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Abstract: Generalizing empirical findings to new environments, settings, or populations is essential in most
scientific explorations. This article treats a particular problem of generalizability, called “transportability”,
defined as a license to transfer information learned in experimental studies to a different population, on
which only observational studies can be conducted. Given a set of assumptions concerning commonalities
and differences between the two populations, Pearl and Bareinboim [1] derived sufficient conditions that
permit such transfer to take place. This article summarizes their findings and supplements them with an
effective procedure for deciding when and how transportability is feasible. It establishes a necessary and
sufficient condition for deciding when causal effects in the target population are estimable from both the
statistical information available and the causal information transferred from the experiments. The article
further provides a complete algorithm for computing the transport formula, that is, a way of combining
observational and experimental information to synthesize bias-free estimate of the desired causal relation.
Finally, the article examines the differences between transportability and other variants of generalizability.
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1 Introduction

The problem of transporting knowledge from one population to another is pervasive in science. Conclusions
that are obtained in a laboratory setting are transported and applied elsewhere, in an environment that
differs in many aspects from that of the laboratory. Experiments conducted on a group of subjects are
intended to inform policies on a different group, usually more general and in which the studied group is just
one of its parts.

Surprisingly, the conditions under which this extrapolation can be legitimized were not formally
articulated until very recently [1–3]. Although the problem has been discussed in many areas of statistics,
economics, and the health sciences, under rubrics such as “external validity” [4, 5], “meta-analysis” [6–8],
“overgeneralization” [9], “quasi experiments” [10, 11 (Ch. 3)], “heterogeneity” [12], these discussions are
limited to verbal narratives in the form of heuristic guidelines for experimental researchers – no formal
treatment of the problem has been attempted to answer the practical problem of generalizing across
populations posed in this article. (See Section 6 for related work.)

Recent developments in causal inference enable us to tackle this problem formally. First, the distinction
between statistical and causal knowledge has received syntactic representation through causal diagrams
[13–16]. Second, graphical models provide a language for representing differences and commonalities
among domains, environments, and populations [1]. Finally, the inferential machinery provided by the
do-calculus [13, 16, 17] is particularly suitable for combining these two advances into a coherent framework
and developing effective algorithms for knowledge transfer.

Armed with these tools, we consider transferring causal knowledge between two populations � and ��.
In population �, experiments can be performed and causal knowledge gathered. In ��, potentially different
from �, only passive observations can be collected but no experiments conducted. The problem is to infer a
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causal relationship R in �� using knowledge obtained in �. Clearly, if nothing is known about the
relationship between � and ��, the problem is trivial; no transfer can be justified. Yet the fact that all
experiments are conducted with the intent of being used elsewhere (e.g., outside the laboratory) implies that
scientific explorations are driven by the assumption that certain populations share common characteristics
and that, owed to these commonalities, causal claims would be valid in new settings even where experi-
ments cannot be conducted.

To formally articulate commonalities and differences between populations, a graphical representation
named selection diagrams was devised in [1], which represent differences in the form of unobserved factors
capable of causing such differences. Given an arbitrary selection diagram, our challenge is to decide
whether commonalities override differences to permit the transfer of information across the two popula-
tions. We show that this challenge can be met by an effective procedure that decides when and how
transportability is feasible.

The article is organized as follows. In section 2, we motivate the problem of transportability using three
simple examples and informally summarize the findings of Pearl and Bareinboim [1]. In section 3, we
formally define the notion of selection diagrams and transportability, exemplify how it can be reduced to a
problem of symbolic transformation in do-calculus, and provide examples for models that prohibit trans-
portability. In section 4, we provide a graphical criterion for deciding transportability in arbitrary diagrams.
In section 5, we provide an effective procedure for deciding transportability, which returns a correct
transport formula whenever such exists. In section 6, we compare transportability to other problems of
generalizing empirical findings. Section 7 provides concluding remarks.

2 Motivation

To motivate the formal treatment of transportability, we use three simple examples taken from [1] and
graphically depicted in Figure 1.

Example 1. Consider the problem of transferring experimental results between two locations. We first conduct
a randomized trial in Los Angeles (LA) and estimate the causal effect of treatment X on outcome Y for every
age group Z ¼ z, denoted PðyjdoðxÞ; zÞ. We now wish to generalize the results to the population of New York
City (NYC), but we find the distribution Pðx; y; zÞ in LA to be different from the one in NYC (call the latter
P�ðx; y; zÞÞ. In particular, the average age in NYC is significantly higher than that in LA. How are we to estimate
the causal effect of X on Y in NYC, denoted R ¼ P�ðyjdoðxÞÞ?1

The selection diagram for this example (Figure 1(a)) conveys the assumption that the only difference
between the two population are factors determining age distributions, shown as S! Z, while age-specific
effects PðyjdoðxÞ; Z ¼ zÞ are invariant across cities. Difference-generating factors are represented by a
special set of variables called selection variables S (or simply S-variables), which are graphically depicted
as square nodes (■).2 From this assumption, the overall causal effect in NYC can be derived as follows3:

R ¼
X
z

P�ðyjdoðxÞ; zÞP�ðzÞ

¼
X
z

PðyjdoðxÞ; zÞP�ðzÞ
½1�

1 We will later on use PxðyÞ interchangeably with PðyjdoðxÞÞ.
2 See Def. 3 below for formal construction of selection diagrams. In all diagrams, dashed arcs (e.g., X⇠⇢Y) represent the
presence of latent variables affecting both X and Y.
3 This result can be derived by purely graphical operations if we write P�ðyjdoðxÞ; zÞ as PðyjdoðxÞ; z; sÞ, thus attributing the
difference between � and �� to a fictitious event S ¼ s. The invariance of the age-specific effect then follows from the
conditional independence ðS\\YjZ;XÞGx

, which implies PðyjdoðxÞ; z; sÞ ¼ PðyjdoðxÞ; zÞ, and licenses the derivation of the trans-
port formula.
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The last line constitutes a transport formula for R. It combines experimental results obtained in LA,
PðyjdoðxÞ; zÞ, with observational aspects of NYC population, P�ðzÞ, to obtain an experimental claim
P�ðyjdoðxÞÞ about NYC.4

Our first task in this article will be to explicate the assumptions that renders this extrapolation valid. We
ask, for example, what must we assume about other confounding variables beside age, both latent and
observed, for eq. [1] to be valid, or, would the same transport formula hold if Z was not age, but some proxy
for age, say, “language skills” (Figure 1(b)). More intricate yet, what if Z stood for an exposure-dependent
variable, say hyper-tension level, that stands between X and Y (Figure 1(c))?

Let us examine the proxy issue first.

Example 2. Let the variable Z in Example 1 stand for subjects’ language skills, and let us assume that Z does
not affect exposure ðXÞ or outcome ðYÞ, yet it correlates with both, being a proxy for age which is not measured
in either study (see Figure 1(b)). Given the observed disparity PðzÞ�P�ðzÞ, how are we to estimate the causal
effect P�ðyjdoðxÞÞ for the target population of NYC from the z-specific causal effect PðyjdoðxÞ; zÞ estimated at
the study population of LA?

Our intuition dictates, and correctly so, that since reading ability has no causal effect on treatment nor on
the outcome the proper transport formula would be

P�ðyjdoðxÞÞ ¼ PðyjdoðxÞÞ ½2�

namely, the causal effect is “directly” transportable with no calibration needed (to be shown later on). This
will be the case even if the observed joint distribution P�ðx; y; zÞ is the same as in Example 1 where Z stands
for age. We see, therefore, that the proper transport formula depends on the causal context in which
population differences are embedded, not merely on the joint distribution over the observed variables.

This example also demonstrates why the invariance of Z-specific causal effects should not be taken for
granted. While justified in Example 1, with Z ¼ age, it fails in Example 2, in which Z was equated with
“language skills.” The intuition is clear. A NYC person at skill level Z ¼ z is likely to be in a totally different
age group from his skill-equals in LA and, since it is age, not skill that shapes the way individuals respond
to treatment, it is only reasonable that LA residents would respond differently to treatment than their NYC
counterparts at the very same skill level.

Example 3. Examine the case where Z is a X-dependent variable, say a disease bio-marker, standing on the
causal pathways between X and Y as shown in Figure 1(c). Assume further that the disparity PðzÞ�P�ðzÞ is

S

Z

Z

S

YXYX

S

Z YX

(c)(b)(a)

Figure 1 Causal diagrams depicting Examples 1–3. In (a) Z represents “age.” In (b) Z represents “linguistic skills” while age (in
hollow circle) is unmeasured. In (c) Z represents a biological marker situated between the treatment (X) and a disease (Y).

4 Eq. [1] reflects the familiar method of “standardization” – a statistical extrapolation method that can be traced back to a
century-old tradition in demography and political arithmetic [18–21]. We will show that standardization is only valid under
certain conditions.
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discovered in each level of X and that, again, both the average and the z-specific causal effect PðyjdoðxÞ; zÞ are
estimated in the LA experiment, for all levels of X and Z. Can we, based on the information given, estimate the
average (or z-specific) causal effect in the target population of NYC?

Assuming that the disparity in PðzÞ stems only from a difference in subjects’ susceptibility to X, as encoded
in the selection the diagram of Figure 1(c), we will demonstrate in section 3 that the correct transport
formula should be

P�ðyjdoðxÞÞ ¼
X
z

PðyjdoðxÞ; zÞP�ðzjxÞ; ½3�

which is different from both eqs. [1] and [2]. It calls instead for the z-specific effects to be weighted by the
conditional probability P�ðzjxÞ, estimated at the target population.

In these three intuitive examples transportability amounts to simple operations (i.e., recalibration, direct
transport, and weighted recalibration); however, in more elaborate examples, the full power of formal
analysis would be required. For instance, Pearl and Bareinboim [1] showed that, in the problem depicted in
Figure 2, where both the Z-determining mechanism and the U-determining mechanism are suspect of being
different, the transport formula for the relation P�ðyjdoðxÞÞ is given by

X
z

PðyjdoðxÞ; zÞ
X
w

P�ðzjwÞ
X
t

PðwjdoðxÞ; tÞP�ðtÞ

This formula instructs us to estimate PðyjdoðxÞ; zÞ and PðwjdoðxÞ; tÞ in the experimental population, then
combine them with the estimates of P�ðzjwÞ and P�ðtÞ in the target population. Pearl and Bareinboim [1]
derived this formula using the following lemma, which translates the property of transportability to the
existence of a syntactic reduction using a sequence of do-calculus rules.

Lemma 1 [1]. LetDbe theselectiondiagramcharacterizing � and ��, and S a set of selection variables in D. The
relation R ¼ P�ðyjdoðxÞ; zÞ is transportable from � to �� if the expression PðyjdoðxÞ; z; sÞ is reducible, using the
rules of do-calculus, to an expression in which S appears only as a conditioning variable in do-free terms.

The logic of this reduction is simple. Terms lacking an S variable are estimable at the source population
while those lacking the do-operator are estimable non-experimentally at the target population. If such a
reduction exists, the resulting expression gives the transport formula for R.

Lemma 1 is declarative but not computationally effective, for it does not specify the sequence of rules leading
to the needed reduction, nor does it tell us if such a sequence exists. It is useful primarily as a verification tool, to
confirm the transportability of a given relation once we are in possession of a “witness” sequence.

S

S

ZW YX

V

T

U

Figure 2 Selection diagram with two “difference-producing” factors (S and S0); the derivation of transportability is more
involved using Lemma 1, and it is shown step by step using the algorithm in section 5.
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To overcome this deficiency, Pearl and Bareinboim [1] proposed a recursive procedure (their
Theorem 3), which can handle many cases, among them Figure 2, but is not “complete”, that is, diagrams
exist that support transportability and which the recursive procedure fails to recognize as such. The
procedure developed in this article are guaranteed to make correct identification in all cases. We summarize
our contributions as follows:

● We derive a general graphical condition for deciding transportability of causal effects. We show that
transportability is feasible if and only if a certain graph structure does not appear as an edge subgraph of
the inputted selection diagram.

● We provide necessary or sufficient graphical conditions for special cases of transportability, for instance,
controlled direct effects (CDE).

● We construct a complete algorithm for deciding transportability of joint causal effects and returning a
proper transport formula whenever those effects are transportable.

3 Preliminaries

The semantical framework in our analysis rests on structural causal models (SCM) as defined next, also
called probabilistic causal models or data-generating models.

Definition 1 (Structural Causal Model [22, p. 203]). A SCM is a 4-tuple M ¼ hU;V ; F;Pi where:

1. U is a set of background or exogenous variables, representing factors outside the model, which nevertheless
affect relationships within the model.

2. V is a set of endogenous variables fV1; :::;Vng, assumed to be observable. Each of these variables is
functionally dependent on some subset PAi of U ¨VnfVig.

3. F is a set of functions ff1; :::; fng such that each fi determines the value of Vi 2 V, vi ¼ fiðpai; uÞ.
4. A joint probability distribution PðuÞ over U.

In the structural causal framework [22, Ch. 7], actions are modifications of functional relationships,
and each action doðxÞ on a causal model M produces a new model Mx ¼ hU;V; Fx;PðUÞi, where Fx
is obtained after replacing fX 2 F for every X 2 X with a new function that outputs a constant value x
given by doðxÞ. See Appendix 1 for a gentle introduction to structural models, or [23] for a more detailed
discussion.

We follow the conventions given in [22]. We will denote variables by capital letters and their values
by small letters. Similarly, sets of variables will be denoted by bold capital letters, sets of values by
bold letters. We will use the typical graph-theoretic terminology with the corresponding abbreviations
PaðYÞG, AnðYÞG, and DeðYÞG, which will denote respectively the set of observable parents, ancestors,
and descendants of the node set Y in G. By convention, these sets will include the arguments as well,
for instance, the ancestral set AnðYÞG will include Y. We will usually omit the graph subscript whenever
the graph in question is assumed or obvious. A graph GY will denote the induced subgraph G
containing nodes in Y and all arrows between such nodes. Finally, GXZ stands for the edge subgraph
of G where all incoming arrows into X and all outgoing arrows from Z are removed.

Key to the analysis of transportability is the notion of “identifiability,” defined below, which expresses
the requirement that causal effects be computable from a combination of data P and assumptions embodied
in a causal graph G.

Definition 2 (Causal Effects Identifiability [22, p. 77]). The causal effect of an action doðxÞ on a set of
variables Y such that Y ˙ X ¼ � is said to be identifiable from P in G if PxðyÞ is uniquely computable from
PðVÞ in any model that induces G.
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Causal models and their induced graphs are normally associated with one particular domain (also
called setting, study, population, environment). In the transportability case, we extend this representation
to capture properties of several domains simultaneously. This is made possible if we assume that there are
no structural changes between the domains, that is, all structural equations share the same set of
arguments, though the functional forms of the equations may vary arbitrarily.5,6

Definition 3 (Selection Diagram). Let hM;M�i be a pair of SCM relative to domains h�;��i, sharing a causal
diagram G. hM;M�i is said to induce a selection diagram D if D is constructed as follows:

1. Every edge in G is also an edge in D;
2. D contains an extra edge Si ! Vi whenever there might exist a discrepancy fi � f �i or PðUiÞ � P�ðUiÞ between

M and M�.

In words, the S-variables locate the mechanisms where structural discrepancies between the two domains
are suspected to take place.7 Alternatively, one can see a selection diagram as a carrier of invariance claims
between the mechanisms of both domains – the absence of a selection node pointing to a variable
represents the assumption that the mechanism responsible for assigning value to that variable is the
same in the two domains.8

Armed with a selection diagram and the concept of identifiability, transportability of causal effects (or
transportability, for short) can be defined as follows:

Definition 4 (Causal Effects Transportability). Let D be a selection diagram relative to domains h�;��i. Let
hP; Ii be the pair of observational and interventional distributions of �, and P� be the observational distribu-
tion of ��. The causal effect R ¼ P�xðyÞ is said to be transportable from � to �� in D if P�xðyÞ is uniquely
computable from P;P�; I in any model that induces D.

In some broad sense, one can view transportability as a special case of identifiability, where the pair of
structures constitutes a global model, and the task is to infer a property of one population from sum total of
the information available (i.e., hP; I;P�i). However, the unique challenges of dealing with two diverse
environments under two different experimental regimes, and the special problems that emerge from this
combination can benefit appreciably from viewing transportability as distinct major extension of identifia-
bility. To witness, all identifiable causal relations in ðG�;P�Þ are also transportable, because they can be
computed directly from �� and require no experimental information from �. This observation engender the
following definition of trivial transportability.

Definition 5 (Trivial Transportability). A causal relation R is said to be trivially transportable from � to ��, if
Rð��Þ is identifiable from ðG�;P�Þ.

The following observation establishes another connection between identifiability and transportability. For a
given causal diagram G, one can produce a selection diagram D such that identifiability in G is equivalent to
transportability in D. First set D ¼ G, and then add selection nodes pointing to all variables in D, which

5 This definition was left implicit in [1].
6 The assumption that there are no structural changes between domains can be relaxed as follows. Starting with the structure in
the target population G�, make D ¼ G�, and then add S-nodes to D following the same procedure as in Def. 3.
7 Transportability analysis assumes that enough structural knowledge about both domains is known in order to substantiate the
production of their respective causal diagrams. In the absence of such knowledge, causal discovery algorithms might be used to
help in inferring the diagrams from data [15, 22, 24].
8 These invariance assumptions are analogous to the missing-arrows in the causal graphs [25] which allow one to identify
causal-effects from observational data.
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represents that the target domain does not share any commonality with its pair – this is equivalent to the
problem of identifiability because the only way to achieve transportability is to identify R from scratch in the
target domain.

Another special case of transportability occurs when a causal relation has identical form in both
domains – no recalibration is needed. This is captured by the following definition.

Definition 6 (Direct Transportability). A causal relation R is said to be directly transportable from � to ��, if
Rð��Þ ¼ Rð�Þ.

A graphical test for direct transportability of R ¼ P�ðyjdoðxÞ; zÞ follows from do-calculus and reads:
ðS\\Y jX; ZÞG

X
; in words, X blocks all paths from S to Y once we remove all arrows pointing to X and

condition on Z. As a concrete example, the z-specific effect in Figure 1(a) is the same in both domains;
hence, it is directly transportable. Also, the effect P�ðyjdoðxÞÞ in Figure 1(b) is the same in both domains;
hence, it is directly transportable.

These two cases will act as a basis to decompose the problem of transportability into smaller and more
manageable subproblems. For instance, let us estimate the effect R ¼ P�ðyjdoðxÞÞ in the bio-marker example
depicted in Figure 1(c).

P�ðyjdoðxÞÞ ¼
X
z

P�ðyjdoðxÞ; zÞP�ðzjdoðxÞÞ ½4�

¼
X
z

P�ðyjdoðxÞ; zÞP�ðzjxÞ ½5�

¼
X
z

PðyjdoðxÞ; zÞP�ðzjxÞ; ½6�

In eq. [4], the target relation R is conditioned on Z. The effect P�ðzjdoðxÞÞ in eq. [5] is trivially transportable
since it is identifiable in ��, and P�ðyjdoðxÞ; zÞ in eq. [6] is directly transportable since ðS\\Y jX; ZÞGx

.
Now we turn our attention to conditions that preclude identifiability. The following lemma provides an

auxiliary tool to prove non-transportability and is based on refuting the uniqueness property required by
Definition 4.

Lemma 2. Let X;Y be two sets of disjoint variables, in population � and ��, and let D be the selection
diagram. P�xðyÞ is not transportable from � to �� if there exist two causal models M1 and M2 compatible with D
such that P1ðVÞ ¼ P2ðVÞ, P�1 ðVÞ ¼ P�2 ðVÞ, P1ðVnWjdoðWÞÞ ¼ P2ðVnWjdoðWÞÞ, for any set W, all families have
positive distribution, and P�1 ðyjdoðxÞÞ�P�2 ðyjdoðxÞÞ.

Proof. Let I be the set of interventional distributions PðVnWjdoðWÞÞ, for any set W. The latter inequality
rules out the existence of a function from P;P�; I to P�xðyÞ. ■

While the problems of identifiability and transportability are related, Lemma 2 indicates that proofs of non-
transportability are more involved than those of non-identifiability. Indeed, to prove non-transportability
requires the construction of two models agreeing on hP; I;P�i, while non-identifiability requires the two
models to agree solely on the observational distribution P.

The simplest non-transportable structure is an extension of the famous “bow arc” graph named here
“s-bow arc,” see Figure 3(a). The s-bow arc has two endogenous nodes: X, and its child Y, sharing a hidden
exogenous parent U, and a S-node pointing to Y. This and similar structures that prevent transportability
will be useful in our proof of completeness, which requires a demonstration that whenever the algorithm
fails to transport a causal relation, the relation is indeed non-transportable.

Theorem 1. P�xðyÞ is not transportable in the s-bow arc graph.

Proof. The proof will show a counterexample to the transportability of P�xðYÞ through two models M1 and M2

that agree in hP;P�; Ii and disagree in P�xðyÞ.
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Assume that all variables are binary. Let the model M1 be defined by the following system of structural
equations: X1 ¼ U;Y1 ¼ ððX # UÞ # SÞ;P1ðUÞ ¼ 1=2, and M2 by the following one: X2 ¼ U;Y2 ¼ S _
ðX # UÞ; P2ðUÞ ¼ 1=2, where # represents the exclusive or function.

Lemma 3. The two models agree in the distributions hP;P�; Ii.

Proof. We show that the following equations must hold for M1 and M2:

P1ðXjSÞ ¼ P2ðXjSÞ; S ¼ f0; 1g
P1ðY jX; SÞ ¼ P2ðY jX; SÞ; S ¼ f0; 1g
P1ðY jdoðXÞ; S ¼ 0Þ ¼ P2ðY jdoðXÞ; S ¼ 0Þ

8<
:

for all values of X;Y . The equality between PiðXjSÞ is obvious since ðS\\XÞ and X has the same structural
form in both models. Second, let us construct the truth table for Y:

X S U Y1 Y1

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

To show that the equality between PiðY ¼ 1jX; S ¼ 0Þ;X ¼ f0; 1g holds, we rewrite it as follows:

PiðY ¼ 1jX; S ¼ 0Þ ¼ PiðY ¼ 1jX; S ¼ 0;U ¼ 1ÞPiðXjU ¼ 1ÞPiðU ¼ 1Þ
PiðXÞ

þ PiðY ¼ 1jX; S ¼ 0;U ¼ 0ÞPiðXjU ¼ 0ÞPiðU ¼ 0Þ
PiðXÞ

½7�

In eq. [7], the expressions for X ¼ f0; 1g are functions of the tuples fðX ¼ 1; S ¼ 0;U ¼ 1Þ;
ðX ¼ 0; S ¼ 0;U ¼ 0Þg, which evaluate to the same value in both models. Similarly, the expressions
PiðY ¼ 1jX; S ¼ 1Þ for X ¼ f0; 1g are functions of the tuples fðX ¼ 1; S ¼ 1;U ¼ 1Þ; ðX ¼ 0; S ¼ 1;U ¼ 0Þg,
which also evaluate to the same value in both models.

We further assert the equality between the interventional distributions in �, which can be written using
the do-calculus as

PiðY ¼ 1jdoðXÞ; S ¼ 0Þ ¼
X
U

PiðY jdoðXÞ; S ¼ 0;UÞPiðUjdoðXÞ; S ¼ 0Þ

¼ PiðY ¼ 1jX; S ¼ 0;U ¼ 1ÞPiðU ¼ 1Þ
þ PiðY ¼ 1jX; S ¼ 0;U ¼ 0ÞPiðU ¼ 0Þ; X ¼ f0; 1g

½8�

Evaluating this expression points to the tuples fðX ¼ 1; S ¼ 0;U ¼ 1Þ; ðX ¼ 1; S ¼ 0;U ¼ 0Þg and
fðX ¼ 0; S ¼ 0;U ¼ 1Þ; ðX ¼ 0; S ¼ 0;U ¼ 0Þg, which map to the same value in both models. ■

Lemma 4. There exist values of X;Y such that P1ðY jdoðXÞ; S ¼ 1Þ�P2ðY jdoðXÞ; S ¼ 1Þ.

Proof. Fix X ¼ 1;Y ¼ 1, and let us rewrite the desired quantity in �� as
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PiðY ¼ 1jdoðX ¼ 1Þ; S ¼ 1Þ ¼
X
U

PiðY jdoðX ¼ 1Þ; S ¼ 1;UÞPiðUjdoðX ¼ 1Þ; S ¼ 1Þ

¼ PiðY ¼ 1jX ¼ 1; S ¼ 1;U ¼ 1ÞPiðU ¼ 1Þ
þ PiðY ¼ 1jX ¼ 1; S ¼ 1;U ¼ 0ÞPiðU ¼ 0Þ

½9�

Since Ri is a function of the tuples fðX ¼ 1; S ¼ 1;U ¼ 1Þ; ðX ¼ 1; S ¼ 1;U ¼ 0Þg, it evaluates in M1 to f1; 1g
and in M2 to f1;0g.

Hence, together with the uniformity of PðUÞ, it follows that R1 ¼ 1 and R2 ¼ 1=2, which finishes the
proof. ■

By Lemma 2, Lemmas 3 and 4 prove Theorem 1. ■

4 Characterizing transportable relations

The concept of confounded components (or C-components) was introduced in [26] to represent clusters of
variables connected through bidirected edges and was instrumental in establishing a number of conditions
for ordinary identification (Def. 2). If G is not a C-component itself, it can be uniquely partitioned into a set
CðGÞ of C-components. We now recast C-components in the context of transportability.9

Definition 7 (sC-component). Let G be a selection diagram such that a subset of its bidirected arcs forms a
spanning tree over all vertices in G. Then G is a sC-component (selection confounded component).

A special subset of C-components that embraces the ancestral set of Y was noted by Shpitser and Pearl [27]
to play an important role in deciding identifiability – this observation can also be applied to transport-
ability, as formulated in the next definition.

Definition 8 (sC-tree). Let G be a selection diagram such that CðGÞ ¼ fGg, all observable nodes have at most
one child, there is a node Y, which is a descendent of all nodes, and there is a selection node pointing to Y.
Then G is called a Y-rooted sC-tree (selection confounded tree).

The presence of this structure (and generalizations) will prove to be an obstacle to transportability of causal
effects. For instance, the s-bow arc in Figure 3(a) is a Y-rooted sC-tree where we know P�xðyÞ is not
transportable there.

X YZ
(b)

S S

(a)
X Y

Figure 3 (a) Smallest selection diagram in which P�ðyjdoðxÞÞ is not transportable (s-bow graph). (b) A selection diagram in
which even though there is no S-node pointing to Y, the effect of X on Y is still not-transportable due to the presence of a sC-tree
(see Corollary 2).

9 Departing from results given in [28–32], the advent of C-components complements the notion of inducing path, which was
earlier introduced in [33], and led to a breakthrough result proving completeness of the do-calculus for non-parametric
identification of causal effects by [27, 34].
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In certain classes of problems, the absence of such structures will prove sufficient for transportability.
One such class is explored below and consists of models in which the set X coincides with the parents of Y.

Theorem 2. Let G be a selection diagram. Then for any node Y, the causal effects P�PaðYÞðyÞ is transportable if
there is no subgraph of G which forms a Y-rooted sC-tree.

Proof. See Appendix 2. ■

Theorem 2 provides a tractable transportability condition for the CDE – a key concept in modern mediation
analysis, which permits the decomposition of effects into their direct and indirect components [35, 36]. CDE
is defined as the effect of X on Y when all other parents of Y (acting as mediators) are held constant, and it is
identifiable if and only if P�PaðYÞðyÞ is identifiable [16, p. 128].

The selection diagram in Figure 1(a) does not contain any Y-rooted sC-trees as subgraphs and therefore
the direct effect (causal effects of Y’s parents on Y) is indeed transportable. In fact, the transportability of
CDE can be determined by a more visible criterion:

Corollary 1. Let G be a selection diagram. Then for any node Y, the direct effect P�PaðYÞðyÞ is transportable if
there is no S node pointing to Y.

Proof. See Appendix 2. ■

Generalizing to arbitrary effects, the following result provides a necessary condition for transportability
whenever the whole graph is a sC-tree.

Theorem 3. Let G be a Y-rooted sC-tree. Then the effects of any set of nodes in G on Y are not transportable.

Proof. See Appendix 2. ■

The next corollary demonstrates that sC-trees are obstacles to the transportability of P�xðyÞ even when they
do not involve Y, i.e., transportability is not a local problem – if there exists a node W that is an ancestor of
Y but not necessarily “near” it, transportability is still prohibited (see Figure 3(b)). This fact anticipates that
transporting causal effects for singletons is not necessarily easier than the general problem of
transportability.

Corollary 2. Let G be a selection diagram, and X and Y a set of variables. If there exists a node W that is an
ancestor of some node Y 2 Y such that there exists a W-rooted sC-tree which contains any variables in X, then
P�xðyÞ is not transportable.

Proof. See Appendix 2. ■

We now generalize the definition of sC-trees (and Theorem 3) in two ways: first, Y is augmented to represent
a set of variables; second, S-nodes can point to any variable within the sC-component, not necessarily to
root nodes. For instance, consider the graph G in Figure 4. Note that there is no Y-rooted sC-tree nor
W-rooted sC-tree in G (where W is an ancestor of Y), and so the previous results cannot be applied even
though the effect of X on Y is not transportable in G – still, there exists a Y-rooted sC-forest in G, which will
prevent the transportability of the causal effect.

Definition 9 (sC-forest). Let G be a selection diagram, where Y is the maximal root set. Then G is a Y-rooted
sC-forest if G is a sC-component, all observable nodes have at most one child, and there is a selection node
pointing to some vertex of G (not necessarily in Y).

Building on [27], we introduce a structure that witnesses non-transportability characterized by a pair of
sC-forests. Transportability will be shown impossible whenever such structure exists as an edge subgraph of
the given selection diagram.
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Definition 10 (s-hedge). Let X;Y be set of variables in G. Let F; F0 be R-rooted sC-forests such that F˙X � 0,
F0˙ X ¼ 0, F0 � F, R � AnðYÞG

X
. Then F and F0 form a s-hedge for P�xðyÞ in G.

For instance, in Figure 4, the sC-forests F0 ¼ fC;Yg, and F ¼ F0¨ fX;A;Bg form a s-hedge to P�xðyÞ.10 The
idea here is similar to the hedge [27], and we can see a s-hedge as a growing sC-forest F0, which does not
intersect X, to a larger sC-forest F that do intersect X.

We state below the formal connection between s-hedges and non-transportability.

Theorem 4. Assume there exist F; F0 that form a s-hedge for P�xðyÞ in � and ��. Then P�xðyÞ is not
transportable from � to ��.

Proof. See Appendix 2. ■

To prove that the s-hedges characterize non-transportability in selection diagrams, we construct in the next
section an algorithm which transport any causal effects that do not contain a s-hedge.

5 A complete algorithm for transportability of joint effects

The algorithm proposed to solve transportability is called sID (see Figure 5) and extends previous analysis
and algorithms of identifiability given in [13, 26, 27, 32, 34]. We choose to start with the version provided by
Shpitser (called ID) since the hedge structure is explicitly employed, which will show to be instrumental to
prove completeness. We build on two observations developed along the article:

1. Transportability: Causal relations can be partitioned into trivially and directly transportable.
2. Non-transportability: The existence of a s-hedge as an edge subgraph of the inputted selection diagram

can be used to prove non-transportability.

The algorithm sID first applies the typical c-component decomposition on top of the inputted selection
diagram D (which, by definition, is also a causal diagram of ��), partitioning the original problem into
smaller blocks (call these blocks sc-factors) until either the entire expression is transportable or it runs into
the problematic s-hedge structure.

More specifically, for each sc-factor Q, sID tries to directly transport Q. If it fails, sID tries to trivially
transport Q, which is equivalent to solving an ordinary identification problem. sID alternates between these
two types of transportability, and whenever it exhausts the possibility of applying these operations, it exits
with failure with a counterexample for transportability – that is, the graph local to the faulty call witnesses
the non-transportability of the causal query since it contains a s-hedge as edge subgraph.

Before showing the more formal properties of sID, we demonstrate how sID works through the
transportability of Q ¼ P�ðyjdoðxÞÞ in the graph in Figure 2.

YX A B C

Figure 4 Example of a selection diagram in which P�ðyjdoðxÞÞ is not transportable, there is no sC-tree but there is a sC-tree.

10 Note that, by definition, at least one S-node has to appear in both F 0; F.
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Since D ¼ AnðYÞ and CðDnfXgÞ ¼ ðC0;C1;C2Þ, where C0 ¼ DðfZgÞ, C1 ¼ DðfWgÞ, and C2 ¼ DðfV ;YgÞ, we
invoke line 4 and try to transport respectively Qo ¼ P�x;w;v;yðzÞ, Q1 ¼ P�x;z;v;yðwÞ, and Q2 ¼ P�x;z;wðv; yÞ. Thus the
original problem reduces to transporting

P
z;w;v P

�
x;w;v;yðzÞP�x;z;v;yðwÞP�x;z;wðv; yÞ.

Evaluating the first expression, sID triggers line 2, noting that nodes that are not ancestors of Z can be
ignored. This implies that P�x;w;v;yðzÞ ¼ P�ðzÞ with induced subgraph G0 ¼ fX ! Z;X  Uxz ! Zg, where Uxz

stands for the hidden variable between X and Z. sID goes to line 5, in which in the local call
CðDnfXgÞ ¼ fGZg. In the sequel, sID goes to line 9 since G0 contains only one sC-component. Note that
in the ordinary identifiability problem the procedure would fail at this point, but sID proceeds to line 10
testing whether ðS\\fZgjfXgÞD

X
. The test comes true, which makes sID directly transport Q0 with data from

the experimental population �, i.e., P�xðzÞ ¼ PxðzÞ.
Evaluating the second expression, sID again triggers line 2, which implies that P�x;z;v;yðwÞ ¼ P�x;zðwÞ with

induced subgraph G1 ¼ fX ! Z; Z ! W ;X  Uxz ! Zg. sID goes to line 5, in which in the local call
CðDnfX; ZgÞ ¼ fGWg. Thus it proceeds to line 6 testing whether there are more than one sC-components.
The test comes true (since GW 2 CðG1Þ), which makes sID to trivially transport Q1 with observational data
from ��, i.e., P�x;zðwÞ ¼ P�ðwjx; zÞ.

Evaluating the third expression, sID goes to line 5 in which CðDnfX; Z;WgÞ ¼ fG2g, where
G2 ¼ fV ! Y ; S! V ;V  Uvy ! Yg. It proceeds to line 6 testing whether there is more than one compo-
nent, which is true in this case. It reaches line 8, in which C0 ¼ G0 ¨ G2 ¨fX  Uxy ! Yg. Thus it tries to
transport Q20 ¼ P�x;zðv; yÞ over the induced graph C0, which stands for ordinary identification, and yields
(after trivial simplifications)

P
v P
�ðvjwÞP�ðyjvÞ. The return of these calls composed coincide with the

expression provided in the first section.
We prove next soundness and completeness of sID.

Theorem 5 (soundness). Whenever sID returns an expression for P�xðyÞ, it is correct.

Proof. See Appendix 2. ■

Theorem 6. Assume sID fails to transport P�xðyÞ (executes line 11). Then there exists X0 � X, Y0 � Y, such that
the graph pair D;C0 returned by the fail condition of sID contain as edge subgraphs sC-forests F, F0 that form a
s-hedge for P�x0 ðy0Þ.

Proof. See Appendix 2. ■

Corollary 3 (completeness). sID is complete.

Proof. See Appendix 2. ■

Figure 5 Modified version of identification algorithm capable of recognizing transportable relations.
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Corollary 4. P�xðyÞ is transportable from � to �� in G if and only if there is not s-hedge for P�x0 ðy0Þ in G for any
X0 � X and Y0 � Y.

Proof. See Appendix 2. ■

Theorem 7. The rules of do-calculus, together with standard probability manipulations are complete for
establishing transportability of all effects of the form P�xðyÞ.

Proof. See Appendix 2. ■

6 Other perspectives on generalizability

Many problems in statistics and causal inference can be framed as problems of generalizability, though
inherently different from that of transportability.

Consider, for example, classical statistical inference, it can be viewed as a generalization from proper-
ties of a random sample �S of a population � to properties of the population � itself. Two centuries of
statistical analysis have rendered this task well understood and fairly complete.

Next consider the problem of causal inference, that is, to estimate causal-effects from observational
studies (given a set of causal assumptions). This class of problems can be viewed as a generalization from a
population under observational regime to a population under experimental regime. Since the imposition of
experimental regime (e.g., forcing individuals to receive treatment) induces a behavioral change in the
population, the problem can be viewed as generalization between two diverse populations. Fortunately,
the disparities between the two populations are local (assumes atomic interventions), involving only the
treatment assignment mechanism and, so, with the help of model assumptions, a complete solution to the
problem can be obtained (using do-calculus). We can decide algorithmically whether the assumptions at
hand are sufficient for estimating a given causal effect and, if the answer is affirmative, we can derive its
estimand.

An important variant in causal inference is the task of estimating causal effects from surrogate
experiments, namely, experiments in which a surrogate set of variables Z are manipulated, rather than
the one (X) whose effect we seek to estimate.11 This variant too can be viewed as an exercise in general-
ization, this time from a population under regime doðZ ¼ zÞ to that same population under regime
doðX ¼ xÞ. A complete solution to this problem is reported in [37].

Another challenge of generalizability flavor arises, in both observational and experimental studies,
when samples �S are not randomly drawn from the population of interest �, but are selected preferentially,
depending on the values taken by a set VS of variables. This problem, known as “selection bias” (or
“sampling selection bias”), has received due attention in epidemiology, statistics, and economics [38–41]
and can be viewed as a generalization from the sampled population to the population at large, when little is
known about their relationships save for qualitative assumptions about the selection mechanism. Graphical
models were used to improve the understanding of the problem [42–45] and gave rise to several conditions
for recovering from selection bias when the probability of selection is available.

Likewise, Refs. 21, 46, 47 tackle variants of the sample selection problem assuming that certain
relationships are invariant between the two groups (i.e., sample and population). The former assumed
knowledge of the probability of selection in each of the principal stratum, while the latter exploited
(using propensity score analysis) the availability of the probability of selection in each combination of
covariates.

11 A surrogate variable is different from instrumental variable in that the former should lead to the identification of causal effect
even in nonparametric models; IV methods are limited to “local” causal effects (so-called LATE [48]).
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More recently, Didelez et al. [49] studied conditions for recovering from selection bias when no
quantitative knowledge is available about selection probabilities. Bareinboim and Pearl [50] extended
these conditions and provided a complete characterization, together with an algorithm, for deciding when
a bias-free estimate of the odds ratio (OR) can be recovered from selection-biased data. They also developed
methods using instrumental variables that recover other effect measures when information about the target
population is available for some variables (see also Ref. 51).

The problem of transportability is fundamentally different from the other problems of generalizability
discussed above. Transportability deals with two distinct populations that are different both in their
inherent characteristics (encoded by the S variables) and the regimes under which they are studied (i.e.,
experimental vs. observational).

Hernán and VanderWeele [52] addressed a problem related to transportability in the context of
“compound treatments,” namely, treatments that can be implemented in multiple versions (e.g., “exercise
at least 15 minutes a day”). Transportability arises when we wish to predict the response of a population
that implements one version of the treatment from a study on another population, in which another version
is implemented. Petersen [53] showed that this problem is a variant of the general problem treated in Ref. 1,
to which this article provides an algorithmic solution.

Finally, it is important to mention two recent extensions of the results reported in this article.
Bareinboim and Pearl [2] have addressed the problem of transportability in cases where only a limited set
of experiments can be conducted at the source environment. Subsequently, the results were generalized to
the problem of “meta-transportability,” that is, pooling experimental results from multiple and disparate
sources to synthesize a consistent estimate of a causal relation at yet another environment, potentially
different from each of the formers [3].

7 Conclusions

Informal discussions concerning the difficulties of generalizing experimental results across populations
have been going on for almost half a century [4, 5, 54–56] and appear to accompany every textbook in
experimental design. By and large, these discussions have led to the obvious conclusions that researchers
should be extremely cautious about unwarranted generalization, that many threats may await the unwary,
and that extrapolation across studies requires “some understanding of the reasons for the differences”
[54, p. 11].

The formalization offered in this article embeds this discussion in a precise mathematical language and
provides researchers with theoretical guarantees that, if certain conditions can be ascertained, general-
ization across populations can be accomplished, protected from the threats and dangers that the informal
literature has accumulated.

Given judgmental assessments of how target populations may differ from those under study, the article
offers a formal representational language for making these assessments precise (Definition 3) and, subse-
quently, deciding whether, and how, causal relations in the target population can be inferred from those
obtained in experimental studies. Corollary 4 in this article provides a complete (necessary and sufficient)
graphical condition for deciding this question and, whenever satisfied, we further provide an algorithm for
computing the correct transport formula (Figure 5). The transport formula specifies the proper way of
modifying the experimental results so as to account for differences in the populations. These transport
formulae enable the investigator to select the essential measurements in both the experimental and
observational studies and combine them into a bias-free estimand of the target quantity.

While the results of this article concern the transfer of causal information from experimental to
observational studies, the method can also benefit in transporting statistical findings from one observa-
tional study to another [57]. The rationale for such transfer is twofold. First, information from the first study
may enable researchers to avoid repeated measurement of certain variables in the target population.
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Second, by pooling data from both populations, we increase the precision in which their commonalities are
estimated and, indirectly, also increase the precision by which the target relationship is transported.
Substantial reduction in sampling variability can be thus achieved through this decomposition [58].

Of course, our analysis is based on the assumption that the analyst is in possession of sufficient
background knowledge to determine, at least qualitatively, where two populations may differ from one
another. In practice, such knowledge may only be partially available. Still, as in every mathematical
exercise, the benefit of the analysis lies primarily in understanding what must be assumed about reality
for generalization to be valid, what knowledge is needed for a given task to succeed, and how sensitive
conclusions are to knowledge that we do not possess.
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Appendix 1: causal assumptions in nonparametric models

The tools presented in this article were developed in the framework of nonparametric SCM, which subsumes
and unifies many approaches to causal inference.12

ASCMM conveys a set of assumptionsabout how theworldoperates. This contrasts the statistical tradition in
which a model is defined as a set of distributions (see footnote 15). Causal models is better viewed as a set of
assumptions aboutNature,with the understanding that each assumption (i.e., that the set of arguments of fi does
not include variable Vj) constrains the set of distributions (like PðvÞ) that the model can generate.

The formal structure of SCM’s was defined in Section 3, here we illustrate their power as inference engines.
Consider a simple SCM model depicted in Figure 6(a), which represents the following three functions:

z ¼ fZðuZÞ
x ¼ fXðz; uXÞ
y ¼ fYðx; uYÞ;

½10�

where in this particular example, UZ, UX, and UY are assumed to be jointly independent but otherwise
arbitrarily distributed. Each of these functions represents a causal process (or mechanism) that determines

Z X YZ X Y
U U U

Z X

0x

(b)

Y

U U U

(a)

X YZ

Figure 6 The diagrams associated with (a) the structural model of eq. [6] and (b) the modified model of eq. [11], representing
the intervention doðX ¼ x0Þ.

12 We use the acronym SCM for both parametric and non-parametric representations (which is also called Structural Equation
Model (SEM)), though historically, SEM practitioners preferred the parametric representation and often confuse with regression
equations [60].
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the value of the left variable (output) from the values on the right variables (inputs) and is assumed to be
invariant unless explicitly intervened on. The absence of a variable from the right-hand side of an equation
encodes the assumption that nature ignores that variable in the process of determining the value of the
output variable. For example, the absence of variable Z from the arguments of fY conveys the empirical
claim that variations in Z will leave Y unchanged, as long as variables UY and X remain constant.

Representing Interventions, counterfactuals, and causal effects

This feature of invariance permits us to derive powerful claims about causal effects and counterfactuals,
even in nonparametric models, where all functions and distributions remain unknown. This is done through
a mathematical operator called doðxÞ, which simulates physical interventions by deleting certain functions
from the model, replacing them with a constant X ¼ x, while keeping the rest of the model unchanged
[61–63]. For example, to emulate an intervention doðx0Þ that holds X constant (at X ¼ x0) in model M of
Figure 6(a), we replace the equation for x in eq. [10] with x ¼ x0, and obtain a new model, Mx0 ,

z ¼ fZðuZÞ
x ¼ x0
y ¼ fYðx; uYÞ;

½11�

the graphical description of which is shown in Figure 6(b).
The joint distribution associated with the modified model, denoted Pðz; yjdoðx0ÞÞ describes the post-

intervention distribution of variables Y and Z (also called “controlled” or “experimental” distribution), to be
distinguished from the preintervention distribution, Pðx; y; zÞ, associated with the original model of eq. [10].
For example, if X represents a treatment variable, Y a response variable, and Z some covariate that affects
the amount of treatment received, then the distribution Pðz; yjdoðx0ÞÞ gives the proportion of individuals
that would attain response level Y ¼ y and covariate level Z ¼ z under the hypothetical situation in which
treatment X ¼ x0 is administered uniformly to the population.13

In general, we can formally define the postintervention distribution by the equation

PMðyjdoðxÞÞ ¼ PMxðyÞ ½12�
In words, in the framework of model M, the postintervention distribution of outcome Y is defined as the
probability that model Mx assigns to each outcome level Y ¼ y. From this distribution, which is readily
computed from any fully specified model M, we are able to assess treatment efficacy by comparing aspects
of this distribution at different levels of x0.

14

Identification, d-separation and causal calculus

A central question in causal analysis is the question of identification in partially specified models: Given
assumptions set A (as embodied in the model), can the controlled (postintervention) distribution,
PðyjdoðxÞÞ, be estimated from data governed by the preintervention distribution Pðz; x; yÞ?

In linear parametric settings, the question of identification reduces to asking whether some model
parameter, β, has a unique solution in terms of the parameters of P (say the population covariance matrix).

13 Equivalently, Pðz; yjdoðx0ÞÞ can be interpreted as the joint probability of ðZ ¼ x;Y ¼ yÞ under a randomized experiment
among units receiving treatment level X ¼ x0. Readers versed in potential-outcome notations may interpret PðyjdoðxÞ; zÞ as the
probability PðYx ¼ yjZx ¼ zÞ, where Yx is the potential outcome under treatment X ¼ x.
14 Counterfactuals are defined similarly through the equation YxðuÞ ¼ YMx ðuÞ (see [16, Ch. 7]), but will not be needed for the
discussions in this article.
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In the nonparametric formulation, the notion of “has a unique solution” does not directly apply since
quantities such as QðMÞ ¼ PðyjdoðxÞÞ have no parametric signature and are defined procedurally by
simulating an intervention in a causal model M, as in eq. [11]. The following definition captures the
requirement that Q be estimable from the data:

Definition 11 (Identifiability).15 A causal query QðMÞ is identifiable, given a set of assumptions A, if for any
two models (fully specified) M1 and M2 that satisfy A, we have

PðM1Þ ¼ PðM2Þ ) QðM1Þ ¼ QðM2Þ ½13�

In words, the functional details of M1 and M2 do not matter; what matters is that the assumptions in A (e.g.,
those encoded in the diagram) would constrain the variability of those details in such a way that equality of
P’s would entail equality of Q’s. When this happens, Q depends on P only, and should therefore be
expressible in terms of the parameters of P.

When a query Q is given in the form of a do-expression, for example Q ¼ PðyjdoðxÞ; zÞ, its identifiability
can be decided systematically using an algebraic procedure known as the do-calculus [13]. It consists of
three inference rules that permit us to map interventional and observational distributions whenever certain
conditions hold in the causal diagram G.

The conditions that permit the application these inference rules can be read off the diagrams using a
graphical criterion known as d-separation [65].

Definition 12 (d-separation). A set S of nodes is said to block a path p if either

1. p contains at least one arrow-emitting node that is in S, or
2. p contains at least one collision node that is outside S and has no descendant in S.

If S blocks all paths from set X to set Y, it is said to “d-separate X and Y ; ” and then, it can be shown that
variables X and Y are independent given S, written X\\Y jS.16

D-separation reflects conditional independencies that hold in any distribution PðvÞ that is compatible with
the causal assumptions A embedded in the diagram. To illustrate, the path UZ ! Z ! X ! Y in Figure 6(a)
is blocked by S ¼ fZg and by S ¼ fXg, since each emits an arrow along that path. Consequently we can
infer that the conditional independencies UZ \\Y jZ and UZ \\Y jX will be satisfied in any probability
function that this model can generate, regardless of how we parametrize the arrows. Likewise, the path
UZ ! Z ! X  UX is blocked by the null set f�g, but it is not blocked by S ¼ fYg since Y is a descendant
of the collision node X. Consequently, the marginal independence UZ \\UX will hold in the distribution, but
UZ \\UX jY may or may not hold.17

The rules of do-calculus

Let X, Y, Z, and W be arbitrary disjoint sets of nodes in a causal DAG G. We denote by GX the graph obtained
by deleting from G all arrows pointing to nodes in X. Likewise, we denote by GX the graph obtained by

15 This definition appears to be similar to, but differ fundamentally from the standard statistical definition [64, p. 22] which
deals with the unidentifiability of the parameter set θ from a distribution Pθ. In our case, the query Q ¼ PðY jdoðxÞÞ is not a
parameter of P (see [22, p. 77]).
16 See Hayduk et al. [66], Glymour and Greenland [67], and Pearl [16, p. 335] for a gentle introduction to d-separation.
17 This special handling of collision nodes (or colliders, e.g., Z ! X  Ux) reflects a general phenomenon known as Berkson’s
paradox [68], whereby observations on a common consequence of two independent causes render those causes dependent. For
example, the outcomes of two independent coins are rendered dependent by the testimony that at least one of them is a tail.
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deleting from G all arrows emerging from nodes in X. To represent the deletion of both incoming and
outgoing arrows, we use the notation GXZ .

The following three rules are valid for every interventional distribution compatible with G.

Rule 1 (Insertion/deletion of observations):

PðyjdoðxÞ; z;wÞ ¼ PðyjdoðxÞ;wÞ if ðY \\ ZjX;WÞG
X

½14�

Rule 2 (Action/observation exchange):

PðyjdoðxÞ; doðzÞ;wÞ ¼ PðyjdoðxÞ; z;wÞ if ðY \\ ZjX;WÞG
XZ

½15�

Rule 3 (Insertion/deletion of actions):

PðyjdoðxÞ; doðzÞ;wÞ ¼ PðyjdoðxÞ;wÞ if ðY \\ ZjX;WÞG
XZðWÞ

; ½16�

where ZðWÞ is the set of Z-nodes that are not ancestors of any W-node in GX.
To establish identifiability of a query Q, one needs to repeatedly apply the rules of do-calculus to Q,

until the final expression no longer contains a do-operator18; this renders it estimable from non-experi-
mental data. The do-calculus was proven to be complete to the identifiability of causal effects in the form
Q ¼ PðyjdoðxÞ; zÞ [69, 70], which means that if Q cannot be expressed in terms of the probability of
observables P by repeated application of these three rules, such an expression does not exist.

We shall see that, to establish transportability, the goal will be different; instead of eliminating do-
operators, we will need to separate them from a set of variables S that represent disparities between
populations.

Appendix 2

Theorem 2. Let G be a selection diagram. Then for any node Y, the direct effect P�PaðYÞðyÞ is transportable if
there is no subgraph of G which forms a Y-rooted sC-tree.

Proof. We known from Tian [71, Theorem 22] that whenever there exists no subgraph GT of G satisfying all of
the following: (i) Y 2 T; (ii) GT has only one c-component, T itself; (iii) All variables in T are ancestors of Y
in GT , the direct effect on Y is identifiable, as sC-trees are structures of this type. Further Shpitser and Pearl
[27, Theorem 2] showed that the same holds for C-trees, which also implies the inexistence of a sC-trees.
Since such structure does not show up in G, the target quantity is identifiable, and hence transportable.

It remains to show that the same holds whenever there exists a subgraph that is a C-tree and in which
no S node points to Y, i.e., there is no Y-rooted sC-tree at all. It is true that ðS\\Y jPaðYÞÞG

PaðYÞ
, given that all

directed paths from S to Y are closed. This follows from the following facts: (1) all paths from S passing
through Y’s ancestors were cut in GPaðYÞ; (2) all bidirected paths were also closed given that the conditioning
set contains only root nodes, and a connection from S must pass through at least one collider; (3)
transportability does not depend on descendants of Y (by argument similar to Tian [71, Lemma 9]). Thus,
it follows that we can write P�PaðYÞðYÞ ¼ PPaðYÞðY jSÞ ¼ PPaðYÞðYÞ, concluding the proof. ■

Corollary 1. Let G be a selection diagram. Then for any node Y, the direct effect P�PaðYÞðyÞ is transportable if
there is no S node pointing to Y.

Proof. Follows directly from Theorem 2. ■

18 Such derivations are illustrated in graphical details in Ref. [16, p. 87].
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Lemma 5. The exclusive OR (XOR) function is commutative and associative.

Proof. Follows directly from the definition of the XOR function. ■

Remark 1. The construction given below is a strict generalization of Theorem 1, and it is useful because it
will provide a simplified construction of the one provided in Theorem 1, and also set the tone for proofs of
generic graph structures which will in the sequel show to be instrumental in proving non-transportability in
arbitrary structures.

Theorem 3. Let G be a Y-rooted sC-tree. Then the effects of any set of nodes in G on Y are not
transportable.

Proof. The proof will proceed by constructing a family of counterexamples. For any such G and any set X,
we will construct two causal models M1 and M2 that will agree on hP;P�; Ii, but disagree on the interven-
tional distribution P�xðyÞ.

Let the two models M1, M2 agree on the following features. All variables in U ¨ V are binary. All exogenous
variables are distributed uniformly. All endogenous variables except Y are set to the bit parity (sum mod 2)
of the values of their parents. The two models differ in respect to Y’s definition. Consider the function for Y,
fY : U;PaðYÞ ! Y to be defined as follows:

M1 : Y ¼ ððpaðYÞ # uÞ # sÞ
M2 : Y ¼ ððpaðYÞ # uÞ _ sÞ

�

Lemma 6. The two models agree in the distributions hP;P�; Ii.

Proof. Since the two models agree on PðUÞ and all functions except fY , it suffices to show that fY maintains
the same input/output behavior in both models for each domains.

Subclaim 1: Let us show that both models agree in the observational and interventional distributions
relative to domain �, i.e., the pair hP; Ii. The index variable S is set to 0 in �, and fY evaluates to
ðpaðYÞ # uÞ in both models, which proves the subclaim.

Subclaim 2: Let us show that both models agree in the observational distribution relative to ��, i.e., P�. The
index variable S is set 1 in��, and fY evaluates to ððpaðYÞ # uÞ # 1Þ inM1, and 1 inM2. Since the evaluation in
M1 can be rewritten as :ððpaðYÞ # uÞ, it remains to show that ðpaðYÞ # uÞ always evaluates to 0.

This fact is certainly true, consider the following observations: a) each variable in U has exactly two
endogenous children; b) the given tree has Y as the root; c) all functions are XOR – these imply that Y is
computing the bit parity of the sum of all U nodes, which turns out to be even, and so evaluates to 0 and
proves the subclaim. ■

Lemma 7. For any set X, P1ðY jdoðXÞ; S ¼ 1Þ�P2ðY jdoðXÞ; S ¼ 1Þ.

Proof. Given the functional description and the discussion in the previous Lemma, the function fY evaluates
always to 1 in M2.

Now let us consider M1. Note that performing the intervention and cutting the edges going toward X
creates an asymmetry on the sum of the bidirected edges departing from U, and consequently in the sum
performed by Y. It will be the case that some U0 will appear only once in the expression of Y. Therefore,
depending on the assignment X ¼ x, we will need to evaluate the sum (mod 2) over U0 in Y or its negation,
which given the uniformity of the distribution of U will yield P1ðY jdoðXÞ; S ¼ 1Þ ¼ 1=2 in both cases. ■

By Lemma 2, Lemmas 6 and 7 together prove Theorem 3. ■
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Corollary 2. Let G be a selection diagram, let X and Y be set of variables. If there exists a node W which is an
ancestor of some node Y 2 Y and such that there exists a W-rooted sC-tree which contains any variables in X,
then P�xðyÞ is not transportable.

Proof. Fix a W-rooted sC-tree T, and a path p from W to Y. Consider the graph p ¨ T. Note that in this graph
P�xðYÞ ¼

P
w P
�
xðwÞP�ðY jwÞ. From the last Theorem P�xðwÞ is not transportable, it is now easy to construct

P�ðY jWÞ in such a way that the mapping from PxðWÞ to PxðYÞ is one to one, while making sure all
distributions are positive.

Remark 2. The previous results comprised cases in which there exist sC-trees involved in the non-
transportability of Y – i.e., Y or some of its ancestors were roots of a given sC-tree. In the problem of
identifiability, the counterpart of sC-trees (i.e., C-trees) suffices to characterize non-identifiability for
singleton Y. But transportability is more subtle and this is not the case here – it not only depends on X
and Y “locations” in the graph, but also the relative position of the S-nodes. Consider Figures 4 and 7(a)
(called sp-graph). In these graphs there is no sC-tree but the effect of X on Y is still non-transportable.

Themain technical subtlety here is that in sC-trees, a S-node combines its effect with a X-node intersecting in the
root node (considering only the bidirected edges), which is not the case for non-transportability in general. Note
that in the graphs in Figure 4, and the sp-graph, the nodes S andX intersect first throughordinary edges andmeet
throughbidirectededges onlyon theYnode.This implies a certain “asynchrony”because, in the structural sense,
the existence of a S-node implies a difference in the structural equations between domains, but only this
difference does not imply non-transportability (for instance, P�xðzÞ is transportable in the sp-graph even though
the equations of Z being different in both models).

The key idea to produce a proof for non-transportability in these cases is to keep the effect of S-nodes after
intersecting with X “dormant” until they reach the target Y and then manifest. We implement this idea in the
next two proofs, which can be seen as base cases, and should pavement the way for the most general
problem.

Theorem 8. P�xðyÞ is not transportable in the sp-graph (Figure 7(a)).

Proof. We will construct two causal models M1 and M2 compatible with the sp-graph that will agree on
hP;P�; Ii, but disagree on the interventional distribution P�xðyÞ.

Let us assume that all variables in U ¨ V are binary, and let U1 be the common cause of X and Y, U2 be the
common cause of Z and Y, and U3 be the random disturbance exclusive to Z. Let M1 and M2 be defined as
follows:

YX

(a)

X Y

(b)

Z

Z

S

S

Figure 7 Selection diagrams in which P�ðyjdoðxÞÞ is not transportable, there is no sC-tree but there is a sC-forest. These
diagrams will be used as basis for the general case; the first diagram is named sp-graph and the second one sb-graph.
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M1 ¼
X ¼ U1

Z ¼ ðððX # U2 # 1Þ # U3Þ _ SÞ # ðS ^ ðX # U2ÞÞ
Y ¼ Z # U1 # U2

8><
>:

and:

M2 ¼
X ¼ U1

Z ¼ ðððU2 # 1Þ # U3Þ _ SÞ # ðS ^ U2Þ
Y ¼ Z # U2

8<
:

Both models agree in respect to PðUÞ, which is defined as follows: PðU1Þ ¼ PðU2Þ ¼ PðU3Þ ¼ 1=2.

Lemma 8. The two models agree in the distributions hP;P�; Ii.

Proof. Subclaim 1: Let us show that both models agree in the observational and interventional distributions
relative to domain �, i.e., the pair hP; Ii. In both models X has the same expression, which entails the same
(uniform) probabilistic behavior in both cases. The index variable S is set to 0 in �, and Z evaluates to
ðX # U2 # 1 # U3Þ in M1 and ðU2 # 1 # U3Þ in M2. Clearly, for any value of X ¼ x, since U is the same
and uniformly distributed in both models, we obtain the same (uniform) input/output probabilistic behavior
in M1 and M2 (note that U2;U3 can freely vary independently of X). In similar way, Y evaluates to ð1þ U3Þ in
both models, which entails the same (uniform) input/output probabilistic behavior in both models. In
regard to doðX ¼ xÞ, it is clear that Z did not depend (probabilistically) on the specific value of X, and so the
equality between both models follows. For the case when we have doðZ ¼ zÞ, Y evaluates to ðZ # U1 # U2Þ
in M1 and ðZ # U2Þ in M2, and given the uniformity of U, they preserve the same (uniform) input/output
probabilistic behavior. (For a more elaborated argument, see Theorem 4 below.)

Subclaim 2: Let us show that both models agree in the observational distribution P� relative to ��. The
index variable S is set 1 in ��, fZ evaluates to ðX # U2 # 1Þ in M1, and ðU2 # 1Þ in M2. Again, for any value
of X, together with the uniformity of U, we obtain the same (uniform) input/output probabilistic behavior in
both models (note again that U2 can freely vary independently of variations of X, and so Z). Further, fY
evaluates to 1 in both models, which yields the same (uniform) input/output behavior in both models. (To
guarantee positivity, we can apply the trick of making a new fY 0 ðÞ such that fY 0 ðÞ returns 0 half the time, and
fY the other half (i.e., set fy0 ðÞ ¼ ½fyðÞ ^ C�, where C is a fair coin.) ■

Lemma 9. There exist values of such that X;Y P1ðY jdoðXÞ; S ¼ 1Þ�P2ðY jdoðXÞ; S ¼ 1Þ.

Proof. Fix X ¼ 1;Y ¼ 1. First notice that fZ evaluates to U2 in M1 and ðU2 # 1Þ in M2. Given that U2 is
uniformly distributed, both quantities coincide (and they represent the effect of X on Z, which is transpor-
table in G). Now the evaluation of fY in M1 reduces to U1, while it reduces to 1 in M2, which show
disagreement and finishes the proof of this Lemma. ■

By Lemma 2, Lemmas 8 and 9 together prove Theorem 8. ■

Remark 3. There exists a different sort of asymmetry in the case of Figure 7(b) (called sb-graph), and the nodesX
and S do not intersect before meeting Y – i.e., they have disjoint paths and Y lies precisely in their intersection.

Still, this case is not the same of having a sC-tree because in sb-graphs we need to keep the equality from
the S nodes to Y until S intersects X on Y. Employing a similar construct as in the sp-graph, we keep the
effect of S dormant until it reaches Y and then emerges.

Theorem 9. P�xðyÞ is not transportable in the sb-graph (Figure 7(b)).

Proof. We construct two causal models M1 and M2 compatible with the sb-graph that will agree on hP;P�; Ii,
but disagree on the interventional distribution P�xðyÞ.
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Let us assume that all variables in U ¨ V are binary, and let U1 be the common cause of X and Y, U2 be
the common cause of Z and Y, and U3 be the random disturbance exclusive to X. Let M1 and M2 agree with
the following definitions:

M1;M2 ¼ X ¼ U1

Z ¼ ððU3 # U2 # 1Þ _ SÞ # ðS ^ U2ÞÞ
�

and disagree in respect to Z as follows:

M1 : Y ¼ Z # U2

M2 : Y ¼ X # Z # U1 # U2

�

Both models also agree in respect to PðUÞ, which is defined as follows:

PðU1Þ ¼ PðU2Þ ¼ PðU3Þ ¼ 1=2

.Lemma 10. The two models agree in the distributions hP;P�; Ii.

Proof. Subclaim 1: Let us show that both models agree in the observational and interventional distributions
relative to domain �, i.e., the pair hP; Ii. The index variable S is set to 0 in �, and fX; Zg are defined in the
same way in both models, and so it suffices to analyze Y, which in this case evaluates to ðU3 # 1Þ in both
models, preserving the same (uniform) probabilistic behavior. Given that, it is not difficult to see that both
models also evaluate in the same way when considering the interventions in I.

Subclaim 2: Let us show that both models agree in the observational distribution P� relative to ��. The
index variable S is set 1 in ��, given that fX; Zg are defined in the same way in both models, together with
the uniformity of U make them evaluate in the same way in both models, and Y evaluates to 1 in both
models. (As in Lemma 8, the same trick to make the distribution positive could be applied here.) ■

Lemma 11. There exist values of X;Y such that P1ðY jdoðXÞ; S ¼ 1Þ � P2ðY jdoðXÞ; S ¼ 1Þ.

Proof. Fix X ¼ 1;Y ¼ 1. First notice that fZ evaluates to ðU2 # 1Þ in both models, and the evaluation of fY inM1

reduces to 1, while it reduces to U1 inM2. It follows that inM1, fY evaluates to 1 with probability 1, while inM2 it
evaluates to 1 with probability PðU1 ¼ 1Þ, which disagree by construction, finishing the proof of this Lemma.■

By Lemma 2, Lemmas 10 and 11 together prove Theorem 9. ■

Remark 4. There are two complementary components to forge a general scheme to prove arbitrary non-
transportability. First, the construct of Theorem 4 shows how to prove non-transportability for general structures
such as sC-trees. In the sequel, the specific proofs of non-transportability for the sp-graph (Theorem 9) and sb-
graph (Theorem 10) partition the possible interactions between X, S and Y. In the former, X and S intersect before
meetingwith Y,while in the latter they have disjoint paths and Y lies in their intersection. In the sequel, the proof
for the general case combines these analyses, which we show below.

Theorem 4. Assume there exist F; F0 that form a s-hedge for P�xðyÞ in � and ��. Then P�xðyÞ is not
transportable from � to ��.

Proof. We first consider counterexamples with the induced graph H ¼ DeðFÞG˙AnðYÞG
X
, and assume,

without loss of generality, that H is a forest. We construct two causal models M1 and M2 that will agree
on hP;P�; Ii, but disagree on the interventional distribution P�xðyÞ.

Let F be an R-rooted sC-forest, let V0 be the set of observable variables and U0 be the set of unobservable
variables in F. Let us assume that all variables in U0 ¨ V0 are binary. Call W the set of variables pointed by
S-nodes in F0, which by the definition of sC-forest is guaranteed to be non-empty.
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In model 1, let each Vi 2 V0nW compute the bit parity of all its observable and unobservable parents
(i.e., f ð1Þi ¼ # ðSVj2Pai VjÞ, where the xor is applied for each element of the set and the result computed so
far), while in model 2, let Vi compute the bit parity of all its parents except that any node in F0 disregards the
parents values if the parent is in F (i.e., f ð2Þi ¼#ðSVj2Pai˙F0 VjÞ if Vi is in F0, and f ð2Þi ¼ f ð1Þi , otherwise).

Define W 2 W as follows:

M1 : W ¼ ððf ð1Þw #U�wÞ _ SÞ#ðS ^ ð1#f ð1Þw ÞÞ
M2 : W ¼ ððf ð2Þw #U�wÞ _ SÞ#ðS ^ ð1#f ð2Þw ÞÞ

:

(

where fw is constructed in similar way as fi in M1 and M2 above, and U�w is an additional fair coin exclusively
pointing to W. Let us call Uw the collection of such coins. Furthermore, let us assume that each
Ui 2 fU0nUwg is also a fair coin (i.e., PðUiÞ ¼ 1=2).

Lemma 12. The two models agree in the distribution of P� and there exists a value assignment x for X such
that P1ðYjdoðxÞ; S ¼ 1Þ�P2ðYjdoðxÞ; S ¼ 1Þ.

Proof. For S ¼ 1, the result follows directly since the systems of equations in both models reduce to the
construction given in Theorem 4 at [27]. ■

Lemma 13. The two models agree in the distributions hP; Ii.

Proof. Let us show that both models agree in the observational distribution P relative to domain �. The
selection variable S is set to 0 in �, and note that both systems are the same as in �� except that now each
variable W 2W has an extra variable U�w pointing to it that should be taken into account in W’s evaluation,
and in turn in the whole system.

We have a forest over the endogenous nodes and all functions compute the bit parity of the value of their
parents, and so we can view each node as computing the sum mod 2 of its exogenous ancestors in H. We
want to show that the distribution of each family is equally likely for each possible assignment (i.e.,
PðvijpaiÞ ¼ 1=2, for all vi;pai).

Let us partition the analysis in two cases. First consider the case of Vi 2 R in which there exists a S-node
in the respective sC-tree. Note that the evaluation of Vi relies only on the value of U�w 2 Uw in its respective
tree since U 2 fU0nUwg has an even number of endogenous children in F, and it is counted twice, so
evaluates to zero (i.e., it does not affect Vi’s evaluation). For now, let us assume that there is only one U�w
that affects the evaluation of Vi. Given the uniformity of U�w, it suffices to show that U�w can vary
independently for any configuration of the parents of Vi.

For any configuration of U0 ¼ ðU1 ¼ u1; :::;U�w ¼ u�w; :::Þ, consider the corresponding evaluation of
Pai ¼ pai, and also Vi ¼ u�w. We want to show that it is possible to flip the current value of U�w from u�w
to :u�w while preserving the parents’ evaluation pai. Assume this is not so. This implies that the evaluation
of Pai and Vi count the same U’s, contradiction.

To see why, consider Pai� � Pai the set of parents of Vi that are descendents of U�w. Now, for each of
these parents flip the minimum number of variables from UnUw, and call this set U�. (Note that this is
always possible since we need at most one U for each parent, which should exist by construction of
sC-forest.) Now, make U�w ¼ :u�w, and note that Pai ¼ pai since flipping the values of U� compensates the
flip of U�w. But it is also true now that Vi evaluates to :u�w since, in the same way as before, all other
variables in fUnUwg are cancelled out in Vi’s evaluation, including the ones in U�. This proves the claim.

Consider the following two facts: Subclaim 1: Let X and Y be two binary variables such that
PðX ¼ xÞ ¼ p � 1=2 and PðY ¼ yÞ ¼ q ¼ 1=2. Then the probabilistic input/output behavior of
Z ¼ XORðX;YÞ is the same of Y. The variable Z ¼ 1 whenever fðX ¼ 1;Y ¼ 0Þ; ðX ¼ 0;Y ¼ 1Þg, which
happens with probability pqþ ð1� pÞð1� qÞ. Since q ¼ 1=2, the expression reduces to
p � 1=2þ ð1� pÞ � 1=2 ¼ 1=2.
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Subclaim 2: Let X and Y be two binary variables such that PðX ¼ xÞ ¼ PðY ¼ yÞ ¼ p ¼ 1=2. Then the
probabilistic input/output behavior of Z ¼ XORðX;YÞ is the same of X (or Y). This follows directly from
Subclaim 1. It is clear that if there are multiple nodes from Uw in the evaluation of Vi, the
same construction is also valid given the subclaim above. It is also not difficult to generalize this
argument to consider root set that are not singleton, including roots in which there are not S-nodes as
ancestors.

Finally, let us consider the case of Vi 2 fFnRg. It suffices to show that the function from U0nUw to V0nR
is 1–1 when we fix Uw ¼ uw. We use the same argument as Shpitser. Assume this is not so, and fix two
instantiations of U0nUw that map to the same value of V0nR, and differ by the set U� ¼ fU1; :::;Ukg. Since the
bidirected edges form a spanning tree, there exists V� with an odd number of parents in U� (and were not in
R, by construction). Order them topologically and let the topmost be called X. Note that if we flip all values
in U�, the value of X will also flip, contradiction. Given the uniformity of U0, the claim follows. We can put
this together with the previous claim, and the result follows. We can add fair coins as the input to all other
variables outside F, which will imply the claim for the whole graph G.

In regard to the equality between I, note that given that the equality of both models holds for P, and
removing edges due to interventions will just make some nodes from U0nUw to have an odd number of
children, it it not difficult to see based on the previous argument that this just creates more variables that
are free to vary, which will entail the same probabilistic uniform behavior in both models. Another way to
see this fact is to consider the new exogenous variables from fUnUwg that have only one children after the
intervention as analogous to U�w, and so the same argument follows. ■

Finally, Lemma 2 together with Lemmas 12 and 13 prove Theorem 4. ■

Theorem 5 (soundness). Whenever sID returns an expression for P�xðyÞ, it is correct.

Proof. Noting that the selection diagram inputted to sID is also a causal diagram over ��, and trivial
transportability is equivalent to identifiability in ��, the correctness of the identifiability calls was already
established elsewhere [27, 34].

It remains to show the correctness of the test in line 10 of sID. First note that, by construction, X0 in each
local call is always a set of pre-treatment covariates. But now the correctness follows directly by
S-admissibility of X0 together with Corollary 1 in Ref. 1. Further note that the set of Z-nodes outside the
local component will not affect separability of the S-nodes inside it (following the topology of the hedge),
and other S-nodes outside can be removed from the expression before the test. More specifically, note that
the effect Q� in each local call that uses line 10 can be expressed in its expanded form (using a typical
C-component decomposition), and given that the independence imposed by S-admissibility holds, together
with the fact that both populations share the same causal graph G, allow that the functions of �� to be
replaced with the respective functions in �, which implies the result. ■

Remark 5. The next results are similar to the identification counterparts given in Refs. 26, 69.

Theorem 6. Assume sID fails to transport P�xðyÞ (executes line 11). Then there exists X0 � X, Y0 � Y, such that
the graph pair D;C0 returned by the fail condition of sID contain as edge subgraphs sC-forests F, F0 that form a
s-hedge for P�x0 ðy0Þ.

Proof. Before failure sID evaluated false consecutively at lines 5, 6, and 10, so D local to this call is a
sC-component, and let R be its root set. We can remove some directed arrows from D while preserving R as
root, yielding a R-rooted sC-forests F. Since by construction F0 ¼ F˙C0 is closed under descendants and
only directed arrows were removed, both F; F0 are sC-forests. Also by construction, R � AnðYÞD

X
together

with the fact that X and Y from the recursive call are clearly subsets of the original input, finish the proof.

Corollary 3 (completeness). sID is complete.
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Proof. The result follows from Theorem 6 where P�x0 ðy0Þ is not transportable in H. But now, it is easy to add
the remaining variables from G, making them independent of H (e.g., as random coins). So, the models in
the counterexample induce G, and witness the non-transportability of P�xðyÞ.

Corollary 4. P�xðyÞ is transportable from � to �� in G if and only if there is not s-hedge for P�x0 ðy0Þ in G for any
X0 � X and Y0 � Y.

Proof. Follows directly from the previous Corollary. ■

Theorem 7. The rules of do-calculus, together with standard probability manipulations are complete for
establishing transportability of all effects of the form P�xðyÞ.

Proof. It was shown elsewhere [69] that the steps of sID but line 10 correspond to sequences of standard
probability manipulations and applications of the rules of do-calculus. The line 10 is constituted by a
conditional independence judgment, and standard probability operations for the replacement of the func-
tions based on the invariance allowed by the S-admissibility of the local X0 in each recursive call (as
discussed above in the proof of correctness). ■
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