
A Simultaneous Discover-Identify Approach to Causal Inference in Linear Models

Chi Zhang,1 Bryant Chen,2 Judea Pearl1
1Department of Computer Science, University of California, Los Angeles, California, USA.

2Brex, San Francisco, California, USA*

zccc@cs.ucla.edu, bryant@brex.com, judea@cs.ucla.edu

Abstract

Modern causal analysis involves two major tasks, discov-
ery and identification. The first aims to learn a causal struc-
ture compatible with the available data, the second leverages
that structure to estimate causal effects. Rather than perform-
ing the two tasks in tandem, as is usually done in the lit-
erature, we propose a symbiotic approach in which the two
are performed simultaneously for mutual benefit; information
gained through identification helps causal discovery and vice
versa. This approach enables the usage of Verma constraints,
which remain dormant in constraint-based methods of discov-
ery, and permit us to learn more complete structures, hence
identify a larger set of causal effects than previously achiev-
able with standard methods.

Introduction
Learning causal relationships is one of the most ambitious
goals of scientific inquiry. Controlled randomized experi-
ments can sometimes be used to both learn the causal struc-
ture among variables, as well as the size of the causal effects.
However, such experiments are often too expensive or even
impossible to conduct. Instead, learning causal relationships
from observational data can be attempted; first by learning
the causal structure from observational data, called discov-
ery, and then identifying causal effects from the observa-
tional data and the partially specified causal structure. This
paper introduces a method of performing both tasks simul-
taneously in a mutually beneficial way.

Many algorithms have been developed for causal dis-
covery. These algorithms generally fall into two cate-
gories: score-based algorithms (e.g., Heckerman, Geiger,
and Chickering (1995), Chickering (2002), Shpitser et al.
(2012), Fast GES by Ramsey et al. (2017)) and constraint-
based algorithms (e.g., IC algorithm by Verma and Pearl
(1991), PC algorithm by Spirtes et al. (2000), FCI algo-
rithm first by Spirtes et al. (2000) and improved by Zhang
(2008)). Constraint-based algorithms aim to discover a class
of graphs that encode the same constraints as those implied

*Much of the work by Chen was conducted while at IBM Re-
search AI.
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a)

a
b c

d

(b)

a
b c

d

Figure 1: (a) a DAG where σad/σac = σcd⋅b (b) a DAG where
σad/σac ≠ σcd⋅b

by the data. They perform a sequence of conditional inde-
pendence tests to efficiently rule out impossible edge con-
figurations. Constraint-based algorithms have significant ad-
vantage over score-based algorithms in that they are able to
learn entire equivalence classes of models with unobserved
variables, often called “semi-Markovian.”

Existing constraint-based algorithms use conditional in-
dependences between model variables to learn the causal
structure. However, since there are usually many structures
consistent with any given set of conditional independences,
these algorithms are only able to produce large equivalence
classes of possible structures.

Verma constraints (Verma and Pearl 1991) impose ad-
ditional constraints on the probability distribution beyond
conditional independences, and thus allow the discovery
of additional structures. For example, though Figures 1(a)
and 1(b) are conditional-independence-equivalent, they im-
ply different Verma constraints. 1(a) implies the Verma con-
straint σad/σac = σcd⋅b, while 1(b) does not (hint: σad is
equal to the product of the three coefficients on a→ b, b→ c,
and c → d in 1(a), while σad is equal to the same product
plus the coefficient on a→ d in 1(b)). Several algorithms for
deriving Verma constraints from a model’s structure have
been developed, including algorithms by Tian and Pearl
(2002) and Shpitser and Pearl (2008) for non-parametric
models and algorithms by Chen (2016) and Chen, Kumor,
and Bareinboim (2017) for linear models. These algorithms
can be used to derive Verma constraints from a hypothesized
model structure and test it. However, it is not clear how to
systematically find such constraints from data to discover
the model’s structure. Indeed, no constraint-based method
for learning causal structures from Verma constraints cur-
rently exists in the literature.

Extended version of paper accepted to the Proceedings of the Thirty-fourth AAAI Conference on 
Artificial Intelligence (AAAI-2020). 

TECHNICAL REPORT 
R-491-L 

December 2019



Fortunately, under the linear setting, a useful tool, called
auxiliary variables (AVs) (Chen, Pearl, and Bareinboim
2015), can be used to reduce the problem of finding Verma
constraints to one of finding conditional independences.
AVs are constructed by subtracting known direct effects–if
the coefficient from variables x to y, β, is known, an AV
y∗ = y − βx is constructed by subtracting βx from y. Now,
y∗ may be conditionally independent of some variables that
y was dependent of. This conditional independence, which
is equivalent to a Verma constraint over the original model
variables, can then be used to learn more of the structure.

Constructing AVs without prior knowledge requires iden-
tification of direct effects. Thus, in order to use AVs in causal
discovery, we need a method to identify direct effects from
an incomplete causal structure. To this end, we generalize
the qID algorithm of Chen, Kumor, and Bareinboim (2017)
for partially specified causal structures. Combining this al-
gorithm with AVs, we are able to iteratively identify causal
effects on an incomplete structure, construct AVs, and learn
more of the structure. Each identification step enables the
construction of more AVs, which helps to learn more of the
structure. Similarly, each causal discovery step learns more
of the structure, which helps to identify more causal effects.

In summary, we introduce a simultaneous discover-
identify algorithm, where each task is performed to the
other’s benefit. To our knowledge, this algorithm is the first
constraint-based causal discovery algorithm to use Verma
constraints, and the first identification algorithm for partially
specified linear causal models1. Lastly, we demonstrate that
in high percentages of simulated cases, our method provides
noticeable improvements in recovering random graph struc-
tures while guaranteeing correctness.

Preliminaries
The causal directed acyclic graph (DAG) of a structural
equation model (SEM) is a graph, G = (V,E), where V
are nodes representing model variables and E are edges rep-
resenting causal relations between two nodes. An edge in a
causal graph can be directed (→), bidirected (↔), or both.
Directed edges encode the direction of causality, i.e., if xi
is in the structural equation that determines xj , an edge is
drawn from xi to xj . Each directed edge, therefore, is as-
sociated with a coefficient in the SEM, which we often re-
fer to as its edge coefficient. A bidirected edge between two
nodes indicates their corresponding error terms may be sta-
tistically dependent, while the lack of a bidirected edge indi-
cates the error terms are independent. If both a directed edge
and a bidirected edge exist between two nodes, it indicates
one variable is directly affecting the other and they are both
affected by an unobserved confounder at the same time.

In the following sections, we use standard graph termi-
nology, where He(E) denotes the heads of a set of directed
edges, E, Ta(E) denotes the tails, and for a node v, the set
of edges for which He(E) = v is denoted Inc(v). We also
restrict our attention to semi-Markovian linear causal mod-

1Non-parametric algorithms can, of course, also be applied to
linear models, but they are significantly weaker due to their inabil-
ity to leverage the linearity assumption.

els (Pearl 2009), models that are acyclic, that may contain
latent confounders, and for which the causal relationships
are linear. Lastly, we use the term full DAG2 to refer to a
standard causal graph, where the orientation of every edge
is specified, and the term true DAG to refer to the full DAG
that represents the underlying data generating process.

We use σxy⋅W to denote the partial covariance between
two variables, x and y, given a set of variables, W . We also
assume without loss of generality that the model variables
have been standardized to mean 0 and variance 1.

Patterns
When learning a causal structure, constraints on the co-
variances between variables (conditional independence and
Verma constraints) are generally insufficient to define a sin-
gle DAG. Instead, they are only able to narrow down the set
of possible structures to a large equivalence class. Patterns
are motivated by the need to define a graph structure to rep-
resent such a class. Using causal discovery algorithms, we
aim to learn a pattern that represents an equivalence class of
graphs consistent with the constraints provided.

Similar concepts were previously defined in the literature,
including patterns in Verma and Pearl (1991) (who first used
the term “pattern”) and partial ancestral graphs (PAGs) in
Richardson (1996). PAGs are used to represent equivalence
classes of maximal ancestral graphs (MAGs) (Richardson
and Spirtes 2002). MAGs are abstractions of DAGs that
keep only the conditional independence and ancestral rela-
tionships. More formally, MAGs are maximal and ancestral.
There is an edge between two nodes a and b in the MAG if
and only if there exists no set that can separate a and b in the
DAG (maximal), and a→ b is in the MAG if and only if a is
an ancestor of b in the DAG (ancestral).

PAGs are useful for causal discovery algorithms such as
FCI, which aims to recover a MAG. However, PAGs cannot
distinguish between different DAGs sharing the same MAG
abstraction, and therefore cannot distinguish between differ-
ent DAGs sharing ancestral relationships and conditional in-
dependence constraints but have different Verma constraints.
For example, in Figure 2(a), e and f are not conditionally in-
dependent. Therefore, a DAG with e and f connected and a
DAG without them connected share the same MAG, even
though they imply different Verma constraints. Since our
method will enable us to distinguish between such struc-
tures, we need a more precise representation without the
“maximal” or “ancestral” requirement.

Definition 1. A pattern, P = (V,E), is a graph whose
edges contain three possible types of edge marks: arrow-
heads, tails, and circles (and hence four kinds of edges34:

2We emphasize a DAG being “full” to distinguish it from a “pat-
tern”, which is a partially specified DAG. Note that we are not re-
ferring to a complete DAG, which is a DAG where all edges are
present.

3These edge markings are adopted from PAGs.
4We assume no selection bias. The other two kinds of edges in

PAGs defined in Zhang (2008), − and ○−, which only appear when
there is selection bias, are thus not included.

TECHNICAL REPORT 
R-490 

December 2019



(a)

a

d
c e

b
f

(b)

a

d
c e

b
f

(c)

a

d
c e

b
f

(d)

a

d
c e

b
f

Figure 2: (a) underlying causal relationships (b) pattern
learned by FCI (c) pattern learned by modified FCI, which
does not learn inconsistent tails such as b → f in (b) (d)
pattern learned by our method, LCDI

→,↔, ○−○, ○→). The edges denote possible causal relations
between two nodes.

Each pattern P can be used to represent (formally defined
below) a class of full DAGs, denoted [G]. A circle mark
indicates uncertainty, i.e., it is possible that the edge mark is
arrowhead for some members in [G], tail for some members,
and both (having both a directed edge and a bidirected edge
in between) for others. An edge mark is said to be invariant
if the mark is the same in all members of [G] (Zhang 2008).
Definition 2. A pattern P = {VP ,EP } is defined to rep-
resent a class of full DAGs [G], if for each member G =
{VG,EG} in [G], (i) VP = VG, and (ii) each e ∈ EP is ei-
ther extraneous (the two same nodes in G are not connected
by an edge), or the arrowhead and tail edge marks on e are
invariant in [G].

In Figure 2, 2(a) is both in the class represented by 2(c)
and the class represented by 2(d). This is seen by checking
each edge. For example, a ○→ d in 2(c) has an arrowhead at d
and a circle at a, so the DAGs in the class it represents must
have an arrowhead at d but can have anything at a. a ↔ d
in 2(a) satisfies the requirement. e ←○f in 2(c) is extrane-
ous since it is not in 2(a), which also satisfies Definition 2.
Note that from a causal discovery perspective, learning 2(d)
is preferable to learning 2(b) since the class of graphs repre-
sented by 2(d) is a subset of the class represented by 2(b).

Edge Orientation Rules Based on Verma
Constraints

In this section, we first review how conditional indepen-
dence constraints are used by current causal discovery al-
gorithms before describing how we extend these algorithms
by incorporating Verma constraints. First, conditional inde-
pendence constraints are found by checking the partial cor-
relation between each pair of variables given all subsets of

(a)

a

c
h

h∗
z

γ 1

−γ

(b)

a

c
h

h∗
b

γ 1

−γ

β

−β

Figure 3: (a) an AV in a pattern (b) an AV generated by two
variables in a pattern

other variables. Assuming faithfulness, each vanishing par-
tial correlation indicates there is no edge between the pair
of variables, and the conditioning set contains the variables
that, when conditioned on, d-separates the pair in the graph.
Therefore, we are able to rule out the edge orientations that
leave an unblocked path between the pair.

Current constraint-based causal discovery methods use
only conditional independence constraints because condi-
tional independence constraints can be easily found, and
their implications on the structure is clear. In contrast, Verma
constraints are hard to find without the aid of a full DAG,
because their functional forms are far less restricted. Addi-
tionally, it is also not always clear how they constrain the
graph structure.

However, by identifying causal effects and constructing
AVs, we may generate new conditional independences be-
tween the AVs and the original model variables. These
conditional independences, which we describe as AV con-
ditional independence constraints, are Verma constraints.
Thus, by using AVs, we can reduce the problem of find-
ing and using Verma constraints for causal discovery to a
problem of finding and using conditional independences–a
problem that is already well understood.

Intuitively, AVs negate the effect of problematic paths by
subtracting out known direct effects. Let PE+ denote the
augmented pattern with AVs generated using edgesE added.
In Figure 3(a), if the direct effect of a on h, γ, is identified,
an AV, h∗ = h−γa can be generated, giving P ah+. Similarly,
in Figure 3(b), an AV h∗ = h− γa− βb can be generated us-
ing edges a → h, b → h, giving P {ah,bh}+. Generating AVs
from patterns will allow us to search the data for new con-
ditional independences involving the AVs and learn more of
the model’s structure. These conditional independences cor-
respond to Verma constraints over the original model vari-
ables as explained in the following lemma.
Lemma 1. Given an AV, z∗ = z − Σieiti, the conditional
independence constraint, σaz∗⋅S = 0, is equivalent to the
Verma constraint, σaz⋅S − Σieiσati⋅S = 0, where S is a set
of variables. Furthermore, this Verma constraint cannot, in
general, be represented as a conditional independence con-
straint over the original model variables, V .

Lemma 1 makes it possible to easily find Verma con-
straints that are AV conditional independence constraints5.

5There might exist other types of Verma constraints that cannot
be expressed as AV conditional independence constraints. Those
constraints are outside the scope of this paper.

TECHNICAL REPORT 
R-490 

December 2019



We can simply check whether each AV can be made condi-
tionally independent of other AVs or the original model vari-
ables. Similar to traditional conditional independence con-
straints, AV conditional independence constraints refine the
structure by limiting edge marks to those that block all the
paths between the independent variables in the augmented
pattern. Furthermore, this is in fact equivalent to blocking
paths in the pattern without the edges used to generate the
AVs, as stated in the following corollary, derived from The-
orem 1 in Chen, Kumor, and Bareinboim (2017).

Corollary 1. Given a linear pattern P representing [G],
where E ⊂ Inc(z) is a set of edges whose coefficient values
are known, if (W ∪ {y}) ∩ (V ∖NDe∗(z)) = ∅, and GE−
represents the graph G with the edges for E removed, then
σz∗y⋅W = 0 only if (z⊥⊥y∣W )GE−

for all G in [G].

See the pattern P {a→h}+ in Figure 3(a), where the edge
coefficient on a → h, γ, is identified (using z as an instru-
mental variable) and the AV, h∗ = h − aγ, is constructed.
If ∃Sah∗ , σah∗⋅Sah∗

= 0, then Corollary 1 implies for all G
in [G] represented by P , (h⊥⊥a∣Sah∗)G{a→h}−

. On the other
hand, no information can be obtained using traditional con-
ditional independence constraints. ∄Sah, a⊥⊥h∣Sah since a
and h are directly connected by an edge.

Assuming a generalized version of faithfulness6, the only
path between a and h in G{a→h}−, a ←○c ○−○ h, must be
blocked by Sah∗ . If, for example, c ∉ Sah∗ , c must be a col-
lider in any G, and we can thus orient a↔ c←○h in P .

To formally construct the edge orientation rules, we need
to characterize such a relationship between two variables
like a and h that are not necessarily non-adjacent in the
original pattern, but are non-adjacent in PE− due to the in-
dependence between their AVs. We also need to characterize
variables remaining to be adjacent in PE− such that the adja-
cencies of all variables are with respect to the same pattern,
with or without E virtually removed, to ensure consistent
edge orientations. We describe such adjacency relationships
in the following definition.

Definition 3. Given an AV-augmented pattern PE+ where
AVs, a∗ = a −∑i eaitai and b∗ = b −∑j ebjtbj , are gener-
ated, and E = {eai}i ∪ {ebj}j is the set of all edges sub-
tracted to construct a∗ and b∗. a and b are generalized adja-
cent in PE+, denoted adjE(a, b), if ∄S,σa∗b∗⋅S = 0. Other-
wise, a and b are generalized non-adjacent in PE+, denoted
nadjE(a, b). We denote the set S where σa∗b∗⋅S = 0 as S∗ab.

A special case of Definition 3 is when only one AV, b∗, is
generated, i.e., adjE(a, b) if ∄S,σab∗⋅S = 0, and nadjE(a, b)
otherwise. Next, we generalize discriminating path given in
Zhang (2008), which is necessary for constructing one of the
edge orientation rules. See Figure 4 for a graphical illustra-
tion.

6Typically, faithfulness implies that path-separation (Pearl
2009) in the true DAG precisely characterizes conditional indepen-
dence in the data distribution. In our case, we require a slightly
stronger version of this assumption in which Theorem 1 of Chen,
Kumor, and Bareinboim (2017) precisely characterizes the AV-
conditional independence constraints in the data.

a
m b

c

d

Figure 4: A generalized discriminating path, u =
⟨a,m,⋯, b, c, d⟩, between a and d for c

Definition 4 (generalized discriminating path). u =
⟨a,⋯, b, c, d⟩, is a generalized discriminating path between
a and d for c if
(i) u includes at least three edges;
(ii) c is a non-end node on u, and is adjacent to d on u;
(iii) every node between a and c is a collider on u and is a
parent of d; and

(iv) denote m as the node following a on u (can be b).
∃E ∈ Ead, nadjE(a, d), adjE(a,m), and for every node
n between a and d, adjE(n, d).

Now, we construct the edge orientation rules based on AV
conditional independence constraints. These rules general-
ize the rules of the FCI algorithm for DAGs for generalized
adjacency and non-adjacency and are iteratively performed.
EK denotes the set of known or identified directed edges at
the current iteration. For simplicity, for each pair of variables
a and b, we defineEab = {EK ∩Inc(a),EK ∩Inc(b),EK ∩
(Inc(a) ∪ Inc(b))}. The edge mark ∗ is a wildcard repre-
senting any of an arrowhead, a tail, and a circle, and remains
the same after an orientation rule.

Rule 0: For every adjacent pair a and b, if ∃E ∈ Eab,
nadjE(a, b), and the edge a∗−∗b is not inE, record a∗−∗b
as extraneous without removing it.

Rule 1: For every triple a, b and c, if (i) ∃E ∈ Eac,
nadjE(a, c), adjE(a, b), adjE(b, c), and (ii) b ∉ S∗ac, then
orient a ∗→ b←∗ c.

Rule 2: For every triple a, b and c, if (i) ∃E ∈ Eac,
nadjE(a, c), adjE(a, b), adjE(b, c), (ii) b ∈ S∗ac, and (iii)
a ∗→ b ○−∗ c, then orient a ∗→ b→ c.

Rule 3: For every pair a and d, if ∃u = ⟨a,⋯, b, c, d⟩, a gen-
eralized discriminating path between a and d for c, then
(i) if c ∉ S∗ad, orient b↔ c←∗ d,
(ii) if c ∈ S∗ad, b↔ c, and c ○−∗ d, orient c→ d,
(iii) if c ∈ S∗ad, d↔ c, and c ○→ b, orient c→ b.

Rules 0-3 describe how to use AV conditional indepen-
dences found in the data to orient edges. Rule 0 is a special
case of blocking paths. An edge in a pattern P is regarded
extraneous with respect to the true DAG G if the two nodes
on that edge in P are non-adjacent inG. Consider the exam-
ple in Figure 2. Figure 2(a) is the true DAG. Figure 2(b) is
the pattern learned using the FCI algorithm, where only tra-
ditional conditional independence constraints are used. Ex-
traneous edges c ○→ f , d ○→ e, and e ←○f that do not exist
in the true DAG are learned, because there is no separating
set W for c and f such that c⊥⊥f ∣W , and same for the other
two pairs. However, we do not remove the extraneous edge,

TECHNICAL REPORT 
R-490 

December 2019



a ∗−∗ b, immediately when it is found. This is because when
performing other orientation rules, if adjE(a, b) for that E,
then a ∗−∗ b can be used the same way as if it were non-
extraneous, which might help orient other edges.

Rule 1 states that b must be a collider if a and c are in-
dependent without conditioning on b but dependent when
conditioning on b. Rule 2 states that the middle node cannot
be a collider if a and c are independent when conditioning
on b but dependent otherwise. The example of Figure 3(a)
explained before is an application of Rule 1.

Rule 3 is more complicated. The intuition behind discrim-
inating paths is to choose orientations for b←∗ c and c ∗−∗ d
that block the paths between a and d. If a and d are non-
adjacent, there exists a conditioning set, S, that blocks all
the paths between them. All the nodes between a and d on u
must be in S, because otherwise there is an unblocked path
a ∗→m⇠⇢ ⋯→ d. Therefore, umust be unblocked from a
to c, and we have to block u at c. Now, we just have to check
if c ∈ S, and b←∗ c and c∗−∗d can be oriented the same ways
as Rules 1 and 2, where part (i) in Rule 3 corresponds to
Rule 1 and parts (ii) and (iii) in Rule 3 correspond to Rule 2.
Compared to the original definition of discriminating paths,
generalized discriminating paths do not require a and d to be
non-adjacent, but only require them to be generalized non-
adjacent, and all the adjacent nodes to be generalized adja-
cent. Changing those adjacency relationships to generalized
adjacencies can be understood as virtually removing E in
order to analyze the paths between those nodes in PE−.

Causal Identification in Patterns
Generating AVs requires either a priori knowledge of coeffi-
cient values or identification of coefficients. In this section,
we show how to identify causal effects in linear patterns,
which will allow us to use AVs to help learn causal struc-
tures from obserevational data. For example, in Figure 2(c),
the edge d→ f is identifiable using the instrumental variable
(IV) method (Bowden and Turkington 1990). Although the
DAG is incomplete, we can still see there is no unblocked
path between a and f not through d (we can see this by enu-
merating all possibilities of circle marks), which makes a a
valid IV. In other words, for any full DAG represented by
this pattern, the coefficient on d→ f is equal to σaf /σad.

The most general, efficient7 identification algorithm in
fully specified linear SCMs is the qID method (Chen, Ku-
mor, and Bareinboim 2017). qID uses quasi-instrumental
sets, which are an extension of generalized instrumental sets
(Brito and Pearl 2002) for AVs. Our method can be un-
derstood as defining a stricter version of quasi-instrumental
set for patterns, named determinate quasi-instrumental set.
More formally, if Z is a determinate quasi-instrumental set
for edges E in a pattern P , then Z is a quasi-instrumental
set for E in any member of [G] represented by P . This will
enable us to identify E given P , and is guaranteed to give
the same results as if we had the true DAG Gtrue, as long as
Gtrue belongs to [G].

To achieve this goal, we first define determinate descen-
dants (De∗), determinately unblocked paths, determinate

7qID is polynomial-time if the degree of the nodes are bounded.

non-descendants (NDe∗), determinately blocked paths, and
determinately d-separated (dsep∗). y is a determinate de-
scendant (De∗) of x in pattern P , if x is a descendant of y
in every graph represented by P . Similarly, p is a determi-
nately unblocked path in P if it is an unblocked path in all
graphs represented by P . Determinate non-descendant, de-
terminately blocked path, and determinately d-separated are
similarly defined. Lastly, a set of paths have no sided inter-
section if for every pair of paths, they do not share any node
that has an arrow to the same direction on both paths (Foygel
et al. 2012). Characterizations for each of these definitions
in patterns are given in the Appendix.

Now, we describe how to find determinate quasi-
instrumental sets in a pattern.

Theorem 1. Given a linear SEM with pattern P , a set
of edges EK whose coefficient values are known, and a
set of structural coefficients α = {α1, α2,⋯, αk}, the set
Z = {z1,⋯, zk} is a determinate quasi-instrumental set for α
if there exist triples (z1,W1, π1),⋯, (zk,Wk, πk) such that:

(i) For i = 1,⋯, k, either:
(a) Wi ∈ NDe∗(y), and dsep∗(zi,Wi, y)PE∪Ey−

where
Ey = EK ∩ Inc(y), or

(b) Wi ∈ NDe∗(y) ∩ NDe∗(zi), and
dsep∗(zi,Wi, y)PE∪Ezy−

where Ezy = EK ∩(Inc(z)∪
Inc(y))

(ii) for i = 1,⋯, k, πi is a path between zi and xi that
is determinately unblocked by Wi in PE∪Ey− if zi sat-
isfies (i)(a) and in PE∪Ezy− if zi satisfies (i)(b), where
xi = Ta(αi), and

(iii) the paths {π1,⋯, πk} have no sided intersection.

Theorem 2 (Identifiability). If Z is a determinate quasi-
instrumental set for E, then E is identifiable.

In addition to enabling the usage of AVs and, therefore,
the usage of Verma constraints in causal discovery, identi-
fication in patterns is also useful on its own. It allows us to
compute causal effects from incomplete or even zero knowl-
edge about the underlying causal structure.

Algorithm for Learning Patterns and
Identification

In this section, we construct an algorithm for simultaneous
causal discovery and identification. When learning a pattern
from data and prior knowledge, we want the pattern to
contain only features in the true DAG, but also be as specific
as possible, i.e., we want to learn as many invariant arrow-
heads and tails as possible and remove as many extraneous
edges as possible. As we have discussed, structure learning
and causal identification can benefit each other. Learning
a more precise pattern helps with identifying more edges.
Identifying more edges allows us to create more AVs and
learn more AV conditional independence constraints, which
helps with learning a more precise structure. We construct
the Linear Causal Discovery and Identification (LCDI)
algorithm that implements this bootstrapping procedure
to learn a pattern P and identify causal coefficients given

TECHNICAL REPORT 
R-490 

December 2019



observational data.

Linear Causal Discovery and Identification (LCDI)
Input: covariance matrix σV on the set of observed vari-
ables V and a set of identified edges Eid (can be empty)

Output: a pattern P and updated Eid
Step 0: Run FCI algorithm (Zhang 2008) on σV with Rules
R1-R4 only, but replacing R4 with R4− given below.
The resulting pattern is P ;

Step 1: Run the original FCI algorithm on σV with Rules
R1-R4 andR8-R108 to obtain a PAG P ′, and merge the
arrowheads in P ′ to P ;

Step 2: Repeat the following Substeps on P until neither P
nor Eid is updating;

Substep 0: Perform causal identification on P without
extraneous edges and update Eid;

Substep 1: Generate AVs using Eid;
Substep 2: Run Rules 0-3;
Substep 3: Run FCI algorithm R1 and R4+ (given be-

low) repeatedly until P is not updating;

Step 3: Remove all the extraneous edges marked in Rule 0
in Step 1 Substep 2 from P .

R4− and R4+ below are modified from FCI. Sad denotes
the set of conditioning variables which makes a and d inde-
pendent.

R4−: u = ⟨a,⋯, b, c, d⟩ is a discriminating path9 between a
and d for c; then

(i) if c ∉ Sad, and c ○−∗ d, orient b↔ c↔ d;
(ii) if c ∈ Sad, and c ∗−○ d, orient c ∗→ d.

R4+: u = ⟨a,⋯, b, c, d⟩ is a discriminating path between a
and d for c; then

(i) if c ∉ Sad, orient b↔ c←∗ d if not done so;
(ii) if c ∈ Sad, b↔ c, and c ○−∗ d, orient c→ d;
(iii) if c ∈ Sad, d↔ c, and c ○→ b, orient c→ b;
(iv) if c ∈ Sad, and c ∗−○ d, orient c ∗→ d.

We useR4− andR4+ instead ofR4 because FCI tries to re-
cover the MAG representation for the true DAG, while our
method aims to recover the true DAG directly. They make
sure the resulting pattern is consistent with the true DAG in-
stead of the MAG. We skip the tail orientation rulesR8-R10
in the original FCI for the same reason. See the next section
for a more detailed discussion of MAGs and DAGs. The cor-
rectness of LCDI is summarized in the following theorem.

Theorem 3. P is the pattern output by LCDI, then the true
DAG G that was used to generate the covariance matrix σV
must be a member of [G] represented by P .

8We skipR5-R7 because they are useful in dealing with selec-
tion bias, while we assume no selection bias.

9A discriminating path is defined as a generalized discriminat-
ing path replacing all generalized adjacency relationships with nor-
mal adjacency relationships in Definition 4.

Theorem 3 shows that any arrowhead or tail learned by
LCDI must be present in the true DAG. Algorithms such as
FCI that aim to recover a MAG only guarantees tail correct-
ness regarding the MAG converted from the true DAG, but
might learn tails that do not exist in the true DAG. However,
correct tail orientations are an important factor for causal
inference since they help distinguish between direct causa-
tion and confounded correlation, while LCDI guarantees tail
soundness regarding the true DAG.

We will use the example of Figure 2 to illustrate LCDI.
Figure 2(a) shows the underlying true DAG we want to re-
cover. LCDI begins with Step 0, an iteration of modified
FCI, which utilizes conditional independence constraints to
learn the pattern in Figure 2(c). Extraneous edges c ○→ f ,
d ○→ e, and e←○f are learned, because there is no separating
set that can make each pair of variables conditionally inde-
pendent. In Step 1, we merge the arrowheads from the PAG
learned using FCI, shown in 2(a), to the pattern from Step 0.
In this specific example, no arrowhead is newly added. How-
ever, there are cases where FCI learns additional arrowheads
that cannot be learned using modified FCI.

Next, in Step 2 Substep 0, the only identifiable edge in
Figure 2(c) is d → f , using {a} as a determinate quasi-
instrumental set. This allows the AV, f∗ = f−a⋅α, where α is
the coefficient on d→ f , to be generated in Substep 1. Next,
in Substep 2, LCDI searches for conditional independences
between the newly generated AVs and other variables. In
Rule 0, nadj{d→f}(c, f) since σcf∗⋅∅ = 0, and c ○→ f is
recorded as extraneous. Similarly, e ←○f is recorded as ex-
traneous. In Rule 1, nadj{d→f}(c, f) and b ∉ S∗cf give ori-
entations c↔ b↔ f , and nadj{e→f}(c, f) and b ∉ S∗cf give
orientation e ↔ b. In Rule 3, we can find a generalized dis-
criminating path, u = ⟨c, d, b, f⟩ between c and f for b, and
condition (iii) gives b→ d.

In the next iteration of Step 2, we find b→ d is now identi-
fiable using {b} as a determinate quasi-instrumental set, and
as before, d ○→ e is marked extraneous. In Step 2, we orient
d↔ a↔ e, c→ e, and e↔ f .

In the third iteration of Step 2, we find c→ e is identifiable
using {c} as a determinate quasi-instrumental set. No more
edge orientations can be deduced. Lastly, in Step 3, all the
three extraneous edges are removed, and we obtain the final
pattern, Figure 2(d).

Compared to the pattern learned by FCI in Figure 2(b), the
pattern learned by LCDI was much more informative. First,
LCDI removed all the extraneous edges, while FCI had three
of them. Second, LCDI learned more edge orientations (in
this specific example, LCDI was even able to recover all the
edge orientations!) while FCI had quite a few circle marks.
Third, LCDI guaranteed tail soundness regarding the true
DAG, while FCI oriented b → f , which was in the MAG
representation of the true DAG, but was inconsistent with
the true DAG itself.

The runtime of LCDI is composed of two parts, identifi-
cation and structure update. Denote the runtime of qID in
(Chen, Kumor, and Bareinboim 2017) as q, the runtime of
FCI in (Zhang 2008) as f , the number of iterations run as r,
then the runtime of LCDI is O(r(q + f)). r is bounded by

TECHNICAL REPORT 
R-490 

December 2019



d
n 6 7 8 9 10 11

(1.5,2] 1.0 4.0 2.0 1.0 1.5 2.0
(2.75,3.25] 5.5 8.0 15.5 18.5 23.5 25.5

(4,4.5] 0 8.0 15.0 32.5 36.5 45.0

Table 1: percentage of graphs where LCDI learns more ar-
rowheads than FCI

d
n 6 7 8 9 10 11

(1.5,2] 17.4 19.2 13.0 12.5 13.8 11.6
(2.75,3.25] 11.1 8.7 12.7 9.6 10.4 7.4

(4,4.5] 0 8.7 7.4 8.0 7.0 6.8

Table 2: percentage more of arrowheads LCDI learns than
FCI in graphs where LCDI learns more arrowheads

the number of edges in the initial pattern, but is likely to be
much smaller.

Simulation Results
To illustrate the advantages of LCDI, we compare it with
FCI, which is considered to be the current state of the art
constraint-based causal discovery algorithm without addi-
tional assumptions on the data distribution. FCI was first
proposed by Spirtes et al. (2000), and the improved version
by Zhang (2008) achieved arrowhead and tail completeness,
i.e., it can learn every invariant arrowhead and tail for the
equivalence class of MAGs. However, FCI might recover
more tails than there are in the true DAG, because the MAG
itself might have more tails. The PAG in Figure 2(b) has a di-
rected edge, b→ f , which is in fact a bidirected edge, b↔ f ,
in the true DAG (2(a)). However, FCI does not recover more
arrowheads than there are in the true DAG. The following
theorem shows the power of orienting arrowheads in LCDI.

Theorem 4. Under the linear setting and given the covari-
ance matrix of the data, if an invariant arrowhead can be
recovered by FCI, then it can be recovered by LCDI.

Theorem 4 results directly from how LCDI is constructed,
and it implies that LCDI always recovers equal or more cor-
rect arrowheads compared to FCI.

To quantify this improvement, we implemented LCDI and
the version of FCI by Zhang (2008). We randomly generate
DAGs with number of nodes (n) from 6 to 11 with vari-
ous average node degrees (d), and an edge being directed
and bidirected both have probability 0.5. We then compare
the patterns that would be learned on the generated DAG by
each method assuming faithfulness. More specifically, we
compare the number of invariant arrowheads and extraneous
edges learned. Each data entry in Tables 1 and 2 was aver-
aged over 200 random DAGs.

Table 1 shows for DAGs of different node numbers,
the percentages of DAGs where LCDI learns at least one
more arrowhead than FCI, for different d ranges ((1.5,2],
(2.75,3.25], (4,4.5]). As we can see, the benefit of LCDI
generally increases with the number of nodes in the DAG. In

Figure 5: numbers of extraneous edges learned by FCI vs.
numbers of extraneous edges learned by LCDI

over 45% of the DAGs with n = 11 and large d, LCDI learns
more arrowheads, which is a significant improvement.

Table 2 shows for the DAGs where LCDI learns more
arrowheads, how much more can LCDI learn compared to
FCI. For any n, it can recover 10% to 20% of total arrow-
heads more than FCI when d is small.

Figure 5 shows the numbers of extraneous edges learned
by FCI and LCDI. The different colors indicate DAGs of
different node numbers. On average, LCDI learns less than
1 extraneous edge for any n and d, while the number of ex-
traneous edges FCI learns increases as n and d increases.

We can see LCDI provides decent improvements in a
large percentage of random DAGs–it learns more arrow-
heads and less extraneous edges. Furthermore, these im-
provements do not sacrifice correctness. All the arrowheads
and tails LCDI learns and all the extraneous edges it removes
are guaranteed to be in the true DAG.

Related Work
Shpitser, Richardson, and Robins (2009) introduced a
method to test extraneous edges using Verma constraints un-
der the non-parametric setting. Their work is limited to full
DAGs and is not generalized to partial DAGs.

Jaber, Zhang, and Bareinboim (2018) introduced an iden-
tification method for PAGs. Their method works in the non-
parametric setting. In comparison, our method can identify
some causal effects that cannot be identified without assum-
ing linearity. In addition, our method is applied to patterns,
which are consistent with the true DAG.

Shpitser et al. (2012) introduced a score-based causal
discovery method. Their method incorporates Verma con-
straints in a different way: their Q-FIT algorithm fits pa-

TECHNICAL REPORT 
R-490 

December 2019



rameters such that if two graphs are equivalent in terms of
Verma constraints, they have the same score. Their method
searches for graphs with highest likelihood score based on
data. However, the resulting graph is a full DAG. Therefore,
even though that DAG is Verma-constraint-equivalent to the
true DAG, we still might not be able to infer what struc-
tures the true DAG has, since it is in general impossible to
list all equivalent DAGs and summarize their characteristics.
In comparison, our method is constraint-based, and learns an
equivalent class that is guaranteed to represent the true DAG.

Shimizu et al. (2006) introduced a linear causal discovery
method. It assumes non-faithfulness, no latent confounders,
and non-Gaussian errors. In contrast, we assume faithfulness
and relax the other two assumptions.

Conclusion
In this paper, we developed a symbiotic approach to causal
discovery and identification in linear models. We first for-
mally defined the type of partially specified DAGs, pat-
terns, that are useful for both causal discovery and identi-
fication. We then devised a method of incorporating Verma
constraints using auxiliary variables, and method of identi-
fication on patterns. Finally, we developed an algorithm that
performs causal discovery and identification simultaneously,
for mutual benefit. We showed that the combined algorithm
performs better than doing each task separately. In addition,
our algorithm can learn more complete structures than pre-
viously reported algorithms.

Acknowledgements
Zhang and Pearl are supported in parts by grants
from International Business Machines Corporation (IBM)
[#A1771928], National Science Foundation [#IIS-1527490
and #IIS1704932], and Office of Naval Research [#N00014-
17-S-B001]. The authors would like to thank Yujia Shen,
Elias Bareinboim, and Carlos Cinelli for helpful discussions.

References
Bowden, R. J., and Turkington, D. A. 1990. Instrumental
variables, volume 8. Cambridge University Press.
Brito, C., and Pearl, J. 2002. Generalized instrumental
variables. In Proceedings of the Eighteenth conference on
Uncertainty in artificial intelligence, 85–93. Morgan Kauf-
mann Publishers Inc.
Chen, B.; Kumor, D.; and Bareinboim, E. 2017. Identifica-
tion and model testing in linear structural equation models
using auxiliary variables. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70, 757–
766. JMLR. org.
Chen, B.; Pearl, J.; and Bareinboim, E. 2015. Incorporating
knowledge into structural equation models using auxiliary
variables. arXiv preprint arXiv:1511.02995.
Chen, B. 2016. Identification and overidentification of lin-
ear structural equation models. In Lee, D. D.; Sugiyama, M.;
Luxburg, U. V.; Guyon, I.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 29. Curran Asso-
ciates, Inc. 1579–1587.

Chickering, D. M. 2002. Optimal structure identification
with greedy search. Journal of machine learning research
3(Nov):507–554.
Foygel, R.; Draisma, J.; Drton, M.; et al. 2012. Half-trek cri-
terion for generic identifiability of linear structural equation
models. The Annals of Statistics 40(3):1682–1713.
Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning bayesian networks: The combination of knowledge
and statistical data. Machine learning 20(3):197–243.
Jaber, A.; Zhang, J.; and Bareinboim, E. 2018. Causal
identification under markov equivalence. arXiv preprint
arXiv:1812.06209.
Pearl, J. 2009. Causality. Cambridge university press.
Ramsey, J.; Glymour, M.; Sanchez-Romero, R.; and Gly-
mour, C. 2017. A million variables and more: the fast greedy
equivalence search algorithm for learning high-dimensional
graphical causal models, with an application to functional
magnetic resonance images. International Journal of Data
Science and Analytics 3(2):121–129.
Richardson, T., and Spirtes, P. 2002. Ancestral graph
markov models. Ann. Statist. 30(4):962–1030.
Richardson, T. 1996. A discovery algorithm for directed
cyclic graphs. In Proceedings of the Twelfth international
conference on Uncertainty in artificial intelligence, 454–
461. Morgan Kaufmann Publishers Inc.
Shimizu, S.; Hoyer, P. O.; Hyvärinen, A.; and Kermi-
nen, A. 2006. A linear non-gaussian acyclic model for
causal discovery. Journal of Machine Learning Research
7(Oct):2003–2030.
Shpitser, I., and Pearl, J. 2008. Dormant
independence. Technical Report R-340L,
<http://ftp.cs.ucla.edu/pub/stat ser/r340-L.pdf>, De-
partment of Computer Science, University of California,
Los Angeles, CA. Extended version of paper that appeared
in AAAI-08.
Shpitser, I.; Richardson, T. S.; Robins, J. M.; and Evans, R.
2012. Parameter and structure learning in nested markov
models. arXiv preprint arXiv:1207.5058.
Shpitser, I.; Richardson, T. S.; and Robins, J. M. 2009. Test-
ing edges by truncations. In Twenty-First International Joint
Conference on Artificial Intelligence.
Spirtes, P.; Glymour, C. N.; Scheines, R.; Heckerman, D.;
Meek, C.; Cooper, G.; and Richardson, T. 2000. Causation,
prediction, and search. MIT press.
Tian, J., and Pearl, J. 2002. On the testable implications
of causal models with hidden variables. In Proceedings of
the Eighteenth conference on Uncertainty in artificial intel-
ligence, 519–527. Morgan Kaufmann Publishers Inc.
Van der Zander, B., and Liskiewicz, M. 2016. On searching
for generalized instrumental variables. In AISTATS, 1214–
1222.
Verma, T., and Pearl, J. 1991. Equivalence and synthesis of
causal models. UCLA, Computer Science Department.
Zhang, J. 2008. On the completeness of orientation rules
for causal discovery in the presence of latent confounders

TECHNICAL REPORT 
R-490 

December 2019



and selection bias. Artificial Intelligence 172(16-17):1873–
1896.

TECHNICAL REPORT 
R-490 

December 2019



Appendix
Supplemental Definitions
For the following sections, we use Anc(y) to denote
the ancestors of y, and De(y) to denote the descendants
of y. Nbr(v) denotes the set of nodes adjacent to v.
dsep(X,SXY , Y ) denotes the sets of variablesX and Y are
d-separated by the set of variables SXY .

Definition 5. In a pattern P , for three nodes a, b, and c
where b ∈ Nbr(a) ∩ Nbr(c), we have the following defi-
nitions.

(i) b is a colliding node of a and c if a ∗→ b ←∗ c, denoted
b ∈ Col(a, c).

(ii) b is a blocking node of a and c if there is at least one
of a← b and b→ c holds, denoted b ∈ Blo(a, c).

Definition 6. In a pattern P , if we can reach a node b from a
node a through connected edges regardless of the directions,
while not passing through any node twice, then that path is
defined as a simple path.

Definition 7. Right′(π) are the set of nodes, if any, that has
a directed edge leaving it in the direction of y in addition to
y. Left′(π) are the set of nodes, if any, that has a directed
edge leaving it in the direction of x in addition to x.

Definition 8. In a pattern P , a set of determinate unblocked
paths, π1,⋯, πn, has no sided intersection if for all πi, πj ∈
{π1,⋯, πn} such that πi ≠ πj , Left′(πi) ∩ Left′(πj) =
Right′(πi) ∩Right′(πj) = ∅.

Lemma 2. A simple path πs = {x, v1,⋯, vk, y} between two
nodes x and y is determinately blocked by a set of nodes Sxy
if there exists vi where i ∈ {1,⋯, k}
(i) vi ∈ Col(vi−1, vi+1) and vi ∉ Sxy and ∀v ∉
NDe∗(b), v ∉ Sxy , or

(ii) vi ∈ Bol(vi−1, vi+1) and vi ∈ Sxy .

Definition 9. (Chen, Kumor, and Bareinboim 2017) Given
a linear SEM with graph G, a set of edges EK
whose coefficient values are known, and a set of struc-
tural coefficients α = {α1, α2,⋯, αk}, the set Z =
{z1,⋯, zk} is a quasi-instrumental set if there exist triples
(z1,W1, π1),⋯, (zk,Wk, πk) such that:

(i) For i = 1,⋯, k, either:
(a) Wi ∉ De(y), and (zi⊥⊥y∣Wi)GE∪Ey−

where Ey =
EK ∩ Inc(y), or

(b) Wi ∉De(y)∪De(zi), and (zi⊥⊥y∣Wi)GE∪Ezy−
where

Ezy = EK ∩ (Inc(z) ∪ Inc(y))
(ii) for i = 1,⋯, k, πi is a path between zi and xi that is
not blocked by Wi in GE∪Ey− if zi satisfies (i)(a) and in
GE∪Ezy− if zi satisfies (i)(b), where xi = Ta(αi), and

(iii) the set of paths {π1,⋯, πk} has no sided intersection.

Proof of Identifiability
Lemma 3. In a pattern P , for two nodes a and b, a ∈
De∗(b) if there exists a directed path composed solely of
directed edges from b to a.

Proof. Since each directed edge must be invariant in [G]
represented by P , that path in P must be a directed path in
any member in [G], which matches the definition of descen-
dants in a full DAG.

Lemma 4. A simple path πs = {x, v1,⋯, vk, y} between two
nodes x and y is determinately unblocked by a set of nodes
Sxy if for each vi where i ∈ {1,⋯, k}
(i) vi ∈ Col(vi−1, vi+1), and vi ∈ Sxy or ∃v ∈De∗(vi), v ∈
Sxy , or

(ii) vi ∈ Bol(vi−1, vi+1) and vi ∉ Sxy .

Proof. We look at the two cases. We prove that if a node
on the path satisfying either condition, it does not block the
path. So if every node on the path satisfies a condition, then
the entire path is not blocked.

(i) vi−1 ∗→ vi ←∗ vi+1. The two arrowheads are invariant
in [G], hence vi is a collider in any member of [G]. So if
vi or any of vi’s determinate descendants is conditioned
on, the path is unblocked at vi.

(ii) The existence of at least one directed edge away from
vi guarantees that there cannot be arrows pointing to vi
from both vi−1 and vi+1 in any G, which means not con-
ditioning on vi makes the path unblocked at vi in any G.

Lemma 5. In a pattern P , for two nodes a and b, a ∈
NDe∗(b) if
(i) there exists a directed path composed solely of directed
edges from a to b, or

(ii) for each simple path πs from a to b, there exists an edge
on πs with an arrow in the direction to b.

Proof. We look at the two cases and prove either case gives
a ∉De(b) in G.

(i) The directed path in P can only be a directed path in
[G], which means a ∈ Anc(b) in any G of [G].

(ii) If a ∈ De(b) in some G in [G], then there must exist
a directed path from b to a in G, which cannot have an
arrow in the direction to b, leading to contradiction.

Lemma 6. Given a pattern P , dsep∗(X,SXY , Y ) if every
simple path πsi between a node xi ∈X and a node yi ∈ Y is
determinately blocked by SXY .

Proof. We first prove that if a path πs is determinately
blocked by Sxy in P , then it is blocked in every G in [G]
represented by P . We look at the two cases in Definition 2.

(i) vi−1 ∗→ vi ←∗ vi+1. The two arrowheads are invari-
ant in [G], hence vi is a collider in any member of [G].
So if none of vi and any of vi’s possible descendants is
conditioned on, the path is blocked.

(ii) The existence of at least one directed edge away from
vi guarantees that there cannot be arrows pointing to vi
from both vi−1 and vi+1 in any G, which means which
means conditioning on vi must block the path in any G.

TECHNICAL REPORT 
R-490 

December 2019



By Definition 2, for any path in G, we will be able to find a
corresponding simple path in P . So if every simple path in
P between X and Y is blocked by SXY , then every path in
any G between X and Y must be blocked by SXY , which
means dsep(X,SXY , Y ).

Lemma 7. If in a pattern P , a set of determinately un-
blocked paths π1,⋯, πn has no sided intersection, then it
has no sided intersection in any fully specified DAG G rep-
resented by P .

Proof. For any πi ∈ {π1,⋯, πn}, we only have to prove
Left(πi) = Left′(πi) and Right(πi) = Right′(πi). This
holds because the definitions are the same as in fully speci-
fied DAGs.

Next, we prove our main identifiability theorems.

Theorem 1. Given a linear SEM with pattern P , a set
of edges EK whose coefficient values are known, and a
set of structural coefficients α = {α1, α2,⋯, αk}, the set
Z = {z1,⋯, zk} is a determinate quasi-instrumental set for α
if there exist triples (z1,W1, π1),⋯, (zk,Wk, πk) such that:

(i) For i = 1,⋯, k, either:
(a) Wi ∈ NDe∗(y), and dsep∗(zi,Wi, y)PE∪Ey−

where
Ey = EK ∩ Inc(y), or

(b) Wi ∈ NDe∗(y) ∩ NDe∗(zi), and
dsep∗(zi,Wi, y)PE∪Ezy−

where Ezy = EK ∩(Inc(z)∪
Inc(y))

(ii) for i = 1,⋯, k, πi is a path between zi and xi that
is determinately unblocked by Wi in PE∪Ey− if zi sat-
isfies (i)(a) and in PE∪Ezy− if zi satisfies (i)(b), where
xi = Ta(αi), and

(iii) the paths {π1,⋯, πk} have no sided intersection.

Proof. We need to prove that if Z is a determinate quasi-
instrumental set in pattern P , then Z is a quasi-instrumental
set in any full DAG G in [G] represented by P . We look at
the three requirements respectively.

(i) (a) By Lemma 5, in any graphG, nodes inWi are non-
descendants of y. By Lemma 6, in any graph GE∪Ey−

represented by PE∪Ey−, Wi d-separates zi and y.
(b) By Lemma 5, in any graph G, nodes in Wi are non-

descendants of y or zi. By Lemma 6, in any graph
GE∪Ezy− represented by PE∪Ezy−, Wi d-separates zi
and y.

(ii) By Lemma 4, πi is an unblocked path in the corre-
sponding modified graph.

(iii) By Lemma 7, the set of paths has no sided intersection
in any G.

Those prove that Z satisfy the requirements of quasi-
instrumental set for E.

Theorem 2 (Identifiability). If Z is a determinate quasi-
instrumental set for E, then E is identifiable.

Proof. By the definition of determinate quasi-instrumental
set, Z is a quasi-instrumental set for E in any full DAG
G in [G] represented by P . We know that if Z is a quasi-
instrumental set for E in G, then E is identifiable. The solu-
tion is unique for any G, because the sets of linear equations
generated byZ to solve for the coefficients ofE for different
G are exactly the same.

Identification Algorithms

Algorithm 1 Find a separating set SY Z such that
dsep∗(Y,SY Z , Z) in pattern P

1: function FINDSEP(P,Y,Z)
2: SY Z = ∅
3: while ∃πs = Y,V1,⋯, Vk, Z, a simple path between
Y and Z s.t. k ≥ 1, πs not determinately blocked by
SY Z do

4: blocked = false
5: for i = 1,⋯, k do
6: if {Vi} determinately blocks πs ∧ Vi ∈
NDe∗(Y ) then

7: SY Z ← SY Z ∪ {Vi}
8: blocked = true
9: Break

10: if blocked = false then
11: return �
12: return SY Z

Algorithm 2 Modified version of TestQIS from Chen, Ku-
mor, and Bareinboim (2017) for a pattern P

1: function TESTQISP(P,X,Y,Z,E,Eid,AUX)
2: for i in 1, ⋯, ∣Z ∣ do
3: if Auxi==1 then
4: Wi ← FindSep(PE∪EZi

∪Ey−, Y,Zi), where
EZi = Eid ∩ Inc(zi)

5: if Wi = � ∨ (Wi ∩ (V ∖NDe∗(y))) ≠ ∅ ∨
(Wi ∩ (V ∖NDe∗(zi))) ≠ ∅ then

6: return �
7: else
8: Wi ← FindSep(PE∪Ey−, Y,Zi)
9: ifWi = �∨(Wi∩(V ∖NDe∗(y))) ≠ ∅ then

10: return �
11: continue algorithm TestGeneralIVs from Van der

Zander and Liskiewicz (2016) using the modified graph
for each Zi starting from second for loop.

12: Instead of returning False, return �,
13: and instead of returning True, return W .

TECHNICAL REPORT 
R-490 

December 2019



Algorithm 3 Finds a determinate quasi-instrumental set for
a set of edges E in a pattern P , given a set Eid of identified
edges

1: function FINDQISP(E,P,Eid)
2: for all Z ⊂ V ∖ {y} of size ∣E∣ do
3: for all Aux ∈ {0,1}∣E∣ do
4: W ← TestQISP(P,Ta(E),He(E), Z,Eid,Aux)
5: if W ≠ � then
6: return (Z,W )
7: return �

Algorithm 4 Identify as many edges as possible in pattern
P given σV and identified edges Eid (Modified from Chen,
Kumor, and Bareinboim (2017) qID Algorithm)

1: function QIDP(P,σV ,Eid)
2: Initialize EdgeSets ← all connected marked edge

sets in P
3: repeat
4: for all ES in EdgeSets such that ES ⊈ Eid do
5: y ←He(ES)
6: for all E ⊆ ES such that E ⊈ Eid do
7: (Z,W )← FindQISP (E,P,Eid)
8: if (Z,W ) ≠ � then
9: Identify E using Z∗ as an auxiliary

instrumental set in GEid∩Inc(Z)+

10: Eid ← Eid ∪E
11: until All coefficients have been identified or no co-

efficients have been identified in the last iteration
12: return �

Component Algorithms for LCDI

We use TaArr(v) to denote the set of nodes connected to
node v by any edge that has an arrow pointing to v.

Algorithm 5 Find a set of variables S such that a⊥⊥h∗∣S,
given σV

1: function FINDINDEP(a, h∗, σV )
2: if a is an AV then
3: ao ← the variable in V used to generate a
4: else
5: ao ← a
6: for i = ∣V ∣ − 2, ∣V ∣ − 1,⋯,0 do
7: for all ∣S∣ = i and S ⊂ V ∖ {ao, h} do
8: if σaoh∗⋅S = 0 then
9: return S

10: return �

Algorithm 6 Generate Auxiliary Variable h∗ for variable h
given a pattern P and Eid, return h∗ and the variables used
to generate h∗

1: function GENAV(h,P,Eid)
2: Initialize T ← ∅
3: for all ei ∈ Inc(h) ∩Eid do
4: αi ← the coefficient on ei
5: T ← T ∪ (αi, Ta(ei))
6: Generate AV h∗ = h −∑(αj ,tj)∈T αjtj
7: Tvar ← ∪(αj ,tj)∈T {tj}
8: return h∗, Tvar

Algorithm 7 Learn a pattern given σV and a set of identified
edges, Eid (can be empty)

1: function LCDI(σV ,Eid)
2: P ← FCI stepsR1-R3,R4−, with input σV
3: P ′ ← FCI with input σV
4: P ← P+arrowheads from P ′

5: Initialize Eex ← ∅
6: repeat
7: qIDP (PEex−, σV ,Eid)
8: for all pairs a, b such that a ∈ Nbr(b) do
9: if ∃E ∈ Eab, nadjE(a, b) then

10: if a ∗−∗ b ∉ E then
11: Eex ← Eex ∩ {a ∗−∗ b}

P ← Rules 1-3 on a and b P ← FCI steps
R1 andR4+

12: until P and Eid are both the same as the previous
iteration

13: P ← PEex−

14: return P,Eid

Proof of Correctness of LCDI
Corollary 1. Given a linear pattern P representing [G],
where E ⊂ Inc(z) is a set of edges whose coefficient values
are known, if (W ∪ {y}) ∩ (V ∖NDe∗(z)) = ∅, and GE−
represents the graph G with the edges for E removed, then
σz∗y⋅W = 0 only if (z⊥⊥y∣W )GE−

for all G in [G].

Proof. By the definition of NDe∗, NDe∗(z)P = (V ∖
De(z))G. Hence, we have (V ∖ NDe∗(z))G = De(z)P .
Together with σz∗y⋅W = 0, by Theorem 1 in Chen, Kumor,
and Bareinboim (2017), we have (z⊥⊥y∣W )GE−

.

Lemma 1. Given an AV, z∗ = z − Σieiti, the conditional
independence constraint, σaz∗⋅S = 0, is equivalent to the
Verma constraint, σaz⋅S − Σieiσati⋅S = 0, where S is a set
of variables. Furthermore, this Verma constraint cannot, in
general, be represented as a conditional independence con-
straint over the original model variables, V .

Proof. Expanding z∗ to z − Σieiti in σaz∗⋅S gives σaz⋅S −
Σieiσati⋅S due to the linearity property of the covariance
function. So the two constraints are equivalent. Since each ei
is identified, σaz⋅S −Σieiσati⋅S = 0 is over only covariances,
and is thus a valid Verma constraint. As a result, it cannot be

TECHNICAL REPORT 
R-490 

December 2019



equivalent to a conditional independence constraint over the
original model variables, V .

Lemma 8. If an edge a∗−∗ b in P is removed by LCDI, then
a∗−∗ b must be extraneous, i.e., in any G in [G] represented
by P , a and b are non-adjacent.

Proof. a∗−∗b in P is marked extraneous if ∃E, nadjE(a, b),
which implies a∗ and b∗ can be made conditionally indepen-
dent. If in G, a and b are adjacent, a∗ ← a ∗−∗ b → b∗ is an
unblocked path between a∗ and b∗, which makes a∗ and b∗
always dependent, contradiction.

Lemma 9. If LCDI learns an edge a∗−∗ b in P that is extra-
neous with respect to the true dagG, then a∗−∗b can be used
in any single orientation step in LCDI as if it were not extra-
neous. In other words, treating a ∗−∗ b as a non-extraneous
edge gives the same result as it were truly non-extraneous.

Proof. A detailed proof is relatively complicated. We will
only give a brief sketch of the idea. However, the reader can
list all the steps involved and check all the cases one by one.

Extraneous edges are learned due to inducing paths be-
tween two nodes. We only need to prove having an induc-
ing path between two nodes is the same as having a non-
extraneous edge between two nodes, where the imaginary
non-extraneous edge has the same orientation as the extra-
neous edge learned.

We only need to discuss the rules not included in FCI,
namely, R4+ and Step 2. In all those rules, what matters
is whether conditioning on a node blocks the path between
two non-adjacent or generalized non-adjacent nodes. There
are two cases where being an extraneous edge might affect
the result (due to symmetry, we only discuss a): 1) we are
orienting an edge connected to a, and a ←∗ b 2) we are not
orienting an edge connected to a, but a ∗−∗ b appears in the
antecedent of the rule.

For case 1), the arrowhead at a must have been learned
by one of previous steps to block the path to b. First, we
prove it is not possible that there are only directed inducing
paths from a to b, i.e., all inducing paths from a to b starts
with a directed edge from a. If so, we will for example see
in the pattern that conditioning on a unblocks the path to b,
while in the inducing path a is not a collider. Thus, if there is
an arrowhead at a, there must be at least one inducing path
between a and b that starts with an arrowhead at a.

In LCDI, we always generate AVs that remove all known
incoming edges. This implies that as the algorithm proceeds,
the set of inducing paths we can “cut” is always superset
of previous iterations. We describe it as “cut” because in-
dependence among AVs is the same as independence among
original model variables with the generating edges removed.
Therefore, if there are both directed inducing paths and bidi-
rected inducing paths, the extraneous edge can only possibly
“inherit” the orientation of the type of the inducing paths
that remain uncut first. Once a type of inducing paths can be
cut, there is no way to use the orientation of the cut induc-
ing paths anymore, because they will always be cut later on.
It can be understood as the “cut level” keeps increasing. If

in the end both types of inducing paths are cut, the extrane-
ous edge should be regarded as non-existing because the two
nodes are generalized non-adjacent. Note there cannot be di-
rected inducing paths and reversed directed inducing paths
at the same time due to acyclicity.

Case 2) is mainly used for Rule 3 and R4+. If a → b,
then there cannot be inducing paths with an arrowhead to
a, because those inducing paths should have already been
cut in order to learn a → b. Same reasoning applies to a ←
∗ b.

Lemma 10. If an arrowhead exists in a MAG M , then it
must exist in any DAG D whose MAG representation is M
(the arrowheads on the extraneous edges in M are not in-
cluded).

Proof. See Zhang (2008) for the rules to convert a DAG to
its MAG representation. We just have to prove every time
the rules orient an arrowhead in M , the arrowhead must be
in D.

(i) When a → b is oriented in M , if there is no arrow at a
in D and a → b is not extraneous, then it must be a ← b
in D. However, if a ← b in D, a cannot be b’s ancestor,
which contradicts the MAG orientation rules.

(ii) When a↔ b is oriented in M , if there is no arrow at a
or b inD and a↔ b is not extraneous, then either a→ b or
a← b inD. However, if a→ b inD, we would have a→ b
in M , contradiction. Same reasoning applies to a← b.

Lemma 11. Denote the pattern Steps 0 and 1 of LCDI learn
as P , then the true DAG G must be in the class [G] that P
represents.

Proof. We first look at Step 0.
By Lemma 10, the arrowheads in the pattern P resulting

from FCIR1-R4 should all be in G because it is a PAG. We
only need to prove replacing R4 with R4−, the resulting
P does not have any arrowhead or tail that does not exist
in G. The only change R4− made is, instead of orienting
c → d, it does not change the mark at c to a tail. If c ○→ d
is kept as a circle at c instead of being oriented as a tail,
if we check each of R1-R4−, we can see it does not give
additional orientations. In other words, if an edge is oriented
due to the circle at c as the antecedent of a rule, then that
edge would have also been oriented the same way if it were
a tail at c.

We then prove the tails oriented by Step 0 must exist in
G. Since we modified R4, the only step that learns a tail is
R1.R1 orients a ∗→ b○−∗c to a ∗→ b→ c if a and c are non-
adjacent. It must be b → c in G because otherwise b would
be a collider, and b cannot be in the separating set of a and c.
If that is the case, then R0 would have oriented a ∗→ b ← c
beforeR1 is triggered.

Next, we look at Step 1. By Lemma 10, the arrowheads in
the pattern P resulting from FCI should all be in G because
it is a PAG. Hence we can merge all those arrowheads to P
learned from Step 0. After merging, all the arrowheads exist
in G, and we just proved all the tails exist in G.

TECHNICAL REPORT 
R-490 

December 2019



Lemma 12. Rules 0-3 in Step 2 Substep 2 of LCDI are
sound, i.e., the true DAG G must be in the class [G] that
the resulting pattern P represents.

Proof. Rule 0 does not change P directly, and the correct-
ness will be proved later.

In Rule 1, if b is not a collider, then a∗ ← a∗−∗b∗−∗c→ c∗

must be an unblocked path not conditioning on b. However,
that gives ∄S, σa∗c∗⋅S = 0, so adjE(a, c), contradiction.
Note we assume both a∗ and c∗ are generated, but the same
reasoning applies to the case where only one AV is gener-
ated. Rule 2 can be proved analogously.

In Rule 3, for a∗ and d∗ to be conditionally independent,
all the nodes between a and c need to be conditioned on.
If there is a node n, the first node from a to c that is not
conditioned on, there will be an unblocked path a∗ ← a ↔
⋯ ↔ n → d → d∗, which makes a and d generalized adja-
cent, contradiction. Therefore, there must be a path from a∗

to d∗ through b and c. The same reasoning that we used to
prove Rules 1 and 2 applies: if c needs to be conditioned on,
i.e., c ∈ S∗(a, d), then it must be a non-collider; otherwise c
must be a collider.

Lemma 13. Step 2 Substep 3 of LCDI are sound, i.e., the
true DAG G must be in the class [G] that the resulting pat-
tern P represents.

Proof. The correctness of R1 has been discussed. In R1, if
the middle node has not been oriented as a collider by previ-
ous steps, then it must be a non-collider, because it must be
conditioned on to block the path between the two side nodes.
R4+ is a weaker version of the original R4 or R4−. We

take out some of the orientations because those orientations
are guaranteed for a MAG, but not guaranteed for a DAG.
However, the correctness of R4+ can be proved the same
way as in Lemma 12.

Lemma 14. Step 3 of LCDI are sound, i.e., the true DAG G
must be in the class [G] that the resulting pattern P repre-
sents.

Proof. We just have to prove every extraneous edge we
marked using Rule 0 must be extraneous inG. Suppose a∗−∗b
is marked. If there is an edge a ∗−∗ b in G, then there is an
unblocked path a∗ ← a∗−∗b→ b∗ inG, which makes a∗ and
b∗ not conditionally independent, contradiction.

Theorem 3. P is the pattern output by LCDI, then the true
DAG G that was used to generate the covariance matrix σV
must be a member of [G] represented by P .

Proof. The correctness of LCDI results from Lemmas 8-14.

TECHNICAL REPORT 
R-490 

December 2019




