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Abstract

This paper considers the problem of transferring experimental findings learned
from multiple heterogeneous domains to a target domain, in which only limited
experiments can be performed. We reduce questions of transportability from mul-
tiple domains and with limited scope to symbolic derivations in the causal calcu-
lus, thus extending the original setting of transportability introduced in [1], which
assumes only one domain with full experimental information available. We further
provide different graphical and algorithmic conditions for computing the transport
formula in this setting, that is, a way of fusing the observational and experimen-
tal information scattered throughout different domains to synthesize a consistent
estimate of the desired effects in the target domain. We also consider the issue of
minimizing the variance of the produced estimand in order to increase power.

1 Motivation

Transporting and synthesizing experimental knowledge from heterogeneous settings are central to
scientific discovery. Conclusions that are obtained in a laboratory setting are transported and applied
elsewhere in an environment that differs in many aspects from that of the laboratory. In data-driven
sciences, experiments are conducted on disparate domains, but the intention is almost invariably to
fuse the acquired knowledge, and translate it into some meaningful claim about a target domain,
which is usually different than any of the individual study domains.

However, the conditions under which this extrapolation can be legitimized have not been formally
articulated until very recently. Although the problem has been discussed in many areas of statistics,
economics, and the health sciences, under rubrics such as “external validity” [2, 3], “meta-analysis”
[4], “quasi-experiments” [5], “heterogeneity” [6], these discussions are limited to verbal narratives
in the form of heuristic guidelines for experimental researchers – no formal treatment of the prob-
lem has been attempted to answer the practical challenge of generalizing causal knowledge across
multiple heterogeneous domains with disparate experimental data posed in this paper.

The fields of artificial intelligence and statistics provide the theoretical underpinnings necessary for
tackling transportability. First, the distinction between statistical and causal knowledge has received
syntactic representation through causal diagrams [7, 8, 9], which became a popular tool for causal
inference in data-driven fields. Second, the inferential machinery provided by the causal calculus
(do-calculus) [7, 9, 10] is particularly suitable for handling knowledge transfer across domains.

Armed with these techniques, [1] introduced a formal language for encoding differences and com-
monalities between domains accompanied with necessary or sufficient conditions under which trans-
portability of empirical findings is feasible between two domains, a source and a target; then, these
conditions were extended for a complete characterization for transportability in one domain with un-
restricted experimental data [11]. Subsequently, these results were generalized for the settings when
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only limited experiments are available in the source domain [12, 13], and further for when multiple
source domains with unrestricted experimental information are available [14, 15]. This paper broad-
ens these discussions introducing a more general setting in which multiple heterogeneous sources
with limited and distinct experiments are available, a task that we call here “mz-transportability”.1

More formally, the mz-transportability problem concerns with the transfer of causal knowledge
from a heterogeneous collection of source domains Π = {π1, ..., πn} to a target domain π∗. In each
domain πi ∈ Π, experiments over a set of variables Zi can be performed, and causal knowledge
gathered. In π∗, potentially different from πi, only passive observations can be collected (this con-
straint is weakened later on). The problem is to infer a causal relationship R in π∗ using knowledge
obtained in Π. Clearly, if nothing is known about the relationship between Π and π∗, the problem is
trivial; no transfer can be justified. Yet the fact that all scientific experiments are conducted with the
intent of being used elsewhere (e.g., outside the lab) implies that scientific progress relies on the as-
sumption that certain domains share common characteristics and that, owed to these commonalities,
causal claims would be valid in new settings even where experiments cannot be conducted.

The problem stated in this paper generalizes the one-dimensional version of transportability with
limited scope and the multiple dimensional with unlimited scope. Remarkably, while the effects of
interest might not be individually transportable to the target domain from the experiments in any of
the available sources, combining different pieces from the various sources may enable the estimation
of the desired effects (to be shown later on). The goal of this paper is to formally understand under
which conditions the target quantity is (non-parametrically) estimable from the available data.

2 Previous work and our contributions

Consider Fig. 1(a) in which the node S represents factors that produce differences between source
and target populations. Assume that we conduct a randomized trial in Los Angeles (LA) and es-
timate the causal effect of treatment X on outcome Y for every age group Z = z, denoted by
P (y|do(x), z). We now wish to generalize the results to the population of the United States (U.S.),
but we find the distribution P (x, y, z) in LA to be different from the one in the U.S. (call the latter
P ∗(x, y, z)). In particular, the average age in the U.S. is significantly higher than that in LA. How
are we to estimate the causal effect of X on Y in U.S., denoted R = P ∗(y|do(x))? 2 3

The selection diagram for this example (Fig. 1(a)) conveys the assumption that the only difference
between the two populations are factors determining age distributions, shown as S → Z, while age-
specific effects P ∗(y|do(x), Z = z) are invariant across populations. Difference-generating factors
are represented by a special set of variables called selection variables S (or simply S-variables),
which are graphically depicted as square nodes (�). From this assumption, the overall causal effect
in the U.S. can be derived as follows:

R =
∑

z

P ∗(y|do(x), z)P ∗(z)

=
∑

z

P (y|do(x), z)P ∗(z) (1)

The last line is the transport formula for R. It combines experimental results obtained in LA,
P (y|do(x), z), with observational aspects of the U.S. population, P ∗(z), to obtain an experimental
claim P ∗(y|do(x)) about the U.S.. In this trivial example, the transport formula amounts to a simple
re-calibration (or re-weighting) of the age-specific effects to account for the new age distribution.
In general, however, a more involved mixture of experimental and observational findings would
be necessary to obtain a bias-free estimate of the target relation R. Fig. 1(b) depicts the smallest
example in which transportability is not feasible even when experiments over X in π are available.

In real world applications, it may happen that certain controlled experiments cannot be conducted
in the source environment (for financial, ethical, or technical reasons), so only a limited amount

1The machine learning literature has been concerned about discrepancies among domains in the context,
almost exclusively, on predictive or classification tasks as opposed to learning causal or counterfactual measures
[16, 17]. Interestingly enough, recent work on anticausal learning moves towards more general modalities of
learning and also leverages knowledge about the underlying data-generating structure [18, 19].

2We will use Px(y | z) interchangeably with P (y | do(x), z).
3We use the structural interpretation of causal diagrams as described in [9, pp. 205].
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Figure 1: The selection variables S are depicted as square nodes (�). (a) Selection diagram illustrat-
ing when transportability between two domains is trivially solved through simple recalibration. (b)
The smallest possible selection diagram in which a causal relation is not transportable. (c) Selection
diagram illustrating transportability when only experiments over {Z1} are available in the source.

of experimental information can be gathered. A natural question arises whether the investigator in
possession of a limited set of experiments would still be able to estimate the desired effects at the
target domain. For instance, we assume in Fig. 1(c) that experiments over Z1 are available and the
target quantity is R = P ∗(y|do(x)), which can be shown to be equivalent to P (y|x, do(Z1)), the
conditional distribution of Y given X in the experimental study when Z1 is randomized. 4

One might surmise that multiple pairwise z-transportability would be sufficient to solve the mz-
transportability problem, but this is not the case. To witness, consider Fig. 2(a,b) which concerns
the transport of experimental results from two sources ({πa, πb}) to infer the effect of X on Y
in π∗, R = P ∗(y|do(x)). In these diagrams, X may represent the treatment (e.g., cholesterol
level), Z1 represents a pre-treatment variable (e.g., diet), Z2 represents an intermediate variable
(e.g., biomarker), and Y represents the outcome (e.g., heart failure). We assume that experimental
studies randomizing {Z1, Z2} can be conducted in both domains. A simple analysis based on [12]
can show that R cannot be z-transported from either source alone, but it turns out that combining in
a special way experiments from both sources allows one to determine the effect in the target.

More interestingly, we consider the more stringent scenario where only certain experiments can
be performed in each of the domains. For instance, assume that it is only possible to conduct
experiments over {Z2} in πa and over {Z1} in πb. Obviously, R will not be z-transported in-
dividually from these domains, but it turns out that taking both sets of experiments into account,
R =

∑
z2
P (a)(y|do(z2))P (b)(z2|x, do(Z1)), which fully uses all pieces of experimental data avail-

able. In other words, we were able to decomposeR into subrelations such that each one is separately
z-transportable from the source domains, and so is the desired target quantity. Interestingly, it is the
case in this example that if the domains in which experiments were conducted were reversed (i.e.,
{Z1} randomized in πa, {Z2} in πb), it will not be possible to transport R by any method – the
target relation is simply not computable from the available data (formally shown later on).

This illustrates some of the subtle issues mz-transportability entails, which cannot be immediately
cast in terms of previous instances of the transportability class. In the sequel, we try to better under-
stand some of these issues, and we develop sufficient or (specific) necessary conditions for deciding
special transportability for arbitrary collection of selection diagrams and set of experiments. We fur-
ther construct an algorithm for deciding mz-transportability of joint causal effects and returning the
correct transport formula whenever this is possible. We also consider issues relative to the variance
of the estimand aiming for improving sample efficiency and increasing statistical power.

3 Graphical conditions for mz-transportability

The basic semantical framework in our analysis rests on structural causal models as defined in [9,
pp. 205], also called data-generating models. In the structural causal framework [9, Ch. 7], actions
are modifications of functional relationships, and each action do(x) on a causal model M produces

4A typical example is whether we can estimate the effect of cholesterol (X) on heart failure (Y ) by experi-
ments on diet (Z1) given that cholesterol levels cannot be randomized [20].
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Figure 2: Selection diagrams illustrating impossibility of estimating R = P ∗(y|do(x)) through
individual transportability from πa and πb even when Z = {Z1, Z2} (for (a, b), (c, d))). If we
assume, more stringently, availability of experiments Za = {Z2}, Zb = {Z1}, Z∗ = {}, a more
elaborated analysis can show thatR can be estimated combining different pieces from both domains.

a new model Mx = 〈U,V,Fx, P (U)〉, where Fx is obtained after replacing fX ∈ F for every
X ∈ X with a new function that outputs a constant value x given by do(x). 5

We follow the conventions given in [9]. We denote variables by capital letters and their realized
values by small letters. Similarly, sets of variables will be denoted by bold capital letters, sets of
realized values by bold small letters. We use the typical graph-theoretic terminology with the corre-
sponding abbreviations Pa(Y)G and An(Y)G, which will denote respectively the set of observable
parents and ancestors of the node set Y in G. A graph GY will denote the induced subgraph G con-
taining nodes in Y and all arrows between such nodes. Finally, GXZ stands for the edge subgraph
of G where all incoming arrows into X and all outgoing arrows from Z are removed.

Key to the analysis of transportability is the notion of “identifiability,” defined below, which ex-
presses the requirement that causal effects are computable from a combination of data P and as-
sumptions embodied in a causal graph G.
Definition 1 (Causal Effects Identifiability (Pearl, 2000, pp. 77)). The causal effect of an action
do(x) on a set of variables Y such that Y ∩X = ∅ is said to be identifiable from P in G if Px(y)
is uniquely computable from P (V) in any model that induces G.

Causal models and their induced graphs are usually associated with one particular domain (also
called setting, study, population, or environment). In ordinary transportability, this representation
was extended to capture properties of two domains simultaneously. This is possible if we assume
that the structural equations share the same set of arguments, though the functional forms of the
equations may vary arbitrarily [11]. 6

Definition 2 (Selection Diagram). Let 〈M,M∗〉 be a pair of structural causal models [9, pp. 205]
relative to domains 〈π, π∗〉, sharing a causal diagram G. 〈M,M∗〉 is said to induce a selection
diagram D if D is constructed as follows:

1. Every edge in G is also an edge in D;

2. D contains an extra edge Si → Vi whenever there might exist a discrepancy fi 6= f∗i or
P (Ui) 6= P ∗(Ui) between M and M∗.

In words, the S-variables locate the mechanisms where structural discrepancies between the two
domains are suspected to take place.7 Alternatively, the absence of a selection node pointing to
a variable represents the assumption that the mechanism responsible for assigning value to that
variable is identical in both domains.

5The results presented here are also valid in other formalisms for causality based on potential outcomes.
6As discussed in the reference, the assumption of no structural changes between domains can be relaxed,

but some structural assumptions regarding the discrepancies between domains must still hold.
7Transportability assumes that enough structural knowledge about both domains is known in order to sub-

stantiate the production of their respective causal diagrams. In the absence of such knowledge, causal discovery
algorithms might be used to infer the diagrams from data [8, 9].
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Armed with the concept of identifiability and selection diagrams, mz-transportability of causal ef-
fects can be defined as follows:
Definition 3 (mz-Transportability). LetD = {D(1), ..., D(n)} be a collection of selection diagrams
relative to source domains Π = {π1, ..., πn}, and target domain π∗, respectively, and Zi (and Z∗)
be the variables in which experiments can be conducted in domain πi (and π∗). Let 〈P i, Ii

z〉 be
the pair of observational and interventional distributions of πi, where Ii

z =
⋃

Z′⊆Zi
P i(v|do(z′)),

and in an analogous manner, 〈P ∗, I∗z 〉 be the observational and interventional distributions of π∗.
The causal effect R = P ∗x (y|w) is said to be mz-transportable from Π to π∗ in D if P ∗x (y|w) is
uniquely computable from

⋃
i=1,...,n〈P i, Ii

z〉 ∪ 〈P ∗, I∗z 〉 in any model that induces D.

The requirement that R is uniquely computable from 〈P ∗, I∗z 〉 and 〈P i, Ii
z〉 from all sources has a

syntactic image in the causal calculus, which is captured by the following sufficient condition.
Theorem 1. Let D = {D(1), ..., D(n)} be a collection of selection diagrams relative to source
domains Π = {π1, ..., πn}, and target domain π∗, respectively, and Si represents the collection of
S-variables in the selection diagram D(i). Let {〈P i, Ii

z〉} and 〈P ∗, I∗z 〉 be respectively the pairs of
observational and interventional distributions in the sources Π and target π∗. The relation R =
P ∗(y|do(x),w) ismz-transportable from Π to π∗ inD if the expression P (y|do(x),w,S1, ...,Sn)
is reducible, using the rules of the causal calculus, to an expression in which (1) do-operators that
apply to subsets of Ii

z have no Si-variables or (2) do-operators apply only to subsets of I∗z .

This result provides a powerful way to syntactically establish mz-transportability, but it is not im-
mediately obvious whether a sequence of applications of the rules of causal calculus that achieves
the reduction required by the theorem exists, and even if such sequence exists, it is not obvious how
to obtain it. For concreteness, we illustrate this result using the selection diagrams in Fig. 2(a,b).
Corollary 1. P ∗(y|do(x)) is mz-transportable in Fig. 2(a,b) with Za = {Z2} and Zb = {Z1}.
Proof. The goal is to show that R = P ∗(y|do(x)) is mz-transportable from {πa, πb} to π∗ using
experiments conducted over {Z2} in πa and {Z1} in πb. Note that naively trying to transport R
from each of the domains individually is not possible, but R can be decomposed as follows:

P ∗(y|do(x)) = P ∗(y|do(x), do(Z1)) (2)

=
∑
z2

P ∗(y|do(x), do(Z1), z2)P ∗(z2|do(x), do(Z1)) (3)

=
∑
z2

P ∗(y|do(x), do(Z1), do(z2))P ∗(z2|do(x), do(Z1)), (4)

where Eq. (2) follows by rule 3 of the causal calculus since (Z1 ⊥⊥ Y |X)DX,Z1
holds, we con-

dition on Z2 in Eq. (3), and Eq. (4) follows by rule 2 of the causal calculus since (Z2 ⊥⊥
Y |X,Z1)DX,Z1,Z2

, where D is the diagram in π∗ (despite the location of the S-nodes).

Now we can rewrite the first term of Eq. (4) as indicated by the Theorem (and suggested by Def. 2):
P ∗(y|do(x), do(Z1), do(z2)) = P (y|do(x), do(Z1), do(z2),Sa,Sb) (5)

= P (y|do(x), do(Z1), do(z2),Sb) (6)
= P (y|do(z2),Sb) (7)

= P (a)(y|do(z2)), (8)
where Eq. (5) follows from the theorem (and the definition of selection diagram), Eq. (6) follows
from rule 1 of the causal calculus since (Sa ⊥⊥ Y |Z1, Z2, X)

D
(a)
Z1,Z2,X

, Eq. (7) follows from rule

3 of the causal calculus since (Z1, X ⊥⊥ Y |Z2)
D

(a)
Z1,Z2,X

. Note that this equation matches with the

syntactic goal of Theorem 1 since we have precisely do(z2) separated from Sa (and Z2 ∈ Ia
z ); so,

we can rewrite the expression which results in Eq. (8) by the definition of selection diagram.

Finally, we can rewrite the second term of Eq. (4) as follows:
P ∗(z2|do(x), do(Z1)) = P (z2|do(x), do(Z1),Sa,Sb) (9)

= P (z2|do(x), do(Z1),Sa) (10)
= P (z2|x, do(Z1),Sa) (11)

= P (b)(z2|x, do(Z1)), (12)
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where Eq. (9) follows from the theorem (and the definition of selection diagram), Eq. (10) follows
from rule 1 of the causal calculus since (Sb ⊥⊥ Z2|Z1, X)

D
(b)
Z1,X

, Eq. (11) follows from rule 2 of

the causal calculus since (X ⊥⊥ Z2|Z1)
D

(b)
Z1X

. Note that this equation matches the condition of the

theorem, separate do(Z1) from Sb (i.e., experiments over Z1 can be used since they are available in
πb), so we can rewrite Eq. (12) using the definition of selection diagrams, the corollary follows.

The next condition for mz-transportability is more visible than Theorem 1 (albeit weaker), which
also demonstrates the challenge of relating mz-transportability to other types of transportability.
Corollary 2. R = P ∗(y|do(x)) ismz-transportable inD if there exists Z′i ⊆ Zi such that all paths
from Z′i to Y are blocked by X, (Si ⊥⊥ Y|X,Z′i)D

(i)

X,Z′
i

, and R is computable from do(Zi).

Remarkably, randomizing Z2 when applying Corollary 1 was instrumental to yield transportability
in the previous example, despite the fact that the directed paths from Z2 to Y were not blocked byX ,
which suggests how different this transportability is from z-identifiability. So, it is not immediately
obvious how to combine the topological relations of Zi’s with X and Y in order to create a general
condition for mz-transportability, the relationship between the distributions in the different domains
can get relatively intricate, but we defer this discussion for now and consider a simpler case.

It is not usually trivial to pursue a derivation of mz-transportability in causal calculus, and next we
show an example in which such derivation does not even exist. Consider again the diagrams in Fig.
2(a,b), and assume that randomized experiments are available over {Z1} in πa and {Z2} in πb.
Theorem 2. P ∗(y|do(x)) is not mz-transportable in Fig. 2(a,b) with Za = {Z1} and Zb = {Z2}.
Proof. Formally, we need to display two models M1,M2 such that the following relations hold (as
implied by Def. 3):

P
(a)
M1

(Z1, X, Z2, Y ) = P
(a)
M2

(Z1, X, Z2, Y ),
P

(b)
M1

(Z1, X, Z2, Y ) = P
(b)
M2

(Z1, X, Z2, Y ),
P

(a)
M1

(X,Z2, Y |do(Z1)) = P
(a)
M2

(X,Z2, Y |do(Z1)),
P

(b)
M1

(Z1, X, Y |do(Z2)) = P
(b)
M2

(Z1, X, Y |do(Z2)),
P ∗M1

(Z1, X, Z2, Y ) = P ∗M2
(Z1, X, Z2, Y ),

(13)

for all values of Z1, X , Z2, and Y , and also,

P ∗M1
(Y |do(X)) 6= P ∗M2

(Y |do(X)), (14)

for some value of X and Y .

Let V be the set of observable variables and U be the set of unobservable variables in D. Let us
assume that all variables in U ∪V are binary. Let U1, U2 ∈ U be the common causes of Z1 and
X and Z2, respectively; let U3, U4, U5 ∈ U be a random disturbance exclusive to Z1, Z2, and Y ,
respectively, and U6 ∈ U be an extra random disturbance exclusive to Z2, and U7, U8 ∈ U to Y . Let
Sa and Sb index the model in the following way: the tuples 〈Sa = 1, Sb = 0〉, 〈Sa = 0, Sb = 1〉,
〈Sa = 0, Sb = 0〉 represent domains πa, πb, and π∗, respectively. Define the two models as follows:

M1 =


Z1 = U1 ⊕ U2 ⊕

(
U3 ∧ Sa

)
X = Z1 ⊕ U1

Z2 = (X ⊕ U2 ⊕ (U4 ∧ Sa)) ∨ U6

Y = (Z2 ∧ U5)⊕ (U5 ∧ U7)⊕ (Sb ∧ U8)

M2 =


Z1 = U1 ⊕ U2 ⊕

(
U3 ∧ Sa

)
X = U1

Z2 =
(
U4 ∧ Sa ∧ U6

)
⊕ U6

Y = (Z2 ∧ U5)⊕ (U5 ∧ U7)⊕ (Sb ∧ U8)

where ⊕ represents the exclusive or function. Both models agree in respect to P (U), which is
defined as P (Ui) = 1/2, i = 1, ..., 8. It is not difficult to evaluate these models and note that the
constraints given in Eqs. (13) and (14) are satisfied (including positivity), the theorem follows.

4 Algorithm for computing mz-transportability

In this section, we build on previous analyses of identifiability [7, 21, 22, 23] in order to obtain a
mechanic procedure in which a collection of selection diagrams and experimental data is inputted,
and the procedure returns a transport formula whenever it is able to produce one. More specifically,
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PROCEDURE TRmz(y,x,P, I,S,W, D)
INPUT: x,y: value assignments; P: local distribution relative to domain S (S = 0 indexes π∗) and active
experiments I;W: weighting scheme; D: backbone of selection diagram; Si: selection nodes in πi (S0 = ∅
relative to π∗); [The following set and distributions are globally defined: Zi, P

∗, P
(i)
Zi

.]

OUTPUT: P ∗x (y) in terms of P ∗, P ∗Z, P
(i)
Zi

or FAIL(D,C0).
1 if x = ∅, return

P
V\Y P .

2 if V \An(Y)D 6= ∅, return TRmz(y,x ∩An(Y)D,
P

V\An(Y)D
P, I,S,W, DAn(Y)).

3 set W = (V \X) \An(Y)D
X

.
if W 6= ∅, return TRmz(y,x ∪w,P, I,S,W, D).

4 if C(D \X) = {C0, C1, ..., Ck}, return
P

V\{Y,X}
Q

i TRmz(ci,v \ ci,P, I,S,W, D).
5 if C(D \X) = {C0},
6 if C(D) 6= {D},
7 if C0 ∈ C(D), return

Q
i|Vi∈C0

P
V\V (i)

D

P/
P

V\V (i−1)
D

P .

8 if (∃C′)C0 ⊂ C′ ∈ C(D),
for {i|Vi ∈ C′}, set κi = κi ∪ v(i−1)

D \ C′.
return TRmz(y,x ∩ C′,

Q
i|Vi∈C′ P(Vi|V (i−1)

D ∩ C′, κi), I,S,W, C′).
9 else,

10 if I = ∅, for i = 0, ..., |D|,
if
`
(Si ⊥⊥ Y | X)

D
(i)
X

∧ (Zi ∩X 6= ∅)
´
, Ei = TRmz(y,x \ zi,P,Zi ∩X, i,W, D \ {Zi ∩X}).

11 if |E| > 0, return
P|E|

i=1 w
(j)
i Ei.

12 else, FAIL(D,C0).
Figure 3: Modified version of identification algorithm capable of recognizing mz-transportability.

our algorithm is called TRmz (see Fig. 3), and is based on the C-component decomposition for
identification of causal effects [22, 23] (and a version of the identification algorithm called ID).

The rationale behind TRmz is to apply Tian’s factorization and decompose the target relation into
smaller, more manageable sub-expressions, and then try to evaluate whether each sub-expression
can be computed in the target domain. Whenever this evaluation fails, TRmz tries to use the exper-
iments available from the target and, if possible, from the sources; this essentially implements the
declarative condition delineated in Theorem 1. Next, we consider the soundness of the algorithm.

Theorem 3 (soundness). Whenever TRmz returns an expression for P ∗x (y), it is correct.

In the sequel, we demonstrate how the algorithm works through the mz-transportability of Q =
P ∗(y|do(x)) in Fig. 2(c,d) with Z∗ = {Z1}, Za = {Z2}, and Zb = {Z1}.
Since (V \ X) \ An(Y)DX

= {Z2}, TRmz invokes line 3 with {Z2} ∪ {X} as interventional
set. The new call triggers line 4 and C(D \ {X,Z2}) = {C0, C1, C2, C3}, where C0 = DZ1 ,
C1 = DZ3 , C2 = DU , and C3 = DW,Y , we invoke line 4 and try to mz-transport individ-
ually Q0 = P ∗x,z2,z3,u,w,y(z1), Q1 = P ∗x,z1,z2,u,w,y(z3), Q2 = P ∗x,z1,z2,z3,w,y(u), and Q3 =
P ∗x,z1,z2,z3,u(w, y). Thus the original problem reduces to try to evaluate the equivalent expression∑

z1,z3,u,w P
∗
x,z2,z3,u,w,y(z1)P ∗x,z1,z2,u,w,y(z3) P ∗x,z1,z2,z3,w,y(u)P ∗x,z1,z2,z3,u(w, y).

First, TRmz evaluates the expression Q0 and triggers line 2, noting that all nodes can be ignored
since they are not ancestors of {Z1}, which implies after line 1 that P ∗x,z2,z3,u,w,y(z1) = P ∗(z1).

Second, TRmz evaluates the expression Q1 triggering line 2, which implies that
P ∗x,z1,z2,u,w,y(z3) = P ∗x,z1,z2

(z3) with induced subgraph D1 = DX,Z1,Z2,Z3 . TRmz goes to line 5,
in which in the local call C(D \ {X,Z1, Z2}) = {DZ3}. Thus it proceeds to line 6 testing whether
C(D \ {X,Z1, Z2}) is different from D1, which is false. In this call, ordinary identifiability would
fail, but TRmz proceeds to line 9. The goal of this line is to test whether some experiment can
help for computing Q1. In this case, πa fails immediately the test in line 10, but πb and π∗ succeed,
which means experiments in these domains may eventually help; the new call is P (i)

x,z2(z3)D\Z1 , for
i = {b, ∗} with induced graph D′1 = DX,Z2,Z3 . Finally, TRmz triggers line 8 since X is not part
of Z3’s components in D′1 (or, Z3 ∈ C ′ = {Z2 L9999K Z3}), so line 2 is triggered since Z2 is no
longer an ancestor of Z3 in D′1, and then line 1 is triggered since the interventional set is empty in
this local call, so P ∗x,z1,z2

(z3) =
∑

Z′2
P

(i)
z1 (z3|x, Z ′2)P (i)

z1 (Z ′2), for i = {b, ∗}.
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Third, evaluating the expression Q2, TRmz goes to line 2, which implies that P ∗x,z1,z2,z3,w,y(u) =
P ∗x,z1,z2,z3,w(u) with induced subgraph D2 = DX,Z1,Z2,Z3,W,U . TRmz goes to line 5, and
in this local call C(D \ {X,Z1, Z2, Z3,W}) = {DU}, and the test in 6 succeed, since there
are more components in D. So, it triggers line 8 since W is not part of U ’s component
in D2. The algorithm makes P ∗x,z1,z2,z3,w(u) = P ∗x,z1,z2,z3

(u)D2|W (and update the work-
ing distribution); note that in this call, ordinary identifiability would fail since the nodes are
in the same C-component and the test in line 6 fails. But TRmz proceeds to line 9 trying
to find experiments that can help in Q2’s computation. In this case, πb cannot help but πa

and π∗ perhaps can, noting that new calls are launched for computing P
(a)
x,z1,z3(u)D2\Z2|W rel-

ative to πa, and P ∗x,z2,z3
(u)D2\Z1|W relative to π∗ with the corresponding data structures set.

In πa, the algorithm triggers line 7, which yields P (a)
x,z1,z3(u)D2\Z2|W = P

(a)
z2 (u|w, z3, x, z1),

and a bit more involved analysis for πb yields (after simplification) P ∗x,z2,z3
(u)D2\Z1|W =(∑

Z′2
P ∗z1

(u|w, z3, x, Z ′2)P ∗z1
(z3|x, Z ′2)P ∗z1

(Z ′2)
)
/
(∑

Z′′2
P ∗z1

(z3|x, Z ′′2 )P ∗z1
(Z ′′2 )

)
.

Fourth, TRmz evaluates the expressionQ3 and triggers line 5, C(D\{X,Z1, Z2, Z3, U}) = DW,Y .
In turn, both tests at lines 6 and 7 succeed, which makes the procedure to return P ∗x,z1,z2,z3,u(w, y) =
P ∗(w|z3, x, z1, z2)P ∗(y|w, x, z1, z2, z3, u).

The composition of the return of these calls generates the following expression:

P ∗x (y) =
X

z1,z3,w,u

P ∗(z1)

 
w

(1)
1

X
Z′2

P ∗z1(z3|x, Z
′
2)P

∗
z1(Z

′
2) + w

(1)
2

X
Z′2

P (b)
z1 (z3|x, Z′2)P (b)

z1 (Z′2)

!
 
w

(2)
1

„X
Z′2

P ∗z1(u|w, z3, x, Z
′
2)P

∗
z1(z3|x, Z

′
2)P

∗
z1(Z

′
2)

«
/

„X
Z′′2

P ∗z1(z3|x, Z
′′
2 )P ∗z1(Z

′′
2 )

«

+ w
(2)
2 P (a)

z2 (u|w, z3, x, z1)

!
P ∗(w|x, z1, z2, z3) P ∗(y|x, z1, z2, z3, w, u) (15)

where w(k)
i represents the weight for each factor in estimand k (i = 1, ..., nk), and nk is the number

of feasible estimands of k. Eq. (15) depicts a powerful way to estimate P ∗(y|do(x)) in the target
domain, and depending on weighting choice a different estimand will be entailed. For instance, one
might use an analogous to inverse-variance weighting, which sets the weights for the normalized
inverse of their variances (i.e., w(k)

i = σ−2
i /

∑nk

j=1 σ
−2
j , where σ2

j is the variance of the jth compo-
nent of estimand k). Our strategy resembles the approach taken in meta-analysis [4], albeit the latter
usually disregards the intricacies of the relationships between variables, so producing a statistically
less powerful estimand. Our method leverages this non-trivial and highly structured relationships, as
exemplified in Eq. (15), which yields an estimand with less variance and statistically more powerful.

5 Conclusions
In this paper, we treat a special type of transportability in which experiments can be conducted only
over limited sets of variables in the sources and target domains, and the goal is to infer whether a
certain effect can be estimated in the target using the information scattered throughout the domains.
We provide a general sufficient graphical conditions for transportability based on the causal calculus
along with a necessary condition for a specific scenario, which should be generalized for arbitrary
structures. We further provide a procedure for computing transportability, that is, generate a formula
for fusing the available observational and experimental data to synthesize an estimate of the desired
causal effects. Our algorithm also allows for generic weighting schemes, which generalizes standard
statistical procedures and leads to the construction of statistically more powerful estimands.
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