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The research questions that motivate most quantitative studies in the
health, social, and behavioral sciences are not statistical but causal in
nature. For example, what is the efficacy of a given treatment or program
in a given population? Whether data can prove an employer guilty of hir-
ing discrimination? What fraction of past crimes could have been avoided
by a given policy? What was the cause of death of a given individual in a
specific incident? These are causal questions because they require some
knowledge of the data-generating process; they cannot be computed from
the data alone.

Solving causal problems mathematically requires certain extensions in
the standard mathematical language of statistics, and these extensions are
not generally emphasized in the mainstream literature and education. As
a result, a profound tension exists between the scientific questions that a
researcher wishes to ask and the type of questions traditional analysis can
accommodate, let alone answer. Bluntly, scientists speak causation, and
statistics delivers correlation. This tension has resulted in several ethical
issues concerning the statement of a problem, the implementation of a
study, and the reporting of finding. This chapter describes a simple causal
extension to the language of statistics, shows how it leads to a coherent
methodology that avoids the ethical problems mentioned, and permits
researchers to benefit from the many results that causal analysis has pro-
duced in the past 2 decades.

Following an introductory section that defines the demarcation line
between associational and causal analysis, the rest of the chapter will
deal with the estimation of three types of causal queries: (a) queries about
the effect of potential interventions, (b) queries about counterfactuals (e.g.,
whether event x would occur had event y been different), and (c) queries
about the direct and indirect effects.
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From Associational to Causal Analysis:
Distinctions and Barriers

The Basic Distinction: Coping With Change

The aim of standard statistical analysis, typified by regression, estima-
tion, and hypothesis testing techniques, is to assess parameters of a dis-
tribution from samples drawn of that distribution. With the help of such
parameters, one can infer associations among variables, estimate probabil-
ities of past and future events, and update probabilities of events in light
of new evidence or new measurements. These tasks are managed well by
standard statistical analysis so long as experimental conditions remain
the same. Causal analysis goes one step further; its aim is to infer not only
probabilities of events under static conditions but also the dynamics of
events under changing conditions, for example, changes induced by treat-
ments or external interventions.

This distinction implies that causal and associational concepts do not
mix. There is nothing in the joint distribution of symptoms and diseases
to tell us whether curing the former would or would not cure the latter.
More generally, there is nothing in a distribution function to tell us how
that distribution would differ if external conditions were to change—say
from observational to experimental setup—because the laws of prob-
ability theory do not dictate how one property of a distribution ought to
change when another property is modified. This information must be pro-
vided by causal assumptions that identify those relationships that remain
invariant when external conditions change.

These considerations imply that the slogan “correlation does not imply
causation” can be translated into a useful principle: One cannot substanti-
ate causal claims from associations alone, even at the population level—
behind every causal conclusion there must lie some causal assumption
that is not testable in observational studies.!

Formulating the Basic Distinction

A formal demarcation line that makes the distinction between associa-
tional and causal concepts crisp and easy to apply can be formulated as
follows. An associational concept is any relationship that can be defined
in terms of a joint distribution of observed variables, and a causal con-
cept is any relationship that cannot be defined from the distribution
alone. Examples of associational concepts are correlation, regression,

! The methodology of “causal discovery” (Pearl, 2000b, Chapter 2; Spirtes, Glymour, &
Scheines, 2000) is likewise based on the causal assumption of “faithfulness” or “stability”
but will not be discussed in this chapter.
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dependence, conditional independence, likelihood, collapsibility, pro-
pensity score, risk ratio, odds ratio, marginalization, Granger causal-
ity, conditionalization, “controlling for,” and so on. Examples of causal
concepts are randomization, influence, effect, confounding, “holding
constant,” disturbance, spurious correlation, faithfulness/stability, instru-
mental variables, intervention, explanation, mediation, and attribution.
The former can, whereas the latter cannot, be defined in terms of distribu-
tion functions.

This demarcation line is extremely useful in tracing the assumptions
that are needed for substantiating various types of scientific claims. Every
claim invoking causal concepts must rely on some premises that invoke
such concepts; it cannot be inferred from, or even defined in, terms of
statistical associations alone.

Ramifications of the Basic Distinction

This principle has far-reaching consequences that are not generally rec-
ognized in the standard statistical literature. Many researchers, for exam-
ple, are still convinced that confounding is solidly founded in standard,
frequentist statistics, and that it can be given an associational definition
saying (roughly): “U is a potential confounder for examining the effect
of treatment X on outcome Y when both U and X and U and Y are not
independent.” That this definition and all its many variants must fail
(Pearl, 2009a, Section 6.2)* is obvious from the demarcation line above;
if confounding were definable in terms of statistical associations, we
would have been able to identify confounders from features of nonex-
perimental data, adjust for those confounders, and obtain unbiased esti-
mates of causal effects. This would have violated our golden rule: Behind
any causal conclusion there must be some causal assumption, untested
in observational studies. Hence the definition must be false. Therefore,
to the bitter disappointment of generations of epidemiologists and social
science researchers, confounding bias cannot be detected or corrected by
statistical methods alone; one must make some judgmental assumptions
regarding causal relationships in the problem before an adjustment (e.g.,
by stratification) can safely correct for confounding bias.

This distinction implies that causal relations cannot be expressed in the
language of probability and hence that any mathematical approach to causal
analysis must acquire new notation for expressing causal relations—proba-
bility calculus is insufficient. To illustrate, the syntax of probability calculus
does not permit us to express the simple fact that “symptoms do not cause
diseases,” let alone draw mathematical conclusions from such facts. All

2 Any intermediate variable U on a causal path from X to Y satisfies this definition, without
confounding the effect of X on Y.
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~ we can say is that two events are dependent—meaning that if we find one,
we can expect to encounter the other, but we cannot distinguish statistical
dependence, quantified by the conditional probability P(disease | symptom)
from causal dependence, for which we have no expression in standard prob-
ability calculus. Therefore, scientists seeking to express causal relationships
must supplement the language of probability with a vocabulary for causal-
ity, one in which the symbolic representation for the relation “symptoms
cause disease” is distinct from the symbolic representation of “symptoms
are associated with disease.”

Two Mental Barriers: Untested Assumptions and New Notation

The preceding two requirements: (a) to commence causal analysis with
untested,? theoretically or judgmentally based assumptions, and (b) to
extend the syntax of probability calculus to articulate such assumptions,
constitute the two main sources of confusion in the ethics of formulating,
conducting, and reporting empirical studies.

Associational assumptions, even untested, are testable in principle,
given a sufficiently large sample and sufficiently fine measurements.
Causal assumptions, in contrast, cannot be verified even in principle,
unless one resorts to experimental control. This difference stands out in
Bayesian analysis. Although the priors that Bayesians commonly assign to
statistical parameters are untested quantities, the sensitivity to these pri-
ors tends to diminish with increasing sample size. In contrast, sensitivity
to prior causal assumptions, say that treatment does not change gender,
remains substantial regardless of sample size.

This makes it doubly important that the notation we use for expressing
causal assumptions be cognitively meaningful and unambiguous so that
one can clearly judge the plausibility or inevitability of the assumptions
articulated. Statisticians can no longer ignore the mental representation in
which scientists store experiential knowledge because it is this representa-
tion and the language used to access that representation that determine the
reliability of the judgments on which the analysis so crucially depends.

How does one recognize causal expressions in the statistical literature?
Those versed in the potential-outcome notation (Holland, 1988; Neyman,
1923; Rubin, 1974) can recognize such expressions through the subscripts
that are attached to counterfactual events and variables, for example, Y, (1)
or Z,,. Some authors use parenthetical expressions, for example, Y(0), Y(1),
Y(x, u), or Z(x, y). The expression Y,(), for example, may stand for the
value that outcome Y would take in individual u, had treatment X been
at level x. If u is chosen at random, Y, is a random variable, and one can
talk about the probability that Y, would attain a value y in the population,

3 “ 1 . . . .
By untgsted I'mean untested using frequency data in nonexperimental studies.



The Science and Ethics of Causal Modeling 387

written P(Y, = y). Alternatively, Pearl (1995) used expressions of the form
P(Y =y | set(X =x) or P(Y =y | do(X = x)) to denote the probability (or
frequency) that event (Y = y) would occur if treatment condition (X = x)
were enforced uniformly over the population.® Still a third notation that
distinguishes causal expressions is provided by graphical models, where
the arrows convey causal directionality.®

However, few have taken seriously the textbook requirement that any
introduction of new notation must entail a systematic definition of the
syntax and semantics that govern the notation. Moreover, in the bulk of
the statistical literature before 2000, causal claims rarely appear in the
mathematics. They surface only in the verbal interpretation that investi-
gators occasionally attach to certain statistical parameters (e.g., regression
coefficients), and in the verbal description with which investigators justify
assumptions. For example, the assumption that a covariate not be affected
by a treatment—a necessary assumptlon for the control of confounding
(Cox, 1958, p. 48)—is expressed in plain English, not in a mathematical
expression.

The next section provides a conceptualization that overcomes these
mental barriers; it offers both a friendly mathematical machinery for
cause-effect analysis and a formal foundation for counterfactual analysis.

Structural Causal Models, Diagrams,
Causal Effects, and Counterfactuals

Structural Equations as Oracles for Causes and Counterfactuals

How can one express mathematically the common understanding that
symptoms do not cause diseases? The earliest attempt to formulate such
a relationship mathematically was made in the 1920s by the geneticist
Sewall Wright (1921), who used a combination of equations and graphs. -
For example, if X stands for a disease variable and Y stands for a certain
symptom of the disease, Wright would write a linear equation:

y=Px+u (15.1)

4 Clearly, P(Y =y | do(X = x)) is equivalent to P(Y, =y). This is what we normally assess in a
controlled experiment, with X randomized, in which the distribution of Y is estimated for
each level x of X.

5 These notational clues should be useful for detecting inadequate definitions of causal
concepts; any definition of confounding, randomization, or instrumental variables that
is cast in standard probability expressions, void of graphs, counterfactual subscripts, or
do(+) operators, can safely be discarded as inadequate.
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where x stands for the level (or severity) of the disease, y stands for the level
(or severity) of the symptom, and u stands for all factors, other than the dis-
ease in question, that could possibly affect Y. In interpreting this equation
one should think of a physical process whereby Nature examines the values
of x and u and, accordingly, assigns variable Y the value y = fx + u.

To express the directionality inherent in this assignment process, Wright
augmented the equation with a diagram, later called “path diagram,”
in which arrows are drawn from (perceived) causes to their (perceived)
effects, and, more importantly, the absence of an arrow makes the empiri-
cal claim that the value Nature assigns to one variable is indifferent to that
taken by another (see Figure 15.1).

The variables V and U are called “exogenous”; they represent observed
or unobserved background factors that the modeler decides to keep unex-
plained, that is, factors that influence but are not influenced by the other
variables (called “endogenous”) in the model.

If correlation is judged possible between two exogenous variables, U and
V, it is customary to connect them by a dashed double arrow, as shown in
Figure 15.1b.

To summarize, path diagrams encode causal assumptions via miss-
ing arrows, representing claims of zero influence, and missing double
arrows (e.g., between V and U), representing the (causal) assumption
Coo(U, V) =0.

The generalization to nonlinear system of equations is straightforward.
For example, the nonparametric interpretation of the diagram of Figure
15.2a corresponds to a set of three functions, each corresponding to one of
the observed variables: ‘

z = fz(w)
x = fi(z,V)
y = flx,u) (15.2)

where in this particular example, W, V, and U are assumed to be jointly
independent but, otherwise, arbitrarily distributed.

v u \% U
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FIGURE 15.1

A s:mele structural equation model and its associated diagrams. Unobserved exogenous
variables are connected by dashed arrows.
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(a) The diagram associated with the structural model of Equation 15.2. (b) The diagram
associated with the modified model, M, , of Equation 15.3, representing the intervention
do(X = x).

Remarkably, unknown to most economists and philosophers,® structural
equation models provide a formal interpretation and symbolic machinery
for analyzing counterfactual relationships of the type: “Y would be y had
X been x in situation U = u,” denoted Y, (1) = y. Here U represents the vec-
tor of all exogenous variables.”

The key idea is to interpret the phrase “had X been x,” as an instruction
to modify the original model and replace the equation for X by a constant
X, yielding the submodel, M, ,

z = f,(w)
X =x,
y = fylx,u) (15.3)

the graphical description of which is shown in Figure 15.2b.

This replacement permits the constant x, to differ from the actual value
of X, namely, fy (z, v), without rendering the system of equations inconsis-
tent, thus yielding a formal interpretation of counterfactuals in multistage
models, where the dependent variable in one equation may be an inde-
pendent variable in another (Balke & Pearl, 1994; Pearl, 2000). In general,
we can formally define the postintervention distribution by the equation:

Py(y | do(x))=P,, (y). (15.4)

In words: In the framework of model M, the postintervention distribution
of outcome Y is defined as the probability that model M, assigns to each
outcome level Y =v.

¢ Connections between structural equations and a restricted class of counterfactuals were
recognized by Simon and Rescher (1966). These were later generalized by Balke and Pearl
(1995), who used modified models to permit counterfactual conditioning on dependent
variables. ‘

7 Because U = u may contain detailed information about a situation or an individual, Y, ()
is related to what philosophers called “token causation,” whereas P(Y, = y|Z = z) char-
acterizes “Type causation,” that is, the tendency of X to influence Y in a subpopulation
characterized by Z =z.
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From this distribution, one is able to assess treatment efficacy by com-
paring aspects of this distribution at different levels of x,. A common mea-
sure of treatment efficacy is the difference

E(Y | do(x) — EY | do(x,) (15.5)

where x} and x, are two levels (or types) of treatment selected for compari-
son. For example, to compute E(Y, ), the expected effect of setting X 0 X (also
called the average causal effect of X on Y, denoted E(Y | do(x,)) or, generi-
cally, E(Y | do(xp)), we solve Equation 15.3 for Y in terms of the exogenous
variables, yielding Y, =fy(xo 1)), and average over U and V. It is easy to show
that in this simple system, the answer can be obtained without knowing

the form of the function fy(x, 1) or the distribution P(u). The answer is given
by:

E(Y,) = E(Y | do(X = x,)) = E(Y | %)

which is estimable from the observed distribution P(x, y, z). This result
hinges on the assumption that W, V, and U are mutually independent and
on the topology of the graph (e.g., that there is no direct arrow from Z to Y).

In general, it can be shown (Pearl, 2009a, Chapter 3) that, whenever the
graph is Markovian (i, acyclic with independent exogenous variables)
~the postinterventional distribution P(Y =y | do(X =x)) is given by the fol-
lowing expression:

P(Y =y | do(X = x)) = 2, P(y | £, )P(}) (15.6)

where T is the set of direct causes of X (also called “parents”) in the graph.
Again, we see that all factors on the right side are estimable from the dis-
tribution P of observed variables, and hence the counterfactual probabil-
ity P(Y, = y) is estimable with mere partial knowledge of the generating
process—the topology of the graph and independence of the exogenous
variable are all that is needed.

When some variables in the graph (e.g., the parents of X) are unobserved,
we may not be able to estimate (or “identify” as it is called) the postinter-
vention distribution P(y | do(x)) by simple conditioning, and more sophis-
ticated methods would be required. Likewise, when the query of interest
involves several hypothetical worlds simultaneously, for example, P(Y; =
y | Y, =y"), the Markovian assumption may not suffice for identification
and additional assumptions, touching on the form of the data-generating
functions (e.g,, monotonicity) may need to be invoked. These issues will
be discussed in the “Confounding and Causal Effect Estimation” and “An
Example: Mediation, Direct and Indirect Effects” sections.
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This interpretation of counterfactuals, cast as solutions to modified
systems of equations, provides the conceptual and formal link between
structural equation models, used in economics and social science, and
the Neyman—Rubin potential-outcome framework to be discussed in the
“Relation to Potential Outcomes and the Demystification of ‘Ignorability””
section. But first we discuss two longstanding problems that have been
completely resolved in purely graphical terms, without delving into alge-
braic techniques.

Confounding and Causal Effect Estimation

Although good statisticians have always known that the elucidation
of causal relationships from observational studies must be shaped by
assumptions about how the data were generated, the relative roles of
assumptions and data, and ways of using those assumptions to eliminate
confounding bias, have been a subject of much controversy.® The struc-
tural framework of the “Structural Equations as Oracles for Causes and
Counterfactural” section puts these controversies to rest.

Covariate Selection: The Back-Door Criterion

Consider an observational study where we wish to find the effect of X on
Y, for example, treatment on response, and assume that the factors deemed
relevant to the problem are structured as in Figure 15.3—some are affect-
ing the response; some are affecting the treatment; and some are affecting
both treatment and response.

Some of these factors may be unmeasurable, such as genetic trait or life-
style; others are measurable, such as gender, age, and salary level. Our
problem is to select a subset of these factors for measurement and adjust-
ment, namely, that if we compare treated versus untreated subjects having
the same values of the selected factors, we get the correct treatment effect
in that subpopulation of subjects. Such a set of “deconfounding” factors
is called a “sufficient set” or a set “admissible for adjustment.” The prob-
lem of defining a sufficient set, let alone finding one, has baffled epidemi-
ologists and social scientists for decades (see Greenland, Pearl, & Robins,
1999; Pearl, 1998, 2003, for review).

® A recent flare-up of this controversy can be found in Pearl (2009c, 2009d, 2010c) and
Rubin (2009), which demonstrate the difficulties statisticians encounter in articulating
causal assumptions and typical mistakes that arise from pursuing causal analysis within
the structure-less “missing data” paradigm.
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FIGURE 15.3
Graphical model illustrating the back-door criterion. Error terms are not shown explicitly.

The following criterion, named “back-door” in Pearl (1993), settles this
problem by providing a graphical method of selecting a sufficient set of
factors for adjustment. It states that a set 5 is admissible for adjustment if
two conditions hold:

1. No element of S is a descendant of X.

2. The elements of S “block” all “back-door” paths from X to Y,
namely, all paths that end with an arrow pointing to X7

Based on this criterion we see, for example, that in the sets {Z,, Z,, Z3},
(Z,, Z5}, and {W,, Z3}, each is sufficient for adjustment because each blocks
all back-door paths between X and Y. The set {Z,}, however, is not suffi-
cient for adjustment because, as explained in footnote 3, it does not block
the path X < Wy Z, =2y 2, > W, > Y.

The implication of finding a sufficient set 5 is that stratifying on S is
guaranteed to remove all confounding bias relative to the causal effect
of X on Y. In other words, it renders the causal effect of X on Y estimable,
via

P(Y =y | do(X = x))
=Y PY =y|X=2x5=5PS = 5s) (15.7)

Because all factors on the right side of the equation are estimable (e.g., by
regression) from the preinterventional data, the causal effect can likewise
be estimated from such data without bias.

The back-door criterion allows us to write Equation 15.7 directly, after
selecting a sufficient set S from the diagram, without resorting to any
algebraic manipulation. The selection criterion can be applied system-
atically to diagrams of any size and shape, thus freeing analysts from

% In this criterion, a set S of nodes is said to block a path p if either (a) p contains at least one
arrow-emitting node that isin S, or (b) p contains at least one collision node that is outside
S and has no descendant in S. (See Pearl, 2000b, pp. 16-17, 335-337)
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judging whether “X is conditionally ignorable given S, a formidable
mental task required in the potential-outcome framework (Rosenbaum &
Rubin, 1983). The criterion also enables the analyst to search for an opti-
mal set of covariates—namely, a set S that minimizes measurement cost
or sampling variability (Tian, Paz, & Pearl, 1998). A complete identifica-
tion condition, including models with no sufficient sets (e.g., Figure 15.3,
assuming that X, ¥, and W, are the only measured variables) is given in
Shpitser and Pearl (2006). ;

Another problem that has a simple graphical solution is to determine
whether adjustment for two sets of covariates would result in the same
confounding bias (Pearl & Paz, 2010). This criterion allows one to assess,
before taking any measurement, whether two candidate sets of cova-
riates, differing substantially in dimensionality, measurement error,
cost, or sample variability, are equally valuable in their bias-reduction
potential.

Counterfactual Analysis in Structural Models

Not all questions of causal character can be encoded in P(y | do(x))-type
expressions, in much the same way that not all causal questions can be
answered from experimental studies. For example, questions of attribu-
tion (e.g., I took an aspirin and my headache is gone; was it due to the
aspirin?) or of susceptibility (e.g., I am a healthy nonsmoker; would I be
as healthy had I been a smoker?) cannot be answered from experimental
studies, and naturally, these kind of questions cannot be expressed in
P(y) | do(x)) notation.® To answer such questions, a probabilistic analysis
of counterfactuals is required, one dedicated to the relation “Y would be
y had X been x in situation U = u,” denoted Y,(u) = v.

As noted in the “Structural Equations as Oracles for Causes and
Counterfacturals” section, the structural definition of counterfactuals
involves modified models, like M, of Equation 15.3, formed by the inter-
vention do(X = x;) (Figure 15.2b). Denote the solution of Y in model M,
by the symbol Y, (1); the formal definition of the counterfactual Y, (1) in
a structural causal model is given by (Blake & Pearl, 1994; Pearl, 2009a,
p- 98):

Y.()=Y,, ). (15.8)

©The reason for this fundamental limitation is that no death case can be tested twice, with
and without treatment. For example, if we measure equal proportions of deaths in the
treatment and control groups, we cannot tell how many death cases are attributable to the
treatment itself; it is possible that many of those who died under treatment would be alive
if untreated and, simultaneously, many of those who survived with treatment would have
died if not treated.
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The quantity Y,(u) can be given experimental interpretation; it stands
for the way an individual with characteristics (u) would respond had
the treatment been x, rather than the treatment x = fx(u) received by that
individual. In our example, because Y does not depend on v and w, we
can write: Y, (u) = fy(xo, 1). Clearly, the distribution P(u, v, w) induces a
well-defined probability on the counterfactual event Y, =1y, as well as
on joint counterfactual events, such as “Y, =y AND Y, =Yy’ which
are, in principle, unobservable if x, # x;. Thus, to answer attributional
questions, such as whether Y would be v, if X were x;, given that in
fact Y is i, and X is %, we need to compute the conditional probabil-
ity P(Y,, =y, | Y = Yo, X = x,), which is well defined once we know the
forms of the structural equations and the distribution of the exogenous
variables in the model. For example, assuming a linear equation for Y

(as in Figure 15.1),

y=px+u,

the conditions Y =y, and X = x, yield V = x, and U =y, ~ Bx,, and we
can conclude that, with probability one, ¥, must take on the value:
Y, =P +U= B(x, — x,) + Y. In other words, if X were x, instead of x,,
Y would increase by B times the difference (x, — x,). In nonlinear systems,
the result would also depend on the distribution of U, and, for that reason,
attributional queries are generally not identifiable in nonparametric mod-
els (Pearl, 2009a, Chapter 9).

In general, if x and x” are incompatible, then Y, and Y, cannot be mea-
sured simultaneously, and it may seem meaningless to attribute probabil-
ity to the joint statement “Y would be y if X =x and Y would be y’ if X=x""
Such concerns have been a source of objections to treating counterfactuals
as jointly distributed random variables (Dawid, 2000). The definition of
Y, and Y, in terms of two distinct submodels neutralizes these objections
(Pearl, 2009a, p. 206) because the contradictory joint statement is mapped
into an ordinary event (among the background variables) that satisfies
both statements simultaneously, each in its own distinct submodel; such
events have well-defined probabilities.

The structural interpretation of counterfactuals (Equation 15.8) also pro-
vides the conceptual and formal basis for the Neyman-Rubin potential-
outcome framework, an approach that takes a controlled randomized trial
as its starting paradigm, assuming that nothing is known to the experi-
menter about the science behind the data. This “black box” approach was
developed by statisticians who found it difficult to cross the two mental
barriers discussed in the “Two Mental Barriers” section. The next section
establishes the precise relationship between the structural and potential-
outcome paradigms, and outlines how the latter can benefit from the
richer representational power of the former.
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Relation to Potential Outcomes and the
Demystification of “Ignorability”

The primitive object of analysis in the potential-outcome framework is the
unit-based response variable, denoted Y, (u), read: “the value that outcome
Y would obtain in experimental unit 4, had treatment X been x” (Neyman,
1923; Rubin, 1974). Here, unit may stand for an individual patient, an exper-
imental subject, or an agricultural plot. In the “Counterfactural Analysis
in Structural Models” section, we saw (Equation 15.8) that this counter-
factual entity has a natural interpretation in structural equations as the
solution for Y in a modified system of equation, where unit is interpreted
as vector u of background factors that characterize an experimental unit.
Thus, each structural equation model carries a collection of assumptions

-about the behavior of hypothetical units, and these assumptions permit
us to derive the counterfactual quantities of interest. In the potential-
outcome framework, however, no equations are available for guidance,
and Y,(u) is taken as primitive, that is, an undefined quantity in terms of
which other quantities are defined—not a quantity that can be derived
from some model. In this sense, the structural interpretation of Y, (i) pro-
vides the formal basis for the potential outcome approach; the formation of
the submodel M, explicates mathematically how the hypothetical condi-
tion “had X been x” could be realized and what the logical consequences
are of such a condition.

The distinct characteristic of the potential outcome approach is that,
although investigators must think and communicate in terms of unde-
fined, hypothetical quantities such as Y,(u), the analysis itself is conducted
almost entirely within the axiomatic framework of probability theory.
This is accomplished by treating the new hypothetical entities Y, as ordi-
nary random variables; for example, they are assumed to obey the axioms
of probability calculus, the laws of conditioning, and the axioms of condi-
tional independence.

Naturally, these hypothetical entities are not entirely whimsy. They are
assumed to be connected to observed variables via consistency constraints
(Robins, 1986), such as

X=x=Y, =Y, (159)

which states that, for every u, if the actual value of X turns out to be x, then
the value that Y would take on if “X were x” is equal to the actual value of
Y. For example, a person who chose treatment x and recovered would also
have recovered if given treatment x by design. Whether additional con-
straints should tie the observables to the unobservables is not a question
that can be answered in the potential-outcome framework, which lacks
an underlying model.
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The main conceptual difference between the two approaches is that
whereas the structural approach views the intervention do(x) as an opera-
tion that changes the distribution but keeps the variables the same, the
potential-outcome approach views the variable Y under do(x) to be a
different variable, Y,, loosely connected to Y through relations such as
Equation 15.9, but remaining unobserved whenever X # x. The problem
of inferring probabilistic properties of Y, then becomes one of “missing
data,” for which estimation techniques have been developed in the statis-
tical literature.

Pearl (2009a, Chapter 7) shows, using the structural interpretation of
Y, (1) (Equation 15.8), that it is indeed legitimate to treat counterfactuals
as jointly distributed random variables in all respects, that consistency
constraints like Equation 159 are automatically satisfied in the structural
interpretation, and, moreover, that investigators need not be concerned
about any additional constraints except the following two:

Y, =y forally, subsets Z, and values z for Z - (1510)

X =x =Y, =Y, forallx, subsets Z, and values z for Z. (15.11)

z

Equation 15.10 ensures that the intervention do(Y = y) results in the con-
dition Y =y, regardless of concurrent interventions, say do(Z = z), that may
be applied to variables other than Y. Equation 15.11 generalizes Equation
159 to cases where Z is held fixed, at z.

Problem Formulation and the Demystification of “Ignorability”

The main drawback of this black box approach surfaces in the phase
where a researcher begins to articulate the “science” or “causal assump-
tions” behind the problem at hand. Such knowledge, as we have seen in
the “Two Mental Barriers” section, must be articulated at the onset of
every problem in causal analysis—causal conclusions are only as valid as
the causal assumptions on which they rest.

To communicate scientific knowledge, the potential-outcome analyst
must express causal assumptions in the form of assertions involving coun-
terfactual variables. For example, in our example of Figure 15.2a, to com-
municate the understanding that Z is randomized (hence independent
of V and U), the potential-outcome analyst would use the independence
constraint ZL1 {X, Y,J11 To further formulate the understanding that Z

1 The notation Y 1L X | Z stands for the conditional independence relationship PY =y,
X=x|Z=2)=P(Y=y|Z=2) P(X=x|Z=z) (Dawid, 1979).
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does not affect Y directly, except through X, the analyst would write a so-
called, “exclusion restriction” Y,, = Y,.

A collection of constraints of this type might sometimes be sufficient
to permit a unique solution to the query of interest; in other cases, only
bounds on the solution can be obtained. For example, if one can plausibly
assume that a set Z of covariates satisfies the relation:

Y, LLX|Z (15.12)

(assumption that was termed conditional ignorability by Rosenbaum &
Rubin, 1983), then the causal effect P(Y, = 1) can readily be evaluated to
yield:

P(Y, = y) = 2P, = ¥ | DP@)
=Y P(Y, =y | x,y)P(z) (using (12))
= > P(Y, =y | x,2)P(z) (using (9))

=> P(y | x,2)P(2). (15.13)

The last expression contains no counterfactual quantities and coincides
precisely with the standard covariate-adjustment formula of Equation 15.7.

We see that the assumption of conditional ignorability (Equation 15.12)
qualifies Z as a sufficient covariate for adjustment; indeed, one can show
formally (Pearl, 2009a, pp. 98-102, 341-343) that Equation 15.12 is entailed
by the “back-door” criterion of the “Confounding and Causal Effect
Estimation” section.

The derivation above may explain why the potential outcome approach
appeals to conservative statisticians; instead of constructing new vocabu-
lary (e.g., arrows), new operators (do(x)), and new logic for causal analy-
sis, almost all mathematical operations in this framework are conducted
within the safe confines of probability calculus. Save for an occasional
application of the consistency rule, Equation 1511 or Equation 15.9, the
analyst may forget that Y, stands for a counterfactual quantity—it is
treated as any other random variable, and the entire derivation follows
the course of routine probability exercises.

However, this mathematical orthodoxy exacts a high cost at the critical
stage where causal assumptions are formulated. The reader may appreci-
ate this aspect by attempting to judge whether the assumption of condi-
tional ignorability (Equation 15.12), the key to the derivation of Equation
1515, holds in any familiar situation, say, in the experimental setup of
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Figure 15.2a. This assumption reads: “the value that Y would obtain had
X been 1, is independent of X, given Z.” Even the most experienced poten-
tial-outcome expert would be unable to discern whether any subset Z of
covariates in Figure 15.3 would satisfy this conditional independence con-
dition.”? Likewise, to convey the structure of the chain X — W, — Y (Figure
15.3) in the language of potential-outcome, one would need to write the
cryptic expression: W, LL (Y, , X}, read: “the value that W; would obtain
had X been x is independent of the value that Y would obtain had W; been
w, jointly with the value of X.” Such assumptions are cast in a language so
far removed from ordinary understanding of cause and effect that, for all
practical purposes, they cannot be comprehended or ascertained by ordi-
nary mortals. As a result, researchers in the graphless potential-outcome
camp rarely use “conditional ignorability” (Equation 15.12) to guide the
choice of covariates; they view this condition as a hoped-for miracle of
nature rather than a target to be achieved by reasoned design.”

Having translated “ignorability” into a simple condition (i.e, back door)
in a graphical model permits researchers to understand what conditions
covariates must fulfill before they eliminate bias, what to watch for and
what to think about when covariates are selected, and what experiments
we can do to test, at least partially, if we have the knowledge needed for
covariate selection.

Aside from offering no guidance in covariate selection, formulating a
problem in the potential-outcome language encounters three additional
hurdles. When counterfactual variables are not viewed as byproducts of
a deeper, process-based model, it is hard to ascertain whether all relevant
counterfactual independence judgments have been articulated, whether
the judgments articulated are redundant, or whether those judgments are
self-consistent. The need to express, defend, and manage formidable coun-
terfactual relationships of this type explains the slow acceptance of causal
analysis among health scientists and statisticians, and why economists
and social scientists continue to use structural equation models instead
of the potential-outcome alternatives advocated in Angrist, Imbens, and
Rubin (1996), Holland (1988), and Sobel (1998).

On the other hand, the algebraic machinery offered by the counter-
factual notation, Y,(u), once a problem is properly formulated, can be

2]nquisitive readers are invited to guess whether X, 11 Z|Y holds in Figure 15.2a.

13The opaqueness of counterfactual independencies explains why many researchers within
the potential-outcome camp are unaware of the fact that adding a covariate to the analy-
sis (e.g., Z, in Figure 15.3) may increase confounding bias. Paul Rosenbaum, for example,
writes: “There is little or no reason to avoid adjustment for a variable describing sub-
jects before treatment” (Rosenbaum, 2002, p. 76). Rubin (2009) goes as far as stating that
refraining from conditioning on an available measurement is “nonscientific ad hockery”
because it goes against the tenets of Bayesian philosophy. (See Pearl, 2009¢, 2009d, 2010¢,
for a discussion of this fallacy.)
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extremely powerful in refining assumptions (Angrist et al.,, 1996), deriving.
consistent estimands (Robins, 1986), bounding probabilities of necessary
and sufficient causation (Tian & Pearl, 2000), and combining data from
232) presents a way of combining the best features of the two approaches.
It is based on encoding causal assumptions in the language of diagrams,
translating these assumptions into counterfactual notation, perform-
ing the mathematics in the algebraic language of counterfactuals (using
Equations 159, 15.10, and 15.11), and, finally, interpreting the result in
plain causal language. The “An Example: Mediation, Direct and Indirect
Effects” section illustrates such symbiosis.

Methodological Dictates and Ethical Considerations

The structural theory described in the previous sections dictates a prin-
cipled methodology that eliminates the confusion between causal and
statistical interpretations of study results, as well as the ethical dilemmas
that this confusion tends to spawn. The methodology dictates that every
investigation involving causal relationships (and this entails the vast
majority of empirical studies in the social and behavioral sciences) should
be structured along the following four-step process:*

1. Define: Express the target quantity Q as a function Q(M) that can
be computed from any model M, regardless of how realistic it is.

2. Assume: Formulate causal assumptions using ordinary scientific
language, and represent their structural part in graphical form.

3. Identify: Determine whether the target quantity is identifiable
(i.e., expressible as distributions).

4. Estimate: Estimate the target quantity if it is identifiable, or
approximate it if it is not.

Defining the Target Quantity

The definitional phase is the most neglected step in current practice of
quantitative analysis. The structural modeling approach insists on defin-
ing the target quantity, be it “causal effect,” “program effectiveness,”
“mediated effect” “effect on the treated,” or “probability of causation”
before specifying any aspect of the model, without making functional or

14 Pearl (2010a) identifies five steps, which include model testing.
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distributional assumptions, before choosing a method of estimation, and
before seeing any data.

The investigator should view this definition as an algorithm that receives
a model M as an input and delivers the desired quantity Q(M) as the
output. Surely, such an algorithm should not be tailored to any aspect
of the input M; it should be general and ready to accommodate any con-
ceivable model M whatsoever. Moreover, the investigator should imagine
that the input M is a completely specified model, with all the functions
fx fv - - - and all the U variables (or their associated probabilities) given
precisely. This is the hardest step for statistically trained investigators
to make; knowing in advance that such model details will never be esti-
mable from the data, the definition of Q(M) appears like a futile exercise
in fantasyland—it is not.

For example, the formal definition of the causal effect P(y | do(x)), as
given in Equation 154, is universally applicable to all models, parametric
and nonparametric, through the formation of a submodel M,. By defining
causal effect procedurally, thus divorcing it from its traditional parametric
representation, the structural theory avoids the many pitfalls and confu-
sions that have plagued the interpretation of structural and regressional
parameters for the past half century.'®

Explicating Causal Assumptions

This is the second most neglected step in causal analysis. In the past, the
difficulty has been the lack of language suitable for articulating causal
assumptions, which, aside from impeding investigators from explicating
assumptions, also inhibited them from giving causal interpretations to
their findings.

Structural equation models, in their counterfactual reading, have set-
tled this difficulty. Today we understand that the versatility and natural
appeal of structural equations stem from the fact that they permit investi-
gators to communicate causal assumptions formally and in the very same
vocabulary that scientific knowledge is stored.

Unfortunately, however, this understanding is not shared by all causal
analysts; some analysts vehemently resist the resurrection of structural
models and insist instead on articulating causal assumptions exclusively

15 Note that b in Equation 15.1, the incremental causal effect of X on Y, is defined procedur-
ally by
A 9
B=E(Y | do(xy + 1)) — E(Y | do(xg)) = aE(Yx)-

Naturally, all attempts to give b statistical interpretation have ended in frustrations
(Holland, 1988; Wermuth, 1992; Wermuth & Cox, 1993; Whittaker, 1990), some persisting
well into the 21st century (Sobel, 2008). ~
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in the unnatural (although formally equivalent) language of potential out-
comes, ignorability, treatment assignment, and other metaphors borrowed
from clinical trials. This assault on structural modeling is perhaps more
dangerous than the causal-associational confusion because it is riding on
a halo of exclusive ownership to scientific principles and, while welcom-
ing causation, uproots it away from its natural habitat.

Early birds of this exclusivist attitude have already infiltrated the
American Psychological Association’s (APA) guidelines (Wilkinson &
the Task Force on Statistical Inference, 1999), where we can read passages
such as: “The crucial idea is to set up the causal inference problem as
one of missing data,” (item 72) or “If a problem of causal inference cannot
be formulated in this manner (as the comparison of potential outcomes
under different treatment assignments), it is not a problem of inference
for causal effects, and the use of ‘causal” should be avoided,” (item 73) or,
even more bluntly, “The underlying assumptions needed to justify any
causal conclusions should be carefully and explicitly argued, not in terms
of technical properties like ‘uncorrelated error terms,” but in terms of real
world properties, such as how the units received the different treatments”
(item 74).

The methodology expounded in this article testifies against such
restrictions. It demonstrates a viable and principled formalism based
on traditional structural equations paradigm, which stands diametri-
cally opposed to the “missing data” paradigm. It renders the vocabu-
lary of “treatment assignment” stifling and irrelevant (e.g., there is no
“treatment assignment” in sex discrimination cases). Most importantly,
it strongly prefers the use of “uncorrelated error terms” (or “omitted
factors”) over its “strong ignorability” alternative, which even experts
admit cannot be used (and has not been used) to reason about underly-
ing assumptions.

In short, the APA’s guidelines should be vastly more inclusive and bor-
row strength from multiple approaches. The next section demonstrates
the benefit of a symbiotic, graphical-structural-counterfactual approach
to deal with the problem of mediation, or effect decomposition.

IR
An Example: Mediation, Direct and Indirect Effects

Direct Versus Total Effects

The causal effect we have analyzed so far, P(y | do(x)), measures the total
effect of a variable (or a set of variables) X on a response variable Y. In
many cases, this quantity does not adequately represent the target of
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investigation, and attention is focused instead on the direct effect of X
on Y. The term direct effect is meant to quantify an effect that is not medi-
ated by other variables in the model or, more accurately, the sensitivity
of Y to changes in X while all other factors in the analysis are held fixed.
Naturally, holding those factors fixed would sever all causal paths from X
to Y with the exception of the direct link X — Y, which is not mtercepted
by any intermediaries.

A classical example of the ubiquity of direct effects involves legal dis-
putes over race or sex discrimination in hiring. Here, neither the effect of
sex or race on applicants’ qualification nor the effect of qualification on
hiring is a target of litigation. Rather, defendants must prove that sex and
race do not directly influence hiring decisions, whatever indirect effects
they might have on hiring by way of applicant qualification.

From a policy-making viewpoint, an investigator may be interested
in decomposing effects to quantify the extent to which racial salary
disparity is the result of educational disparity, or, taking a health care
example, the extent to which sensitivity to a given exposure can be
reduced by eliminating sensitivity to an intermediate factor, standing
between exposure and outcome. Another example concerns the iden-
tification of neural pathways in the brain or the structural features of
protein-signaling networks in molecular biology (Brent & Lok, 2005).
Here, the decomposition of effects into their direct and indirect compo-
nents carries theoretical scientific importance because it tells us “how
nature works” and therefore enables us to predict behavior under a rich
variety of conditions.

Yet despite its ubiquity, the analysis of mediation has long been a thorny
issue in the social and behavioral sciences (Baron & Kenny, 1986; Judd &
Kenny, 1981; MacKinnon, Fairchild, & Fritz, 2007a; Muller, Judd, & Yzerbyt,
2005; Shrout & Bolger, 2002) primarily because structural equation model-
ing in those sciences was deeply entrenched in linear analysis, where the
distinction between causal parameters and their regressional interpreta-
tions can easily be conflated. As demands grew to tackle problems involv-
ing binary and categorical variables, researchers could no longer define
directand indirect effects in terms of structural or regressional coefficients,
and all attempts to extend the linear paradigms of effect decomposition
to nonlinear systems produced distorted results (MacKinnon, Lockwood,
Brown, Wang, & Hoffman, 2007b). These difficulties have accentuated the
need to redefine and derive causal effects from first principles, uncommit-
ted to distributional assumptions, or a particular parametric form of the
equations. The structural methodology presented in this chapter adheres
to this philosophy, and it has produced indeed a principled solution to
the mediation problem, based on the counterfactual reading of struc-
tural equations (Equation 15.8). The followmg subsections summarize the
method and its solution.
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Controlled Direct Effects

A major impediment to progress in mediation analysis has been the lack
of notational facility for expressing the key notion of “holding the mediat-
ing variables fixed” in the definition of direct effect. Clearly, this notion
must be interpreted as (hypothetically) setting the intermediate variables
to constants by physical intervention, not by analytical means such as
selection, regression conditioning, matching, or adjustment. For example,
consider the simple mediation models of Figure 15.4, where the error terms
(not shown explicitly) are assumed to be independent. It will not be suf-
ficient to measure the association between gender (X) and hiring (Y) for
a given level of qualification (Z) (see Figure 15.4b) because, by condition-
ing on the mediator Z, we create spurious associations between X and Y
through W,, even when there is no direct effect of X on Y (Pearl, 1998).

Using the do(x) notation enables us to correctly express the notion of
“holding Z fixed” and formulate a simple definition of the conirolled direct
effect (CDE) of the transition from X =x to X =x"

CDE=E(Y | do(x')),do(z)) — E(Y | do(x),do(2).
Or, equivalently, using counterfactual notation:
CDE=E(Y,,) - E(Y..)

where Z is the set of all mediating variables. The readers can easily verify
that, in linear systems, the controlled direct effect reduces to the path coef-
ficient of the link X — Y (see footnote 14) regardless of whether confound-
ers are present (as in Figure 15.4b) and regardless of whether the error
terms are correlated.

This separates the task of definition from that of identification, as
demanded by the “Defining the Target Quantity” section. The identification

W, W,

- |t

() (b)

FIGURE 15.4 :
(a) A generic model depicting mediation through Z with no confounders. (b) A mediation
model with two confounders, W, and W,.
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of CDE would depend, of course, on whether confounders are present
and whether they can be neutralized by adjustment, but these do not alter
its definition. Graphical identification conditions for expressions of the
type E(Y | do(x), do(z,), do(z,), . . . , do(z,)) in the presence of unmeasured
confounders were derived by Pearl and Robins (1995) (see Pearl, 2009a,
Chapter 4) and invoke sequential application of the back-door conditions
discussed in the “Confounding and Causal Effect Estimation” section.

Natural Direct Effects

In linear systems, the direct effect is fully specified by the path coefficient
attached to the link from X to Y; therefore, the direct effect is indepen-
dent of the values at which we hold Z. In nonlinear systems, those values
would, in general, modify the effect of X on Y and thus should be chosen
carefully to represent the target policy under analysis. For example, it is
not uncommon to find employers who prefer males for the high-paying
jobs (i.e., high z) and females for low-paying jobs (low z).

When the direct effect is sensitive to the levels at which we hold Z, it is
often more meaningful to define the direct effect relative to some “natu-
ral” baseline level that may vary from individual to individual and repre-
sents the level of Z just before the change in X. Conceptually, we can define
the natural direct effect DE, .(Y) as the expected change in Y induced
by changing X from x to x” while keeping all mediating factors constant
at whatever value they would have obtained under do(x). This hypothetical
change, which Robins and Greenland (1992) conceived and called “pure”
and Pearl (2001) formalized and analyzed under the rubric “natural,” mir-
rors what lawmakers instruct us to consider in race or sex discrimination
cases: “The central question in any employment-discrimination case is
whether the employer would have taken the same action had the employee
been of a different race (age, sex, religion, national origin, etc.) and every-
thing else had been the same” (Carson v. Bethlehem Steel Corp., 1996).

Extending the subscript notation to express nested counterfactuals,
Pearl (2001) gave a formal definition for the “natural direct effect”:

DE, .(Y) = E(Y, . ) — E(Y,). (15.14)

HereY, , represents the value that Y would attain under the operation of
setting X to x”and simultaneously setting Z to whatever value it would have
obtained under the setting X = x. We see that DE, (Y), the natural direct
effect of the transition from x to x’, involves probabilities of nested coun-
terfactuals and cannot be written in terms of the do(x) operator. Therefore,
the natural direct effect cannot in general be identified or estimated, even
with the help of ideal, controlled experiments (see footnote 10)—a point
emphasized in Robins and Greenland (1992). However, aided by Equation
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15.8 and the notational power of nested counterfactuals, Pearl (2001) was
nevertheless able to show that if certain assumptions of “no Confounding”
are deemed valid the natural direct effect can be reduced to

DE, .(Y) = SE(Y | do(x',2)) - E(Y | do(x, 2)IP(z | do(x).  (1515)

z

The intuition is simple; the natural direct effect is the weighted average of
the controlled direct effect, using the causal effect P(z | do(x)) as a weight-
ing function.

One condition for the validity of Equation 15.17 is that Z, 11 Y, | W
holds for some set W of measured covariates. This technical condition in
itself, like the ignorability condition of Equation 15.12, is close to meaning-
less for most investigators because it is not phrased in terms of realized
variables. The structural interpretation of counterfactuals (Equation 15.8)
can be invoked at this point to unveil the graphical interpretation of this
condition. It states that W should be admissible (i.e., satisfy the back-door
condition) relative the path(s) from Z to Y. This condition, satisfied by W,
in Figure 15.4b, is readily comprehended by empirical researchers, and the
task of selecting such measurements, W, can then be guided by the avail-
able scientific knowledge. Additional graphical and counterfactual condi-
tions for identification are derived in Pearl (2001), Petersen, Sinisi, and van
der Laan (2006), and Imai, Keele and Yamamoto (2008).

In particular, it was shown (Pearl, 2001) that Equation 15.15 is both valid
and identifiable in Markovian models (i.e., no unobserved confounders)
where each term on the right can be reduced to a “do-free” expression
using Equation 15.6 or Equation 15.7 and then estimated by regression.

For example, for the model in Figure 15.4b, Equation 15.15 reads:

P(z | x,wy,wy) P(w).

DE, . (Y) = > > P,)E(Y | x',z,w,)) - E(Y | x,z, w,)Y, Pleperewn P,
2 ] (15.16)

However, for the confounding-free model of Figure 15.4a, we have:

DE, .(Y) = Y [E(Y | x',2) - E(Y | x,2)IP(z | x). (15.17)

z

Both Equations 15.16 and 15.17 can easily be estimated by a two-step
regression.

Natural Indirect Effects

Remarkably, the definition of the natural direct effect (Equation 15.14) can
be turned around and provides an operational definition for the indirect
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effect—a concept shrouded in mystery and controversy because it is impos-
sible, using standard intervention, to disable the direct link from X to Y so
as to let X influence Y solely via indirect paths.

The natural indirect effect (IE) of the transition from x to x" is defined as
the expected change in Y affected by holding X constant, at X = x, and
changing Z to whatever value it would have attained had X been set to

X =x". Formally, this reads (Pearl, 2001):

IE, .(Y)=EI(Y, ) - E(Y), (15.18)

which is almost identical to the direct effect (Equation 15.14) save for
exchanging x and x” in the first term.

Indeed, it can be shown that, in general, the total effect (TE) of a transi-
tion is equal to the difference between the direct effect of that transition
and the indirect effect of the reverse transition. Formally,

A
TEx,x’(Y):E(Yx’ - Yx) = DEx,x'(Y) - IEX’,x(Y>' (1519)

In linear systems, where reversal of transitions amounts to negating the
signs of their effects, we have the standard additive formula:

TEx,x’(Y> = DEx,x'(Y) + IEx,x’(Y)' (1520)

Because each term above is based on an independent operational defini-
tion, this equality constitutes a formal justification for the additive for-
mula used routinely in linear systems.

Note that, although it cannot be expressed in do-notation, the indirect
effect has clear policy-making implications. For example, in the hiring
discrimination context, a policy maker may be interested in predicting
the gender mix in the work force if gender bias is eliminated and all appli-
cants are treated equally—say, the same way that males are currently
treated. This quantity will be given by the indirect effect of gender on
hiring, mediated by factors such as education and aptitude, which may be
gender dependent.

More generally, a policy maker may be interested in the effect of issuing
a directive to a select set of subordinate employees, or in carefully con-
trolling the routing of messages in a network of interacting agents. Such
applications motivate the analysis of path-specific effects, that is, the effect of
X on Y through a selected set of paths (Avin, Shpitser, & Pearl, 2005).

In all these cases, the policy intervention invokes the selection of signals
to be sensed, rather than variables to be fixed. Therefore, Pearl (2001) has
suggested that signal sensing is more fundamental to the notion of causa-
tion than manipulation, the latter being but a crude way of stimulating the
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former in experimental setup. The mantra “No causation without manip-
ulation” must be rejected (see Pearl, 2009a, Section 11.4.5).

It is remarkable that counterfactual quantities like DE and IE that could
not be expressed in terms of do(x) operators, and therefore appear void
of empirical content, can, under certain conditions, be estimated from
empirical studies and serve to guide policies. Awareness of this potential
should embolden researchers to go through the definitional step of the
study and freely articulate the target quantity Q(M) in the language of
science, that is, counterfactuals, despite the seemingly speculative nature

of each assumption in the model (Pearl, 2000).

The Mediation Formula: A Simple Solution to a Thorny Problem

This subsection demonstrates how the solution provided in Equations
1517 and 1520 can be applied to practical problems of assessing media-
tion effects in nonlinear models. We will use the simple mediation model
of Figure 15.4a, where all error terms (not shown explicitly) are assumed
to be mutually independent, with the understanding that adjustment for
appropriate sets of covariates W may be necessary to achieve this inde-
pendence and that integrals should replace summations when dealing
with continuous variables (Imai et al., 2008).

Combining Equations 15.17, 15.19, and 15.20, the expression for the indi-
rect effect, IE, becomes:

IE.(Y) = Y E(Y | x,2)[P(z | x') - P(z | %)], (15.21)

which provides a general and easy-to-use formula for mediation effects,
applicable to any nonlinear system, any distribution (of U), and any type of
variables. Moreover, the formula is readily estimable by regression, mak-
ing no assumption whatsoever about the parametric form of the underly-
ing process. Owed to its generality and ubiquity, I have referred to this
expression as the “Mediation Formula” (Pearl, 2009b).

The Mediation Formula represents the average increase in the outcome
Y that the transition from X = x to X = x” is expected to produce absent
any direct effect of X on Y. Although based on solid causal principles, it
embodies no causal assumption other than the generic mediation struc-
ture of Figure 154a. When the outcome Y is binary (e.g., recovery, or hir-
ing) the ratio (1 - [E/TE) represents the fraction of responding individuals
who owe their response to direct paths, whereas (1 — IE/TE) represents the
fraction who owe their response to Z-mediated paths.

The Mediation Formula tells us that IE depends only on the expecta-
tion of the counterfactual Y,,, not on its functional form f, (x, z, 1) or its
distribution P(Y,, = y). Therefore, it calls for a two-step regression that, in
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principle, can be performed nonparametrically. In the first step, we regress
Y on X and Z and obtain the estimate:

g(x,z) = E(Y | x,2)

for every (x, z) cell. In the second step, we estimate the expectation of g(x,
7) conditional on X =x” and X = x, respectively, and take the difference:

IE, (Y) = Eze(8(x,2)) = Ez:(8(x,2)).

Nonparametric estimation is not always practical. When Z consists of
a vector of several mediators, the dimensionality of the problem would
prohibit the estimation of E(Y | x, 2) for every (x, z) cell, and the need
arises to use parametric approximation. We can then choose any conve-
nient parametric form for E(Y' | x, z) (e.g linear, logit, probit), estimate the
parameters separately (e.g., by regression or maximum likelihood meth-
ods), insert the parametric approximation into Equation 15.21, and esti-
mate its two conditional expectations (over z) to get the mediated effect
(Pearl, 2010b; VanderWeele, 2009).

When applied to linear models, the Mediation Formula yields, of course,
the standard product of coefficients. For example, the linear version of
Figure 15.4a reads:

X = Uy
z=bx+1uy
Y = C X+ CZ+ Uy. (15.22)

Computing the conditional expectation in Equation 15.21 gives:
E(Y | x,z) = E(c,x + ¢,z + U,) = C,X + C.Z
and yields:

IE, (Y) = D (c.x + c.2)[P(z | ¥) = P(z | x)]

Z

= ¢,[E(Z | x") = E(Z | x)] (15.23)
= (x" = x)(c.b,) (15.24)
= (x" = x)(b—c,) (15.25)

where b is the total effect coefficient, b= (E(Y | ') —=E(Y | x)) / (x"—x%) =
C, +Cb
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Thus, we obtained the standard expressions for indirect effects in
linear systems, which can be estimated either as a difference in two
regression coefficients (Equation 15.25) or a product of two regression
coefficients (Equation 15.24), with Y regressed on both X and Z. However,
when extended to nonlinear systems, these two strategies yield conflict-
ing results (MacKinnon & Dwyer, 1993; MacKinnon et al., 2007b), and the
question arose as to which strategy should be used in assessing the size
of mediated effects (Freedman, Graubard, & Schatzkin, 1992; MacKinnon
& Dwyer, 1993; MacKinnon et al, 2007b; Molenberghs et al., 2002).
Pearl (2010b) shows that both strategies yield highly distorted results
in nonlinear models, even when correct parametric forms are assumed.
The reason lies in a violation of step 1 (defining the target quantity)
of the “Methodological Dictates and Ethical Considerations” section.
Researchers failed to define the causal quantity of interest and were pos-
tulating, estimating, and comparing parameters that were related to,
yet hardly resembling, DE and IE. The Mediation Formula captures the
correct target quantity and helps researchers cross the nonlinear barrier
that has held back the mediation literature for more than half a century.
Simple examples using Bernoulli/binary noise, logistic, and probit mod-
els are illustrated in Pearl (2010a, 2010b).

In addition to providing causally sound estimates for mediation effects,
the Mediation Formula also enables researchers to evaluate analytically
the effectiveness of various parametric specifications relative to any
assumed model. This type of analytical “sensitivity analysis” has been
used extensively in statistics for parameter estimation but could not be
applied to mediation analysis because of the absence of an objective target
quantity that captures the notion of indirect effect in both linear and non-
linear systems, free of parametric assumptions. The Mediation Formula
has removed this barrier (Imai, Keele, & Tingley, 2010; Li, Schneider, &
Bennett, 2007).

The derivation of the Mediation Formula (Pearl, 2001) was facili-
tated by taking seriously the four steps of the structural methodology
(“Methodological Dictates and Ethical Considerations” section) together
with the graph~counterfactual-structural symbiosis spawned by the struc-
tural interpretation of counterfactuals (Equation 15.8). In contrast, when the
mediation problem is approached from an exclusivist potential-outcome
viewpoint, void of the structural guidance of Equation 15.8, counterintui-
tive definitions ensue, carrying the label “principal stratification” (Rubin,
2004, 2005), which are at variance with common understanding of direct
and indirect effects. For example, the direct effect is definable only in units
absent of indirect effects. This means that a grandfather would be deemed
to have no direct effect on his grandson’s behavior in families where he
has had some effect on the father. This precludes from the analysis all
typical families, in which a father and a grandfather have simultaneous,
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complementary influences on children’s upbringing. In linear systems, to
take an even sharper example, the direct effect would be undefined when-
ever indirect paths exist from the cause to its effect. The emergence of such
paradoxical conclusions underscores the wisdom, if not necessity, of a
symbiotic analysis, in which the counterfactual notation Y, (i) is governed
by its structural definition, Equation 15.8.1 It also brings into focus the ethi-
cal issue of inclusiveness and its role in scientific research and education.

Conclusion

Statisticsis strong in inferring distributional parameters from sample data.
Causal inference requires two addition ingredients: a science-friendly lan-
guage for articulating causal knowledge, and a mathematical machinery
for processing that knowledge, combining it with data and drawing new
causal conclusions about a phenomenon. This chapter presents nonpara-
metric structural causal models as a formal and meaningful language for
meeting these challenges, thus easing the ethical tensions that follow the
disparity between causal quantities sought by scientists and associational
quantities inferred from observational studies. The algebraic component
of the structural language coincides with the potential-outcome frame-
work, and its graphical component embraces Wright’s method of path dia-
grams (in its nonparametric version). When unified and synthesized, the
two components offer empirical investigators a powerful methodology for
causal inference that resolves longstanding problems in the empirical sci-
ences. These include the control of confounding, the evaluation of policies,
the analysis of mediation, and the algorithmization of counterfactuals.

In particular, the analysis of mediation demonstrates the benefit of
adhering to the methodological principles described. The development of
the Mediation Formula (Equations 15.17 and 15.20) has liberated research- -
ers from the blindfolds of parametric thinking and allows them to assess
direct and indirect effects for any type of variable, with minimum assump-
tions regarding the underlying process.”

*Such symbiosis is now standard in epidemiology research (Hafeman & Schwartz, 2009;
Petersen et al., 2006; Robins, 2001; VanderWeele, 2009; VanderWeele & Robins, 2007) and is
making its way slowly toward the social and behavioral sciences (e.g., Elwert & Winship,
2010; Morgan & Winship, 2007).

¥ Author note: Portions of this chapter are adapted from Pearl (20092, 2009b, 2010a). I am
grateful to A. T. Panter and Sonya K. Serba for their encouragement and flexibility in the
writing of this chapter. This research was supported in part by grants from National
Science Foundation (115-0535223) and Office of Naval Research (N000-14-09-1-0665).
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