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Abstract: This note illustrates, using simple examples, how causal questions of non-trivial character can
be represented, analyzed and solved using linear analysis and path diagrams. By producing closed form
solutions, linear analysis allows for swift assessment of how various features of the model impact the ques-
tions under investigation. We discuss conditions for identifying total and direct effects, representation and
identification of counterfactual expressions, robustness tomodel misspecification, and generalization across
populations.
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1 Introduction
Two years ago, I wrote a paper entitled “LinearModels: AUseful ‘Microscope’ for Causal Analysis” [1] inwhich
linear structural equationsmodels (SEM), were used as “microscopes” to illuminate causal phenomenon that
are not easily managed in nonparametric models. In particular, linear SEMs enable us to derive close-form
expressions for causal parameters of interest and to easily test or refute conjectures about the behavior of
those parameters andwhat aspects of themodel control this behavior. I now venture to leverage the simplicity
of linear SEMs to illuminate interventions and counterfactuals, also called “potential outcomes,” which often
present a formidable challenge to non-parametric analysis.

After reviewing the basic notions of path analysis and counterfactual logic, we will demonstrate, using
simple examples, how concepts and issues in modern counterfactual analysis can be understood and ana-
lyzed in SEM. These include: Causal effect identification, mediation, the mediation fallacy, unit-specific
effects, the effect of treatment on the treated (ETT), generalization across populations, and more.

Section 2 reviews the fundamentals of path analysis as summarized in Pearl [1]. Section 3 introduces d-
separation and the graphical definitions of interventions and counterfactuals, and provides the basic tools
for the identification of interventional predictions and counterfactual expressions in linear models. Section
4 proceeds to demonstrate how these tools help to illuminate specific problems of causal and counterfactual
nature, including mediation, sequential identification, robustness, and ignorability tests.

2 Preliminaries1

2.1 Covariance, regression, and correlation

We start with the standard definition of variance and covariance on a pair of variables X and Y. The variance
of X is defined as

1 This section is taken from Pearl [1] and can be skipped by readers familiar withmultiple regression, path diagrams andWright’s
rules of path tracing.
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2 J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals

32x = E[X – E(X)]2

and measures the degree to which X deviates from its mean E(X).
The covariance of X and Y is defined as

3xy = E[(X – E(X))(Y – E(Y))]

and measures the degree to which X and Y covary.
Associated with the covariance, we define two other measures of association: (1) the regression coeffi-

cient "yx and (2) the correlation coefficient 1yx. The relationships between the three is given by the following
equations:

1xy =
3xy
3x3y

(1)

"yx =
3xy
32x

=
3y
3x
1xy. (2)

We note that 1xy = 1yx is dimensionless and is confined to the unit interval; 0 ≤ 1xy ≤ 1. The regression
coefficient, "yx, represents the slope of the least square error line in the prediction of Y given X

"yx =
∂

∂x
E(Y|X = x).

2.2 Partial correlations and regressions

Many questions in causal analysis concern the change in a relationship between X and Y conditioned on a
given set Z of variables. The easiest way to define this change is through the partial regression coefficient "yx⋅z
which is given by

"yx⋅z =
∂

∂x
E(Y|X = x, Z = z).

In words, "yx⋅z is the slope of the regression line of Y on X when we consider only cases for which Z = z.
The partial correlation coefficient 1xy⋅z can be defined by normalizing "yx⋅z:

1xy⋅z = "yx.z3x⋅z3y⋅z.

A well known result in regression analysis [2] permits us to express 1xy⋅z recursively in terms of pair-wise
regression coefficients. When Z is singleton, this reduction reads:

1yx⋅z =
1yx – 1yz1xz

[(1 – 12yz)(1 – 12xz)]
1
2
. (3)

Accordingly, we can also express "yx⋅z and 3yx⋅z in terms of pair-wise relationships, which gives:

3yx⋅z =
√
3xx – 32xz/32z

√
3yy – 32yz/32z 1yx⋅z (4)

3yx⋅z = 32x["yx – "yz"zx]3yx –
3yz3zx
32z

(5)

"yx⋅z =
"yx – "yz"zx
1 – "2zx32x/32z

=
32z3yx – 3yz3zx
32x32z – 32xz

=
3y
3x

1yx – 1yz ⋅ 1zx
1 – 12xz

. (6)
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J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals 3

Note that none of these conditional associations depends on the level z at which we condition variable
Z; this is one of the features that makes linear analysis easy to manage and, at the same time, limited in the
spectrum of relationships it can capture.

2.3 Path diagrams and structural equation models

A linear structural equation model (SEM) is a system of linear equations among a set V of variables, such
that each variable appears on the left hand side of at most one equation. For each equation, the variable on
its left hand side is called the dependent variable, and those on the right hand side are called independent or
explanatory variables. For example, the equation below

Y = !X + "Z + UY (7)

declares Y as the dependent variable,X and Z as explanatory variables, andUY as an “error” or “disturbance”
term, representing all factors omitted fromV that, togetherwithX and Z determine the value ofY. A structural
equation should be interpreted as a natural process, i.e., to determine the value of Y, nature consults the
value of variables X, Z and UY and, based on their linear combination in eq. (7), assigns a value to Y.

This interpretation renders the equality sign in eq. (7) non-symmetrical, since the values of X and Z are
not determined by inverting eq. (7) but by other equations, for example,

X = #Z + UX (8)
Z = UZ . (9)

The directionality of this assignment process is captured by a path-diagram, in which the nodes represent
variables, and the arrows represent the (potentially) non-zero coefficients in the equations. The diagram in
Figure 1(a) represents the SEM equations of (7)–(9) and the assumption of zero correlations between the U
variables,

3UX ,UY = 3UX ,UZ = 3UZ ,UY = 0.

The diagram in Figure 1(b) on the other hand represents eqs. (7)–(9) together with the assumption

3UX ,UZ = 3UZ ,UY = 0

while 3UX ,UY = CXY remains undetermined.

(b)(a)

βγ

UX UY

CXY

YαX

Z

βγ

YαX

Z

Figure 1: Path diagrams capturing lthe directionality of the assignment process of eqs. (7)–(9) as well as possible correlations
among omitted factors.
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4 J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals

The coefficients !, ", and # are called path coefficients, or structural parameters and they carry causal
information. For example, ! stands for the change in Y induced by raising X one unit, while keeping all other
variables constant.2

The assumption of linearity makes this change invariant to the levels at which we keep those other
variables constant, including the error variables; a property called “effect homogeneity.” Since errors (e.g.,
UX,UY ,YZ) capture variations among individual units (i.e., subjects, samples, or situations), effect homogen-
eity amounts to claiming that all units react equally to any treatment, which may exclude applications with
profoundly heterogeneous subpopulations.

2.4 Wright’s path-tracing rules

In 1921, the geneticist Sewall Wright developed an ingenious method by which the covariance 3xy of any
two variables can be determined swiftly, by mere inspection of the diagram [3]. Wright’s method consists of
equating the (standardized3) covariance 3xy = 1xy between any pair of variables with a sum of products of
path coefficients and error covariances along all d-connected paths between X and Y. A path is d-connected
if it does not traverse any collider (i.e., head-to-head arrows, as in X → Y ← Z).

For example, in Figure 1(a), the standardized covariance 3xy is obtained by summing ! with the product
"#, thus yielding 3xy = ! + "#, while in Figure 1(b) we get: 3xy = ! + "# + CXY . Note that for the pair X and Z,
we get 3xz = # since the path X → Y ← Z is not d-connected.

The method above is valid for standardized variables, namely, variables normalized to have zero mean
and unit variance. For non-standardized variables the method needs to be modified slightly, multiplying the
product associatedwith a path p by the variance of the variable that acts as the “root” for path p. For example,
for Figure 1(a) we have 3xy = 32x! + 32z"#, since X serves as the root for path X → Y and Z serves as the root for
X ← Z → Y. In Figure 1(b), however, we get 3xy = 32x!+ 32z"#+CXY where the double arrow UX ↔ UY serves as
its own root.

2.5 Computing partial correlations using path diagrams

The reduction from partial to pair-wise correlations summarized in eqs. (4)–(6), when combined with
Wright’s path-tracing rules permits us to extend the latter so as to compute partial correlations using both
algebraic and path tracing methods. For example, to compute the partial regression coefficient "yx⋅z, we start
with a standardized model where all variances are unity (hence 3xy = 1xy = "xy), and apply eq. (6) with
3x = 3z = 1 to get:

"yx⋅z =
(3yx – 3yz3zx)
(1 – 32xz)

(10)

At this point, each pair-wise covariance can be computed from the diagram through path-tracing and,
substituted in eq. (10), yields an expression for the partial regression coefficient "yx⋅z.

2 In Section 3 we will give ! a more formal definition using both interventional interpretation:

! = ∂

∂x
E[(Y|do(x),do(z))]

and a counterfactual interpretation ! = ∂
∂x Yxz(u).

3 Standardized parameters refer to systems in which (without loss of generality) all variables are normalized to have zero mean
and unit variance, which significantly simplifies the algebra.
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J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals 5

To witness, the pair-wise covariances for Figure 1(a) are:

3yx = ! + "# (11)
3xz = # (12)
3yz = " + !# (13)

Substituting in eq. (10), we get

"yx⋅z = [(! + "#) – (" + #!)#]/(1 – #2)
= !(1 – #2)/(1 – #2)
= ! (14)

Indeed, we know that, for a confounding-free model like Figure 1(a) the direct effect ! is identifiable and
given by the partial regression coefficient "xy⋅z. Repeating the same calculation on the model of Figure 1(b)
yields:

"yx⋅z = ! + CXY

leaving ! non-identifiable.

2.6 Reading vanishing partials from path diagrams

When considering a set Z = Z1, Z2, . . . , Zk of regressors the partial correlation 1yx⋅z1,z2,...,zk can be computed
by applying eq. (3) recursively. However, when the number of regressors is large, the partial correlation
becomes unmanageable. Vanishing partial correlations, however, can be readily identified from the path
diagram without resorting to algebraic operations. This reading, which is essential for the analysis of inter-
ventions, is facilitated through a graphical criterion called d-separation [4]. In other words, the criterion
permits us to glance at the diagram and determine when a set of variables Z = Z1, Z2, . . . , Zk renders the
equality 1yx⋅z = 0.

The idea of d-separation is to associate zero correlation with separation; namely, the equality 1yx⋅z = 0
would be valid whenever the set Z “separates” X and Y in the diagram. The only twist is to define separation
in a way that takes proper account of the directionality of the arrows in the diagram.

Definition 1 (d-Separation) A path p is blocked by a set of nodes Z if and only if
1. p contains a chain of nodes A → B → C or a fork A ← B → C such that the middle node B is in Z (i.e., B is

conditioned on), or
2. p contains a collider A → B ← C such that the collision node B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional on Z, and then
the partial correlation coefficient 1yx⋅z vanishes [5].

Armedwith the ability to read vanishing partials, we are now prepared to demonstrate some peculiarities
of interventions and counterfactuals.
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6 J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals

3 Interventions and counterfactuals in linear systems
3.1 Interventions and their effects

Consider an experiment in which we intervene on variable X and set it to constant X = x. Let E[Y|do(x)]
denote the expected value of outcome Y under such an intervention. The relationship between E[Y|do(x)]
and the parameters of any given model can readily be obtained by explicating how an intervention modifies
the data-generating process. In particular the intervention do(x) overrides all preexisting causes of X and,
hence, transforms the graph G into a modified graph GX in which all arrows entering X are eliminated, as
shown in Figure 2(b).

(b) (c)(a)

GXG GX

Y

X
W3

Z2
Z

W1
Z3

1

W2

Y

X = x
W3

Z3

Z2

W2

Z1

W1

Y

X

W2

W3

Z2
Z1

W1
Z3

Figure 2: Illustrating the graphical reading of interventions. (a) The original graph. (b) The modified graph GX representing the
intervention do(x). (c) The modified graph GX in which separating X from Y represents non-confoundedness.

Thus, the interventional expectation E[Y|do(x)] is given by the conditional expectation E(Y|X = x) evalu-
ated in the modified model GX. Applying Wright’s Rule to this model, we obtain a well known result in path
analysis: E[Y|do(x)] = 4x, where 4 stands for the sum of products of path coefficients along all paths directed
from X to Y.

Likewise, the average causal effect (ACE) of X on Y, defined by the difference

ACE = E[Y|do(x + 1)] – E[Y|do(x)] (15)

is a constant, independent of x, and is given by 4,
In the early days of path analysis, total effects were estimated by first estimating all path coefficients

along the causal paths and then summing up products along those paths. The d-separation criterion of
Definition 1 simplifies this computation significantly and leads to the following theorem.

Theorem 1 (Identification of total effects) The total effect of X on Y can be identified in graph G whenever a
set Z of observed variables exists, non-descendants of Y, that d-separates X and Y in the graph GX in which all
arrows emanating from X are removed. Moreover, whenever such a set Z exists, the causal effect is given by the
(partialed) regression slope

ACE = "yx⋅z. (16)

This identification condition is known as backdoor, and it is written as (X � Y|Z)GX . In Figure 2(c), for
example, the set Z = {Z3,W2} satisfies the backdoor condition, while the set Z = {Z3} does not. Note that
eq. (16) is valid even if some of the parameters along the causal paths cannot be estimated. In Figure 2(c), the
path coefficient along the arrowW3 → Y need not be estimable, the total effect will still be given by eq. (16).

A modification of Theorem 1 is required whenever the target quantity is the direct, rather than the total
effect of X on Y. In this case, the parameter ! on the arrow connecting X and Y can be identified using the
following Theorem ([5], Ch. 5.3.1).
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J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals 7

Theorem 2 (Single-door Criterion) Let G be any acyclic causal graph in which ! is the coefficient associated
with arrow X → Y, and let G! denote the diagram that results when X → Y is deleted from G. The coefficient ! is
identifiable if there exists a set of variables Z such that (i) Z contains no descendant of Y and (ii) Z d-separates
X from Y in G!. If Z satisfies these two conditions, then ! is equal to the regression coefficient "yx⋅z. Conversely,
if Z does not satisfy these conditions, then "yx⋅z is not a consistent estimand of ! (except in rare instances of
measure zero).

In Figure 1(a), for example, the parameter ! is identified by "yx⋅z because Z d-separates X from Y in G!.
In Figure 1(b), on the other hand, Z fails to d-separate X from Y in G! and, hence, ! is not identifiable by
regression.

Usually, to identify a direct effect ! the set Z needs to include descendants of X. For example, if ! stands
for the direct effect of Z3 on Y in Figure 2(a), then the set Z needs to include descendants of Z3, to block the
path Z3 → X → W3 → Y. However, Z = {X, Z2} is admissible, as well as Z = {W3,W2}, but not Z = {X,W3}.

A full account of identification conditions in linear systems is given in Chen and Pearl [6].
There is one more interventional concept that deserves our attention before we switch to discuss coun-

terfactuals: covariate-specific effect. Assume we are interested in predicting the interventional expectation
of Y for a subset of individuals for whom Z = z, where Z is a pre-intervention set of characteristics. We write
this expectation as E[Y|do(x), z], and define it as the conditional expectation of Y, given z, in the modified
post-intervention model, depicted by GX. Formally,

P(y|do(x), z) = P(y, z|do(x))/P(z|do(x)). (17)

Since Z = z is pre-intervention event, it will not be affected by the intervention, so P(z|do(x)) = P(z).
Therefore, E[Y|do(x), z] reduces to 4x + cz where c is the regression slope of Y on Z in GX. For example, in the
model of Figure 1 we have

c = " = "yz⋅x
4 = ! = "yx⋅z

hence

E[Y|do(x), z] = "yx⋅zx + "yz⋅xz.

We see that, in general, the z-specific causal effect E[Y|do(x), z] is identifiable if and only if the total effect
4 is identifiable. This stands in sharp contrast to non-linear models where conditioning on Z may prevent the
identification of the z-specific causal effect [7].

If however Z is affected by the intervention and our interest lies in the expected outcome of individuals
currently at level Z = z had they been exposed to intervention X = x, eq. (17) no longer represents the desired
quantity, and we must use counterfactual analysis instead (see Section 4.4).

3.2 The graphical representation of counterfactuals

The do-operator facilitates the estimation of average causal effects, with the average ranging either over the
entire population or over the z-specific sub-population. In contrast, counterfactual analysis deals with beha-
vior of individuals for which we have certain observations, or evidence (e). A counterfactual query asks,
“Given that we observe E=e for an individual u, what would we expect the value of Y to be for that individual
if X had been x?” For example, given that Joe’s salary is Y=y, what would his salary be had he had x years
of education (X = x)? This expectation is denoted E[Yx|Y = y].The conditioning event Y = y represents the
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8 J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals

(b)(a)

Yx

X = x

Y

X

W2

W3xW3

Z

Z2

W2

Z1

W1

Z2
Z1

W1
Z3 3

Figure 3: Illustrating the graphical reading of counterfactuals. (a) The original model. (b) The modified model Mx in which the
node labeled Yx represents the potential outcome predicated on X = x.

observed evidence (e) while the subscript x represents a hypothetical condition specified by the counterfac-
tual antecedent. Structural equation models are able to answer counterfactual queries of this sort, using a
model modification operation similar to the do-operator.

Let Mx stand for themodified version ofM, with the equation of X replaced by X=x. The formal definition
of the counterfactual Yx(u) reads

Yx(u) = YMx (u) (18)

In words: The counterfactual Yx(u) in model M is defined as the solution for Y in the “surgically modified”
submodelMx. Equation (18) was called “The Fundamental Law of Counterfactuals” [8] for it allows us to take
our scientific conception of reality, M, and use it to answer all counterfactual questions of the type “What
would Y be had X been x?”

Equation (18) also tells us how we can find the potential outcome variable Yx in the graph. If we modify
modelM to obtain the submodelMx, then the outcome variable Y in the modifiedmodel is the counterfactual
Yx in the original model.

Since modification calls for removing all arrows entering the variable X, as illustrated in Figure 3(b), we
see that the node associated with Y serves as a surrogate for Yx, with the understanding that the substitution
is valid only under the modification.

This temporary visualization of counterfactuals is sufficient to describe the statistical properties of Yx
and how those properties depend on other variables in the model. In particular, the statistical variations
of Yx are governed by all exogenous variables capable of influencing Y when X is held constant, as in
Figure 2(b). Under such conditions, the set of variables capable of transmitting variations to Y are the par-
ents of Y, (observed and unobserved) as well as parents of nodes on the pathways between X and Y. In
Figure 2(b), for example, these parents are {Z3,W2,U3,UY }, where UY and U3, the error terms of Y and
W3, are not shown in the diagram. Any set of variables that blocks a path to these parents also blocks
that path to Yx, and will result therefore in a conditional independence for Yx. In particular, if we have
a set Z of covariate that satisfies the backdoor criterion in M (see Definition 1), that set also blocks all
paths between X and those parents, and consequently, it renders X and Yx independent in every stratum
Z = z.

These considerations are summarized formally in Theorem 3.

Theorem 3 (Counterfactual interpretation of backdoor) If a set Z of variables satisfies the backdoor condition
relative to (X,Y) then, for all x, the counterfactual Yx is conditionally independent of X given Z

P(Yx|X, Z) = P(Yx|Z). (19)
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J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals 9

The condition of Theorem 3, sometimes called “conditional ignorability” implies that P(Yx = y) = P(Y =
y|do(X = x)) is identifiable by adjustment over Z. In other words, in linear systems, the average causal effect
is given by the partial regression coefficient "yx⋅z (as in eq. (16)), whenever Z is backdoor admissible.

3.3 Counterfactuals in linear models

In linear Gaussian models any counterfactual quantity is identifiable whenever the model parameters are
identified. This is because the parameters fully define the model’s functions, with the help of which we can
defineM andMx in eq. (17). The question remains whether counterfactuals can be identified in observational
studies, when some of the model parameters are not identified. It turns out that any counterfactual of the
form E[YX=x|E = e], with e an arbitrary set of events is identified whenever E[Y|do(X = x)] is identified
[5, p. 389]. The relation between the two is summarized in Theorem 4, which provides a shortcut for
computing counterfactuals.

Theorem 4 Let 4 be the slope of the total effect of X on Y,

4 = E[Y|do(x + 1)] – E[Y|do(x)]

then, for any evidence E = e, we have:

E[YX=x|E = e] = E[Y|E = e] + 4(x – E[X|E = e]). (20)

This provides an intuitive interpretation of counterfactuals in linear models: E[YX=x|E = e] can be com-
puted by first calculating the best estimate of Y conditioned on the evidence e, E[Y|e], and then adding
to it whatever change is expected in Y when X is shifted from its current best estimate, E[X|E = e], to its
hypothetical value, x.

Methodologically, the importance of Theorem 4 lies in enabling researchers to answer hypothetical ques-
tions about individuals (or sets of individuals) from population data. The ramifications of this feature in legal
and social contexts will be explored in the following sections. In the situation illustrated by Figure 4, we will
demonstrate how Theorem 4 can be used in computing the effect of treatment on the treated [9]

ETT = E[Y1 – Y0|X = 1]. (21)

Substituting the evidence e = {X = 1} in eq. (20) we get:

ETT = E[Y1|X = 1] – E[Y0|X = 1]
= E[Y|X = 1] – E[Y|X = 1] + 4(1 – E[X|X = 1]) – 4(0 – E[X|X = 1])
= 4
= c + ab

In other words, the effect of treatment on the treated is equal to the effect of treatment on the entire popu-
lation. This is a general result in linear systems that can be seen directly from eq. (20); E[Yx+1 – Yx|e] = 4,
independent on the evidence e. Things are different when a multiplicative (i.e., non-linear) interaction term
is added to the output equation [8], but this takes us beyond the linear sphere.
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10 J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals

4 The microscope at work
4.1 The mediation fallacy

In Figure 4, the effect of X on Y consists of two parts, the direct effect, c, and the indirect effect mediated
by Z, and quantified by the product ab. Attempts to disentangle the two by regression methods has led to

c

d

YX Za b

Figure 4: Demonstrating the mediation fallacy; “controlling for” the mediator Z does not give the direct effect c.

a persistent fallacy among pre-causal analysts. Define the direct effect of X on Y as “the increase we would
see in Y given a unit increase in X while holding Z constant,” analysts interpreted the latter as the partial
regression coefficient of Y on X, controlling for Z, or

c = "yx,z.

But this can’t be true because, using Wright’s rule, we get (using eq. (6)):

"yx⋅z = c – da/(1 – a2)

which coincides with c only when d = 0.
The discrepancy also reveals itself through the fact that Z does not satisfy the single-door condition of

Theorem (2). Conditioning on Z opens the path X → Z ↔ Y.
The fallacy comes about from the habit of translating “holding Z constant” to “conditioning on Z”. The

correct translation is “set Z to a constant by intervention,” namely using the do-operator do(Z = z). Unfortu-
nately statistics proper does not provide us with an operator of “holding a variable constant.” Lacking such
operator, statisticians have resorted to the only operator in their disposal, conditioning, and ended up with
a fallacy that has lingered on for almost a century [10–13].

Thus, the correct definition of the direct effect of X on Y is (Pearl, 1998, Definition 8)

c =
∂

∂x
E(y|do(x), do(z)) (22)

Readers versed in causal mediation will recognize this expression as the “controlled direct effect” [15, 16]
which, for linear systems, coincides with the natural direct effect.

M1

Z1 Z2X Y

c

a b1 b2

Figure 5: A model in which c cannot be estimated by one-shot OLS; it requires sequential backdoor adjustments.
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J. Pearl: A Linear “Microscope” for Interventions and Counterfactuals 11

4.2 Sequential identification

It often happens that both the backdoor or single door conditions cannot be applied in one shot, but
sequential application of them leads us to the right result.

Consider the problem depicted in Figure 5, in which we require to estimate the direct effect, c, in a model
containing two mediators, Z1 and Z2.

Clearly, we cannot identify c by OLS, because there is no set of variables that satisfies the single door
criterion relative to Gc. Conditioning on any set of mediators would open the path X → Z1 ↔ Y. However,
since the total effect is identifiable, we can write

4 = c + ab1b2 = "yx.

We further notice that each of a, b1, b2 can be identified by the single door condition, using the conditioning
sets:

{0} for a, {0} for b1, and {Z1} for b2.

Thus we can write

a = "z1x , b1 = "z2z1 , b2 = "yz2⋅z1

and c becomes

c = 4 – ab1b2
= "yx – "z1x"z2z1"yz2⋅z1 .

This problem is the linear version of the sequential decision problem treated in [17] and given a nonpara-
metric solution using a sequential application of the backdoor condition. (See also Causality, [5, p. 352].) An
attempt to solve this problem without the do-operator was made in Wermuth and Cox [18, 19] where it was
called “indirect confounding” [20].

4.3 Robustness to model misspecification

In his seminal book “Introduction to Structural Equation Models” [21], Otis Duncan devotes a Chapter (8) to
Specification Error. He asks: Suppose the model I used is wrong and the correct model is given by another
path diagram. Can we “salvage” some of the effects estimated on the basis of the wrong model, so as to give
us unbiased estimates for the true model?

Duncan was fascinated by the possibility of salvaging some unbiased estimates despite the wrongness
of the working model. He goes through six different pairs of models and asks: “Show that the OLS estimator
of bij [the causal parameter] in Model 1 estimates bij in Model 2 without bias.”

Duncan’s analysis was based on Wright’s rules which is not very efficient. It requires that we derive the
estimates in the two models, and then compare them to decide if they are algebraically identical, in light of
other model assumptions.

Using the single door criterion (Theorem 2), we can solve Duncan’s puzzle by inspection. We simply
enumerate the sets of admissible covariates in each of the two models and check if there is a match.

To illustrate, consider the four models in Figure 6.
The admissible sets for c in each of the four models are:
M1: {Z2}, {Z1, Z2}
M2: {Z1}, {Z1, Z2}
M3: {Z1, Z2}
M4: none
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Z1X YZ2

c

Z1X YZ2

c

Z1X YZ2

c

Z1X YZ2

c

M3

M2M1

M4

Figure 6: The estimate c = "yx⋅z1z2 , obtained forM1, is also valid forM2 andM3, but not forM4.

YX ba

(Salary)(Skill)(Education)

Z

UX UZ UY

Figure 7: A model demonstrating how skill-specific salary depends on education.

Thus, if M1 is our working model, we can salvage our estimate of c = "yx⋅z1z2 if the true model is either M2 or
M3. But if the true model isM4, there is no match toM1, and both of our options, c = "yx⋅z1z2 or c = "yx⋅z2 will
be biased. M4 still permits the identification of c (using generalized instrumental variables [22]) but not by
using OLS.

4.4 Mediator-specific effects

Consider the linear model depicted in Figure 7, in which X stands for education, Z for skill level and Y for
salary. Suppose our aim is to estimate E[Yx|Z = z] which stands for the expected salary of individuals with
current skill level Z = z, had they received X = x years of education.

Inspecting the graph, we see that salary depends only on skill level. In other words, education has no
effect on salary once we know the employee’s skill level. One might surmise, therefore, that the answer is
E[Yx|Z = z] = bz, independent of x. But this is the wrong answer because E[Yx|Z = z] asks not for the
salary of individuals with skill Z = z but for the salary of those who currently have skill Z = z but would
have attained a different skill had they obtained x years of education. The first question is captured by
the expression E(Y|do(x), z) while the second is captured by the counterfactual E[Yx|Z = z]. The first eval-
uates indeed to bz, while the second should depends on x, since an increase in education would cause
the skill level to increase beyond the current level of Z = z and, consequently, the salary would increase
as well.

We now compute E[Yx|Z = z]. Using the counterfactual formula of Theorem 4

E[Yx|e] = E[Y|e] + 4(x – E[X|e]),
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we insert e = {Z = z}, and obtain

E[Yx|Z = z] = E[Y|z] + 4(x – E[X|z]).

Assuming UX and UZ are standardized, we have

E[X|z] = "xzz = "zx
32X
32Z

z =
a

cov(aX + UZ)

= z
a

(1 + a2)
.

which gives

E[Yx|Z = z] = bz + ab(x –
za

(1 + a2)
)

= abx +
bz

1 + a2
.

We see that the skill-specific salary depends on education x.

4.5 Mediator-specific effects on the treated

Consider again the model of Figure 7 and assume that we wish to assess the effect of education on salary
for those individuals who have received X = x′ years of education and now possess skill Z = z. Inspecting
the diagram, one might surmise again that, the salary depends on skill only, and not on the hypothetical
education.

In the language of potential outcome this would amount to saying that treatment assignment is ignorable
conditional on Z or Yx ⊥⊥X|Z. But is it? To answer this question we set out to compute E[Yx|X = x′, Z = z] and
examine whether it depends on x′ and z.

Inserting e = {Z = z,X = x′} in eq. (19) we obtain

E[Yx|Z = z,X = x′] = E[Y|z, x′] + 4(x – E[X|z, x′])
= "z + !"(x – x′).

We see that E[Yx|Z = z,X = x′] depends on x′, hence Yx /⊥⊥ X|Z.
This dependence can also be seen from the graph. Recalling that Yx is none other but the exogenous

variables (UZ and UY ) that affect Y when X is held constant, we note that, conditioned on Z, UZ is indeed
dependent on X. Hence Yx depends on X conditioned on Z; Yx /⊥⊥ X|Z.

4.6 Testing S-Ignorability

In generalizing experimental findings from one population (or environment) to another, a common method
of estimation invokes re-calibration or re-weighting [23–25]. The reasoning goes as follows: Suppose the dis-
parity between the two populations can be attributed to a factor S such that the potential outcomes in the
two population are characterized by E(Yx|S = 1) and E(Yx|S = 2), respectively. If we find a set of covariates Z
such that

Yx ⊥⊥ S|Z (23)
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then we can transfer the finding from population 1 to population 2 by writing

E(Yx|S = 2) =
∑
z
E(Yx|S = 1, z)P(z|S = 2).

Thus, if we can measure the z-specific causal effect in population 1, the average causal effect in population
2 can be obtained by conditioning over the strata of Z and taking the average, re-weighted by P(z|S = 2), the
distribution of Z in the target population, where S = 2.

The Achilles heal in thismethod is, of course, the task of finding a set Z that satisfies condition (23), some-
times called “S-ignorability.” By and large, practitioners of re-calibration methods assume S-ignorability
by default and rarely justify its plausibility. Remarkably, even students of graphical models may find this
condition challenging.

Consider the model in Figure 8(a).

(Education)

(a)

(Salary)

(b)

S (Test)

UZ UY

UZ UY

Y

(Skill) (Salary)

(Education) (Skill)
X Z

Z YX

(Training)S

Figure 8: (a) The skill-specific potential outcome Yx depends on S. (b) The skill-specific potential outcome Yx is independent of S.

The structure of the model, again, shows the salary depending on skills alone, so one might surmize that
eq. (23) holds. However, leveraging our graphical representation of Yx, we can easily verify that this is not the
case. Since Yx is a function of {S,UZ,UY }, Z is a collider between S and UZ . Therefore, when conditioning on
Z, S becomes dependent on UZ hence also on Yx. This dependence ceases to exist in Figure 8(b) because Z is
no longer a collider. Another way to check ignorability conditions is to use Twin Networks, as in [5].

S-ignorability can also be verified algebraically using eq. (19). Substituting e = {Z = z, S = s} we obtain

E[Yx|z, s] = c1, x + c2z + c3s

with c3 ≠ 0. Thus affirming the dependence of Yx on S, given Z.

5 Conclusions
Linear models often allow us to derive counterfactuals in close mathematical form. This facility can be
harnessed to test conjectures about interventions and counterfactuals that are not easily verifiable in non-
parametricmodels.We have demonstrated the benefit of this facility in several applications, including testing
for robustness of estimands and testing the soundness of re-weighting.
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