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Introduction

Structural Equation Models (SEMs) are the dominant re-
search paradigm in the quantitative, data-intensive behav-
ioral sciences. These models permit a researcher to express
theoretical assumptions meaningfully, using equations, de-
rive their consequences and test their statistical implications
against data. The result is a powerful symbiosis between
theory and data which underlies much of current research
in causal analysis, especially in therapy evaluation (Shrout
et al., 2010), education testing and management (Muthén and
Muthén, 2010), and personality research (Lee, 2012).

While advances in graphical models have had a transfor-
mative impact on causal analysis and machine learning, only
a meager portion of these developments have found their way
to mainstream SEM literature which, by and large, prefers
algebraic over graphical representations (Joreskog and Sor-
bom, 1982; Bollen, 1989; Mulaik, 2009; Hoyle, 2012). One
of the reasons for this disparity rests on the fact that graph-
ical techniques were developed for non-parametric analysis,
while much of SEM research is conducted within the con-
fines of Gaussian linear models, to which matrix algebra and
powerful statistical tests are applicable. Among the tasks
facilitated by graphical models are: model testing, identifi-
cation, policy analysis, bias control, mediation, external va-
lidity, and the analysis of counterfactuals and missing data
(Pearl, 2014a).

The purpose of this paper is to introduce psychometric
researchers to modern tools of graphical models and to de-
scribe some of the benefits, as well as new insights that
graphical models can provide. We will begin by introduc-
ing basic definitions and tools used in graphical modeling,
including graph construction, definitions of causal effects,
and Wright’s path tracing rules. We then introduce more ad-

vanced notions of graph separation, which were developed
for non-parametric analysis, but have simple and meaning-
ful interpretation in linear models. These tools provide the
basis for model testing and identification criteria, discussed
in subsequent sections. We then cover advanced applications
of path diagrams including equivalent regressor sets, mini-
mal regressor sets, and variance minimizing for causal ef-
fect estimation. Lastly, we discuss counterfactuals and their
computation in linear SEMs before showing how the tools
presented in this paper provide simple solutions to five ex-
amples representing non-trivial problems in SEM research.

With the exception of the “Causal Effects among Latent
Variables" section, we focus on models where all variables
are observable (often called path analysis models), allowing
for error terms to be correlated. As graphical techniques
were originally developed for non-parametric models, they
have not traditionally addressed the identification of effects
among latent variables, which is impossible without para-
metric assumptions. Instead, the presence of latent variables
was taken into account through the correlations they induce
on the error terms. We will demonstrate how latent variables
can be summarized using error terms and briefly discuss how
the results in this paper, while not directly addressing causal
effects among latent variables, can nevertheless be applied to
their analysis.

Path Diagrams and Graphs

Path diagrams or graphs1 are graphical representations of
the model structure. They were introduced by Sewell Wright
(1921), who aimed to estimate causal influences from sta-
tistical data on animal breeding. Today, SEM is generally

1We use both terms interchangeably.
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implemented in software2, and, as a result, when users expe-
rience unexpected behavior (due to unidentified parameters,
for example) they are often at a loss as to the source of the
problem3. For the remainder of this section, we will review
the basics of path diagrams and provide users with simple,
intuitive tools that will be used to resolve questions of identi-
fication, goodness of fit, and more using graphical methods.

We introduce path diagrams by way of example. Suppose
we wish to estimate the effect of attending an elite college
on future earnings. Clearly, simply regressing earnings on
college rating will not give an unbiased estimate of the target
effect. This is because elite colleges are highly selective, so
students attending them are likely to have qualifications for
high-earning jobs prior to attending the school. This back-
ground knowledge can be expressed in the following SEM
specification. Throughout the paper, we will use lowercase
letters and the Greek letter α to represent model parameters.

Model 1.

Q1 = U1

C = a · Q1 + U2

Q2 = c ·C + d · Q1 + U3

S = b ·C + e · Q2 + U4,

where Q1 represents the individual’s qualifications prior to
college, Q2 represents qualifications after college, C contains
attributes representing the quality of the college attended,
and S the individual’s salary.

Figure 1a is a causal graph that represents this model spec-
ification. Each variable in the model has a corresponding
node or vertex in the graph. Additionally, for each equa-
tion, arrows are drawn from the independent variables to the

(a)

(b)

Figure 1. (a) Model with latent variables (Q1 and Q2) shown
explicitly (b) Same model with latent variables summarized

dependent variables. These arrows reflect the direction of
causation. In some cases, we may label the arrow with its
corresponding structural coefficient as in Figure 1a. Error
terms are typically not displayed in the graph, unless they
are correlated.

The variables Q1 and Q2 represent quantities that are not
directly measurable. As a result, they are latent variables.
In this paper, we distinguish latent variables from observ-
able variables in the graph by surrounding the former with a
dashed box. As we mentioned in the Introduction, the pres-
ence of latent variables is taken into account by the corre-
lations they induce on the error terms4. For example, the
effect of the latent variables in Figures 1a is summarized by
Figure 1b. We see that the effect of College on Salary in
Figure 1a is now summarized by the coefficient α in Figure
1b. Similarly, the bidirected arc between C and S (represent-
ing the correlation of the error terms of C and S ) in Figure
1b summarizes the correlation between C and S due to the
path C ← Q1 → Q2 → S . The corresponding model is as
follows:

Model 2.

C = UC

S = αC + US

The background information specified by Model 1 implies
that the error term of S , US , is not correlated with UC , and
this correlation is depicted in Figure 1a by the bidirected arc
between C and S .

In order to estimate α, the causal effect of attending an
elite college on future earnings, the coefficients must have a
unique solution in terms of the covariance matrix or probabil-
ity distribution over the observable variables, C and S . The
task of finding this solution is known as identification and is
discussed in a later section. In some cases, one or more co-
efficients may not be identifiable, meaning that no matter the
size of the dataset, it is impossible to obtain point estimates
for their values. Indeed, we will see that the coefficients in
Model 1 are not identified if Q1 and Q2 are latent. However,
if we include the strength of an individual’s college appli-
cation, A, as shown in Figure 2a, we obtain the following
model:

2Common software packages include AMOS (Arbuckle, 2005),
EQS (Bentler, 1989), LISREL (Jöreskog and Sörbom, 1989), and
MPlus (Muthén and Muthén, 2010) among others.

3Kenny and Milan (2012) write, “Identification is perhaps the
most difficult concept for SEM researchers to understand. We have
seen SEM experts baffled and bewildered by issues of identifica-
tion.”

4While we do not directly address the identification of causal
effects among latent variables, the results in this paper are neverthe-
less applicable to this problem. See section Identification.
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(a)

(b)

Figure 2. Graphs associated with Model 3 in the text (a)
with latent variables shown explicitly (b) with latent vari-
ables summarized

Model 3.

Q1 = U1

A = a · Q1 + U2

C = b · A + U3

Q2 = e · Q1 + d ·C + U4

S = c ·C + f · Q2 + U5.

By removing the latent variables from the model specifica-
tion we obtain:

Model 4.

A = a · Q1 + UA

C = b · A + UC

S = α ·C + US .

The corresponding path diagram is displayed in Figure
2b. The coefficients in this model are combinations of coef-
ficients of the original model and each of these combinations
is identifiable, as we will show.

The ability to determine identifiability directly from the
model specification is a valuable feature of graphical mod-
els. For example, it would be a waste of resources to specify
the structure in Model 2 and gather data only to find that the
parameter of interest is not identified. The tools provided in
subsequent sections will allow modelers to determine imme-
diately from the path diagram that the effect of attending an
elite college on future salary, α, is not identified using Model
2 but is identified (and equal to the coefficient of C in the
regression of S on C and A, denoted βS C.A) using Model 4.
This conclusion is a consequence of the model specification

and α = βS C.A holds only if the specification accurately re-
flects reality (see section “Causal Effects among Latent Vari-
ables"). The ability to derive testable implications and test
the model specification is another valuable feature of graph-
ical models. For example, we will see that Model 3 implies
that the partial correlation between S and A given C and Q1,
ρS A.CQ1 , is equal to zero. If this constraint does not hold in
the data, then we have evidence that the model is missing ei-
ther an arrow or a bidirected arc between A and S . Most im-
portantly, these tools will be applicable to far more complex
models where questions of identifiability and testable impli-
cations are near impossible to determine by hand or even by
standard software.

In summary, the causal graph is constructed from the
model equations in the following way: Each variable in the
model has a corresponding vertex or node in the graph. For
each equation, arrows are drawn in the graph from the nodes
representing dependent variables to the node representing the
independent variable. Each arrow, therefore, is associated
with a coefficient in the SEM, which we will call its struc-
tural coefficient. Finally, if the error terms of any two vari-
ables are correlated, then a bidirected arc is drawn between
the two variables. Conversely, the lack of a bidirected arc
indicates that the error terms are independent.

Before continuing, we review some basic graph terminol-
ogy. An edge is defined to be either an arrow or a bidirected
arc. If an arrow exists from X to Y , we say that X is a parent
of Y . If there exists a sequence of arrows all of which are
directed from X to Y we say that X is an ancestor of Y . If X
is an ancestor of Y then Y is a descendant of X. Finally, the
set of nodes connected to Y by a bidirected arc are called the
siblings of Y .

A path between X and Y is a sequence of edges, connect-
ing the two vertices5. A path may go either along or against
the direction of the arrows. A directed path from X to Y is
a path consisting only of arrows pointed towards Y . A back-
door path from X to Y is a path begins with an arrow pointing
to X and ends with an arrow pointing to Y . For example, in
Figure 4, C ← B→ E, C → D→ E, C ← B→ D→ E, and
C → D ← B → E are all paths between C and E. However,
only C → D → E is a directed path, and only C ← D → E
and C ← B→ D→ E are back-door paths. The significance
of directed paths stems from the fact that they convey the
flow of causality, while the significance of back-door paths
stems from their association with confounding.

A node in which two arrowheads meet is called a collider.
For example, Z in Figure 5a and C in Figure 4 are colliders.
The significance of colliders stems from the fact that they
block the flow of information along a path (see section D-
separation).

A graph or model is acyclic if it does not contain any cy-

5We emphasize that, in this paper, we refer to paths as sequences
of arrows and/or bidirected arcs, not single arrows.
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cles, that is a directed path that begins and ends with the
same node. A model or graph is cyclic if it contains a cy-
cle. An acyclic model without correlated error terms is called
Markovian. Models with correlated error terms are called
non-Markovian while acyclic non-Markovian models are ad-
ditionally called semi-Markovian. For example, Figure 4 is
both acyclic and Markovian. If we were to add a bidirected
arc between any two variables, then it would no longer be
Markovian and would instead be semi-Markovian. If we
were to instead reverse the edge from B to E, then we would
create a cycle and the model would be non-Markovian and
cyclic.

Lastly, we note that, for simplicity, we will assume with-
out loss of generality that all variables have been standard-
ized to mean 0 and variance 1.

Causal Effects

Let Π = {π1, π2, ..., πk} be the set of directed paths from X
to Y and pi be the product of the structural coefficients along
path πi. The total effect or average causal effect (ACE) of X
on Y is often defined as the

∑
i pi (Bollen, 1989). For exam-

ple, in Figure 2a, the total effect of C on S is c+d · f and that
of A on S is b(c + d f ).

The rational for this additive formula and its extension to
non-linear systems can best be seen if we define the causal
effect of X on Y as the expected change in Y when X is as-
signed to different values by intervention, as in a randomized
experiment. The act of assigning a variable X to the value
x is represented by removing the structural equation for X
and replacing it with the equality X = x. This replacement
dislodges X from its prior causes and ensures that covariation
between X and Y reflects causal paths from X to Y only.

The expected value of a variable, Y , after X is assigned the
value x by intervention is denoted E[Y |do(X = x)], and the
ACE of X on Y is defined as

ACE = E[Y |do(X = x + 1)] − E[Y |do(X = x)], (1)

where x is some reference point (Pearl, 2009, ch. 5)6. In non-
linear systems, the effect will depend on the reference point
but in the linear case, x will play no role and we can replace
(1), with the derivative,

ACE =
∂

∂x
E[Y |do(X = x)]. (2)

Consider again Model 3 with C a binary variable taking
value 1 for elite colleges and 0 for non-elite colleges. To es-
timate the total effect of attending an elite college on salary,
we would hypothetically assign each member of the pop-
ulation to an elite college and observe the average salary,
E[S |do(C = 1)]. Then we would rewind time and assign
each member to a non-elite college, observing the new aver-
age salary, E[S |do(C = 0)]. Intuitively, the causal effect of

attending an elite college is the difference in average salary,

E[S |do(C = 1)] − E[S |do(C = 0)].

The above operation provides a mathematical procedure that
mimics this hypothetical (and impossible) experiment using
a SEM.

In linear systems, this “interventional” definition of causal
effect coincides with the aforementioned “path-tracing” def-
inition as we will demonstrate by computing E[S |do(C =

1)] − E[S |do(C = 0)] in Model 3. (For clarity, we will con-
sider Q1 and Q2 to be observable and not latent variables for
the remainder of this section.)

The intervention, do(C = c0), modifies the equations in
the following way:

Model 5.

Q1 = U1

A = a · Q1 + U2

C = c0

Q2 = e · Q1 + d ·C + U4

S = c ·C + f · Q2 + U5.

The corresponding path diagram is displayed in Figure 3a.
Notice that back-door paths, due to common causes, between
C and S have been cut, and as a result, all unblocked paths
between C and S now reflect the causal effect of C on S only.

Recalling that we assume model variables have been stan-
dardized to mean 0 and variance 1 implying that E[Ui] = 0
for all i, we see that setting C to c0 gives the following ex-
pectation for S :

E[S |do(C = c0)] = E[c ·C + f · Q2 + U5]
= c · E[C] + f · E[Q2] + E[U5]
= c · c0 + f E[e · Q1 + d ·C + U4]
= c · c0 + f · e · E[U1] + f · d · c0 + f · E[U4]
= c · c0 + f · d · c0

As a result,

E[S |do(C = c0 + 1)] − E[S |do(C = c0)] = c + f d (3)

for all c0, aligning the two definitions7.
6Holland (2001) defines causal effects in counterfactual termi-

nology (also known as potential outcomes (Rubin, 1974)), which
will be discussed in section Counterfactuals in Linear Models. The
logical equivalence between these two notational systems is shown
in (Pearl, 2009, ch. 7.4). SEMs provide a semantics for the poten-
tial outcomes framework, which is based on scientific knowledge as
opposed to experimental design.

7Moreover, this equality holds even when the parameters, c, d,
and f , are not identified (e.g. if the U terms are correlated). Causal
effects are defined in terms of hypothetical interventions, and the
parameters determine the impact of these interventions. Identifica-
tion is only the means to obtain causal effects from statistical data
and has nothing to do with the definition.
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In many cases, we may be interested in the direct effect of
C on S . The term “direct effect” is meant to quantify an effect
that is not mediated by other variables in the model or, more
accurately, the sensitivity of S to changes in C while all other
factors in the analysis are held fixed (Pearl, 2009, ch. 4.5).
In Model 3, the direct effect of C on S represents the effects
on salary due to factors other than the superior qualifications
obtained by attending an elite college. For example, it could
represent the value that employers place on the reputation of
the school.

“Holding all other factors fixed” can be simulated by inter-
vening on all variables other than C and S and assigning them
an arbitrary set of reference values8. (Like the total effect, in
linear systems, the direct effect does not change with respect
to the reference values.) Doing so severs all causal links in
the model other than those leading into S . As a result, all
links from C to S other than the direct link will be severed.
For example, Figure 3b shows the path diagram of Model 3
after intervention on all variables other than C and S .

Now, the direct effect of C on S can be defined as

E[S |do(C = c0 + 1,T = t)] − E[S |do(C = c0,T = t)],

where T is a set containing all model variables other than C
and S and {c0 ∪ t} a set of reference values. This causally
defined notion of direct effect differs fundamentally from the
traditional definition which is based on conditioning on in-
termediate variables (Baron and Kenny, 1986). The former
is valid in the presence of correlated errors and permits us to
extend this notion to non-linear models (Pearl, 2014b).

Notice that the direct effect of C on S in Figure 2b is equal
to the total effect of C on S in Figure 2a. Direct effects de-
pend on the set of variables that we decide to include in the
model.

Lastly, in linear models, the effect of C on S mediated by
Q2 is equal to the sum of the product of coefficients associ-
ated with directed paths from C to S that go through Q2 (i.e.
the effect on salary due to the knowledge and skills obtained
from attending an elite college). In Figure 2a, we see that this
effect is equal to d f . For a non-linear and non-parametric ex-
tension of this definition, see indirect effect in (Pearl, 2014b).

Wright’s Path Tracing Rules

The earliest usage of graphs in causal analysis can be
found in Sewell Wright’s 1921 paper, “Correlation and Cau-
sation”. This seminal paper gives a method by which the
covariance of any two variables in an acyclic, standardized
model can be expressed as a polynomial over a subset of the
model coefficients.

Wright’s method consists of equating the covariance, σYX ,
between any pair of variables, X and Y , to the sum of prod-
ucts of structural coefficients and error covariances along cer-
tain paths between X and Y . Let Π = {π1, π2, ..., πk} denote
the paths between X and Y that do not trace a collider, and

(a)

(b)

Figure 3. Models depicting interventions (a) After interven-
ing on C (c) After intervening on C, A, Q1, and Q2

let pi be the product of structural coefficients along path πi.
Then the covariance between variables X and Y is

∑
i pi. For

example, we can calculate the covariance between C and S
in Figure 2b in the following way: First, we note that there
are two paths between C and S and neither trace a collider,
π1 = C → S and π2 = C ← A ↔ S . The product of the
coefficients along these paths are p1 = α and p2 = b · CAS .
Summing these products together we obtain the covariance
between C and S , σCS = α + b ·CAS .

Consider the more complicated example of calculating
σCE in Figure 4. The paths between C and E that do not
trace a collider are C ← F → A → E, C ← A → E, and
C → D → E. (Note that we do not include C → D ← B →
E because it traces a collider, D.) Summing the products of
coefficients along these paths gives σCE = b ·a ·g+c ·g+d ·h.

To express the partial covariance, σYX.Z , partial correla-
tion, ρYX.Z or regression coefficient, βYX.Z , of Y on X given Z

8In footnote 15 we give an example demonstrating that “holding
all other factors fixed” cannot be simulated using conditioning but
instead must invoke intervention.

Figure 4. Model illustrating Wright’s path tracing rules and
d-separation
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in terms of structural coefficients we can first apply the fol-
lowing reductions given by Crámer (1946), before utilizing
Wright’s rules. When Z is a singleton, these reductions are:

ρYX.Z =
ρYX − ρYZρXZ

[(1 − ρ2
YZ)(1 − ρ2

XZ)]
1
2

(4)

σYX.Z = σYX −
σYZσZX

σ2
Z

(5)

βYX.Z =
σY

σX

ρYX − ρYZρZX

1 − ρ2
XZ

(6)

When Z is a singleton and S a set, we can reduce ρYX.ZS ,
σYX.ZS , or βYX.ZS as follows:

ρYX.ZS =
ρYX.S − ρYZ.S ρXZ.S

[(1 − ρ2
YZ.S )(1 − ρ2

XZ.S )]
1
2

(7)

σYX.ZS = σYX.S −
σYZ.SσZX.S

σ2
Z.S

(8)

βYX.ZS =
σY.S

σX.S

ρYX.S − ρYZ.S ρZX.S

1 − ρ2
XZ.S

(9)

We see that ρYX.ZS , σYX.ZS , or βYX.ZS can be expressed in
terms of pair-wise coefficients by recursively applying the
above formulas for each element of S . Then, using Equations
4-9, we can express the reduced pairwise covariances / cor-
relations in terms of the structural coefficients. For example,
reducing βCS .A for Figure 2b can be done as follows:

βCS .A =
σC

σS

ρCS − ρCAρAS

1 − ρ2
S A

(10)

=
1
1

(α + bCAS ) − (bα + CAS )(b)
1 − b2 (11)

=
α + bCAS − b2α − bCAS

1 − b2 (12)

=
α − b2α

1 − b2 (13)

= α (14)

D-Separation

When the conditioning set becomes large, applying the re-
cursive formula of Equations 7-9 can become complex. Van-
ishing partial correlations, however, can be readily identified
from the path diagram using a criterion called d-separation
(Pearl, 1988)9. In other words, d-separation allows us to
determine whether correlated variables become uncorrelated
when conditioning on a given set of variables. Not only will
this criterion allow us to use these zero partial correlations
for model testing, but it will also be utilized extensively in
the analysis of identification that follows.

The idea of d-separation is to associate “correlation”
with “connectedness” in the graph, and independence with

(a)

(b)

Figure 5. Examples illustrating conditioning on a collider

“separation”. The only twist on this simple idea is to define
what we mean by “connected path”, since we are dealing
with a system of directed arrows in which some nodes (those
residing in the conditioning set, Z) correspond to variables
whose values are given. To account for the orientations of the
arrows we use the terms “d-separated” and “d-connected” (d
denotes “directional”).

Rule 1: X and Y are d-separated if there is no active path
between them.

By “active path”, we mean a path that can be traced with-
out traversing a collider. If no active path exists between
X and Y then we say that X and Y are d-separated. As we
can see from Wright’s rules, ρXY = 0 when X and Y are d-
separated.

When we measure a set Z of variables, and take their
values as given, the partial covariances of the remaining
variables changes character; some correlated variables
become uncorrelated, and some uncorrelated variables
become correlated. To represent this dynamic in the graph,
we need the notion of “partial d-connectedness” or more
concretely, “d-connectedness conditioned on a set Z of
measurements”.

Rule 2: X and Y are d-connected, conditioned on a set of Z
nodes, if there is a collider-free path between X and Y that
traverses no member of Z. If no such path exists, we say
that X and Y are d-separated by Z or we say that every path
between X and Y is “blocked” by Z.

A common example used to show that correlation does not
imply causation is the fact that ice cream sales are correlated
with drowning deaths. When the weather gets warm people

9See also Hayduk et al. (2003) and Mulaik (2009) for an intro-
duction to d-separation tailored to SEM practitioners.
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Figure 6. Diagram illustrating why Ice Cream Sales and
Drowning are uncorrelated given Temperature and/or Water
Activities

tend to both buy ice cream and play in the water, resulting
in both increased ice cream sales and drowning deaths.
This causal structure is depicted in Figure 6. Here, we see
that Ice Cream Sales and Drownings are d-separated given
either Temperature or Water Activities. As a result, if we
only consider days with the same temperature and/or the
same number of people engaging in water activities then the
correlation between Ice Cream Sales and Drownings will
vanish.

Rule 3: If a collider is a member of the conditioning set Z,
or has a descendant in Z, then the collider no longer blocks
any path that traces it.

According to Rule 3, conditioning can unblock a blocked
path from X to Y . This is due to the fact that conditioning
on a collider or its descendant opens the flow of information
between the parents of the collider. For example, X and Y
are uncorrelated in Figure 5a. However, conditioning on the
collider, Z, correlates X and Y giving ρXY.Z , 0. This phe-
nomenon is known Berkson’s paradox or “explaining away”.
To illustrate, consider the example depicted in Figure 5b.
It is well known that higher education often affords one a
greater salary. Additionally, studies have shown that height
also has a positive impact on one’s salary. Let us assume that
there are no other determinants of salary and that Height and
Education are uncorrelated. If we observe an individual with
a high salary that is also short, our belief that the individual is
highly educated increases. As a result, we see that observing
Salary correlates Education and Height. Similarly, observing
an effect or indicator of salary, say the individual’s Ferrari,
also correlates Education and Height.

The fact that σYX.Z , 0 when σYX = 0 and Z a common
child of X and Y can also be illustrated using Wright’s path
tracing rules. Consider Figure 5a where Z is a common effect

of X and Y . We have σYX = 0 and, using Equation 5,

σYX.Z = σYX −
σYZσZX

σ2
Z

= 0 −
ab
1

= −ab.

When a and b are non-zero we have an algebraic confir-
mation of our intuition from the salary example that X and Y
are uncorrelated marginally, but becoming correlated when
we condition on Z.

Berkson’s paradox implies that paths containing colliders
can be unblocked by conditioning on colliders or their de-
scendants. Let π′ be a path from X to Y that traces a collider.
If for each collider on the path π′, either the collider or a
descendant of the collider is in the conditioning set Z then π′

is unblocked given Z. The exception to this rule is if Z also
contains a non-collider along the path π′ in which case X and
Y are still blocked given Z. For example, in Figure 4 the path
F → C ← A→ E is unblocked given C or D. However, it is
blocked given {A,C} or {A,D}.

The above three rules can be used to determine if X and Y
are d-separated given a set Z while the following theorem
makes explicit the relationship between partial correlation
and d-separation.

Theorem 1. Let G be the path diagram for a SEM over a set
of variables V. If X ∈ V and Y ∈ V are d-separated given
a set Z ⊂ V in the path diagram, G, then σXY.Z = ρXY.Z =

βXY.Z = βYX.Z = 0.

If X and Y are d-connected given Z then σXY.Z is generally
not equal to zero but may equal zero for particular parame-
terizations. For example, it is possible that the values of the
coefficients are such that the unblocked paths between X and
Y perfectly cancel one another.

We use the diagram depicted in Figure 4 as an example to
illustrate the rules of d-separation. In this example, F is d-
separated from E by A and C. However, C is not d-separated
from E by A and D since conditioning on D opens the col-
lider C → D ← B. Finally C is d-separated from E by
conditioning on A, D, and B.

D-separation formalizes the intuition that paths carry as-
sociational information between variables and that this flow
of information can be blocked by conditioning. This intuition
drives many of the results in identification, model testing,
and other problems that will be discussed in subsequent sec-
tions, making d-separation an essential component of graph-
ical modeling.

We conclude this section by noting that d-separation im-
plies vanishing partial correlation in both acyclic and cyclic
linear models (Spirtes, 1995). Further, all vanishing par-
tial correlations implied by a SEM can be obtained using
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d-separation (Pearl, 2009, ch. 1.2.3). Finally, in models
with independent error terms, these vanishing partial correla-
tions represent all of the model’s testable implications (Pearl,
2009, ch. 5.2.3).

Identification

A model parameter is identified if it can be uniquely deter-
mined from the probability distribution over the model vari-
ables. If a parameter is not identified, then it cannot be esti-
mated from data because there are many (often infinite) val-
ues for the parameter compatible with a given dataset.

If every parameter in the model is identified then the
model is said to be identified. If there is at least one uniden-
tified parameter than the model is not identified or unidenti-
fied10.

In SEMs, a parameter can be identified by expressing it
uniquely in terms of the covariance matrix. For example,
consider the model represented by Figure 2b. In the previ-
ous section (see Equations 10-14), we used Wright’s rules
to show that the parameter α, which is equivalent to the
causal effect of C on S , is identified and equal to βS C.A =
σ2

AσCS−σCAσAS

σ2
Sσ

2
A−σ

2
S A

.
In contrast, α is not identified in Figure 1b, whose stan-

dardized covariance matrix is:(
1 σS C

σS C 1

)
Using Wright’s rules we obtain a single equation: α+ CCS =

σS C . Since there are infinite values for α and CCS that satisfy
this equation, neither parameter is identified and the model is
not identified11.

Many SEM researchers determine the identifiability of the
model by submitting the specification and data to software,
which attempts to estimate the coefficients by minimizing a
fitting function12. If the model is not identified, then the pro-
gram will be unable to complete the estimation and warns
that the model may not be identified. While convenient,
there are disadvantages to using typical SEM software to de-
termine model identifiability (Kenny and Milan, 2012). If
poor starting values are chosen, the program could mistak-
enly conclude the model is not identified when in fact it may
be identified. When the model is not identified, the program
is not helpful in indicating which parameters are not iden-
tified nor are they able to provide estimates for identifiable
coefficients13. Most importantly, the program only gives an
answer after the researcher has taken the time to collect data.

Rather than determining the identifiability of parameters
by fitting the model, the tools described in this paper enable
us to detect identifiability directly from the model specifica-
tion and express identified parameters in terms of the popu-
lation covariance matrix. As a result, the modeler can esti-
mate their values from the sample covariance matrix, usually

invoking only a few variables, and the resulting estimates
will be consistent, as long as the model accurately reflects
the data generating mechanism. (In the next section, Model
Testing, we will give graphical criteria for testing whether
this is indeed the case.) Futher, we avoid issues of poor start-
ing values, are able to identify individual parameters when
the model as a whole is not identified, and can determine
the identifiability of parameters prior to collecting data. For
example, in the previous section, we demonstrated, without
data, that αwas not identified in Figure 1b, but was identified
in Figure 2b. As a result, the researcher knows when design-
ing the study that if α is the effect of interest, she must collect
data on A, in addition to C and S .

In this section, we give graphical criteria that allow the
modeler to determine whether a given parameter is identified
by inspecting the path diagram. While these methods are not
complete in the sense that they may not be able to identify
every coefficient that is identifiable, they subsume the identi-
fiability rules in the existing SEM literature, including the re-
cursive and null rules (Bollen, 1989) and the regression rule
(Kenny and Milan, 2012).

Selecting Regressors

It is well known that the coefficients of a structural equa-
tion, Y = α1X1 + α2X2 + ... + αkXk + UY , are identified and
can be estimated using regression if the error term, U, is in-
dependent of X = {X1, X2, ...Xk}. However, in some cases,
αi can be estimated using regression even when X is corre-
lated with U. For example, we showed that α in Figure 2b
is equal to βCS .A (see Equations 10-14), even though in the
corresponding structural equation, S = αC + US , permits C
and US to be correlated. As a result, α can be estimated using
the regression S = β1C + β2A + εS , which yields α = β1

14.

10Many authors also use the term “under-identified”. This term
can be confusing because it suggests models that are not identifiable
have no testable implications. This is not the case.

11While α is is not identified in Figure 1b, the causal effect of
C on S is still well-defined. It is equal to E[S |do(C = 1)] −
E[S |do(C = 0)] = α. The fact that this quantity is not identified
simply means that we cannot estimate it from data on C and S alone.

12Determining identifiability by fitting a model has become so
commonplace in the SEM community that it is often forgotten that
identification and model testing are separate concepts. Identifia-
bility is a property of the model specification only, and remains
independent of the data actually observed. “Fitting", on the other
hand, is a relationship between the model specification and the data
observed. Models can be “fitted" or “tested for fitting" regardless of
whether they are identified, although most available software today
require identification for “fitting" to produce meaningful results.

13According to Kenny and Milan (2012), AMOS is the only pro-
gram that attempts to estimate parameters when the model is not
identified.

14We distinguish between structural equations, in which the
parameters, α1, α2, ..., αk, represent causal effects, and regression
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Adding a set of variables, Z, to a regression to estimate
a parameter is often called adjusting for Z. The question
arises, how can we, in general, determine whether a set of
variables is adequate for adjustment when attempting to iden-
tify a given structural coefficient α? Put another way, how
can we determine whether a set Z of variables, when added
to the regression of Y on X would render the slope (of Y on X)
equal to the desired structural coefficient, α? The following
criterion, called single-door, allows the modeler to answer
this question by inspection of the path diagram.

Theorem 2. (Pearl, 2009, ch. 5.3.1) (Single-door Criterion)
Let G be any acyclic causal graph in which α is the coeffi-
cient associated with arrow X → Y, and let Gα denote the
diagram that results when X → Y is deleted from G. The
coefficient α is identifiable if there exists a set of variables
Z such that (i) Z contains no descendant of Y and (ii) Z d-
separates X from Y in Gα. If Z satisfies these two conditions,
then α is equal to the regression coefficient βYX.Z . Conversely,
if Z does not satisfy these conditions, then βYX.Z is not a con-
sistent estimand of α (except in rare instances of measure
zero).

In Figure 7a, we see that W blocks the spurious path
X ← Z → W → Y and X is d-separated from Y by W in
Figure 7b. Therefore, α is identified and equal to βYX.W . This
is to be expected since X is independent of UY in the struc-
tural equation, Y = αX + cW + UY . Theorem 2 tells us,
however, that Z can also be used for adjustment since Z also
d-separates X from Y in Figure 7b, and we obtain α = βYX.W .
(We will see in a subsequent section, however, that the choice
of W is superior to that of Z in terms of estimation power.)

(a) (b)

(c)

Figure 7. Diagrams illustrating identification by the single-
door criterion (a) α is identified by adjusting for Z or W (b)
The graph Gα used in the identification of α (c) α is identified
by adjusting for Z (or Z and W) but not W alone

Consider, however, Figure 7c. Z satisfies the single-door cri-
terion but W does not. Being a collider, W unblocks the spu-
rious path, X ← Z → W ↔ Y , in violation of Theorem 2,
leading to bias if adjusted for15. In conclusion, α is equal to
βYX.Z in Figures 7a and 7c. However, α is equal to βYX.W in
Figure 7a only.

Returning to Figure 2a, we see that S is d-separated from
C given A when we remove the edge from S to C, confirming
that βS C.A = α.

The intuition for the requirement that Z not be a descen-
dant of Y is depicted in Figures 8a and 8b. We typically do
not display the error terms, which can be understood as latent
causes. In Figure 8b, we show the error terms explicitly. It
should now be clear that Y is a collider and conditioning on Z
will create spurious correlation between X, UY , and Y leading
to bias if adjusted for. This means that α can be estimated by
the regression slope of Y on X, but adding Z to the regression
equation would distort this slope, and yield a biased result.

Notice that any coefficient, say from X to Y , is identifiable
in a Markovian model using the single-door criterion, since
Pa(Y) \ {X} is a single-door admissible set. As a result, the
structural equation for Y , which consists of X and the other
parents of Y , can be converted into a regression equation that
gives an unbiased estimate of each coefficient in the equation.
For example, in Figure 4, f is identifiable because the other
parents of E, D and A, represent a single-door admissible

equations, in which the coefficients, β1, β2, ..., βk represent regres-
sion slopes. The equation, S = β1C + β2A + εS , is a regres-
sion equation, where β1 = ∂

∂C E[S |C, A], β2 = ∂
∂A E[S |C, A], and

εS = S − β1C − β2A the residual term. The equation is not structural
since β2 does not equal the direct effect of A on S , ∂

∂A E[S |do(C, A)],
which equals 0. It is for this reason that we refrain from referring to
S = β1C + β2A + εS as a regression “model". It is merely a specifi-
cation for running a least square routine on the data and estimating
the slopes β1 and β2.

15 It is for this reason that the direct effect cannot be defined
by conditioning on a mediator but must instead invoke intervention
(Pearl, 2014b,c), as we did earlier.

(a)

(b)

Figure 8. Example showing that adjusting for a descendant
of Y induces bias in the estimation of α
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set. The same is true for the other coefficients, g and h. As
a result, each of these coefficients is identified and can be
estimated using the regression, E = β1A + β2B + β3D + ε.
Using this method, we have the following lemma:

Lemma 1. Any Markovian (acyclic without correlated error
terms) model can be identified equation by equation using
regression.

No matter how complex the model, the single-door theo-
rem gives us a quick and reliable criterion for identification
of a structural parameter using regression. It allows us to
choose a variety of regressors using considerations of esti-
mation power, sample variability, cost of measurement and
more. Further, it is an important tool that plays a role in the
identification of parameters in more elaborate models.

Instrumental Variables

In Figure 9a, no single-door admissible set exists for α
and it cannot be estimated using regression. However, using
Wright’s equations we see that σYZ = γα and σXZ = γ. As a
result, α = σYZ

σXZ
. In this case, we were able to identify α using

an auxiliary variable Z called an instrumental variable (IV).
In this subsection, we will provide a graphical method that

allows modelers to quickly determine whether a given vari-
able is an IV by inspecting the path diagram. Additionally,
we will introduce conditional instrumental variables and in-
strumental sets, which will significantly increase the identi-
fication power of the instrumental variable method.

The usage of IVs to identify causal effects in the presence
of confounding can be traced back to Sewall Wright (1925)
and his father Philip Wright (1928), and the following is a
standard definition adapted from Bollen (2012):

Definition 1. For a structural equation, Y = α1X1 + ... +

αkXk + UY , Zi is an instrumental variable if

(i) Zi is correlated with X = {X1, ..., Xk} and

(ii) Zi is uncorrelated with UY .

Implicit in this definition is that Zi has no effect on Y ex-
cept through X. According to Bollen (2012), a necessary

(a) (b)

Figure 9. (a) Z qualifies as an instrumental variable (b) Z is
an instrumental variable given W

condition for the identification of α1, ..., αk is that there ex-
ists at least k IVs satisfying (i) and (ii), but this condition is
not sufficient.

As is typical in the SEM literature, the above definition de-
fines an IV relative to an equation. However, by defining an
IV relative to a specific parameter, we will be able to greatly
expand the power of IVs. First, this will allow the identi-
fication of parameters of interest, even when the equation,
as a whole, is not identifiable. For example, in Figure 10a,
α =

βYZ1
βX1Z1

and is identified but γ is not. Second, we refine the
conditions under which the equation, as a whole, is identified
using IVs. For example, in Figure 10b, we have two instru-
ments for Y satisfying the condition of Definition 1, yet (as
we shall see later) γ remains unidentified. A sufficient condi-
tion for the identification of an equation with k coefficients is
the existence of at least one IV for each coefficient. Finally,
thinking about IVs as pertaining to individual parameters will
also allows us to generalize them and develop new tools like
instrumental sets.

Economists have always recognized the benefit of defin-
ing IVs relative to parameters rather than equations (Wright,
1928; Bowden and Turkington, 1984) but have had difficul-
ties articulating the conditions that would qualify a variable
Z as an instrument in a system of multiple equations. For
example, the following requirements for an instrument are
offered by Angrist and Pischke (2014):

(i) The instrument has a causal effect on the variable
whose effects we’re trying to capture...

(ii) Z is randomly assigned or “as good as randomly as-
signed," in the sense of being unrelated to the omitted
variables that we would like to control for...

(iii) Finally, IV logic requires an exclusion restriction. The
exclusion restriction describes a single channel through
which the instrument affects outcomes.

As we shall see from the graphical criterion of Definition 2,
condition (i) is overly restrictive; a proxy of an instrument
could also qualify as an instrument. Condition (ii) leaves
ambiguous the choice of those “omitted variables", and con-
dition (iii) wrongly excludes multiple channels between Z
and X, as well as between X and Y .

The following graphical characterization rectifies such
ambiguities and allows us to determine through quick in-
spection of the path diagram whether a given variable is an
instrument for a given parameter. Moreover, it provides a
necessary and sufficient condition for when αi in the equation
Y = α1X1 + ... + αkXk + UY is identified by βYZi

βXiZi
.

Definition 2. (Pearl, 2009, p. 248) A variable Z qualifies as
an instrumental variable for coefficient α from X to Y if

(i) Z is d-separated from Y in the subgraph Gα obtained
by removing edge X → Y from G and
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(ii) Z is not d-separated from X in Gα.

In Figure 9a, Z is d-separated from Y when we remove
the edge associated with α. As a result, Z is an instrumental
variable for α and we have α =

βYZ
βXZ

.
Now, consider Figure 9b. In this diagram, Z is not an

instrument for α because it is d-connected to Y through the
path Z ← W ↔ Y , even when we remove the edge associated
with α. However, if we condition on W, this path is blocked.
Thus, we see that some variables may become instruments
by conditioning on covariates.

While this fact is known (in general terms) in the econo-
metric literature (Angrist and Pischke, 2014; Imbens, 2014),
finding an appropriate set W in a system of equations, un-
aided by the graph, is an intractable task. The following
definition allows researchers to determine which variables
W would allow the identification of a given coefficient using
conditional IVs.

Definition 3. (Brito and Pearl, 2002a) A variable Z is a con-
ditional instrumental variable given a set W for coefficient α
(from X to Y) if

(i) W contains only non-descendants of Y

(ii) W d-separates Z from Y in the subgraph Gα obtained
by removing edge X → Y from G

(iii) W does not d-separate Z from X in Gα

Moreover, if (i)-(iii) are satisfied, then α =
βYZ.W
βXZ.W

. To
demonstrate the power of Definition 3, consider the models
in Figure 11.

In Figure 11a, Z is an instrument for α given W because
Z is d-separated from Y given W in Gα. However, in Figure
11b, Z is not an instrument given W because conditioning on
W opens the paths Z → X ↔ Y (W is a descendant of the
collider, X) and Z → W ← X ↔ Y (W is a collider). Finally,
in Figure 11c, Z is again an instrument given W since W is
not a descendant of X and the path Z → W ↔ X ↔ Y is
blocked by the collider, X.

Finally, it may be possible to use several variables in order
to identify a set of parameters when, individually, none of the
variables qualifies as an instrument. In Figure 12a, neither Z1

(a) (b)

Figure 10. (a) Z1 enables the identification of α but not γ (b)
Adding Z2 does not enable the identification of γ

(a) (b)

(c)

Figure 11. (a) Z is an instrument for α given W (b)

nor Z2 are instruments for the identification of γ or α. How-
ever, using them simultaneously allows the identification of
both coefficients. Using Wright’s equations, as we did in the
single instrumental variable case, we have:

σZ1Y = σZ1X1γ + σZ1X2α

σZ2Y = σZ2X1γ + σZ2X2α

Solving these two linearly independent equations for γ
and α identifies the two parameters. We call a set of vari-
ables that enables a solution in this manner an instrumental
set and characterize them in Definition 416.

Note that Z1 and Z2 in Figure 10b qualify as IVs according
to Definition 1, but do not enable the identification of α and

16It can be shown that the well-known rank and order rules
(Bollen, 1989; Kline, 2011), which are necessary and sufficient for
models that satisfy specific structural properties, are subsumed by
instrumental sets. For the class of models that the rank and order
rules are applicable to (of all the graphs given in this paper, they can
be applied only to Figures 9a, 9b, and 12a), the rank and order rules
for the equation, Yi = Λ1iY1 + Λ2iY2 + ... + ΛniYn + Ui, are satisfied
if and only if there exists an instrumental set for the coefficients,
Λ1i,Λ2i, ...,Λni.

(a) (b)

Figure 12. Diagrams illustrating instrumental sets
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γ. Likewise, Z1 and Z2 in Figure 13b qualify as IVs accord-
ing to Definition 1, but do not enable the identification of α
and γ. Definition 4, adapted from Brito and Pearl (2002a),
correctly disqualifies {Z1,Z2} as an instrumental set in both
scenarios.

Definition 4 (Instrumental Set). For a path πh that passes
through nodes Vi and V j, let πh[Vi...V j] denote the “sub-
path" that begins with Vi, ends with V j, and follows the
same sequence of edges and nodes as πh does from Vi to V j.
Then {Z1,Z2, ...,Zk} is an instrumental set for the coefficients
α1, ..., αk associated with edges X1 → Y, ..., Xk → Y if the
following conditions are satisfied.

(i) Let Ḡ be the graph obtained from G by deleting edges
X1 → Y, ..., Xk → Y. Then, Zi is d-separated from Y in
Ḡ for all i ∈ {1, 2, ..., k}.

(ii) There exists paths π1, π2, ..., πk such that πi is a path
from Zi to Y that includes edge Xi → Y and if paths πi

and π j have a common variable V, then either

(a) both πi[Zi...V] and π j[V...Y] point to V or

(b) both π j[Z j...V] and πi[V...Y] point to V.

for all i, j ∈ {1, 2, ..., k} and i , j.

The following theorem, adapted from (Brito and Pearl,
2002a), explains how instrumental sets can be used to obtain
closed form solutions for the relevant coefficients.

Theorem 3. Let {Z1,Z2, ...,Zn} be an instrumental set for the
coefficients α1, ..., αn associated with edges

X1 → Y, ..., Xn → Y.

Then the linear equations,

σZ1Y = σZ1X1α1 + σZ1X2α2 + ... + σZ1Xnαn

σZ2Y = σZ2X1α1 + σZ2X2α2 + ... + σZ2Xnαn

...

σZnY = σZnX1α1 + σZnX2α2 + ... + σZnXnαn,

are linearly independent for almost all parameterizations
of the model and can be solved to obtain expressions for
α1, ..., αn in terms of the covariance matrix.

The second condition in Definition 4 can be understood
as requiring that two paths πi and π j cannot be broken at a
common variable V and have their pieces swapped and rear-
ranged to form two unblocked paths. One of the rearranged
paths must contain a collider. For example, in Figure 12a,
π1 = Z1 → Z2 → X1 → Y and π2 = Z2 ↔ X2 → Y
satisfy the second condition of Definition 4 because in π1,
the arrow associated with coefficient, a, entering the shared
node, Z2, is pointing at Z2 while in π2, the arrow associated

(a) (b)

Figure 13. (a) Z1 and Z2 qualify as an instrumental set (b) Z1
and Z2 do not qualify as an instrumental set

with parameter, c, leaving Z2 is also pointing at the shared
node, Z2. As a result, if the paths π1 and π2 are broken at
the common variable, Z2, and their pieces swapped and re-
arranged, π1 will become a blocked path due to the collider
at Z2. Algebraically, this means that σZ1Y lacks the influence
of the path Z2 ↔ X2 → Y and, therefore, does not contain
the term acα. σZ2Y , on the other hand, contains the term cα
associated with the path. It is in this way that condition (ii) of
Definition 4 allows πi and π j to share a node, while still en-
suring linear independence of the covariance equations and,
therefore, identification. To see this, we use Wright’s rules
to obtain,

σZ1Y = abγ = σZ1X1γ + 0 · α = σZ1X1γ + σZ1X2α and
σZ2Y = bγ + cα = σZ2X1γ + σZ2X2α,

which are linearly independent. Solving the equations iden-
tifies α and γ giving:

γ =
σZ1Y

σZ1X1

α =
σZ2Y

σZX2

−
σZ2X1σZ1Y

σZ2X2σZ1X1

In contrast, consider Figure 13b. Here, Z1 and Z2 are not
an instrumental set for α and γ. Every path from Z2 to Y is
a “sub-path” of a path from Z1 to Y , which, using Wright’s
rules, implies that the equation for σZ1Y is not linearly inde-
pendent of σZ1Y with respect to Y’s coefficients:

σZ1Y = bγ + cα

σZ2Y = abγ + acα = a(bγ + cα) = aσZ1Y

In some cases, condition (i) of Definition 4 can be sat-
isfied by conditioning on a set W. Brito and Pearl (2002a)
show how conditioning can be used to obtain a conditional
instrumental set. Due to the more complex nature of apply-
ing Wright’s rules over partial correlations, we do not cover
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conditional instrumental sets in this paper and instead refer
the reader to Brito and Pearl (2002a).

C-Component Decomposition

In this subsection, we show that the question of coeffi-
cient identification can be addressed using smaller and sim-
pler sub-graphs of the original causal graph. Further, in some
cases, the coefficient is not identified using any methods con-
sidered thus far on the original graph but is identified using
those methods on the sub-graph.

A c-component in a causal graph is a maximal set of
nodes such that all nodes are connected to one another by
paths consisting of bidirected arcs. For example, the graph
in Figure 13b consists of three c-components, {X1, X2,Y},
{Z2}, and {Z1}, while the graph depicted in Figure 15 con-
sists of a single c-component. Tian (2005) showed that a
coefficient is identified if and only if it is identified in the
sub-graph consisting of its c-component and the parents of
the c-component.

More formally, a coefficient from X to Y is identified if
and only if it is identified in the sub-model constructed in the
following way:

(i) The sub-model variables consist of the c-component to
which Y belongs, CY , union the parents of all variables
in that c-component.

(ii) The structural equations for the variables in CY are the
same as their structural equations in the original model.

(iii) The structural equations for the parents simply equate
each parent with its error term.

(iv) If the error terms of any two variables in the sub-model
were uncorrelated in the original model then they are
uncorrelated in the sub-model.

For example, the sub-model for the coefficient α from X
to Y in Figure 14a consists of the following equations:

Z = UZ

X = aX + UX

W = bW + UW

V = UV

Y = αX + dV + UY

Additionally, ρUXUY and ρUW UY are unrestricted in their
values. All other error terms are uncorrelated.

It is not clear how to identify the coefficient α depicted
in Figure 14a using any of the methods considered thus far.
However, the sub-graph for the c-component, {W, X,Y}, de-
picted in Figure 14b, shows that α is identified using Z as an
instrument. Therefore, α is identified in the original model.

It is important to note that the covariances in the sub-
model are not necessarily the same as the covariances in

(a)

(b)

Figure 14. (a) Example illustrating c-component decomposi-
tion (b) Sub-graph consisting of c-component, {W, X,Y}, and
its parents, Z and V .

the original model. As a result, the identified expressions
obtained from the sub-model may not apply to the original
model. For example, Figure 14b shows that α =

βZY
βZ X . How-

ever, this is clearly not the case in Figure 14a. The above
method simply tells us that α is identified. It does not give us
the identified expression for α. Tian (2005) shows how the
covariance matrix for the sub-model can be obtained from
the original covariance matrix thus enabling us to obtain the
identified expression for the parameter in the original model.
However, we do not cover it here.

A Simple Criterion for Model Identification

The previous criteria allow researchers to determine
whether a given coefficient is identifiable and provide closed
form expressions for the coefficients in terms of the covari-

Figure 15. A bow-free graph; the absence of a ‘bow’ pattern
assures identification
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ance matrix. As a result, they provide an alternative to using
system-wide ML methods (e.g. Full Information Maximum
Likelihood) that is unbiased in small samples, can be used
when the model is not identified, and do not require data.
Should modelers choose to identify and estimate models us-
ing software incorporating system-wide ML methods and the
estimation fail, it can be useful to know whether the failure
is due to non-identification or other issues.

In order to determine identifiability of the model using the
single-door criterion or instrumental variables, the modeler
must check the identifiability of each structural coefficient.
In large and complex models, this process can be tedious. In
this section, we give a simple, sufficient criterion that allows
the modeler to determine immediately whether an acyclic
model is identified called the bow-free rule (Brito and Pearl,
2002b; Brito, 2004). We will see that even a model as com-
plicated as Figure 15 can be immediately determined to be
identified using this rule.

A bow-arc is a pair of variables, one of which is a direct
function of the other, whose error terms are correlated. This
is depicted in the path diagram as a parent-child pair that
are also siblings and looks like a bow-arc. In Figure 7c, the
variables W and Y create a bow-arc.

Theorem 4. (Brito and Pearl, 2002b) (Bow-free Rule) Every
acyclic model whose path diagram lacks bow-arcs is identi-
fied17.

The bow-free rule is able to identify models that the
single-door criterion is not. In Figure 15, for example, the
coefficient α is not identified using the single-door criterion.
Attempting to block the back-door path, X1 ↔ X2 → Y , by
conditioning on X2 opens the path X1 ↔ Z2 ↔ Y because X2
is a descendant of the collider, Z2. However, because Figure
15 does not contain any bow-arcs it is identified according
to Theorem 4. Finally, since the single-door criterion is un-
able to identify any model that contain bow-arcs18, the bow-
free rule subsumes the single-door criterion when applied to
model identification. (Note that the single-door criterion may
be able to identify some coefficients even when the model as
a whole is not identified. In contrast, the bow-free rule only
addresses the question of model identifiability, not the iden-
tifiability of individual coefficients in unidentified models.)

Advanced Identification Algorithms

In this subsection, we survey advanced algorithms that uti-
lize the path diagram to identify model parameters. The de-
tails of these algorithms are beyond the scope of this paper,
and we instead refer the reader to the relevant literature for
more information.

Instrumental variables and sets demonstrate that algebraic
properties of linear independence translate to graphical prop-
erties in the path diagram that can be used to identify model
coefficients. The G-Criterion algorithm (Brito, 2004; Brito

and Pearl, 2006) expands this notion in order to give a
method for systematically identifying the coefficients of an
acyclic SEM.

This algorithm was generalized by Foygel et al. (2012) to
determine identifiability of a greater set of graphs19. Addi-
tionally their criterion, called the half-trek criterion, applies
to both acyclic and cyclic models. The half-trek algorithm
was further generalized by Chen et al. (2014) to identify
more coefficients in unidentified models.

The aforementioned algorithms of Brito (2004), Foygel
et al. (2012), and Chen et al. (2014) identify coefficients by
searching for graphical patterns in the diagram that corre-
spond to linear independence between Wright’s equations.
Tian (2005), Tian (2007), and Tian (2009) approach the prob-
lem differently and give algorithms that identify parameters
by converting the structural equations into orthogonal partial
regression equations.

Finally, do-calculus (Pearl, 2009) and non-parametric
algorithms for identifying causal effects (Tian and Pearl,
2002a; Tian, 2002; Shpitser and Pearl, 2006; Huang and Val-
torta, 2006) may also be applied to parameter identification
in linear models. These methods have been shown to be com-
plete for non-parametric models (Shpitser and Pearl, 2006;
Huang and Valtorta, 2006) and, if theoretically possible, are
able to identify any expectations of the form E(Y |do(X =

x,Z = z), where Z represents any susbet of variables in the
model other than X and Y . As mentioned in the preliminar-
ies, a coefficient from X to Y equals ∂

∂x E[Y |do(X = x, S = s),
where S represents all variables in the model other than X
and Y .

Total Effects

When the model is not identifiable, modelers typically
consider research with SEMs “impossible” (Kenny and Mi-
lan, 2012) without imposing additional constraints or collect-
ing additional data. However, as should be clear from the
single-door criterion (and is acknowledged by Kenny and
Milan (2012)), it is often possible to identify some of the
model coefficients even when the model as a whole is not

17Note that the equations in such models are not regression equa-
tions as suggested by Kenny and Milan (2012). The independent
variable may be correlated with the error term of the dependent vari-
able as in X1 and Y in Figure 15. X1 is correlated with the error term
of Y through the path X1 ← Z1 ↔ Y . Another way of defining a
bow-free model is a model where error terms of every parent-child
pair are not correlated.

18To prove this statement, consider any model that contains a
bow-arc from X to Y . There is no way to block the path X ↔ Y and
identify the coefficient from X to Y using the single-door criterion.

19Foygel et al. (2012) also released an R package implementing
their algorithm called SEMID, which determines whether the entire
model is identifiable given its causal graph.
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identifiable. Further, we show in this section that it is of-
ten not necessary to identify all coefficients along a causal
path in order to identify the causal effect of interest20. For
example, in Figure 13b, the total effect or ACE of Z on Y ,
∂
∂z E[Y |do(Z = z)], is identified and equal to βZX even though
γ and α are not identified. The back-door criterion, given
below, is a sufficient condition for the identification of a total
effect.

Theorem 5. (Pearl, 2009, ch. 3.3.1) (Back-door Criterion)
For any two variables X and Y in a causal diagram G, the
total of effect of X on Y is identifiable if there exists a set of
variables Z such that

(i) no member of Z is a descendant of X; and

(ii) Z d-separates X from Y in the subgraph G
¯
X formed by

deleting from G all arrows emanating from X.

Moreover, if the two conditions are satisfied, then the total
effect of X on Y is given by βYX.Z .

Returning to the example in Figure 13b we see that the
total of effect of Z on Y , ∂

∂z E[Y |do(Z = z)], is βZX .
Do-calculus and the aforementioned non-parametric al-

gorithms (Tian and Pearl, 2002a; Tian, 2002; Shpitser and
Pearl, 2006; Huang and Valtorta, 2006) can also be used to
identify total effects in linear models.

Causal Effects among Latent Variables

The graphical methods described above do not explicitly
address the identification of causal effects among latent vari-
ables (e.g. the effect of a latent variable on another latent
variable, the effect of an observed variable on a latent, or the
the effect of latent variable on an observed variable). They
are, nevertheless, applicable to the identification of such ef-
fects. With respect to non-identification, if we assume that
all latent variables are observed and are still unable to iden-
tify the effect of interest then it clearly cannot be identified
when one or more of the variables are latent. With respect to
identification, if a latent variable has three or more observed
indicators without any edges between them (see Figure 16a)
then we can consider that latent variable to be observed and
apply the above methods (Bollen, 1989). In certain cases,
only two indicators per latent variable may be enough as in
Figure 16b (Bollen, 1989) and Figure 16c (Kuroki and Pearl,
2014). In the former, the four indicators are enough to en-
sure identification of the coefficients from the latents to their
indicators and the coefficient from L1 to L2, which then al-
lows identification of the covariance between the latents and
any observed variables in the model. In the latter, X and Y
together act as a third indicator, which also allows identifica-
tion of the coefficients from L to its indicators.

In general, we can apply the above graphical methods to
the identification of coefficients in latent variable models in

(a)

(b)

(c)

Figure 16. Graphical patterns that allow latent variables to
be considered observed for purposes of identification.

the following way. First, consider any latent variables that
exhibit the patterns in Figures 16a, 16b, and 16c to be ob-
served variables. Any remaining latent variables are summa-
rized using the method described earlier. We are now left
with no explicit latent variables (other than the error terms)
and can apply the methods described above. If we find that
a coefficient is identified in this augmented model then we
know it is also identified in the original latent variable model.

More recently, researchers have begun using the power of
graphical representations to identify the coefficients between
latent variables and their indicators in linear SEMs. For ex-
ample, Cai and Kuroki (2008) and Leung et al. (2015) give
sufficient graphical identifiability conditions for models that
contain a single latent variable.

Model Testing

A crucial step of structural equation modeling is to test
the structural and causal assumptions of the model, ensuring
to the best of our ability that the model specification is cor-
rect. A given model often imposes certain constraints on the
probability distribution or covariance matrix and checking

20This fact was noted by Marschak (1942) and was dubbed
“Marschak’s Maxim” by Heckman (2000).
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whether these constraints hold in the data provides a means
of testing the model. For example, we showed, in the section
on d-separation, that a model may imply that certain partial
correlations are equal to zero. If these constraints do not hold
in the data, then we have reason to doubt the validity of our
model.

The most common method of testing a linear SEM is a
likelihood ratio or chi-square test that compares the covari-
ance matrix implied by the model to that of the sample co-
variance matrix (Bollen, 1989; Shipley, 2000). While this
test simultaneously tests all of the restrictions implied by the
model, it relies critically on our ability to identify the model.
Moreover, bad fit does not provide the modeler with informa-
tion about which aspect of the model needs to be revised21.
Finally, if the model is very large and complex, it is pos-
sible that a global chi-square test will not reject the model
even when a crucial testable implication is violated. Global
tests represent summaries of the overall model-data fit and,
as a result, violation of specific testable implications may
be masked (Tomarken and Waller, 2003). In contrast, if the
testable implications are enumerated and tested individually,
the model can be tested even when unidentified, the power
of each test is greater than that of a global test (Bollen and
Pearl, 2013; McDonald, 2002), and, in the case of failure, the
researcher knows exactly which constraint was violated.

Vanishing Correlation Constraints

D-separation allows modelers to predict vanishing par-
tial correlations simply by inspecting the graph, and in the
case of Markovian models, these vanishing partial correla-
tions represent all of the constraints implied by the model
(Geiger and Pearl, 1993)22. For the example depicted in
Figure 17a, we obtain the following vanishing partial cor-
relations: ρV2V3.V1 = 0, ρV1V4.V2V3 = 0, ρV2V5.V4 = 0, and
ρV3V5.V4 = 0. If a constraint, say ρV2V3.V1 = 0 does not hold
in the dataset, we have reason to believe that the model spec-
ification is incorrect and should reconsider the lack of edge
between V2 and V3.

In large and complex graphs, it may be infeasible to list
all conditional independence constraints by inspection. Ad-
ditionally, some constraints obtained using d-separation may
be redundant. Kang and Tian (2009) gave an algorithm that
utilizes the graph to enumerate a set (not necessarily min-
imal) of vanishing partial correlations that imply all others
for semi-Markovian models.

Lastly, we note that d-separation implies vanishing partial
correlation even in non-linear models.

Equivalent Models

Since vanishing partial correlations represent all of the
constraints that Markovian SEMs impose on the data, two
Markovian models are observationally indistinguishable if
they share the same set of vanishing partial correlations. In

other words, Markovian models that share the same set of
vanishing partial correlations cannot be distinguished using
data. In this case, we say that the models are covariance
equivalent since every covariance matrix generated by one
model (through some choice of parameters) can also be gen-
erated by the other. The skeleton of a graph, used in the
following theorem, is the undirected graph obtained by re-
placing all arrows with undirected edges. For example, the
skeleton for Figure 17a is Figure 17b.

Theorem 6. (Verma and Pearl, 1990) Two Markovian
linear-normal models are covariance equivalent if and only
if they entail the same sets of zero partial correlations. More-
over, two such models are covariance equivalent if and only
if their corresponding graphs have the same skeletons and
the same sets of v-structures, that is, two converging arrows
whose tails are not connected by an arrow.

The first part of Theorem 6 defines the testable impli-
cations of linear Markovian models. It states that, in non-
experimental studies, Markovian SEMs cannot be tested for
any feature other than those vanishing partial correlations
that the d-separation test imposes. It also provides a sim-
ple test for equivalence that requires merely a comparison of
corresponding edges and their directionalities (Pearl, 2009,
ch. 5.2).

The graphs in Figures 18a, 18b, and 18c are equivalent
because they share the same skeleton and v-structures. Note

21While modification indices can be used, they also require the
model to be identified.

22These constraints may induce non-conditional independence
constraints when projected onto a subset of variables. For exam-
ple, suppose that L1 and L2 in Figure 16b are observed and the
model is, therefore, Markovian. While this model implies a van-
ishing tetrad constraint, σI1 I4σI2 I3 = σI1 I3σI2 I4 (Spearman, 1904),
this constraint can, in fact, be derived from the vanishing partial
correlations among the I variables given the L variables.

(a) (b)

Figure 17. (a) Example illustrating vanishing partial correla-
tion (b) The skeleton of the model in (a)
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(a)

(b)

(c)

Figure 18. Models (a), (b), and (c) are equivalent.

Figure 19. Counterexample to the standard Replacement
Rule; The arrow X → Y cannot be replaced.

that we cannot reverse the edge from V4 to V5 since doing so
would generate a new v-structure, V2 → V4 ← V5.

The graphical criterion given in Theorem 6 is necessary
and sufficient for equivalence between Markovian models.
It is a necessary condition for equivalence between non-
Markovian models since d-separation in the graph implies
vanishing partial correlation in the covariance matrix. In
contrast, the more prevalent replacement criterion (Lee and
Hershberger, 1990) is not always valid23. Pearl (2012) gave
the following example depicted in Figure 19. According to
the replacement criterion, we can replace the arrow X → Y
with a bidirected edge X ↔ Y and obtain a covariance equiv-

alent model when all predictors (Z) of the effect variable (Y)
are the same as those for the source variable (X). Unfortu-
nately, the post-replacement model imposes the constraint,
ρWZ.Y = 0, which is not imposed by the original model. This
can be seen from the fact that, conditioned on Y , the path
Z → Y ← X ↔ W is unblocked and becomes blocked if
replaced by Z → Y ↔ X ↔ W. The same applies to path
Z → X ↔ W, since Y would cease to be a descendant of X.

Testable Implications in Non-Markovian Models

In the case of non-Markovian models, additional testable
implications may be present, which are not revealed by d-
separation. In the non-parametric literature, these constraints
are often called Verma constraints (Verma and Pearl, 1990)
and impose invariance rather than conditional independence
restrictions. In Figure 20, for example, one can show that the
quantity

∑
V2

P(V4|V3,V2,V1)P(V2|V1) is not a function of V1.
Algorithms that enumerate certain types of Verma constraints
for semi-Markovian, non-parameteric SEMs are given by
Tian and Pearl (2002b) and Shpitser and Pearl (2008).

Testable implications in non-Markovian models can also
be obtained by overidentifying model parameters. In some
cases, these constraints will be vanishing partial correlations,
while in other cases they are not. For example, in Figure 20, b
can be identified by using the single-door criterion, yielding
b = βV3V2 , and by using V1 as an IV, yielding b =

βV3V1
βV2V1

.
Equating the two expressions and rearranging terms gives
the constraint, βV3V1 − βV2V1βV3V2 = 0, which is equivalent
to the constraint, ρV3V1.V2 = 0 (see Equations 4-6), as seen
in the graph. Similarly, c can be overidentified by using the
single-door criterion and V1 as an IV, yielding two estimands,
βV4V3.V2 and β41

β21β32
. Equating the two expressions gives the

constraint βV4V3.V2 =
β41

β21β32
, which is not a vanishing partial

correlation. It is equivalent to the Verma constraint obtained
using the non-parametric methods of Tian and Pearl (2002b)
and Shpitser and Pearl (2008).

Parameters are often described as overidentified when
they have “more than one solution” (MacCallum, 1995) or
are “determined from [the covariance matrix] in different
ways” (Jöreskog et al., 1979). Overidentified parameters are
presumed to be more firmly collaborated by data than “just

23The replacement rule violates the transitivity of equivalence
(Hershberger and Marcoulides, 2006), yet it is still used in most
of the SEM literature (Mulaik, 2009; Williams, 2012, pp. 247-260).

Figure 20. A graph illustrating a Verma constraint
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identified" parameters (i.e. those that have only one solu-
tion). However, simply finding two distinct expressions for
a parameter in terms of the covariance matrix does not nec-
essarily give another independent testable implication. For
example, in Figure 20, we have that σV1V3.V2 = 0. By adding
σV1V3.V2 to any expression for a parameter, we will have two
different expressions for that parameter, implying that every
parameter in the model is overidentified. Clearly, this notion
of overidentification does not turn a parameter “overidenti-
fied". Pearl (2004) gives a formal definition of overidenti-
fication that ensures multiple independent tests, and Chen
et al. (2014) give an algorithm that utilizes advanced iden-
tification methods to systematically discover overidentifying
constraints given a non-Markovian model.

We conclude this section by noting that testable implica-
tions in semi-Markovian and non-Markovian models have
not been fully characterized, and subsequently, we do not
have a necessary and sufficient condition for equivalence be-
tween semi-Markovian or non-Markovian models.

Learning Structure from Data

The question naturally arises whether one can learn the
structure of the data generating model from its data. In other
words, rather than specify the structural equation model and
use the data to test it, can one use the data to discover aspects
of the model’s structure? There are a number of algorithms
that search the data for vanishing partial correlations to ac-
complish this goal for acyclic models. See Cooper (1999),
(Pearl, 2009, ch. 2), and (Spirtes et al., 2000, chs. 5 and 6)24

for examples. For cyclic models, Hoover and Phiromswad
(2013) make use of overidentifying constraints obtained us-
ing instrumental variables in addition to vanishing partial
correlations to uncover aspects of the model’s structure.

Additional Applications of Graphical Models

Equivalent Regressor Sets and Minimal Regressor Sets

In some cases, we may wish to know whether two sets,
when used for adjustment, have the same asymptotic bias.
For example, an investigator may wish to assess, prior to tak-
ing any measurement, whether two candidate sets of covari-
ates, differing substantially in dimensionality, measurement
error, cost or sample variability are equally valuable in their
bias-reduction potential (Pearl and Paz, 2014). This problem
pertains to prediction tasks as well. A researcher wishing to
predict the value of some variable given a set of observations
may wonder whether another set of observations is a valid
substitute.

In the linear case, the problem can be stated in the fol-
lowing way. Under what conditions would replacing Z =

{Z1, ...,Zn} with W = {W1, ...,Wn} yield the same value for α
in the regression Y = αX+β1Z1+...+βnZn+εn, or equivalently,
when does βYX.Z = βYX.W?

Here we adapt Theorem 3 in (Pearl and Paz, 2014) for
linear SEMs.

Theorem 7. (Pearl and Paz, 2014) Let Z and W be two sets
of variables in G containing no descendants of X. βYX.Z =

βYX.W if and only if one of the following holds:

(i) Z and W satisfy the back-door criterion for the total
effect of X on Y

(ii) Z ∩W separates X from all other elements of Z and W

If βYX.Z = βYX.W then we say that Z and W are confounding
equivalent, or c-equivalent for short.

Consider the graph depicted in Figure 21. Let Z =

{V1,W2} and W = {W1,V2}. Since both Z and W satisfy the
back-door criterion they are c-equivalent and βYX.Z = βYX.W .
Now consider Z = {V1} and W = {V1,V2}. Z and W no longer
satisfy the back-door criterion. However, since Z ∩W = {V1}

separates X from (Z ∪ W) \ Z ∩ W = {V2}, Z and W are
c-equivalent and βYX.Z = βYX.W .

C-equivalence can also be used to find a minimal sub-
set of regressors needed for estimating a given partial re-
gression coefficient. Consider a regression equation, Y =

αX + β1Z1 + ... + βnZn. What is the smallest subset of
Z = {Z1, ...,Zn} that yields the same value for the regression
coefficient, α? This subset is unique and can be found simply
by removing elements from Z one at a time such that every
removed node is d-separated from X given the remaining el-
ements of Z.

Some economists (e.g. Lu and White (2014)) regard the
resilience and stability of regression coefficients to additional
regressors to be a sign of model correctness. The idea is
to assess whether any additional variables, hypothesized to
have no influence on the equation tested, leave intact the re-
gression slopes that were estimated. Using Theorem 7, we
see that this sort of robustness is expected to hold when the
back-door criterion is satisfied before and after the addition
of regressors or when the added regressors are separated from
X given the existing regressors. When these conditions are

24Software implementing these algorithms is available from the
TETRAD Project (http://www.phil.cmu.edu/projects/tetrad/).

Figure 21. {V1,W2} and {V2,W1} are c-equivalent but not
{W1} and {W2}
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satisfied, a shift in the regression coefficient of X is indica-
tive of model misspecification, while stability of the coeffi-
cient is indicative of model correctness. Robustness tests are
discussed in more detail in Chen and Pearl (2015).

Variance Minimization

In some cases, there may be multiple sets that satisfy the
back-door criterion when identifying a total effect. While
each set provides an unbiased estimate of the causal effect,
the estimates may differ in their asymptotic variance. As
a result, some sets may be preferable to others. The fol-
lowing theorem is adapted from Theorem 5 of (Kuroki and
Miyakawa, 2003):

Theorem 8. Suppose that sets {W,Z1} and {W,Z2} satisfy
the back-door criterion relative to (X,Y) in a linear SEM in
which the error terms are normally distributed. If {W,Z1}

d-separates X from Z2 and {X,Z2,W} d-separates Y from
Z1, then Var[βYX.WZ2 ] ≤ Var[βYX.WZ1 ]. In other words, the
asymptotic variance of the effect estimated when controlling
for {W,Z2} is less than or equal to the one estimated by con-
trolling for {W,Z1}.

For the model depicted by Figure 22, both {W,Z1} and
{W,Z2} are back-door admissible sets for estimating the to-
tal effect of X on Y . However, {W,Z2} is preferable since
{W,Z1} d-separates X from Z2 while {X,Z2,W} d-separates Y
from Z1. The intuition here is that Z2 is ‘closer’ to Y hence
more effective in reducing variations in Y due to uncontrolled
factors. Similar results were derived without graphs by Hahn
(2004).

Counterfactuals in Linear Models

We have seen in the subsection on causal effects how a
SEM can be used to predict the effect of actions and policies
that have never been implemented before. The action of set-
ting a variable, X, to value x, is simulated by replacing the
structural equation for X with the equation X = x. In this
section, we show further that SEMs can be used to answer
counterfactual queries. A counterfactual query asks, “Given

Figure 22. Graph illustrating preference to Z1 over Z2;
Var[βYX.WZ2 ] ≤ Var[βYX.WZ1 ]

that we observe E = e for a given individual, what would we
expect the value of B for that individual to be if A had been
a?” For example, given that Joe’s salary is s, what would
his salary be had he had five more years of education? This
expectation is denoted E[BA=a|E = e]. The E = e after the
conditioning bar represents the observed evidence while the
subscript A = a represents a hypothetical condition speci-
fied by the counterfactual sentence. Structural equation mod-
els are able to answer counterfactual queries because each
equation represents an invariant mechanism by which a vari-
able obtains its values. If we identify these mechanisms we
should also be able to predict what values would be obtained
had circumstances been different. As a result, it is natural
to view counterfactuals to be derived properties of structural
equations and not the other way around. This is in contrast
to the Neyman-Rubin potential outcomes framework where
counterfactuals are taken as primitives (Rubin, 1974; Hol-
land, 2001).

The following model, depicted in Figure 23a, represents
an “encouragement design” (Holland, 1988; Pearl, 2014c)
where X represents the amount of time a student spends in an
after-school remedial program, H the amount of homework a
student does, and Y a student’s score on the exam. The value
of each variable is given as the number of standard deviations
above the mean so that the model is standardized to mean 0
and variance 1. For example, if Y = 1 then the student scored
1 standard deviation above the mean on his or her exam.

Model 6.

X = UX

H = a · X + UH

Y = b · X + c · H + UY

σUiU j = 0 for all i, j ∈ {X,H,Y}

We also give the values for the coefficients (which can be

(a)

(b)

Figure 23. Answering counterfactual question by setting H
equal to 2



20 BRYANT CHEN AND JUDEA PEARL

estimated from population data):

a = 0.5
b = 0.7
c = 0.4

Let us consider a student named Joe, for whom we mea-
sure X = 0.5,H = 1,Y = 1.5. Suppose we wish to answer
the following query: What would Joe’s score have been had
he doubled his study time?

In a linear SEM, the value of each variable in the model is
determined by the coefficients and U variables, and the latter
accounts for all variations among individuals. As a result, we
can use the evidence X = 0.5,H = 1,Y = 1.5 to determine
the values of the U variables associated with Joe. These val-
ues are invariant to external variations, such as those which
might cause Joe to double his homework.

In this case, we are able to obtain the specific characteris-
tics of Joe from the evidence:

UX = 0.5,
UH = 1 − 0.5 · 0.5 = 0.75, and
UY = 1.5 − 0.7 · 0.5 − 0.4 · 1 = 0.75.

Next, we simulate the action of doubling Joe’s study time
by replacing the structural equation for H with the constant
H = 2. The modified model is depicted in Figure 23b. Fi-
nally, we compute the value of Y in our modified model using
the updated U values giving:

YH=2(UX = 0.5,UH = 0.75,UY = 0.75)
= 0.5 · 0.7 + 2.0 · 0.4 + 0.75
= 1.90

We thus conclude that Joe’s new score, predicated on dou-
bling his homework, would have been 1.9 instead of 1.5.

In summary, we first applied the evidence X = 0.5,H =

1,Y = 1.5 to update the values for the U variables or their
probabilities. We then simulate an external intervention to
force the condition H = 2 by replacing the structural equa-
tion H = aX + UH with the equation H = 2. Finally, we
computed the value of Y given the structural equations and
the updated U values.

The following three steps generalize the above procedure
for non-linear systems and arbitrary counterfactuals of the
form, E[BA=a|E = e] (Pearl, 2009, ch. 7.1):

(i) Abduction - Update P[U] by the evidence to obtain
P[U |E = e]

(ii) Action - Modify the model, M, by removing the struc-
tural equations for the variables in A and replacing them
with the appropriate equalities to obtain the modified
model, MA.

(iii) Prediction - Use the modified model, MA, and the up-
dated probabilities over the U variables, P[U |E = e], to
compute the expectation of B, the consequence of the
counterfactual.

Notice that the above procedure applies not only to retro-
spective counterfactual queries (queries of the form “What
would have been the value of Y had X been x?”) but
also prospective counterfactual queries (queries of the form
“What will the value of Y be if X is set to x by interven-
tion?”). For example, suppose we wish to estimate the effect
on test score provided by a school policy that sends students
who are lazy on their homework (S ≤ −1) to attend the af-
terschool program for X = 1. The expected value of this
quantity is denoted E[YX=1|S ≤ −1] and can, in principle,
be computed using the above three step method. Counter-
factual reasoning and the above procedure are necessary for
estimating the effect of actions and policies on subsets of the
population characterized by features that, in themselves, are
policy dependent (e.g. S ≤ −1).

In non-parametric models, counterfactual quantities of the
form E[YX=x|E = e] may not be identifiable, even if we have
the luxury of running experiments (Pearl, 2009, ch. 9). In
linear models, however, any counterfactual quantity is iden-
tifiable whenever the model parameters are identifiable (?).
Moreover, even when some parameters are not identified,
a counterfactual of the form, E[YX = x|E = e] is identi-
fied whenever E[Y |do(X = x)] is identified (Cai and Kuroki,
2005; Pearl, 2009, p. 389). The relation between the two is
summarized in Theorem 9.

Theorem 9. (Pearl, 2009, p. 389) Let T be the slope of the
total effect of X on Y, ∂

∂x E[Y |do(X = x)], then E[YX=x|E =

e] = E[Y |E = e] + T (x − E[X|E = e]).

This provides an intuitive interpretation of counterfactu-
als in linear models: E[YX=x|E = e] can be computed by
first calculating the best estimate of Y conditioned on the ev-
idence e, E[Y |e], and then adding to it whatever change is ex-
pected in Y when X is shifted from its current best estimate,
E[X|E = e], to its hypothetical value, x.

Methodologically, the importance of Theorem 9 lies in
enabling researchers to answer hypothetical questions about
individuals (or set of individuals) from population data. The
ramifications of this feature in legal contexts and political
science are explored, respectively, in (Pearl, 2009, ch. 9) and
Yamamoto (2012).

Example Problems

In this section, we apply graphical tools to solve non-
trivial problems that SEM researchers are likely to encounter.
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Figure 24. Graph corresponding to Model 7 in text

Model 7.

Y = aW3 + bZ3 + cW2 + U X = t1W1 + t2Z3 + U′

W3 = c3X + U′3 W1 = a′1Z1 + U′1
Z3 = a3Z1 + b3Z2 + U3 Z1 = U1

W2 = c2Z2 + U′2 Z2 = U2

Given the model depicted above, we pose the following
questions:

(i) Identify three testable implications of this model

(ii) Identify a testable implication assuming that only X, Y ,
W3, and Z3 are observed

(iii) Suppose X, Y , and W3 are the only variables observed.
Which parameters can be identified from the data?

(iv) If we regress Z1 on all other variables in the model,
which regression coefficient will be zero?

(v) The model in Figure 24 implies that certain regression
coefficients will remain invariant when an additional
variable is added as a regressor. Identify five such co-
efficients with their added regressors.

Solutions:

(i) Figure 24 shows that {W1,Z3,W2,W3} d-separates X
and Y . Therefore, σXY.W1Z3W2W3 = 0. Likewise, {W1,Z3}

blocks all paths between X and Z1 and {Z3,W2} blocks
all paths between Y and Z2. As a result, σXZ1.W1,Z3 = 0
and σYZ2.Z3W2 = 0.

(ii) When X, Y , W3, and Z3 are latent variables, Model 7 is
equivalent to the graph in Figure 25. We see that W3 is
d-separated from Z3 by X. Therefore, σW3Z3.X = 0.

(iii) c3 is identified using the single-door criterion. When
we remove the edge X → W3, X is d-separated from
W3. Likewise, a can be identified using the single-door
criterion. When we remove the edge W3 → Y , W3 is
d-separated from Y by X. Therefore, c3 = βW3X and
a = βYW3.X .

(iv) The coefficients for X, W3, W2, and Y will be zero since
they are d-separated from Z1 by {W1,Z3,Z2}. The coef-
ficient for Z2 may not be zero since Z3 is a collider.

(v) (a) βYX.W1Z3 = βYX.W1,Z3Z1 since both {W1,Z3} and
{W1,Z3,Z1} satisfy the back-door criterion for the
total effect of X on Y .

(b) βYW3.X = βYW3.XW1 since {X} and {X,W1} satisfy
the back-door criterion for the total effect of W3
on Y .

(c) βZ2Z1 = βZ2Z1.W1 since Z2 is d-separated from Z1 by
∅ and W1. As a result, both regression coefficients
vanish.

(d) βYW2.Z2 = βYW2.Z2Z3Z1 since both {Z2} and
{Z2,Z3,Z1} satisfy the back-door criterion for the
total effect of W2 on Y .

(e) βW1Z1 = βW1Z1.Z3 since both ∅ and {Z3} satisfy the
back-door criterion for the total effect of Z1 on
W1.

Conclusion

The benefit of graphs are usually attributed to their abil-
ity to represent theoretical assumptions visibly and trans-
parently, by abstracting away unnecessary algebraic details.
What is not generally recognized is graphs’ ability to serve
as efficient computational engines for tasks that would other-
wise be intractable. This paper demonstrates how graphs can
compute the testable implications of modeling assumptions,
combine those assumption with data, and generate quanti-
tative answers to both statistical and causal questions about
populations and individuals.

We showed that a few basic principles of reading van-
ishing partial correlations from graphs can give rise to new
methods of model testing and identification that substan-
tially enrich traditional methods of SEM. The construction of
equivalent models and characterization of instrumental vari-
ables follow directly from these principles. Auxiliary tech-
niques of counterfactual analysis further permit researchers
to quantify individual behavior from population data and to
reason backward into alternative courses of action.

Graphical representations have become an indispensable
second language in the health sciences (Glymour and Green-

Figure 25. Graph representing Model 7 when Z1, W1, Z2, and
W2 are unobserved



22 BRYANT CHEN AND JUDEA PEARL

land, 2008; Lange et al., 2012) and are making their way to-
wards the social and behavioral sciences (Chalak and White,
2011; Lee, 2012; Morgan and Winship, 2007). It is hoped
that this survey unveils the potentials of these tools to quan-
titative methodologists engaged in psychometric research.
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Jöreskog, K. G., Sörbom, D., Magidson, J. and Cooley,
W. W. (1979). Advances in factor analysis and structural
equation models. Abt Books Cambridge, MA.

Kang, C. and Tian, J. (2009). Markov properties for linear
causal models with correlated errors. The Journal of Ma-
chine Learning Research 10 41–70.

Kenny, D. A. and Milan, S. (2012). Identification: A non-
technical discussion of a technical issue. In Handbook
of Structural Equation Modeling (G. M. S. W. R. Hoyle,
D. Kaplan, ed.). Guilford Press, New York, 145–163.

Kline, R. (2011). Principles and Practice of Structural
Equation Modeling. Methodology in the social sciences,
Guilford Press.
URL http://books.google.com/books?id=
-MDPILyu3DAC

Kuroki, M. and Miyakawa, M. (2003). Covariate selection
for estimating the causal effect of control plans by using
causal diagrams. Journal of the Japanese Royal Statistical
Society, Series B 65 209–222.

Kuroki, M. and Pearl, J. (2014). Measurement bias and
effect restoration in causal inference. Tech. rep.

Lange, T., Vansteelandt, S. and Bekaert, M. (2012). A sim-
ple unified approach for estimating natural direct and indi-
rect effects. American Journal of Epidemiology 176 190–
195.

Lee, J. J. (2012). Correlation and causation in the study of
personality. European Journal of Personality 26 372–390.

Lee, S. and Hershberger, S. (1990). A simple rule for gener-
ating equivalent models in covariance structure modeling.
Multivariate Behavioral Research 25 313–334.

Leung, D., Drton, M. and Hara, H. (2015). Identifiability of
directed gaussian graphical models with one latent source.
arXiv preprint arXiv:1505.01583 .

Lu, X. and White, H. (2014). Robustness checks and robust-
ness tests in applied economics. Journal of Econometrics
178 194–206.

MacCallum, R. C. (1995). Model specification: Procedures,
strategies, and related issues. In Structural Equation Mod-
eling (R. Hoyle, ed.). Sage, Thousand Oaks, CA.

Marschak, J. (1942). Studies in mathematical economics
and econometrics – in memory of henry schultz. chap.
Economic interdependence and statistical analysis. Uni-
versity of Chicago Press, Chicago, 135–150. Reprinted in
D.F. Hendry and M.S. Morgan (Eds.), The Foundations of
Econometric Analysis, Cambridge University Press, 427–
439, 1995.

McDonald, R. (2002). What can we learn from the path
equations?: Identifiability constraints, equivalence. Psy-
chometrika 67 225–249.

Morgan, S. and Winship, C. (2007). Counterfactuals and
Causal Inference: Methods and Principles for Social Re-
search (Analytical Methods for Social Research). Cam-
bridge University Press, New York, NY.

Mulaik, S. A. (2009). Linear causal modeling with struc-
tural equations. CRC Press.



24 BRYANT CHEN AND JUDEA PEARL

Muthén, L. K. and Muthén, B. O. (2010). Mplus: Statistical
analysis with latent variables: User’s guide. Muthén &
Muthén.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, San Mateo, CA.

Pearl, J. (2004). Robustness of causal claims. In Proceed-
ings of the 20th conference on Uncertainty in artificial in-
telligence. AUAI Press.

Pearl, J. (2009). Causality: Models, Reasoning, and Infer-
ence. 2nd ed. Cambridge University Press, New York.

Pearl, J. (2012). The causal foundations of structural equa-
tion modeling. In Handbook of Structural Equation Mod-
eling (R. Hoyle, ed.). Guilford Press, New York, 68–91.

Pearl, J. (2014a). The deductive approach to causal infer-
ence. Journal of Causal Inference 2 115–129.

Pearl, J. (2014b). Interpretation and identification of causal
mediation. Psychological Methods 19 459–481.

Pearl, J. (2014c). Reply to commentary by Imai, Keele, Tin-
gley, and Yamamoto concerning causal mediation analy-
sis. Psychological Methods 19 488–492.

Pearl, J. and Paz, A. (2014). Confounding equivalence in
causal inference. Journal of Causal Inference J. Causal
Infer. 2 75–93.

Rubin, D. (1974). Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of Edu-
cational Psychology 66 688–701.

Shipley, B. (2000). A new inferential test for path mod-
els based on directed acyclic graphs. Structural Equation
Modeling 7 206–218.

Shpitser, I. and Pearl, J. (2006). Identification of condi-
tional interventional distributions. In Proceedings of the
Twenty-Second Conference on Uncertainty in Artificial In-
telligence (R. Dechter and T. Richardson, eds.). AUAI
Press, Corvallis, OR, 437–444.

Shpitser, I. and Pearl, J. (2008). Dormant independence. In
Proceedings of the Twenty-Third Conference on Artificial
Intelligence. AAAI Press, Menlo Park, CA, 1081–1087.

Shrout, P., Keyes, K. and Ornstein, K. (2010). Causality
and psychopathology: Finding the determinants of disor-
ders and their cures. Oxford University Press.

Spearman, C. (1904). General intelligence, objectively deter-
mined and measured. The American Journal of Psychol-
ogy 15 201–292.

Spirtes, P. (1995). Directed cyclic graphical representation
of feedback. In Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence (P.Besnard and
S. Hanks, eds.). Morgan Kaufmann, San Mateo, CA, 491–
498.

Spirtes, P., Glymour, C. N. and Scheines, R. (2000). Causa-
tion, prediction, and search, vol. 81. MIT press.

Tian, J. (2002). Studies in Causal Reasoning and Learning.
Ph.D. thesis, Computer Science Department, University of
California, Los Angeles, CA.

Tian, J. (2005). Identifying direct causal effects in linear
models. In Proceedings of the National Conference on Ar-
tificial Intelligence, vol. 20. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999.

Tian, J. (2007). A criterion for parameter identification in
structural equation models. In Proceedings of the Twenty-
Third Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-07). AUAI Press, Corvallis,
Oregon.

Tian, J. (2009). Parameter identification in a class of linear
structural equation models. In Proceedings of the Twenty-
First International Joint Conference on Artificial Intelli-
gence (IJCAI-09).

Tian, J. and Pearl, J. (2002a). A general identifica-
tion condition for causal effects. In Proceedings of the
Eighteenth National Conference on Artificial Intelligence.
AAAI Press/The MIT Press, Menlo Park, CA, 567–573.

Tian, J. and Pearl, J. (2002b). On the testable implications
of causal models with hidden variables. In Proceedings
of the Eighteenth Conference on Uncertainty in Artificial
Intelligence (A. Darwiche and N. Friedman, eds.). Morgan
Kaufmann, San Francisco, CA, 519–527.

Tomarken, A. J. and Waller, N. G. (2003). Potential prob-
lems with" well fitting" models. Journal of abnormal psy-
chology 112 578.

Verma, T. and Pearl, J. (1990). Equivalence and synthe-
sis of causal models. In Proceedings of the Sixth Confer-
ence on Uncertainty in Artificial Intelligence. Cambridge,
MA. Also in P. Bonissone, M. Henrion, L.N. Kanal and
J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence
6, Elsevier Science Publishers, B.V., 255–268, 1991.

Williams, L. (2012). Equivalent models: Concepts, prob-
lems, alternatives. Handbook of Structural Equation Mod-
eling (R. Hoyle, ed.). Guilford Press, New York 247–260.

Wright, P. (1928). The Tariff on Animal and Vegetable Oils.
The MacMillan Company, New York, NY.



GRAPHICAL TOOLS FOR LINEAR STRUCTURAL EQUATION MODELING 25

Wright, S. (1921). Correlation and causation. Journal of
Agricultural Research 20 557–585.

Wright, S. (1925). Corn and hog correlations. Tech. Rep.
1300, U.S. Department of Agriculture.

Yamamoto, T. (2012). Understanding the past: Statistical
analysis of causal attribution. American Journal of Politi-
cal Science 56 237–256.




