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ABSTRACT
This article reviews recent advances in missing data research using graphical models to represent mul-
tivariate dependencies. We first examine the limitations of traditional frameworks from three different
perspectives: transparency, estimability, and testability. We then show how procedures based on graphical
models can overcome these limitations and provide meaningful performance guarantees even when data
are missing not at random (MNAR). In particular, we identify conditions that guarantee consistent estimation
in broad categories of missing data problems, and derive procedures for implementing this estimation.
Finally, we derive testable implications for missing data models in both missing at random and MNAR
categories.
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1. Introduction

Missing data present a challenge in many branches of empiri-
cal sciences. Sensors do not always work reliably, respondents
do not fill out every question in the questionnaire, and med-
ical patients are often unable to recall episodes, treatments,
or outcomes. The statistical literature on this problem is rich
and abundant and has resulted in powerful software packages
such as MICE in R, Stata, SAS, and SPSS, which offer various
ways of handling missingness. Most practices are based on the
seminal work of Rubin (1976) who formulated procedures and
conditions under which the damage due to missingness can be
reduced. This theory has also resulted in a number of perfor-
mance guarantees when data obey certain statistical conditions.
However, these conditions are rather strong, and extremely hard
to ascertain in real world problems. Little and Rubin (2014, p.
22), summarize the state of the art by observing: “essentially all
the literature on multivariate incomplete data assumes that the
data are missing at random (MAR).” The power of the MAR
assumption lies in permitting popular estimation methods such
as maximum likelihood (Dempster, Laird, and Rubin 1977)
and multiple imputation (Rubin 1978) to be directly applied
without explicitly modeling the missingness process. Unfortu-
nately, it is almost impossible for a practicing statistician to
decide whether the MAR condition holds in a given problem.
The literature on data that go beyond MAR suffers from the
same problem. The methods employed require assumptions
that are not readily defensible from scientific understanding of
the missingness process. Graphical models, in contrast, provide
a transparent encoding of such understanding, as explained
below.

Recent years have witnessed a growing interest in using
graphical models to encode assumptions about the reasons
for missingness. This development is natural, partly because
graphical models provide efficient representation for reading
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conditional independencies (Cox and Wermuth 1993; Lauritzen
1996), and partly because the missingness process often requires
causal rather than probabilistic assumptions (Pearl 1995).

Earlier articles in this development are Daniel et al. (2012)
who provided sufficient criteria under which consistent esti-
mates can be computed from complete cases (i.e., samples in
which all variables are fully observed), and Thoemmes and Rose
(2013) (similarly Thoemmes and Mohan (2015)) who devel-
oped techniques for selecting auxiliary variables to improve
estimability. In machine learning, particularly while estimating
parameters of Bayesian networks, graphical models have long
been used as a tool when dealing with missing data (Darwiche
2009).

In this article, we review the contributions of graphical mod-
els to missing data research from three main perspectives: (1)
transparency, (2) recoverability (consistent estimation), and (3)
testability. The main results of the article are highlighted in
Table 1.

1.1. Transparency

Consider a practicing statistician who has acquired a statistical
package that handles missing data and would like to know
whether the problem at hand meets the requirements of the
software. As noted by Little and Rubin (2014, Appendix) and
many others such as Rhoads (2012) and Balakrishnan (2010),
almost all available software packages implicitly assume that
data fall under two categories: missing completely at random
(MCAR) or MAR (formally defined in Section 2.2). Failing these
assumptions, there is no guarantee that estimates produced by
software will be less biased than those produced by complete
case analysis. Consequently, it is essential for the user to decide
if the type of missingness present in the data is compatible with
the requirements of MCAR or MAR.
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Table 1. Highlights of major results.

Criteria and procedures for recovering statistical and causal parameters from
missing data

1. We provide methods for recovering conditional distributions from missing
data, based on transparent and explainable assumptions about the
missingness process.

2. We demonstrate the feasibility of recovering joint distributions in cases
where variables cause their own missingness.

3. We identify and characterize problems for which recoverability is infeasible.

Tests for compatibility of a model with observed data

1. We establish general criteria for testing conditional independence claims.
2. We devise tests for missing at random (MAR) models.
3. We identify modeling assumptions that defy testability.

Prior to the advent of graphical models, no tool was available
to assist in this decision, since the independence conditions that
define MCAR or MAR are neither visible in the data, nor in
a mathematical model that a researcher can consult to verify
those conditions. We will show how graphical models enable
an efficient and transparent classification of the missingness
mechanism. In particular, the question of whether the data fall
into the MCAR or MAR categories can be answered by mere
inspection of the graph structure.1 In addition, we will show
how graphs facilitate a more refined, query-specific taxonomy
of missingness in missing not at random (MNAR) problems.

The transparency associated with graphical models stems
from three factors. First, graphs excel in encoding and detecting
conditional independence relations, far exceeding the capac-
ity of human intuition. Second, all assumptions are encoded
causally, mirroring the way researchers store qualitative scien-
tific knowledge; direct judgments of conditional independencies
are not required, since these can be read off the structure of
the graph. Finally, the ultimate aim of all assumptions is to
encode “the reasons for missingness” which is a causal, not a
statistical concept. Thus, even when our target parameter is
purely statistical, say a regression coefficient, causal modeling is
still needed for encoding the “process that causes missing data”
(Rubin 1976).

1.2. Recoverability (Consistent Estimation)

Recoverability (to be defined formally in Section 3) refers to
the task of determining, from an assumed model, whether any
method exists that produces a consistent estimate of a desired
parameter and, if so, how. If the answer is negative, then no
algorithm, however smart, can yield a consistent estimate. On
the other hand, if the answer is affirmative then there exists
a procedure that can exploit the features of the problem to
produce consistent estimates. If the problem is MAR or MCAR,
standard missing data software can be used to obtain consistent
estimates. But if a recoverable problem is MNAR, the user would
do well to discard standard software and resort to an estimator
based on graphical analysis. In Section 3 of this article, we
present several methods of deriving consistent estimators for
both statistical and causal parameters in the MNAR category.

1These results apply to modified versions of MAR and MNAR as defined in
Section 2.2.

The general question of recoverability, to the best of our
knowledge, has not received due attention in the literature.
The very notion that some parameters cannot be estimated by
any method whatsoever while others can, still resides in an
uncharted territory. We will show in Section 3 that most MNAR
problems exhibit this dichotomy. That is, problems for which it
is impossible to properly impute all missing values in the data
would still permit the consistent estimation of some parameters
of interest. More importantly, the estimable parameters can
often be identified directly from the structure of the graph.

1.3. Testability

Testability asks whether it is possible to tell if any of the model’s
assumptions is incompatible with the available data (corrupted
by missingness). Such compatibility tests are hard to come by
and the few tests reported in the literature are mostly limited
to MCAR (Little 1988). As stated in Allison (2003), “Worse
still, there is no empirical way to discriminate one nonignorable
model from another (or from the ignorable model).” In Sec-
tion 4, we will show that remarkably, discrimination is feasible;
MAR problems do have a simple set of testable implications and
MNAR problems can often be tested depending on their graph
structures.

In summary, although mainstream statistical analysis of
missing data problems has made impressive progress in the
past few decades, it left key problem areas relatively unex-
plored, especially those touching on transparency, estimability
and testability. This article casts missing data problems in the
language of causal graphs and shows how this representation
facilitates solutions to pending problems. In particular, we show
how the MCAR, MAR, MNAR taxonomy becomes transparent
in the graphical language, how the estimability of a needed
parameter can be determined from the graph structure, what
estimators would guarantee consistency, and what modeling
assumptions lend themselves to empirical scrutiny.

2. Graphical Models for Missing Data: Missingness
Graphs (m-graphs)

The following example, inspired by Little and Rubin (2002,
Example 1.6, p. 8), describes how graphical models can be used
to explicitly model the missingness process and encode the
underlying causal and statistical assumptions. Consider a study
conducted in a school that measured three (discrete) variables:
age (A), gender (G), and obesity (O).

No missingness: If all three variables are completely recorded,
then there is no missingness. The causal graph2 depicting the
interrelations between variables is shown in Figure 1(a). Nodes
correspond to variables and edges indicate the existence of a
causal relationship between pairs of nodes they connect. The
value of a child node is a (stochastic) function of the values of
its parent nodes; that is, obesity is a (stochastic) function of age
and gender. The absence of an edge between age and gender
indicates that A and G are independent, denoted by A⊥⊥G.

2For a gentle introduction to causal graphical models, see Elwert (2013),
Lauritzen (2001), and Pearl (2009b, secs. 1.2 and 11.1.2).
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Figure 1. (a) Causal graph under no missingness. (b)–(d) m-graphs modeling MCAR, MAR, and MNAR missingness processes, respectively.

Table 2. Missing dataset in which age and gender are fully observed and obesity is
partially observed.

Sample # Age Gender Obesity∗ RO

1 16 F Obese 0
2 15 F m 1
3 15 M m 1
4 14 F Not obese 0
5 13 M Not obese 0
6 15 M Obese 0
7 14 F Obese 0

Representing missingness: Assume that age and gender are
fully observed since they can be obtained from school records.
Obesity however is corrupted by missing values since some
students fail to reveal their weight. When the value of O is
missing we get an empty measurement which we designate by m.
Table 2 exemplifies a missing dataset. The missingness process
can be modeled using an observed proxy variable obesity∗(O∗)
whose values are determined by obesity and its missingness
mechanism RO:

O∗ = f (RO, O) =
{

O if RO = 0
m if RO = 1.

RO governs the masking and unmasking of obesity. When
RO = 1 the value of obesity is concealed, that is, O∗ assumes the
values m as shown in samples 2 and 3 in Table 2. When RO = 0,
the true value of obesity is revealed, that is, O∗ assumes the
underlying value of obesity as shown in samples 1, 4, 5, 6, and 7
in Table 2.

Missingness can be caused by random processes (i.e., caused
by variables that are not correlated with other variables in the
model) or can depend on other variables in the dataset. An
example of random missingness is students accidentally losing
their questionnaires. This is depicted in Figure 1(b) by the
absence of parent nodes for RO. Teenagers rebelling and not
reporting their weight is an example of missingness caused by a
fully observed variable. This is depicted in Figure 1(c) by an edge
between A and RO. Partially observed variables can be causes
of missingness as well. For instance, consider obese students
who are embarrassed of their obesity and hence reluctant to
reveal their weight. This is depicted in Figure 1(d) by an edge
between O and RO indicating that O is the cause of its own
missingness.

The following subsection formally introduces missingness
graphs (m-graphs) as discussed in Mohan, Pearl, and Tian
(2013).

2.1. Missingness Graphs: Notations and Terminology

Let G(V, E) be the causal directed acyclic graph (DAG) where V
is the set of nodes and E is the set of edges. Nodes in the graph
correspond to variables in the dataset and are partitioned into
five categories, that is,

V = Vo ∪ Vm ∪ U ∪ V∗ ∪ R

where Vo is the set of variables that are observed in all records in
the population and Vm is the set of variables that are missing in
at least one record. Variable X is termed as fully observed if X ∈
Vo and partially observed if X ∈ Vm. Rvi and V∗

i are two variables
associated with every partially observed variable, where V∗

i is a
proxy variable that is actually observed, and Rvi represents the
status of the causal mechanism responsible for the missingness
of V∗

i ; formally,

v∗
i = f (rvi , vi) =

{
vi if rvi = 0
m if rvi = 1. (1)

V∗ is the set of all proxy variables and R is the set of all causal
mechanisms that are responsible for missingness. U is the set
of unobserved nodes, also called latent variables. Unless stated
otherwise it is assumed that no variable in Vo ∪ Vm ∪ U is a
child of an R variable. Two nodes X and Y can be connected by
a directed edge, that is, X → Y , indicating that X is a cause of
Y , or by a bi-directed edge X <––> Y denoting the existence of
a U variable that is a parent of both X and Y .

We call this graphical representation a missingness graph (or
m-graph). Figure 1 exemplifies three m-graphs in which Vo =
{A, G}, Vm = {O}, V∗ = {O∗}, U = ∅ and R = {RO}. Proxy
variables may not always be explicitly shown in m-graphs to
keep the figures simple and clear. The missing data distribution,
P(V∗, Vo, R) is referred to as the observed-data distribution and
the distribution that we would have obtained had there been no
missingness, P(Vo, Vm, R) is called the underlying distribution.
Conditional independencies are read off the graph using the
d-separation3 criterion (Pearl 2009b). For example, Figure 1(c)
depicts the independence RO⊥⊥O|A but not RO⊥⊥G|O.

2.2. Classification of Missing Data Problems Based on
Missingness Mechanism

Rubin (1976) classified missing data into three categories:
MCAR, MAR, and MNAR based on the statistical dependencies

3For an introduction to d-separation, see http://bayes.cs.ucla.edu/BOOK-2K/
d-sep.html and http://www.dagitty.net/ learn/dsep/index.html.

http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html
http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html
http://www.dagitty.net/learn/dsep/index.html
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between the missingness mechanisms (R variables) and the
variables in the dataset (Vm, Vo). We capture the essence of this
categorization in graphical terms below.

1. Data are MCAR if Vm ∪ Vo ∪ U⊥⊥R holds in the m-graph.
In words, missingness occurs completely at random and is
entirely independent of both the observed and the partially
observed variables. This condition can be easily identified in
an m-graph by the absence of edges between the R variables
and variables in Vo ∪ Vm.

2. Data are v-MAR if Vm ∪ U⊥⊥R|Vo holds in the m-graph.
In words, conditional on the fully observed variables Vo,
missingness occurs at random. In graphical terms, v-MAR
holds if (i) no edges exist between an R variable and any
partially observed variable and (ii) no bidirected edge exists
between an R variable and a fully observed variable. MCAR
implies v-MAR, ergo all estimation techniques applicable to
v-MAR can be safely applied to MCAR.

3. Data that are not v-MAR or MCAR fall under the MNAR
category.

m-graphs in Figures 1(b), (c), and (d) are typical examples of
MCAR, v-MAR, and MNAR categories, respectively. Notice the
ease with which the three categories can be identified. Once the
user lays out the interrelationships between the variables in the
problem, the classification is purely mechanical.

2.2.1. MAR: A Brief Discussion
The original classification used in Rubin (1976) is very similar
to the one defined in the preceding paragraphs. The main dis-
tinction rests on the fact that MAR defined in Rubin (1976) is
defined in terms of conditional independencies between events
whereas that in this article (referred to as v-MAR ) is defined in
terms of conditional independencies between variables. Clearly,
we can have the former without the latter, in practice though
it is rare that scientific knowledge can be articulated in terms
of event based independencies that are not implied by variable
based independencies.

Over the years the classification proposed in Rubin (1976)
has been criticized both for its nomenclature and its opacity.
Several authors noted that MAR is a misnomer (Peters and
Enders 2002; Scheffer 2002; Meyers, Gamst, and Guarino 2006;
Graham 2009) noting that randomness in this class is critically
conditioned on observed data.

However, the opacity of the assumptions underlying MAR
(Rubin 1976) presents a more serious problem. Clearly, a
researcher would find it cognitively taxing, if not impossi-
ble, to even decide if any of these independence assumptions
is reasonable. This, together with the fact that MAR (Rubin
1976) is untestable (Allison 2002) motivates the variable-based
taxonomy presented above. Seaman et al. (2013) and Doretti,
Geneletti, and Stanghellini (2018) provided another taxonomy
and a different perspective on MAR.

Nonetheless, MAR has an interesting theoretical property: It
is the weakest simple condition under which the process that
causes missingness can be ignored while still making correct
inferences about the data (Rubin 1976). It was probably this the-
oretical result that changed missing data practices in the 1970s.
The popular practice prior to 1976 was to assume that missing-
ness was caused totally at random (Haitovsky 1968; Gleason and

Staelin 1975). With Rubin’s identification of the MAR condition
as sufficient for drawing correct inferences, MAR became the
main focus of attention in the statistical literature.

Estimation procedures such as Multiple Imputation that
worked under MAR assumption became widely popular and
textbooks were authored exclusively on MAR and its simpli-
fied versions (Graham 2012). In the absence of recognizable
criteria for MAR, some authors have devised heuristics invok-
ing auxiliary variables, to increase the chance of achieving
MAR (Collins, Schafer, and Kam 2001). Others have warned
against indiscriminate inclusion of such variables (Thoemmes
and Rose 2013; Thoemmes and Mohan 2015). These difficulties
have engendered a culture with a tendency to blindly assume
MAR, with the consequence that the more commonly occurring
MNAR class of problems remains relatively unexplored (Adams
2007; Resseguier, Giorgi, and Paoletti 2011; Osborne 2012, 2014;
Sverdlov 2015; van Stein and Kowalczyk 2016).

In his seminal article (Rubin 1976), Rubin recommended that
researchers explicitly model the missingness process:

This recommendation invites in fact the graphical tools
described in this article, for they encourage investigators to
model the details of the missingness process rather than blindly
assume MAR. These tools have further enabled researchers to
extend the analysis of estimation to the vast class of MNAR
problems.

In the next section, we discuss how graphical models accom-
plish these tasks.

3. Recoverability

Recoverability4 addresses the basic question of whether a quan-
tity/parameter of interest can be estimated from incomplete data
as if no missingness took place; that is, the desired quantity can
be estimated consistently from the available (incomplete) data.
This amounts to expressing the target quantity Q in terms of the
observed-data distribution P(V∗, VO, R). Typical target quanti-
ties that shall be considered are conditional/joint distributions
and conditional causal effects.

Definition 1 (Recoverability of target quantity Q). Let A denote
the set of assumptions about the data generation process and let
Q be any functional of the underlying distribution P(Vm, VO, R).
Q is recoverable if there exists a procedure that computes a
consistent estimate of Q for all strictly positive observed-data
distributions P(V∗, Vo, R) that may be generated under A.5

Since we encode all assumptions in the structure of the m-
graph G, recoverability becomes a property of the pair {Q, G},
and not of the data. We restrict the definition above to strictly
positive observed-data distributions, P(V∗, Vo, R) except for
instances of zero probabilities as specified in Equation (1).
The reason for this restriction can be understood as the need

4The term identifiability is sometimes used in lieu of recoverability. We prefer
using recoverability over identifiability since the latter is strongly associated
with causal effects, while the former is a broader concept, applicable to
statistical relationships as well. See Section 3.5.

5This definition is more operational than the standard definition of identi-
fiability for it states explicitly what is achievable under recoverability and
more importantly, what problems may occur under nonrecoverability.
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Table 3. Observed-data distribution P(G, A, O∗ , RO) where gender (G) and age (A) are fully observed, obesity O is corrupted by missing values and obesity’s proxy (O∗) is
observed in its place.

G A O∗ RO P(G, A, O∗ , RO)

M 10–13 Y 0 p1
M 13–15 Y 0 p2
M 15–18 Y 0 p3
M 10–13 N 0 p4
M 13–15 N 0 p5
M 15–18 N 0 p6
F 10–13 Y 0 p7
F 13–15 Y 0 p8
F 15–18 Y 0 p9

G A O∗ RO P(G, A, O∗ , RO)

F 10–13 N 0 p10
F 13–15 N 0 p11
F 15–18 N 0 p12
M 10–13 m 1 p13
M 13–15 m 1 p14
M 15–18 m 1 p15
F 10–13 m 1 p16
F 13–15 m 1 p17
F 15–18 m 1 p18

NOTE: Age is partitioned into three groups: [10–13), [13–15), [15–18). Gender and obesity are binary variables and can take values male (M) and female (F), and yes (Y) and
no (N), respectively. The probabilities p1, p2, . . . , p18 stand for the (asymptotic) frequencies of the samples falling in the 18 cells (G, A, O∗ , RO).

Table 4. Recovered joint distribution corresponding to dataset in Table 3 and m-graph in Figure 1(c).

G A O P(G, O, A)

M 10–13 Y p1∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

M 13–15 Y p2∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

M 15–18 Y p3∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

M 10–13 N p4∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

M 13–15 N p5∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

M 15–18 N p6∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

G A O P(G, O, A)

F 10–13 Y p7∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

F 13–15 Y p8∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

F 15–18 Y p9∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

F 10–13 N p10∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

F 13–15 N p11∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

F 15–18 N p12∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

for observing some unmasked cases for all combinations of
variables, otherwise, masked cases can be arbitrary. We note
however that recoverability is sometimes feasible even when
strict positivity does not hold (Mohan, Pearl, and Tian 2013,
Definition 5 in the appendix).

We now demonstrate how a joint distribution is recovered
given v-MAR data.

Example 1. Consider the problem of recovering the joint distri-
bution given the m-graph in Figure 1(c) and dataset in Table 3.
Let it be the case that 15–18 year olds were reluctant to reveal
their weight, thereby making O a partially observed variable,
that is, Vm = {O} and Vo = {G, A}. This is a typical case
of v-MAR missingness, since the cause of missingness is the
fully observed variable: age. The following three steps detail the
recovery procedure.

1. Factorization: The joint distribution may be factored as

P(G, O, A) = P(G, O|A)P(A).

2. Transformation into observables: G implies the conditional
independence (G, O)⊥⊥RO|A since A d-separates (G, O) from
RO. Thus,

P(G, O, A) = P(G, O|A, RO = 0)P(A).

3. Conversion of partially observed variables into proxy vari-
ables: RO = 0 implies O∗ = O (by Equation (1)). Therefore,

P(G, O, A) = P(G, O∗|A, RO = 0)P(A). (2)

The RHS of Equation (2) is expressed in terms of variables
in the observed-data distribution. Therefore, P(G, A, O) can be
consistently estimated (i.e., recovered) from the available data.
The recovered joint distribution is shown in Table 4.

Note that samples in which obesity is missing are not dis-
carded but are used instead to update the weights p1, . . . , p12 of
the cells in which obesity has a definite value. This can be seen
by the presence of probabilities p13, . . . , p18 in Table 4 and the
fact that samples with missing values have been used to estimate
prior probability P(A) in Equation (2). Note also that the joint
distribution permits an alternative decomposition:

P(G, O, A) = P(O|A, G)P(A, G),
= P(O∗|A, G, RO = 0)P(A, G).

The equation above allows a different estimation procedure
whereby P(A, G) is estimated from all samples, including
those in which obesity is missing, and only the estimation of
P(O∗|A, G, RO = 0) is restricted to the complete samples. The
efficiency of various decompositions are analyzed in Van den
Broeck et al. (2015) and Mohan et al. (2014).

Finally, we observe that for the MCAR m-graph in Fig-
ure 1(b), a wider spectrum of decompositions is applicable,
including:

P(G, O, A) = P(O, A, G|RO = 0),
= P(O∗, A, G|RO = 0).

The equation above allows the estimation of the joint distri-
bution using only those samples in which obesity is observed.
This estimation procedure, called listwise deletion or complete-
case analysis (Little and Rubin 2002), would usually result in
wastage of data and lower quality of estimate, especially when
the number of samples corrupted by missingness is high. Con-
siderations of estimation efficiency should therefore be applied
once we explicate the spectrum of options licensed by the m-
graph.

A completely different behavior will be encountered in the
model of Figure 1(d) which, as we have noted, belong to the
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Figure 2. Quote from Rubin (1976).

MNAR category. Here, the arrow O → RO would prevent
us from executing Step 2 of the estimation procedure, that
is, transforming P(G, O, A) into an expression involving solely
observed variables. We can in fact show that in this example the
joint distribution is nonrecoverable; that is, regardless of how
large the sample or how clever the imputation, no algorithm
exists that produces consistent estimate of P(G, O, A).

The possibility of encountering non-recoverability is not
discussed as often as it ought to be in mainstream missing data
literature mostly because the MAR assumption is either taken
for granted (Pfeffermann and Sikov 2011) or thought of as a
good approximation for MNAR (Chang 2011). Consequently it
is often presumed that commonly used approaches for estima-
tion in the setting of missing data that depend on MAR (such
as maximum likelihood or multiple imputation) can deliver a
consistent estimate of any desired full data parameter. While it
is true for MAR, it is certainly not true in cases for which we can
prove non-recoverability, and requires model-based analysis for
MNAR (Figure 2).

Remark 1. Observe that Equation (2) yields an estimand for
the query, P(G, O, A), as opposed to an estimator. An estimand
is a functional of the observed-data distribution, P(V∗, R, Vo),
whereas an estimator is a rule detailing how to calculate the
estimate from measurements in the sample. Our estimands
naturally give rise to a closed form estimator, for instance, the
estimator corresponding to the estimand in Equation (2) is:

#(G = g, O∗ = o, A = a, RO = 0)

#(A = a, RO = 0)

#(A = a)

N
,

where N is the total number of samples collected and #(X1 =
x1, X2 = x2, . . . , Xj = xj) is the frequency of the event
x1, x2, . . . , xj. Algorithms inspired by such closed form estima-
tion techniques were shown in Van den Broeck et al. (2015) to
outperform conventional methods such as EM computationally,
for instance by scaling to networks where it is intractable to run
even one iteration of EM. Such algorithms are indispensable for
large scale and big data learning tasks in machine learning and
artificial intelligence for which EM is not a viable option.

A generic example for recoverability under MNAR is pre-
sented below.

Example 2 (Recoverability in MNAR m-graphs). Consider the
m-graph G in Figure 3 where all variables are subject to miss-
ingness. Y is the outcome of interest, X the exposure of interest
and Z1 and Z2 are baseline covariates. The target parameter
is P(Y|X, Z1, Z2), the regression of Y on X given both base-
line covariates. Since Y⊥⊥(RX , RY , RZ1 , RZ2)|(X, Z1, Z2) in G,
P(Y|X, Z1, Z2) can be recovered as

P(Y|X, Z1, Z2)

= P(Y|(X, Z1, Z2, RX = 0, RY = 0, RZ1 = 0, RZ2 = 0))

Figure 3. An MNAR m-graph in which joint distribution is not recoverable but
P(Y|X , Z1, Z2) and P(Z1) are recoverable. Proxy variables have not been explicitly
portrayed, as stated in Section 2.1.

= P(Y∗|(X∗, Z∗
1 , Z∗

2 , RX = 0, RY = 0, RZ1 = 0, RZ2 = 0))

(using Equation (1)).

Though all variables are subject to missingness and missingness
is highly dependent on partially observed variables, the graph
nevertheless licenses the estimation of the target parameter from
samples in which all variables are observed.

In the following subsection, we define the notion of ordered
factorization which leads to a criterion for sequentially recov-
ering conditional probability distributions (Mohan, Pearl, and
Tian 2013; Mohan and Pearl 2014a).

3.1. Recovery by Sequential Factorization

Definition 2 (Ordered factorization of P(Y|Z)). Let Y1 < Y2 <

· · · < Yn be an ordered set of all variables in Y , 1 ≤ i ≤
|Y| = n and Xi ⊆ {Yi+1, . . . , Yn} ∪ Z. Ordered factorization
of P(Y|Z) is the product of conditional probabilities, that is,
P(Y|Z) = ∏

i P(Yi|Xi), such that Xi is a minimal set for which
Yi⊥⊥({Yi+1, . . . , Yn} \ Xi)|Xi holds.

The following theorem presents a sufficient condition for
recovering conditional distributions of the form P(Y|X) where
{Y , X} ⊆ Vm ∪ Vo.

Theorem 1. Given an m-graph G and an observed-data dis-
tribution P(V∗, Vo, R), a target quantity Q is recoverable if Q
can be decomposed into an ordered factorization, or a sum
of such factorizations, such that every factor Qi = P(Yi|Xi)
satisfies Yi⊥⊥(Ryi , Rxi)|Xi. Then, each Qi may be recovered as
P(Y∗

i |X∗
i , RYi = 0, RXi = 0).

An ordered factorization that satisfies Theorem 1 is called as
an admissible factorization.
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Figure 4. m-graphs in which joint distribution is recoverable. (a) P(X , Y) is recoverable using sequential factorization, (b)–(c) P(X , Y) and P(X , Y , Z) are recoverable using R
factorization.

Example 3. Consider the problem of recovering P(X, Y) given
G, the m-graph in Figure 4(a). G depicts an MNAR problem
since missingness in Y is caused by the partially observed
variable X. The factorization P(Y|X)P(X) is admissible since
both Y⊥⊥Rx, Ry|X and X⊥⊥Rx hold in G. P(X, Y) can thus
be recovered using Theorem 1 as P(Y∗|X∗, Rx = 0, Ry =
0)P(X∗|Rx = 0). Here, complete cases are used to estimate
P(Y|X) and all samples including those in which Y is missing are
used to estimate P(X). Note that the decomposition P(X|Y)P(Y)

is not admissible.

Corollary 1. Given an m-graph G depicting v-MAR joint dis-
tribution is recoverable in G as P(Vo, Vm) = P(V∗|Vo, R =
0)P(Vo).

3.1.1. Recovering From Complete and Available Cases
Traditionally there has been great interest in complete case analy-
sis primarily due to its simplicity and ease of applicability. How-
ever, it results in a large wastage of data and a more economical
version of it, called available case analysis would generally be
more desirable. The former retains only samples in which vari-
ables in the entire dataset are observed, whereas the latter retains
all samples in which the variables in the query are observed.
Sufficient criteria for recovering conditional distributions from
complete cases as well as available cases are widely discussed
in literature (Little and Rubin 2002; White and Carlin 2010;
Bartlett et al. 2014) and we state them in the form of a corollary
below:

Corollary 2.

(a) Given m-graph G, P(X|Y) is recoverable from complete
cases if X⊥⊥R|Y holds in G where R is the set of all miss-
ingness mechanisms.

(b) Given m-graph G, P(X|Y) is recoverable from available
cases if X⊥⊥(Rx, Ry)|Y holds in G.

In Figure 3, for example, we see that Z1⊥⊥RZ1 holds but
Z⊥⊥Rx does not. Therefore, P(Z1) is recoverable from available
cases but not complete cases.

The following example emphasizes the need for causal mod-
eling of R variables. It demonstrates that causal relations among
various R variables play a pivotal role in the recoverability
procedure.

Example 4. Consider the following graphs: G1 : Y → X →
Rx → Ry and G2 : Y → X → Rx ← Ry. The m-graphs are

identical except that in G1, Rx causes Ry and in G2, Ry causes RX .
This seemingly minor difference in the underlying missingness
process considerably alters the recoverability procedure.

In G1, P(X,Y) is recovered as,
P(X, Y) = P(Y|X)P(X)

= P(X|Y , Rx = 0, Ry = 0)P(X) (since X⊥⊥Rx, Ry|Y)

= P(X|Y , Rx = 0, Ry = 0)
∑
Rx

P(Y|Rx, Ry = 0)P(Rx)

(since Y⊥⊥Ry|RX)

= P(X∗|Y∗, Rx =0, Ry =0)
∑
Rx

P(Y∗|Rx, Ry =0)P(Rx)

(using Equation (1))
whereas in G2, P(X,Y) is recovered as

P(X, Y) = P(Y|X)P(X)

= P(X|Y , Rx = 0, Ry = 0)P(Y|Ry = 0)

(since X⊥⊥Rx, Ry|Y & Y⊥⊥Ry)
= P(X∗|Y∗, Rx = 0, Ry = 0)P(Y∗|Ry = 0)

(using Equation (1)).

3.2. R Factorization

Example 5. Consider the problem of recovering Q = P(X, Y)

from the m-graph of Figure 4(b). Interestingly, no ordered fac-
torization over variables X and Y would satisfy the conditions
of Theorem 1. To witness we write P(X, Y) = P(Y|X)P(X) and
note that the graph does not permit us to augment any of the
two terms with the necessary Rx or Ry terms; X is independent
of Rx only if we condition on Y , which is partially observed, and
Y is independent of Ry only if we condition on X which is also
partially observed. This deadlock can be disentangled however
using a nonconventional decomposition:

Q = P(X, Y) = P(X, Y)
P(Rx = 0, Ry = 0|X, Y)

P(Rx = 0, Ry = 0|X, Y)

= P(Rx = 0, Ry = 0)P(X, Y|Rx = 0, Ry = 0)

P(Rx = 0|Y , Ry = 0)P(Ry = 0|X, Rx = 0)
,

where the denominator was obtained using the independencies
Rx⊥⊥(X, Ry)|Y and Ry⊥⊥(Y , Rx)|X shown in the graph. The final
expression below,

P(X, Y) = P(Rx = 0, Ry = 0)P(X∗, Y∗|Rx = 0, Ry = 0)

P(Rx = 0|Y∗, Ry = 0)P(Ry = 0|X∗, Rx = 0)

(using Equation (1)), (3)
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Figure 5. (a)–(c) m-graphs in which joint distribution is recoverable aided by intervention. Furthermore in (a) no separating set exists that can d-separate X and RX . (b)
Latent structure (Pearl 2009b, chap. 2) corresponding to m-graph in (a) when X is treated as a latent variable. See appendix A2 for procedure to recover the joint distribution
given the m-graph in (c).

which is in terms of variables in the observed-data distribution,
renders P(X, Y) recoverable. This example again shows that
recovery is feasible even when data are MNAR.

The following theorem (Mohan, Pearl, and Tian 2013;
Mohan and Pearl 2014a) formalizes the recoverability scheme
exemplified above.

Theorem 2 (Recoverability of the joint P(V)). Given a m-graph
G with no edges between R variables the necessary and suffi-
cient condition for recovering the joint distribution P(V) is the
absence of any variable X ∈ Vm such that:
1. X and Rx are neighbors
2. X and Rx are connected by a path in which all intermediate
nodes are colliders6 and elements of Vm∪Vo. When recoverable,
P(V) is given by

P(v) = P(R = 0, v)∏
i P(Ri = 0|Mbo

ri , Mbm
ri , RMbm

ri
= 0)

, (4)

where Mbo
ri ⊆ Vo and Mbm

ri ⊆ Vm are the Markov blanket7

of Ri.

The preceding theorem can be applied to immediately yield
an estimand for joint distribution. For instance, given the m-
graphs in Figure 4(c), joint distribution can be recovered in one
step yielding:

P(X, Y , Z) = P(X, Y , Z, Rx = 0, Ry = 0, Rz = 0)(
P(Rx = 0|Y , Ry = 0, Z, Rz = 0)

× P(Ry = 0|X, Rx = 0, Z, Rz = 0)

× P(Rz = 0|Y , Ry = 0, X, Rx = 0)
)

.

3.3. Constraint Based Recoverability

The recoverability procedures presented thus far relied entirely
on conditional independencies that are read off the m-graph
using d-separation criterion. Interestingly, recoverability can
sometimes be accomplished by graphical patterns other than
conditional independencies. These patterns represent distribu-
tional constraints which can be detected using mutilated ver-
sions of the m-graph. We describe below an example of con-
straint based recovery.

6A variable is a collider on the path if the path enters and leaves the variable
via arrowheads (a term suggested by the collision of causal forces at the
variable) (Greenland and Pearl 2011).

7 Markov blanket MbX of variable X is any set of variables such that X is
conditionally independent of all the other variables in the graph given MbX
(Pearl 1988).

Example 6. Let G be the m-graph in Figure 5(a) and let the
query of interest be P(X). The absence of a set that d-separates
X from Rx, makes it impossible to apply any of the techniques
discussed previously. While it may be tempting to conclude that
P(X) is not recoverable, we prove otherwise by using the fact
that X⊥⊥Rx holds in the ratio distribution P(X,Ry ,Rz ,Rx)

P(Rz|Ry)
. Such

ratios are called interventional distributions and the resulting
constraints are called Verma constraints (Verma and Pearl 1991;
Tian and Pearl 2002). The proof presented below employs the
rules of do-calculus,8 to extract these constraints.

P(X) = P(X|do(Rz = 0)) (Rule-3 of do-calculus)
= P(X|do(Rz = 0), Rx = 0) (Rule-1 of do-calculus)
= P(X∗|do(Rz = 0), Rx = 0) (using Equation (1))

=
∑
RY

P(X∗, RY |do(Rz = 0), Rx = 0). (5)

Note that the query of interest is now a function of X∗ and
not X. Therefore, the problem now amounts to identifying a
conditional interventional distribution using the m-graph in
Figure 5(b). A complete analysis of such problems is available
in Shpitser and Pearl (2006) which identifies the causal effect in
Equation (5) as

P(X) =
∑
RY

(
P(X∗|RY , Rx = 0, Rz = 0)

× P(Rx = 0|Ry, Rz = 0)P(Ry)∑
RY

(
P(Rx = 0|Ry, Rz = 0)P(Ry)

)
)

. (6)

In addition to P(X), this graph also allows recovery of joint
distribution as shown below.

P(X, Y , Z) = P(X)P(Y)P(Z)

P(X, Y , Z) =
( ∑

RY P(X∗|RY , Rx = 0, Rz = 0)

× P(Rx=0|Ry ,Rz=0)P(Ry)∑
RY P(Rx=0|Ry ,Rz=0)P(Ry)

)

× P(Y∗ = Y|Ry = 0)P(Z∗|Rz = 0).

The decomposition in the first line uses (X, Y)⊥⊥Z and
X⊥⊥Y . Recoverability of P(X) in the second line follows from
Equation (6). Theorem 1 can be applied to recover P(Y) and
P(Z), since Y⊥⊥RY and Z⊥⊥RZ .

8For an introduction to do-calculus, see Pearl and Bareinboim (2014, sec. 2.5)
and Koller and Friedman (2009).
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Remark 2. In the preceding example, we were able to recover
a joint distribution despite the fact that the distribution
P(X, RY , Rx) is void of independencies. The ability to exploit
such cases further underscores the need for graph based
analysis.

The fields of epidemiology and bio-statistics have several
impressive works dealing with coarsened data (Gill, Van Der
Laan, and Robins 1997; Gill and Robins 1997; Van der Laan
and Robins 2003) and missing data (Robins 1997, 2000; Robins,
Rotnitzky, and Scharfstein 2000; Li et al. 2013). Many among
these are along the lines of estimation (mainly of causal queries);
Robins, Rotnitzky, and Zhao (1994) and Rotnitzky, Robins,
and Scharfstein (1998) dealt with inverse probability weighting
based estimators, and Bang and Robins (2005) demonstrated the
efficacy of doubly robust estimators using simulation studies.
The recovery strategy of these existing works are different from
that discussed in this article with the main difference being that
these works proceed by intervening on the R variable and thus
converting the missing data problem into that of identification
of causal effect. For example the problem of recovering P(X) is
transformed into that of identifying the counterfactual query
P(X∗

Rx=0) (which in our framework translates to identifying
P(X∗|do(Rx = 0))) in the graph in which X is treated as a
latent variable. This technique while applicable in several cases
is not general and may not always be relied upon to establish
recoverability. An example is the problem of recovering joint
distribution P(W, X, Y , Z) in Figure 5(c). In this case, the equiv-
alent causal query P(W∗, X∗, Y∗, Z∗|do(Rx = 0, Ry = 0, Rw =
0, Rz = 0)) is not identifiable in the graph in which W, X, Y , and
Z are treated as latent variables. The procedure for recovering
joint distribution from the m-graph in Figure 5(c) is presented
in Appendix A.

3.4. Overcoming Impediments to Recoverability

This section focuses on MNAR problems that are not recover-
able9. One such problem is elucidated in the following example.

Example 7. Consider a missing dataset comprising of a single
variable, income (I), obtained from a population in which the
very rich and the very poor were reluctant to reveal their income.
The underlying process can be described as a variable causing its
own missingness. The m-graph depicting this process is I → RI .
Obviously, under these circumstances the true distribution over
income, P(I), cannot be computed error-free even if we were
given infinitely many samples.

The following theorem identifies graphical conditions that
forbid recoverability of conditional probability distributions
(Mohan and Pearl 2014a).

Theorem 3. Let X ∪ Y ⊆ Vm ∪ Vo and |X| = 1. P(X|Y) is not
recoverable if either X and RX are neighbors or there exists a
path from X to Rx such that all intermediate nodes are colliders
and elements of Y .

9Unless otherwise specified nonrecoverability will assume joint distribution
as a target and does not exclude recoverability of targets such as odds ratio
(discussed in Bartlett, Harel, and Carpenter (2015)).

Quite surprisingly, it is sometimes possible to recover joint
distributions given m-graphs with graphical structures stated
in Theorem 3 by jointly harnessing features of the data and m-
graph. We exemplify such recovery with an example.

Example 8. Consider the problem of recovering P(Y , I) given
the m-graph G : Y → I → RI , where Y is a binary variable that
denotes whether candidate has sufficient years of relevant work
experience and I indicates income. I is also a binary variable and
takes values high and low. P(Y) is implicitly recoverable since Y
is fully observed. P(Y|I) may be recovered as shown below:

P(Y|I) = P(Y|I, r′
I) (using Y⊥⊥RI|I)

= P(Y∗ = Y|I∗ = I, , r′
I) (using Equation (1)).

Expressing P(Y) = ∑
y P(Y|I)P(I) in matrix form, we get

(
P(y′)
P(y)

)
=

(
P(y′|i′) P(y′|i)
P(y|i′) P(y|i)

) (
P(i′)
P(i)

)
.

Assuming that the square matrix on R.H.S. is invertible, P(I) can
be estimated as(

P(y′|i′) P(y′|i)
P(y|i′) P(y|i)

)−1 (
P(y′)
P(y)

)
.

Having recovered P(I), the query P(Y , I) may be recovered as
P(Y|I)P(I).

General procedures for handling non-recoverable cases
using both data and graph are discussed in Mohan (2018).
The preceding recoverability procedure was inspired by similar
results in causal inference (Pearl 2009a; Kuroki and Pearl 2014).
In contrast to Pearl (2009a) that relied on external studies to
compute causal effect in the presence of an unmeasured con-
founder, Kuroki and Pearl (2014) showed how the same could
be effected without external studies. In missing data settings,
we have access to partial information that allows us to compute
conditional distributions. This allows us to adapt the proce-
dure in Pearl (2009a) to establish recoverability. The Heckman
correction (Heckman 1976) originally developed for handling
selection bias, can also be applied to some MNAR problems.
However, it relies on strong assumptions of normality and guar-
antees only weak identifiability. In its place, Little (2008) recom-
mended conducting sensitivity analysis or imposing additional
parametric assumptions, some of which may create MAR mod-
els and thus facilitate recoverability. Yet another way of handling
MNAR problems is based on double sampling wherein after
the initial data collection a random sample of non-respondents
are tracked and their outcomes ascertained (Zhang, Chen, and
Elliott 2016; Holmes et al. 2018).

3.5. Recovering Causal Effects

We assume the reader is familiar with the basic notions of
“causal queries,” “causal effect,” and “identifiability” as described
in (Pearl 2009b, chap. 3) and Pearl (2009a). Given a causal
query and a causal graph with no missingness, we can always
determine whether or not the query is identifiable using the
complete algorithm in Shpitser and Pearl (2006) or Huang and
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Figure 6. m-graphs depicting the problem of attrition (i.e., loss of participants in longitudinal studies). (a) Attrition is v-MAR although the m-graph is semi-Markovian and
(b) attrition is MNAR.

Figure 7. (a) m-graph in which P(y|do(z)) is recoverable although Y and Ry are not d-separable. (b) m-graph in which Y is treated as a latent variable and not explicitly
portrayed. (c) bow-arc model in which causal effect of X on Y is nonidentifiable.

Valtorta (2006) which outputs an estimand whenever identifi-
ability holds. In the presence of missingness, a necessary con-
dition for recoverability of a causal query is its identifiability in
the substantive model, that is, the subgraph comprising of Vo,
Vm, and U. In other words, a query which is not identifiable in
this model will not be recoverable under missingness. A canon-
ical example of such case is the bow-arc graph (Figure 7(c))
for which the query P(Y|do(X = x)) is known to be non-
identifiable (Pearl 2009b). In the remainder of this subsection,
we will assume that queries of interest are identifiable in the
substantive model, and our task is to determine whether or not
they are recoverable from the m-graph. Clearly, identifiability
entails the derivation of an estimand, a sufficient condition for
recoverability is that the estimand in question be recoverable
from the m-graph.

Example 9. Consider the m-graph in in Figure 6(a), where
it is required to recover the causal effect of two sequen-
tial treatments, Tt and Tt+1 on outcome Ot+1, namely
P(Ot+1|do(Tt , Tt+1). This graph models a longitudinal study
with attrition, where the R variables represent subjects drop-
ping out of the study due to side-effects St and St+1 caused
by the corresponding treatments (a practical problem dis-
cussed in Breskin, Cole, and Hudgens (2018) and Cinelli and
Pearl (2018)). The bi-directed arrows represent unmeasured
health status indicating that participants with poor health
are both more likely to experience side effects and incur
unfavorable outcomes. Leveraging the exogeneity of the two
treatments (rule 2 of do-calculus), we can remove the do-
operator from the query expression, and obtain the iden-
tified estimand P(Ot+1|do(Tt , Tt+1) = P(Ot+1|Tt , Tt+1).
Since the parents of the R variables are fully observed, the
problem belongs to the v-MAR category, in which the joint

distribution is recoverable (using Corollary 1). Therefore,
P(Ot+1|Tt , Tt+1) and hence our causal effect is also recover-
able, and is given by:

∑
St ,St+1 P(Ot+1|Tt , Tt+1, St , St+1, ROt+1 =

0)P(St , St+1|Tt , Tt+1).

Figure 6(b) represents a more intricate variant of the
attrition problem, where the side effects themselves are par-
tially observed and, worse yet, they cause their own miss-
ingness. Remarkably, the query is still recoverable, using
Theorem 1 and the fact that, (i) Ot+1 is d-separated from
both ROt+1 and ROt given (Tt , Tt+1, Ot), and (ii) Ot is d-
separated from ROt given (Tt , Tt+1). The resulting estimand
is:

∑
Ot P(Ot+1|Tt , Tt+1, Ot , ROt = 0, ROt+1 = 0)P(Ot|ROt =

0, Tt , Tt+1).
Figure 7(a) portrays another example of identifiable query,

but in this case, the recoverability of the identified estimand is
not obvious; constraint-based analysis (5) is needed to establish
its recoverability.

Example 10. Examine the m-graph in Figure 7(a). Suppose we
are interested in the causal effect of Z (treatment) on outcome
Y (death) where treatments are conditioned on (observed) X-
rays report (W). Suppose that some unobserved factors (say
quality of hospital equipment and staff) affect both attrition (Ry)
and accuracy of test reports (W). In this setup the causal-effect
query P(y|do(z)) is identifiable (by adjusting for W) through the
estimand:

P(y|do(z)) =
∑

w
P(y|z, w)P(w). (7)

However, the factor P(y|z, w) is not recoverable (by Theorem 3),
and one might be tempted to conclude that the causal effect
is non-recoverable. We shall now show that it is nevertheless
recoverable in three steps.
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3.5.1. Recovering P(y|do(z) Given the m-Graph in
Figure 7(a)

The first step is to transform the query (using the rules of do-
calculus) into an equivalent expression such that no partially
observed variables resides outside the do-operator.

P(y|do(z)) = P(y|do(z), Ry = 0)

(follows from rule 1 of do-calculus)
= P(y∗|do(z), Ry = 0) (using Equation (1)). (8)

The second step is to simplify the m-graph by removing super-
fluous variables, still retaining all relevant functional relation-
ships. In our example, Y is irrelevant once we treat Y∗ as
an outcome. The reduced m-graph is shown in Figure 7(b).
The third step is to apply the do-calculus (Pearl 2009b) to the
reduced graph (Figure 7(b)), and identify the modified query
P(y∗|do(z), Ry = 0).

P(y∗|do(z), Ry = 0) =
∑

w
P(y∗|do(z), w, Ry = 0)

× P(w|do(z), Ry = 0) (9)
P(y∗|do(z), w, Ry = 0) = P(y∗|z, w, Ry = 0) (10)

(by Rule-2 of do-calculus),
P(w|do(z), Ry = 0) = P(w|Ry = 0) (11)

(by Rule-3 of do-calculus).

Substituting (10) and (11) in (9) the causal effect becomes

P(y|do(z)) =
∑

w
P(y∗|z, w, Ry = 0)P(w|Ry = 0), (12)

which permits us to estimate our query from complete cases
only. While in this case we were able to recover the causal effect
using one pass over the three steps, in more complex cases we
might need to repeatedly apply these steps to recover the query.

4. Testability Under Missingness

In this section, we seek ways to detect misspecifications of
the missingness model. While discussing testability, one must
note a phenomenon that recurs in missing data analysis: Not
all that looks testable is testable. Specifically, although every d-
separation in the graph implies conditional independence in
the recovered distribution, some of those independencies are
imposed by construction, to satisfy the model’s claims, and these
do not provide means of refuting the model. We exemplify this
peculiarity below.

Example 11. Consider the m-graph in Figure 8(a). It is evident
that the problem is MCAR (definition in Section 4.2). Hence,
P(X, Rx) is recoverable. The only conditional independence
embodied in the graph is X⊥⊥Rx. At first glance it might seem as
if X⊥⊥Rx is testable since we can go to the recovered distribution
and check whether it satisfies this conditional independence.
However, X⊥⊥Rx will always be satisfied in the recovered dis-
tribution, because it was recovered so as to satisfy X⊥⊥Rx. This
can be shown explicitly as follows:

P(X, Rx) = P(X|Rx)P(Rx)

= P(X|Rx = 0)P(Rx) (Using X⊥⊥Rx)
= P(X∗|Rx = 0)P(Rx) (using Equation (1)).

Likewise,
P(X)P(Rx) = P(X∗|Rx = 0)P(Rx).

Therefore, the claim, X⊥⊥Rx, cannot be refuted by any recov-
ered distribution, regardless of what process actually generated
the data. In other words, any data whatsoever with X partially
observed can be made compatible with the model postulated.

The following theorem characterizes a more general class of
untestable claims.

Theorem 4 (Mohan and Pearl 2014b). Let {Z, X} ⊆ Vm
and W ⊆ Vo. Conditional independencies of the form
X⊥⊥Rx|Z, W, Rz are untestable.

The preceding example demonstrates this theorem as a spe-
cial case, with Z = W = Rz = ∅. The next section provides
criteria for testable claims.

4.1. Graphical Criteria for Testability

The criterion for detecting testable implications reads as follows:
A d-separation condition displayed in the graph is testable if the
R variables associated with all the partially observed variables in
it are either present in the separating set or can be added to the
separating set without spoiling the separation.

The following theorem formally states this criterion using
three syntactic rules (Mohan and Pearl 2014b).

Theorem 5. A sufficient condition for an m-graph to be testable
is that it encodes one of the following types of independence:

X⊥⊥Y|Z, Rx, Ry, Rz , (13)
X⊥⊥Ry|Z, Rx, Rz, (14)
Rx⊥⊥Ry|Z, Rz. (15)

Figure 8. (a) m-graph with an untestable claim: Z⊥⊥Rz|X , Y , (b)–(c) two statistically indistinguishable models, (d) m-graph depicting MCAR.
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In words, any d-separation that can be expressed in the
format stated above is testable. It is understood that, if X or
Y or Z are fully observed, the corresponding R variables may
be removed from the conditioning set. Clearly, any conditional
independence comprised exclusively of fully observed variables
is testable. To search for such refutable claims, one needs to only
examine the missing edges in the graph and check whether any
of its associated set of separating sets satisfy the syntactic format
above.

To illustrate the power of the criterion we present the follow-
ing example.

Example 12. Examine the m-graph in Figure 8(d). The missing
edges between Z and Rz, and X and Rz correspond to the con-
ditional independencies: Z⊥⊥Rz|(X, Y) and X⊥⊥Rz|Y , respec-
tively. The former is untestable (following Theorem 4) while the
latter is testable, since it complies with (14) in Theorem 5.

4.1.1. Tests Corresponding to the Independence Statements
in Theorem 5

A testable claim needs to be expressed in terms of proxy vari-
ables before it can be operationalized. For example, a specific
instance of the claim X⊥⊥Y|Z, Rx, Ry, Rz, when Rx = 0, Ry =
0, Rz = 0 gives X⊥⊥Y|Z, Rx = 0, Ry = 0, Rz = 0. On rewriting
this claim as an equation and applying Equation (1) we get,

P(X∗|Z∗, Rx = 0, Ry = 0, Rz = 0)

= P(X∗|Y∗, Z∗, Rx = 0, Ry = 0, Rz = 0).

This equation exclusively comprises of observed quantities
and can be directly tested given the input distribution:
P(X∗, Y∗, Z∗, Rx, Ry, Rz). Finite sample techniques for testing
conditional independencies are cited in the next section. In
a similar manner, we can devise tests for the remaining two
statements in Theorem 5.

The tests corresponding to the three independence state-
ments in Theorem 5 are

• P(X∗|Z∗, Rx = 0, Ry = 0, Rz = 0) = P(X∗|Y∗, Z∗, Rx =
0, Ry = 0, Rz = 0),

• P(X∗|Z∗, Rx = 0, Rz = 0) = P(X∗|Ry, Z∗, Rx = 0, Rz = 0),
• P(Rx|Z∗, Rz = 0) = P(Rx|Ry, Z∗, Rz = 0).

The next section specializes these results to the classes of v-MAR
and MCAR problems which have been given some attention in
the existing literature.

4.2. Testability of MCAR and v-MAR

A chi-square based test for MCAR was proposed by Little
(1988) in which a high value falsified MCAR (Rubin 1976).
MAR is known to be untestable (Allison 2002). Potthoff et al.
(2006) defined MAR at the variable-level (identical to that in
Section 2.2) and showed that it can be tested. Theorem 6, given
below, presents stronger conditions under which a given v-
MAR model is testable (Mohan and Pearl 2014b). Moreover,
it provides diagnostic insight in case the test is violated. We
further note that these conditional independence tests may
be implemented in practice using different techniques such
as G-test, chi square test, testing for zero partial correlations

or by tests such as those described in Székely, Rizzo, and
Bakirov (2007), Gretton et al. (2012), and Sriperumbudur et al.
(2010).

Theorem 6 (v-MAR is testable). Given that |Vm| > 0, Vm⊥⊥R|Vo
is testable if and only if |Vm| > 1, that is, |Vm| is not a singleton
set.

In words, given a dataset with two or more
partially observed variables, it is always possible to
test whether v-MAR holds. We exemplify such tests
below.

Example 13 (Tests for v-MAR). Given a dataset where Vm =
{A, B} and Vo = {C}, the v-MAR condition states that
(A, B)⊥⊥(RA, RB)|C. This statement implies the following two
statements which match syntactic criterion 14 in Theorem 5 and
hence are testable.

1. A⊥⊥RB|C, RA
2. B⊥⊥RA|C, RB

The testable implications corresponding to (1) and (2) above are
the following:

P(A∗, RB|C, RA = 0) = P(A∗|C, RA = 0)P(RB|C, RA = 0),

P(B∗, RA|C, RB = 0) = P(B∗|C, RB = 0)P(RA|C, RB = 0).

While refutation of these tests immediately implies that the
data are not v-MAR, we can never verify the v-MAR condition.
However if v-MAR is refuted, it is possible to pinpoint and locate
the source of error in the model. For instance, if claim (1) is
refuted then one should consider adding an edge between A
and RB.

Remark 3. A recent article by Bojinov, Pillai, and Rubin (2017)
has adopted some of the aforementioned tests for v-MAR mod-
els, and demonstrated their use on simulated data. Their article
is a testament to the significance and applicability of our results
(specifically, Mohan and Pearl 2014b, secs. 3.1 and 6) to real
world problems.

Corollary 3 (MCAR is testable). Given that |Vm| > 0,
(Vm, VO)⊥⊥R| is testable if and only if |Vm| + |VO| ≥ 2.

Example 14 (Tests for MCAR). Given a dataset where Vm =
{A, B} and Vo = {C}, the MCAR condition states that
(A, B, C)⊥⊥(RA, RB). This statement implies the following state-
ments which match syntactic criteria (14) and (13) in Theorem 5
and hence are testable.

1. A⊥⊥RB|RA
2. B⊥⊥RA|RB
3. C⊥⊥RA

The testable implications corresponding to (1) and (2) above are
the following:

P(A∗, RB|RA = 0) = P(A∗|RA = 0)P(RB|RA = 0)

P(B∗, RA|RB = 0) = P(B∗|RB = 0)P(RA|RB = 0)

P(C, RA) = P(C)P(RA).
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4.3. On the Causal Nature of the Missing Data Problem

Examine the m-graphs in Figures 8(b) and (c). X⊥⊥Rx|Y and
X⊥⊥Rx are the conditional independence statements embodied
in models 8(b) and (c), respectively. Neither of these statements
are testable. Therefore, they are statistically indistinguishable.
However, notice that P(X, Y) is recoverable in Figure 8(b) but
not in Figure 8(c) implying that,

• No universal algorithm exists that can decide if a query is
recoverable or not without looking at the model.

Further notice that P(X) is recoverable in both models albeit
using two different methods. In model 8(b), we have P(X) =∑

Y P(X∗|Y , Rx = 0)P(y) and in model 8(c), we have P(X) =
P(X∗|Rx = 0). This leads to the conclusion that,

• No universal algorithm exists that can produce a consistent
estimate, whenever such exists, without looking at the model.

The impossibility of determining from statistical assumptions
alone, (i) whether a query is recoverable and (ii) how the query
is to be recovered, if it is recoverable, attests to the causal nature
of the missing data problem. Although Rubin (1976) alluded
to the causal aspect of this problem, subsequent research has
treated missing data mostly as a statistical problem. A closer
examination of the testability and recovery conditions shows
however that a more appropriate perspective would be to treat
missing data as a causal inference problem.

5. Conclusions

All methods of missing data analysis rely on assumptions
regarding the reasons for missingness. Casting these assump-
tions in a graphical model permits researchers to benefit from
the inherent transparency of such models as well as their ability
to explicate the statistical implication of the underlying assump-
tions in terms of conditional independence relations among
observed and partially observed variables. We have shown that
these features of graphical models can be harnessed to study
uncharted territories of missing data research. In particular,
we charted the estimability of statistical and causal parameters
in broad classes of MNAR problems, and the testability of the
model assumptions under missingness conditions.

It is important to emphasize at this point how recoverability
and testability differ from estimation and testing, a distinction
that is often left ambiguous in traditional missing-data literature.
Recoverability is a data-independent task that takes as input
a pair, a query and a model, and determines if the value of
the query can be estimated as sample size approaches infinity,
assuming that only variables assigned R variables can be cor-
rupted by missingness. If the answer is positive, it outputs an
estimand, that is, a recipe of how the query is to be estimated
once the data become available. Estimation on the other hand
takes as input data and an estimand, and outputs an estimate of
the query, in accordance with the estimand. For a given model
and query, the estimand remains the same regardless of the
dataset, whereas an estimate changes with the dataset. Clearly,
to guarantee that the estimate produced is meaningful, it is
essential to first determine if a query is recoverable and, only

then proceed to the estimation phase. Similarly, testability and
testing are distinct notions. Testability takes a model as input
and outputs testable implications, that is, claims that can be
tested on the incomplete data. Examples of testable implications
are conditional independence relationships among the variables
present in the data. Testing, on the other hand, takes as input
both the data and the testable implications and outputs an
estimate of the degree to which the claims hold in the data.
Clearly, given their data-neutral qualities, the recoverability and
testability results reported in this article are applicable to any
problem area that matches the structure of the m-graph; no
distributional or parametric assumptions are needed.

An important feature of our analysis is its query dependence.
In other words, while certain properties of the underlying dis-
tribution may be deemed unrecoverable, others can be proven
to be recoverable, and by smart estimation algorithms.

In light of our findings, we question the benefits of the
traditional taxonomy that classifies missingness problems into
MCAR, MAR, and MNAR. To decide if a problem falls into
any of these categories a user must have a model of the causes
of missingness and once this model is articulated, the criteria
we have derived for recoverability and testability can be readily
applied. Hence, we see no need for researchers to concern
themselves with conditions that satisfy MAR.

The testability criteria derived in this article can be used
not only to rule out misspecified models but also to locate
specific misspecifications for the purpose of model updating
and respecification. More importantly, we have shown that it is
possible to determine if and how a target quantity is recoverable,
even in models where missingness is not ignorable. Finally,
knowing which sub-structures in the graph prevent recoverabil-
ity can guide data collection procedures by identifying auxiliary
variables that need to be measured to ensure recovery, or prob-
lematic variables that may compromise recovery if measured
imprecisely.

Appendix A

A.1. Estimation When the Data May Not be MAR

Essentially all the literature on multivariate incomplete data assumes
that the data are MAR, and much of it also assumes that the data
are MCAR (Little and Rubin 2014, p. 22). Chapter 15 deals explicitly
with the case when the data are not MAR, and models are needed
for the missing-data mechanism. Since it is rarely feasible to estimate
the mechanism with any degree of confidence, the main thrust of
these methods is to conduct sensitivity analyses to assess the effect of
alternative assumptions about the missing-data mechanism.

A.2. A Complex Example of Recoverability

We use R = 0 as a shorthand for the event where all variables are
observed, that is, RVm = 0.

Example 15. Given the m-graph in Figure 5(c), we will now recover the
joint distribution.

P(W, X, Y , Z) = P(W, X, Y , Z)
P(W, X, Y , Z, R = 0)

P(W, X, Y , Z, R = 0)

= P(W, X, Y , Z, R = 0)

P(R = 0|W, X, Y , Z)
.
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Factorization of the denominator based on topological ordering of R
variables yields,

P(W, X, Y , Z) = P(W, X, Y , Z, R = 0)(
P(Ry = 0|W, X, Y , Z, Rx = 0, Rw = 0, Rz = 0)

× P(Rx = 0|W, X, Y , Z, Rw = 0, Rz = 0)
)

× 1
P(Rw =0|W, X, Y , Z, Rz =0)P(Rz =0|W, X, Y , Z)

.

On simplifying each factor of the form: P(Ra = 0|B), by removing from
it all B1 ∈ B such that Ra⊥⊥B1|B − B1, we get

P(W, X, Y , Z) = P(W, X, Y , Z, R = 0)

P(Rz = 0)P(Rw = 0|Z)

P(Ry = 0|X, W, Rx = 0)P(Rx = 0|Y , W)

. (A.1)

P(WXYZ) is recoverable if all factors in the preceding equation are
recoverable. Examining each factor one by one we get,

• P(W, X, Y , Z, R = 0): Recoverable as P(W∗, X∗, Y∗, Z∗, R = 0)

using Equation (1).
• P(Rz = 0): Directly estimable from the observed-data distribution.
• P(Rw = 0|Z): Recoverable as P(Rw = 0|Z∗, Rz = 0), using

Rw⊥⊥Rz|Z and Equation (1).
• P(Ry = 0|X, W, Rx = 0): Recoverable as P(Ry = 0|X∗, W∗, Rx =

0, Rw = 0), using Ry⊥⊥Rw|X, W, Rx and Equation (1).
• P(Rx = 0|Y , W): The procedure for recovering P(Rx = 0|Y , W) is

rather involved and requires converting the probabilistic sub-query
to a causal one as detailed below.

P(Rx = 0|Y , W = w) = P(Rx = 0|Y , do(W = w))

(Rule-2 of do calculus)

= P(Rx = 0|Y , Ry = 0, do(w))

P(Rx = 0|Y , Ry = 0, do(w))

P(Rx = 0|Y , do(W = w))

= P(Rx = 0|Y , Ry = 0, do(w))

P(Ry = 0|Y , do(w))

P(Ry = 0|Y , do(w), Rx = 0)
. (A.2)

To prove recoverability of P(Rx = 0|Y , W = w), we have to show that
all factors in Equation (A.2) are recoverable.

A.2.1. Recovering P(Ry = 0|Y, do(w), Rx = 0)
Observe that P(Ry = 0|Y , do(w), Rx = 0) = P(Ry = 0|do(w), Rx = 0)

by Rule-1 of do calculus. To recover P(Ry = 0|do(w), Rx = 0) it is
sufficient to show that P(X∗, Y∗, Rx, Ry, Z|do(w)) is recoverable in G′,
the latent structure corresponding to G in which X and Y are treated as
latent variables.

P(X∗, Y∗, Rx, Ry, Z|do(w)) = P(X∗, Y∗, Rx, Ry|Z, do(w))P(Z|do(w))

= P(X∗, Y∗, Rx, Ry|Z, w)P(Z|do(w))

(Rule-2 of do-calculus)
= P(X∗, Y∗, Rx, Ry|Z, w)P(Z)

(Rule-3 of do-calculus)

Using (X∗, Y∗, Rx, Ry)⊥⊥(Rz , Rw)|(Z, W), Equation (1) and Z⊥⊥Rz we
show that the causal effect is recoverable as

P(X∗, Y∗, Rx, Ry, Z|do(w))

= P(X∗, Y∗, Rx, Ry|Z∗, w∗, Rw = 0, Rz = 0)

P(Z∗|Rz = 0) (A.3)

A.2.2. Recovering P(Rx = 0|Y, do(w), Ry = 0)
Using Equation (1), we can rewrite P(Rx = 0|Y , do(w), Ry = 0) as
P(Rx = 0|Y∗, do(w), Ry = 0). Its recoverability follows from Equation
(A.3).

A.2.3. Recovering P(Ry = 0|Y, do(w))

P(Ry = 0|Y , do(w)) = P(Ry = 0, Y|do(w))∑
Rx

[
P(Ry = 0, Y , Rx|do(w))

+P(Ry = 1, Y , Rx|do(w))
]

= P(Ry = 0, Y∗|do(w))∑
Rx

[
P(Ry = 0, Y∗, Rx|do(w))

+P(Ry = 1, Y , Rx|do(w))
]

(using Equation (1)).

P(Ry = 0, Y∗|do(w)) and P(Ry = 0, Y∗, Rx|do(w)) are recoverable
from Equation (A.3). We will now show that P(Ry = 1, Y∗, Rx|do(w))

is recoverable as well.

P(Ry = 1, Y , Rx|do(w)) = P(Ry = 0, Y , Rx|do(w))

P(Ry = 0|Rx, Y , do(w))

− P(Ry = 0, Rx, Y|do(w)).

Using Equation (1) and Rule-1 of do-calculus we get,

= P(Ry = 0, Y∗, Rx|do(w))

P(Ry = 0|Rx, do(w))
− P(Ry = 0, Rx, Y∗|do(w)).

Each factor in the preceding equation is recoverable using Equa-
tion (A.3). Hence P(Ry = 1, Y , Rx, do(w)) and therefore, P(Ry =
0|Y , do(w)) is recoverable. Since all factors in Equation (A.2) are recov-
erable, the joint distribution is recoverable.

Funding

The authors gratefully acknowledge support of this work by grants from
NSF IIS-1302448, IIS-1527490, and IIS-1704932; ONR N00014-17-1-2091;
DARPA W911NF-16-1-0579.

References

Adams, J. (2007), Researching Complementary and Alternative Medicine,
London: Routledge. [4]

Allison, P. D. (2002), Missing Data, Quantitative Applications in the Social
Sciences, Thousand Oaks, CA: SAGE. [4,12]

(2003), “Missing Data Techniques for Structural Equation Model-
ing,” Journal of Abnormal Psychology, 112, 545. [2]

Balakrishnan, N. (2010), Methods and Applications of Statistics in the Life
and Health Sciences, Hoboken, NJ: Wiley. [1]

Bang, H., and Robins, J. M. (2005), “Doubly Robust Estimation in Missing
Data and Causal Inference Models,” Biometrics, 61, 962–973. [9]

Bartlett, J. W., Carpenter, J. R., Tilling, K., and Vansteelandt, S. (2014),
“Improving Upon the Efficiency of Complete Case Analysis When
Covariates Are MNAR,” Biostatistics, 15, 719–730. [7]

Bartlett, J. W., Harel, O., and Carpenter, J. R. (2015), “Asymptotically Unbi-
ased Estimation of Exposure Odds Ratios in Complete Records Logistic
Regression,” American Journal of Epidemiology, 182, 730–736. [9]

Bojinov, I., Pillai, N., and Rubin, D. (2017), “Diagnosing Missing Always at
Random in Multivariate Data,” arXiv no. 1710.06891. [12]

Breskin, A., Cole, S. R., and Hudgens, M. G. (2018), “A Practical Example
Demonstrating the Utility of Single-World Intervention Graphs,” Epi-
demiology, 29, e20–e21. [10]

Chang, M. (2011), Modern Issues and Methods in Biostatistics, New York:
Springer. [6]



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

Cinelli, C., and Pearl, J. (2018), “On the Utility of Causal Diagrams in
Modeling Attrition: A Practical Example,” Technical Report R-479,
Department of Computer Science, University of California, Los Angeles,
CA, available at http://ftp.cs.ucla.edu/pub/stat_ser/r479.pdf , Journal of
Epidemiology (forthcoming). [10]

Collins, L. M., Schafer, J. L., and Kam, C.-M. (2001), “A Comparison of
Inclusive and Restrictive Strategies in Modern Missing Data Proce-
dures,” Psychological Methods, 6, 330. [4]

Cox, D. R., and Wermuth, N. (1993), “Linear Dependencies Represented by
Chain Graphs,” Statistical Science, 8, 204–218. [1]

Daniel, R. M., Kenward, M. G., Cousens, S. N., and De Stavola, B. L. (2012),
“Using Causal Diagrams to Guide Analysis in Missing Data Problems,”
Statistical Methods in Medical Research, 21, 243–256. [1]

Darwiche, A. (2009), Modeling and Reasoning With Bayesian Networks, New
York: Cambridge University Press. [1]

Dempster, A., Laird, N., and Rubin, D. (1977), “Maximum Likelihood From
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society, Series B, 39, 1–38. [1]

Doretti, M., Geneletti, S., and Stanghellini, E. (2018), “Missing Data: A
Unified Taxonomy Guided by Conditional Independence,” International
Statistical Review, 86, 189–204. [4]

Elwert, F. (2013), “Graphical Causal Models,” in Handbook of Causal Anal-
ysis for Social Research, ed. S. Morgan, Dordrecht: Springer, pp. 245–273.
[2]

Gill, R. D., and Robins, J. M. (1997), “Sequential Models for Coarsening and
Missingness,” in Proceedings of the First Seattle Symposium in Biostatis-
tics, Springer, pp. 295–305. [9]

Gill, R. D., Van Der Laan, M. J., and Robins, J. M. (1997), “Coarsening
at Random: Characterizations, Conjectures, Counter-Examples,” in Pro-
ceedings of the First Seattle Symposium in Biostatistics, Springer, pp. 255–
294. [9]

Gleason, T. C., and Staelin, R. (1975), “A Proposal for Handling Missing
Data,” Psychometrika, 40, 229–252. [4]

Graham, J. W. (2009), “Missing Data Analysis: Making It Work in the Real
World,” Annual Review of Psychology, 60, 549–576. [4]

(2012), Missing Data: Analysis and Design, Statistics for Social and
Behavioral Sciences, New York: Springer. [4]

Greenland, S., and Pearl, J. (2011), “Causal Diagrams,” in International
Encyclopedia of Statistical Science, ed. M. Lovric, Berlin, Heidelberg:
Springer, pp. 208–216. [8]

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola,
A. (2012), “A Kernel Two-Sample Test,” Journal of Machine Learning
Research, 13, 723–773. [12]

Haitovsky, Y. (1968), “Missing Data in Regression Analysis,” Journal of the
Royal Statistical Society, Series B, 30, 67–82. [4]

Heckman, J. J. (1976), “The Common Structure of Statistical Models of
Truncation, Sample Selection and Limited Dependent Variables and a
Simple Estimator for Such Models,” in Annals of Economic and Social
Measurement (Vol. 5, No. 4), ed. S. V. Berg, Cambridge, MA: NBER, pp.
475–492. [9]

Holmes, C. B., Sikazwe, I., Sikombe, K., Eshun-Wilson, I., Czaicki, N.,
Beres, L. K., Mukamba, N., Simbeza, S., Moore, C. B., Hantuba, C.,
and Mwaba, P. (2018), “Estimated Mortality on HIV Treatment Among
Active Patients and Patients Lost to Follow-Up in 4 Provinces of Zambia:
Findings From a Multistage Sampling-Based Survey,” PLoS Medicine, 15,
e1002489. [9]

Huang, Y., and Valtorta, M. (2006), “Identifiability in Causal Bayesian
Networks: A Sound and Complete Algorithm,” in Proceedings of the
National Conference on Artificial Intelligence (Vol. 21). Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, pp. 1149–1154.
[10]

Koller, D., and Friedman, N. (2009), Probabilistic Graphical Models: Prin-
ciples and Techniques, Cambridge, MA: Massachusetts Institute of Tech-
nology. [8]

Kuroki, M., and Pearl, J. (2014), “Measurement Bias and Effect Restoration
in Causal Inference,” Biometrika, 101, 423–437. [9]

Lauritzen, S. L. (1996), Graphical Models (Vol. 17), Oxford: Oxford Univer-
sity Press. [1]

(2001), “Causal Inference From Graphical Models,” in Complex
Stochastic Systems, eds. O. E. Bardorff-Nielsen, D. R. Cox, and C.

Kliippelberg, Boca Raton, FL: Chapman and Hall/CRC Press, pp. 63–
107. [2]

Li, L., Shen, C., Li, X., and Robins, J. M. (2013), “On Weighting Approaches
for Missing Data,” Statistical Methods in Medical Research, 22, 14–
30. [9]

Little, R. J. (1988), “A Test of Missing Completely at Random for Multi-
variate Data With Missing Values,” Journal of the American Statistical
Association, 83, 1198–1202. [2,12]

(2008), “Selection and Pattern-Mixture Models,” in Longitudinal
Data Analysis, eds. G. Fitzmaurice, M. Davidian, G. Verbeke, and G.
Molenberghs, Boca Raton, FL: CRC Press, pp. 409–431. [9]

Little, R. J., and Rubin, D. (2002), Statistical Analysis With Missing Data,
New York: Wiley. [2,5,7]

(2014), Statistical Analysis With Missing Data, New York: Wiley.
[1,13]

Meyers, L. S., Gamst, G., and Guarino, A. J. (2006), Applied Multivariate
Research: Design and Interpretation, Thousand Oaks, CA: SAGE. [4]

Mohan, K. (2018), “On Handling Self-Masking and Other Hard Missing
Data Problems,” in AAAI Symposium 2018, available at https://why19.
causalai.net/papers/mohan-why19.pdf . [9]

Mohan, K., and Pearl, J. (2014a), “Graphical Models for Recovering Prob-
abilistic and Causal Queries From Missing Data,” in Advances in Neu-
ral Information Processing Systems (Vol. 27), eds. Z. Ghahramani, M.
Welling, C. Cortes, N. Lawrence, and K. Weinberger, Curran Associates,
Inc., pp. 1520–1528. [6,8,9]

(2014b), “On the Testability of Models With Missing Data,” in
Proceedings of AISTAT. [11,12]

Mohan, K., Pearl, J., and Tian, J. (2013), “Graphical Models for Inference
With Missing Data,” in Advances in Neural Information Processing Sys-
tems (Vol. 26), pp. 1277–1285. [3,5,6,8]

Mohan, K., Van den Broeck, G., Choi, A., and Pearl, J. (2014), “An Efficient
Method for Bayesian Network Parameter Learning From Incomplete
Data,” Technical Report, UCLA, Presented at Causal Modeling and
Machine Learning Workshop, ICML-2014. [5]

Osborne, J. W. (2012), Best Practices in Data Cleaning: A Complete Guide
to Everything You Need to Do Before and After Collecting Your Data,
Thousand Oaks: SAGE. [4]

(2014), Best Practices in Logistic Regression, Thousand Oaks: SAGE.
[4]

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, San Francisco, CA: Morgan Kaufmann. [8]

(1995), “Causal Diagrams for Empirical Research,” Biometrika, 82,
669–688. [1]

(2009a), “Causal Inference in Statistics: An Overview,” Statistics
Surveys, 3, 96–146. [9]

(2009b), Causality: Models, Reasoning and Inference, New York:
Cambridge University Press. [2,3,8,9,10,11]

Pearl, J., and Bareinboim, E. (2014), “External Validity: From Do-Calculus
to Transportability Across Populations,” Statistical Science, 29, 579–595.
[8]

Peters, C. L. O., and Enders, C. (2002), “A Primer for the Estimation of
Structural Equation Models in the Presence of Missing Data: Maximum
Likelihood Algorithms,” Journal of Targeting, Measurement and Analysis
for Marketing, 11, 81–95. [4]

Pfeffermann, D., and Sikov, A. (2011), “Imputation and Estimation
Under Nonignorable Nonresponse in Household Surveys With Missing
Covariate Information,” Journal of Official Statistics, 27, 181–209. [6]

Potthoff, R., Tudor, G., Pieper, K., and Hasselblad, V. (2006), “Can One
Assess Whether Missing Data Are Missing at Random in Medical Stud-
ies?,” Statistical Methods in Medical Research, 15, 213–234. [12]

Resseguier, N., Giorgi, R., and Paoletti, X. (2011), “Sensitivity Analysis
When Data Are Missing Not-at-Random,” Epidemiology, 22, 282. [4]

Rhoads, C. H. (2012), “Problems With Tests of the Missingness Mechanism
in Quantitative Policy Studies,” Statistics, Politics, and Policy, 3, 1–25. [1]

Robins, J. M. (1997), “Non-Response Models for the Analysis of Non-
Monotone Non-Ignorable Missing Data,” Statistics in Medicine, 16, 21–
37. [9]

(2000), “Robust Estimation in Sequentially Ignorable Missing Data
and Causal Inference Models,” in Proceedings of the American Statistical
Association (Vol. 1999), Indianapolis, IN, pp. 6–10. [9]

http://ftp.cs.ucla.edu/pub/stat_ser/r479.pdf
https://why19.causalai.net/papers/mohan-why19.pdf
https://why19.causalai.net/papers/mohan-why19.pdf


16 K. MOHAN AND J. PEARL

Robins, J. M., Rotnitzky, A., and Scharfstein, D. O. (2000), “Sensitivity
Analysis for Selection Bias and Unmeasured Confounding in Missing
Data and Causal Inference Models,” in Statistical Models in Epidemiology,
the Environment, and Clinical Trials, eds. M. E. Halloran and D. Berry,
New York: Springer, pp. 1–94. [9]

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994), “Estimation of Regres-
sion Coefficients When Some Regressors Are Not Always Observed,”
Journal of the American statistical Association, 89, 846–866. [9]

Rotnitzky, A., Robins, J. M., and Scharfstein, D. O. (1998), “Semipara-
metric Regression for Repeated Outcomes With Nonignorable Non-
response,” Journal of the American Statistical Association, 93, 1321–
1339. [9]

Rubin, D. B. (1976), “Inference and Missing Data,” Biometrika, 63, 581–592.
[1,2,3,4,6,12,13]

(1978), “Multiple Imputations in Sample Surveys—A Phenomeno-
logical Bayesian Approach to Nonresponse,” in Proceedings of the Survey
Research Methods Section of the American Statistical Association (Vol. 1),
American Statistical Association, pp. 20–34. [1]

Scheffer, J. (2002), “Dealing With Missing Data,” Research Letters in the
Information and Mathematical Sciences, 3, 153–160. [4]

Seaman, S., Galati, J., Jackson, D., and Carlin, J. (2013), “What Is Meant By
‘Missing at Random’?,” Statistical Science, 28, 257–268. [4]

Shpitser, I., and Pearl, J. (2006), “Identification of Conditional Interven-
tional Distributions,” in Proceedings of the Twenty-Second Conference on
Uncertainty in Artificial Intelligence, pp. 437–444. [8,9]

Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B., and Lanck-
riet, G. R. (2010), “Hilbert Space Embeddings and Metrics on Proba-
bility Measures,” Journal of Machine Learning Research, 11, 1517–1561.
[12]

Sverdlov, O. (2015), Modern Adaptive Randomized Clinical Trials: Statis-
tical and Practical Aspects, Boca Raton, FL: Chapman and Hall/CRC.
[4]

Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007), “Measuring and Test-
ing Dependence by Correlation of Distances,” The Annals of Statistics,
35, 2769–2794. [12]

Thoemmes, F., and Mohan, K. (2015), “Graphical Representation of Miss-
ing Data Problems,” Structural Equation Modeling: A Multidisciplinary
Journal, 22, 631–642. [1,4]

Thoemmes, F., and Rose, N. (2013), “Selection of Auxiliary Variables in
Missing Data Problems: Not All Auxiliary Variables Are Created Equal,”
Technical Report R-002, Cornell University. [1,4]

Tian, J., and Pearl, J. (2002), “On the Testable Implications of Causal Models
With Hidden Variables,” in Proceedings of the Eighteenth Conference on
Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc.,
pp. 519–527. [8]

Van den Broeck, G., Mohan, K., Choi, A., Darwiche, A., and Pearl, J.
(2015), “Efficient Algorithms for Bayesian Network Parameter Learning
From Incomplete Data,” in Proceedings of the Thirty-First Conference on
Uncertainty in Artificial Intelligence, pp. 161–170. [5,6]

Van der Laan, M., and Robins, J. (2003), Unified Methods for Censored
Longitudinal Data and Causality, New York: Springer-Verlag. [9]

van Stein, B., and Kowalczyk, W. (2016), “An Incremental Algorithm for
Repairing Training Sets With Missing Values,” in International Con-
ference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, Springer, pp. 175–186. [4]

Verma, T., and Pearl, J. (1991), “Equivalence and Synthesis of Causal
Models,” in Proceedings of the Sixth Conference in Artificial Intelligence,
Association for Uncertainty in AI, pp. 220–227. [8]

White, I. R., and Carlin, J. B. (2010), “Bias and Efficiency of Multiple Impu-
tation Compared With Complete-Case Analysis for Missing Covariate
Values,” Statistics in Medicine, 29, 2920–2931. [7]

Zhang, N., Chen, H., and Elliott, M. R. (2016), “Nonrespondent Subsample
Multiple Imputation in Two-Phase Sampling for Nonresponse,” Journal
of Official Statistics, 32, 769–785. [9]


	Abstract
	1.  Introduction
	1.1.  Transparency
	1.2.  Recoverability (Consistent Estimation)
	1.3.  Testability

	2.  Graphical Models for Missing Data: Missingness Graphs (m-graphs)
	2.1.  Missingness Graphs: Notations and Terminology
	2.2.  Classification of Missing Data Problems Based on Missingness Mechanism
	2.2.1.  MAR: A Brief Discussion


	3.  Recoverability
	3.1.  Recovery by Sequential Factorization
	3.1.1.  Recovering From Complete and Available Cases

	3.2.  R Factorization
	3.3.  Constraint Based Recoverability
	3.4.  Overcoming Impediments to Recoverability
	3.5.  Recovering Causal Effects
	3.5.1.  Recovering P(y|do(z) Given the m-Graph in [fig:example]Figure 7(a)


	4.  Testability Under Missingness
	4.1.  Graphical Criteria for Testability
	4.1.1.  Tests Corresponding to the Independence Statements in [thm:test:sufficient]Theorem 5 

	4.2.  Testability of MCAR and v-MAR 
	4.3.  On the Causal Nature of the Missing Data Problem

	5.  Conclusions
	Appendix A
	A.1. Estimation When the Data May Not be MAR
	A.2. A Complex Example of Recoverability
	A.2.1. Recovering P(Ry=0|Y,do(w),Rx=0)
	A.2.2. Recovering P(Rx=0|Y,do(w),Ry=0)
	A.2.3. Recovering P(Ry=0|Y,do(w))


	Funding
	References




