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Abstract. The generalizability of empirical findings to new environ-
ments, settings or populations, often called “external validity,” is es-
sential in most scientific explorations. This paper treats a particular
problem of generalizability, called “transportability”, defined as a li-
cense to transfer causal effects learned in experimental studies to a new
population, in which only observational studies can be conducted. We
introduce a formal representation called “selection diagrams” for ex-
pressing knowledge about differences and commonalities between pop-
ulations of interest and, using this representation, we reduce questions
of transportability to symbolic derivations in the do-calculus. This re-
duction yields graph-based procedures for deciding, prior to observing
any data, whether causal effects in the target population can be in-
ferred from experimental findings in the study population. When the
answer is affirmative, the procedures identify what experimental and
observational findings need be obtained from the two populations, and
how they can be combined to ensure bias-free transport.

Key words and phrases: experimental design, generalizability, causal
effects, external validity.

1. INTRODUCTION: THREATS VS. ASSUMPTIONS

Science is about generalization, and generalization requires that conclusions
obtained in the laboratory be transported and applied elsewhere, in an environ-
ment that differs in many aspects from that of the laboratory.

Clearly, if the target environment is arbitrary, or drastically different from
the study environment nothing can be transferred and scientific progress will
come to a standstill. However, the fact that most studies are conducted with the
intention of applying the results elsewhere means that we usually deem the target
environment sufficiently similar to the study environment to justify the transport
of experimental results or their ramifications.

Remarkably, the conditions that permit such transport have not received sys-
tematic formal treatment. In statistical practice, problems related to combining
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2 J. PEARL AND E. BAREINBOIM

and generalizing from diverse studies are handled by methods of meta analysis
(Glass (1976); Hedges and Olkin (1985); Owen (2009)), or hierarchical models
(Gelman and Hill (2007)), in which results of diverse studies are pooled together
by standard statistical procedures (e.g., inverse-variance re-weighting in meta-
analysis, partial pooling in hierarchical modelling) and rarely make explicit dis-
tinction between experimental and observational regimes; performance is evalu-
ated primarily by simulation.

To supplement these methodologies, our paper provides theoretical guidance
in the form of limits on what can be achieved in practice, what problems are
likely to be encountered when populations differ significantly from each other,
what population differences can be circumvented by clever design, and what dif-
ferences constitute theoretical impediments, prohibiting generalization by any
means whatsoever.

On the theoretical front, the standard literature on this topic, falling un-
der rubrics such as “external validity” (Campbell and Stanley (1963); Manski
(2007)), “heterogeneity” (Höfler et al. (2010)), “quasi-experiments” ((Shadish et al.,
2002, Ch. 3); Adelman (1991)),1 consists primarily of threats, namely, explana-
tions of what may go wrong when we try to transport results from one study to
another while ignoring their differences. Rarely do we find an analysis of “licens-
ing assumptions,” namely, formal conditions under which the transport of results
across differing environments or populations is licensed from first principles.2

The reasons for this asymmetry are several. First, threats are safer to cite than
assumptions. He who cites “threats” appears prudent, cautious and thoughtful,
whereas he who seeks licensing assumptions risks suspicions of attempting to
endorse those assumptions.

Second, assumptions are self destructive in their honesty. The more explicit
the assumption, the more criticism it invites, for it tends to trigger a richer space
of alternative scenarios in which the assumption may fail. Researchers prefer
therefore to declare threats in public and make assumptions in private.

Third, whereas threats can be communicated in plain English, supported by
anecdotal pointers to familiar experiences, assumptions require a formal language
within which the notion “environment” (or “population”) is given precise char-
acterization, and differences among environments can be encoded and analyzed.

The advent of causal diagrams (Wright (1921); Heise (1975); Davis (1984);
Verma and Pearl (1988); Spirtes et al. (1993); Pearl (1995)) together with models
of interventions (Haavelmo, 1943; Strotz and Wold, 1960) and counterfactuals
(Neyman, 1923; Rubin, 1974; Robins, 1986; Balke and Pearl, 1995) provides such
a language and renders the formalization of transportability possible.

1Manski (2007) defines “external validity” as follows: “An experiment is said to have “exter-
nal validity” if the distribution of outcomes realized by a treatment group is the same as the
distribution of outcome that would be realized in an actual program.” (Campbell and Stanley,
1963, p. 5) take a slightly broader view: ““External validity” asks the question of generaliz-
ability: to what populations, settings, treatment variables, and measurement variables can this
effect be generalized?”

2Hernán and VanderWeele (2011) studied such conditions in the context of compound treat-
ments, where we seek to predict the effect of one version of a treatment from experiments with a
different version. Their analysis is a special case of the theory developed in this paper (Petersen,
2011). A related application is reported in Robins et al. (2008) where a treatment strategy is
extrapolated between two biological similar populations under different observational regimes.
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EXTERNAL VALIDITY: FROM DO-CALCULUS TO TRANSPORTABILITY 3

Armed with this language, this paper departs from the tradition of commu-
nicating “threats” and embarks instead on the task of formulating “licenses to
transport,” namely, assumptions that, if they held true, would permit us to trans-
port results across studies.

In addition, the paper uses the inferential machinery of the do-calculus (Pearl,
1995; Koller and Friedman, 2009; Huang and Valtorta, 2006; Shpitser and Pearl,
2006) to derive algorithms for deciding whether transportability is feasible and
how experimental and observational findings can be combined to yield unbiased
estimates of causal effects in the target population.

The paper is organized as follows. In section 2, we review the foundations
of structural equations modelling (SEM), the question of identifiability, and the
do-calculus that emerges from these foundations. (This section can be skipped
by readers familiar with these concepts and tools.) In section 3, we motivate
the question of transportability through simple examples, and illustrate how the
solution depends on the causal story behind the problem. In section 4, we formally
define the notion of transportability and reduce it to a problem of symbolic
transformations in do-calculus. In section 5, we provide a graphical criterion for
deciding transportability and estimating transported causal effects. We conclude
in section 6 with brief discussions of related problems of external validity, these
include statistical transportability, and meta-analysis.

2. PRELIMINARIES: THE LOGICAL FOUNDATIONS OF CAUSAL

INFERENCE

The tools presented in this paper were developed in the context of nonpara-
metric Structural Equations Models (SEM), which is one among several ap-
proaches to causal inference, and goes back to (Haavelmo, 1943; Strotz and Wold,
1960). Other approaches include, for example, potential-outcomes (Rubin, 1974),
Structured Tree Graphs (Robins, 1986), decision analytic (Dawid, 2002), Causal
Bayesian Networks (Spirtes et al. (2000); (Pearl, 2000, Ch. 1), Bareinboim et al.
(2012)), and Settable Systems (White and Chalak, 2009). We will first describe
the generic features common to all such approaches, and then summarize how
these features are represented in SEM.3

2.1 Causal models as inference engines

From a logical viewpoint, causal analysis relies on causal assumptions that
cannot be deduced from (nonexperimental) data. Thus, every approach to causal
inference must provide a systematic way of encoding, testing and combining these
assumptions with data. Accordingly, we view causal modeling as an inference
engine that takes three inputs and produces three outputs. The inputs are:

I-1. A set A of qualitative causal assumptions which the investigator is prepared
to defend on scientific grounds, and a model MA that encodes these as-
sumptions mathematically. (In SEM, MA takes the form of a diagram or
a set of unspecified functions. A typical assumption is that no direct effect

3 We use the acronym SEM for both parametric and nonparametric representations though,
historically, SEM practitioners preferred the former (Bollen and Pearl, 2013). Pearl (2011) has
used the term Structural Causal Models (SCM) to eliminate this confusion. While comparisons
of the various approaches lie beyond the scope of this paper, we nevertheless propose that their
merits be judged by the extent to which each facilitates the functions described below.
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4 J. PEARL AND E. BAREINBOIM
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Fig 1. Causal analysis depicted as an inference engine converting assumptions (A), queries (Q),
and data (D) into logical implications (A∗), conditional claims (C), and data-fitness indices
(g(T )).

exists between a pair of variables (known as exclusion restriction), or that
an omitted factor, represented by an error term, is independent of other
such factors observed or unobserved, known as well as unknown.

I-2. A set Q of queries concerning causal or counterfactual relationships among
variables of interest. In linear SEM, Q concerned the magnitudes of struc-
tural coefficients but, in general, Q may address causal relations directly,
e.g.,

Q1 : What is the effect of treatment X on outcome Y ?

Q2 : Is this employer practicing gender discrimination?

In principle, each query Qi ∈ Q should be “well defined,” that is, com-
putable from any fully specified model M compatible with A. (See Defini-
tion 1 for formal characterization of a model, and also Section 2.4 for the
problem of identification in partially specified models.)

I-3. A set D of experimental or non-experimental data, governed by a joint prob-
ability distribution presumably consistent with A.

The outputs are

O-1. A set A∗ of statements which are the logical implications of A, separate
from the data at hand. For example, that X has no effect on Y if we hold
Z constant, or that Z is an instrument relative to {X, Y }.

O-2. A set C of data-dependent claims concerning the magnitudes or likelihoods
of the target queries in Q, each contingent on A. C may contain, for example,
the estimated mean and variance of a given structural parameter, or the
expected effect of a given intervention. Auxiliary to C, a causal model
should also yield an estimand Qi(P ) for each query in Q, or a determination
that Qi is not identifiable from P (Definition 2.)

imsart-sts ver. 2012/04/10 file: r400.tex date: May 10, 2014



EXTERNAL VALIDITY: FROM DO-CALCULUS TO TRANSPORTABILITY 5
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Fig 2. The diagrams associated with (a) the structural model of equation (2.1) and (b) the
modified model of equation (2.2), representing the intervention do(X = x0).

O-3. A list T of testable statistical implications of A (which may or may not be
part of O-2), and the degree g(Ti), Ti ∈ T , to which the data agrees with
each of those implications. A typical implication would be a conditional
independence assertion, or an equality constraint between two probabilistic
expressions. Testable constraints should be read from the model MA (see
Definition 3.), and used to confirm or disconfirm the model against the
data.

The structure of this inferential exercise is shown schematically in Figure 1. For
a comprehensive review on methodological issues, see (Pearl (2009a, 2012a)).

2.2 Assumptions in Nonparametric Models

A structural equation model (SEM) M is defined as follows:

Definition 1 (Structural Equation Model). (Pearl, 2000, p. 203)

1. A set U of background or exogenous variables, representing factors outside
the model, which nevertheless affect relationships within the model.

2. A set V = {V1, ..., Vn} of endogenous variables, assumed to be observable.
Each of these variables is functionally dependent on some subset PAi of
U ∪ V .

3. A set F of functions {f1, ..., fn} such that each fi determines the value of
Vi ∈ V , vi = fi(pai, u).

4. A joint probability distribution P (u) over U .

A simple SEM model is depicted in Fig. 2(a), which represents the following
three functions:

z = fZ(uZ)

x = fX(z, uX)(2.1)

y = fY (x, uY ),

where in this particular example, UZ , UX and UY are assumed to be jointly
independent but otherwise arbitrarily distributed. Whenever dependence exists
between any two exogenous variables, a bidirected arrow will be added to the
diagram to represent this dependence (e.g., Fig. 4)4. Each of these functions

4 More precisely, the absence of bidirected arrows implies marginal independences relative of
the respective exogenous variables. In other words, the set of all bidirected edges constitute an
i-map of P (U) (Richardson, 2003).
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6 J. PEARL AND E. BAREINBOIM

represents a causal process (or mechanism) that determines the value of the left
variable (output) from the values on the right variables (inputs), and is assumed
to be invariant unless explicitly intervened on. The absence of a variable from
the right-hand side of an equation encodes the assumption that nature ignores
that variable in the process of determining the value of the output variable.
For example, the absence of variable Z from the arguments of fY conveys the
empirical claim that variations in Z will leave Y unchanged, as long as variables
UY and X remain constant.

It is important to distinguish between a fully specified model in which P (U) and
the collection of functions F are specified and a partially specified model, usually
in the form of a diagram. The former entails one and only one observational
distribution P (V ); the latter entails a set of observational distributions P (V )
that are compatible with the graph (those that can be generated by specifying
⟨F,P (u)⟩).

2.3 Representing Interventions, Counterfactuals and Causal effects

This feature of invariance permits us to derive powerful claims about causal
effects and counterfactuals, even in nonparametric models, where all functions
and distributions remain unknown. This is done through a mathematical operator
called do(x), which simulates physical interventions by deleting certain functions
from the model, replacing them with a constant X = x, while keeping the rest
of the model unchanged (Haavelmo, 1943; Strotz and Wold, 1960; Pearl, 2012c).
For example, to emulate an intervention do(x0) that sets X to a constant x0

in model M of Figure 2(a), the equation for x in equation (2.1) is replaced by
x = x0, and we obtain a new model, Mx0 ,

z = fZ(uZ)

x = x0(2.2)

y = fY (x, uY ),

the graphical description of which is shown in Figure 2(b).
The joint distribution associated with this modified model, denoted P (z, y|do(x0))

describes the post-intervention distribution of variables Y and Z (also called
“controlled” or “experimental” distribution), to be distinguished from the prein-
tervention distribution, P (x, y, z), associated with the original model of equation
(2.1). For example, if X represents a treatment variable, Y a response variable,
and Z some covariate that affects the amount of treatment received, then the
distribution P (z, y|do(x0)) gives the proportion of individuals that would attain
response level Y = y and covariate level Z = z under the hypothetical situation
in which treatment X = x0 is administered uniformly to the population.5

In general, we can formally define the postintervention distribution by the
equation

(2.3) PM (y|do(x)) = PMx
(y)

5Equivalently, P (z, y|do(x0)) can be interpreted as the joint probability of (Z = z, Y = y)
under a randomized experiment among units receiving treatment level X = x0. Readers versed
in potential-outcome notations may interpret P (y|do(x), z) as the probability P (Yx = y|Zx = z),
where Yx is the potential outcome under treatment X = x.
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EXTERNAL VALIDITY: FROM DO-CALCULUS TO TRANSPORTABILITY 7

In words, in the framework of model M , the postintervention distribution of
outcome Y is defined as the probability that model Mx assigns to each outcome
level Y = y. From this distribution, which is readily computed from any fully
specified model M , we are able to assess treatment efficacy by comparing aspects
of this distribution at different levels of x0.6

2.4 Identification, d-separation and Causal Calculus

A central question in causal analysis is the question of identification of causal
queries (e.g., the effect of intervention do(X = x0)) from a combination of data
and a partially specified model, for example, when only the graph is given and
neither the functions F nor the distribution of U . In linear parametric settings, the
question of identification reduces to asking whether some model parameter, β, has
a unique solution in terms of the parameters of P (say the population covariance
matrix). In the nonparametric formulation, the notion of “has a unique solution”
does not directly apply since quantities such as Q(M) = P (y|do(x)) have no
parametric signature and are defined procedurally by simulating an intervention
in a causal model M , as in equation (2.2). The following definition captures the
requirement that Q be estimable from the data:

Definition 2 (Identifiability). A causal query Q(M) is identifiable, given a
set of assumptions A, if for any two (fully specified) models, M1 and M2, that
satisfy A, we have 7

(2.4) P (M1) = P (M2)⇒ Q(M1) = Q(M2)

In words, the functional details of M1 and M2 do not matter; what matters is
that the assumptions in A (e.g., those encoded in the diagram) would constrain
the variability of those details in such a way that equality of P ’s would entail
equality of Q’s. When this happens, Q depends on P only, and should therefore
be expressible in terms of the parameters of P .

When a query Q is given in the form of a do-expression, for example Q =
P (y|do(x), z), its identifiability can be decided systematically using an algebraic
procedure known as the do-calculus (Pearl, 1995). It consists of three inference
rules that permit us to map interventional and observational distributions when-
ever certain conditions hold in the causal diagram G.

The conditions that permit the application these inference rules can be read
off the diagrams using a graphical criterion known as d-separation (Pearl, 1988).

Definition 3 (d-separation).
A set S of nodes is said to block a path p if either

6Counterfactuals are defined similarly through the equation Yx(u) = YMx
(u) (see (Pearl,

2009b, Ch. 7)), but will not be needed for the discussions in this paper.
7An implication similar to (2.4) is used in the standard statistical definition of parameter

identification, where it conveys the uniqueness of a parameter set θ given a distribution Pθ

(Lehmann and Casella, 1998). To see the connection, one should think about the query Q =
P (y|do(x)) as a function Q = g(θ) where θ is the pair F∪P (u) that characterizes a fully specified
model M .
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8 J. PEARL AND E. BAREINBOIM

1. p contains at least one arrow-emitting node that is in S, or
2. p contains at least one collision node that is outside S and has no descendant

in S.

If S blocks all paths from set X to set Y , it is said to “d-separate X and Y,” and
then, it can be shown that variables X and Y are independent given S, written
X⊥⊥Y |S.8

D-separation reflects conditional independencies that hold in any distribution
P (v) that is compatible with the causal assumptions A embedded in the diagram.
To illustrate, the path UZ → Z → X → Y in Figure 2(a) is blocked by S = {Z}
and by S = {X}, since each emits an arrow along that path. Consequently we can
infer that the conditional independencies UZ⊥⊥Y |Z and UZ⊥⊥Y |X will be satisfied
in any probability function that this model can generate, regardless of how we
parametrize the arrows. Likewise, the path UZ → Z → X ← UX is blocked by
the null set {∅}, but it is not blocked by S = {Y } since Y is a descendant of the
collision node X. Consequently, the marginal independence UZ⊥⊥UX will hold in
the distribution, but UZ⊥⊥UX |Y may or may not hold.9

2.5 The Rules of do-calculus

Let X, Y , Z, and W be arbitrary disjoint sets of nodes in a causal DAG G.
We denote by GX the graph obtained by deleting from G all arrows pointing to
nodes in X. Likewise, we denote by GX the graph obtained by deleting from G

all arrows emerging from nodes in X. To represent the deletion of both incoming
and outgoing arrows, we use the notation GXZ .

The following three rules are valid for every interventional distribution com-
patible with G:

Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
X

(2.5)

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )G
XZ

(2.6)

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
XZ(W )

,(2.7)

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .
To establish identifiability of a query Q, one needs to repeatedly apply the

rules of do-calculus to Q, until the final expression no longer contains a do-
operator10; this renders it estimable from non-experimental data. The do-calculus

8See Hayduk et al. (2003), Glymour and Greenland (2008), and Pearl (2009b, p. 335) for a
gentle introduction to d-separation.

9This special handling of collision nodes (or colliders, e.g., Z → X ← UX) reflects a general
phenomenon known as Berkson’s paradox (Berkson, 1946), whereby observations on a common
consequence of two independent causes render those causes dependent. For example, the out-
comes of two independent coins are rendered dependent by the testimony that at least one of
them is a tail.

10Such derivations are illustrated in graphical details in (Pearl, 2009b, pp. 87).
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EXTERNAL VALIDITY: FROM DO-CALCULUS TO TRANSPORTABILITY 9

was proven to be complete for the identifiability of causal effects in the form
Q = P (y|do(x), z) (Shpitser and Pearl, 2006; Huang and Valtorta, 2006), which
means that if Q cannot be expressed in terms of the probability of observables P

by repeated application of these three rules, such an expression does not exist. In
other words, the query is not estimable from observational studies without making
further assumptions, for example, linearity, monotonicity, additivity, absence of
interactions, etc.

We shall see that, to establish transportability, the goal will be different; instead
of eliminating do-operators from the query expression, we will need to separate
them from a set of variables S that represent disparities between populations.

3. INFERENCE ACROSS POPULATIONS: MOTIVATING EXAMPLES

To motivate the treatment of Section 4, we first demonstrate some of the subtle
questions that transportability entails through three simple examples, informally
depicted in Fig. 3.

X Y X Y X Y

(c)(b)(a)

Z Unobserved Unobserved

Z

Z

Unobserved

Fig 3. Causal diagrams depicting Examples 1–3. In (a) Z represents “age.” In (b) Z represents
“linguistic skills” while age (in hollow circle) is unmeasured. In (c) Z represents a biological
marker situated between the treatment (X) and a disease (Y ).

Example 1. Consider the graph in Fig. 3(a) that represents cause-effect rela-
tionships in the pre-treatment population in Los Angeles. We conduct a random-
ized trial in Los Angeles and estimate the causal effect of exposure X on outcome
Y for every age group Z = z. 11 12 We now wish to generalize the results to the
population of New York City (NYC), but data alert us to the fact that the study
distribution P (x, y, z) in LA is significantly different from the one in NYC (call
the latter P ∗(x, y, z)). In particular, we notice that the average age in NYC is
significantly higher than that in LA. How are we to estimate the causal effect of
X on Y in NYC, denoted P ∗(y|do(x))?

Our natural inclination would be to assume that age-specific effects are in-
variant across cities and so, if the LA study provides us with (estimates of)

11Throughout the paper, each graph represents the causal structure of the population prior
to the treatment, hence X stands for the level of treatment taken by an individual out of free
choice.

12The arrow from Z to X represents the tendency of older people to seek treatment more
often than younger people, and the arrow from Z to Y represents the effect of age on the
outcome.
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10 J. PEARL AND E. BAREINBOIM

age-specific causal effects P (y|do(x), Z = z), the overall causal effect in NYC
should be

(3.1) P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z)

This transport formula combines experimental results obtained in LA, P (y|do(x), z),
with observational aspects of NYC population, P ∗(z), to obtain an experimental
claim P ∗(y|do(x)) about NYC.13

Our first task in this paper will be to explicate the assumptions that renders
this extrapolation valid. We ask, for example, what must we assume about other
confounding variables beside age, both latent and observed, for Eq. (3.1) to be
valid, or, would the same transport formula hold if Z was not age, but some
proxy for age, say, language proficiency. More intricate yet, what if Z stood for
an exposure-dependent variable, say hyper-tension level, that stands between X

and Y ?
Let us examine the proxy issue first.

Example 2. Let the variable Z in Example 1 stand for subjects language
proficiency, and let us assume that Z does not affect exposure (X) or outcome
(Y ), yet it correlates with both, being a proxy for age which is not measured in
either study (see Fig. 3(b)). Given the observed disparity P (z) ̸= P ∗(z), how are
we to estimate the causal effect P ∗(y|do(x)) for the target population of NYC
from the z-specific causal effect P (y|do(x), z) estimated at the study population
of LA?

The inequality P (z) ̸= P ∗(z) in this example may reflect either age difference or
differences in the way that Z correlates with age. If the two cities enjoy identical
age distributions and NYC residents acquire linguistic skills at a younger age,
then, since Z has no effect whatsoever on X and Y , the inequality P (z) ̸= P ∗(z)
can be ignored and, intuitively, the proper transport formula would be

(3.2) P ∗(y|do(x)) = P (y|do(x))

If, on the other hand, the conditional probabilities P (z|age) and P ∗(z|age) are
the same in both cities, and the inequality P (z) ̸= P ∗(z) reflects genuine age
differences, Eq. (3.2) is no longer valid, since the age difference may be a critical
factor in determining how people react to X. We see, therefore, that the choice of
the proper transport formula depends on the causal context in which population
differences are embedded.

This example also demonstrates why the invariance of Z-specific causal effects
should not be taken for granted. While justified in Example 1, with Z = age, it
fails in Example 2, in which Z was equated with “language skills.” Indeed, using

13At first glance, Eq. (3.1) may be regarded as a routine application of “standardization” or
“recalibration” – a statistical extrapolation method that can be traced back to a century-old tra-
dition in demography and political arithmetic (Westergaard, 1916; Yule, 1934; Lane and Nelder,
1982). On a second thought it raises the deeper question of why we consider age-specific effects
to be invariant across populations. See discussion following Example 2.
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EXTERNAL VALIDITY: FROM DO-CALCULUS TO TRANSPORTABILITY 11

Fig. 3(b) for guidance, the Z-specific effect of X on Y in NYC is given by:

P ∗(y|do(x), z) =
∑

age

P ∗(y|do(x), z, age)P ∗(age|do(x), z)

=
∑

age

P ∗(y|do(x), age)P ∗(age|z)

=
∑

age

P (y|do(x), age)P ∗(age|z)

Thus, if the two populations differ in the relation between age and skill, i.e.,

P (age|z) ̸= P ∗(age|z)

the skill-specific causal effect would differ as well.
The intuition is clear. A NYC person at skill level Z = z is likely to be in a

totally different age group from his skill-equals in Los Angeles and, since it is
age, not skill that shapes the way individuals respond to treatment, it is only
reasonable that Los Angeles residents would respond differently to treatment
than their NYC counterparts at the very same skill level.

The essential difference between Examples 1 and 2 is that age is normally
taken to be an exogenous variable (not assigned by other factors in the model)
while skills may be indicative of earlier factors (age, education, ethnicity) capable
of modifying the causal effect. Therefore, conditional on skill, the effect may be
different in the two populations.

Example 3. Examine the case where Z is a X-dependent variable, say a
disease bio-marker, standing on the causal pathways between X and Y as shown
in Fig. 3(c). Assume further that the disparity P (z|x) ̸= P ∗(z|x) is discovered
and that, again, both the average and the z-specific causal effect P (y|do(x), z) are
estimated in the LA experiment, for all levels of X and Z. Can we, based on
information given, estimate the average (or z-specific) causal effect in the target
population of NYC?

Here, Eq. (3.1) is wrong because the overall causal effect (in both LA and
NYC) is no longer a simple average of the z-specific causal effects. The correct
weighing rule is

P ∗(y|do(x)) =
∑

z

P ∗(y|do(x), z)P ∗(z|do(x))(3.3)

which reduces to (3.1) only in the special case where Z is unaffected by X. Eq.
(3.2) is also wrong because we can no longer argue, as we did in Ex. 2, that Z

does not affect Y , hence it can be ignored. Here, Z lies on the causal pathway
between X and Y so, clearly, it affects their relationship. What then is the correct
transport formula for this scenario?

To cast this example in a more realistic setting, let us assume that we wish to
use Z as a “surrogate endpoint” to predict the efficacy of treatment X on outcome
Y , where Y is too difficult and/or expensive to measure routinely (Prentice, 1989;
Ellenberg and Hamilton, 1989). Thus, instead of considering experimental and
observational studies conducted at two different locations, we consider two such
studies taking place at the same location, but at different times. In the first
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12 J. PEARL AND E. BAREINBOIM

study, we measure P (y, z|do(x)) and discover that Z is a good surrogate, namely,
knowing the effect of treatment on Z allows prediction of the effect of treatment
on the more clinically relevant outcome (Y ) (Joffe and Green, 2009). Once Z

is proclaimed a “surrogate endpoint”, it invites efforts to find direct means of
controlling Z. For example, if cholesterol level is found to be a predictor of heart
diseases in a long-run trial, drug manufacturers would rush to offer cholesterol-
reducing substances for public consumption. As a result, both the prior P (z)
and the treatment-dependent probability P (z|do(x)) would undergo a change,
resulting in P ∗(z) and P ∗(z|do(x)), respectively.

We now wish to re-assess the effect of the drug P ∗(y|do(x)) in the new popu-
lation and do it in the cheapest possible way, namely, by conducting an observa-
tional study to estimate P ∗(z, x), acknowledging that confounding exists between
X and Y and that the drug affects Y both directly and through Z, as shown in
Fig. 3(c).

Using a graphical representation to encode the assumptions articulated thus
far, and further assuming that the disparity observed stems only from a difference
in people’s susceptibility to X (and not due to a change in some unobservable
confounder), we will prove in Section 5 that the correct transport formula should
be

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z|x),(3.4)

which is different from both (3.1) and (3.2). It calls instead for the z-specific
effects to be re-weighted by the conditional probability P ∗(z|x), estimated in the
target population. 14

To see how the transportability problem fits into the general scheme of causal
analysis discussed in Section 2.1 (Fig. 1), we note that, in our case, the data
comes from two sources, experimental (from the study) and non-experimental
(from the target), assumptions are encoded in the form of selection diagrams,
and the query stands for the causal effect (e.g., P ∗(y|do(x))). Although this paper
does not discuss the goodness-of-fit problem, standard methods are available for
testing the compatibility of the selection diagram with the data available.

4. FORMALIZING TRANSPORTABILITY

4.1 Selection diagrams and selection variables

The pattern that emerges from the examples discussed in Section 3 indicates
that transportability is a causal, not statistical notion. In other words, the con-
ditions that license transport as well as the formulas through which results are
transported depend on the causal relations between the variables in the domain,
not merely on their statistics. For instance, it was important in Example 3 to
ascertain that the change in P (z|x) was due to the change in the way Z is af-
fected by X, but not due to a change in confounding conditions between the
two. This cannot be determined solely by comparing P (z|x) and P ∗(z|x). If X

and Z are confounded (e.g., Fig. 6(e)), it is quite possible for the inequality

14Quite often the possibility of running a second randomized experiment to estimate
P ∗(z|do(x)) is also available to investigators, though at a higher cost. In such cases, a transport
formula would be derivable under more relaxed assumptions, for example, allowing for X and
Z to be confounded.
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EXTERNAL VALIDITY: FROM DO-CALCULUS TO TRANSPORTABILITY 13

P (z|x) ̸= P ∗(z|x) to hold, reflecting differences in confounding, while the way
that Z is affected by X (i.e., P (z|do(x))) is the same in the two populations – a
different transport formula will then emerge for this case.

Consequently, licensing transportability requires knowledge of the mechanisms,
or processes, through which population differences come about; different local-
ization of these mechanisms yield different transport formulae. This can be seen
most vividly in Example 2 (Fig. 3(b)) where we reasoned that no re-weighing is
necessary if the disparity P (z) ̸= P ∗(z) originates with the way language profi-
ciency depends on age, while the age distribution itself remains the same. Yet,
because age is not measured, this condition cannot be detected in the probability
distribution P , and cannot be distinguished from an alternative condition,

P (age) ̸= P ∗(age) and P (z|age) = P ∗(z|age),

one that may require re–weighting according to to Eq. (3.1). In other words,
every probability distribution P (x, y, z) that is compatible with the process of
Fig. 3(b) is also compatible with that of Fig. 3(a) and, yet, the two processes
dictate different transport formulas.

Based on these observations, it is clear that if we are to represent formally
the differences between populations (similarly, between experimental settings or
environments), we must resort to a representation in which the causal mechanisms
are explicitly encoded and in which differences in populations are represented as
local modifications of those mechanisms.

To this end, we will use causal diagrams augmented with a set, S, of “selection
variables,” where each member of S corresponds to a mechanism by which the two
populations differ, and switching between the two populations will be represented
by conditioning on different values of these S variables.15

Intuitively, if P (v|do(x)) stands for the distribution of a set V of variables in
the experimental study (with X randomized) then we designate by P ∗(v|do(x))
the distribution of V if we were to conduct the study on population Π∗ instead
of Π. We now attribute the difference between the two to the action of a set S of
selection variables, and write16 17

P ∗(v|do(x)) = P (v|do(x), s∗).

The selection variables in S may represent all factors by which populations may
differ or that may “threaten” the transport of conclusions between populations.
For example, in Fig. 4(a) the age disparity P (z) ̸= P ∗(z) discussed in Example 1
will be represented by the inequality

P (z) ̸= P (z|s)

15Disparities among populations or sub-populations can also arise from differences in de-
sign; for example, if two samples are drawn by different criteria from a given population. The
problem of generalizing between two such sub-populations is usually called sampling selection
bias (Heckman, 1979; Hernán et al., 2004; Cole and Stuart, 2010; Pearl, 2013; Bareinboim et al.,
2014). In this paper, we deal only with nature-induced, not man-made disparities.

16Alternatively, one can represent the two populations’ distributions by P (v|do(x), s), and
P (v|do(x), s∗), respectively. The results, however, will be the same, since only the location of S

enters the analysis.
17Pearl (1993; 2009b, p. 71), Spirtes et al. (1993), and Dawid (2002), for example, use condi-

tioning on auxiliary variables to switch between experimental and observational studies. Dawid
(2002) further uses such variables to represent changes in parameters of probability distributions.
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14 J. PEARL AND E. BAREINBOIM

where S stands for all factors responsible for drawing subjects at age Z = z to
NYC rather than LA.

Of equal importance is the absence of an S variable pointing to Y in Fig. 4(a),
which encodes the assumption that age-specific effects are invariant across the
two populations.

This graphical representation, which we will call “selection diagrams” is defined
as follows:18

Definition 4 (Selection Diagram). Let ⟨M,M∗⟩ be a pair of structural causal
models (Definition 1) relative to domains ⟨Π,Π∗⟩, sharing a causal diagram G.
⟨M,M∗⟩ is said to induce a selection diagram D if D is constructed as follows:

1. Every edge in G is also an edge in D;
2. D contains an extra edge Si → Vi whenever there might exist a discrepancy

fi ̸= f∗

i or P (Ui) ̸= P ∗(Ui) between M and M∗.

In summary, the S-variables locate the mechanisms where structural discrep-
ancies between the two populations are suspected to take place. Alternatively,
the absence of a selection node pointing to a variable represents the assumption
that the mechanism responsible for assigning value to that variable is the same
in the two populations. In the extreme case, we could add selection nodes to all
variables, which means that we have no reason to believe that the populations
share any mechanism in common, and this, of course would inhibit any exchange
of information among the populations. The invariance assumptions between pop-
ulations, as we will see, will open the door for the transport of some experimental
findings.

S

Z

Z

S

X Y X Y

S

ZX Y

(c)(b)(a)

Fig 4. Selection diagrams depicting specific versions of Examples 1–3. In (a) the two populations
differ in age distributions. In (b) the populations differs in how Z depends on age (an unmeasured
variable, represented by the hollow circle) and the age distributions are the same. In (c) the
populations differ in how Z depends on X. In all diagrams, dashed arcs (e.g., X !""""# Y )
represent the presence of latent variables affecting both X and Y .

For clarity, we will represent the S variables by squares, as in Fig. 4, which uses
selection diagrams to encode the three examples discussed in Section 3. (Besides

18The assumption that there are no structural changes between domains can be relaxed
starting with D = G∗ and adding S-nodes following the same procedure as in Def. 4, while
enforcing acyclicity. In extreme cases in which the two domains differ in causal directionality
(Spirtes et al., 2000, pp. 298–99), acyclicity cannot be maintained. This complication as well as
one created when G is a edge-super set of G∗ require a more elaborated graphical representation
and lie beyond the scope of this paper.
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EXTERNAL VALIDITY: FROM DO-CALCULUS TO TRANSPORTABILITY 15

the S variables, these graphs also include additional latent variables, represented
by bidirected edges, which makes the examples more realistic.) In particular, Fig.
4(a) and 4(b) represent, respectively, two different mechanisms responsible for the
observed disparity P (z) ̸= P ∗(z). The first (Fig. 4(a)) dictates transport formula
(3.1), while the second (Fig. 4(b)) calls for direct, unadjusted transport (3.2).
This difference stems from the location of the S variables in the two diagrams. In
Fig. 4(a), the S variable represents unspecified factors that cause age differences
between the two populations, while in Fig. 4(b), S represents factors that cause
differences in reading skills (Z) while the age distribution itself (unobserved)
remains the same.

In this paper, we will address the issue of transportability assuming that scien-
tific knowledge about invariance of certain mechanisms is available and encoded
in the selection diagram through the S nodes. Such knowledge is, admittedly,
more demanding than that which shapes the structure of each causal diagram in
isolation. It is, however, a prerequisite for any attempt to justify transfer of find-
ings across populations, which makes selection diagrams a mathematical object
worthy of analysis

4.2 Transportability: Definitions and Examples

Using selection diagrams as the basic representational language, and harnessing
the concepts of intervention, do-calculus, and identifiability (Section 2), we can
now give the notion of transportability a formal definition.

Definition 5 (Transportability). Let D be a selection diagram relative to
domains ⟨Π,Π∗⟩. Let ⟨P, I⟩ be the pair of observational and interventional distri-
butions of Π, and P ∗ be the observational distribution of Π∗. The causal relation
R(Π∗) = P ∗(y|do(x), z) is said to be transportable from Π to Π∗ in D if R(Π∗)
is uniquely computable from P,P ∗, I in any model that induces D.

Two interesting connections between identifiability and transportability are
worth noting. First, note that all identifiable causal relations in D are also trans-
portable, because they can be computed directly from P ∗ and require no ex-
perimental information from Π. Second, note that given causal diagram G, one
can produce a selection diagram D such that identifiability in G is equivalent to
transportability in D. First set D = G, and then add selection nodes pointing to
all variables in D, which represents that the target domain does not share any
mechanism with its counterpart – this is equivalent to the problem of identifiabil-
ity because the only way to achieve transportability is to identify R from scratch
in the target population.

While the problems of identifiability and transportability are related, proofs of
non-transportability are more involved than those of non-identifiability for they
require one to demonstrate the non-existence of two competing models compatible
with D, agreeing on {P,P ∗, I}, and disagreeing on R(Π∗).

Definition 5 is declarative, and does not offer an effective method of demon-
strating transportability even in simple models. Theorem 1 offers such a method
using a sequence of derivations in do-calculus.

Theorem 1. Let D be the selection diagram characterizing two populations,
Π and Π∗, and S a set of selection variables in D. The relation R = P ∗(y|do(x), z)
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16 J. PEARL AND E. BAREINBOIM

is transportable from Π to Π∗ if the expression P (y|do(x), z, s) is reducible, using
the rules of do-calculus, to an expression in which S appears only as a conditioning
variable in do-free terms.

Proof. Every relation satisfying the condition of Theorem 1 can be written
as an algebraic combination of two kinds of terms, those that involve S and
those that do not. The former can be written as P ∗-terms and are estimable,
therefore, from observations on Π∗, as required by Definition 5. All other terms,
especially those involving do-operators, do not contain S; they are experimentally
identifiable therefore in Π.

This criterion was proven to be both sufficient and necessary for causal ef-
fects, namely R = P ∗(y|do(x)) (Bareinboim and Pearl, 2012). Theorem 1, though
procedural, does not specify the sequence of rules leading to the needed re-
duction when such a sequence exists. (Bareinboim and Pearl, 2013b) derived a
complete procedural solution for this, based on graphical method developed in
(Tian and Pearl, 2002; Shpitser and Pearl, 2006). Despite its completeness, how-
ever, the procedural solution is not trivial, and we take here an alternative route
to establish a simple and transparent procedure for confirming transportability,
guided by two recognizable subgoals.

Definition 6. (Trivial Transportability)
A causal relation R is said to be trivially transportable from Π to Π∗, if R(Π∗)
is identifiable from (G∗, P ∗).

This criterion amounts to an ordinary test of identifiability of causal relations
using graphs, as given by Definition 2. It permits us to estimate R(Π∗) directly
from observational studies on Π∗, un-aided by causal information from Π.

Example 4. Let R be the causal effect P ∗(y|do(x)) and let the selection di-
agram of Π and Π∗ be given by X → Y ← S, then R is trivially transportable,
since R(Π∗) = P ∗(y|x).

Another special case of transportability occurs when a causal relation has iden-
tical form in both domains – no recalibration is needed.

Definition 7. (Direct Transportability)
A causal relation R is said to be directly transportable from Π to Π∗, if R(Π∗) =
R(Π).

A graphical test for direct transportability of R = P ∗(y|do(x), z) follows from
do-calculus and reads: (S ⊥⊥ Y |X,Z)G

X
; in words, X blocks all paths from S

to Y once we remove all arrows pointing to X and condition on Z. As a concrete
example, this test is satisfied in Fig. 4(a), and therefore, the z-specific effects is
the same in both populations; it is directly transportable.
Remark.

The notion of “external validity” as defined by Manski (2007) (footnote 1) cor-
responds to Direct Transportability, for it requires that R retains its validity
without adjustment, as in Eq. (3.2). Such conditions preclude the use of informa-
tion from Π∗ to recalibrate R.
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Example 5. Let R be the causal effect of X on Y , and let D have a single
S node pointing to X, then R is directly transportable, because causal effects are
independent of the selection mechanism (see Pearl, 2009b, pp. 72–73).

Example 6. Let R be the z-specific causal effect of X on Y P ∗(y|do(x), z)
where Z is a set of variables, and P and P ∗ differ only in the conditional prob-
abilities P (z|pa(Z)) and P ∗(z|pa(Z)) such that (Z⊥⊥Y |pa(Z)), as shown in Fig.
4(b). Under these conditions, R is not directly transportable. However, the pa(Z)-
specific causal effects P ∗(y|do(x), pa(Z)) are directly transportable, and so is
P ∗(y|do(x)). Note that, due to the confounding arcs, none of these quantities
is identifiable.

5. TRANSPORTABILITY OF CAUSAL EFFECTS - A GRAPHICAL

CRITERION

We now state and prove two theorems that permit us to decide algorithmi-
cally, given a selection diagram, whether a relation is transportable between two
populations, and what the transport formula should be.

Theorem 2. Let D be the selection diagram characterizing two populations,
Π and Π∗, and S the set of selection variables in D. The strata-specific causal
effect P ∗(y|do(x), z) is transportable from Π to Π∗ if Z d-separates Y from S in
the X-manipulated version of D, that is, Z satisfies (Y⊥⊥S|Z,X)D

X
.

Proof.

P ∗(y|do(x), z) = P (y|do(x), z, s∗)

From Rule-1 of do-calculus we have: P (y|do(x), z, s∗) = P (y|do(x), z) whenever
Z satisfies (Y⊥⊥S|Z,X) in DX . This proves Theorem 2.

S

X Y

S

Z Z

(a)
Y

W

X
(b)

Fig 5. Selection diagrams illustrating S-admissibility. (a) has no S-admissible set while in (b),
W is S-admissible.

Definition 8. (S-admissibility)
A set T of variables satisfying (Y⊥⊥S|T,X) in DX will be called S-admissible
(with respect to the causal effect of X on Y ).

Corollary 1. The average causal effect P ∗(y|do(x)) is transportable from
Π to Π∗ if there exists a set Z of observed pre-treatment covariates that is S-
admissible. Moreover, the transport formula is given by the weighting of Eq. (3.1).
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18 J. PEARL AND E. BAREINBOIM

Example 7. The causal effect is transportable in Fig. 4(a), since Z is S-
admissible, and in Fig. 4(b), where the empty set is S-admissible. It is also trans-
portable by the same criterion in Fig. 5(b), where W is S-admissible, but not in
Fig. 5(a) where no S-admissible set exists.

Corollary 2. Any S variable that is pointing directly into X as in Fig.
6(a), or that is d-separated from Y in DX can be ignored.

This follows from the fact that the empty set is S-admissible relative to any
such S variable. Conceptually, the corollary reflects the understanding that dif-
ferences in propensity to receive treatment do not hinder the transportability of
treatment effects; the randomization used in the experimental study washes away
such differences.

We now generalize Theorem 2 to cases involving treatment-dependent Z vari-
ables, as in Fig. 4(c).

Theorem 3. The average causal effect P ∗(y|do(x)) is transportable from Π
to Π∗ if either one of the following conditions holds

1. P ∗(y|do(x)) is trivially transportable;
2. There exists a set of covariates, Z (possibly affected by X) such that Z is

S-admissible and for which P ∗(z|do(x)) is transportable;
3. There exists a set of covariates, W that satisfy (X ⊥⊥ Y |W )D

X(W )
and for

which P ∗(w|do(x)) is transportable.

Proof. 1. Condition (1) entails transportability.
2. If condition (2) holds, it implies

P ∗(y|do(x)) = P (y|do(x), s)(5.1)

=
∑

z

P (y|do(x), z, s)P (z|do(x), s)(5.2)

=
∑

z

P (y|do(x), z)P ∗(z|do(x))(5.3)

We now note that the transportability of P (z|do(x)) should reduce P ∗(z|do(x))
to a star-free expression and would render P ∗(y|do(x)) transportable.

3. If condition (3) holds, it implies

P ∗(y|do(x)) =P (y|do(x), s)(5.4)

=
∑

w

P (y|do(x), w, s)P (w|do(x), s)(5.5)

=
∑

w

P (y|w, s)P ∗(w|do(x))(5.6)

(by Rule-3 of do-calculus)

=
∑

w

P ∗(y|w)P ∗(w|do(x))(5.7)

We similarly note that the transportability of P ∗(w|do(x)) should reduce
P (w|do(x), s) to a star-free expression and would render P ∗(y|do(x)) trans-
portable. This proves Theorem 3.
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Z YZ YX

(c)

S

S

X Z YW
(d)

S

X Z Y

(e)

S

S S

(a)

(f)

YZX

(b)

YY XX

Fig 6. Selection diagrams illustrating transportability. The causal effect P (y|do(x)) is (trivially)
transportable in (c) but not in (b) and (f). It is transportable in (a), (d), and (e) (see Corollary
2).

Example 8. To illustrate the application of Theorem 3, let us apply it to Fig.
4(c), which corresponds to the surrogate endpoint problem discussed in Section
3 (Example 3). Our goal is to estimate P ∗(y|do(x)) – the effect of X on Y in
the new population created by changes in how Z responds to X. The structure
of the problem permits us to satisfy condition 2 of the theorem, since Z is S-
admissible and P ∗(z|do(x)) is trivially transportable. The former can be seen from
(S ⊥⊥ Y |X,Z)G

X
, hence P ∗(y|do(x), z) = P (y|do(x), z)); the latter can be seen

from the fact that X and Z and unconfounded, hence P ∗(z|do(x)) = P ∗(z|x).
Putting the two together, we get

(5.8) P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z|x),

which proves Eq. (3.4).

Remark.

The test entailed by Theorem 3 is recursive, since the transportability of one
causal effect depends on that of another. However, given that the diagram is
finite and acyclic, the sets Z and W needed in conditions 2 and 3 of Theorem
3 would become closer and closer to X, and the iterative process will terminate
after a finite number of steps. This occurs because the causal effects P ∗(z|do(x))
(likewise, P ∗(w|do(x))) is trivially transportable and equals P (z) for any Z node
that is not a descendant of X. Thus, the need for reiteration applies only to those
members of Z that lie on the causal pathways from X to Y . Note further that
the analyst need not terminate the procedure upon satisfying the condition in
Theorem 3. If one wishes to reduce the number of experiments, it can continue
until no further reduction is feasible.

Example 9. Fig. 6(d) requires that we invoke both conditions of Theorem 3,
iteratively. To satisfy condition 2 we note that Z is S-admissible, and we need to
prove the transportability of P ∗(z|do(x)). To do that, we invoke condition 3 and
note that W d-separates X from Z in D. There remains to confirm the trans-
portability of P ∗(w|do(x)), but this is guaranteed by the fact that the empty set
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S

S

ZWX Y

V

T

U

Fig 7. Selection diagram in which the causal effect is shown to be transportable in multiple
iterations of Theorem 3 (see Appendix 1).

is S-admissible relative to W , since (W ⊥⊥ S). Hence, by Theorem 2 (replac-
ing Y with W ) P ∗(w|do(x)) is transportable, which bestows transportability on
P ∗(y|do(x)). Thus, the final transport formula (derived formally in Appendix 1)
is:

(5.9) P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑

w

P (w|do(x))P ∗(z|w)

The first two factors of the expression are estimable in the experimental study, and
the third through observational studies on the target population. Note that the joint
effect P (y,w, z|do(x)) need not be estimated in the experiment; a decomposition
that results in decrease of measurement cost and sampling variability.

A similar analysis proves the transportability of the causal effect in Fig. 6(e)
(see Pearl and Bareinboim (2011)). The model of Fig. 6(f) however does not
allow for the transportability of P ∗(y|do(x)) as witnessed by the absence of S-
admissible set in the diagram, and the inapplicability of condition 3 of Theorem
3.

Example 10. To illustrate the power of Theorem 3 in discerning transporta-
bility and deriving transport formulae, Fig. 7 represents a more intricate selection
diagram, which requires several iteration to discern transportability. The transport
formula for this diagram is given by (derived formally in Appendix 1):

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t)(5.10)

The main power of this formula is to guide investigators in deciding what
measurements need be taken in both the experimental study and the target pop-
ulation. It asserts, for example, that variables U and V need not be measured.
It likewise asserts that the W -specific causal effects need not be estimated in
the experimental study and only the conditional probabilities P ∗(z|w) and P ∗(t)
need be estimated in the target population. The derivation of this formulae is
given in Appendix 1.

Despite its power, Theorem 3 in not complete, namely, it is not guaranteed to
approve all transportable relations or to disapprove all non-transportable ones.

imsart-sts ver. 2012/04/10 file: r400.tex date: May 10, 2014



EXTERNAL VALIDITY: FROM DO-CALCULUS TO TRANSPORTABILITY 21

An example of the former is contrived in Bareinboim and Pearl (2012), where
an alternative, necessary and sufficient condition is established in both graphical
and algorithmic form. Theorem 3 provides, nevertheless, a simple and powerful
method of establishing transportability in practice.

6. CONCLUSIONS

Given judgements of how target populations may differ from those under study,
the paper offers a formal representational language for making these assessments
precise and for deciding whether causal relations in the target population can
be inferred from those obtained in an experimental study. When such inference
is possible, the criteria provided by Theorems 2 and 3 yield transport formulae,
namely, principled ways of calibrating the transported relations so as to properly
account for differences in the populations. These transport formulae enable the
investigator to select the essential measurements in both the experimental and
observational studies, and thus minimize measurement costs and sample variabil-
ity.

The inferences licensed by Theorem 2 and 3 represent worst case analysis,
since we have assumed, in the tradition of nonparametric modeling, that every
variable may potentially be an effect-modifier (or moderator.) If one is willing
to assume that certain relationships are non interactive, or monotonic as is the
case in additive models, then additional transport licenses may be issued, beyond
those sanctioned by Theorems 2 and 3.

While the results of this paper concern the transfer of causal information from
experimental to observational studies, the method can also benefit in transporting
statistical findings from one observational study to another (Pearl and Bareinboim
(2011)). The rationale for such transfer is two fold. First, information from the
first study may enable researchers to avoid repeated measurement of certain vari-
ables in the target population. Second, by pooling data from both populations,
we increase the precision in which their commonalities are estimated and, indi-
rectly, also increase the precision by which the target relationship is transported.
Substantial reduction in sampling variability can be thus achieved through this
decomposition (Pearl (2012b)).

Clearly, the same data-sharing philosophy can be used to guide Meta-Analysis
(Glass, 1976; Hedges and Olkin, 1985; Rosenthal, 1995; Owen, 2009), where one
attempts to combine results from many experimental and observational studies,
each conducted on a different population and under a different set of conditions,
so as to construct an aggregate measure of effect size that is “better,” in some
formal sense, than any one study in isolation. While traditional approaches aims
to average out differences between studies, our theory exploits the commonalities
among the populations studied and the target population. By pooling together
commonalities and discarding areas of disparity we gain maximum use of the
available samples (Bareinboim and Pearl (2013c)).

To be of immediate use, our method relies on the assumption that the analyst
is in possession of sufficient background knowledge to determine, at least quali-
tatively, where two populations may differ from one another. This knowledge is
not vastly different from that required in any principled approach to causation in
observational studies, since judgement about possible effects of omitted factors
is crucial in any such analysis. Whereas such knowledge may only be partially
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available, the analysis presented in this paper is nevertheless essential for un-
derstanding what knowledge is needed for the task to succeed and how sensitive
conclusions are to knowledge that we do not possess.

Real-life situations will be marred, of course, with additional complications
that were not addressed directly in this paper; for example, measurement errors,
selection bias, finite sample variability, uncertainty about the graph structure, and
the possible existence of unmeasured confounders between any two nodes in the
diagram. Such issues are not unique to transportability; they plague any problem
in causal analysis, regardless of whether they are represented formally or ignored
by avoiding formalism. The methods offered in this paper are representative of
what theory permits us to do in ideal situations, and the graphical representation
presented in this paper makes the assumptions explicit and transparent. Trans-
parency is essential for reaching tentative consensus among researchers and for
facilitating discussions to distinguish that which is deemed plausible and impor-
tant from that which is negligible or implausible.

Finally, it is important to mention two recent extensions of the results reported
in this article. (Bareinboim and Pearl (2013a)) have addressed the problem of
transportability in cases where only a limited set of experiments can be con-
ducted at the source environment. Subsequently, the results were generalized to
the problem of meta-transportability, that is, pooling experimental results from
multiple and disparate sources to synthesize a consistent estimate of a causal
relation at yet another environment, potentially different from each of the former
(Bareinboim and Pearl (2013c)). It is shown that such synthesis may be feasible
from multiple sources even in cases where it is not feasible from any one source
in isolation.
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APPENDIX 1

Derivation of the transport formula for the causal effect in the model of Fig.
6(d), (Eq. (5.9)),

P ∗(y|do(x)) =P (y|do(x), s)

=
∑

z

P (y|do(x), s, z)P (z|do(x), s)

=
∑

z

P (y|do(x), z)P (z|do(x), s)

(

2nd condition of thm. 3, S-admissibility of Z of CE(X,Y )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|do(x), w, s)P (w|do(x), s)

=
∑

z

P (y|do(x), z)
∑

w

P (z|w, s)P (w|do(x), s)

(

3rd condition of thm. 3, (X ⊥⊥ Z|W,S)D
X(W )

)

=
∑

z

P (y|do(x), z)
∑

w

P (z|w, s)P (w|do(x))

(

2nd condition of thm. 3, S-admissibility of the empty set {} of CE(X,W )
)

=
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)P (w|do(x))

(6.1)
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Derivation of the transport formula for the causal effect in the model of Fig. 7,
(Eq. (5.10)).

P ∗(y|do(x)) =P (y|do(x), s, s′) =
∑

z

P (y|do(x), s, s′, z)P (z|do(x), s, s′)

=
∑

z

P (y|do(x), z)P (z|do(x), s, s′)

(

2nd condition of thm. 3, S-admissibility of Z of CE(X,Z)
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|do(x), s, s′, w)P (w|do(x), s, s′)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)P (w|do(x), s, s′)

(

3rd condition of thm. 3, (X ⊥⊥ Z|W,S, S′)D
X(W )

)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), s, s′, t)P (t|do(x), s, s′)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), t)P (t|do(x), s, s′)

(

2nd condition of thm. 3, S-admissibility of T on CE(X,W )
)

=
∑

z

P (y|do(x), z)
∑

w

P (z|s, s′, w)
∑

t

P (w|do(x), t)P (t|s, s′)

(

1st condition of thm. 3 / 3rd rule of do-calculus, (X ⊥⊥ T |S, S′)D
)

=
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t)

(6.2)
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