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Abstract: Conventional wisdom dictates that the more we know about a problem domain the easier it is to
predict the effects of policies in that domain. Strangely, this wisdom is not sanctioned by formal analysis,
when the notions of “knowledge” and “policy” are given concrete definitions in the context of nonpara-
metric causal analysis. This note describes this peculiarity and speculates on its implications.
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1 Introduction

In her book, Hunting Causes and Using Them [1], Nancy Cartwright expresses several objections to the doðxÞ
operator and the “surgery” semantics on which it is based (pp. 72 and 201). One of her objections concerned
the fact that the do-operator represents an ideal, atomic intervention, different from the one implementable
by most policies under evaluation. According to Cartwright, for policy evaluation “we generally want to
know what would happen were the policy really set in place,” and “the policy may affect a host of changes
in other variables in the system, some envisaged and some not.”

In my answer to Cartwright [2, p. 363], I stressed two points. First, the do-calculus enables us to evaluate
the effect of compound interventions as well, as long as they are described in the model and are not left to
guesswork. Second, I claimed that “in many studies our goal is not to predict the effect of the crude, non-
atomic intervention that we are about to implement but, rather, to evaluate an ideal, atomic policy that
cannot be implemented given the available tools, but that represents nevertheless scientific knowledge that
is pivotal for our understanding of the domain.”

The example I used was as follows: Smoking cannot be stopped by any legal or educational means
available to us today; cigarette advertising can. That does not stop researchers from aiming to estimate “the
effect of smoking on cancer,” and doing so from experiments in which they vary the instrument – cigarette
advertisement – not smoking. The reason they would be interested in the atomic intervention
Pðcancer jdoðsmoking ÞÞ rather than (or in addition to) Pðcancer jdoðadvertising ÞÞ is that the former repre-
sents a stable biological characteristic of the population, uncontaminated by social factors that affect
susceptibility to advertisement, thus rendering it transportable across cultures and environments. With
the help of this stable characteristic, one can assess the effects of a wide variety of practical policies, each
employing a different smoking-reduction instrument. For example, if careful scientific investigations reveal
that smoking has no effect on cancer, we can comfortably conclude that increasing cigarette taxes will not
decrease cancer rates and that it is futile for schools to invest resources in anti-smoking educational
programs.

This note takes another look at this argument, in light of recent results in transportability theory
(Bareinboim and Pearl [3], hereafter BP).
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2 A theorem and its implications

The question investigated in BP was whether one can infer the causal effect of X on Y by randomizing a
surrogate variable Z, which is more easily controllable than X. This problem was addressed earlier in Pearl [2,
pp. 88–89]where a sufficient conditionwas derived for a variableZ to act as an experimental surrogate forX. BP
have obtained a condition that is both necessary and sufficient for surrogacy, which reads as follows:

Theorem 1 (BP [3]),
The causal effect PðyjdoðxÞÞ can be inferred from experiments on Z if and only if:

1. PðyjdoðxÞÞ can be inferred from observational studies alone, or
2(i). All directed paths from Z to Y go through X, and
2(ii). PðyjdoðxÞ; doðzÞÞ can be inferred from observational studies.

Remark: Condition 2(i), in effect, turns Z into an instrumental variable, when randomized.

If X stands for a treatment, then Z plays the role of an “intent-to-treat” variable in noncompliance
situations. Condition 2(i) ensures that Z has no side effects on Y; i.e. it acts as an instrumental variable when
randomized. Condition 2(ii) ensures a nonparametric identification of treatment effects, using Z as an
instrument [4–6].

Figure 1(a) and (b) illustrates models where both 2(i) and 2(ii) are satisfied, while in Figure 1(c) 2(i) fails,
because a directed path exists from Z to Y. For example, if Z represents cigarette tax and X represents
smoking, then we can infer the causal effect of smoking on cancer, PðyjdoðxÞÞ, by experimenting with tax
rates; 2(i) is satisfied because taxes do not directly affect cancer, and 2(ii) is satisfied because, in Figure 1(a)
and (b), PðyjdoðxÞÞ is identifiable in the models that result from intervening on Z (i.e. deleting all arrows
pointing to Z.)

We now return to the question of whether scientific knowledge can be useful in evaluating practical
policies. We ask: Suppose doðZ ¼ zÞ represents a specific implementation of a policy that intends to
enact doðX ¼ xÞ, ostensibly because the latter is not directly implementable. Would knowledge of
PðyjdoðxÞÞ help us evaluate PðyjdoðzÞÞ, the policy that is “really set in place”?

Formally, the problem amounts to reversing the role of X and Z in Theorem 1 and yields:

Theorem 2 The causal effect PðyjdoðzÞÞ can be inferred from observational studies and knowledge of
PðyjdoðxÞÞ if and only if:

1. PðyjdoðzÞÞ can be inferred from observational studies alone, or
2(i). All directed paths from X to Y go through Z, and
2(ii). PðyjdoðxÞ; doðzÞÞ is identifiable in observational studies.
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Figure 1 Models (a) and (b) satisfy the conditions of Theorem 1, thus permitting the identification of PðyjdoðxÞÞ from
experiments conducted on Z. Model (c) does not permit this identification because of the arrow from Z to Y
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This is a surprising result, saying in effect that knowing how X affects Y (i.e. PðyjdoðxÞÞ) is useless for
estimating the effect of a policy doðZ ¼ zÞ that is intended to utilize the effect of X on Y. Put differently,
knowing how effective a treatment is does not tell us how effective any policy is, which is intended to
administer that treatment in practice. This can be seen by noting that 2(i) cannot be satisfied unless Z
contains descendants of X, and this will never be the case when Z is chosen so as to influence Y through X.
Therefore, the causal effect PðyjdoðzÞÞ can be inferred from knowledge of PðyjdoðxÞÞ if and only if it can be
inferred from observational studies alone, as in Condition 1.

To see the ramification of this impossibility result, consider again the smoking-cancer example,
depicted in Figure 2. Here Z represents cigarette tax, X represents smoking, and Y represents cancer. Our
aim is to estimate the effect of policy doðZ ¼ zÞ (setting the level of cigarette taxes) on cancer. The dashed
curved line between Z and Y represents confounding factors, for example, factors that render communities
that impose high cigarette taxes more diet-conscience, hence, less cancer prone. In model 2(a), neither
PðyjdoðzÞÞ nor PðyjdoðxÞÞ is identifiable from observational data (as can be seen from the graphical criteria
of Shpitser and Pearl [7]), and the question we ask is whether knowledge of PðyjdoðxÞÞ can help us identify
PðyjdoðzÞÞ. Theorem 2 answers this question in the negative, since Z does not block the directed path from X
to Y, thus violating Condition 2(i).

3 Discussion

This result is peculiar, for it implies that policies such as imposing cigarette taxes cannot be informed by
knowing the extent to which smoking causes cancer. It reflects an idiosyncratic property of nonparametric
analysis in which knowledge of causal effects (such as PðyjdoðxÞÞ is insufficient to turn other causal effects
identifiable. In other words, the requirement of nonparametric identification (of PðyjdoðzÞÞ) is so stringent
that the information provided by other causal effects (e.g. PðyjdoðxÞÞ) is too weak to make a difference.

Things are different in parametric systems, as can be seen from Figure 2(b), which represents a linear
version of Figure 2(a), with parameters α and β. Here, the causal effect of Z on Y is αβ that is not identifiable.
However, if the causal effect (β) of X on Y is given, αβ is identifiable because α can easily be estimated by
regression ðα ¼ covðZ;XÞ=varðZÞÞ.

Another exception to this impossibility result is the case where X has zero effect on Y,
namely, PðyjdoðxÞÞ ¼ PðyÞ. In this case, 2(i) is satisfied by default, since there is no directed path from X
to Y, as shown in Figure 2(c) and the conclusion PðyjdoðzÞÞ ¼ PðyÞ follows. Indeed, if smoking has no effect
on cancer it would be futile to attempt a reduction in cancer cases by increasing tax on cigarettes.

This observation mitigates substantially our initial disappointment with formal analysis. It implies that,
whereas knowledge of PðyjdoðxÞÞ does not yield a point-estimate of PðyjdoðzÞÞ it provides, nevertheless, an
interval estimate that vanishes when X is known to have no effect on Y at the population level, i.e.
PðyjdoðxÞÞ ¼ PðyÞ. It would be interesting to find out, in general, how quantitative knowledge of non-zero
effects helps reduce uncertainties about practical policies.
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Figure 2 Model (a) does not satisfy Conditions 1 and 2(i) of Theorem 2, thus prohibiting the identification of PðyjdoðzÞÞ from
knowledge of PðyjdoðxÞÞ. Model (b), which is a linear version of (a), permits this identification. Model (c) trivially permits this
identification due to the missing arrow from X to Y
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Finally, another exception to Theorem 2 occurs when a policy doðZ ¼ 1Þ can enforce a treatment
doðX ¼ 1Þ deterministically, i.e. with no exceptions. For example, if the policy doðZ ¼ 1Þ stands for
inoculating every individual in the population, then the implication Z ¼ 1 ) X ¼ 1 renders PðyjdoðX ¼ 1Þ
identifiable whenever Condition 2(i) of Theorem 1 holds, that is, when Z has no side effects on Y (see Pearl
[2, p. 358]).
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