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ABSTRACT 

Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), 
the arcs signify direct dependencies between the linked propositions, and the strengths of these 
dependencies are quantified by conditional probabilities. A network of this sort can be used to 
represent the generic knowledge of a domain expert, and it turns into a computational architecture if 
the links are used not merely for storing factual knowledge but also for directing and activating the 
data flow in the computations which manipulate this knowledge. 

The first part of the paper deals with the task of fusing and propagating the impacts of new 
information through the networks in such a way that, when equilibrium is reached, each proposition 
will be assigned a measure of belief consistent with the axioms of probability theory. It is shown that 
if the network is singly connected (e.g. tree-structured), then probabilities can be updated by local 
propagation in an isomorphic network of parallel and autonomous processors and that the impact of 
new information can be imparted to all propositions in time proportional to the longest path in the 
network. 

The second part of the paper deals with the problem of finding a tree-structured representation for 
a collection of probabilistically coupled propositions using auxiliary (dummy) variables, colloquially 
called "hidden causes." It is shown that if such a tree-structured representation exists, then it is 
possible to uniquely uncover the topology of the tree by observing pairwise dependencies among the 
available propositions (i.e., the leaves of the tree). The entire tree structure, including the strengths of 
all internal relationships, can be reconstructed in time proportional to n log n, where n is the number 
of leaves. 

1. Introduction 

This study was motivated by attempts to devise a computational model for 
humans' inferential reasoning, namely, the mechanism by which people inte- 
grate data from multiple sources and generate a coherent interpretation of that 
data. Since the knowledge from which inferences are drawn is mostly judg- 
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mental--subjective, uncertain and incomplete--a natural place to start would 
be to cast the reasoning process in the framework of probability theory. 
However, the mathematician who approaches this task from the vantage point 
of probability theory may dismiss it as a rather prosaic exercise. For, if one 
assumes that human knowledge is represented by a joint probability distrib- 
ution, P ( x l , . . . ,  xn ) ,  on a set of propositional variables, x 1 . . . .  , x n, the task of 
drawing inferences from observations amounts to simply computing the prob- 
abilities of a small subset, HI . . . .  , H k, of variables called hypotheses, con- 
ditioned upon a group of instantiated variables, el . . . . .  era, called evidence. 
Indeed, computing P(H~ . . . . .  Hk]e ~ . . . . .  e r a )  from a given joint distribution 
on all propositions is merely arithmetic tedium, void of theoretical or con- 
ceptual interest. 

It is not hard to see that this textbook view of probability theory presents a 
rather distorted picture of human reasoning and misses its most interesting 
aspects. Consider, for example, the problem of encoding an arbitrary joint 
distribution, P(x~ . . . . .  x , ) ,  on a computer. If we need to deal with n 
propositions, then to store P(x~ . . . . .  xn )  explicitly would require a table with 
2" entries--an unthinkably large number, by any standard. Moreover, even if 
we found some economical way of storing P ( x  1, . . . , xn)  (or rules for generat- 
ing it), there would still remain the problem of manipulating it to compute the 
probabilities of propositions which people consider interesting. For example, 
computing the marginal probability P(x i )  would require summing 
P ( x  I . . . . .  xn )  over all 2" ~ combinations of the remaining n -  1 variables. 
Similarly, computing the conditional probability P(x~[x j )  from its textbook 
definition P(x~ Ix j)  = P ( x  I , x j ) / P ( x j )  would involve dividing two marginal prob- 
abilities, each resulting from summation over an exponentially large number of 
variable combinations. Human performance, by contrast, exhibits a different 
complexity ordering: probabilistic judgments on a small number of proposi- 
tions (especially two-place conditional statements such as the likelihood that a 
patient suffering from a given disease will develop a certain type of complic- 
ation) are issued swiftly and reliably, while judging the likelihood of a 
conjunction of many propositions entails a great degree of difficulty and 
hesitancy. This suggests that the elementary building blocks which make up 
human knowledge are not the entries of a joint-distribution table but, rather, 
the low-order marginal and conditional probabilities defined over small clusters 
of propositions. 

Further light on the structure of probabilistic knowledge can be shed by 
observing how people handle the notion of independence. Whereas a person 
may show reluctance to giving a numerical estimate for a conditional proba- 
bility P(x i [x j ) ,  that person can usually state with ease whether xi and xj are 
dependent or independent, namely, whether or not knowing the truth of xi will 
alter the belief in x~. Likewise, people tend to judge the three-place relation- 
ships of conditional dependency (i.e., x~ influences xj given xk) with clarity, 
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conviction, and consistency. 
This suggests that the notions of dependence and conditional dependence are 

more basic to human reasoning than are the numerical values attached to 
probability judgments. (This is contrary to the picture painted in most text- 
books on probability theory, where the latter is presumed to provide the 
criterion for testing the former.) Moreover, the nature of probabilistic depen- 
dency between propositions is similar in many respects to that of connectivity 
in graphs. For instance, we find it plausible to say that a proposition q affects 
proposition r directly, while s influences r indirectly, via q. Similarly, we find it 
natural to identify a set of direct justifications for q to sufficiently shield it (q) 
from all other influences and to describe them as the direct neighbors of q [5]. 
These graphical metaphors suggest that the fundamental structure of human 
knowledge can be represented by dependency graphs and that mental tracing 
of links in these graphs are the basic steps in querying and updating that 
knowledge. 

1.1. Belief networks 

Assume that we decide to represent our perception of a certain problem 
domain by sketching a graph in which the nodes represent propositions and the 
links connect those propositions that we judge to be directly related. We now 
wish to quantify the links with weights that signify the strength and type of 
dependencies between the connected propositions. If these weights are to 
reflect summaries of actual experiences, we must first attend to two problems: 
consistency and completeness. Consistency guarantees that we do not overload 
the graph with an excessive number of parameters; overspecification may lead 
to contradictory conclusions, depending on which parameter is consulted first. 
Completeness protects us from underspecifying the graph dependencies and 
guarantees that our conclusion-generating routine will not get deadlocked for 
lack of information. 

One of the attractive features of the traditional joint-distribution represent- 
ation of probabilities is the transparency by which one can synthesize consistent 
probability models or detect inconsistencies therein. In this representation, all 
we need to do to create a complete model, free of inconsistencies, is to assign 
nonnegative weights to the atomic compartments in the space (i.e., conjunc- 
tions of propositions), just making sure the sum of the weights equals one. By 
contrast, the synthesis process in the graph representation is more hazardous. 
For example, assume you have three propositional variables, x~, x2, x3, and 
you want to express their dependencies by specifying the three pairwise 
probabilities P(x~, x2), P(x2, x3)  , P(x3, xl). It turns out that this will normally 
lead to inconsistencies; unless the parameters given satisfy some nonobvious 
relationship, there exists no probability model that will support all three inputs. 
By contrast, if we specify the probabilities on only two pairs, incompleteness 
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results; many  models  exist which conform to the input specification, and we 
will not  be able to provide answers to all probabilist ic queries. 

For tunate ly ,  the consis tency-completeness  issue has a simple solution stem- 
ming f rom the chain-rule representa t ion of  joint distributions. Choos ing  an 
arbitrary order  d on the variables x~ . . . . .  x , ,  we can write~: 

P ( x , ,  x 2 , .  . . , xo)  

= e ( x . l x , ,  , . . . . .  x l ) . . .  P(x31,2,  x , ) p ( x 2 1 x , ) e ( X l ) .  

In this formula ,  each factor  contains only one variable on the left side of  the 
condit ioning bar and,  in this way, the formula  can be used as a prescript ion for  
consistently quant ifying the dependencies  a m o n g  the nodes  of  an arbitrary 
graph.  Suppose we are given a directed acyclic graph G in which the arrows 
point ing at each node  x i emana te  f rom a set S i of  parent  nodes  judged  to be 
directly influencing xi, and we wish to quantify the strengths of  these influences 
in a complete  and consistent way. If, by direct parents  we mean  a set of  
variables which, once we fix their values, would shield xi f rom the influence of  
all o ther  predecessors  of  X i (i.e., P(xilSi)= P(xi[xl,... ,Xi_l)), then the 
chain-rule formula  states that  a separate  assessment of  each child-parents  
relationship should suffice. We need only assess the condit ional  probabili t ies,  
P(x~IS~), by some functions,  Fi(x  i, S~), and make  sure these assessments satisfy 

~] p,(x,, s ,)  = l ,  0 ~ e i (x , ,  S , )  ~ 1 ,  

where  the summat ion  ranges over  all values of  x i. This specification is comple te  
and consistent because  the produc t  fo rm 

e ( ~ , , . . . ,  ~ )  = [I  r,(~,, s,) 
t 

consti tutes a joint probabil i ty distr ibution that  supports  the assessed quantit ies.  
In o ther  words ,  if we c om pu t e  the condit ional  probabili t ies P(x,IS,) dictated by 
P ( x l , . . . ,  x~) ,  the original assessments Fi(x  i, Si)  will be recovered:  

J Probabilistic formulae of this kind are shorthand notation for the statement that for any 
instantiation i of the variables x~, x 2 . . . . .  x., the probability of the joint event (x~ = i~ ) & (x 2 = i2) 
&. . .  & (xo = in) is equal to the product of the probabilities of the corresponding conditional 
events (x~ = i~), (x 2 = i z if xt = i~), (x 3 = i 3 if (x 2 = i 2 & x~ = il) ) . . . . .  For this expansion to be 
valid, we must require that P(E)> 0 for all conditioning events E. 
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P(x, lS,) - P(xi '  Si) 
e ( s i )  

ff'~ P(x,  . . . . .  xn) 
x jq t (x iUS i ) 

P(x,  . . . .  , x , )  
x j ~ S  i 

= F~(x,, S , ) .  

So, for example,  the distribution corresponding to the graph of Fig. 1 can be 
written by inspection: 

P(x l ,  x2, x3, x4, xs, x6) 

= P(x6lxs)P(x~lx2,  x3)P(x4lx l ,  xz)P(x3lx,)P(x2 Ix, )P(x ,  ) .  

This also leads to a simple method of constructing a dependency-graph 
representat ion for any given joint distribution P(x~ . . . .  , xn). We start by 
imposing an arbitrary order  d on the set of variables, x 1 . . . . .  x , ,  then choose 
x~ as a root of the graph and assign to it the marginal probabili ty P(x 1) dictated 
by P(x 1 . . . . .  x , ) .  Next,  we form a node to represent  x2; if x 2 is dependent  on 
x L, a link from x 1 to x 2 is established and quantified by P(x21x,). Otherwise,  we 
leave x I and x 2 unconnected and assign the prior P(x2) to node x 2. At  the ith 
stage, we form the node x~ and establish a group of directed links to x i f rom the 
smallest subset of nodes S i C_ { x ~ , . . . ,  x~_l} satisfying the condition 

P(x  i I Si ) = P(x  i I xi_,  . . . .  , x,  ) .  

It can be shown that the set of  subsets satisfying this condition is closed under 
intersection; therefore,  the minimal subset S, is unique. Thus,  the distribution, 
P(x I . . . . .  xn),  together  with the order d uniquely identify a set of parent  
nodes for each variable xi, and that constitutes a full specification of a directed 

x 1 

x2 x 3 

x 5 
x 4 

FIG. 1. A typical Bayesian network representing the distribution P(xl , . . .  , x6) = 
e(x61xOP(xslx2 xs)e(x41xl, xz)P(x31x,)e(x2lx,)P(x,). 
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acyclic graph which represents many of the independencies imbedded in 
P(x,  . . . . .  xn). 

In expert-systems applications where, instead of a numerical representation 
for P(x i . . . . .  x,,), we have only intuitive understanding of the major con- 
straints in the domain, the graph can still be configured by the same modular 
method as before, except that the parent set S i must be selected judgmentally. 
The addition of any new node x i to the network requires only that the expert 
identify a set S i of variables which "directly influence" xi, locally assess 
the strength of this relation and make no commitment regarding the effect of xi 
on other variables, outside S,. Even though each judgment is performed locally, 
their sum total is guaranteed to be consistent. This model-building process 
permits people to express qualitative relationships perceived to be essential, 
and the network preserves these qualities, despite sloppy assignments of 
numerical estimates. In Fig. 1, for example, the fact that x 6 can tell us nothing 
new about x 3 once we know x 5, will remain part of the model, no matter how 
carelessly the numbers are assigned. 

Graphs constructed by this method will be called belief networks, Bayesian 
networks, or influence networks interchangeably, the former two to emphasize 
the judgmental origin and the probabilistic nature of the quantifiers, the latter 
to reflect the directionality of the links. When the nature of the interactions is 
perceived to be causal, then the term, causal network, may also be appro- 
priate. In general, however, an influence network may also represent associa- 
tive or inferential dependencies, in which case the directionality of the arrows 
mainly provides computational convenience [10]. An alternative graphical 
representation, using undirected graphs, is provided by the so-called Markov 
fields approach [12] and will not be discussed here. For comparison of 
properties and applications, see [15, 24, 32]. 

In the strictest sense, these networks are not graphs but hypergraphs because 
to describe the dependency of a given node on its k parents requires a function 
of k + 1 arguments which, in general, could not be specified by k two-place 
functions on the individual links. This, however, does not diminish the 
advantages of the network representation because the essential interactions 
between the variables are still displayed by the connecting links. If the number 
of parents k is large, estimating P(x~]Si) may be troublesome because, in 
principle, it requires a table of size 2 k. In practice, however, people conceptual- 
ize causal relationships by forming hierarchies of small clusters of variables (see 
Section 3.1) and, moreover, the interactions among the factors in each cluster 
are normally perceived to fall into one of a few prestored, prototypical 
structures, each requiring about k parameters. Common examples of such 
prototypical structures are: noisy OR gates (i.e., any one of the factors is likely 
to trigger the effect), noisy AND gates and various enabling mechanisms (i.e., 
factors identified as having no influence of their own except enabling other 
influences to become effective). 
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Note that the topology of a Bayes network can be extremely sensitive to the 
node ordering d; a network with a tree structure in one ordering may turn into 
a complete graph if that ordering is reversed. For example, if x~ . . . . .  x, stands 
for the outcomes of n independent coins, and Xn+ 1 represents the output of a 
detector triggered if any of the coins comes up head, then the influence 
network will be an inverted tree of n arrows pointing from each of the variables 
xl  . . . . .  x ,  toward x , +  1. On the other hand, if the detector's outcome is chosen 
to be the first variable, say x 0, then the underlying influence network will be a 
complete graph. 

This order sensitivity may at first seem paradoxical; d can be chosen 
arbitrarily, whereas people have fairly uniform conceptual structures, e.g., they 
agree on whether a pair of propositions are directly or indirectly related. The 
answer to this apparent paradox lies in the fact that the consensus about the 
structure of influence networks stems from the dominant role causali ty  plays in 
the formation of these networks. In other words, the standard ordering 
imposed by the direction of causation indirectly induces identical topologies on 
the networks that people adopt for encoding experiential knowledge. It is 
tempting to speculate that, were it not for the social convention of adopting a 
standard ordering of events conforming to the flow of time and causation, 
human communication (as we now know it) would be impossible. 

1.2. Conditional independence and graph separability 

To facilitate the verification of dependencies among the variables in a Bayes 
network, we need to establish a clear correspondence between the topology of 
the network and various types of independence. Normally, independence 
between variables connotes lack of connectivity between their corresponding 
nodes. Thus, it would be ideal to require that, should the removal of some 
subset S of nodes from the network render nodes x i and xj disconnected, then 
such separation indicates genuine independence between xi and x j ,  conditioned 
on S: 

e(x, lxj, s)= p ( x i l S  ) . 

This would provide a clear graphical representation for the notion that xj  does 
not affect x~ directly but, rather, its influence is mediated by the variables in S. 
Unfortunately, a network constructed to satisfy this correspondence for any 
arbitrary S would normally fail to display an important class of independencies 
[24]. For example, in such a network, two variables which are marginally 
independent will appear directly connected, merely because there exists some 
other variable that depends on both. 

Bayes' networks, on the other hand, allow representation of this class of 
independencies, but only at the cost of a slightly more complex criterion of 
separability, one which takes into consideration the directionality of the arrows 
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in the graph. Consider a triplet of variables, xl ,  x 2, x 3, where x~ is connected to 
x 3 via x 2. The two links, connecting the pairs (xl,  x2) and (x2, x3), can join at 
the midpoint,  x 2, in one of three possible ways: 

(1) tail-to-tail, x 1 ~--- x2---) x 3 , 

(2) head-to-tail,  x j - - ~  x2---~ x 3 or x 1 ~---x2,~--x 3 , 

(3) head-to-head,  x 1 ~ x 2 *--x 3 . 
If we assume that x 1, x2, x 3 are the only variables involved, it is clear from the 
method of constructing the network that, in cases (1) and (2), x~ and x 3 are 
conditionally independent ,  given x 2, while in case (3), xl and x 3 are marginally 
independent  (i.e., P ( x 3 l x ~ ) =  P(x3) ) but may become dependent ,  given the 
value o f x  2. Moreover ,  i f x  2 in case (3) has descendants x4, x s , . . . ,  then xl and 
x 3 may also become dependent  if any one of those descendant variables is 
instantiated. These considerations motivate the definition of a qualified version 
of path connectivity, applicable to paths with directed links and sensitive to all 
the variables for which values are known at a given time. 

Definition 1.1. (a) A subset of variables S e is said to s e p a r a t e  x i from xj if all 
paths between xi and xj are s e p a r a t e d  by Se. 

(b) A path P is s e p a r a t e d  by a subset S e of variables if at least one pair of 
successive links along P is b l o c k e d  by S~. 

We next introduce a nonconventional  criterion under which a pair of 
converging arrows is said to be b l o c k e d  by S e. 

Definition 1.2. (a) Two links meeting head-to-tail or tail-to-tail at node X are 
b l o c k e d  b y  S,. if X is in S,,. 

(b) Two links meeting head-to-head at node X are b l o c k e d  b y  S e if neither X 
nor any of its descendants is in Se. 

This modified definition of separation provides a graphical criterion for 
testing conditional independence: if S e separates x~ from xj, then x i is condition- 
ally independent  of x~, given S e. The procedure involved in testing this 
modified criterion is slightly more complicated than the conventional test for 
deciding whether  S e is a separating cutset and can be handled by visual 
inspection. In Fig. 1, for example,  one can easily verify that variables x 2 and x 3 
are separated by S e = {Xl} or Se = {x 1, X4} because the two paths between x 2 
and x 3 are blocked by either one of these subsets. However ,  x 2 and x 3 are not 
separated by S e = {x I, x6} because x 6, as a descendant of x 5, "unblocks"  the 
head-to-head connection at x 5, thus opening a pathway between x 2 and x 3. 

Although the structure of Bayes '  networks,  together with the directionality 
of its links, depends strongly on the node ordering used in the network 
construction, conditional independence is a proper ty  of the underlying distrib- 
ution and is, therefore,  order-invariant.  Thus, if we succeed in finding an 
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ordering d in which a given conditional independence relationship becomes 
graphically transparent, that relationship remains valid even though it may not 
induce a graph-separation pattern in networks corresponding to other order- 
ings. This permits the use of Bayes' networks for identifying by inspection a 
screening neighborhood for any given node, namely, a set S of variables that 
renders a given variable independent of every variable not in S. The separation 
criterion for Bayes' networks guarantees that the union of the following three 
types of neighbors is sufficient for forming a screening neighborhood: direct 
parents, direct successors and all direct parents of the latter. Thus, in a Markov 
chain, the screening neighborhood of any nonterminal node consists of its two 
immediate neighbors while, in trees, the screening neighborhood consists of 
the (unique) father and the immediate successors. In Fig. 1, however, the 
screening neighborhood of x 3 is {x 1, x 5, x2}. 

1.3. An outline and summary of  results 

The first part of this paper (Section 2) deals with the task of fusing and 
propagating the impacts of new evidence and beliefs through Bayesian net- 
works in such a way that, when equilibrium is reached, each proposition will be 
assigned a certainty measure consistent with the axioms of probability theory. 
We first argue (Section 2.1) that any viable model of human reasoning should 
be able to perform this task by a self-activated propagation mechanism, i.e., by 
an array of simple and autonomous processors, communicating locally via the 
links provided by the belief network itself. In Section 2.2 we then show that 
these objectives can be fully realized in tree-structured networks, where each 
node has only one father. In Section 2.3 we extend the result to networks with 
multiple parents that are singly connected, i.e., there exists only one (undirect- 
ed) path between any pair of nodes. In both cases, we identify belief 
parameters, communication messages and updating rules which guarantee that 
equilibrium is reached in time proportional to the longest path in the network 
and that, at equilibrium, each proposition will be accorded a belief measure 
consistent with probabilty theory. Several approaches toward achieving au- 
tonomous propagation in multiply connected networks are discussed in Section 
2.4. 

The second part of the paper (Section 3) expands on one of these approach- 
es by examining the feasibility of preprocessing a belief network and turning it 
permanently into a tree by introducing dummy variables. In Section 3.1 we 
argue that such a technique mimics the way people develop causal models, that 
dummy variables correspond to the mental constructs known as "hidden 
causes" and that humans' relentless search for causal models is motivated by 
their desire to achieve computational advantages similar to those offered by 
tree-structured belief networks. After defining (in Section 3.2) the notions of 
star-decomposability and tree-decomposability, Section 3.3 treats triplets of 
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propositional variables and asks under what conditions one is justified in 
attributing the observed dependencies to one central cause represented by a 
fourth variable. We show that these conditions are readily testable and that, 
when the conditions are satisfied, the parameters specifying the relations 
between the visible variables and the central cause can be uniquely deter- 
mined. In Section 3.4 we extend these results to the case of a tree with n 
leaves. We show that, if there exists a set of dummy variables which decom- 
pose a given Bayes network into a tree, then the uniqueness of the triplets' 
decomposition enables us to configure that tree from pairwise dependencies 
among the variables. Moreover,  the configuration procedure involves only 
O(n log n) steps. In Section 3.5 we evaluate the merits of this method and 
address the difficult issues of estimation and approximation. 

2. Fusion and Propagation 

2.1. Autonomous propagation as a computational paradigm 

Once a belief network is constructed, it can be used to represent the generic 
knowledge of a given domain and can be consulted to reason about the 
interpretation of specific input data. The interpretation process involves instan- 
tiating a set of variables corresponding to the input data, calculating its impact 
on the probabilities of a set of variables designated as hypotheses and, finally, 
selecting the most likely combinations of these hypotheses. In general, this 
process can be carried out by an external interpreter which may have access to 
all parts of the network, may use its own computational facilities and may 
schedule its computational steps so as to take full advantage of the network 
topology with respect to the incoming data. However,  the use of such an 
interpreter appears foreign to the reasoning process normally exhibited by 
humans [30]. Our limited short-term memory and narrow focus of attention, 
combined with our inability to shift rapidly between alternative lines of 
reasoning, suggests that our reasoning process is fairly local, progressing 
incrementally along pre-established pathways. Moreover,  the speed and ease 
with which we perform some of the low-level interpretive functions, such as 
recognizing scenes, reading text and even understanding stories, strongly 
suggest that these processes involve a significant amount of parallelism, 
and that most of the processing is done at the knowledge level itself, not 
external to it. 

A paradigm for modeling such phenomena would be to view an influence 
network not merely as a passive parsimonious code for storing factual knowl- 
edge but also as a computational architecture for reasoning about that 
knowledge. That means that the links in the network should be treated as the 
only pathways and activation centers that direct and propel the flow of data in 
the process of querying and updating beliefs. Accordingly, we assume that each 
node in the network is designated a separate processor, which both maintains 
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the parameters of belief for the host variable and manages the communication 
links to and from the set of neighboring, conceptually related, variables. The 
communication lines are assumed to be open at all times, i.e., each processor 
may, at any time, interrogate the belief parameters associated with its neigh- 
bors and compare them to its own parameters. If the compared quantities 
satisfy some local constraints, no activity takes place. However, if any of these 
constraints are violated, the responsible node is activated to set its violating 
parameter straight. This, of course, will activate similar revisions at the 
neighboring nodes and will set up a multidirectional propagation process, until 
equilibrium is reached. 

The main reason for this distributed message-passing paradigm is that it 
leads to a "transparent" revision process, in which the intermediate steps can 
be given an intuitively meaningful interpretation. Since a distributed process 
restricts each computational step to obtain inputs only from neighboring, 
semantically related variables, and since the activation of these steps proceeds 
along semantically familiar pathways, people find it easy to give meaningful 
interpretation to the individual steps, thus establishing confidence in the final 
result. Additionally, it is possible to generate qualitative justifications mechani- 
cally by tracing the sequence of operations along the activated pathways and 
giving them causal or diagnostic interpretations using appropriate verbal 
expressions. 

The ability to update beliefs by an autonomous propagation mechanism also 
has a profound effect on sequential implementations of evidential reasoning. 
Of course, when this architecture is simulated on sequential machines, the 
notion of autonomous processors working simultaneously in time is only a 
metaphor; however, it signifies the complete separation of the stored knowl- 
edge from the control mechanism--the proclaimed, yet rarely achieved, goal of 
rule-based architectures. This separation guarantees the ultimate flexibility for 
a sequential controller; the computations can be performed in any order, 
without the need to remember or verify which parts of the network have or 
have not already been updated. Thus, for example, belief updating may be 
activated by changes occurring in logically related propositions, by requests for 
evidence arriving from a central supervisor, by a predetermined schedule or 
entirely at random. The communication and interaction among individual 
processors can be simulated using a blackboard architecture [17], where each 
proposition is designated specific areas of memory to access and modify. 
Additionally, the uniformity of this propagation scheme renders it natural for 
formulation in object-oriented languages: each node is an object of the same 
generic type, and the belief parameters are the messages by which interacting 
objects communicate. 

In AI, constraint-propagation mechanisms have been found essential in 
several applications, e.g., vision [27, 35] and truth maintenance [20]. However, 
their use in evidential reasoning has been limited to non-Bayesian formalisms 



252 J. PEARL 

(e.g. [19, 30]). There have been several reasons for this. 
First, the conditional probabilities characterizing the links in the network do 

not seem to impose definitive constraints on the probabilities that can be 
assigned to the nodes. The quantifier P(AIB) only restricts the belief accorded 
to A in a very special set of circumstances, namely, when B is known to be true 
with absolute certainty and when no other evidential data is available. Under 
normal circumstances, all internal nodes in the network will be subject to some 
uncertainty and, more seriously, after the arrival of evidence e, the posterior 
beliefs in A and B are no longer related by P(AIB ) but by P(A]B, e), which 
may be totally different. The result is that any arbitrary assignment of beliefs to 
propositions A and B can be consistent with the value of P(AIB ) initially 
assigned to the link connecting them; in other words, among these parameters, 
no violation of constraint can be detected locally. 

Next, the difference between P(A]B, e) and P(AIB ) suggests that the weights 
on the links should not remain fixed but should undergo constant adjustment as 
new evidence arrives. Not only would this entail enormous computational 
overhead, but it would also obliterate the advantages normally associated with 
propagation through fixed networks of constraints. 

Finally, the fact that evidential reasoning involves both top-down (predic- 
tive) and bottom-up (diagnostic) inferences has caused apprehensions that, 
once we allow the propagation process to run its course unsupervised, 
pathological cases of instability, deadlock, and circular reasoning will develop 
[19]. Indeed, if a stronger belief in a given hypothesis means greater expecta- 
tion for the occurrence of its various manifestations and if, in turn, a greater 
certainty in the occurrence of these manifestations adds further credence to the 
hypothesis, how can one avoid infinite updating loops when the processors 
responsible for these propositions begin to communicate with one another'? 
Such apprehensions are not unique to probabilistic reasoning but should be 
considered in any hierarchical model of cognition where mutual reinforcement 
takes place between lower and higher levels of processing, e.g., connectionist 
models of reading [29] and language production [4]. 

This paper demonstrates that coherent and stable probabilistic reasoning can 
be accomplished by local propagation mechanisms while keeping the weights 
on the links constant throughout the process. This is made possible by 
characterizing the belief in each proposition by a list of parameters, each 
representing the degree of support the host proposition obtains from one of its 
neighbors. In the next two subsections we show that maintaining such a 
breakdown record of the sources of belief facilitates local updating of beliefs 
and that the network relaxes to a stable equilibrium, consistent with the axioms 
of probability theory, in time proportional to the network diameter. This 
record of parameters is also postulated as the mechanism which permits people 
to retrace reasoned assumptions for the purposes of modifying the model and 
generating explanatory arguments. 
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2.2. Belief propagation in trees 

We shall first consider tree-structured influence networks, i.e., one in which 
every node, except one called " root ,"  has only one incoming link. We allow 
each node to represent a multivalued variable which may represent a collection 
of mutually exclusive hypotheses (e.g., identity of organism: ORGy, 
ORG 2 . . . .  ) or a collection of possible observations (e.g. patient's tempera- 
ture: high, medium, low). Let a variable be labeled by a capital letter, e.g., A, 
B, C . . . .  , and its possible values subscripted, e.g., A~, A 2 . . . .  , A , .  Each 
directed link A---> B is quantified by a fixed conditional probability matrix, 
M(BIA), with entries: M(BIA)ij = P(Bi[A~). Normally, the directionality of 
the arrow designates A as the set of causal hypotheses and B as the set of 
consequences or manifestations for these hypotheses. 

Example 2.1. Assume that in a certain trial there are three suspects, one of 
whom has definitely committed a murder, and that the murder weapon, 
showing some fingerprints, was later found by the police. Let A stand for the 
identity of the last user of the weapon, namely, the killer. Let B stand for the 
identity of the last holder of the weapon, i.e., the person whose fingerprints 
were left on the weapon, and let C represent the possible readings that may be 
obtained in a fingerprint-testing laboratory. 

The relations between these three variables would normally be conceptual- 
ized by the chain A--->B---~C; A generates expectations about B, and B 
generates expectations about C, but A has no influence on C once we know the 
value of B. 

To represent the common-sense knowledge that, under normal circumstan- 
ces, the killer is expected to be the last to hold the weapon, we may use the 
3 x 3 conditional probability matrix: 

p(B, IA,)=IO.80, i f A , : B j ,  i , j = 1 , 2 , 3 ,  
t0.10, i f A i ~ B  j, i , j = 1 , 2 , 3 .  

To represent the reliability of the laboratory test, we use a matrix P(Ck]Bi) , 
satisfying 

P(C~IBj) = 1 for all j .  
k 

Each entry in this matrix represents an if-then rule of the type: 

If the fingerprint is of suspect Bj then expect reading of the type Ck, 
with certainty P(CktBj) 

Note that this rule convention is at variance with that used in many expert 
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systems (e.g., MYCIN), where rules point from evidence to hypothesis (e.g., if 
symptom, then disease), thus denoting a flow of mental inference. By contrast, 
the arrows in Bayes' networks point from causes to effects or from conditions 
to consequence, thus denoting a flow of constraints in the physical world. The 
reason for this choice is that people often prefer to encode experiential 
knowledge in causal schemata [34] and, as a consequence, rules expressed in 
causal format are assessed more reliably. 2 

Incoming information may be of two types: specific evidence and virtual 
evidence. Specific evidence corresponds to direct observations which validate, 
with certainty, the values of some variables in the network. Virtual evidence 
corresponds to judgments based on undisclosed observations which affect the 
belief in some variables in the network. Such evidence is modeled by dummy 
nodes, representing the undisclosed observations, connected by unquantified 
(dummy) links to the variables affected by the observations. These links will 
carry only one-way information, from the evidence to the variables affected by 
it, but not vice versa. For example, if it is impractical for the fingerprint 
laboratory to disclose all possible readings (in variable C) or if the laboratory 
chose to base its finding on human judgment, C will be represented by a 
dummy node, and the link B--~ C will specify the relative degree to which each 
suspect is believed to be the owner of the fingerprint pattern examined. For 
example, the laboratory examiner may issue a report in the form of a list, 

P(Cob .. . . .  aIB) = (0.80, 0.60, 0.50), 

stating that he/she is 80% sure that the fingerprint belongs to suspect B I, 60% 
sure that it belongs to B 2 and 50% sure that it belongs to  B 3. Note that these 
numbers need not sum up to unity, thus permitting each judgment to be 
formed independently of the other, separately matching each suspect's finger- 
prints to those found on the weapon. 

All incoming evidence, both specific and virtual, will be denoted by D to 
connote data, and will be treated by instantiating the variables corresponding 
to the evidence. For the sake of clarity, we will distinguish between the fixed 
conditional probabilities that label the links, e.g., P(A]B), and the dynamic 
values of the updated node probabilities. The latter will be denoted by 
BEL(Ai) ,  which reflects the overall belief accorded to proposition A = A i by 
all data so far received. Thus, 

It appears that, by and large, frames used to index human memory are organized to evoke 
expectations rather than explanations. The reason could, perhaps, be attributed to the fact that 
expectation-evoking frames normally consist of more stable relationships. For example, P(Bj]C~) 
in Example 2.1 would vary drastically with the proportion of people who have type Bj fingerprints. 
P(C~]B,), on the other hand, depends merely on the similarity between the type of fingerprint that 
suspect Bj has and the readings observed in the lab; it is perceived to be a stable local property of 
the laboratory procedure, independent of other information regarding suspect B~. 
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B E L ( A , )  g P(A,ID ) 

where D is the value combination of all instantiated variables. 
Consider the fragment of a tree, as depicted in Fig. 2. The belief in the various 

values of B depends on three distinct sets of data: i.e., data from the tree 
rooted at B, from the tree rooted at C and from the tree above A. However ,  
since A separates B from all variables except B 's  decendants (see Section 1.2), 
the influence of the latter two sources of information on B are completely 
summarized by their combined effect on A. More formally: let D B stand for the 

+ 

data contained in the tree rooted at B and D B for the data contained in the rest 
of the network. We have 

P(BjlA ~, D +R)= P(BjlAi) 

which also leads to the usual "intersiblings" conditional independence: 

(1) 

P(Bj, C, IA,) = P(Bj[A~). P(CkIA,),  (2) 

+ 

since the proposition C = C k is part  of D R. 

2.2.1. Data fusion 

Assume we wish to find the belief induced on B by some data D = D B CI D~ .  
Bayes '  theorem,  together  with (1), yields the product rule 

+ + 

BEL(Bi)  = P(B~ID B, D ;)  = aP[D ;[Bi] . P[B~[D R] , (3) 

FIG. 2. A segment of a tree illustrating data partitioning. 
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where a is a normalizing constant. This is a generalization of the celebrated 
Bayes formula for binary variables 

O(HIE)  = A ( E ) O ( H ) ,  (4) 

where A(E)=  P(EIH)/P(E]lYt) is known as the likelihood ratio and O(H)= 
P(H)/P(I7t) as the prior odds [6]. 

As an example, let D B represent the experience of examining the finger- 
+ 

prints left on the murder weapon, and let D B stand for all other testimonies 
D + heard in the trial. P(Bi] B) would then stand for our prior (before examining 

the fingerprints) belief that the ith suspect was the last to hold the weapon, and 
P(DB[Bi) would represent the report issued by the fingerprint laboratory. 
Taking, as before, P(D BIB)= (0.80, O.60, O.50 ), and assuming we have 
P(BID+B) = (0.60, 0.30, 0.10), our total belief in the assertions B = Bi is given 
by 

BEL(B) = c~P(DB[B)P(BIDB) 

= a(0.80, 0.60, 0.50)(0.60, 0.30, 0.10) 

= a(0.48, 0.18, 0.05) 

and, to properly normalize BEL(B) ,  we set a = (0.48 + 0.18 + 0.05) ' and obtain 
BEL(B)  = (0.676, 0.254, 0.07). 

Equation (3) generalizes (4) in two ways. First, it permits the treatment of 
nonbinary variables where the mental task of estimating P(E[ISI) is often 
unnatural and where conditional independence with respect to the negations of 
the hypotheses is normally violated (i.e., P(E I, E2[t7t)# P(EI[IFt)P(E2[IZI)). 
Second, it identifies a surrogate to the prior probability term for every 
intermediate node in the tree, even after obtaining some evidential data. 

In ordinary Bayesian updating of sequential data, it is often possible to 
recursively use the posterior odd as a new prior for computing the impact of 
the next item of evidence. However, this method works only when the items of 
evidence are mutually independent conditioned on the updated hypothesis, H, 
and will not be applicable to network updating because only variables which 
are separated from each other by H are guaranteed to be conditionally 
independent, given H. In general, therefore, it is not permissible to use the 
total posterior belief, updated by (3), as a new multiplicative prior for the 
calculation. Thus, the significance of (3) lies in showing that a product rule 
analogous to (4) can be applied to any node in the network without requiring a 
separate prior probability assessment. However, the multiplicative role of the 
prior probability has been taken over by that portion of belief contributed by 
evidence from the subtree above the updated variable, i.e., excluding the data 
collected from its descendants. The root is the only node which requires a prior 
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probability estimation, and since it has no network above, D r+ot should be 
interpreted as the background knowledge which remains unexplicated. 

Equation (3) suggests that the probability distribution of every variable in 
the network can be computed if the node corresponding to that variable 
contains the parameters 

and 
A(B,) = P(D RIB,) (5) 

+ 
~(Bi) = p(B~]DB). (6) 

7r(Bi) represents the causal or anticipatory support attributed to B~ by the 
ancestors of B, and A(B~) represents the diagnostic or retrospective support Bi 
receives from B's descendants. The total strength of belief in B i would be 
obtained by fusing these two supports via the product 

BEL(Bg) = aA(Bi)Tr(B~). (7) 

While two parameters, A(E) and O(H),  were sufficient for binary variables, an 
n-valued variable needs to be characterized by two n-tuples: 

A(B) = A(B,), A ( B : ) , . . . ,  A(B~), 

rr(B) = ~r(B,), 7r(B2) . . . . .  7r(B,). 

(8) 

(9) 

To see how information from several decendants fuse at node B, note that 
the data Dg in (5) can be partitioned into disjoint subsets, D 1-, 
D 2 - , . . .  , O m-, o n e  for each subtree emanating from (the m children of) B. 
Since B "separates" these subtrees, conditional independence holds: 

A(B,) = P(D ~IB~) = I] P(D~-IB~) , (10) 
k 

so h(Bi) can be formed as a product of the terms P(Dk-[Bi) if these are 
delivered to processor B as messages from its children. For instance if 
in our fingerprint example p(D1-IB)=(0.80, O.60, O.50) and P(DZ-[B)= 
(0.30, 0.50, 0.90) represent two reports issued by two independent 
laboratories, then the overall diagnostic support A(B) attributable to the three 
possible states of B is 

A(B) = (0.80, 0.60, 0.50). (0.30, 0.50, 0.90) = (0.24, 0.30, 0.45). 

This, combined with the previous causal support zr(B)= (0.60,0.30,0.10), 
yields an overall belief of 
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BEL(B) = a(0.24, 0.30, 0.45)(0.60, 0.30, 0.10) 

= (0.516, 0.322, 0.161). 

Thus, we see that, at each node of a Bayes tree, the fusion of all incoming 
data is purely multiplicative. 

2.2.2. Propagation mechanism 

Assuming that the vectors A andzr are stored with each node of the network, 
our task is now to determine how the influence of new information will spread 
through the network, namely, how the parameters ~" and A of a given node can 
be determined from the ~'s and A's of its neighbors. This is done easily by 
conditioning (5) and (6) on all the values that the neighbors can assume. For 
example, suppose E is the kth son of B. To compute the kth multiplicand in the 
product of (10) from the value of A(E), we write 

P(D k [B~) = ~ P(D~[B i, Ej)P(E~[Bi) 
J 

and obtain (using (1) and (5)) 

P(D k IB~) = E A(Ej)P(EjlBi). 
J 

Thus, P(D ~ [Bi) is obtained by taking the A-vector stored at the kth son of B 
and multiplying it by the fixed conditional-probability matrix that quantifies the 
link between B and E. Thus, the A-vector of each node can be computed from 
the A's of its children by multiplying the latter by their respective link matrices 
and then multiplying the resultant vectors together, term-by-term, as shown in 
(10). Each multiplicand P(D k- ]B) would be treated as a message sent by the 
kth son of B and, if the sending variable is named E, the message will be 
denoted by AE(B ), 

AE(Bi) = E P(EjlBi)A(Ej). 
J 

A similar analysis, applied to the vector 7r, shows that the ~" of any node can 
be computed from the ~- of its father and the A's of its siblings, again after 
multiplication by the corresponding link matrices. No direct communication 
with the siblings is necessary since the information required of them already 
resides at the father's site (for the purpose of calculating its A, as in (10)) and 
can be sent down to the requesting son. This can be shown by conditioning 
zr(B) over the values of the parent A: 
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zr(B~) = P(B,[D+(B)) 

= ~ P(B, IAj, D+(B))P(Aj[D+(B)) 
J 

= ~ P(BiIAj), P(Ailall data excluding D-(B))  
J 

with rn ranging over the siblings of B. The expression in the brackets contains 
parameters available to processor A, and it can be chosen, therefore, as the 
message rrs(A ) that A transmits to B. 

Thus, 

zr(B,) = ~ P(B, IAj)IrB(Aj), ( l l )  
J 

where 

7rB(Aj) = uTr(Aj) ]-I A,,(Aj), (12) 
m: sibling of B 

or, alternatively, 

rrB(Aj) = a '  
BEL(Aj) 

AB(Aj) (13) 

The division by Aa(A ) amounts to removing from BEL(A) the contribution of 
Da as dictated by the definition of 7r in (6). 

These results lead to the following propagation scheme: 

Step 1. When processor B is activated to update its parameters, it simul- 
taneously inspects the ~-a(A) message communicated by the father A and the 
messages AI(B ) A2(B ) . . . . .  communicated by each of its sons. Using these 
inputs, it then updates its A and 7r as follows: 

Step 2. )t is computed using a term-by-term multiplication of the vectors A~, 
h 2 , . . . ,  (as in (10)): 

A(B~) = A,(B~) × A2(B~) x . . . .  1--I Ak(Bi) • 
k 

Step 3. ~- is computed using: 

7r(Bi) = fl ~ P(BiIAj)crB(Aj) , 
) 

where/3 is a normalizing constant and 7rB(A ) is the last message sent to B from 
the father A. 
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Step 4. Using the messages received, together with the updated values of A 
and rr, each processor then computes new ~r- and A-messages to be posted on the 
message boards reserved for its sons and its father, respectively. These are 
computed as follows: 

Step 5. Bottom-up propagation. The new message AB(A ) that B sends to its 
father (A) is computed by 

A , ( A j )  : Y. P(B, IA j )A (B , )  . 
i 

Step 6. Top-down propagation. The new message 7rE(B ) that B sends to its 
kth child E is computed by 

7rE(Bi) = oLJJ'(Bi) H am(Bi), 
rnT"k 

or, alternatively, 

, BEL(B,)  
yrE(Bi) = a AE(Bi) 

This updating scheme is shown schematically in Fig. 3, where multiplications 
of any two vectors stand for term-by-term operations. There is no need, of 
course, to normalize the it-messages prior to transmission (only the B E L ( . )  
expressions actually require normalization). This is done solely for the purpose 
of retaining the probabilistic meaning of these messages. Additional economy 
can be achieved by having each node B transmit a single message BEL(B)  to 
all its children and letting each child use (13) to uncover its appropriated 
or-message. 

Terminal and data nodes in the tree require special treatments. Here we 
have to distinguish several cases: 

(1) Anticipatory node, a leaf node that has not been instantiated yet: For 
such variables, BEL should be equal to ¢r and, therefore,  we should set 
A = ( 1 , 1  . . . . .  1). 

(2) Data node, a variable with instantiated value: Following (5) and (6), if 
the jth state of B were observed to be true, we set A = ~ - =  
(0 . . . . .  0, l ,  0 . . . . .  0) with 1 at the ]th position. 

(3) Dummy node, a node B representing virtual or judgmental evidence 
bearing on A: We do not specify A(B) or ~r(B) but, instead, post a AB(A ) 
message to A, where AB(As) = K.  P(observationlAi), and K is any convenient 
constant. 

(4) Root node: The boundary condition for the root node is established by 
setting ~r(root) = prior probability of the root variable. 

Example 2.2. To illustrate these computations let us return to Example 2.1, 
and let us assume that based on all testimonies heard so far, our belief in the 
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FIG. 3. The internal structure of a single processor performing belief updating for variable B. 

identity of the killer amounts to ~(A) = (0.8, 0.1, 0.1). Before obtaining any 
fingerprint information, B is an anticipatory node with A(B) = (1, 1, 1), which 
also yields AB(A ) = A(A) = (1, 1, 1) and BEL(A) = 7r(A). rr(B) can be calcu- 
lated from (13) (using 7rB(A ) = 7r(A) and P(BiIAj)= 0.8 if i = j ) ,  yielding [0 0,011E01 

7r(B) = 0.1 0.8 0.1 0.1 = (0.66,0.17,0.17) = BEL(B)  
0.1 0.1 0.8 .0.1 

Now assume that a laboratory report arrives, summarizing the test results (a 
virtual evidence C) by the message Ac(B ) = A(B) = (0.80, 0.60, 0.50). Node B 
updates its belief to read: 

BEL(B)  = aA(B)'rr(B) = a(0.80, 0.60, 0.50)(0.66, 0.17, 0.17) 

= (0.738, 0.142, 0.119) 

and computes a new message, AB(A), for A: 
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E08 010,1 [08 ] 
AB(A)=M.A= 0.1 0.8 0.1 0.6 =(0.75,0.61,0.54) .  

0.1 0.1 0.8 0.5 

Upon receiving this message, node A sets A(A)= AB(A ) and recomputes its 
belief to 

BEL(A) = aA(A)Tr(A) = a(0.75, 0.61, 0.54)(0.8, 0.1,0.1) 

= (0.84,0.085,0.076). 

Now assume that suspect A~ produces a very strong alibi in his favor, 
suggesting that there are only 1 : 10 odds that he could have committed the 
crime. To fuse this information with all previous evidence, we link a new 
virtual-evidence node E directly to A and post the message AE(A)= 
(0.10, 1.0, 1.0) on the link. AE(A ) combines with A~(A) to yield 

A(A) = AE(A)AB(A ) = (0.075, 0.61,0.54), 

BEL(A) = a(A)Tr(A) 

= o~(0.075, 0.061, 0.54)(0.84, 0.85, 0.076) 

= (0.404, 0.333, 0.263) 

and generates the message 7r B (A) = aAE(A ) 7r(A) = o~(0.08, 0.1, 0.1) to B. Upon 
receiving 7rB(A ), processor B updates its causal support ~'(B) to read: 

I 
0.8 0.1 O. lqFO.O8]  

1 r ( B ) = a '  0.1 0.8 0.1//0.10 
0.1 0.1 0.8J[_0.10 

and BEL(B) becomes 

= (0.30.0.35, 0.35) 

B E L ( B )  = 

= a(0.8, 0.6, 0.5)(0.334, 0.343, 0.317) 

= (0.423, 0.326, 0.251). 

The purpose of propagating beliefs top-down to sensory nodes such as B is 
two-fold--to guide data-acquisition strategies toward the most informative 
sensory nodes and to facilitate explanations which justify the system's inference 
steps. 

Note that BEL(A) cannot be taken as an updated prior of A for the purpose 
of calculating BEL(B). In other words, it is wrong to update BEL(B) via the 
textbook formula 
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BEL(Bi) = ~] P(BiJAj)BEL(Aj) , 
J 

also known as Jeffrey's rule [11], because BEL(A) itself was affected by 
information transmitted from B, and reflecting this information back to B 
would amount to counting the same evidence twice. 

2.2.3. Illustrating the flow of belief 

Figure 4 shows six successive stages of belief propagation through a simple 
binary tree, assuming that updating is triggered by changes in the belief 
parameters of neighboring processors. Initially (Fig. 4(a)), the tree is in 
equilibrium, and all terminal nodes are anticipatory. As soon as two data nodes 
are activated (Fig. 4(b)), white tokens are placed on their links, directed 
towards their fathers. In the next phase, the fathers, activated by these tokens, 
absorb them and manufacture the appropriate number of tokens for their 
neighbors (Fig. 4(c)): white tokens for their fathers and black ones for the 
children. (The links through which the absorbed tokens have entered do not 
receive new tokens, thus reflecting the feature that a ~r-message is not affected 
by a A-message crossing the same link.) The root node now receives two white 
tokens, one from each of its descendants. That triggers the production of two 
black tokens for top-down delivery (Fig. 4(d)). The process continues in this 
fashion until, after six cycles, all tokens are absorbed, and the network reaches 
a new equilibrium. 

As soon as a leaf node posts a token for its parent, it is ready to receive new 
data and, when this occurs, a new token is posted on the link, replacing the old 

~ D A T A  
DATA ~.) kJ 

(a) (b) (c) 

(f) (e) (d) 
FIG. 4. The impact of new data propagates through a tree by a message-passing process. 
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one. In this fashion the inference network can also track a changing environ- 
ment and provide coherent interpretation of signals emanating simultaneously 
from multiple sources. 

2.2.4. Properties o f  the updating scheme 

(1) The local computations required by the updating scheme are efficient in 
both storage and time. For an m-ary tree with n values per node, each 
processor should store n 2 + mn + 2n real numbers and perform 2n 2 + mn + 2n 
multiplications per update. 

(2) The local computations and the final belief distribution are entirely 
independent of the control mechanism that activates the individual operations. 
They can be activated by either data-driven or goal-driven (e.g., requests for 
evidence) control strategies, by a clock or at random. 

(3) New information diffuses through the network in a single pass. In- 
stabilities and indefinite relaxations have been eliminated by maintaining a 
two-parameter system (Tr and A) to decouple causal support from diagnostic 
support. The time required for completing the diffusion (in parallel) is 
proportional to the diameter of the network. 

2.3. Propagation in singly connected networks 

The tree structures treated in the preceding section require that exactly one 
variable be considered a cause of any other variable. This restriction simplifies 
computations, but its representational power is rather limited since it forces us 
to group together all causal factors sharing a common consequence into a 
single node. By contrast, when people associate a given observation with 
multiple potential causes, they weigh one causal factor against another as 
independent variables, each pointing to a specialized area of knowledge. As an 
illustration, consider the following situation: 

Mr. Holmes received a phone call at work from his neighbor 
notifying him that she heard a burglar alarm sound from the 
direction of his home. As he is preparing to rush home, Mr. 
Holmes recalls that recently the alarm had been triggered by an 
earthquake. Driving home, he hears a radio newscast reporting an 
earthquake 200 miles away. [14] 

Mr. Holmes perceives two episodes which may be potential causes for the 
alarm sound, an attempted burglary and an earthquake. Even though bur- 
glaries can safely be assumed independent of earthquakes, the radio announce- 
ment still reduces the likelihood of a burglary, as it "explains away" the alarm 
sound. Moreover, the causal events are perceived as individual variables each 
pointing to a separate frame of knowledge. 

This nonmonotonic interaction among multiple causes is a prevailing pattern 
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of human reasoning. When a physician discovers evidence in favor of one 
disease, it reduces the likelihood of other diseases, although the patient might 
well be suffering from two or more disorders simultaneously. The same maxim 
also governs the interplay of other frame-like explanations (not necessarily 
causal). For example, it is essential for comprehending sentences such as "John 
could not walk straight, and I thought he got drunk again. However, seeing the 
blood on his shirt, I knew it was a different matter." 

This section extends the propagation scheme to graph structures which 
permit a node to have multiple parents and thus capture "sideways" interac- 
tions via common successors. However, the graphs are required to be singly 
connected, namely, one (undirected) path, at most, exists between any two 
nodes. 

2.3.1. Fusion equations 

Consider a fragment of a singly connected network, depicted in Fig. 5. The link 
+ 

B---~ A partitions the graph into two parts: an upper subgraph, GBA , and a 
lower subgraph GgA. These two graphs contain two sets of data, which we 
shall call D~A and DBA , respectively. Likewise, the links C---~ A, A---~ X, and 

+ 

A---> Y define the subgraphs GCA , GAX , and GAy, which contain the data sets 
D ÷ D and D , respectively. Since A is a common child of B and C, it 

C A  ~ A X  A Y  + + • 

does not separate GBA from GCA. However, it does separate the following 
+ 

three subgraphs: G+BA 1,3 GCA , GAX and GAy, and we can write 

+ + 

P(DAx, DArIA i, DBA, DCA ) = P(DAxIA,)P(DArlA, ) .  (14) 

Thus, using Bayes' rule, the overall strength of belief in A i can be written: 

] + + DAX, DAy) BEL(A/) = P(A i D BA , D CA , 
+ - _ 

= ctP(milD+Bm, DcA)P(DAxIA,)P(DAYIA~),  (15) 

where a is a normalizing constant. By further conditioning over the values of B 
and C (see Appendix A), we get: 

BEL(A,) : aP(D AxIAi)P(D ArlA~) 

" [ ~  P(Ai]B], C,)P(BiID +BA)P(CkIDcA)] . (16) 

Equation (16) shows that the probability distribution of each variable A in the 
network can be computed if three types of parameters are made available: (1) 
the current strength of the causal support, 7r, contributed by each incoming 
link to A: 
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FIG. 5. Fragment of a singly connected network with multiple parents, illustrating data partitioning 
and belief parameters. 

= ; A )  rrA(B i) P(B~ID , (17) 

(2) the current strength of the diagnostic support, A, contributed by each 
outgoing link from A: 

Ax(A,) = P ( D ~ x I A , ) ,  (18) 

and (3) the fixed conditional-probability matrix, P(A]B, C), which relates the 
variable A to its immediate causes. Accordingly, we let each link carry two 
dynamic parameters,  7r and A, and let each node store an encoding of 
P(AIB,  C). 

With these parameters at hand, the fusion equation (16) becomes 

B EL(A, )  = aAx(A,)Ay(A,) ~ P(A~IB~, Ck)IrA(Bj)IrA(Ck) . 
jk 

(19) 

Alternatively, from two parameters,  7r and A, residing on the same link, we can 
compute the belief distribution of the parent node by the product 

BEL(Bj)  = aTr A (Bj)A A (Bj) .  (20) 

2.3.2. Propagation equation 

Assuming that the vectors 7r and A are stored with each link, our task is now to 
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prescribe how the influence of new information should spread through the 
network. 

Updating A 
Starting from the definition of AA(Bi) = P(D BA[Bi), we partition the data D B A  

+ 

into its components: A, DAX, Dar, and DCA, and summing over all values of 
A and C (see Appendix A), we get: 

] k 
(21) 

Equation (21) shows that only three parameters (in addition to the conditional 
probabilities P(A]B, C)) are needed for updating the diagnostic parameter 
vector AA(B): 7rA(C ), Ax(A), and At(A). This is expected since DBA is 
completely summarized by X, Y, and C. 

Updating 
Similar manipulation on (17) (see Appendix A) yields the following rule for 
updating the causal parameter ~x(A): 

jk 
(22) 

Thus, 7rx(A ), like ) tA(B) ,  is also determined by three neighboring parameters: 
Ar(A ), ~rA(B ), and zra(C ). 

Equations (21) and (22) demonstrate that a perturbation of the causal 
parameter ~r will not affect the diagnostic parameter A on the same link, and 
vice versa. The two are orthogonal to each other since they depend on two 
disjoint sets of data. Therefore, any perturbation of beliefs due to new 
evidence propagates through the network and is absorbed at the boundary 
without reflection. A new state of equilibrium will be reached after a finite 
number of updates which, in the worst case, would be equal to the diameter of 
the network. 

Equation (21) also reveals that if no data are observed below A (i.e., all A's 
pointing to A are unit vectors), then all A's emanating from A are unit vectors. 
This means that evidence gathered at a particular node does not influence its 
spouses until their common son gathers diagnostic support. This reflects the 
special connectivity conditions established in Section 1.2 and matches our 
intuition regarding multiple causes. In Mr. Holmes' case, for example, prior to 
the neighbor's telephone call, seismic data indicating an earthquake would not 
have influenced the likelihood of a burglary. 

Although the treatment in this paper is restricted to discrete variables, (21) 
and (22) can be readily extended to handle continuous variables as well. The 
case of additive Gaussian variables is particularly attractive because all belief 
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distributions and all the or- and A-messages can be characterized by only two 
parameters each, the mean and the variance. Thus, the computations required 
are simpler, and matrix manipulations are avoided [23]. Distributed updating 
of noncausal, object-class hierarchies is described in [25]. 

2.4. Summary and extensions for multiply connected networks 

The preceding two sections show that the architectural objectives of propagat- 
ing beliefs coherently through an active network of primitive, identical, and 
autonomous processors can be fully realized in singly connected graphs. 
Instabilities due to bidirectional inferences are avoided by using multiple, 
source-identified belief parameters, and equilibrium is guaranteed to be 
reached in time proportional to the network diameter. 

The primitive processors are simple and repetitive, and they require no 
working memory except that used in matrix multiplications. Thus, this 
architecture lends itself naturally to hardware implementation, capable of 
real-time interpretation of rapidly changing data. It also provides a reasonable 
model of neural nets involved in such cognitive tasks as visual recognition, 
reading comprehension [28] and associative retrieval [1], where unsupervised 
parallelism is an uncontested mechanism. 

It is also interesting to note that the marginal conditional probabilities on the 
links of the network remain constant and retain their viability throughout the 
updating process. This is important because having to adjust the weights each 
time new data arrives would be computationally prohibitive. The stable 
viability of the marginal conditional probabilities may explain why people can 
assess the magnitude of these relationships better than those of any other 
probabilistic quantity. Apparently, these relationships have been chosen as the 
standard primitives for organizing and quantifying probabilistic knowledge in 
our long-term memory. 

The efficacy of singly connected networks in supporting autonomous propa- 
gation raises the question of whether similar propagation mechanisms can 
operate in less restrictive networks (like the one in Fig. 1), where multiple 
parents of common children may possess common ancestors, thus forming 
loops in the underlying network. If we ignore the existence of loops and permit 
the nodes to continue communicating with each other as if the network were 
singly connected, messages may circulate indefinitely around these loops, and 
the process will not converge to the correct state of equilibrium. 

A straightforward way of handling the network of Fig. 1 would be to appoint 
a local interpreter for the loop Xl, x 2, x 3, x 5 that will account for the 
interactions between x 2 and x 3. This amounts, basically, to collapsing nodes x 2 
and x 3 into a single node representing the compound variable (x2, x3). This 
method works well on small loops [32], but as soon as the number of variables 
exceeds 3 or 4, compounding requires handling huge matrices and masks the 
natural conceptual structure embedded in the original network. 
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A second method of propagation is based on "stochastic relaxation" [8] 
similar to that used by Boltzman machines [9]. Each processor examines the 
states of the variables within its screening neighborhood, computes a belief 
distribution for the values of its host variable, then randomly selects one of 
these values with probability given by the computed distribution. The value 
chosen will subsequently be interrogated by the neighbors upon computing 
their beliefs, and so on. This scheme is guaranteed convergence, but it usually 
requires very long relaxation times before reaching a steady state. 

A third method called conditioning [22] is based on our ability to change the 
connectivity of a network and render it singly connected by instantiating a 
selected group of variables. In Fig. 1, for example, instantiating x 1 to some 
value would block the pathway x z, x I, x 3, and would render the rest of the 
network singly connected, so that the propagation techniques of the preceding 
section would be applicable. Thus, if we wish to propagate the impact of an 
observed datum, say at x 6, to the entire network, we first assume x l = 0, 
propagate the impact of x 6 to the variables x 2 . . . . .  x 5, repeat the propagation 
under the assumption x I = 1 and, finally, sum the two results weighted by the 
posterior probability P(xl]x6).  It can also be executed in parallel by letting 
each node receive, compute,  and transmit several sets of parameters,  one for 
each value of the conditioning variable(s). Conditioning provides a working 
solution in most practical cases, but it occasionally suffers from the inevitable 
combinatorial explosion-- the number of messages may grow exponentially 
with the number of nodes required for breaking up all loops in the network. 

The use of conditioning to facilitate propagation is not foreign to human 
reasoning. When we find it hard to estimate the likelihood of a given outcome, 
we often make hypothetical assumptions that render the estimation simpler and 
then negate the assumptions to see if the results do not vary substantially. One 
of the most pervasive patterns of plausible reasoning is the maxim that, if two 
diametrically opposed assumptions impart two different degrees of confidence 
onto a proposition Q, then the unconditional degree of confidence merited by 
Q should be somewhere between the two. The terms "hypothetical"  or 
"assumption-based" reasoning, "reasoning by cases," and "envisioning" all 
refer to the same basic mechanism of selecting a key variable, binding it to 
some of its values, deriving the consequences of each binding separately, and 
integrating those consequences together. 

Finally, a preprocessing approach, which is discussed more fully in Section 3, 
introduces auxiliary variables and permanently turns the network into a tree. 
To understand the basis of this method, consider, for example, the tree of Fig. 
2. The variables C, H, E, F are tightly coupled in the sense that no two of them 
can be separated by the others; therefore,  if we were to construct a Bayesian 
network based on these variables alone, a complete graph would ensue. Yet, 
together with the intermediate variables A and B the interactions among the 
leaf variables are tree-structured, clearly demonstrating that some multiply 
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connected networks can inherit all the advantages of tree representations by 
the introduction of a few dummy variables. In some respects, this method is 
similar to that of appointing external interpreters to handle nonseparable 
components of the graph, because the processors assigned to the dummy 
variables, like the external interpreters, serve no other function but that of 
mediation among the real variables. However, the dummy-variables scheme 
enjoys the added advantage of uniformity: the processors representing the 
dummy variables can be idential to those representing the real variables, in full 
compliance with our architectural objectives. Moreover, there are strong 
reasons to believe that the process of reorganizing data structures by adding 
fictitious variables mimics an important component of conceptual development 
in human beings--the evolution of causal models. These considerations are dis- 
cussed in the section that follows. 

3. Structuring Causal Trees 

3.1. Causality, conditional independence, and tree architecture 

Human beings exhibit an almost obsessive urge to conceptually mold empirical 
phenomena into structures of cause-and-effect relationships. This tendency is, 
in fact, so compulsive that it sometimes comes at the expense of precision and 
often requires the invention of hypothetical, unobservable entities such as 
"ego," "elementary particles," and "supreme beings" to make theories fit the 
mold of causal schema. When we try to explain the actions of another person, 
for example, we invariably invoke abstract notions of mental states, social 
attitudes, beliefs, goals, plans, and intentions. Medical knowledge, likewise, is 
organized into causal hicrarchies of invading organisms, physical disorders, 
complications, clinical states and, only finally, the visible symptoms. 

We take the position that human obsession with causation, like many other 
psychological compulsions, is computationally motivated. Causal models are 
attractive only because they provide effective data structures for representing 
empirical knowledge--they can be queried and updated at high speed with 
minimal external supervision; so, it behooves us to take a closer look at the 
structure of causal models and determine what it is that makes them so 
effective. In other words, what are the computational assets of those fictitious 
variables called "causes" that make them worthy of such relentless human 
pursuit, and what renders causal explanations so pleasing and comforting, once 
they arc found? 

The paradigm expounded in this paper is that the main ingredient respons- 
ible for the pervasive role of causal models is their centrally organized 
architecture, i.e., an architecture in which dependencies among variables are 
mediated by one central mechanism. 

If you ask n persons in the street what time it is, the answers will 
undoubtedly be very similar. Yet, instead of suggesting that, somehow, the 
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answers evoked or the persons surveyed influence each other, we postulate the 
existence of a central cause, the standard time, and the commitment of each 
person to adhere to that standard. Thus, instead of dealing with a complex 
n-ary relation, the causal model in this example consists of a network of n 
binary relations, all connected star-like to one central node which serves to 
dispatch information to and from the connecting variables. Psychologically, this 
architecture is much more pleasing than one which entails intervariable com- 
munication. Since the activity of each variable is constrained by only one 
source of information (i.e., the central cause), no conflict in activity arises: any 
assignment of values consistent with the central constraints will also be globally 
consistent, and a change in any of the variables can communicate its impact to 
all other variables in only two steps. 

Computationally speaking, such causes are merely names given to auxiliary 
variables which facilitate the efficient manipulation of the activities of the 
original variables in the system. They encode a summary of the interactions 
among the visible variables and, once calculated, permit us to treat the visible 
variables as if they were mutually independent. 

The dual summarizing/decomposing role of a causal variable is analogous to 
that of an orchestra conductor: it achieves coordinated behavior through 
central communication and thereby relieves the players from having to com- 
municate directly with one another. In the physical sciences, a classical 
example of such coordination is exhibited by the construct of a field (e.g., 
gravitational, electric, or magnetic). Although there is a one-to-one mathemati- 
cal correspondence between the electric field and the electric charges in terms 
of which it is defined, nearly every physicist takes the next step and ascribes 
physical reality to the electric field, imagining that in every point of space there 
is some real physical phenomenon taking place which determines both the 
magnitude and direction which tag the point. This psychological construct 
offers an advantage vital to understanding the development of electrical 
sciences: It decomposes the complex phenomena associated with interacting 
electric charges into two independent processes: (1) the creation of the field at 
a given point by the surrounding charges, and (2) the conversion of the field 
into a physical force once another charge passes near that point. 

The advantages of centrally coordinated architectures are not unique to 
star-structured networks but are also present in tree structures since every 
internal node in the tree centrally coordinates the activities of its neighbors. In 
a management hierarchy, for example, where employees can communicate 
with each other only through their immediate superiors, the passage of 
information is swift, economical, conflict-free, and highly parallel. Likewise, we 
know that, if the interactions among a set of variables can be represented by a 
tree of binary constraints, then a globally consistent solution can be found in 
linear time, using backtrack-free search [3, 7]. These computational advantages 
of trees also retain their power when the relationships constraining the 
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variables are probabilistic in nature. 
In probabilistic formalisms, the topological concept of central coordination is 

embodied in the notion of conditional independence. In our preceding example, 
the answers to the question "What  time is i t?" would be viewed as random 
variables that are bound together by a spurious correlation [31, 33]; they 
become independent of each other once we know the state of the mechanism 
causing the correlation, i.e., the standard time. Thus, conditional indepen- 
dence captures both functions of our orchestra conductor: coordination and 
decomposition. 

The most familiar connection between causality and conditional indepen- 
dence is reflected in the scientific notion of a state. It was devised to nullify the 
influence that the past exerts on the future by providing a sufficiently detailed 
description of the present. In probabilistic terms this came to be known as a 
Markov property; future events are conditionally independent of past events, 
given the current state of affairs. This is precisely the role played by the set of 
parents S i in the construction of Bayesian networks (Section 1.1); they screen the 
variable x i from the influence of all its other ancestors. 

But conditional independence is not limited to separating the past from the 
future; it often applies to events occurring at the same time. Knowing the 
values of the parent set S~ not only decouples xi from its other ancestors but 
renders x, independent of all other variables except its descendants. In 
fact, this sort of independence constitutes the most universal and distinctive 
characteristic featured by the notion of causality. In medical diagnosis, for 
example, a group of cooccurring symptoms often become independent of each 
other once we know the disease that caused them. When some of the 
symptoms directly influenced each other,  the medical profession invents a name 
for that interaction (e.g,, complication, clinical state, etc.) and treats it as a 
new auxiliary variable, which again assumes the decompositional role charact- 
eristic of causal agents; knowing the exact state of the auxiliary variable 
renders the interacting symptoms independent of each other. In other words, 
the auxiliary variables constitute a sufficient summary for determining the 
likely development of each individual symptom in the group; thus, additional 
knowledge regarding the states of the other symptoms becomes superfluous. 

The continuous influx of such auxiliary concepts into our languages cast new 
light on the status of conditional independence in probabilistic modelling. 
Contrary to positions often found in the literature, conditional independence is 
not a "restrictive assumption" made for mathematical elegance; neither is it an 
occasional grace of nature for which we must passively wait. Rather,  it is a 
mental construct that we actively create and a psychological necessity which 
our culture labors to satisfy. 

The decompositional role of causal variables attains its ultimate realization in 
tree-structured networks, where every pair of nonadjacent variables becomes 
independent given a third variable on the path connecting the pair. Indeed, the 
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speed, stability and autonomy of the updating scheme described in Section 2.2 
draws its power from the high degree of decomposition provided by the tree 
structure. These computational advantages, we postulate, give rise to the 
satisfying sensation called "in-depth understanding," which people experience 
when they discover causal models consistent with observations. 

Given that tree dependence captures the main feature of causation and that 
it provides a convenient computational medium for performing interpretations 
and predictions, we now ask whether it is possible to reconfigure every belief 
network as a tree and, if so, how. First we assume that there exist dummy 
variables which decompose the network into a tree, and then ask whether the 
internal structure of such a tree can be determined from observations made 
solely on the leaves. If it can, then the structure found will constitute an 
operational definition for the hidden causes often found in causal models. 
Additionally, if we take the view that "learning" entails the acquisition of 
computationally effective representations of nature's regularities, then proce- 
dures for configuring such trees may reflect an important component  of human 
learning. 

A related structuring task was treated by Chow and Liu [2], who also used 
tree-dependent  random variables to approximate an arbitrary joint distribu- 
tion. However,  in Chow's trees all nodes denote observed variables; so, the 
conditional probability for any pair of variables is assumed to be given. By 
contrast, the internal nodes in our trees denote dummy variables, artificially 
concocted to make the representation tree-like. Since only the leaves are 
accessible to empirical observations, we know neither the conditional prob- 
abilities that link the internal nodes to the leaves nor the structure of the 
t ree- - these  we would have to learn. A similar problem of configuring prob- 
abilistic models with hidden variables is mentioned by Hinton et al. [9] as one 
of the tasks that a Boltzman machine should be able to solve. However,  it is 
not clear whether the relaxation techniques employed by the Boltzman mach- 
ine can easily escape local minima and whether they can readily accept the 
constraint that the resulting structure be a tree. The method described in the 
following sections offers a solution to this problem, but it assumes some 
restrictive conditions: all variables are bivalued, a solution tree is assumed to 
exist, and the value of each interleaf correlation is precisely known. 

3.2. Problem definition and nomenclature 

Consider a set of n binary-valued random variables x I . . . . .  x~ with a given 
probability mass function P ( x  I . . . .  , xn) .  We address the problem of represent- 
ing P as a marginal of an (n + 1)-variable distribution Ps(x l  . . . . .  x , , ,  w)  that 
renders x 1 . . . . .  x n conditionally independent given w, i.e., 

Ps(x , , .  , x,,, w) = PAx, lw)Ps(w) ,  
i - - 1  

(23) 
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P(x~ . . . .  , x . )  = c~ 1~ P,(x, l w =  1 ) - I - ( 1 -  c~) I~I P~(x , lw=O ) . 
i - I  i - I  

(24) 

The functions P~(xilw ), w = O, 1, i = 1 , . . . ,  n, can be viewed as 2 x 2 stochas- 
tic matrices relating each x~ to the central hidden variable w (see Fig. 6(a)); 
hence, we name P, a star distribution and call P star-decomposable. Each 
matrix contains two independent parameters,  f, and g~, where 

f~= e , ( x , =  l l w =  l ) ,  g ,=  P , ( x , =  l l w = O )  (25) 

and the central variable w is characterized by its prior probability P , (w-1 )  = a 
(see Fig. 6(b)). 

The advantages of having star-decomposable distributions are several. First, 
the product form of Ps in (23) makes it very easy to compute the probability of 
any combination of variables. More importantly, the product form is also 
convenient for calculating the conditional probabilities, P(xi]xj) ,  describing the 
impact of an observation xj on the probabilities of unobserved variables. The 
computation requires only two vector multiplications. 

Unfortunately,  when the number of variables exceeds 3, the conditions for 
star-decomposability become very stringent and are not likely to be met in 
practice. Indeed, a star-decomposable distribution for n variables has 2n + 1 
independent parameters,  while the specification of a general distribution 
requires 2" - 1 parameters.  Lazarfeld [16] considered star-decomposable distri- 
butions where the hidden variable w is permitted to range over A values, A > 2. 
Such an extension requires the solution of An + A - 1 nonlinear equations to 
find the values of its An + A -  1 independent parameters. In this paper, we 
pursue a different approach, allowing a larger number of binary hidden 
variables but insisting that they form a tree-like structure (see Fig. 7), i.e., each 
triplet forms a star, but the central variables may differ from triplet to triplet. 
Trees often portray meaningful conceptual hierarchies and are, computa- 
tionally, almost as convenient as stars. 

x 2 

wt Ps(x21 w) 1 fi 1 

Xl x3 0 1 - gi 0 

(a) (b) 

FI~. 6. (a) Three random variables, x l, x 2, x 3 connected to a central variable w by a star network. 
(b) Illustration of the three parameters, a, ~, g,, associated with each link. 
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FIG. 7. A tree containing four dummy variables and seven visible variables. 

We shall say that a distribution P(x~,  x 2 . . . . .  Xn) is t ree-decomposable  if it is 
the marginal of a distribution 

P r ( X l , X 2  . . . . .  Xn, Wl, W 2 . . . . .  W i n ) ,  m < ~ n - 2  

that supports a tree-structured network,  such that wl, w e . . . .  , w m correspond 
to the internal nodes of a tree T and xl ,  x 2 . . . . .  x ,  to its leaves. 

Note that if P r  supports a rooted tree T, then any two leaves are condition- 
ally independent ,  given the value of any internal node on the path connecting 
them. These relationships between leaves and internal nodes are a proper ty  of 
the undirected tree, independent  of the choice of root. Now, since a choice of a 
new root for T will create a tree T '  which is also supported by P r ,  we are 
permit ted to treat  T as an unrooted tree. Conversely,  given an unrooted tree T 
and an assignment of variables to its nodes, the form of the corresponding 
distribution can be written by the following procedure:  We first choose an 
arbitrary node as a root. This, in turn, defines a unique father F ( y i )  for each 
node yi E { x i , . . . ,  x , ,  wl . . . .  , Wm} in T, except the chosen root,  Yl. The joint 
distribution is simply given by the product form: 

m + n  

PT(X, . . . . .  x , ,  W 1 , .  . . , W i n )  = P(Yl)  1-I P[y, IF(y,)I. 
i 2 

(26) 

For example,  if in Fig. 7 we choose w 2 as the root,  we obtain: 

P r ( x ,  . . . .  , XT, w, . . . .  , w4) 

= P ( x  7 I w4 ) P(x6 I w4) P(xs  [ w3 ) P(x4 [w3) 

• P ( x 3 1 w , ) P ( x ~ l w , ) P ( x , l w , ) n ( w , l w 2 ) .  P (w31w2)P(w41w2)P(w2) .  

Throughout  this discussion we shall assume that each w has at least three 
neighbors; otherwise, it is superfluous. In other words, an internal node with 
two neighbors can simply be replaced by an equivalent direct link between the 
two. Similarly, we shall assume that all link matrices are nonsingular, convey- 
ing genuine dependencies between the linked variables; otherwise, the tree can 
be decomposed into disconnected components ,  i.e., a forest. 
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If we are given P r ( x l  . . . . .  xn ,  w~ . . . . .  win),  then, clearly, we can obtain 
P(Xl . . . .  , x , , )  by summing over w's. We now ask whether the inverse trans- 
formation is possible, i.e., given a tree-decomposable distribution 
P(x~ . . . . .  x~ ) ,  can we recover its underlying extension P r ( x l  . . . .  , x , , ,  
w~ . . . . .  w,,,)? We shall show that: (1) the tree distribution P r  is unique, (2) it 
can be recovered from P using n log n computations, and (3) the structure of T 
is uniquely determined by the second-order probabilities of P. The construction 
method depends on the analysis of star-decomposability for triplets, which is 
presented next. (Impatient readers may skip this analysis and go directly to 
Theorem 3.1.) 

3.3. Star-decomposable triplets 

In order to test whether a given three-variable distribution P(x~,  x 2, x3) is 
star-decomposable, we first solve (24) and express the parameters a, f ,  & as a 
function of the parameters specifying P. This task was carried out by Lazarfeld 
[16] in terms of the seven joint-occurrence probabilities. 

Pi = P(x i  = 1) , 

pq = P(x ,  = 1, xj = 1) , 

Pijk = P(x i  = 1, xj = 1, x k = 1) , 

and led to the following solution: 
Define the quantities, 

[ij] = Pi/ -- P i P j  , 

S, = [ [ i j l [ ik l  ]~,2 
L [ j k l  J ' 

( P i P q k  - P q P i k )  
] 'Li  : [jk] ' 

K -  Si Pi + P'____L_ 
Pi  Si S i P i  ' 

and let t be the solution of 

(27) 

(28) 

(29) 

(30) 

(31) 

t 2 + K t -  1 = 0 .  (32) 

The parameters a,  f., gi are given by: 

a = t2/(1 + t 2) , (33) 
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f, = p ,  + S,[(1 - a ) / a ]  ~/2 , (34) 

g, = Pi - S~[a / ( l  - a) l  '/2 . (35) 

Moreover,  the differences f ~ -  g~ are independent of P ijk: 

~ - g i  = s~ = i ] l [ i k l / [ j k  (36) 

The conditions for star-decomposability are obtained by requiring that 
preceding solutions satisfy: 

(a) S i should be real, 
(b) O<~f,. < 1, 
(c) O <~ gi <- l. 

Using the variances 

o- i = [pi(1 - pi)] '/2 (37) 

and the correlation coefficients 

p q = ( p q - p ip j )  /o-i~rj , (38) 

requirement (a) is equivalent to the condition that all three correlation 
coefficients are nonnegative. (If two of them are negative, we can rename two 
variables by their complements; the newly defined triplet will have all its pairs 
positively correlated.) We shall call triplets with this property positively corre- 
lated. 

This, together with requirements (b) and (c), yields (see Appendix B): 

Theorem 3.1. A necessary and sufficient condition for  three d ichotomous  
random variables to be s tar-decomposable is that they are positively correlated, 
and that the inequality, 

Pik Pij Pik Pij 
- -  ~ Pijk ~ -t- orjork(Pj k -- P i j P i k ) ,  (39) 

Pi Pi 

is satisfied f o r  all i @ {1,2, 3}. When this condition is satisfied, the parameters o f  
the s tar-decomposed distribution can be determined uniquely,  up to a comple-  
mentation o f  the hidden variable w, i.e., w----~ (1 - w),  fi---~ gi,c~----~ (1 - a) .  

Obviously, in order to satisfy (39), the term (Pjk -- PijPik) must be nonnega- 
tive. This introduces a simple necessary condition for star-decomposability that 
may be used to quickly rule out many likely candidates. 
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Corollary 3.2. A necessary condition fo r  a distribution P(x~, x 2, x3) to be 
s tar-decomposable is that all correlation coefficients obey the triangle inequality: 

Pjk >~ Pjk Pik • (40) 

Inequality (40) is satisfied with equality if w coincides with xi, i.e., when 
xj and x k are independent,  given x~. Thus, an intuitive interpretation of this 
corollary is that the correlation between any two variables must be stronger 
than that induced by their dependencies on the third variable; a mechanism 
accounting for direct dependencies must be present. 

Having established the criterion for star-decomposability, we may address a 
related problem. Suppose P is not star-decomposable. Can it be approximated 
by a star-decomposable distribution P that has the same second-order prob- 
abilities? 

The preceding analysis contains the answer to this question. Note that the 
third-order statistics are represented only by the term Pqk, and this term is 
confined by (39) to a region whose boundaries are determined by second-order 
parameters.  Thus, if we insist on keeping all second-order dependencies of P 
intact and are willing to choose Piik so as to yield a star-decomposable 
distribution, we can only do so if the region circumscribed by (39) is nonempty. 
This leads to the statement: 

Theorem 3.3. A necessary and sufficient condition fo r  the second-order  depen- 
dencies among  the triplet x l, x 2, x 3 to support  a s tar-decomposable extension & 
that the s& inequalities, 

PqP,___~k <~ x <~ P~jP,k + crjcrk(pik _ PqP~k), i = 1, 2, 3 ,  (41) 
Pi Pi 

possess a solution f o r  x. 

3.4. A tree-reconstruction procedure 

We are now ready to confront the central problem of this section--given a 
tree-decomposable distribution P(x~ . . . . .  xn) ,  can we uncover its underlying 
topology and the underlying tree-distribution Pr(x~ . . . . .  xn, w t , . . . ,  w, , )?  

The construction method is based on the observation that any three leaves in 
a tree have one, and only one, internal node that can be considered their 
center, i.e., it lies on all the paths connecting the leaves to each other. If one 
removes the center,  the three leaves become disconnected from each other. 
This means that, if P is tree-decomposable,  then the joint distribution of any 
triplet of variables x~, xj, x k is star-decomposable, i.e., P(x~, xj ,  xk )  uniquely 
determines the parameters a, fi, g~ as in (33), (34), and (35), where a is the 
marginal probability of the central variable. Moreover,  if we compute the star 
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decompositions of two triplets of leaves, both having the same central node w, 
the two distributions should have the same value for a = Pr(w = 1). This 
provides us with a basic test for verifying whether two arbitrary triplets of 
leaves share a common center,  and a successive application of this test is 
sufficient for determining the structure of the entire tree. 

Consider a 4-tuple Xl, x2, x3, x 4 of leaves in T. These leaves are intercon- 
nected through one of the four possible topologies shown in Fig. 8. The 
topologies differ in the identity of the triplets which share a common center. 
For example, in the topology of Fig. 8(a) the pair [(1,2,  3), (1, 2, 4)] share a 
common center,  and so does the pair [(1, 3, 4), (2, 3, 4)]. In Fig. 8(b), on the 
other hand, the sharing pairs are [(1, 2, 4), (2, 4, 3)] and [(1, 3, 4), (2, 1, 3)], 
and in Fig. 8(d) all triplets share the same center. Thus, the basic test for 
center-sharing triplets enables us to decide the topology of any 4-tuple and, 
eventually, to configure the entire tree. 

We start with any three variables Xl, x2, and x3, form their star decomposi- 
tion, choose a fourth variable, x 4, and ask to which leg of the star should x 4 be 
joined. We can answer this question easily by testing which pairs of triplets 
share centers, deciding on the appropriate topology and connecting x 4 accord- 
ingly. Similarly, if we already have a tree structure T i, with i leaves, and we 
wish to know where to join the (i + 1)th leaf, we can choose any triplet of 
leaves from Ti with central variable w and test to which leg of w should x~+ 1 be 
joined. This, in turn, identifies a subtree T I of T i that should receive x~+~ and 
permits us to remove from further consideration the subtrees emanating from 
the unselected legs of w. Repeating this operation on the selected subtree T I 
will eventually reduce it to a single branch, to which xi+ ~ is joined. 

It is possible to show [26] that, if we choose, in each state, a central variable 
that splits the available tree into subtrees of roughly equal size, the joining 
branch of x~+~ can be identified in, at most, log~/tk =)(i) tests, where k is the 
maximal degree of the T i. This amounts to O(n log n) test for constructing an 
entire tree of n leaves. 

So far, we have shown that the structure of the tree T can be uncovered 
uniquely. Next we show that the distribution P r  is, likewise, uniquely deter- 
mined from P, i.e., that we can determine all the functions P(xilw/) and 

1 4 1 2 1 2 1 2 

(a) (b) (c) 

FIG. 8. The four possible topologies by which four leaves can be related. 

(d) 
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P(wj[wk) in (26), for i = l , . . . , n  and j, k = l ,  2 . . . . .  m. The functions 
P(x~l wj) assigned to the peripheral branches of the tree are determined directly 
from the star decomposition of triplets involving adjacent leaves. In Fig. 7, for 
example, the star decomposition of P(xl, x 2, xs) yields P(xl[wl) and P(x2[w~). 
The conditional probabilities P(wj] wk) assigned to interior branches are deter- 
mined by solving matrix equations. For example, P(x~]w2) can be obtained 
from the star decomposition of (x~, x 5, x7), and it is related to P(x~lw~) via 

P(x , lw2)  = ~ P ( x , l w x ) P ( w , l w 2 )  . 
w'  1 

This matrix equation has a solution for P(w~]w2) because P(x~lwl) must be 
nonsingular. It is only singular when fl = gl, i.e., when x~ is independent of wl 
and is therefore independent of all other variables. Hence, we can determine 
the parameters of the branches next to the periphery, use them to determine 
more interior branches, and so on, until all the interior conditional prob- 
abilities P(wilw~) are determined. 

Next, we shall show that the tree structure can be recovered without 
resorting to third order probabilities; correlations among pairs of leaves suffice. 
This feature stems from the observation that, when two triplets of a 4-tuple are 
star-decomposable with respect to the same central variable w (e.g, (1,2,  3) 
and (1, 2, 4) in Fig. 8(a)), then not only are the values of a the same, but the f- 
and g-parameters associated with the two common variables (e.g., 1 and 2 in 
Fig. 8(a)) must also be the same. While the value of a depends on a third-order 
probability, the difference ~ - gi depends only on second-order terms via (36). 
Thus, requiring that f ~ -  g~ in Fig. 8(a) obtain the same value in the star 
decomposition of (1,2, 3) as in that of (1, 2, 4) leads to the equation: 

[12][13l/[23] = [12l[14l/[24] (42) 

which, using (28), yields 

P 1 3 P 4 2  = P 1 4 P 3 2  ' (43) 

An identical equality will be obtained for each f~ - g i ,  i = 1, 2, 3, 4, relative to 
the topology of Fig. 8(a). Similarly, the topology of Fig. 8(b) dictates 

PI2P43 = P I 4 P 2 3  (44) 

and that of Fig. 8(c) dictates: 

P 1 2 P 3 4  = P 1 3 P 2 4  " ( 4 5 )  
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Thus, we see that each of these three topologies is characterized by its own 
distinct equality, while the topology of Fig. 8(d) is distinguished by all three 
equalities holding simultaneously. This provides the necessary second-order 
criterion for deciding the topology of any 4-tuple tested: if the equality 
PijPkt = PikPjl holds for some permutation of the indices, we decide on the 
topology 

;> <i 
If it holds for two permutations with distinct topologies, the entire 4-tuple is 
star-decomposable. Note that the equality PijP~I = PikPjt must hold for at least 
one permutation of the variables or else the 4-tuple would not be tree- 
decomposable. 

3.5. Conclusions and open questions 

This section provides an operational definition for entities called "hidden 
causes," which are not directly observable but facilitate the acquisition of 
effective causal models from empirical data. Hidden causes are viewed as 
dummy variables which, if held constant, induce probabilistic independence 
among sets of visible variables. It is shown that if all variables are bivalued and 
if the activities of the visible variables are governed by a tree-decomposable 
probability distribution, then the topology of the tree can be uncovered 
uniquely from the observed correlations between pairs of variables. Moreover, 
the structuring algorithm requires only n log n steps. 

The method introduced in this paper has two major shortcomings: It requires 
precise knowledge of the correlation coefficients, and it works only when there 
exists an underlying model that is tree-structured. In practice, we often have 
only sample estimates of the correlation coefficients; therefore, it is unlikely 
that criteria based on equalities (as in (43)) will ever be satisfied exactly. It is 
possible, of course, to relax these criteria and make topological decisions by 
seeking proximities rather than equalities. For example, instead of searching 
for an equality PijPkl = PikPjl, we can decide the 4-tuple topology on the basis 
of the permutation of indices that minimizes the difference P i j P g t -  PikPjt. 
Experiments show, however, that the structure which evolves from such a 
method is very sensitive to inaccuracies in the estimates pij, because no 
mechanism is provided to retract erroneous decisions made in the early stages 
of the structuring process. Ideally, the topological membership of the (i + 1)th 
leaf should be decided not merely by its relations to a single triplet of leaves 
chosen to represent an internal node w but also by its relations to all previously 
structured triplets which share w as a center. This, of course, will substantially 
increase the complexity of the algorithm. 
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Similar difficulties plague the task of finding the best tree-structured approx- 
imation for a distribution which is not tree-decomposable. Even though we 
argued that natural data which lend themselves to causal modeling should be 
representable as tree-decomposable distributions, these distributions may con- 
tain internal nodes with more than two values. The task of determining the 
parameters associated with such nodes is much more complicated and, in 
addition, rarely yields unique solutions. Unique solutions, as shown in Section 
3.4, are essential for building large structures from smaller ones. We leave 
open the question of explaining how approximate causal modeling, an activity 
which humans seem to perform with relative ease, can be embodied in 
computational procedures that are both sound and efficient. 

Appendix A. Derivation of the Updating Rules for Singly 
Connected Networks 

A.I. Updating BEL 

Starting with 

BEL(Ai  ) ~ + + : P(A,IDBA, DCA, DAX, DAY) , 

we apply Bayes' rule, and obtain 

+ + + + 
BEL(A/)  : e~P(D Ax, D ~yIA,, D uA ' D cA)P(AilD ,A, D CA) . 

The conditional independence of (14) now yields (15): 

+ 
BEL(A, )  = aP(D Ax, A , )P(D Ay]A,)P(D AyIAi)P(A,ID ~A, D CA) . 

Conditioning and summing over the values of B and C, we get 

B E L ( 3 i )  = aP(D;~xlAi)P(D;;yIAi) 

+ + + 

~, P(A~IDBA, DcA+ ,B,  C)P(B, CIDBA, DcA ) D 

B . C  

= o~P(DAxIA,)P(DAYIA~) 

• ~, P(A~IB, C)P(BIDBA)P(CID¢+~A) 
B , ( "  

making use of the fact that B and C are independent,  given data from 
nondescendants of A. This confirms (16): 
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BEE(A,) = aP(DAxIAi)P(DAvIA,)  

[ j~,kP(A,]B,, + C D + )] • Ck )P(B j ]D .A)P(  k] CA 

and, using the A-Tr notation 

= , = P(BjIDBA), Ax(A,) P(D AxIA,) rrA(Bj) + 

we obtain (19) 

BEL(Ai) = aAx(Ai)Ay(Ai) [ ~ P(AiIB i, Ck)TTA(Bj)'7"FA(Ck) j • 
j,k 

A.2. Updating 7r 

+ 

7rx(Ai) = P(A,]D Ax)= P(A,[D - D AX ) 

=BEL(A,IXx(A ) = (1, 1 , . . . ,  1)) 

= O t A y ( g i ) [ 2 P ( g i ] B j ,  Ck)Trz(Bj)'n'z(Ck) ] , 
j,k 

thus confirming (22)• 

A.3. Updating A 

AA(B,) = P(D A,]B,) = P(A, D AX, DAy, D [A]B,) 

= ~'~ P(DAx, DAy, D[A]B~, Cj, Ak)P(Cj, Ak[Bi) 
j,k 

= ~, P(DAx]Ak)P(D~v]Ak)P(D,+A]Cj) 
j,k 

• P(A,]B~, Cj)P(Cj[B,). 

But P(CjIB~)= P(Cj) because B and C are marginally independent, and 

P(D [ArCj)P(Cj) = aP(CjlD ¢~A) 

by Bayes' rule. Therefore, 

283 
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p + 
A A ( B i )  = a ~ ( D  A x I A k ) P ( D  A v I A k ) P ( C / I D c A ) P ( A k I C / ,  B,.) 

] , k  

= a ~ Zx(Ak)Zr(Ak)rra(C~)P(AklB,, Cj) 
I , k  

] k 

which confirms (21). 

Le t  

Appendix B. Conditions for Star-decomposability 

Pi = P ( x i  = 1)  , 

Pij  = P ( x i  = 1, x / =  1)  , 

Pi/k = P ( x i  = 1, x j  = 1, x k = 1) . 

(B.1)  

The  seven jo in t -occur rence  probabi l i t ies ,  P l ,  P2, P3, Pl2, P13, P23, P123, 
uniquely define the seven p a r a m e t e r s  necessary  for  specifying P ( x ~ ,  x 2, x3). 
For  example :  

P ( x  I = 1, x 2 = 1, x 3 = O) = p l 2  - P123 , 

P ( x  l = l , x  2 = 0 ) = p 1 - p 2 ,  etc. 

These  probabi l i t ies  will be used in the following analysis.  
Assuming  P is s t a r -decomposab le  (equat ions  (23) and (24)),  we can express  

the jo in t -occurrence  probabi l i t ies  in t e rms  of a ,  fi, gi and obta in  seven 
equat ions  for  these  seven pa rame te r s .  

Pi  = a f i  + (1 - a ) g  i , 

Pi i  = a £ f j  + (1 - a ) g i g  j , 

P, jk  = a f i £ f k  + (1 -- a ) g i g j g  k . 

(B.2) 

(B.3) 

(B.4) 

These  equat ions  can be man ipu la t ed  to yield p roduc t  forms  on the right- 
hand  sides: 

p , / - p , p / =  a(1  - a ) ( f i  - g,)(f/- g,), 
P , P  ,/k -- P , iP ,k  = a(1 - a ) f g , (  f j  - gj)( L - g k )  " 

(B.5)  

(B.6)  
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Equation (B.5) comprises three equations which can be solved for the differ- 
ences f , -  gi, i =  1, 2, 3, giving 

[ij][ ]]1/2 
f~ - g, = S, = +- i k ] / [  j k  (B.7) 

where the bracket [ij] stands for the determinant 

[/Jl = Pq - P ,  Pj  . (B.8) 

These, together with (B.2), determine ~ and & i n  terms of S, and a (still 
unknown): 

f i  = P i  + S/[(1 - -  a ) / a l  ~/2 , (B.9) 

& = p , -  S , [ a / ( 1  - a)] '/2 . (B.10) 

To determine a,  we invoke (B.6) and obtain 

[ a / ( 1 - a ) ]  ' / 2 = t  or a = t 2 / ( 1 - t 2 ) ,  (B.11) 

where t is a solution to 

t 2 + K t -  1 = 0 ,  (B.12) 

and K is defined by: 

K -  Si Pi  P'i + - -  (B.13) 
Pi Si S i P i  ' 

tx, = [ j k ,  i ] / [ j k ]  = ( P ,  Pqk -- P o P , k ) / [ j k ] .  (B.14) 

It can be easily verified that K (and, therefore, a) obtains the same value 
regardless of which index i provides the parameters in (B.13). 

From (B.13) we see that the parameters S i and & of P govern the solutions 
of (B.12) which, in turn, determine whether P is star-decomposable via the 
resulting values of a, f~, &. These conditions are obtained by requiring that: 

(a) S i be real, 
(b) 0~<f, ~< 1, 
(c) 0~<gi<-l .  

Requirement (a) implies that, of the three brackets in (B.7), either all three 
are nonnegative, or exactly two are negative. These brackets are directly 
related to the correlation coefficient via: 
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p,~ [ q l [ p , ( 1 -  1,2 , , - 1 , 2  = p~) ]  [ p i ( 1  - p i ) l  = [ / / ] /o-~o-  i ( B . 1 5 )  

and so, requirement (a) is equivalent to the condition that all three correlation 
coefficients are nonnegative. If two of them are negative, we can rename two 
variables by their complements; the newly defined triplet will have all its pairs 
positively correlated. 

Now attend to requirement (b). Equation (B.9) shows that f~ can be negative 
only if S~ is negative, i.e., if S~ is identified with the negative square root in 
(B.7).  However,  the choice of negative S i yields a solution (f~, g~, c~') which is 
symmetrical to (f , ,  g~, ~) stemming from a positive S~, with f l  = gi, gl = f i ,  
a'  -- 1 - c~. Thus, S i and f, can be assumed to be nonnegative, and it remains to 
examine the condition f ~< 1 or, equivalently, t>~ S e / ( 1 - p ~ )  (see (B.9) and 
(B.11)).  Imposing this condition in (B.12) translates to: 

P~jk <- PijP~k/P~ + ~k Crj[Pjk -- PijPik] " (B.161 

Similarly, inserting requirement (c), gi/>0, in (B.12) yields the inequality: 

Pik Pij /Pi  <~ P ~jk 

which, together with (B.16), lead to Theorem 3.1. 

(B.17) 
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