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ABSTRACT

The emergence of clear semantics for causal claims and of a sound logic

for causal reasoning is relatively recent, with the consolidation over the past

decades of a coherent theoretical corpus of definitions, concepts and methods

of general applicability (e.g. Pearl [2000]) which is anchored into counterfac-

tuals. The latter corpus has proved to be of high practical interest in numerous

applied fields (e.g. epidemiology, economics, social science). In spite of their

rather consensual nature and proven efficacy, these definitions and methods

are to a large extent not used in Detection and Attribution (D&A). This article

gives a brief overview on the main concepts underpinning the causal theory

and proposes some methodological extensions for the causal attribution of

weather and climate-related events that are rooted into the latter. Implications

for the formulation of causal claims and their uncertainty are finally discussed.

CAPSULE SUMMARY

Causal counterfactual theory provides clear semantics and sound logic for

causal reasoning. It may help foster research on, and clarify dissemination

of, weather and climate-related events attribution.
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Background and rationale. A significant and growing part of climate research studies the34

causal links between climate forcings and observed responses. This part has been consolidated35

into a separate research topic known as detection and attribution (D&A). The D&A community36

has increasingly been faced with the challenge of generating causal information about episodes of37

extreme weather or unusual climate conditions. This challenge arises from the needs for public38

dissemination, litigation in a legal context, adaptation to climate change or simply improvement39

of the science associated with these events (Stott et al. 2013). For clarity, we start by introducing40

a few notations that will be used throughout this article: an event here is associated with a binary41

variable, say Y , which is equal to 1 when the event occurs and to 0 when it does not, and we use the42

term “event Y ” as an abbreviation for “the event defined by Y = 1”. In any event attribution study,43

the precise definition of the event to be studied — i.e., the choice of the variable Y — is crucial.44

Often, Y is defined ad hoc in the aftermath of an observed extreme situation based on exceedance45

over a threshold u of a relevant climate index Z, where both the index and the threshold are to46

a large extent arbitrary. In the conventional approach, which was introduced one decade ago by47

M.R. Allen and colleagues (Allen 2003; Stone and Allen 2005), one evaluates the extent to which48

a given external climate forcing f ∈F — where F encompasses for instance solar irradiation,49

greenhouse gas (GHG) emissions, ozone or aerosol concentrations — has changed the probability50

of occurrence of the event Y . For this purpose, one compares the probability of occurrence of said51

event in an ensemble of model simulations representing the observed climatic conditions, which52

simulates the actual occurrence probability in the real world, with the occurrence probability of53

the same event in a parallel ensemble of model simulations, which represent an alternative world.54

The latter world is referred to as counterfactual, and it is the one that might have occurred had55

forcing f been absent. To be precise, we introduce the binary variable X f to indicate whether or56

not the forcing f is present. The probability p1 = P(Y = 1 | X f = 1) of the event occurring in the57
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real world, with f present, is referred to as factual, while p0 = P(Y = 1 | X f = 0) is referred to58

as counterfactual. Both terms will become clear in the light of what immediately follows. The59

so-called fraction of attributable risk (FAR) is then defined as:60

FAR = 1− p0

p1
. (1)61

The FAR is interpreted as the fraction of the likelihood of an event which is attributable to the62

external forcing f . Causal claims follow from the FAR and its uncertainty, associated with model63

and sampling errors, resulting in statements such as “It is very likely that over half the risk of64

European summer temperature anomalies exceeding a threshold of 1.6◦C is attributable to human65

influence.” (Stott et al. 2004).66

This conventional framework and the FAR were initially adapted from best practices in epi-67

demiology (Greenland and Rothman 1998), a field in which causal inference has always been of68

primary importance. Best practices in epidemiology are themselves to some extent anchored in69

what can be referred to as the standard theory of causality. Indeed, there exists a theoretical cor-70

pus of definitions, concepts and methods to define causality rigorously and to address the issue of71

evidencing causal relationships empirically, e.g. Pearl (2000). The latter are readily accessible to72

users and are progressively being implemented in a growing number of fields. As a classic exam-73

ple taken from epidemiology, statements of great importance for public health, such as “smoking74

causes lung cancer,” are often based on these shared definitions and methods to investigate causal-75

ity. The same is true of many causal studies that can be found in the fields of economics, social76

science or artificial intelligence, to mention but a few domains of application. One point of entry77

into the standard theory consists in the following historical definition: “We may define a cause78

to be an object followed by another, where, if the first object had not been, the second never had79

existed.” (Hume 1748). Or, where X and Y are events: Y is caused by X if and only if (iff), were80
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X not to occur, then Y would not occur. Despite its dating back to the 18th century, the above81

counterfactual definition and the general approach to causality that it implies is still relevant. Yet82

over the past decades, this definition has been further extended and refined within a probabilistic83

and graph-theoretical framework, allowing for the counterfactual approach to be applied to actual84

datasets, and to lead to reliable causal inference.85

Overall, the current event attribution framework obeys the spirit of counterfactual logic and it is86

thus loosely connected to the above-mentioned corpus. Yet it would be beneficial to tighten this87

connection by adding several important concepts, definitions and mathematical results of causal88

counterfactual theory which, to the best of our knowledge, are lacking in the current event attribu-89

tion framework. Among other lacking items, perhaps the most important one regards the absence90

of definition for the word “cause”. Several recurrent controversial arguments in the realm of event91

attribution may possibly be related to this lacking definition of causality: for instance, an argument92

often made (Trenberth (2012)) is that any single event has multiple causes, so one can never assert93

that CO2 emissions, nor any other factors, have actually caused the event. Following this logic,94

single events are thus inherently never causally attributable at all. It is arguably difficult to clearly95

address this objection — nor possibly many others — without a precise definition of causality in96

hand.97

The purpose of this paper is to propose a set of definitions and methodological extensions to the98

current event attribution framework that are rooted in recent developments of causal counterfactual99

theory. We start with a brief overview of the counterfactual theory, emphasizing the most relevant100

concepts, and then proceed to illustrate the proposed extensions by revisiting the historical case101

study of the European heat wave of 2003. Implications for causal claims are finally discussed.102

A brief overview of the theory of causality. We all deal with cause and effect in our everyday103

life. Yet, the notion of causality has long been shrouded in controversy, and the field of climate104
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science is no exception in this respect. One may argue that the main reason for this state of105

affairs is the lack of clear semantics for causal claims: scientists and philosophers have indeed106

struggled to define precisely when one event truly causes another, and conversely when it does107

not. For instance, while we all understand that barometers do not cause rain, even such a simple108

fact cannot be easily translated into a precise formalization or a mathematical equation. Beside109

this semantic difficulty, a fundamental question is to determine what evidence is required to justify110

the causal claim: “the falling barometer did not cause the rainy episode” and how such evidence111

may be extracted from observations.112

Consider a naive observer O who knows nothing about either meteorology or barometers. By113

recording the movements of the barometer’s needle together with the changes in weather during a114

few weeks, O may be tempted to infer from the repeated observation of rainy episodes being pre-115

ceded by a barometer fall and of sunny ones being preceded by a rise, that the needle’s movement116

actually did cause the weather to change — even without a clue with respect to (w.r.t.) the physi-117

cal mechanism that may account for this causal relationship. However, O’s causal hypothesis will118

be quickly ruined if she/he has the flash of inspiration to start experimenting with the barometer:119

forcing its needle up and down will soon convince O that acting on the barometer does not induce120

a weather change. This simple example illustrates two aspects of causality: first, that causal inves-121

tigation relies crucially on observations; and second, that two different types of observations may122

be used by the causal investigator: experimental and natural (i.e. non experimental). While both123

of these aspects may seem obvious, the difficulty starts with the implementation: given a piece of124

data, experimental or not, what causal conclusions can be drawn from it? And what is the level of125

confidence associated with such causal conclusions? Over the past decades, a rigorous theory of126

causality has emerged and been consolidated, with the purpose of addressing these questions. Its127

main ideas and concepts are exposed next.128
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The mathematical basis of causal theory. The counterfactual definition of causality given by129

David Hume and spelled out above — i.e. Y is caused by X iff Y would not have occurred were130

it not for X — can be used to introduce this brief overview. For instance, let R be a rainy episode131

and B a downward move of the barometer’s needle; then observing R while impeding B — i.e. by132

holding the barometer’s needle — provides counterfactual evidence that falling barometers do not133

cause rain. Applying this approach to data requires a few mathematical concepts from the theory of134

probability and from graph theory. The former entails the notion of dependence between random135

variables which is, of course, different from that of causal dependence but proves instrumental in136

the formalization of causality. In the rainy episode example above, it is clear that the variables B137

and R are dependent, which of course does not imply anything about their causal relationship. If138

we now introduce the variable W to denote whether or not a road near O is wet, then the rain R139

and the wet road W are clearly dependent and this is also the case of the barometer B and the wet140

road W . Once we know, however, that it has rained, we can deduce that the road is certainly wet141

no matter the evolution of the barometer, so that W is independent of B conditionally on R. This142

important property is called conditional independence:143

P(W | B,R) = P(W | R) ; (2)144

this equation basically expresses that R screens off B from W . If we further complement our145

illustration by introducing L, which denotes whether or not a low-pressure meteorological system146

is present above O, one can see by following a similar reasoning that P(R | B,L) = P(R | L) and147

P(W | R,L) = P(W | R), i.e. that L screens off B from R and that R screens off L from W .148

Oriented graphs are a very useful tool to visualise these considerations and can be considered149

as the second building block of causal theory (Pearl 2000). Skipping the rigorous definitions, a150

graph can be described as a mapping of the conditional dependence relationships prevailing within151
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a given joint probability distribution P(Z1,Z2, ...,Zn) under study (Pearl 2000; Ihler et al. 2007).152

Each variable Zk is thus represented by a node, which is connected to one or more nodes by arrows,153

and each arrow points from a parent to a child. It is thus intuitive that graphs complement the154

purely probabilistic notion of dependence, which is symmetric and non-causal, by introducing an155

asymmetry in the connections between variables, which is suited to encode causal relationships.156

The graph associated with (Z1,Z2, ...,Zn) may be understood as a visual representation of the157

following factorization:158

P(Z1,Z2, ...,Zn) = Π
n
k=1 P(Zk |Pk) , (3)159

where Pk denotes the parents of variable Zk. The graph representing causality in our illustrative160

wet-road example is shown in Fig. 1a and visually encodes the following factorization:161

P(B,R,W,L) = P(L) P(B | L) P(R | L) P(W | R) . (4)162

Causal relationships among a set of variables can thus conveniently be represented by their joint163

probability distribution, provided conditional dependence relationships are fully specified; such164

specification is conveniently encoded by using an oriented graph in which each arrow represents165

a causal relationship. The existence of causal relationships has various implications on the joint166

dependence structure: e.g. independent causes become dependent conditional on their common167

effect and dependent effects become independent conditional on their common cause. From the168

moment we have access to enough observations to infer the dependence structure, we are able169

to detect these signatures and thereby to evidence causal relationships. Algorithms such as those170

described in Spirtes et al. (2000) and Shimizu et al. (2006) basically follow this strategy, and could171

perfectly be applied to the natural observations of R, B and L collected by O.172

An important limitation of using natural data though, is that several graphs can be compatible173

with the same joint distribution and hence with the same observations: identifiability is an issue.174
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For instance, simultaneous changes in X and Y are compatible with both the causal relationships175

X → Y and Y → X whenever only these two variables are observed (e.g. when observing R, B but176

not L). The experimental approach is thus required for disambiguation of the causal relationship177

between X and Y . Several outcomes Y are thereby experimentally collected, for each tested value178

of X . The value of X is thus chosen by the experimenter, and treating it as a random variable179

is no longer relevant in this experimental context. However, a probabilistic treatment of the re-180

sponse Y is still relevant, because other factors potentially affecting Y may not be controlled in181

the experimental set-up. The notion of intervention was hence introduced to describe the situa-182

tion where X is set by the experimenter at a chosen value x; it is denoted do(X = x). The notion183

of interventional probability then corresponds to the distribution of Y obtained in an experiment184

under the intervention do(X = x). It is denoted P(Y | do(X = x)) or alternatively P(Yx), where Yx185

denotes the new random variable obtained for Y subject to the intervention do(X = x). The set186

{P(Yx = y) | x,y = 0,1} obtained by collecting all the interventional probabilities of Y for every187

possible value of X is termed the causal effect of X on Y . It is important to note that, in general:188

P(Y | do(X = x)) 6= P(Y | X = x) , (5)189

which is why the notation do(X = x) is required. Indeed, P(R = 1 | B = 1) reads in our example190

“the probability of rain knowing that the barometer is decreasing” in a non-experimental context191

in which the barometer evolution is left unconstrained, whereas P(R = 1 | do(B = 1)) reads “the192

probability of rain forcing the barometer to decrease” in an experimental context in which the193

barometer is manipulated. The two probabilities are obviously distinct and it is their difference194

that allows for disambiguation, as it reveals the absence of a causal link between B and R.195

Nonetheless, confusion is still possible because P(Y | do(X = x)) and P(Y | X = x) may also196

sometimes be equal. This is the case when X satisfies a property called exogeneity w.r.t. Y . Without197
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going into details, a sufficient condition for X to be exogenous w.r.t. any variable is to be a top198

node of a causal graph. In the present context, radiative forcings under causal scrutiny are actually199

modeled in a physical setting, such as a general circulation model (GCM), as prescribed conditions200

that are external to the climate system; they are thus exogenous by construction. Provided D&A201

keeps on focusing on causal relationships between variables that are exogenous, the otherwise202

critical distinction between conditional and interventional probability is therefore not of utmost203

importance here because both quantities are actually the same.204

Necessity, sufficiency and probabilities of causation. In order to assess how likely it is that one205

event was the cause of another, the probability PN of necessary causality is defined, in agreement206

with the counterfactual principle, as the probability that the event Y would not have occurred in207

the absence of the event X given that both events Y and X did in fact occur. The probability PN208

thus quantifies how likely it is that X has caused Y in a necessary causation sense; here “X is209

a necessary cause of Y ” means that X is required for Y to occur but that other factors might be210

required as well. In other words, it means that Y would not occur were it not for X . Sufficient211

causation, on the other hand, as in “X is a sufficient cause of Y ,” means that X always triggers Y212

but that Y may also occur for other reasons without requiring X . The probability PS of sufficient213

causation is defined to be the probability that Y would have occurred in the presence of X , given214

that Y and X did not occur. Note that PN and PS are thus simultaneously interventional and215

conditional probabilities. To complete the probabilistic setting, PNS is the probability of necessary216

and sufficient causation. It is defined as the probability that Y would have occurred in the presence217

of X , and that Y would not have occurred in the absence of X . These three definitions are formally218
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expressed as follows (Pearl (2000) p. 286):219

PN =def P(Y0 = 0 | Y = 1,X = 1) ,

PS =def P(Y1 = 1 | Y = 0,X = 0) ,

PNS =def P(Y0 = 0,Y1 = 1) .

(6)220

The three probabilities PN,PS and PNS are of utmost importance because they provide a complete221

characterization of the causal relationship between X and Y , as well as of the associated uncer-222

tainties. Their estimation can thus be viewed as the ultimate purpose of a causal attribution study.223

Before addressing the issue of deriving them in practice, it is enlightening to discuss which of the224

three probabilities are most relevant for causal attribution, in which context, and how they should225

be interpreted.226

On the one hand, PN closely matches the reasoning used in lawsuits, where legal responsibility is227

understood counterfactually, i.e. in the sense of necessary causation. In such a context, PN equals228

the probability that the damage Y suffered by the plaintiff would not have occurred were it not for229

the defendant’s action X , and the latter is declared guilty whenever it can be proven that PN is high230

enough: the threshold is explicitly set to 1/2 in a civil case (“preponderance of the evidence”) and231

to an unspecified value that is supposedly very close to one in a criminal case (“beyond reasonable232

doubt”). Assume for instance that an individual A fires a gun (X) in a seemingly desert but public233

place. Unluckily, an individual B who happens to be standing one kilometer away is hit and injured234

(Y ). Legally speaking, A is an obvious culprit for the injury of B and will likely be convicted in235

case of a trial, because PN is very close to unity here: B would be safe and sound had it not236

been for A shooting. Nevertheless, the probability of the bullet hitting someone from such a long237

distance is very low, the lightest wind gust could possibly have deviated its trajectory and saved238

B. The probability of sufficient causation PS is thus close to zero here but this is not important in239

a legal context, in which it is only PN that matters, while PS does not.240
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In contrast, consider the case of a policymaker who aims at reducing the number of casualties241

from accidental shootings (Y ) through a policy (X). An abrupt policy prohibiting gun sales al-242

together will clearly be sufficient but arguably not necessary, since a smoother policy based on243

tightly regulated sales may achieve a similar result. In parallel, improving the dissemination of244

safety information to gun owners is arguably necessary but will likely not be sufficient. In any245

case, it is a high PS that guarantees that the desired objective Y will be met by the policy X , not246

a high PN: PS therefore tends to be more important than PN in the context of elaborating and247

assessing policies.248

Even though all three probabilities relate to counterfactual worlds, it is worthwhile underlin-249

ing that these quantities are not nebulous metaphysical notions: the definitions are precise and250

unambiguously implementable, as long as a fully specified probabilistic model of the world is251

postulated. This being said, it is still a difficult task to derive them under general assumptions, and252

one that remains an active and challenging research topic in causal theory at present. Important253

results were obtained, however, by introducing some additional assumptions. For instance, under254

the assumption of monotonicity, the following exact expressions hold:255

PN = 1− p0

p1
+

p0−P(Y0 = 1)
P(X = 1,Y = 1)

,

PS = 1− 1− p1

1− p0
− p1−P(Y1 = 1)

P(X = 0,Y = 0)
,

PNS = P(Y1 = 1)−P(Y0 = 1) ;

(7)256

where variable Y is said to be monotonic w.r.t. variable X iff for any realization ω in the probability257

space Ω, Yx(ω) is a monotonic function of x. Furthermore, when assuming exogeneity of X w.r.t.258

Y in addition to monotonicity, the expressions given in Eq. (7) simplify because interventional and259

conditional probabilities are then equal, i.e. px = P(Yx = 1) for x ∈ {0,1}, and thus260

PN = 1− p0

p1
, PS = 1− 1− p1

1− p0
, and PNS = p1− p0 . (8)261

12



Note that under such conditions, PN matches with the FAR — we elaborate on this coincidence262

further in this article. Another important result of causal theory which is linked to to Equation263

(8) is that under exogeneity and releasing the assumption of monotonicity, the probabilities of264

causation are then no longer identifiable, but the three quantities 1− p0/p1, 1− (1− p1)/(1− p0)265

and p1− p0 provide lower bounds respectively for PN, PS and PNS. Figure 2 shows a plot of266

the expressions given in Eq. (8): it can be seen that PN is more sensitive to p0 than to p1, and267

conversely that PS is more sensitive to p1 than to p0: necessary causation is enhanced further by268

an event being rare in the counterfactual world, whereas sufficient causation is enhanced further269

by its being frequent in the real one. This being said, PN and PS are clearly not independent and270

coincide under two situations: (i) when p0 + p1 = 1 (e.g. in a deterministic context where p1 = 1271

and p0 = 0, then both PN and PS = 1); and (ii) when p0 = p1 (e.g. where the counterfactual and272

real worlds’ responses are identical, then both PN and PS = 0).273

Causal attribution of climate-related events. Choosing to focus on PN or PS is a matter274

of point of view. To illustrate this issue, we can consider two typical perspectives: the ex post275

perspective of the plaintiff — or the judge, or the insurance contract holder — and the ex ante276

perspective of the planner — or the policymaker, or the campaigner. In the first case, the question277

“who is to blame for the event that occured?” — with the potentially many implications of its278

answer — is central. The problem of climatic event attribution can thus be compared to a lawsuit,279

and actually does already appear in courts (Adam 2011): we may primarily seek to determine280

responsibilities for the event and its aftermaths, where responsibility is understood in a legal sense281

i.e. in a necessary causation sense. Event attribution thus requires the adversarial debate typical of282

a lawsuit in order to cautiously balance incriminating versus exonerating evidence, i.e. to evaluate283

the main cause under scrutiny, e.g. anthropogenic forcings, as well as each and every possible284

alternative explanations, e.g. natural forcings or internal variability of the climate system, which285
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may have led to the same outcome. If the resulting PN is high enough, then human responsibility286

is established and a ruling may in theory follow, as it does in litigation cases. In any case, as in the287

imprudent shooter example, PS does not matter here, only PN does.288

By contrast, the planner is looking forward and may ask instead the general type of question289

“what should be done today w.r.t. events that may occur in the future?” For instance, in the290

context of mitigation, two causal questions are at stake: on the one hand, what is the, expectedly291

beneficial, effect of limiting CO2 emissions? and, on the other hand, what is the, expectedly292

costly, effect of not limiting them? The first question seeks a causal guarantee that removing the293

forcing will make the event less frequent and the concern is thus predicated on necessary causality.294

Conversely, the second question seeks a causal guarantee that maintaining the forcing will maintain295

the event frequency and the concern is thus predicated on sufficient causality. Therefore, PS is the296

appropriate focus for the planner when assessing the future costs that inaction will imply, but297

PN is at stake when assessing the future benefits of enforcing strong mitigation actions. Policy298

elaboration requires both sides of this assessment; thus both PN and PS are of interest here. To299

summarize, depending on context, PN, PS or both may be relevant and can help answer different300

causal questions.301

Methodological proposal. Our methodological proposal for the attribution of weather and302

climate-related events is rather straightforward and it is derived from the previous considerations.303

It consists of deriving the probabilities of necessary and of sufficient causality, PN f and PS f as-304

sociated with the causal relationship between each forcing f ∈F and an event Y of interest. As305

outlined in the introduction, the choice of Y is based on a climate variable Z and a threshold u;306

this choice depends on the causal focus of the study and is otherwise rather arbitrary. Once Y307

has been duly defined, the causal chain to be investigated is actually quite simple, notwithstand-308

ing the complexity of the climate system. It can be represented by the single, standard graph of309
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Fig. 1b, independently of the specificities of the event Y under scrutiny. A set of binary variables310

{X f : f ∈F} that represent the external forcings occupy the top nodes in this graph and are thus311

exogenous. The event variable Y has parents P = {X f : f ∈ F} and it is also influenced by312

internal climate variability v which is treated here as random terms (Ghil et al. 2008).313

Next, we can apply Eq. (8) because all the forcings are exogenous and one may also assume that314

the event Y is monotonous w.r.t. the forcing. Indeed, assuming that the latter does not hold would315

imply that despite the event being more frequent in the factual world than in the counterfactual one316

(i.e. p1 > p0), there exists some realizations ω ∈ Ω such that Y0(ω) = 1 and Y1(ω) = 0. That is,317

one can find some conditions under which the event does occur when the forcing is turned off but318

no longer occurs only by turning it on — other conditions being held unchanged. Such conditions319

are arguably not realistic physically for a broad class of events and for the forcings usually consid-320

ered in D&A. We thus derive PN = 1− p0/p1 and PS = 1− (1− p1)/(1− p0) for each forcing f321

and omit hereinafter for simplicity the index f . Hence, the challenge is now to estimate the causal322

effects {p0, p1}. In many fields, experimental and/or natural observations of a response Y — say,323

in epidemiology, a disease — and of a factor X — say, a bad habit or a treatment — are available324

for a sample of individuals, allowing for a direct estimation of p1 and p0. Most unfortunately,325

in the climate sciences, no such sample of “Earth-like climate systems” is accessible to natural326

observation, and even less so to experimental testing. The paleoclimatic record may in theory pal-327

liate this difficulty by considering several remote episodes of Earth’s climatic history as a sample328

(National Research Council 1995). An important limitation of this approach, however, is the lim-329

ited size and high uncertainty of the indirect paleoclimatic estimates of both the response Y and330

the forcings X f over the distant past. Furthermore, such non-experimental analysis is inherently331

restricted to forcings that can be traced to paleoclimatic perturbations that did occur and for which332

exogeneity is guaranteed. With such strong limitations on the natural observation side and with in333
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situ experimentation inaccessible, we are left with the only remaining alternative: so-called in sil-334

ico experimentation. This option is rendered plausible by the increasing realism of climate system335

models that were developed partly for this purpose. Estimates of the causal effects {p0, p1} can336

be obtained from an ensemble of numerical experiments consisting of r1 and r0 runs under factual337

and counterfactual conditions, respectively, w.r.t. one or more forcings f . An obvious estimation338

strategy is to use the empirical frequencies p̂x = ∑
rx
k=1Y (k)

x /rx for x ∈ {0,1}, where Y (k)
x is the339

event occurrence in the k-th run of the factual or counterfactual experiment. This option presents340

a major shortcoming since p̂x, as well as PN and PS, are affected by high sampling uncertainty.341

In practice, due to restrictions on computer resources, rx is typically in the range of 10 to 100,342

while asymptotic convergence requires rx to be large compared to the return period Tx ' 1/px of343

the event; the latter is clearly out of reach for the rare events usually at stake. Another serious344

difficulty is that climate models, including the most detailed GCMs, are simplified representations345

of reality that are affected by both numerical and physical modeling errors. Thus the real causal346

effects may differ from the model causal effects. While both these difficulties are serious, they347

can be addressed by introducing additional assumptions on the distribution of the climate variable348

Z, and by treating model error as an additional random term influencing the response variable Y .349

Discussing such approaches is beyond the scope of this paper. The probabilities PN and PS are350

then derived from the estimates p̂1 and p̂0 so obtained.351

Causal claims are eventually formulated from these probabilities, translated into words based on352

standardized uncertainty wording, such as the one used in IPCC (2013). Summarizing, the general353

methodological approach proposed herewith consists of the following:354

• Define a response variable of interest Y based on a climate index Z and threshold u;355

• Infer the causal effects associated with Y , based on in silico experimentation;356
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• Derive PN and PS for each forcing and formulate associated causal claims, by using for instance357

the IPCC (2013) uncertainty terminology.358

2003 European heatwave. We illustrate our approach by revisiting one of the first counterfac-359

tual event attribution studies (Stott et al. 2004), which focused on the European heat wave of the360

summer of 2003. Applying our notation and the above three steps to this study:361

• Z is the mean summer temperature anomaly over Europe, and u is set at 1.6◦C;362

• The factual and counterfactual probability density functions (pdfs) of Z are obtained from the363

corresponding two ensembles by fitting a generalized Pareto distribution to each one, cf. Fig. 3a.364

The inference procedure yields two ranges of values for the return periods: 350≤ T0 ≤ 2500 and365

100 ≤ T1 ≤ 1000. For the sake of clarity, we choose to concentrate here on two values which are366

arbitrarily chosen within these ranges: T0 = 1250 years and T1 = 125 years, implying p0 = 0.0008367

and p1 = 0.008;368

• These values of p0 and p1 yield PN = 0.9 and PS = 0.0072, by applying Eq. (8).369

It follows that CO2 emissions are very likely to be a necessary cause, but are virtually certainly370

not a sufficient cause, of the summer of 2003 heat wave. This statement highlights a distinctive371

feature of unusual events: several necessary causes may often be supported by the data, but rarely372

a sufficient one. To further illustrate this point, we plot PN, PS and PNS as a function of the373

threshold u in Fig. 3b. It is clear from this figure that the causal evidence shifts from necessary374

and not sufficient when u is large (unusual event) to sufficient and not necessary when u is small375

(usual event). This shift occurs because in the latter case, it is the nonoccurrence of event Y that376

becomes an unusual event. But this rare “non-event” tends to be less unusual in the counterfactual377

world than in the factual one, which implies necessity for the “non-event” and thus sufficiency for378

the event, by the definitions of PN and PS, respectively, in Eq. (6).379
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In any case, a low threshold conversely yields PN' 0 and PS' 1: it follows that anthropogenic380

CO2 emissions are virtually certainly a sufficient cause, and are virtually certainly not a necessary381

cause, of the fact that the summer of 2003 was not unusually cold. Therefore, this symmetrically382

illustrates that the occurrence of a usual event — or equivalently, the non-occurrence of a rare383

event — is thus often prone to have a sufficient cause but rarely necessary ones.384

The above analysis defines the occurrence of the event “2003 European heatwave” w.r.t. to385

the particular year when it occurred. Such a definition of the event inherently considers that the386

particular year of occurrence 2003 is a relevant feature thereof, and consequently builds this feature387

into the causal analysis. This approach is particularly relevant in the context, say, of an insurance388

contract, which may often apply only to a single specified year. But a broader perspective focusing389

on longer timescales is arguably more relevant in other contexts, such as elaborating adaptation390

and mitigation policy, which has no reason to grant any particular importance to the year 2003.391

In such a context, one would release the year 2003 as an event feature and focus instead on the392

fact that a severe European heatwave did occur. The meaningful temporal feature retained here393

would be “occurrence during the industrial period” instead of “occurrence during year 2003”. It is394

straightforward to translate this approach into our proposed framework by going through the same395

three steps again. In what follows, we denote for clarity by an asterisk the new variables Y ∗,Z∗396

and u∗:397

• Z∗ is defined to be the number of occurrences of European heatwaves over a time period of398

length τ ending in 2003, where in any given year a heatwave occurrence is defined as above by399

Z ≥ u, and the threshold u∗ is set to 1. The event Y ∗ thus occurs if at least one heatwave took place400

in Europe during the time interval 2004− τ ≤ t ≤ 2003.401

•Deriving the new causal effects {p∗0, p∗1} is straightforward, subject to assuming stationarity w.r.t.402
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time (see discussion immediately below), based on the previous causal effects {p0, p1}:403

p∗x = P(Z∗x ≥ 1) = 1− (1− px)
τ . (9)404

For τ = 1, this equation reduces to p∗x = px, since Y ∗ =Y in this case. For τ large compared to the405

return period Tx ' 1/px of event Y , it implies p∗x ' 1; this is also unsurprising because in either the406

factual or the counterfactual world, the occurrence of a heatwave, no matter how rare in any given407

year, is certain over a sufficiently long period.408

• Plotting in Fig. 3c PN∗ and PS∗ as a function of τ , based on Eq. (9), we see that the causal409

evidence shifts from necessary and not sufficient in the limiting case τ = 1 (since Y ∗ = Y ), to410

sufficient and not necessary when τ gets asymptotically large. For τ = 200 years — i.e. the411

industrial period, which matches approximately the instrumental record length — we find from412

Eq. (9) that p0 = 0.14 and p1 = 0.80, and next that PN∗ ' PS∗ ' 0.8.413

It follows that anthropogenic CO2 emissions are likely to be both a necessary cause and a414

sufficient one for a 2003-like heatwave to have occurred at least once over the industrial period.415

Summarizing, sufficient causality does not apply to the event occurrence on the particular year416

when it did occur, but it does for such an event to have occurred at least once over the entire417

period. Evidence of necessary causality, on the other hand, is strong in both cases. This illustrative418

example thus shows that whether one considers something as fortuitous as its particular year of419

occurrence to be a relevant feature of the event under scrutiny, or not, has crucial implications for420

the associated level of causal evidence. Replacing the feature “year of occurrence” by the feature421

“occurrence during the industrial period” may be more relevant to the analysis in many situations,422

and yield more powerful causal evidence.423

This being said, the stationarity hypothesis underlying Eq. (9) is unrealistic because mean tem-424

perature did change over the period considered, and so did extremes. This convenient assumption425
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was made here for the sake of illustrating in a simple and qualitative way the effect on PN and426

PS of defining the event occurrence on a longer period of length τ . While a realistic non station-427

ary treatment of this case study is beyond our scope, it is important to underline that including428

assumptions of non-stationarity into a causal inference study presents no particular difficulties in429

general. For instance, in the present case study, this may be done merely by using the more general430

expression:431

p∗x = 1−
τ

∏
t=1

(1− px,t) . (10)432

in place of Eq. (9) in order to determine the causal effects {p∗0, p∗1}. In Eq. (10), px,t denotes433

the probability of occurrence of a heatwave in year t and is thereby allowed to change over time.434

In practice, (px,t)
τ
t=1 may be estimated based on an ad-hoc statistical model accounting for non-435

stationarity. For instance, a commonplace choice for the latter is to specify the PDF of the index436

Z in year t conditionally on a covariate which changes in time (e.g. mean temperature) and/or an437

explicit parametric dependence to time t (e.g. a linear trend). Note that Eq. (10) would clearly be438

required for the estimation of p∗1 because the factual world has undeniably changed. Yet Eq. (9)439

may still be considered acceptable for the estimation of p∗0 since the counterfactual world would440

arguably have suffered limited changes. Accordingly, one may expect that when moving to a441

non stationary treatment, (i) p∗0 would only be marginally affected, (ii) p∗1 would potentially be442

substantially affected. More precisely, one would expect p∗1 to have a lower value because px,t443

is expected to be lower than its value in year 2003, for any year t preceding it. Therefore, based444

on above considerations and on Fig. 2, accounting for non-stationarity would expectedly translate445

here into a slight decrease in PN, a potentially pronounced decrease in PS, and a lower level of446

causal evidence overall — as compared to the values given above for illustration.447

In any case, each of the different perspectives taken above addresses a causal question about448

the 2003 heatwave that is different, and may be of interest for distinct purposes. But while the449
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questions only differ slightly, the answers vary greatly. The answer to such an open question as450

“have CO2 emissions caused the 2003 European heatwave?” is thus dramatically affected by (i)451

how one defines the event “2003 European heatwave”; and (ii) whether causality is understood in452

a necessary or sufficient sense. Precise causal answers about climate events thus require precise453

causal questions.454

Concluding remarks. We have provided an introduction to causal theory, as used in causal455

studies across several disciplines, and proposed a simple methodology for its application to D&A456

studies. We hope that this methodological framework — along with the more precise vocabulary457

it relies on — will help clarify discussions between D&A experts, as well as communication to458

wider audiences.459

We have shown, with simple examples, that it is important to distinguish between necessary and460

sufficient causality. Such a distinction is, at present, lacking in the conventional event attribution461

framework. Any time a causal statement is being made about a weather or climate-related event,462

part of the audience understands it in a necessary-causation sense, while another part understands463

it in a sufficient-causation sense — which can give rise to many potential misunderstandings.464

Introducing the clear distinction may thus clarify discussions. Specifically, it may for instance help465

address the claim recalled in introduction, according to which single events are never attributable466

since they are multi-caused. In light of what precedes, this claim intrinsically postulates that a467

cause qualifies as such only if it is both necessary and sufficient. The latter is arguably far too468

restrictive an approach of causation.469

Our revisiting the well-known case study of the European heatwave of 2003 should clarify an470

apparent paradox in the interpretation of such studies. Even in the few such cases where evidence471

supporting necessary causation is strong, assertive causal statements appear to have been shied472

away from, possibly by the perception that sufficiency was lacking. A statement such as “CO2473

21



emissions have not caused the particular event Y : they have only caused the probability of occur-474

rence of Y -like events to increase” may actually often be too conservative and even wrong: as in475

the above example, it may indeed be the case that CO2 emissions did cause event Y — although476

in a restrictively necessary causation sense. Further, by defining the event to mean not just oc-477

currence in a particular year but during the entire industrial era, it may be possible to establish478

that event Y was in fact caused by increased CO2 emissions — this time w.r.t. both necessity and479

sufficiency.480

Our proposed methodology, like the conventional one, relies on in silico experimentation to481

derive both the factual and the counterfactual probabilities p1 and p0, respectively, use the two482

to obtain the quantity 1− p0/p1, and then translate it into a causal statement. Our extended483

framework, however, has important distinctive features. First, we have shown that 1− p0/p1 is484

associated only with the first facet of causality, that of necessity, and we have introduced its second485

facet, that of sufficiency, which is associated to the symmetric quantity 1− (1− p1)/(1− p0).486

Both have been shown to be relevant depending on the context. Second, the interpretation given487

to 1− p0/p1 differs under both frameworks, which has deep implications for the formulation of488

causal statements and the treatment of uncertainty. The quantity 1− p0/p1 was coined as the489

fraction of attributable risk upon being introduced in event attribution — and similarly in other490

applied fields, terms like excess risk ratio, attributable fraction or attributable proportion are also491

used to name the same quantity. The FAR, as well as these similar terms, is used to communicate492

the idea — particularly relevant in epidemiology from which it originates — that the exposition to493

a given risk factor X translates into an increase of, say, the frequency of a given disease Y . In this494

terminology, the quantity 1− p0/p1 is a frequency increase index: it corresponds to a statistical495

monitoring approach, which is more descriptive than structural, in the sense that it does not embed496

any precisely defined causal meaning. For this reason, Pearl (2000) has argued that the term497
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attributable risk is a misnomer: because such a precise causal meaning is lacking, the associated498

statement can only address the increase in frequency. Accordingly, uncertainty analysis conducted499

on the FAR by deriving its probability distribution cannot be easily translated into uncertainty on500

the causal link at stake — instead, the focus on the frequency increase and its uncertainty yields501

statements like “There is a 90% confidence level that CO2 emissions have increased the frequency502

of occurrence of Y -like events by a factor at least two”.503

In causal theory, the probability of necessary causation PN formally embeds the notion of causal504

attribution in its definition, given by Equation (6). While PN is not easily computable in gen-505

eral, it coincides with 1− p0/p1 under exogeneity and monotonicity. These two rather restrictive506

conditions are fortunately met in the context of D&A, thus the quantity 1− p0/p1 usually re-507

ferred as FAR now has a precise causal meaning, instead of being merely an index of frequency508

increase. This shift in interpretation affects the associated causal claim, which can now address509

more directly the actual causal link. Moreover, this shift has an immediate implication in terms510

of assessing the uncertainty of the claim: the latter is indeed already quantified because PN is a511

probability, which inherently measures uncertainty. Therefore, based on the same supporting data,512

the new interpretation translates into “CO2 emissions are likely to have caused event Y in a nec-513

essary causation sense,” a claim that is more direct, assertive and clear from a causal attribution514

standpoint than the previous one.515

Finally, at a more practical level, attribution studies applying causal theory require the availabil-516

ity of counterfactual model simulations. This carries an immediate implication w.r.t. the design of517

standardized Coupled Modeling Intercomparison Project (CMIP) experiments that specifically ad-518

dress D&A purposes. The present analysis suggests moving towards a fully counterfactual design519

in the future — i.e., all forcings except f being ‘on’— instead of the mostly factual one prevailing520
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at present — i.e., forcing f only being on. Generalizing this design would be a significant step521

forward in attribution studies of weather and climate-related events.522
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FIG. 2. Contour plots of PN (upper left), PS (upper right), PNS (lower left), and |PN−PS| (lower right) as

functions of the counterfactual probability p0 (horizontal axis) and of the factual probability p1 (vertical axis).
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FIG. 3. Causal inference for the 2003 European heat wave. (a) Counterfactual and factual probability density

functions (pdfs) of the temperature anomaly index, using a generalized Pareto distribution fit after Stott et al.

(2004); (b) probabilities PN,PS and PNS as a function of the threshold u; (c) PN,PS and PNS as a function of

the length of the observation period τ .
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