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Abstract

Counterfactual statements, e.g., ”my headache
would be gone had I taken an aspirin” are cen-
tral to scientific discourse, and are formally in-
terpreted as statements derived from ”mutilated”
causal models. However, since they invoke hypo-
thetical states of affairs, often incompatible with
what is actually known or observed, testing coun-
terfactuals is fraught with conceptual and practi-
cal difficulties. In this paper, we provide a com-
plete characterization of ”testable counterfactu-
als,” namely, counterfactual statements whose
probabilities can be inferred from physical exper-
iments. We provide complete procedures for dis-
cerning whether a given counterfactual is testable
and, if so, expressing its probability in terms of
experimental data.

1 Introduction

Human beings organize their knowledge of the world in
terms of causes-effect relationships, because many of the
practical questions they face are causal in nature. Coun-
terfactuals are an example of causal questions which are
abound both in everyday discourse, as well as in empiri-
cal science, medicine, law, public policy, economics, and
so on.

A counterfactual is simply a ’what if’ question – it in-
volves evidence about an existing state of the world, e.g.
”I have a headache”, and a question about an alternative,
hypothetical world, where the past is modified in some
way, e.g., ”what if I had taken aspirin?”. To formalize such
questions, we need a framework that can seamlessly inte-
grate the notions of evidence and ’world alteration,’ such
as that provided by structural causal models [Pearl, 2000a].
Such models are represented by a graph called a �������	��
�� ��������� , where the vertices V are variables of interest,
directed edges represent functional relationships, and bidi-
rected edges are spurious dependencies emanating from

variables not included in the analysis, over which a proba-
bility distribution ��� U � is assumed to be defined. This dis-
tribution, together with the functional relationships among
the variables defines a unique joint probability distribution
��� V � over observable variables V, which governs statisti-
cal data obtained in observational studies.

The results of ����������� �� � some aspect � of the current state
of affairs leads to a conditional distribution ��� V � ��� . In con-
trast, the result of hypothetically establishing x is repre-
sented by an

 ��! ���"��� ��!# � � ��
 distribution ��� V � � �$� x �%� or
� x � V � , where

� �$� x � stands for forcing variables X to at-
tain values x regardless of the factors that influence X in
the model, while leaving all other functional relationships
unaltered. A variable & affected by an intervention

� �$� x �
is changed into a ���"� ��! ����'(��� ! �(��
������  �$�)
*� and is denoted
by & x.

To represent a ’what if X were x’ question, we ask for the
consequences of taking the atomic action

� �$� x � , given the
available observations � , where actions and observations
can potentially be in conflict. In our framework, this cor-
responds to expressions of the form ���*& x � ��� . This way
of mathematizing counterfactuals was first proposed in
[Balke & Pearl, 1994b], [Balke & Pearl, 1994a]. In addi-
tion, [Balke & Pearl, 1994b] proposed a method for eval-
uating expressions like the above when all parameters of
a causal model are known. In practice, however, complete
knowledge of the model is too much to ask for; the func-
tional relationships as well as the distribution ��� U � are not
known exactly, though some of their aspects can be inferred
from the observable distribution � .

Evaluating causal queries given this partial state of knowl-
edge is a subtle problem known as

#� � ��!# '  ��� !# � � [Pearl,
2000a]. A well studied version of this problem is comput-
ing �����(����
+��'�'(�"� ! � , or expressions of the form � x �*&,� ,
given � and the causal diagram - . This version of the
identification problem has received considerable attention
in the last 15 years, with partial results found in [Spirtes,
Glymour, & Scheines, 1993], [Pearl & Robins, 1995],
[Pearl, 1995], [Kuroki & Miyakawa, 1999], [Tian & Pearl,
2002], and was finally closed in general graphical models
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in [Huang & Valtorta, 2006], [Shpitser & Pearl, 2006b],
[Shpitser & Pearl, 2006a].

The problem with counterfactual queries like ���*& x � ��� is
even more severe. Since actions and evidence can stand in
logical contradiction, no experimental setup exists which
would emulate both the evidence � and the action � . For
example, no experimental setup can reveal to us the per-
centage of deaths that could be avoided among people who
received a given treatment, had they not taken the treat-
ment. We simply cannot perform an experiment where the
same person is both given and not given treatment. Mathe-
matically, this means that it is unclear how to compute ex-
pressions like ���*& x � ��� even if we we are given the results of
all possible experiments (represented by the set ����� � � x � ,
where x is a value assignment of X

�
V � [Pearl, 2000a]).

Some basic results on evaluating counterfactuals are
known. For instance, a simple algebraic trick shows that
���*&�� � �	� � is identifiable if 
 is a binary variable, regard-
less of the underlying graph. On the other hand, the coun-
terfactual represented by ���*&��� &���� � , named ’probability of
necessity and sufficiency’ in [Pearl, 2000a], is known to
not be identifiable [Avin, Shpitser, & Pearl, 2005]. A com-
plete proof system for reasoning about causal and coun-
terfactual quantities was given in [Halpern, 2000]. While
such a system is, in principle, powerful enough to evaluate
any identifiable counterfactual expression, it lacks a proof
guiding method which guarantees termination in a reason-
able amount of time. Furthermore, such a system would not
provide a graphical characterization of identification, and
much of human knowledge, as we postulate, is stored in
graphical form. To the best of the authors’ knowledge, no
general algorithms for counterfactual identification exist in
the literature.

In this paper, we present a structure called the
���"� ��! ����'(��� ! �(��
$��������� , which stands in the same relation
to a counterfactual query that the causal graph does to a
causal query. In other words, this graph displays indepen-
dencies between counterfactual variables, in those hypo-
thetical worlds that are invoked by the query. We use the
counterfactual graph to give a complete graphical charac-
terization of those counterfactuals which can be identified
from experiments, and provide complete algorithms which
can express all identifiable counterfactuals in terms of ex-
perimental data.

2 Notation and Definitions

In this section we review the mathematical machinery of
causal reasoning, and introduce counterfactual distribu-
tions as well-defined objects obtained from causal models.

A probabilistic causal model is a tuple � ��
U � V � F � ��� U ��� , where V is a set of observable vari-

ables, U is a set of unobservable variables distributed

according to ��� U � , and F is a set of functions. Each
variable ��� V has a corresponding function '���� F that
determines the value of � in terms of other variables in V
and U. The distribution on V induced by ��� U � and F will
be denoted ��� V � .
The induced graph - of a causal model � contains a node
for every element in V, a directed edge between nodes

 and & if '�� possibly uses the values of 
 directly to
determine the value of & , and a bidirected edge between
nodes 
 and & if '! , and '�� both possibly use the value
of some variable in U to determine their values. In this
paper we consider ���"�)� ���  ��� causal models, those mod-
els which induce acyclic graphs. We will use abbreviations
� �(�#" �#$%�'&(� ��" ��$)�+* � �#" �#$)�-, ���#" �#$ to denote the set of par-
ents, children, ancestors and descendants of a given node
in - .

An action
� �$� x � modifies the functions associated with X

from their normal behavior to outputting constant values x.
The result of an action

� �$� x � on a model � is a �	�(�)� � � �"

which we denote by � x. Because the nodes X are now con-
stant, the graph induced by � x is -/. X. We denote the
event ”variable & attains value 0 in � x” by the shorthand
” 0 x”.

Consider a conjunction of events 1 equal to 0�2x 354 "6"7" 4 08x 9
in some model � . If all subscripts x : are the same and
equal to x, this 1 merely corresponds to value assignments
to a set of variables in a submodel � x. The probability of
this assignment is then ���;1 �<� � x �=0>2?��"7"6"7�-08�� which can
be easily computed from � x. But what if the subscripts are
not the same, and possibly force conflicting values to the
same variable? A natural way to interpret our conjunction
in this case is to consider all submodels � x 3 �@"6"6"7�'� x 9 at
once, and compute the joint probability over the counter-
factual variables in those submodels induced by U, the set
of exogenous variables all these submodels have in com-
mon. The probability of our conjunction is then given by
���;1 �5�BADC u E u E F�G�H ��� u � where u � �I1 is taken to mean that
each variable assignment in 1 holds true in the correspond-
ing submodel of � when the exogenous variables U as-
sume values u. In this way, ��� U � induces a distribution on
all counterfactual variables in � . In this paper, we will rep-
resent counterfactual utterances by joint distributions such
as ���;1 � or conditional distributions such as ���=1 � J�� , where
1 and J are conjunctions of counterfactual events.

We are interested in finding out when queries like ���;1 � can
be computed from �K� , the set of all interventional distribu-
tions, and when they cannot. To get a handle on this ques-
tion, we turn to the notion of identifiability, which has been
successfully applied to similar questions involving causal
effects � x � Y � [Pearl, 2000a].

Definition 1 (identifiability) Consider a class of models
M with a description L , and parameters M and N com-
putable from each model. We say that M is N -identifed in
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Figure 1: Nodes fixed by actions not shown. (a) Graph - .
(b) Parallel worlds graph for ���=0�� � ��� � ��� � � � (the two nodes
denoted by

�
are the same). (c) Counterfactual graph for

���=0 � � � � � ��� � � � .

L if M is uniquely computable from N in any � � M.

If M is N -identifiable in L , we write L)�-N�� :
� M . Otherwise,

we write L)�-N��� :
� M . The above definition leads naturally to

a way to prove non-identifiability.

Lemma 1 Let L be a description of a class of models M.
Assume there exist � 2 �'�
	 � M that share parameters N ,
while M in � 2 is different from M in � 	 . Then L)�-N��� :

� M .

In the remainder of the paper, we will construct an algo-
rithm which will identify ���=1 � J�� (with J possibly empty)
from �K� , and prove that whenever the algorithm fails, the
original query is not identifiable using Lemma 1.

3 The Counterfactual Graph

Solutions to the causal effect identification problem rely
on judging independencies among random variables in the
same submodel � x using d-separation [Pearl, 1988] in the
causal graph - . X. If we are dealing with a counterfactual
1 , more than one submodel is mentioned. Nevertheless, we
would like to use a similar technique, and construct a graph
which will allow us to reason about independencies among
the set of counterfactual variables in all submodels men-
tioned in 1 .

The first attempt to construct such a graph was made in
[Balke & Pearl, 1994a] where a

!�  ��� � !� �"��� ��������� was
constructed for 1 which mention exactly two submodels.
The twin network graph consisted of two submodel graphs
which shared exogenous variables U.

One problem with the twin network graph, of course, is
the restriction to two possible worlds. It can easily come to
pass that a counterfactual query of interest would involve
three or more worlds. For instance, we might be interested
in how likely the patient would be to have a symptom &
given a certain dose � of drug 
 , assuming we know that
the patient has taken dose ��� of drug 
 , dose

�
of drug , ,

and we know how an intermediate symptom � responds to

drug
�
. This would correspond to the query ���=0 � � ��� � � � � � � ,

which mentions three worlds, the original model � , and
the submodels � � �'� � .

This problem is easy to tackle – we simply add more than
two submodel graphs, and have them all share the same
U nodes. This simple generalization of the twin network
model was considered in [Avin, Shpitser, & Pearl, 2005],
and was called there the parallel worlds graph. Fig. 1 shows
the original causal graph and the parallel worlds graph for
1 � 0 � 4 �	� 4 � � 4

�
.

The other problematic feature of the twin network graph,
which is inherited by the parallel worlds graph, is that mul-
tiple nodes can sometimes correspond to the same random
variable. For example in Fig. 1 (b), the variables � and
�K� are represented by distinct nodes, although it’s easy
to show that since � is not a descendant of 
 , ������� .
These equality constraints among nodes can make the d-
separation criterion misleading if not used carefully. For
instance, &������� � � �K� even though using d-separation in
the parallel worlds graph suggests the opposite. To handle
this problem, we use the following lemma which will tell
us when variables from different submodels are in fact the
same.

Lemma 2 Let - be a causal diagram with z observed and
x fixed. Then in all model inducing - where nodes � ���
share both the same functional mechanism and the same
exogenous parents

�
, � ��� are the same random variable if

all their corresponding parents are either shared or attain
the same value (either by intervention or observation).

Proof: This follows from the fact that variables in a causal
model are functionally determined from their parents. �
The parallel worlds graph can be thought of as a causal
diagram for a special kind of causal model where some
distinct nodes share the same functions. Using Lemma 2
as a guide, we want to modify such a diagram to rid our-
selves of duplicate nodes, while at the same time ridding 1
of syntactically distinct variables which represent the same
counterfactual variable. Since we need to establish same-
ness for parents before children, we apply Lemma 2 induc-
tively starting with the root nodes.

If two nodes are established to be the same, we want to
specify the rule for merging them in the graph. This rule
work as we would expect. If two nodes (say corresponding
to & x � & z) are established to be the same in - � , they are
merged into a single node which inherits all the children of
the original two. These two nodes either share their parents
(by induction) or their parents attain the same values. If the
a given parent is shared, it becomes the parent of the new
node. Otherwise, we pick one of the parents arbitrarily to
become the parent of the new node. The soundness of this
operation is simple to establish.



Lemma 3 Let � be a causal model with z observed, and x
fixed such that Lemma 2 holds for � ��� . Let � � be a causal
model obtained from � by merging ��� � into a new node� , which inherits all parents and the functional mechanism
of � . All children of ��� � in � � become children of � . Then
�B�+� � agree on any distribution consistent with z being
observed and x being fixed.

Proof: This is a direct consequence of Lemma 2. �
The new node � we obtain from Lemma 3 can be thought
of as a new counterfactual variable. What should be its ac-
tion (subscript)? Intuitively, it is those fixed variables which
are ancestors of � in the graph - � of � � . Formally the
subscript is w, where W �/* � � � �-$ � � sub �;1 � , where the
sub �;1 � corresponds to those nodes in - � which correspond
to subscripts in 1 . Since we replaced ��� � by � , we replace
any mention of ��� � in our given counterfactual query ���=1��
by � . Note that since ��� � are the ����� � , their value assign-
ments must be the same (say equal to 0 ). The new counter-
factual � inherits this assignment.

We summarize the inductive applications of Lemma 2, and
3 by the make-cg algorithm, which takes 1 and - as argu-
ments, and constructs a version of the parallel worlds graph
without duplicate nodes. We call the resulting structure the
���"� ��! ����'(��� ! �(��
$��������� of 1 , and denote it by - G . The al-
gorithm is shown in Fig. 3.

Note that there are three additional subtleties in make-cg.
The first is that if variables & x � & z were judged to be the
same by Lemma 2, but 1 assigns them different values, this
implies that ���=1��(��� . The second is that due to the fac-
torization properties of causal graphs if we are interested
in identifiability of ���=1�� , we can restrict ourselves to the
ancestors of 1 in - � [Tian, 2002]. Finally, because the al-
gorithm can make an arbitrary choice picking a parent of� each time Lemma 3 is applied, both the counterfactual
graph -(� , and the corresponding modified counterfactual
1�� are not unique. This does not present a problem, how-
ever, as any such graph is acceptable for our purposes.

It’s straightforward to verify that applying make-cg to the
causal graph in Fig. 1 (a) and 1 �I0 � 4 � � 4 �	� 4

�
, one of

the graphs that can be obtained is one in Fig. 1 (c).

4 Identification of Counterfactual Queries

Having constructed a graphical representation of worlds
mentioned in counterfactual queries, we can turn to identifi-
cation. We construct two algorithms for this task, the first is
called ID* and works for unconditional queries, while the
second, IDC*, works on queries with counterfactual evi-
dence and calls the first as a subroutine. These are shown
in Fig. 3.

We illustrate the operation of these algorithms by consid-
ering the identification of a query ��� 0 � � �	� � � � � � � consid-

function make-cg �*- ��1��
INPUT: - a causal diagram, 1 a conjunction of counter-
factual events
OUTPUT: A counterfactual graph - G , and either a set of
events 1�� s.t. ���=1�� �5� ���;1 � or INCONSISTENT

1 Construct the parallel worlds graph - � for 1 by con-
structing submodel graphs - x 3 �@"6"6"7� - x 9 for all distinct
actions

� �$� x 2 � �@"6"7"6�
� �$� x 8 � mentioned in 1 , and having

all such graphs share their corresponding
�

nodes.

2 Let � be a topological ordering of nodes in - � . Ap-
ply Lemmas 2 and 3, in order � , to each node pair
sharing functions to produce - � �#1�� . If at any point
val � � � �� val � � � , but � � � by Lemma 2, return
-(� � INCONSISTENT.

3 return � * � �=1�� �#$ � �#1�� � .

Figure 2: An algorithm for constructing the counterfactual
graph. val ��" � is the value of a given counterfactual

ered in the previous section. Since ��� ��� � ��� � � � is not incon-
sistent, we proceed to construct the counterfactual graph
on line 2. Suppose we produce the graph in Fig. 1 (c),
where the corresponding modified query is ���=0 � � ��� � � � � � .
Since ��� 0 � ���	� � � � � � is not inconsistent we proceed to
the next line, which moves � � � (with

�
being redun-

dant due to graph structure) to the subscript of 0 � , to
obtain ���=0 ��� � � �	� � . Finally, we call ID* with the query
���=0 �	� � ���	� � . The first interesting line is 6, where the query
is expressed as A�
 ���=0 ��� ��� 
 �-� � � ��� � � � . Note that � is re-
dundant in the first term, so a recursive call reaches line
9 with ���=0��� 
 ����� � , which is identifiable as ����� 
 �=0������ �
from � � . The second term is trivially identifiable as
� � � � � , which means our query is identifiable as � � �
A 
 ����� 
 � 0��-�	� � � � � � � , and the conditional query is equal
to �(�����(� �=�	� � .
When considering the soundness of our algorithms, the key
observation is that the counterfactual graph which is out-
put by make-cg is a causal diagram for a particular causal
model. Thus, all the theorems that have been been devel-
oped for ordinary causal models work for the counterfac-
tual graph. Thus, we reproduce a number of definitions and
lemmas which hold for causal models which will help us in
our proof.

Definition 2 (c-component) - is a C-component if any
two nodes 
 � & in - are connected by a path where no
observable node on the path has any outgoing arrows in
the path. (such a path is called a confounding path).

C-components partition a causal diagram into a set of frag-
ments where the distribution corresponding to each frag-



function ID* � - �#1 �
INPUT: - a causal diagram, 1 a conjunction of counter-
factual events
OUTPUT: an expression for ���;1 � in terms of � � or FAIL

1 if 1 ��� , return 1

2 if ������� ����� � 1�� , return 0

3 if ������� ��� � 1 � , return ID* �*- ��1 . � ��� ��� ���
4 �*- � ��1�� �5� make-cg �*- ��1��
5 if 1��>� INCONSISTENT, return 0

6 if & � -(� �5� ��� 2���"7"6"7� � 8�� ,
return A V 	 $ ��
� G�� : ID* �*- � �?:v 	 $ � 
������ �

7 if & � -(� �5� ��� � then,

8 if ��� x � x � � s.t. x �� x � � x � sub � � � � x ��� ev � � � ,
throw FAIL

9 else, let x ��� sub � � �
return � x � var � � � �

function IDC* �*- ��1 �+J��
INPUT: - a causal diagram, 1 �-J conjunctions of counter-
factual events
OUTPUT: an expression for ���=1 � J�� in terms of � � , FAIL,
or UNDEFINED

1 if ID* �*- �-J������ , return UNDEFINED

2 �*- � ��1�� 4 J � � � make-cg �*- ��1 4 J��
3 if 1�� 4 J �	� INCONSISTENT, return 0

4 if ����0 x � J � � s.t. �*& x
��� 1�� � -(��

x
,

return IDC* �*- ��1���
x
�-J ��. � 0 x �"�

5 else, let � ��� ID* � - �#1 4 J�� . return � �����(� � J��

Figure 3: Counterfactual identification algorithms.

sub �#" � returns the set of subscripts, var �#" � the set of
variables, and ev ��" � the set of values (either set or ob-
served) appearing in a given counterfactual.
& �*- � � is the set of C-components, and � � - � � is the set of
observable nodes of - � .
-(��

x
is the graph obtained from - � by removing all outgo-

ing arcs from & x. 1���
x

is obtained from 1�� by replacing all
descendant variables � z of & x in 1�� by � z � � .

ment is identifiable.

Lemma 4 For any - and any effect � x � y � , � x � y � �
A v � 	 y � x 
 � : � v ��� � � � : � , where

���
2 ��"7"6"7�

�
8 � is the set of C-

components of -I. X.

Proof: See [Tian, 2002], [Shpitser & Pearl, 2006b]. �
The truly new operation specific to identification in ��� ap-
pears in line 9. We justify this operation with the following
lemma.

Lemma 5 If the preconditions of line 7 are met, ��� � �(�
� x � var � � � � , where x ��� sub � � � .
Proof: Let x � � sub � � � . Since the preconditions are met,
x does not contain conflicting assignments to the same vari-
able, which means

� �$� x � is a sound action in the orig-
inal causal model. Note that any variable in � � �(� � �(.� � � * � �*& w ��� is already in w, while any variable in
�*� �(� � �5. � �K.�* � �*& w � � can be added to the subscript of
& w without changing the variable. Therefore, & w � & x. Fi-
nally, we know by assumption that sub � � � � var � � �)��� .
This means the distribution � x does not force any variables
in

�
to specific values. This implies the result. �

Theorem 1 If ID* succeeds, the expression it returns is
equal to ���;1 � in a given causal graph.

Proof: The first line merely states that the probability of
an empty conjunction is 1, which is true by convention.
Lines 2 and 3 follow by the Axiom of Effectiveness [Galles
& Pearl, 1998]. The soundness of make-cg has already
been established in the previous section, which implies the
soundness of line 4. Line 6 follows by Lemma 4, and line
9 by Lemma 5. �
The soundness of IDC* is also fairly straightforward.

Theorem 2 If IDC* does not output FAIL, the expression
it returns is equal to ���;1 � J�� in a given causal graph, if that
expression is defined, and UNDEFINED otherwise.

Proof: [Shpitser & Pearl, 2006a] shows how an operation
similiar to line 4 is sound by rule 2 of do-calculus [Pearl,
1995] when applied in a causal diagram. But we know
that the counterfactual graph is just a causal diagram for
a model where some nodes share functions, so the same
reasoning applies. The rest is straightforward. �

5 Completeness

We would like to show completeness of ID* and IDC*. To
do so, we show non-identifiability in increasingly complex
graph structures, until we finally encompass all situations
where ID* and IDC* fail. Since we will be making heavy
use of Lemma 1, we first prove a utility lemma that makes
constructing counterexamples which agree on ��� easier.



Lemma 6 Let - be a causal graph partitioned into a set���
2 �@"6"6"7�

�
8 � of C-components. Then two models � 2 �+� 	

which induce - agree on � � if and only if their submodels
� 2v ��� � �'� 	v ��� � agree on � � for every C-component

�
: , and

value assignment v . � : .
Proof: This follows from C-component factorization:
��� v � � � : � v ��� � � � : � . This implies that for every

� �$� x � ,
� x � v � can be expressed as a product of terms � v � 	 � � � x 
 � � : .
x � , which implies the result. �
The simplest non-identifiable counterfactual graph is the
so called ’w-graph’ [Avin, Shpitser, & Pearl, 2005], as the
following lemma shows.

Lemma 7 Assume 
 is a parent of & in - . Then
�K� � - �� :

� ���=0 � �-0 ���� � � ���=0 � ��0 � � for any value pair 0��-0� .
Proof: See [Avin, Shpitser, & Pearl, 2005]. �
Intuitively, the problem with the ’w-graph’ is that a variable

 is treated inconsistently in different worlds, while at the
same time variables derived from & share the background
context

�
, and 
 is a direct parent of these variables. This

means that it is not possible to use independence informa-
tion to reconcile the inconsistency. This suggests the fol-
lowing generalization.

Lemma 8 Assume - is such that 
 is a parent of & and
� , and & and � are connected by a bidirected path with
observable nodes �/2?��"7"6"7��� 8 on the path. Then �5�!� - �� :

�
���=0 � � � 2 �@"6"6"7� � 8 � � � �*� � ���=0 � � � 2 �@"6"6"7� � 8 � � � for any value
assignments 0�� � 2?��"7"6"7� � 8 � � .
Proof: We construct two models with graph - as follows.
In both models, all variables are binary, and ��� U � is uni-
form. In � 2 , each variable is set to the bit parity of its
parents. In � 	 , the same is true except & and � ignore the
values of 
 . To prove that the two models agree on � � , we
use Lemma 6. Clearly the two models agree on ��� 
 � . To
show that the models also agree on �K� � V . X � for all val-
ues of � , note that in � 	 each value assignment over V . X
with even bit parity is equally likely, while no assignment
with odd bit parity is possible. But the same is true in � 2
because any value of � contributes to the bit parity of V . X
exactly twice. The agreement of � 2� �+� 	� on �K� follows by
the graph structure of - .

To see that the result is true, we note firstly that ����� : � :��
& ��� � � � �����
	�� �K��"�5� ����� : � : � & ��� � �����
	�� �K�
�� � � in � 	 , while the same probabilities are pos-
itive in �/2 , and secondly that in both models distri-
butions ���=0 �� � 2!�@"6"7"6� � 8 � � � � � and ��� 0��>� � 2!�@"6"7� � 8�� � � are
uniform. Note that the proof is easy to generalize for posi-
tive � � by adding a small probability for & to flip its normal
value. �
To extend our results to more complex graph structures we
need lemmas that allow us to make changes to the causal

graph that preserve non-identification. It should be noted
that versions of the following two lemmas also hold for
identifying causal effects from � .

Lemma 9 (contraction lemma) Assume � � � - �� :
� ���=1�� .

Let -(� be obtained from - by merging some two nodes

 � & into a new node � where � inherits all the parents
and children of 
 � & , subject to the following restrictions:

� The merge does not create cycles.

� If ��� � s � 1�� where � � s, 0 �� s, and 
 � * � ��� �-$ ,
then & �� * � ��� ��$ .

� If ����0 s � 1 � where � � s, then * � � 
 ��$ � � .

� If �*& w ��
 s �D1 � , then w and s agree on all variable
settings.

Assume � 
 ��� � & ��� � �,� and there’s some isomorphism '
assigning value pairs � ��0 to a value ' �=� �-0 �5� � . Let 1 � be
obtained from 1 as follows. For any

�
s � 1 :

� If � �� � 
 � & � , and values � �-0 occur in s, replace
them by ' �=� ��0 � .

� If � �� � 
 � & � , and the value of one of 
 � & occur
in s, replace it by some � consistent with the value of

 or & .

� If 
 � & do not occur in 1 , leave 1 as is.

� If � � & and � � s, replace
�

s by ' �=� ��0 � s � C � H .
� otherwise, replace every variable pair of the form

& r � 0��-
 s � � by � r � s � ' � � �-0$� .

Then � � � -(� �� : � ���;1�� � .
Proof: Let � be the cartesian product of 
 � & , and fix ' .
We want to show that the proof of non-identification of
���;1 � in - carries over to ���=1�� � in -(� .
We have four types of modifications to variables in 1 .
The first clearly results in the same counterfactual vari-
able. For the second, due to the restrictions we imposed,�

z � � z � � � � , which means we can apply the first modifica-
tion.

For the third, we have ���=1��(� ��� J ��0 ��� z � . By our restric-
tions, and rule 2 of do-calculus [Pearl, 1995], this is equal
to ��� J ��0 z � � z � . Since this is not identifiable, then neither is
��� J!��0 z ��� z � . Now it’s clear that our modification is equiva-
lent to the fourth.

The fourth modification is simply a merge of events con-
sistent with a single causal world into a conjunctive event,
which does not change the overall expression. �



Intuitively, the Contraction Lemma states that � � � �+�� �

*���"� about the model, by having a coarser graph which con-
siders two distinct nodes as one, will not help identification,
as you would expect.

Lemma 10 (downward extension lemma) Assume
�K� � - �� :

� ���;1 � . Let
� 0>2x 3 ��"7"6"7�-0��x � � be a subset of

counterfactual events in 1 . Let - � be a graph obtained
from - by adding a new child � of & 2 �@"6"7"6� &�� . Let
1�� � �;1 . � 0>2x 3 �@"6"7"6��0��x � �"� � � �

x 3 ��"7"6"7�
�

x
� � , where

�
is an

arbitrary value of � . Then � � � -(� �� : � ���;1�� � .
Proof: Let �/2?�'� 	 witness � � � - �� :

� ���;1 � . We will ex-
tend these models to witness � � � -(� �� : � ���=1�� � . Since the
function of a newly added � will be shared, and � 2?�'� 	
agree on � � in - , the extensions will agree on � � by
Lemma 6. We have two cases.

Assume there is a variable &<: such that 0:x � ��0 :x 9 are in 1 . By
Lemma 7, �K��� - �� :

� ���=0 :x � �-0 :x 9 � . Then let � be a child of
just & : , and assume � � �	� � & : �	� � . Let � be set to the
value of & : with probability ��	� , and otherwise it is set
to a uniformly chosen random value of &<: among the other
�
�  values. Since � is arbitrarily small, and since � x � and
� x 9 pay attention to the same

�
variable, it is possible to

set � in such a way that if � 2��*& :x � � & :x 9 � �� � 	 �*& :x � � & :x 9 � ,
however minutely, then � 2���� x � ��� x 9 � �� � 	 ��� x � ��� x 9 � .
Otherwise, let � � � � � : � & : � , and let ����� � & 2 �@"6"7"6� &�� �
be an invertible stochastic matrix. Our result follows. �
Intuitively, the Downward Extension Lemma states
that non-identification of causes translates into non-
identification of effects (because the distribution over the
latter can be in a one-to-one relationship with the distribu-
tion over the former). We are now ready to tackle the main
results of the paper.

Theorem 3 ID* is complete.

Proof: We want to show that if line 8 fails, the original
���;1 � cannot be identified. There are two broad cases to
consider. If - G contains the w-graph, the result follows by
Lemmas 7 and 10. If not, we argue as follows.

Fix some 
 which witnesses the precondition on line 8.
We can assume 
 is a parent of some nodes in

�
. Assume

no other node in sub � � � affects
�

(effectively we delete all
edges from parents of

�
to

�
except from 
 ). Because the

w-graph is not a part of - G , this has no ramifications on
edges in

�
. Further, we assume 
 has two values in

�
.

If 
 �� �
, fix &���� � � � &(� �=
 � . Assume

�
has no

directed edges at all. Then � � � - �� :
� ��� � � by Lemma 8.

The result now follows by Lemma 10, and by construction
of - G , which implies all nodes in

�
have some descendant

in 1 .

If
�

has directed edges, we want to show � ��� - �� :
�

���� � � �%� , where � � � � is the subset of
�

with no children

in
�

. We can recover this from the previous case as follows.
Assume

�
has no edges as before. For a node & � �

, fix
a set of childless nodes X � �

which are to be their par-
ents. Add a virtual node &<� which is a child of all nodes
in X. Then � � � - �� :

� ���%� � . X � � & � � by Lemma 10.
Then � � � - �� :

� ����� � � � �%� , where
� � is obtained from

�
by adding edges from X to & by Lemma 9, which applies
because no w-graph exists in - G . We can apply this step
inductively to obtain the desired forest (all nodes have at
most one child)

�
while making sure � �!� - �� :

� ����� � � �%� .
If
�

is not a forest, we can simply disregard extra edges so
effectively it is a forest. Since the w-graph is not in - G this
does not affect edges from 
 to

�
.

If 
 � �
, fix & � � � &(� �=
 � . If

�
has no directed edges

at all, replace 
 by a new virtual node & , and make 

be the parent of & . By Lemma 8, � � � - �� :

� ���%� � .)� � �
0���� . We now repeat the same steps as before, to obtain that
� � � - �� :

� ��� �� � � � .�� � � 0 � � for general
�

. Now we use
Lemma 9 to obtain � � � - �� :

� ���� � � � � . Having shown
� � � - �� :

� ���� � � � � , we conclude our result by inductively
applying Lemma 10. �
Theorem 4 IDC* is complete.

Proof: The difficult step is to show that after line 5 is
reached, if � � � - �� :

� ���;1 �-J�� then � � � - �� :
� ���;1 � J�� . If

�K� � - � :
� ��� J�� , this is obvious. Assume � �!� - �� :

� ��� J�� .
Fix the

�
which witnesses that for J�� � J , � �!� - �� :

� ��� J � � .
Fix some & such that a backdoor, i.e. starting with an in-
coming arrow, path exists from J � to & in - G � � . We want to
show that �K��� - �� :

� ��� & � J � � . Let -(��� * � � J � � � , ��� � � .
Assume & is a parent of a node , � J�� , and , � -(� .
Augment the counterexample models which induce coun-
terfactual graph - � with an additional binary node for & ,
and let the value of , be set as the old value plus &
modulo � , � . Let & attain value 1 with vanishing proba-
bility � . That the new models agree on � � is easy to estab-
lish. To see that � � � - �� :

� ��� J � � in the new model, note
that ��� J!� � in the new model is equal to ��� J�� . , �-, �� ��� � ���� � � ��� J �;. , �+, � � � � �� �����
	 � , � � ����� . Because
� is arbitrarily small, this implies our result. To show that
�K� � - �� :

� ���*&/� �� J � � , we must show that the models dis-
agree on ��� J ��� &/���� ����� J � � . But to do this, we must sim-
ply find two consecutive values of , ,

� � � �  �����
	 � , � �
such that ��� J � . , � � �  �����
	 � , � �%� ����� J � . , � � � is
different in the two models. But this follows from non-
identification of ��� J!� � .
If & is not a parent of , � - � , then either it is further
along on the backdoor path or it’s a child of some node in
-(� . In case 1, we must construct the distributions along the
backdoor path in such a way that if � � � - �� :

� ���*& � � J � �
then � � � - �� :

� ���*& � J � � , where & � is a node preceeding &
on the path. The proof follows closely the one in [Shpitser
& Pearl, 2006a]. In case 2, we duplicate the nodes in - �



which lead from & to J!� , and note that we can show non-
identification in the resulting graph using reasoning in case
1. We obtain our result by applying Lemma 9. �
We conclude the paper by giving a graphical characteri-
zation of counterfactuals on which ID* fails. Intuitively,
the condition says that ���;1 � cannot be identified if ac-
tions and observations set variables in some C-component
to conflicting values, and the conflicting variable is a par-
ent of some node in the C-component. The properties of
C-components then ensure that this conflict cannot be re-
solved using independence information in the model, re-
sulting in non-identification.

Theorem 5 Let - G ��1�� be obtained from make-cg � - �#1 � .
Then - � � � �� : � ���=1�� iff there exists a C-component

� �
* � �=1�� �#$�� where some 
 � � � � � � is set to � while at
the same time either 
 is also a parent of another node in�

and is set to another value � � , or
�

contains a variable
derived from 
 which is observed to be ��� .

Proof: This follows from Theorem 3 and the construction
of ID*. �

6 Conclusions

In his critique of counterfactuals, [Dawid, 2000] argues that
since counterfactuals cannot be directly tested, the use of
counterfactual notation and counterfactual analysis should
be avoided, lest it produces erroneous conclusions, unsub-
stantiated by the data. Our analysis proves the opposite
[Pearl, 2000b]; only by taking counterfactual analysis se-
riously is one able to distinguish testable from untestable
counterfactuals, then posit the more advanced question:
what additional assumptions are needed to make the latter
testable. We know, for example, that every counterfactual
query is empirically identifiable in linear models. This im-
plies that no counterfactual query is nonsensical if one can
justify the assumption of linearity. Therefore, asking such
queries in a non-linear context is not in itself nonsensical,
but reduces to a mathematical question of whether the sci-
entific knowledge at hand is sufficient for discerning the
queries from the data.

In this paper we have provided a complete graphical cri-
terion and associated algorithms for deciding whether an
arbitrary counterfactual query is discernible from experi-
mental data when scientific knowledge is expressed in the
form of a nonparametric causal graph. Some counterfactual
queries (e.g., the effect of binary treatment on the treated)
can be shown to be identifiable in general, with no addi-
tional assumptions needed. Others (e.g., the effect of a mul-
tivalued treatment on the treated), are identifiable only if
the causal graph has a certain structure (e.g., Figure 1 (a)).

Since all counterfactuals are empirically identifiable in lin-
ear systems, an interesting challenge would be to determine

what properties of linear system can be given up without
sacrificing empirical identifiability.
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