
“survival;” the random variable X stands for the “treatment” assignment,
with events X = 1 denoting “play Russian Roulette” and X = 0 denoting
“not play Russian Roulette.” The random variable Yx denotes the potential
response of Y when the treatment X is experimentally set to x. Thus,
mathematically, the findings of the RCT can be translated to P (Y1 = 1) =
17.5% and P (Y0 = 1) = 1%, and the available data from New York is P ∗(Y0 =
1) = 5%. Our task is to estimate P ∗(Y1 = 1).

YX

(a) Coarse causal diagram

YX

S

(b) Coarse selection diagram

Figure 1: Coarse causal (a) and selection (b) diagrams of the Russian
Roulette trial. The presence of S → Y in (b) correctly prohibits the naive
transportation of the interventional distribution P (Yx) from the source Π
(Los Angeles) to the target environment Π∗ (New York).

The coarsest causal diagram of the Russian Roulette trial comprises only
the treatment X and the outcome Y , as shown in Figure 1a. To move from
the causal diagram to the selection diagram, we need to think of what may
differ between LA and NYC. Since we already know from the data that
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P (Y0 = 1) 6= P ∗(Y0 = 1), we suspect there are differences in the way mor-
tality is determined in the two cities (for example, people in New York may
be in poorer health conditions, or the air quality may be worse). Thus, the
selection diagram must contain a selection node S pointing to the mortality
variable Y to indicate this disparity, as shown in Figure 1b.

Graphically, checking whether a causal relationship is transportable from
one environment to another involves checking whether there exists a set of
measurements that d-separates (Pearl, 2009) the source of disparity (the se-
lection node S) from our target quantity. The presence of the selection node
pointing directly into Y prevents the separation of S from Y , and leads us
to conclude that transportability is impossible without further assumptions.
On the other hand, the intuition that led us to predict the new mortality rate
in NYC tells us that such assumptions, once formalized, could license trans-
portability. This intuition, as we discussed, was based on two assumptions
that are not shown in the coarse selection diagram of Figure 1. The diagram
represents only the existence of a disparity between LA and NYC, not the
fact that it is localized to one cause of death (prior health factors), and that
it does not extend to the other cause (the game of Russian Roulette). As a
result, the diagram correctly warns us that, absent further assumptions, we
are not authorized to make any generalization between the two cities.

3 Building the structural model

We now explicate formally what we know about the game of “Russian Roulette”
and health factors, and show how this knowledge renders transportability
possible.

Prior health conditions versus physical mechanism

To represent the two causes of death, we refine our model by defining two
extra random variables, B and H: (i) B denotes “bad luck” when playing
Russian Roulette, and its values represent a match (B = 1) or mismatch
(B = 0) between the trigger and the location of the bullet in the cylinder;
(ii) and H denotes all other health factors producing death (H = 1) or
survival (H = 0). Accordingly, our causal diagram will contain two new
edges, H → Y and B → Y , since both “health conditions” and “bad luck”
are key determinants of mortality Y . The updated causal diagram is shown
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YX

B H

(a) Causal diagram

YX

B H

S

(b) Selection diagram

Figure 2: New causal (a) and selection (b) diagrams explicitly including the
variables “health conditions” (H) and “bad luck” (B) when playing Russian
Roulette. Here the analyst asserts (using the selection node S) that H may
differ between LA and NYC, but assumes that the mechanism triggering B is
the same between the two cities. Also important is the absence of a directed
edge or a bidirected edge between H and B.

Figure 2a. Note the absence of a directed or bidirected edge between H and
B, which encodes our assumption that these two mechanisms are activated
independently of each other.3

The new model helps us see more clearly the commonalities and dispar-
ities between LA and NYC. First, since there is a multitude of factors that
can affect prior health conditions, and those are likely to differ between the
two cities (as suggested by the observed difference P (Y0 = 1) 6= P ∗(Y0 = 1)),
we again introduce a selection node pointing to H. Moreover, to encode the
assumption that the probability of “bad luck” occurring is the same in both
cities, we do not connect B to a selection node.4 The new selection diagram
is shown in Figure 2b.

The diagram of Figure 2b now guides us toward leveraging the data ob-
tained in LA to make predictions in NYC. If we can find a way to block the
source of disparity originating from H, we would be left with the invariant
physical mechanism shared by both cities. However, since H is unobserved,
blockage is impossible without further assumptions. We now ask whether

3The arrow X → Y comprises, of course, many intermediate mechanisms (such as
loading the gun, spinning the cylinder, pulling the trigger) that are not modeled explicitly.

4Note that, although reasonable, one cannot take this assumption for granted—it could
be the case that revolvers used for Russian Roulette in New York have a different number
of chambers than those used in Los Angeles. The absence of a selection node pointing to
B encodes the assumption that this is not the case.
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our understanding of how the two mechanisms interact in producing Y would
permit us to estimate P ∗(Y1 = 1).

Leveraging functional constraints

Our understanding that mortality is caused by either one of the two processes
(prior health conditions or bad luck in the game), dictates the following
functional specification for the structural equation of Y ,

Y = H ∨ (X ∧B) (1)

Where ∨ denotes the logical “or” operator, and ∧ denotes the logical “and”
operator. Like any structural equation, Equation 1 defines the potential
outcomes Y0 and Y1 (Pearl, 2009, Ch.7) which we may now find useful to
encode explicitly. Its first implication is that Y0 = H and Y1 = H ∨ B =
Y0∨B. This tells us that, once we know the potential response of units under
no treatment (Y0) we do not need to know anything else about their previous
health condition (H) to determine the value of Y1—B would suffice.5 We can
represent this fact in a modified selection diagram, in which the potential
outcomes are now also shown explicitly (Figure 3). The diagram reveals that
Y0 blocks the source of health disparities between the two populations, and
we conclude that Y1 ⊥⊥ S | Y0.

6

More concretely, consider the counterfactual quantity

PS01 := P (Y1 = 1 | Y0 = 0)

5Although here we have Y0 = H for simplicity, this need not be the case. The same
argument would hold, for instance, if we define H to be a random variable with arbitrary
cardinality and Y = g(H)∨ (X ∧B), where g(H) ∈ {0, 1}. Likewise, see Appendix A.1 for
an example where the treatment variable X is continuous and the same strategy adopted
here can be employed.

6Since some relationships in the graph may be deterministic, conditional independencies
other than those revealed by d-separation (with lower-case d) may be present. A complete
criterion for DAGs with deterministic nodes is given by the D-separation criterion (with
capital D) of Geiger et al. (1990). Moreover, note arrows between potential outcomes need
not convey causal influence; their purpose is merely to ensure that the correct conditional
independencies among variables are encoded in the graph, as derived from the structural
equations. Finally, here we are not treating the question of how scientists acquire scientific
knowledge in the form of a functional specification such as Equation 1. Rather, our task
is more modest: given that scientists sometimes have knowledge of mechanisms, how can
we leverage some of that knowledge for identification.
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Y

Y1

B

X

Y0

H

S

Figure 3: Selection diagram explicitly showing the potential outcomes Y0 and
Y1 as implied by the functional constraints. Note that Y1 ⊥⊥ S | Y0.

which stands for the share of people who would die if forced to play Rus-
sian Roulette, among those who would not have died if not forced to do so.
In other words, PS01 represents the probability that the game of Russian
Roulette is sufficient to kill a person during the trial. The acronym PS01

was chosen to emphasize its relation to the “probability of sufficiency” (PS),
PS = P (Y1 = 1|Y = 0, X = 0), as defined and analyzed in Pearl (1999) and
Tian and Pearl (2000). In our context, since the treatment is randomized,
the two quantities coincide,

P (Y1 = 1|Y0 = 0) = P (Y1 = 1|Y0 = 0, X = 0) = P (Y1 = 1|Y = 0, X = 0)

where the first equality is licensed by the randomization of X and the second
equality is due to consistency. In general, however, PS01 need not be the
same as PS—the later measures the probability of fatal treatment among
those who, given the choice, would choose not to be treated and survive;
the former measures the probability of fatal treatment among those who
would survive had they not been assigned for treatment.7 Similar reasoning
holds for PS10 := P (Y1 = 0 | Y0 = 1), which stands for the probability that
playing Russian Roulette is sufficient to save a person who would die if denied
treatment. In our example, this probability is obviously zero as we shall
formally show below. The condition Y1 ⊥⊥ S | Y0, implied by the diagram,
states that these probabilities of causation are invariant across cities.8 This

7For example, in legal settings, where acts are executed by choice, conditioning on the
observed X gives a more appropriate measure of an agent’s responsibility, as argued in
Pearl (2009, Ch. 9) and Pearl (2015).

8Probabilities of causation have been extensively studied elsewhere under a different
context. See Pearl (1999); Tian and Pearl (2000); Pearl (2009).
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feature of invariance, which is important in its own right, follows solely from
our structural assumption about the mechanisms involved.

A second implication of Equation 1 is that the treatment effect is mono-
tonic, that is Y1 ≥ Y0 for all individuals. This, in turn, implies PS10 = 0; in
other words, an individual that would have died of other causes during the
trial, would still die if forced to play Russian Roulette. It has been shown
that monotonicity is sufficient for identifying PS01 in this setting (Pearl,
1999; Tian and Pearl, 2000; Huitfeldt et al., 2018). Indeed, by the law of
total probability,

P (Y1 = 1) = (1− PS10)P (Y0 = 1) + PS01(1− P (Y0 = 1))

The quantity P (Y0 = 1) is given from the RCT (1%) and, due to monotonic-
ity, PS10 = 0. Thus, we have:

PS01 =
P (Y1 = 1)− P (Y0 = 1)

1− P (Y0 = 1)
=

17.5%− 1%

99%
= 1/6

This is not surprising; the probability that the “treatment” is sufficient to
kill an individual who would have otherwise survived indeed equals 1/6—the
probability of having “bad luck” in the game of Russian Roulette, using a
revolver with six chambers.9

Thus far we have established that PS10 = PS∗
10, PS01 = PS∗

01, and that
PS10 = 0, PS01 = 1/6. Combining these results with the current baseline
mortality from NYC, that is, P ∗(Y0 = 1) = 5%, we can finally evaluate our
target quantity P ∗(Y1 = 1),

P ∗(Y1 = 1) = (1− PS∗
10)P

∗(Y0 = 1) + PS∗
01(1− P ∗(Y0 = 1))

= (1− PS10)(5%) + PS01(95%)

= (1)(5%) + (1/6)(95%) = 20.8%

9The right-hand side of this expression is known as the “relative difference,” or “suscep-

tibility.” Simple algebra shows that P (Y1=1)−P (Y0=1)
1−P (Y0=1) = 1− 1−P (Y1=1)

1−P (Y0=1) , where the quantity
1−P (Y1=1)
1−P (Y0=1) is known as the “survival ratio.” Since under the assumption of monotonicity

these estimands identify PS01, and PS01 is invariant across domains, it thus follows that
the “relative difference” and the “survival ratio” will also be equal between populations.
Huitfeldt et al. (2018) suggested using this fact as a rationale for assuming homogeneity
of effect measures across domains, a common heuristic among epidemiologists for ap-
proaching generalizability problems. These equivalences, however, break down without
monotonicity; in that case, the “relative difference” is a lower bound for the probability
of sufficiency (Tian and Pearl, 2000), as we discuss next.
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Which matches the intuitive answer obtained in Section 2.
As a brief remark, note that, if instead of Y1 ⊥⊥ S | Y0 we had obtained

the condition Y0 ⊥⊥ S | Y1, we would conclude that the probabilities PN01 :=
P (Y0 = 0 | Y1 = 1) and PN10 := P (Y0 = 0 | Y1 = 1) are the same across trials.
These quantities represent the probability that the treatment is necessary for
causing (PN01) or preventing (PN10) the outcome during the experiment. All
results of this paper hold in this setting, with minor modifications. Therefore,
for simplicity of exposition, in the remainder of the text we discuss the case
of Y1 ⊥⊥ S | Y0 only.10

Bounds without monotonicity

A key step in obtaining a point estimate for P ∗(Y1 = 1) was the mono-
tonicity property, which emanates from the functional form of Equation 1.
Monotonicity allowed us to identify the probabilities of sufficiency PS01 and
PS10, which, as advertised by the assumptions in the selection diagram of
Figure 3, are invariant across domains. The monotonicity property holds
trivially in our example of the Russian Roulette, when Y represents death,
but it may not hold for other outcomes or, more generally, it may not hold
in contexts beyond our stylized example.

Remarkably, however, even in the absence of monotonicity, one can still
assess the transported causal effect, albeit in the form of a bound. The
next theorem shows that the counterfactual independence Y1 ⊥⊥ S | Y0 by
itself is strong enough for bounding the causal effect in the target domain.
These results improve the bias analysis performed by Huitfeldt et al. (2018),
and provide an exact characterization of the inferences compatible with the
assumption of Y1 ⊥⊥ S | Y0.

Theorem 1. Consider a source domain Π and a target domain Π∗. Let Pij :=
P (Yi = j), P ∗

ij := P ∗(Yi = j), and let RR = P11

P01
denote the risk-ratio in the

trial of the source domain Π. If Y1 ⊥⊥ S | Y0, then P ∗
11 of Π∗ is bounded by

10For example, under the assumption of monotonicity, we have that PN01 =
P (Y1=1)−P (Y0=1)

P (Y1=1) (Pearl, 1999). This last estimand is known as the “excess-risk-ratio,”

and algebra also shows that P (Y1=1)−P (Y0=1)
P (Y1=1) = 1− 1

P (Y1=1)/P (Y0=1) , where P (Y1=1)
P (Y0=1) is the

“risk ratio.” Thus in this setting, both the “excess-risk-ratio” and the “risk ratio” would
be equal across domains. Without monotonicity, the “excess-risk-ratio” is a lower bound
on the probability of necessity (Tian and Pearl, 2000).
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P ∗L
11 ≤ P ∗

11 ≤ P ∗U
11 , with,

P ∗L
11 = RR× P ∗

01 + min

{(
P01 − P ∗

01

P01

)
PSL

01,

(
P01 − P ∗

01

P01

)
PSU

01

}
,

P ∗U
11 = RR× P ∗

01 + max

{(
P01 − P ∗

01

P01

)
PSL

01,

(
P01 − P ∗

01

P01

)
PSU

01

}
where PSL

01 = max
{

0, P11−P01

1−P01

}
and PSU

01 = min
{

P11

1−P01
, 1
}

are the lower and

upper bounds on PS01, respectively.

Proof. The bounds are obtained by solving a linear optimization problem, as
detailed in Appendix A.2.

Theorem 1 can be better understood as a two-stage process. First, with
a little algebra, it is possible to re-express P ∗(Y1 = 1) as a function of PS01

alone, resulting in,

P ∗(Y1 = 1) = RR× P ∗(Y0 = 1) +

(
P (Y0 = 1)− P ∗(Y0 = 1)

P (Y0 = 1)

)
PS01 (2)

Where RR = P (Y1 = 1)/P (Y0 = 1) denotes the risk-ratio obtained in the
trial of the source domain Π. The first term of this expression, RR×P ∗(Y0 =
1), consists of the “naive” prediction for P ∗(Y1 = 1) that one would have
obtained by assuming a constant risk ratio across populations. The second
term adjusts this naive prediction, by taking into account both the excess
risk-ratio of contrasting the baseline mortality between Π and Π∗, as well as
the probability of sufficiency shared across environments, PS01.

After this, note that, although the probability of sufficiency PS01 in Equa-
tion 2 cannot be point identified, it can be bounded by (see Appendix A.2
as well as Tian and Pearl (2000))

max

{
0,

P (Y1 = 1)− P (Y0 = 1)

1− P (Y0 = 1)

}
≤ PS01 ≤ min

{
P (Y1 = 1)

1− P (Y0 = 1)
, 1

}
(3)

Thus, by substituting PS01 with its bounds, we obtain the desired bounds
for the target quantity P ∗(Y1 = 1).

For instance, in our Russian Roulette example, regardless of whether
monotonicity holds, PS01 can be bounded by

16.7% ≤ PS01 ≤ 17.7%
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And this assures us that P ∗(Y1 = 1) must lie between,

16.8% ≤ P ∗(Y1 = 1) ≤ 20.8%

To put it another way, the results of the trial in LA tells us that implementing
the policy in NYC would cause at least an increase of 16.8%− 5% = 11.8%
and at most an increase of 20.8% − 5% = 15.8% in mortality. Note that,
here, substituting the lower bound for PS01 (16.7%) actually translates to
the upper bound for P ∗(Y1 = 1) (20.8%). This happens because the baseline
risk in the target population Π∗ is higher than that of the source population
Π, and thus the adjustment due to PS01, in Equation 2, is negative.

These considerations naturally lead to the question: in general, how in-
formative are the bounds on P ∗(Y1 = 1)? It turns out that the width of
the bounds have a simple characterization. Consider the case in which the
bounds for PS01 are not zero nor one. Now let P ∗U(Y1 = 1) and P ∗L(Y1 = 1)
denote the upper and lower bound on P ∗(Y1 = 1), respectively. After some
algebra, it is possible to show that (see Appendix A.2),

P ∗U(Y1 = 1)− P ∗L(Y1 = 1) =
|P (Y0 = 1)− P ∗(Y0 = 1)|

1− P (Y0 = 1)
(4)

That is, in this setting, the width of the bounds depends on the baseline
risks P (Y0 = 1) and P ∗(Y0 = 1) alone. Moreover, even if the bounds for PS01

happen to be “wide,” if the baseline risks are close enough across populations,
the bounds for P ∗(Y1 = 1) can still be “narrow.” In Section 4 we illustrate
this fact with a real data example in which the bounds are narrow enough
to imply a positive effect of the treatment.

Identification with trials from multiple source domains

In Theorem 1 we learned that the existence of experimental data from one
source population leads to bounds on the transported causal effect of the
target population, although it is not enough for its point identification. Sur-
prisingly, however, if we can obtain experimental data from an additional
source population, this suffices to change the picture. With two source tri-
als, it is possible to obtain a point estimate for the probabilities of sufficiency,
and, consequently, for P ∗(Y1 = 1) without invoking monotonicity, nor any
further assumptions beyond Y1 ⊥⊥ S | Y0. Moreover, multiple source trials en-
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tail strong testable implications that can be used to falsify this “cross-world”
assumption.11

To illustrate, consider our Russian Roulette example, and suppose we
learn that the city of Chicago has also performed an RCT. In that trial,
25% of those assigned to play the game died, in contrast to 10% of those
not assigned to play. If the selection diagram contrasting NYC with Chicago
is the same as that of Figure 3, we can combine the results from LA and
Chicago to estimate the probabilities of sufficiency shared across cities. By
the law of total probability, expand the expression for P (Y1 = 1), both for
LA and Chicago, to obtain a system of two equations and two unknowns:

(LA Equation): 0.175 = (1− PS10)× 0.01 + PS01 × 0.99 (5)

(Chicago Equation): 0.250 = (1− PS10)× 0.10 + PS01 × 0.90 (6)

This system can then be solved for PS10 and PS01

PS10 = 0, PS01 = 1/6

Put differently, the only values for PS10 and PS01 that are compatible
with the observed data from both trials (LA and Chicago) are that: (i) the
“treatment” cannot save anyone from dying; and, that (ii) the treatment
kills 1/6 of those who would not have died otherwise. These are the same
numeric values as before, but with an important difference—we did not as-
sume monotonicity to obtain point identification; instead, we learned from
the data that the treatment effect must be monotonic. Once we have these
numbers, we can use the same strategy as before to predict the causal effect
in NYC, which amounts to, again, 20.8%.

Furthermore, since PS10 and PS01 must be valid probabilities, not all
observed values are compatible with the assumption that Y1 ⊥⊥ S | Y0. For
instance, suppose that instead of 10%, the observed baseline mortality rate
in Chicago were 5%. This would imply the impossible value PS10 = −1.03,
thus falsifying the assumption of invariance across domains. It is also easy
to see that with three or more source domains we obtain over-identification,
since each population pair implies different estimates for PS10 and PS01.
If those estimates are discordant, this calls into question the assumption

11Similar observations regarding testable implications when combining information from
multiple studies have also been made in Hartman et al. (2015), Lu et al. (2019) and
Dahabreh et al. (2020).
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of Y1 ⊥⊥ S | Y0. These results are somewhat reassuring. They tell us that,
despite its “cross-world” nature, the assumption of invariance of probabilities
of causation across domains may have strong testable implications, and can
thus be subjected to empirical scrutiny.

We formalize the previous considerations with the next two theorems.

Theorem 2. Consider two source domains Πa and Πb. Let the probabilities
of sufficiency be the same across the two populations, that is, PSa

01 = PSb
01 =

PS01 and PSa
10 = PSb

10 = PS10. Then,

PS10 = 1− P a
11P

b
00 − P b

11P
a
00

P a
01P

b
00 − P b

01P
a
00

PS01 =
P b
11P

a
01 − P a

11P
b
01

P a
01P

b
00 − P b

01P
a
00

Where P a
ij := P a(Yi = j) and P b

ij := P b(Yi = j). Moreover, the experimental
probabilities of necessity, and probability of necessity and sufficiency (Tian
and Pearl, 2000) of both populations are also identifiable from experimental
data of Πa and Πb.

Proof. As explained in the text, we can use the law of total probability for
each domain to obtain two linear equations with two unknowns, PS01 and
PS10. We can thus (generically) solve the system of equations for those quan-
tities. Interestingly, in this setting, not only the probabilities of sufficiency,
but all remaining probabilities of causation (as discussed in Tian and Pearl
(2000)), are also identifiable. See details in Appendix A.2.

Next, the causal effect for a target population Π∗ can be transported by
appealing again to the law of total probability.

Theorem 3. Consider two source domains Πa, Πb, and a target domain Π∗.
Let the probabilities of sufficiency be the same across populations, that is,
PSa

01 = PSb
01 = PS∗

01 and PSa
10 = PSb

10 = PS∗
10. Then, the causal effect P ∗

11 in
Π∗ is given by,

P ∗
11 =

P a
11P

b
00 − P b

11P
a
00

P a
01P

b
00 − P b

01P
a
00

× P ∗
01 +

P b
11P

a
01 − P a

11P
b
01

P a
01P

b
00 − P b

01P
a
00

× P ∗
00
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4 A Bayesian approach to estimation

The previous results focused on identification, that is, they are “asymp-
totic,” and assume that the measured quantities are representative of their
corresponding quantities in the population. In practice, however, researchers
need to take sampling uncertainty into account. In this section, we describe a
Bayesian framework that practitioners can easily put to use for finite sample
inference. A Bayesian approach is especially suited for this setting—when
the target quantity P ∗(Y1 = 1) is not identifiable from the data alone, pref-
erence for any value of the parameter within the identified bounds must rely
on prior knowledge.

Model specification

The Bayesian specification of our model can be simplified if we use counts.
For the source population Π, let n0 denote the sum of individuals with Y = 1
in the control group, and let n1 denote the sum of individuals with Y = 1
in the treatment group. Likewise, let n∗

0 and n∗
1 denote those quantities for

the target population Π∗. Note that n∗
1 is not observed, since the target

population is under the “no-treatment” regime.
Now let us use the same notation of Theorem 1 to denote population

parameters, that is: P11 := P (Y1 = 1), P01 := P (Y0 = 1), P ∗
01 := P ∗(Y0 = 1),

P ∗
11 := P ∗(Y1 = 1). Given that the outcome variable Y is binary, the sum of

individuals with Y = 1 follows a binomial distribution, and we can write the
model for the observed data D = {n0, n1, n

∗
0} as,

n0 ∼ Binomial(N0, P01) (7)

n1 ∼ Binomial(N1, P11) (8)

n∗
0 ∼ Binomial(N∗

0 , P
∗
01) (9)

where N0 denotes the total number of individuals in the control arm, and N1

the total number of individuals in the treatment arm of the trial in the source
population; N∗

0 denotes the total sample size of the target population (which
is under the no-treatment regime). We treat N0, N1 and N∗

0 as known fixed
quantities. Note the observed data depends only on the parameters P01, P11

and P ∗
01.

We now need to specify the prior distribution of the parameters and the
target quantities of interest. Here we describe two general alternatives, de-
pending on whether the researcher is interested in making inferences directly
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P01

n0

P11

n1

PS10

P ∗
11

PS01

P ∗
01

n∗
0

Figure 4: Probabilistic graphical model for Bayesian inference when the quan-
tity of interest is P ∗

11. Gray nodes (n0, n1, n∗
0) denote observed variables.

White notes denote latent parameters (P01, P11, PS10, PS01, P
∗
11, P

∗
01). Note

that P11 and P ∗
11 share the parameters PS10 and PS01, which are invariant

across populations.

on P ∗
11 (which in general will not be identified from the data), or on its bounds

(which are identified)—we believe these two approaches are complementary,
and we encourage investigators to explore both options (see also Richardson
et al., 2011; Gustafson, 2015; Silva and Evans, 2016).

Inference on P ∗
11. As discussed in the previous section, we have that P11 is

a deterministic function of PS10, PS01 and P01, that is, P11 = (1−PS10)P01 +
PS01(1 − P01). Therefore, we need only to specify priors for the parameters
P01, P

∗
01, PS10 and PS01. For example, an “uninformative” (or “flat”) prior

consists of a uniform distribution over 0 and 1 for all parameters. Another
option is to choose a prior that incorporates the assumption of monotonicity,
by setting a point mass on PS10 = 0. Users have the flexibility of picking
anything in between, such as setting a prior that puts most, but not all, of
the mass on PS10 = 0, for instance. The target of inference is the posterior
distribution of P ∗

11, which is, again, a transformation of the parameters P ∗
01,

PS10 and PS01,

P ∗
11 = (1− PS10)P

∗
01 + PS01(1− P ∗

01)

As we shall see, with a “flat” prior, as the sample size increases the posterior
distribution converges to the identified bounds; whereas with a prior that
assumes monotonicity the posterior converges to the identified point estimate.
Other quantities of interest may be the posterior distribution of certain effect
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measures, such as the risk difference RD∗ = P ∗
11 − P ∗

01 or the risk ratio
RR∗ = P ∗

11/P
∗
01. Figure 4 shows the probabilistic graphical model of this

setup, with observed variables in gray, and latent parameters in white. The
known fixed parameters N0, N1 and N∗

0 are omitted for clarity.

Inference on bounds. When making inferences on P ∗
11 (which is not iden-

tified), the shape of its posterior will be dependent on (but not completely
determined by) the shape of the prior of the unidentified quantities PS01 and
PS10, regardless of sample size. For this reason, users may also find useful to
perform inference directly on the bounds P ∗L

11 and P ∗U
11 (which are identified).

While the previous framework can still be used for such inferences, we note
that, if interest lies on the bounds alone, there is a simpler alternative—as
the bounds are functionals of the observed data, inference about P ∗L

11 and P ∗U
11

only requires priors on the identified parameters P01, P11 and P ∗
01 (Richardson

et al., 2011; Silva and Evans, 2016).

Sampling. Given the observed data D and a prior distribution on the
parameters, one can obtain the posterior distribution of the target quantities
using Gibbs sampling. Here we use the Gibbs sampler JAGS (Plummer
et al., 2003). Extending the model to two (or more) source populations
follows the same logic, thus we defer its discussion to Appendix A.4. Next, we
demonstrate the method using: (i) simulated data from the Russian Roulette
example; and, (ii) real data from trials that investigate the effects of vitamin
A supplementation on childhood mortality. Code for replicating all results
is also provided in Appendix A.4.

Simulated data example

To illustrate the method, we start by applying our tools to simulated data
drawn from a process with the same proportions as the Russian Roulette
example, with various sample sizes. We show the posterior distribution of
P ∗(Y1 = 1) using both a “flat” prior for all parameters, and a prior assuming
monotonicity. The results are shown in Figures 5 and 6.

Let us start by examining Figure 5. Here we set “flat” priors for all
parameters. Note that, as per Theorem 1, the posterior distribution remains
spread in the asymptotic bounds of 16.8% and 20.8% regardless of sample
size. Moving to Figure 6, we now set a point mass prior on PS10 = 0,
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Figure 5: Histograms of the posterior samples of P ∗(Y1 = 1) for a simulation
of the Russian Roulette data, considering different sample sizes 100, 1, 000
and 10, 000. Here all parameters have a “flat” prior. Note that, as the
sample size increases, the posterior distribution does not concentrate on a
point; rather, the posterior remains spread on the identified bound of 16.8%
to 20.8%, as per Theorem 1.

Figure 6: Histograms of the posterior samples of P ∗(Y1 = 1) for a simulation
of the Russian Roulette data, considering different sample sizes 100, 1, 000
and 10, 000. Here we put a point mass prior on PS10, corresponding to
the assumption of monotonicity. The remaining parameters have a “flat”
prior. Note that, as the sample size increases, the posterior distribution
concentrates on 20.8%, since the parameter is identifiable in this setting.
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representing the assumption of monotonicity. The remaining parameters
continue to have a “flat” prior. As expected, the posterior distribution now
concentrates around 20.8% as the number of cases increases.

Real data example

We now illustrate our method with a real data example. We investigate three
experiments designed to determine the effects of vitamin A supplementation
on childhood mortality. The first trial was carried out in the Aceh province
at the northern tip of Sumatra, Indonesia (Sommer et al., 1986); the second
trial was conducted in the West Java province, in Java, also in Indonesia
(Muhilal et al., 1988). Finally, the third trial took place in the district
of Sarlahi, Nepal (West Jr et al., 1991). The results from the studies are
shown in Table 1. Our exercise in this section consists of using the results of
earlier trials, along with the baseline risk of the target population, to predict
mortality under treatment in the target population.

It is suspected that vitamin A reduces childhood mortality by reducing
the incidence, severity or duration of life-threatening diseases such as measles
and diarrhoea (West Jr et al., 1991). As a first approximation to this process,
we can borrow the same disjunctive model of the previous section. The
variables now mean: (i) Y = 1 survival, and Y = 0 death during the trial;
(ii) H = 1 absence, and H = 0 presence of severe measles; (iii) X = 1
participation in the treatment group (vitamin A supplementation), and X =
0 participation in the control group; finally, (iv) B summarizes biological
factors that determine the response to treatment (B = 1 successful response,
B = 0 otherwise). Here the monotonicity assumption states that vitamin A
supplementation does not cause deaths. After presenting the results of our
method, we discuss cases under which these assumptions may be violated,

Study
Treatment Control

Survived Total Survived Total

Aceh (Sommer et al., 1986) 12,890 12,991 12,079 12,209
West Java (Muhilal et al., 1988) 5,589 5,775 5,195 5,445
Sarlahi (West Jr et al., 1991) 14,335 14,487 13,933 14,143

Table 1: Observed data for the vitamin A studies.
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thus preventing one from inferring Y1 ⊥⊥ S | Y0.
Our first task is to use the results of the Aceh trial (ΠA) to predict the

effects of the West Java trial (ΠWJ). The estimates of the Aceh trial are

P̂A(Y1 = 1) = 0.992 and P̂A(Y0 = 1) = 0.989; whereas the baseline risk in the

Java trial is P̂WJ(Y0 = 1) = 0.954. As expected, note the large discrepancy of
baseline risk in both trials, indicating the existence of structural differences
in how mortality is determined, and thus forbidding a direct transport of
PWJ(Y1 = 1). Figure 7 shows the posterior distribution of PWJ(Y1 = 1)
using both a “flat” prior for all parameters (left), and a prior assuming
monotonicity for the effect of vitamin A supplementation (right). In the first
case, we obtain a 95% credible interval of 0.962 to 0.992 for PWJ(Y1 = 1),
in agreement with the asymptotic bounds of Theorem 1—this shows that,
even without assuming monotonicity, the bounds are narrow enough to be
consistent with a positive effect of vitamin A supplementation in West Java.12

When assuming a monotonic effect of vitamin A, we obtain the posterior
mean of 0.967 (95% CI 0.956–0.975). In both plots, a red dashed line indicates

the actual value observed in the West Java trial, P̂WJ(Y1 = 1) = 0.968, which
is consistent with the predictions of our method.

Our second task is to use the results of both the Aceh (ΠA) and West
Java (ΠWJ) trials to predict the effects of the Sarlahi trial (ΠS). As per
Theorems 2 and 3, in this setting we can identify the probabilities of suffi-
ciency shared across regions, PS10 and PS01, as well as the effect in Sarlahi,
P S(Y1 = 1), without assuming monotonicity. The posterior distributions of
these three quantities are displayed in Figure 8. The posterior mean for PS01

is 0.346 (95% CI 0.214–0.478), while the posterior mean for PS10 is 0.001
(95% CI 0.000–0.004). This suggests that, in the context of these trials, vi-
tamin A supplementation is sufficient to prevent 21% to 48% of the deaths
that would have otherwise occurred without supplementation, while it has
no or little side-effects that are sufficient to cause the death of otherwise
healthy subjects. Finally, we obtain the posterior mean of 0.989 (95% CI
0.987–0.991) for P S(Y1 = 1), consistent with the actual value observed in the

Sarlahi trial, P̂ S(Y1 = 1) = 0.989.
Before moving to the conclusions, let us use this example to make some

12The 95% credible intervals for the risk difference and risk ratio are 0.008–0.04 and
1.009–1.042, respectively. Alternatively, if one prefers inferences on the bounds, we have
95% credible intervals of: 0.955–0.975 for the lower bound, 0.991–0.994 for the upper
bound, and 0.002–0.020 for the lower bound of the risk difference (i.e, P ∗L

11 − P ∗
01).
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Figure 7: Posterior of PWJ(Y1 = 1) for the West Java trial, using data from
the Aceh trial. Left: posterior of PWJ(Y1 = 1) using “flat” priors. Right:
posterior of PWJ(Y1 = 1) assuming monotonicity. Red dashed lines show the

observed value in the West Java trial, P̂WJ(Y1 = 1).

Figure 8: From left to right, posterior of PS01, PS10 and P S(Y1 = 1) using
data from both the Aceh and West Java trials (Sommer et al., 1986; Muhilal
et al., 1988), and using “flat” priors for all parameters. Dashed red line

indicates the observed value in the Sarlahi trial, P̂ S(Y1 = 1).
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brief remarks about causal modeling in practice. Note that the working
model in this section assumes the only factor causing deaths during the pe-
riod of the trial can be summarized by H, consisting of diseases which, at
least in principle, can be affected by the treatment (e.g, severe measles or
diarrhoea). What happens, however, if we augment the model to allow for
other causes of deaths unaffected by vitamin A supplementation? It can
be shown that this new variable is a common cause of both potential re-
sponses, thus creating a colliding path and forbidding the conclusion that
Y1 ⊥⊥ S | Y0.

13 This suggests caution when transporting these results to
populations where mortality due to diarrhoea or measles is not predominant.

More generally, while one may summarize the main “identification as-
sumption” for the results in this paper in terms of the counterfactual inde-
pendence Y1 ⊥⊥ S | Y0, note we did not commence the analysis by imposing
this or any “identification assumption.” Instead, we made an effort to expli-
cate our understanding of the problem directly in a structural model, and the
necessary counterfactual independence emerged naturally as a logical conse-
quence of the structure. This is an important part of the process. If some
of those modeling assumptions happen to be challenged, as they often are
in practical settings (e.g, unobserved confounding between H and B), we
should refrain from positing that Y1 ⊥⊥ S | Y0 and the model both warns us
of possible threats, as well as helps us in finding alternative solutions.14

5 Conclusions

This paper showed how two apparently separate areas of causal inference
research—the generalization of causal effects across populations (Pearl and
Bareinboim, 2014; Bareinboim and Pearl, 2016; Huitfeldt et al., 2018) and
the identification of “causes of effects” (Pearl, 1999; Tian and Pearl, 2000;
Pearl, 2015, 2019)—can be merged for mutual benefit, unveiling important
results in both areas.

13Call these new causes C. The new structural equation for Y now reads Y = (H ∨
(X ∧B))∧¬C. This leads to Y0 = H ∧¬C and Y1 = Y0 ∨ (B ∧¬C). Note this creates the
colliding path S → H → Y0 ← C → Y1, thus forbidding the conclusion that Y1 ⊥⊥ S | Y0,
even when there is no selection node pointing directly to C. For another illustration of
when collider bias may arise, see Appendix A.3.

14For example, a sensitivity analysis might still be possible, and one could investigate
how big a departure from the original model assumptions would be necessary to invalidate
the main conclusions. See, e.g., Cinelli et al. (2019); Cinelli and Hazlett (2020).
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The first lesson that emerges from this combined analysis is that certain
functional constraints may entail the invariance of probabilities of causation
across domains, which can then be used as instruments to license general-
ization. This may occur when the outcome is a product of several inde-
pendent processes, only some of which are carriers of disparities, and when
the outcome produced under the “no-treatment” condition is sufficient to
block these sources of disparity. These functional constraints may enable the
identification, or at least the bounding of the target effect in settings where
non-parametric generalization is otherwise impossible.

A second lesson that surfaces from our investigation is that, whenever
experimental data from multiple sites are available, these may lead to the
point identification of probabilities of causation. These counterfactual prob-
abilities can be the targets of investigations in public health, legal settings,
and the production of explanations (Mueller and Pearl, 2020; Pearl, 2015,
2019). For example, drugs with a positive average treatment effect may still
kill individuals who would have otherwise survived—being able to quantify
the percentage of individuals that are saved or harmed by the treatment has
important implications in many public health applications.

The development of tools for automating the types of analyses presented
here, paralleling those available for non-parametric models, is a challeng-
ing topic for future work. As we have seen, determining the invariance of
probabilities of causation requires additional constraints beyond the stan-
dard non-parametric model; some recent developments, such as algorithms
for handling context-specific independencies for causal identification (Tikka
et al., 2019), may provide the initial steps towards this undertaking.
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A Appendix

A.1 An example with continuous treatment

Here we provide a simple example in which, although the treatment variable
is continuous, the relevant dependencies among potential outcomes are still
amenable to graphical representation. Suppose we have the same selection
diagram as in Figure 2b, but now let X, B, and H all be continuous vari-
ables. Next, consider the following functional specification for the structural
equation of Y ,

Y = I(H > 0) ∨ I(X ×B > 0) (10)

Where I(·) denotes the indicator function. Now note from Equation 10 we
can derive the potential outcomes Y0 = I(H > 0) for x = 0, and, Yx =
I(H > 0) ∨ I(xB > 0) = Y0 ∨ I(xB > 0), for x 6= 0. We can thus draw the
same modified selection diagram as in Figure 3, but now replacing Y1 with
Yx, leading to the conclusion that Yx ⊥⊥ S | Y0, for all x 6= 0.

A.2 Proofs

A.2.1 Bounds with a single source population

Here we show how to obtain the bounds of Theorem 1. To simplify notation,
let Pij := P (Yi = j), P ∗

ij := P ∗(Yi = j), PS10 := P ∗(Y1 = 0|Y0 = 1) =
P (Y1 = 0|Y0 = 1) and PS01 = P ∗(Y1 = 1|Y0 = 0) = P (Y1 = 1|Y0 = 0). The
target function to be optimized is P ∗

11, which can be written as,

P ∗
11 = (1− PS10)P

∗
01 + PS01(1− P ∗

01) (11)

Our goal is to pick PS10 and PS01 such that it maximizes (or minimizes)
Eq. 11 subject to the following constraints: (i) PS10 and PS01 need to be
between zero and one (since PS10 and PS01 need to be valid probabilities);
and, (ii) PS10 and PS01 must conform to the observed results of the trial in
the source domain, that is, P11 = (1− PS10)P01 + PS01(1− P01). Thus, our
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optimization problem is,

max
PS10,PS01

P ∗
11 = (1− PS10)P

∗
01 + PS01(1− P ∗

01)

s.t. P11 = (1− PS10)P01 + PS01(1− P01)

and 0 ≤ PS10 ≤ 1, 0 ≤ PS01 ≤ 1

To simplify the problem, we can use the equality constraint P11 = (1 −
PS10)P01 + PS01(1 − P01) to eliminate one of the variables. For instance,
writing PS10 in terms of PS01 gives us,

1− PS10 =
P11 − PS01(1− P01)

P01

(12)

Which results in a new target function,

P ∗
11 = (1− PS10)P

∗
01 + PS01(1− P ∗

01) (13)

=

(
P11 − PS01(1− P01)

P01

)
P ∗
01 + PS01(1− P ∗

01) (14)

=

(
P11

P01

)
P ∗
01 +

(
P01 − P ∗

01

P01

)
PS01 (15)

= RR× P ∗
01 +

(
P01 − P ∗

01

P01

)
PS01 (16)

Where RR = P11

P01
is the causal risk-ratio in the trial of the source domain

Π. Since 0 ≤ (1 − PS10) ≤ 1, the substitution also results in additional
constraints on PS01,

P11 − P01

1− P01

≤ PS01 ≤
P11

1− P01

(17)

Thus, define the lower and upper bounds on PS01 as

PSL
01 = max

{
0,

P11 − P01

1− P01

}
, PSU

01 = min

{
P11

1− P01

, 1

}
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Our new maximization problem can be written as,

max
PS01

RR× P ∗
01 +

(
P01 − P ∗

01

P01

)
PS01 s.t. PSL

01 ≤ PS01 ≤ PSU
01 (18)

Since the target function is linear, the maximum occurs at the extreme points
of PS01. The same reasoning holds for the minimization problem. Thus, we
have that,

P ∗L
11 ≤ P ∗

11 ≤ P ∗U
11

Where,

P ∗L
11 = RR× P ∗

01 + min

{(
P01 − P ∗

01

P01

)
PSL

01,

(
P01 − P ∗

01

P01

)
PSU

01

}
and

P ∗U
11 = RR× P ∗

01 + max

{(
P01 − P ∗

01

P01

)
PSL

01,

(
P01 − P ∗

01

P01

)
PSU

01

}
A.2.2 Informativeness of the bounds

We now derive the width of the bounds for P ∗
11 for the case when the bounds

for PS01 do not reach 0 nor 1 (this will happen when both P11 > P01 and
P11 < 1− P01). Define the width W of the bounds as the difference between
the upper and lower bound of P ∗

11, that is,

W = P ∗U
11 − P ∗L

11
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Expanding the terms we obtain,

W = P ∗U
11 − P ∗L

11 (19)

=

∣∣∣∣(P01 − P ∗
01

P01

)
PSU

01 −
(
P01 − P ∗

01

P01

)
PSL

01

∣∣∣∣ (20)

=
|P01 − P ∗

01|
P01

×
(
PSU

01 − PSL
01

)
(21)

=
|P01 − P ∗

01|
P01

× P01

1− P01

(22)

=
|P01 − P ∗

01|
1− P01

(23)

Thus, when the bounds for PS01 are “interior,” the informativeness of the
bounds depend only on P01 and P ∗

01. Moreover, even if the bounds for PS01

are “wide,” the bounds for P ∗
11 may be “narrow,” provided the baseline risks

of the source and target population are close enough.

A.2.3 Identification with multiple source domains

We now show how to obtain the identification results of Theorem 2 and 3.
Consider two source populations Πa and Πb. Again, to simplify notation, let
P a
ij := P a(Yi = j), P b

ij := P a(Yi = j), PS10 := P a(Y1 = 0|Y0 = 1) = P b(Y1 =
0|Y0 = 1) = P ∗(Y1 = 0|Y0 = 1) and PS01 := P a(Y1 = 1|Y0 = 0) = P b(Y1 =
1|Y0 = 0) = P ∗(Y1 = 1|Y0 = 0).

First note that PS10 and PS01 are identified from the experimental data
in Πa and Πb. Using the law of total probability for P a

11 and P b
11 write,

P a
11 = (1− PS10)× P a

01 + PS01 × P a
00 (24)

P b
11 = (1− PS10)× P b

01 + PS01 × P b
00 (25)

We thus have a system of two equations and two unknowns,[
P a
01 P a

00

P b
01 P b

00

] [
(1− PS10)

PS01

]
=

[
P a
11

P b
11

]
(26)
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Yielding the solution,[
(1− PS10)

PS01

]
=

1

P a
01P

b
00 − P b

01P
a
00

×
[
P b
00 −P a

00

−P b
01 P a

01

] [
P a
11

P b
11

]
(27)

Which amounts to:

PS10 = 1− P a
11P

b
00 − P b

11P
a
00

P a
01P

b
00 − P b

01P
a
00

(28)

PS01 =
P b
11P

a
01 − P a

11P
b
01

P a
01P

b
00 − P b

01P
a
00

(29)

All values of the RHS can be computed from the experimental data of Πa

and Πb. Note that, since PS10 and PS01 must be between 0 and 1, not
all solutions are valid. Therefore, two domains already entail some testable
implications—if either PS10 and PS01 are not valid probabilities, this means
that the assumption that the probabilities of sufficiency are invariant across
domains is false. If we add a third or more source domains, it is easy to see
that we will have three or more equations but still only two unknowns, and
the system is thus over-identified.

Once in possession of PS10 and PS01, we can transport of the causal effect
to the target population Π∗ by appealing again to the law of total probability,

P ∗
11 = (1− PS10)× P ∗

01 + PS01 × P ∗
00 (30)

=
P a
11P

b
00 − P b

11P
a
00

P a
01P

b
00 − P b

01P
a
00

× P ∗
01 +

P b
11P

a
01 − P a

11P
b
01

P a
01P

b
00 − P b

01P
a
00

× P ∗
00 (31)

Finally, we note that all probabilities of causation, as discussed in Tian
and Pearl (2000), are also identifiable in this setting. First, consider the
probability of necessity and sufficiency, PNS = P (Y1 = 1, Y0 = 0) for Πa.
Using the chain rule, PNS can be written as,

P a(Y1 = 1, Y0 = 0) = P a(Y1 = 1 | Y0 = 0)P a(Y0 = 0) (32)

= PS01 × P a(Y0 = 0) (33)

Note PS01 was already identified, and P a(Y0 = 0) is given by the trial data
in Πa, thus rendering PNSa identifiable. Similar reasoning holds for Πb.

For the probability of necessity, define PN01 := P (Y0 = 0 | Y1 = 1). Due to
the randomization of X, PN01 coincides with Tian and Pear’s probability of
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necessity during the trial (not the observational PN), by the same argument
we provide for PS in the main text. The final step is to note that,

P a(Y0 = 0 | Y1 = 1) =
P a(Y0 = 0, Y1 = 1)

P a(Y1 = 1)
=

PNSa

P a(Y1 = 1)

The numerator is simply the PNS, which we have already identified, and
the denominator is given by the trial data in Πa. Again, analogous argument
can be given for Πb.

A.3 Modeling functional constraints

To illustrate the usefulness of explicitly modeling functional constraints in a
structural framework, we apply the same modeling strategy of the paper in
an example described in Huitfeldt et al. (2018, p. 11):

Consider a team of investigators who are interested in the effect of
antibiotic treatment on mortality in patients with a specific bacterial
infection (. . . ) the investigators believe that the response to this an-
tibiotic is completely determined by an unmeasured bacterial gene,
such that only those who are infected with a bacterial strain with this
gene respond to treatment. The prevalence of this bacterial gene is
equal between populations, because the populations share the same
bacterial ecosystem (. . . ) if the investigators further believe that the
gene for susceptibility reduces the mortality in the presence of antibi-
otics, but has no effect in the absence of antibiotics, they will conclude
that G may be equal between populations.

Here the conclusion that G may be equal between populations is equivalent
to claiming Y1 ⊥⊥ S | Y0. But is the description above sufficient for substanti-
ating this claim? Figure 9 shows two models compatible with the description,
yet leading to two opposite conclusions.

Let the variable A represent the binary treatment (antibiotic), Y repre-
sent the binary outcome (mortality), BG stand for the presence or absence
of the “bacterial gene” and finally let U be a binary variable that summa-
rizes all other factors that may cause death (Y = 1). The description of the
problem suggests the functional specification,

Y = U ∧ (¬A ∨ ¬BG) (34)
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Y

Y1

BG

A

Y0

U

S

(a)

Y

Y1

BG

A

Y0

U

S

(b)

Figure 9: Two selection diagrams compatible with the verbal description of
Huitfeldt et al. (2018, page 11). Yet, model (a) implies Y1 ⊥⊥ S | Y0, and
model (b) implies the opposite; conditioning on Y0 opens the colliding path
S → U ↔ BG→ Y1.

showing the antibiotics and the bacterial gene both helping to reduce mortal-
ity (¬ denotes the logical “not”). Equation 34 entails the potential outcomes
Y0 = U and Y1 = U ∧ (¬BG) = Y0 ∧ (¬BG), which are explicitly shown in
both diagrams as dictated by the functional specification. Moreover, in both
models the prevalence of the bacterial gene BG is equal between populations
(i.e., BG ⊥⊥ S). In the model of Figure 9a, as in our previous analysis, we
indeed conclude that Y1 ⊥⊥ S | Y0, and that P ∗(Y1) is transportable. How-
ever, in the model of Figure 9b, there is an unmeasured confounder between
BG and U .15 Conditioning on Y0 (a child of a collider) opens the colliding
path S → U ↔ BG→ Y1, thus not licensing the independence Y1 ⊥⊥ S | Y0.

A.4 Bayesian estimation

A.4.1 Multiple source domains

In this section we show how to extend the probabilistic graphical model
of Section 4 to two or more sources. Let us start with two source popu-
lations Πa and Πb, and one target domain Π∗. The observed data is now

15This could arise, for instance, as a result of population stratification.
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D = {na
0, n

a
1, n

∗
0, n

b
0, n

b
1}, all with binomial distributions:

na
0 ∼ Binomial(Na

0 , P
a
01) (35)

na
1 ∼ Binomial(Na

1 , P
a
11) (36)

n∗
0 ∼ Binomial(N∗

0 , P
∗
01) (37)

nb
0 ∼ Binomial(N b

0 , P
b
01) (38)

nb
1 ∼ Binomial(N b

1 , P
b
11) (39)

We also have the following deterministic relationships for P a
11, P

b
11 and P ∗

11:

P a
11 = (1− PS10)P

a
01 + PS01(1− P a

01) (40)

P b
11 = (1− PS10)P

b
01 + PS01(1− P b

01) (41)

P ∗
11 = (1− PS10)P

∗
01 + PS01(1− P ∗

01) (42)

The probabilistic graphical model for this case is shown in Figure 10.

P a
01

na
0

P a
11

na
1

PS10

P ∗
01

n∗
0

P ∗
11 P b

11

PS01

nb
1

P b
01

nb
0

Figure 10: Probabilistic graphical model with two source populations Πa,
Πb and one target population Π∗. Gray nodes (na

0, na
1, n∗

0, nb
0, nb

1) denote
observed variables. White notes denote latent parameters (P a

01, P a
11, PS10,

PS01, P
∗
11, P

∗
01, P

b
11, P

b
01). Note that P a

11, P
∗
11 and P b

11 share the parameters
PS10 and PS01, which are invariant across populations.

Thus, one needs to place priors on the parent nodes only, and then per-
form inference as before. The extension to more than two populations follows
the same logic. It is worth noting that, as we have seen in Section 3, with two
or more source populations the model entails testable implications. There-
fore, we advise researchers to check whether the data is compatible with the
model (Gelman et al., 2013).
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Finally, similarly to the discussion in Section 4, a simpler modeling al-
ternative here is to place priors only on the parameters of the observed data
directly, and make inferences using the posterior of the functionals of the
observed data that identify the target quantities.

A.4.2 Replication code

Here we provide R code to replicate the estimation examples using JAGS
(Plummer et al., 2003) and the package rjags (Plummer, 2016).

### Replication code for

### "Generalizing Experimental results

### by Leveraging Knowledge of Mechanisms"

### -- Carlos Cinelli and Judea Pearl

# Set up -------------------------------------------------------

## Cleans workspace

rm(list = ls())

## Loads necessary R packages

library(rjags)

## JAGS models

model_one_source <-

"model{

# Likelihood

n0 ~ dbinom(p01, N0)

n1 ~ dbinom(p11, N1)

n0s ~ dbinom(p01s, N0s)

# Priors
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PS10 ~ dbeta(1,1)

PS01 ~ dbeta(1,1)

p01 ~ dbeta(1, 1)

p01s ~ dbeta(1, 1)

# Computed quantities

p11 <- (1-PS10)*p01 + PS01*(1-p01)

p11s <- (1-PS10)*p01s + PS01*(1-p01s)

rd <- p11s - p01s

rr <- p11s/p01s

# bounds

PS01_l <- max(0, (p11-p01)/(1-p01))

PS01_u <- min(p11/(1-p01), 1)

p11_1 <- (1-p01s/p01)*PS01_l + (p01s/p01)*p11

p11_2 <- (1-p01s/p01)*PS01_u + (p01s/p01)*p11

p11_l <- min(p11_1, p11_2)

p11_u <- max(p11_1, p11_2)

rd_l <- p11_l - p01s

rr_l <- p11_l/p01s

}"

model_one_source_monotonic <-

"model{

# Likelihood

n0 ~ dbinom(p01, N0)

n1 ~ dbinom(p11, N1)

n0s ~ dbinom(p01s, N0s)

# Priors

PS10 <- 0

PS01 ~ dbeta(1,1)

p01 ~ dbeta(1, 1)
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p01s ~ dbeta(1, 1)

# Computed quantities

p11 <- (1-PS10)*p01 + PS01*(1-p01)

p11s <- (1-PS10)*p01s + PS01*(1-p01s)

rd <- p11s - p01s

rr <- p11s/p01s

}"

model_two_sources <- "model{

# Likelihood

n0a ~ dbinom(p01a, N0a)

n0b ~ dbinom(p01b, N0b)

n0c ~ dbinom(p01c, N0c)

n1a ~ dbinom(p11a, N1a)

n1b ~ dbinom(p11b, N1b)

# Priors

p01a ~ dbeta(1, 1)

p01b ~ dbeta(1, 1)

p01c ~ dbeta(1, 1)

PS10 ~ dbeta(1, 1)

PS01 ~ dbeta(1, 1)

# Computed quantities

p11a <- (1-PS10)*p01a + PS01*(1-p01a)

p11b <- (1-PS10)*p01b + PS01*(1-p01b)

p11c <- (1-PS10)*p01c + PS01*(1-p01c)

rra <- (p11a)/(p01a)

rrb <- (p11b)/(p01b)

rrc <- (p11c)/(p01c)

}"
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# Simulated data example ---------------------------------------

loop_n <- c(1e2, 1e3, 1e4)

### Without monotonicity

par(mfrow = c(1, 3))

for(n in loop_n){

# creates data

data <- list(

N0 = n,

n0 = sum(rbinom(n, 1, prob = 0.01)),

N1 = n,

n1 = sum(rbinom(n, 1, prob = 0.175)),

N0s = n,

n0s = sum(rbinom(n, 1, prob = 0.05))

)

# posterior samples

model <- jags.model(textConnection(model_one_source),

data = data)

samples <- coda.samples(model = model,

variable.names = c("p01","p01s", "p11","p11s"),

n.iter = 100000)

samp.data <- as.data.frame(samples[[1]])

hist(samp.data$p11s,

main = "",

xlim = c(0, .4),

yaxt = "n",

xaxt = "n",

xlab = paste0("n = ", n),

ylab = "",

col = "gray")
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labs <- round(quantile(data$p11s, c(0.025, 0.975)), 2)

axis(side = 1, at = c(0, labs, .4))

}

### With monotonicity

par(mfrow = c(1, 3))

for(n in loop_n){

data <- list(

N0 = n,

n0 = sum(rbinom(n, 1, prob = 0.01)),

N1 = n,

n1 = sum(rbinom(n, 1, prob = 0.175)),

N0s = n,

n0s = sum(rbinom(n, 1, prob = 0.05))

)

# posterior samples

model <- jags.model(textConnection(model_one_source_monotonic),

data = data)

samples <- coda.samples(model = model,

variable.names = c("p01","p01s", "p11","p11s"),

n.iter = 100000)

samp.data <- as.data.frame(samples[[1]])

hist(samp.data$p11s,

main = "",

xlim = c(0, .4),

yaxt = "n",

xaxt = "n",

xlab = paste0("n = ", n),

ylab = "",

col = "gray")
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labs <- round(quantile(data$p11s, c(0.025, 0.975)), 2)

axis(side = 1, at = c(0, labs, .4))

}

# Vitamin A example --------------------------------------------

### Vitamin A data

### Aceh study

Aceh <- data.frame(N0 = 12209,

n0 = 12079,

N1 = 12991,

n1 = 12890)

### West Java study

West.Java <- data.frame(N0 = 5445,

n0 = 5195,

N1 = 5775,

n1 = 5589)

### Sarlahi Study

Sarlahi <- data.frame(N0 = 14143,

n0 = 13933,

N1 = 14487,

n1 = 14335)

## Transporting: Aceh -> West Java

### Data

data <- list(N0 = Aceh$N0,

n0 = Aceh$n0,

N1 = Aceh$N1,

n1 = Aceh$n1,

N0s = West.Java$N0,
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n0s = West.Java$n0)

### Posterior samples bounds

model.bounds <- jags.model(textConnection(model_one_source),

data = data, n.chains = 4, n.adapt = 1e3)

## burn-in

update(model.bounds, n.iter = 1e4)

## samples

samp.bounds <- coda.samples(model.bounds,

variable.names = c("p01","p01s", "p11",

"PS01", "PS10", "p11s",

"rd", "rr",

"PS01_l", "PS01_u",

"p11_l", "p11_u",

"rd_l", "rr_l"),

n.iter = 100000)

summary(samp.bounds)

## extract data.frame

sim.bounds <- do.call("rbind", samp.bounds)

sim.bounds <- as.data.frame(sim.bounds)

### Posterior samples monotonic

model.monotonic <- jags.model(textConnection(model_one_source_monotonic),

data = data, n.chains = 4, n.adapt = 1e3)

## burn-in

update(model.monotonic, n.iter = 1e4)

## samples

samp.monotonic <- coda.samples(model.monotonic,

variable.names = c("p01","p01s", "p11",

"PS01", "PS10", "p11s",
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"rd", "rr"),

n.iter = 100000)

summary(samp.monotonic)

## extract data.frame

sim.monotonic <- do.call("rbind", samp.monotonic)

sim.monotonic <- as.data.frame(sim.monotonic)

## plot

par(mfrow = c(1, 2))

lims <- c(0.94,1)

mark <- West.Java$n1/West.Java$N1

hist(sim.bounds$p11s,

breaks = 50,

main = "",

xlim = lims,

yaxt = "n",

xlab = "Flat priors",

ylab = "",

col = "gray")

abline(v = mark, col = "red", lty = 2, lwd = 2)

hist(sim.monotonic$p11s,

breaks = 50,

main = "",

xlim = lims,

yaxt = "n",

xlab = "Assuming monotonicity",

ylab = "",

col = "gray")

abline(v = mark, col = "red", lty = 2, lwd = 2)

## Transporting: Aceh + West Java -> Sarlahi

### Data

data2 <- list(N0a = Aceh$N0,
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n0a = Aceh$n0,

N1a = Aceh$N1,

n1a = Aceh$n1,

N0b = West.Java$N0,

n0b = West.Java$n0,

N1b = West.Java$N1,

n1b = West.Java$n1,

N0c = Sarlahi$N0,

n0c = Sarlahi$n0)

### Posterior samples two sources

model2 <- jags.model(textConnection(model_two_sources),

data = data2, n.chains = 4, n.adapt = 1e3)

## burn in

update(model2, n.iter = 1e4)

## samples

samp2 <- coda.samples(model2,

variable.names = c("p01a","p01b","p01c",

"p11a", "p11b","p11c",

"PS01", "PS10",

"rra", "rrb", "rrc"),

n.iter = 100000)

summary(samp2)

## extract data.frame

sim2 <- as.data.frame(samp2[[1]])

### Plot

par(mfrow = c(1, 3))

mark <- Sarlahi$n1/Sarlahi$N1

hist(sim2$PS01, xlim = c(0,1), breaks = 50,

yaxt = "n", col = "gray", main = "", xlab = "PS01", ylab = "")

hist(sim2$PS10, xlim = c(0, 0.1),

yaxt = "n", col = "gray", main = "", xlab = "PS10", ylab = "")
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hist(sim2$p11c,

yaxt = "n", col = "gray", main = "", xlab = "P11*", ylab = "")

abline(v = mark, col = "red", lty = 2, lwd = 2)
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