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Abstract

This note reviews basic techniques of linear path analysis and demonstrates,
using simple examples, how causal phenomena of non-trivial character can be
understood, exemplified and analyzed using diagrams and a few algebraic steps.
The techniques allow for swift assessment of how various features of the model
impact the phenomenon under investigation. This includes: Simpson’s paradox,
case-control bias, selection bias, missing data, collider bias, reverse regression,
bias amplification, near instruments, and measurement errors.

1 Introduction

Many concepts and phenomena in causal analysis were first detected, quantified and
exemplified in linear structural equation models (SEM) before they were understood
in full generality and applied to nonparametric problems. Linear SEM’s can serve as a
“microscope” for causal analysis; they provide simple and visual representation of the
causal assumptions in the model and often enable us to derive close-form expressions
for quantities of interest which, in turns, can be used to assess how various aspects of
the model affect the phenomenon under investigation. Likewise, linear models can be
used to test general hypotheses and to generate counter-examples to over-ambitious
conjectures.

Despite their ubiquity, however, techniques for using linear models in that capacity
have all but disappeared from the main SEM literature, where they have been replaced
by matrix algebra on the one hand and software packages on the other. Very few
analysts today are familiar with traditional methods of path tracing (Wright, 1921;
Duncan, 1975; Kenny, 1979; Heise, 1975) which, for small problems, can provide both
intuitive insight and easy derivations using elementary algebra.
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This note attempts to fill this void by introducing the basic techniques of path
analysis to modern researchers, and demonstrating, using simple examples, how con-
cepts and issues in modern causal analysis can be understood and analyzed in SEM.
These will include: Simpson’s paradox, case-control bias, selection bias, collider bias,
reverse regression, bias amplification, near instruments, measurement errors, and
more.

2 Preliminaries

2.1 Covariance, regression, and correlation

We start with the standard definition of variance and covariance on a pair of variables
X and Y . The variance of X is defined as

σ2
x = E[X − E(x)]2

and measures the degree to which X deviates from its mean E(X).
The covariance of X and Y is defined as

σxy = E[X − E(x)][Y − E(Y )]

and measures the degree to which X and Y covary.
Associated with the covariance, we define two other measures of association: (1)

the regression coefficient βyx and (2) the correlation coefficient ρyx. The relationships
between the three is given by the following equations:

ρxy =
σxy
σxσy

(1)

βyx =
σxy
σ2
x

=
σy
σx
ρxy (2)

We note that ρxy = ρyx is dimensionless and confined to the unit interval; 0 ≤
ρxy ≤ 1. The regression coefficient, βyx, represents the slope of the least square error
line in the prediction of Y given X

βyx =
∂

∂x
E(Y |X = x)

2.2 Partial correlations and regressions

Many questions in causal analysis concern the change in a relationship between X
and Y conditioned on a given set Z of variables. The easiest way to define this change
is through the partial regression coefficient βyx·z which is given by

βyx·z =
∂

∂x
E(Y |X = x, Z = z)

In words, βyx·z is the slope of the regression line of Y on X when we consider only
cases for which Z = z.
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The partial correlation coefficient ρxy·z can be defined by normalizing βyx·z:

ρxy·z = βyx.zσx·z/σy·z.

A well known result in regression analysis (Crámer, 1946) permits us to express
ρxy·z recursively in terms of pair-wise regression coefficients. When Z is singleton,
this reduction reads:

ρyx·z =
ρyx − ρyzρxz

[(1− ρ2xz)(1− ρ2xz)]
1
2

(3)

Accordingly, we can also express βyx·z and σyx·z in terms of pair-wise relationships,
which gives:

σyx·z =
√
σxx − σ2

xz/σ
2
z

√
σyy − σ2

yz/σ
2
z ρyx·z (4)

σyx·z = σ2
x[βyx − βyzβzx] = σyx −

σyzσzx
σ2
z

(5)

βyx·z =
βyx − βyzβzx
1− β2

zxσ
2
x/σ

2
z

=
σ2
zσyx − σyzσzx
σ2
xσ

2
z − σ2

xz

=
σy
σx

ρyx − ρyz · ρzx
1− ρ2xz

(6)

Note that none of these conditional associations depends on the level z at which
we condition variable Z; this is one of the features that makes linear analysis easy to
manage and, at the same time, limited in the spectrum of relationships it can capture.

2.3 Path diagrams and structural equation models

A linear structural equation model (SEM) is a system of linear equations among
a set V of variables, such that each variable appears on the left hand side of at
most one equation. For each equation, the variable on its left hand side is called
the dependent variable, and those on the right hand side are called independent or
explanatory variables. For example, the equation below

Y = αX + βZ + UY (7)

declares Y as the dependent variable, X and Z as explanatory variables, and UY as an
“error” or “disturbance” term, representing all factors omitted from V that, together
with X and Z determine the value of Y . A structural equation should be interpreted
as an assignment process, i.e., to determine the value of Y , nature consults the value
of variables X,Z and UY and, based on their linear combination in (7), assigns a
value to Y .

This interpretation renders the equality sign in Eq. (7) non-symmetrical, since the
values of X and Z are not determined by inverting (7) but by other equations, for
example,

X = γZ + UX (8)

Z = UZ (9)
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Figure 1: Path diagrams capturing the directionality of the assignment process of
Eqs. (7)–(9) as well as possible correlations among omitted factors.

The directionality of this assignment process is captured by a path-diagram, in
which the nodes represent variables, and the arrows represent the non-zero coefficients
in the equations. The diagram in Fig. 1(a) represents the SEM equations of (7)-(9)
and the assumption of zero correlations between the U variables,

σUX ,UY
= σUX ,UZ

= σUZ ,UY
= 0

The diagram in Fig. 1(b) on the other hand represents Eqs. (7)–(9) together with the
assumption

σUX ,UZ
= σUZ ,UY

= 0

while σUX ,UY
= CXY remains undetermined.

The coefficients α, β, and γ are called path coefficients, or structural parameters
and they carry causal information. For example, α stands for the change in Y induced
by raising X one unit, while keeping all other variables constant.1

The assumption of linearity makes this change invariant to the levels at which we
keep those other variables constant, including the error variables; a property called
“effect homogeneity.” Since errors (e.g., UX , UY , YZ) capture variations among in-
dividual units (i.e., subjects, samples, or situations), effect homogeneity amounts to
claiming that all units react equally to any treatment, which may exclude applications
with profoundly heterogeneous subpopulations.

2.4 Wright’s path-tracing rules

In 1921, the geneticist Sewall Wright developed an ingenious method by which the
covariance σxy of any two variables can be determined swiftly, by mere inspection of

1Readers familiar with do-calculus (Pearl, 1995) can interpret α as the experimental slope

α =
∂

∂x
E[(Y |do(x), do(z))]

while those familiar with counterfactual logic can write α = ∂
∂xYxz(u). The latter implies the former,

and the two coincide in linear models, where causal effects are homogenous (i.e., unit-independent.)
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the diagram (Wright, 1921). Wright’s method consists of equating the (standardized2)
covariance σxy = ρxy between any pair of variables to the sum of products of path
coefficients and error covariances along all d-connected paths between X and Y . A
path is d-connected if it does not traverse any collider (i.e., head-to-head arrows, as
in X → Y ← Z).

For example, in Fig. 1(a), the standardized covariance σxy is obtained by summing
α with the product βγ, thus yielding σxy = α + βγ, while in Fig. 1(b) we get:
σxy = α + βγ + CXY . Note that for the pair (X,Z), we get σxz = γ since the path
X → Y ← Z is not d-connected.

The method above is valid for standardized variables, namely, variables normalized
to have zero mean and unit variance. For non-standardized variables the method
need to be modified slightly, multiplying the product associated with a path p by the
variance of the variable that acts as the “root” for path p. For example, for Fig. 1(a)
we have σxy = σ2

xα+ σ2
zβγ, since X serves as the root for path X → Y and Z serves

as the root for X ← Z → Y . In Fig. 1(b), however, we get σxy = σ2
xα+ σ2

zβγ +CXY

where the double arrow UX ↔ UY serves as its own root.

2.5 Reading partial correlations from path diagrams

The reduction from partial to pair-wise correlations summarized in Eqs. (4)–(6), when
combined with Wright’s path-tracing rules permits us to extend the latter so as to
read partial correlations directly from the diagram. For example, to read the partial
regression coefficient βxy·z, we start with a standardized model where all variances
are unity (hence σxy = ρxy = βxy), and apply Eq. (6) with σx = σz = 1 to get:

βyx·z =
(σyx − σyzσzx)

(1− σ2
xz)

(10)

At this point, each pair-wise covariance can be computed from the diagram through
path-tracing and, substituted in (10), yields an expression for the partial regression
coefficient βyx·z.

To witness, the pair-wise covariances for Fig. 1(a) are:

σyx = α + βγ (11)

σxz = γ (12)

σyz = β + αγ (13)

Substituting in (10), we get

βyx·z = [(α + βγ)− (β + γα)γ]/(1− γ2)
= α(1− γ2)/(1− γ2)
= α (14)

2Standardized parameters refer to systems in which (without loss of generality) all variables are
normalized to have zero mean and unit variance, which significantly simplifies the algebra.
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Indeed, we know that, for a confounding-free model like Fig. 1(a) the direct effect
α is identifiable and given by the partial regression coefficient βxy·z. Repeating the
same calculation on the model of Fig. 1(b) yields:

βyx·z = α + CXY

leaving α non-identifiable.
Armed with the ability to read partial regressions, we are now prepared to demon-

strate some peculiarities of causal analysis.

3 The Microscope at Work: Examples and their

Implications

3.1 Simpson’s paradox

Simpson’s paradox describes a phenomenon whereby an association between two vari-
ables reverses sign upon conditioning on a third variable, regardless of the value taken
by the latter. The history of this paradox and the reasons it evokes surprise and dis-
belief are described in Chapter 6 of (Pearl, 2009a).

The conditions under which association reversal appears in linear models can be
seen directly in Fig. 1(a). Comparing (12) and (14) we obtain

βyx = α + βγ βyx·z = α

Thus, if α has a different sign from βγ, it is quite possible to have the regression of
Y on X, βyx, change sign upon conditioning on Z = z, for every z. The magnitude
of the change depends on the product βγ which measures the extent to which X and
Y are confounded in the model.

3.2 Conditioning on intermediaries and their proxies

Conventional wisdom informs us that, in estimating the effect of one variable on
another, one should not adjust for any covariate that lies on the pathway between
the two (Cox, 1958). It took decades for epidemiologists to discover that similar
prohibition applies to proxies of intermediaries (Weinberg, 1993). The amount of
bias introduced by such adjustment can be assessed from Fig. 2.

α β

X Zγ

W

Y

Figure 2: Path diagram depicting an intermediate variable (Z) and its proxy (W ).
Conditioning on W would distort the regression of Y on X.

Here, the effect of X on Y is simply αβ as is reflected by the regression slope
βyx = αβ. If we condition on the intermediary Z, the regression slope vanishes, since
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the equality σyx = αβ = σyzσzx renders βxy·z zero in Eq. (10). If we condition on a
proxy W of Z, Eq. (10) yields

βyx·w =
βyx − βywβwx

1− β2
wx

=
αβ − βγα
1− α2γ2

=
αβ(1− γ2)
1− α2γ2

(15)

which unveils a bias of size

βyx·z − αβ = αβγ2(1− α2)/(1− α2γ2)

As expected, the bias disappears for γ = 0 and intensifies for γ = 1, where condition-
ing on W amounts to suppressing all variations in Z.

Speaking of suppressing variations, the model in Fig. 3 may carry some surprise.

ZX Y

α β
γ
W

Figure 3: Conditioning on W does not distort the regression of Y on X.

Conditioning on W in this model also suppresses variations in Z, especially for high
γ and, yet, it introduces no bias whatsoever; the partial regression slope is (Eq. 10):

βyx·w =
σyx − σywσxw

1− σxw
=
αβ − 0

1− 0
= αβ (16)

which is precisely the causal effect of X on Y . It seems as though no matter how
tightly we “clamp” Z by controlling W , the causal effect of X on Y remains unaltered.
Appendix I explains this counter-intuitive result.

3.3 Case-control bias

In the last section, we explained the bias introduced by conditioning on an interme-
diate variable (or its proxy) as a restriction on the flow of information between X
and Y . This explanation is not entirely satisfactory, as can be seen from the model of
Fig. 4. Here, Z is not on the pathway between X and Y , and one might surmise that

ZX Y

δα

Figure 4: Conditioning on Z, a descendant of Y , biases the regression of Y on X.

no bias would be introduced by conditioning on Z, but analysis dictates otherwise.
Path tracing combined with Eq. (10) gives:

βyx·z = (σyx − σyzσzx)/(1− σ2
xz) (17)

= (α− δ2α)/(1− α2δ2)

= α(1− δ2)/(1− α2δ2)
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and yields the bias

βyx·z − α = αδ2(α2 − 1)/(1− α2δ2) (18)

This bias reflects what economists called “selection bias” (Heckman, 1979) and
epidemiologists “case-control bias” (Robins, 2001), which occurs when only patients
for whom the outcome Y is evidenced (e.g., a complication of a disease) are counted
in the database. An intuitive explanation of this bias (invoking virtual colliders) is
given in (Pearl, 2009a, p. 339). In contrast, conditioning on a proxy of the explanatory
variable X, as in Fig. 5, introduces no bias, since

YX

Z

b

a

Figure 5: Conditioning on Z, a descendant of X, does not bias the regression of Y
on X.

βyx·z =
(σyx − σyzσzx)

(1− σ2
xz)

=
a− (ab)b

1− b2
= a (19)

This can also be deduced from the conditional independence Z⊥⊥Y |X which is
implied by the diagram in Fig. 5, but not in Fig. 4. However, to assess the size of the
induced bias, as we did in Eq. (18), requires an algebraic analysis of path tracing.

3.4 Sample Selection Bias

The two examples above are special cases of a more general phenomenon called “se-
lection bias” which occurs when samples are preferentially selected to the data set,
depending on the values of some variables in the model (Bareinboim and Pearl, 2012;
Daniel et al., 2011; Geneletti et al., 2009; Pearl, 2012). In Fig. 6, for example, if
Z = 1 represents inclusion in the data set, and Z = 0 exclusion, the selection decision

YX

b c

Z

γ

a

Figure 6: Conditioning on Z = 1 represents inclusion in the dataset and biases the
regression of Y on X, unless c = 0.

is shown to be a function of both X and Y . Since inclusion (Z = 1) amounts to
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conditioning on Z, we may ask what the regression of Y on X is in the observed
data, βyx·z, compared with the regression in the entire population, βyx = a+ γ.

Applying our path-tracing analysis in (10) we get:

βyx·z =
σyx − σyzσzx

1− σ2
zx

=
(a+ γ)− [(a+ γ)b+ c][b+ (a+ γ)c]

1− [b+ (a+ γ)c]2
=

(a+ γ)[1− b2 − c2]− bc
1− [b+ (a+ γ)c]2

.

(20)
We see that a substantial bias may result from conditioning on Z, persisting even
when X and Y are not correlated, namely, when σxy = a + γ = 0. Note also that
the bias disappears for c = 0, as in Fig. 5, but not for b = 0, which returns us to the
case-controlled model of Fig. 4.

Selection bias is symptomatic of a general phenomenon associated with condi-
tioning on collider nodes (Z in our example). The phenomenon involves spurious
associations induced between two causes upon observing their common effect, since
any information refuting one cause should make the other more probable. It has
been known as Berkson Paradox (Berkson, 1946), “explaining away” (Kim and Pearl,
1983) or simply “collider bias.”3

3.5 Missing data

In contrast to selection bias, where exclusion (S = 0) removes an entire unit from
the dataset, in missing data problems a unit may have each of its variables masked
independently of the others (Little and Rubin, 1987, p. 89). Therefore, the diagram
representing the missingness process should assign each variable Vi a “switch” Ri,
called “missingness mechanism” which determines whether Vi is observed (Ri = 0)
or masked (Ri = 1). The arrows pointing to Ri tells us which variables determine
whether Ri fires (Ri = 1) or not (Ri = 0). In Fig. 7(a), for example, the missingness
of X, denoted Rx, depends only on the latent variable L, while the missingness of Y

R
X

R
Y

R
Y

R
X

(a) (b)

L L

YX YX

Figure 7: Missingness diagrams in which conditioning on Rx = 0 or Ry = 0 represents
unmasking the values of X and Y , respectively. The parameter σxy, σ

2
x and σ2

y can
all be estimated bias-free from data generated by either model, through each model
requires a different estimation procedure.

3It has come to my attention recently, and I feel responsibility to make it public, that seasoned
reviewers for highly reputable journals reject papers because they are not convinced that such bias
can be created; it defies, so they claim, everything they have learned from statistics and economics.
A typical resistance to accepting Berkson’s Paradox is articulated in (Pearl, 2009b; Rubin, 2009).
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is shown to depend on both L and X.
Assume we wish to estimate the covariance σxy from partially observed data gen-

erated by the model of Fig. 7(a); can we obtain an unbiased estimate of σxy? The
question boils down to expressing σxy in terms of the information available to us,
namely, the values of X and Y that are revealed to us whenever Rx = 0 or Ry = 0
(or both). If we simply estimate σxy from samples in which both X and Y are ob-
served, that would amount to conditioning on both Rx = 0 and Ry = 0 which would
introduce a bias since the pair {X, Y } is not independent of the pair {Rx, Ry} (owed
to the unblocked path from Y to Ry).

The graph reveals, however, that σxy can nevertheless be estimated bias-free from
the information available, using two steps. First, we note that X is independent of its
missingness mechanism Rx, since the path from X to Rx is blocked (by the collider
at Ry). Therefore, σ2

x = (σ2
x|Rx = 0).4 This means that we can estimate σx from

the samples in which X is observed, regardless of whether Y is missing. Next we
note that the regression slope βyx can be estimated (e.g., using OLS) from samples
in which both X and Y are observed. This is because conditioning on Rx = 0 and
Ry = 0 is similar to conditioning on Z in Fig. 5, where Z is a proxy of the explanatory
variable X.

Putting the two together (using Eq. (2)) we can write:

σxy = σ2
xβyx = (σ2

x|Rx = 0) · (βyx|Rx = 0, Ry = 0)

which guarantees that the product of the two estimates on the right hand side would
result in an unbiased estimate of σxy. Note that a similar analysis of Fig. 7(b) would
yield

σxy = (σ2
y|Ry = 0) · (βxy|Rx = 0, Ry = 0)

which instructs us to estimate σ2
y using samples in which Y is observed and estimate

the regression of X on Y from samples in which both X and Y are observed. Re-
markably, the two models are statistically indistinguishable and yet each dictates a
different estimation procedure, thus demonstrating that no model-blind estimator can
guarantee to deliver an unbiased estimate, even when such exists. If the path diagram
permits no decomposition of σxy into terms conditioned on Rx = 0 and Ry = 0 (as
would be the case, for example, if an arrow existed from X to Rx in Fig. 7(a)) we
would conclude then that σxy is not estimable by any method whatsoever. A general
analysis of missing data problems using causal graphs is given in (Mohan et al., 2013).

3.6 The M-bias

The M -bias is another instant of Berkson’s paradox where the conditioning variable,
Z, is a pre-treatment covariate, as depicted in Fig. 8. The parameters γ1 and γ2

4(σ2
x|Rx = 0) stands for the conditional variance of X given Rx = 0. We take the liberty of

treating Ry as any other variable in the linear system, even though it is binary, hence the relationship
X → Ry must be nonlinear. The linear context simplifies the intuition and the results hold in
nonparametric systems as well.
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γ
1

γ
2

YX

Z

a

Figure 8: Adjusting for Z, which may be either pre-treatment or post-treatment
covariate, introduces bias where none exists. The better the predictor the higher the
bias.

represent error covariances CXZ and CZY , respectively, which can be generated, for
example, by latent variables effecting each of these pairs.

To analyze the size of this bias, we apply Eq. (10) and get:

βyx·z =
a− (γ2 + aγ1)γ1

1− γ21
= a− γ1γ2

1− γ21
(21)

Thus, the bias induced increases substantially when γ1 approaches one, that is, when
Z becomes a good predictor of X. Ironically, this is precisely when investigators have
all the textbook reasons to adjust for Z. Being pre-treatment, the collider Z cannot
be distinguished from a confounder (as in Fig. 1(a)) by any statistical means, and has
alluded some statisticians to conclude that “there is no reason to avoid adjustment
for a variable describing subjects before treatment” (Rosenbaum, 2002, p. 76).

3.7 Reverse Regression

Is it possible that men would earn a higher salary than equally qualified women, and
simultaneously, men are more qualified than women doing equally paying job? This
counter-intuitive condition can indeed exist, and has given rise to a controversy called
“Reverse Regression;” some sociologists argued that, in salary discrimination cases,
we should not compare salaries of equally qualified men and women, but, rather,
compare qualifications of equally paid men and women (Goldberger, 1984).

The phenomenon can be demonstrated in Fig. 9. Let X stand for gender (or

βγ

α

Z

YX

Figure 9: Path diagram in which Z acts as a mediator between X and Y , demon-
strating negative reverse regression βzx·y for positive α, β and γ.

age, or socioeconomic background), Y for job earnings and Z for qualification. The
partial regression βyx·z encodes the differential earning of males (X = 1) over females
(X = 0) having the same qualifications (Z = z), while βzx·y encodes the differential
qualification of males (X = 1) over females (X = 0) earning the same salary (y).
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For the model in Fig. 9, we have

βyx·z = α

βzx·y = (σzx − σzyσyx)/(1− σ2
zy) = [(γ − (β + γα)(α + βγ)]/[1− (β + γα)2]

Surely, for any α > 0 and β > 0 we can choose γ so as to make βzx·y negative. For
example, the combination α = β = 0.8 and γ = 0.1 yields

βzx·y = [(0.1− (0.8 + 0.1× 0.8)(0.8 + 0.8× 0.1)]/[1− (0.8 + 0.1× 0.9)2] = −5.8545

Thus, there is no contradiction in finding men earning a higher salary than equally
qualified women, and simultaneously, men being more qualified than women doing
equally paying job. A negative βzx·y may be a natural consequence of male-favoring
hiring policy (α > 0), male-favoring training policy (γ > 0) and qualification-
dependent earnings (β > 0).

The question of whether standard or reverse regression is more appropriate for
proving discrimination is also clear. The equality βyx·z = α leaves no room for hes-
itation, because α coincides with the counterfactual definition of “direct effect of
gender on hiring had qualification been the same,” which is the court’s definition of
discrimination.

The reason the reverse regression appeals to intuition is because it reflects a model
in which the employer decides on the qualification needed for a job on the basis of
both its salary level and the applicant sex. If this were a plausible model, it would
indeed be appropriate to persecute an employer who demands higher qualifications
from men as opposed to women. But such a model should place Z as a post-salary
variable e.g., X → Z ← Y .

3.8 Bias Amplification

In the model of Fig. 10, Z acts as an instrumental variable, since σzu = 0. If U is
unobserved, however, Z cannot be distinguished from a confounder, as in Fig. 1(a),
in the sense that for every set of parameters (α, β, γ) in Fig. 1(a) one can find a set
(a, b, c, d) for the model in Fig. 10 such that the observed covariance matrices of the
two models are the same. This indistinguishability, together with the fact that Z
may be a strong predictor of X may lure investigators to condition on Z to obtain an
unbiased estimate of d (Hirano and Imbens, 2001). Recent work has shown however
that such adjustment would amplify the bias created by U (Bhattacharya and Vogt,
2007; Pearl, 2010a; Wooldridge, 2009).

The magnitude of this bias and its relation to the pre-conditioning bias, ab, can
be computed from the diagram of Fig. 10, as follows:

βyx·z =
σxy − σyz · σxz

1− σ2
xz

=
(ab+ γ0)− cγ0c

1− c2
= γ0 +

ab

1− c2
(22)

We see the the bias created, ab
(1−c2)

, is proportional to the pre-existing bias ab and
increases with c; the better Z predictsX, the higher the bias. An intuitive explanation
of this phenomenon is given in Pearl (2010a)
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γ
0

a b

U

Z Yc X

Figure 10: Bias amplification, βyx·z − γ0 > ab, produced by conditioning on an in-
strumental variable (Z).

3.9 Near Instruments - amplifiers or attenuators?

γ
0

YX

Z U

c
d

b

a

Figure 11: A diagram where Z acts both as an instrument and as a confounder.

The model in Fig. 11 is indistinguishable from that of Fig. 10 when U is unob-
served. However, here Z acts both as an instrument and as a confounder. Condition-
ing on Z is beneficial in blocking the confounding path X ← Z → Y and harmful in
amplifying the baseline bias cd+ ab. The trade off between these two tendencies can
be quantified by computing βyx·z, yielding

βyx·z =
σxy − σyzσzx

1− σ2
xz

=
γ0 + cd+ ab− (d+ cγ0)c

1− c2

=
γ0(1− c2) + ab

1− c2

= γ0 +
ab

1− c2
(23)

We see that the baseline bias ab + cd is first reduced to ab and then magnified
by the factor (1 − c2)−1. For Z to be a bias-reducer, its effect on Y (i.e., d) must
exceed its effect on X (i.e., c) by a factor ab/(1 − c2). This trade-off was assessed
by simulations in (Myers et al., 2011) and analytically in (Pearl, 2011), including an
analysis of multi-confounders, and nonlinear models.

3.10 The Butterfly

Another model in which conditioning on Z may have both harmful and beneficial
effects is seen in Fig. 12. Here, Z is both a collider and a confounder. Conditioning
on Z blocks the confounding path through α1 and α2 and, at the same time induces
a virtual confounding path through the latent variables that create the covariances
CXZ = γ1 and CZY = γ2.
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Figure 12: Adjusting for Z may be harmful or beneficial depending on the model’s
parameters.

This trade-off can be evaluated from our path-tracing formula Eq. (10) which
yields

βyx·z =
βyx − βyzβzx

1− β2
zx

=
[β + (α1 + γ1)α2 + α1γ2]− [α2 + γ2 + β(γ1 + α1)][γ1 + α1]

1− (α1 + γ1)2

=
β − γ2γ1 − β(γ1 + α1)

2

1− (α1 + γ1)2
(24)

We first note that the pre-conditioning bias

βyx − β = α2(α1 + γ1) + α1γ2 (25)

may have positive or negative values even when both σxz = 0 and σzy = 0. This refutes
folklore wisdom, according to which a variable Z can be exonerated from confounding
considerations if it is uncorrelated with both treatment (X) and outcome (Y ).

Second, we notice that conditioning on Z may either increase or decrease bias,
depenending on the structural parameters. This can be seen by comparing (25) with
the post-conditioning bias:

βyx·z − β = −γ1γ2/[1− (α1 + γ1)
2] (26)

In particular, since Eq. (26) is independent on α2, it is easy to choose values of
α2 that make (25) either higher of lower than (26).

3.11 Measurement error

YX YX

(a) (b)

γβ

α

δ
Z

U

γβ

α

Z

δ

U

Figure 13: Conditioning on Z, a proxy for the unobserved confounder U , does not
remove the bias (βγ),
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Assume the confounder U in Fig. 13(a) is unobserved but we can measure a proxy
Z of U . Can we assess the amount of bias introduced by adjusting for Z instead of
U? The answer, again, can be extracted from our path-tracing formula, which yields

βyx·z =
σyx − σyzσzx

1− σ2
zx

=
(α + βγ)− (γδ + αβδ)βδ

1− β2δ2

=
α + βδ − βδ2(γ + αβ)

1− β2δ2
=
α(1− β2δ2) + γβ(1− δ2)

1− β2δ2

= α +
γβ(1− δ2)
1− β2δ2

(27)

As expected, the bias vanishes when δ approaches unity, indicating a faithful
proxy. Moreover, if δ can be estimated from an external pilot study, the causal effect
α can be identified. (See Pearl, 2010b; Kuroki et al., 2013.) Remarkably, identical
behavior emerges in the model of Fig. 13(b) in which Z is a driver of U , rather than
a proxy.

The same treatment can be applied to errors in measurements of X or of Y and,
in each case, the formula of σxy·z reveals what model parameters are the ones affecting
the resulting bias.

4 Conclusions

We have demonstrated how path-analytic techniques can illuminate the emergence
of several phenomena in causal analysis and how these phenomena depend on the
structural features of the model. Although the techniques are limited to linear anal-
ysis, hence restricted to homogeneous populations with no interactions, they can be
superior to simulation studies whenever conceptual understanding is of essence, and
problem size is manageable.
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Appendix I

In linear systems, the explanation for the equality σyx = σyx·w in Fig. 3 is simple.
Conditioning on W does not physically constrain Z, it merely limits the variance of
Z in the subpopulation satisfying W = w which was chosen for observations. Given
that effect-homogeneity prevails of linear models, we know that the effect of X on
Z remains invariant to the level w chosen for observation and, therefore, this w-
specific effect reflects the effect of X on the entire population. This dictates (in a
confounding-free model) βxy·w = βxy.
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But how can we explain the persistence of this phenomenon in nonparametric
models, where we know (e.g., using do-calculus (Pearl, 2009a)) that adjustment for
W does not have any effect on the resulting estimand? In other words, the equality

E[Y |X = x] = EwE[Y |X = x,W = w]

will hold in the model of Fig. 3 even when the structural equations are nonlinear.
Indeed, the independence of W and X, implies

E[Y |X = x] =
∑
w

E[Y |X = x,W = w]P (W = w|X = x)

=
∑
w

E[Y |X = x,W = w]P (W = w)

= EwE[Y |X = x,W = w]

The answer is that adjustment for W involves averaging over W ; conditioning on
W does not. In other words, whereas the effect of X on Z may vary across strata of
W , the average of this effect is none other but the effect over the entire population,
i.e., E[Y |do(X = x)], which equals E[Y |X = x] in the non-confounding case.

Symbolically, we have

E[Y |do(X = x)] =
∑
w

E[Y |do(X = x),W = w]P [W = w|do(X = x)]

=
∑
w

E[Y |do(X = x),W = w]P (W = w)

=
∑
w

E[Y |X = x,W = w]P (W = w)

= E(Y |X = x)

The first reduction is licensed by the fact that X has no effect on W and the second
by the back-door condition.
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