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Abstract

Counterfactual quantities representing path-specific effects arise in cases where
we are interested in computing the effect of one variable on another only along
certain causal paths in the graph (in other words by excluding a set of edges from
consideration). A recent paper [7] details a method by which such an exclusion can
be specified formally by fixing the value of the parent node of each excluded edge.
In this paper we derive simple, graphical conditions for experimental identifiability
of path-specific effects, namely, conditions under which path-specificeffects can
be estimated consistently from data obtained from controlled experiments.

1 Introduction

Total, direct and indirect effects are important quantities in practical causal reasoning
about legal, medical, and public policy domains, among others. The task of explicating,
and computing these quantities has been successfully addressed in the framework of
linear structural equation models (SEM), but encountered difficulties in non-linear as
well as non-parametric models. See for instance [9], [2], [7],

In the linear SEM framework, thetotal effectof Z on Y is the response ofY to a
unit change in the setting ofZ. On the other hand, thedirect effectis the effect ofZ on
Y not mediated by any other variable in the model while theindirect effectis the effect
of Z onY excluding the direct effect.

In non-parametric models, we can define thecontrolleddirect effect as the change
in the measured response ofY to a change inZ, while all other variables in the model,
henceforth calledcontext variables, are held constant. Unfortunately, there is no way
to construct an equivalent notion of controlled indirect effects, since it is not clear to
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what values other variables in the model need to be fixed in order to measure such an
effect.

Recently, a novel formulation ofnatural [7] or pure[9] effects was proposed which
defined effects in a more refined way by holding variables constant not to predeter-
mined values, but to values they would have attained in some situation. For example,
the natural direct effect ofZ on Y is the sensitivity ofY to changes inZ, while the
context variables are held fixed to the values they would haveattained had no change
in Z taken place. Similarly, the natural indirect effect is the sensitivity ofY to changes
the context variables would have undergone hadZ been changed, whileZ is actually
being fixed.

Being complex counterfactual quantities, natural effectstend to have intricate ver-
bal descriptions. It is often easier to explain such effectsusing the visual intuitions
provided by graphical causal models. Graphical causal models represent causal as-
sumptions as graphs, with vertices representing variables, and edges representing di-
rect causal paths. In such models, natural direct effect canbe interpreted as the effect
along the edgeZ → Y , with the effect along all other edges ’turned off.’ Similarly,
the natural indirect effect can be interpreted as the effectalong all edges except the one
betweenZ andY . Using this interpretation, the suggestive next step in thestudy of
natural effects is to consider effects along a select subsetof edges betweenZ andY
which are calledpath-specificeffects.

1.1 A Motivating Example

Consider the following example, inspired by [8], A study is performed on the effects
of the AZT drug on AIDS patients. AZT is a harsh drug known to cause a variety
of complications. For the purposes of the model, we restrictour attention to two –
pneumonia and severe headaches. In turn, pneumonia can be treated with antibiotics,
and severe headache sufferers can take painkillers. Ultimately, all the above variables,
except headache, are assumed to have a direct effect on the survival chances of the
patient. The graphical causal model for this situation is shown in Fig. 1.

The original question considered in this model was the totaleffect of AZT and
antibiotics treatment on survival. However, a variety of other questions of interest can
be phrased in terms of natural effects. For instance, what isthe direct effect of AZT on
survival, if AZT produced no side effects in the patient, which is just the natural direct
effect of AZT on survival. See Fig. 2 (a). Similarly, we mightbe interested in how just
the side effects of AZT affect survival, independent of the effect of AZT itself. This
corresponds to the natural indirect effect of AZT on survival. See Fig. 2 (b).

Furthermore, certain interesting questions cannot be phrased in terms of either di-
rect or indirect natural effects. For example we might be interested in the interactions
between antibiotics and AZT that negatively affect survival. To study such interactions,
we might consider the effect of administering AZT on survival in the idealized situation
where the antibiotics variable behaved as if AZT wasnot administered, and compare
this to the total effect of AZT on survival. Graphically, this amounts to ’blocking’ the
direct edge between antibiotics and survival or more precisely, keeping the edge func-
tioning at the level it would have had no AZT been given, whileletting the rest of the
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Figure 1: The AZT example.A: AZT, P : pneumonia,H: headaches,B: antibiotics,
K: painkillers,S: survival

edges function as usual. This is shown graphically in Fig. 3 (a). The edges which we
wish to block will be crossed out in the graph.

1.2 Outline and Discussion of Our Approach

Our goal is to study and characterize situations where path-specific effects like the one
from the previous section can be computed uniquely from the data available to the
investigator. Our main result is a simple, necessary, graphical condition for the iden-
tifiability of path-specific effects from experimental data. Furthermore, our condition
becomes sufficient for models with no spurious correlationsbetween observables, also
known as Markovian models.

The condition can be easily described in terms of blocked andunblocked paths as
follows. LetX, Y be variables in a causal modelM inducing a graphG. Then given
a set of blocked edgesg, the corresponding path-specific effect ofX on Y cannot be
identified if and only if there exists a nodeW with an unblocked directed path from
X to W , an unblocked directed path fromW to Y , and a blocked directed path from
W to Y . For instance, the effects ofA onS are identifiable in Fig. 2 (a), (b), and Fig.
3 (b), but not in Fig. 3 (a). Therefore, in general we cannot study the interractions of
AZT and antibiotics in the way described above, but we can study the interractions of
AZT and painkillers. The latter case is made tractable by an absense of blocked and
unblocked paths sharing edges.

Our condition also shows that all identifiable path-specificeffects are ’equivalent’,
in a sense made precise later, to effects where only root-emanating edges are blocked.
Thus identifiable path-specific effects are a generalization of both natural direct effects,
where a single root-emanating edge is unblocked, and of natural indirect effects, where
a single root-emanating edge is blocked.

To obtain this result formally, we treat effects as probabilities of statements in a
certain counterfactual logic. However, rather than manipulating these probabilities di-
rectly, we convert them to subgraphs of the original causal model, and reason about
and perform manipulations on the subgraphs. We then introduce simple counterfactual
formulas whose probabilities are not identifiable, and prove that certain simple graph-
ical conditions must be described by such formulas, and lackof such conditions leads
to subgraphs corresponding to identifiable effects.

Due to space considerations, the proofs of some lemmas have been omitted, while
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Figure 2: (a) Natural direct effect (b) Natural indirect effect
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Figure 3: Path specific effects

the proofs included generally are missing some technical details. Our technical report
contains the complete proofs.

2 Preliminaries

This paper deals extensively with causal models and counterfactuals. We reproduce
their definitions here for completeness. A full discussion can be found in [6]. For the
remainder of the paper, variables will be denoted by capitalletters, and their values
by small letters. Similarly, sets of variables will be denoted by bold capital letters,
sets of values by bold small letters. We will also make use of some graph theoretic
abbreviations. We will writePa(A)G, De(A)G, andAn(A)G, to mean the set of
parents, descendants (inclusive), and ancestors (inclusive) of nodeA in graphG. G
will be omitted from the subscript when assumed or obvious. If a variable is indexed,
i.e. V i, we will sometimes denote the above sets asPai, Dei, andAni, respectively.

2.1 Causal Models and Counterfactual Logic

Definition 1. A probabilistic causal model (PCM) is a tupleM = 〈U ,V ,F , P (u)〉,
where
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(i) U is a set of background or exogenous variables, which cannot be observed or
experimented on, but which can influence the rest of the mode

(ii) V is a set{V 1, ..., V n} of observable or endogenous variables. These variables
are considered to be functionally dependent on some subset of U ∪ V .

(iii) F is a set of functions{f1, ..., fn} such that eachf i is a mapping from a subset
of U ∪ V \ {V i} to V i, and such that

⋃
F is a function fromU to V .

(iv) P (u) is a joint probability distribution over the variables inU .

A causal modelM induces a directed graphG, where each variable corresponds
to a vertex inG and the directed edges are from the variables in the domain off i (i.e
Pai) to V i for all the functions. For the remainder of this paper, we consider causal
models which induce directed acyclic graphs.

A Markovian causal modelM has the property that each exogenous variableU is
in the domain of at most one functionf . A causal model which does not obey this
property is called semi-Markovian. By convention, nodes corresponding to variables
in U are not shown in graphs corresponding to Markovian models.

For the purposes of this paper, we will represent counterfactual statements in a kind
of propositional modal logic, similar to the one used in [4].Furthermore, the distribu-
tion P (u) will induce an additional probabilistic interpretation onthe statements in the
logic.

Definition 2 (atomic counterfactual formula). Let M be a causal model, letX be a
variable andZ be a (possibly empty) set of variables. Then for any valuex of X, and
valuesz of Z, x is a term, andXz(u) is a term, taken to mean ’the valueX attains
whenZ is forced to take on valuesz, andU attain valuesu.’

For two termst1 and t2, an atomic counterfactual formula has the formt1 = t2.
We will abbreviate formulas of the formXz(u) = x asxz(u).

The ’forcing’ of the variables toz is called an intervention, and is denoted by
do(z) in [6]. Counterfactual formulas are constructed from atomic formulas using
conjunction and negation.

Definition 3 (counterfactual formula).

(i) An atomic formulaα(u) is a counterfactual formula.

(ii) If α(u) is a counterfactual formula, then so is(¬α)(u).

(iii) If α(u) andβ(u) are counterfactual formulas, then so is(α ∧ β)(u).

The satisfaction of counterfactual formulas by causal models is defined in the stan-
dard way, which we reproduce from [4].

Definition 4 (entailment). A causal modelM satisfies a counterfactual formulaα(u),
written M |= α(u), if all variables appearing inα are inM and one of the following
is true
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(i) α(u) ≡ t1 = t2 and for the given setting ofu, the termst1 and t2 are equal in
M .

(ii) α(u) ≡ (¬β)(u) andM 6|= β(u).

(iii) α(u) ≡ (β ∧ γ)(u) andM |= β(u) andM |= γ(u)

Thus a formulaα(u) has a definite truth value inM . If the valuesu are unknown,
we cannot in general determine the truth ofα. However, we can easily define a natural
notion of probability ofα in M as follows:

P (α|M) =
∑

{u|M |=α(u)}

P (u) (1)

We will omit the conditioning onM if the model in question is assumed or obvious.
If we consider each value assignmentu as apossible world, then we can view

P (u) as describing our degree of belief that a particular world istrue, andP (α) as
our belief that a particular statement is true in our causal model if viewed as atype 2
probability structure [5].

2.2 Submodels and Identifiability

Definition 5 (submodel). For a causal modelM = 〈U ,V ,F , P (u)〉, an intervention
do(z) produces a new causal modelMz = 〈U ,V z,F z, P (u)〉, whereV z is a set
of distinct copies of variables inV , andF z is obtained by taking distinct copies of
functions inF , but replacing all copies of functions which determine the variables in
Z by constant functions setting the variables to valuesz.

The joint distributionP (V z) over the endogenous variables inMz is called an
interventional distribution, and is sometimes denoted asPz. For a given causal model
M , defineP∗ as{Pz|Z ⊆ V ,z a value assignment ofZ}. In other words,P∗ is the
set of all possible interventional (or experimental) distributions ofM .

Intuitively, the submodel is the original causal model, minimally altered to render
Z equal toz, while preserving the rest of its probabilistic structure.

Because there is no requirement that interventions in atomic counterfactuals in a
formulaα be consistent with each other, it is in general impossible toalter the original
model using only interventions in such a way as to make the entire formula true. Thus,
we introduce a causal model which encompasses the ’parallelworlds’ described by the
counterfactual formula.

Before doing so, we give a simple notion of union of submodels, as follows:

Definition 6 (causal model union). Let Mx, andMz be submodels derived fromM .
ThenMx ∪ Mz is defined to beMx if z = x, and〈U ,V x ∪ V z,F x ∪ F z, P (u)〉,
otherwise.

Definition 7 (parallel worlds model). LetM be a causal model,α a counterfactual for-
mula. Then the parallel worlds modelMα is the causal model union of the submodels
corresponding to atomic counterfactuals ofα.
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We call the joint distributionP (V α) over the endogenous variables inMα a coun-
terfactual distribution, and will sometimes denote it asPα. In the language of the
potential outcomes framework [10], we can viewPα as the joint distribution over the
unit-response variables mentioned inα.

The parallel worlds model is a generalization of the twin network model, first ap-
pearing in [1], to more than two possible worlds. It displaysindependence assumptions
between counterfactual quantities in the same way a regularcausal model displays in-
dependence assumptions between observable quantities – bypositing counterfactuals
are independent of their non-descendants given their parents.

Given a causal modelM and a formulaα, we are interested in whether the cor-
responding counterfactual joint distributionPα (or its marginal distributions) can be
computed uniquely from the set of joint distributions available to the investigator. The
formal statement of this question is as follows:

Definition 8 (identifiability). LetM be a causal model from a set of modelsM induc-
ing the same graphG, Mα a parallel worlds model, andQ be a marginal distribution
of the counterfactual joint distributionPα. LetK be a set of known probability distri-
butions derived fromM . ThenQ is K-identifiable inM if it is unique and computable
fromK in anyM ∈ M .

It follows from the definition that if we can construct two models inM with the
sameK but differentQ, thenQ is not identifiable. An important, well-studied spe-
cial case of this problem – which we call evidential identifiability of interventions –
assumesα is an atomic counterfactual, andK is the joint distribution over the endoge-
nous variables inM , orP (V ). Being able to identify an interventional marginal in this
way is being able to compute the effects of an intervention without having to actually
perform the intervention, and instead relying on passive, observational data.

In this paper we are concerned with identifying probabilities of counterfactuals for-
mulas using the setP∗ of all interventional distributions ofM as a given. In other
words, we are interested in computing probabilities of counterfactuals from experi-
mental and observational probabilities.

3 Path-Specific Effects

Our aim is to provide simple, graphical conditions for theP∗-identifiability of path-
specific effects. To do so, we must formalize such effects as counterfactual formulas,
and translate the identifiability conditions on the formulato conditions on the graph.

The following is the formalization of the notion of path-specific effect in terms of
a modified causal model, as it appears in [7]:

Definition 9 (path-specific effect). Let G be the causal graph associated with model
M , and letg be an edge-subgraph ofG containing the paths selected for effect analy-
sis (we will refer tog as theeffect subgraph). Theg-specific effect ofz on Y (rel-
ative to referencez∗) is defined as the total effect ofz on Y in a modified model
Mg formed as follows. Let each parent setPAi in G be partitioned into two parts
PAi = {PAi(g), PAi(ḡ)}, wherePAi(g) represents those members ofPAi that are
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linked toV i in g, and PAi(ḡ) represents the complementary set. We replace each
functionf i in M with a new functionf i

g in Mg, defined as follows: for every set of in-
stantiationspai(g) of PAi(g), f i

g(pai(g),u) = f i(pai(g), pai(ḡ)∗,u), wherepai(ḡ)∗

takes the value ofPAi(ḡ)z∗(u) in M . The collection of modified functions forms a new
modelMg. Theg-specific effect ofz on Y , denotedSEg(z, z∗;Y,u)M is defined as
the total effect (abbreviated as TE) ofz onY in the modified model:

SEg(z, z∗;Y,u)M = TE(z, z∗;Y,u)Mg
(2)

whereTE(z, z∗;Y,u)Mg
= Yz(u)Mg

− Yz∗(u)Mg
.

If we wish to summarize the path-specific effect over all settings ofu, we should
resort to the expectation of the above difference, or the expected path-specific effect.
To identify this effect, we need to identifyP (yz) andP (yz∗) in Mg. For our purposes
we can restrict our attention toP (yz), as the second term corresponds to the quantity
P (yz∗) in the original modelM , and so is triviallyP∗-identifiable.

In this paper we assume, without loss of generality, edges inḡ = G \ g are all
along directed paths betweenZ andY . The next theorem states that any path specific
effect, expressed as a total effect in the modified modelMg, can be expressed as a
counterfactual formula in the original modelM .

Theorem 1. Every path specific effectP (yz)Mg
has a corresponding counterfactual

formulaα in M s.t for everyu,

Mg |= yz(u) ⇐⇒ M |= α(u)

Proof outline: The proof is for causal models with finite domains. FixM , u, y, z
andg. To prove the theorem, we need to ’unroll’yz and remove any implicit references
to modified functions inMg, while preserving the truth value of the statement. Our
proof will use the axiom of composition, known to hold true for causal models under
consideration. In our language, the axiom states that for any three variablesZ, Y,W ,
and any settingsu, z, w, y, (Wz = w ⇒ Yz,w = Yz)(u).

Fix u1. Let S = An(Y ) ∩ De(Z) Then by axiom of composition,yz(u1) has
the same truth value as a conjunction of atomic formulas of the form vi

pai(g), where

V i ∈ S, PAi(g) is the set of parents ofV i in Mg, andpai(g) andvi are suitably
chosen constants. Denote this conjunctionα1.

For every termvi
pai(g) in α1 corresponding toV i with PAi(g) ⊂ PAi, replace

it by vi
pai(g),pai(ḡ)∗ ∧ pai(ḡ)∗z∗ in the conjunction, wherepai(ḡ)∗ takes the value of

PAi(ḡ)z∗(u1) in M . Denote the resultα∗
1. Note thatα∗

1 is inM andMg |= yz(u1) ⇐⇒
M |= α∗

1(u1). We construct a similar conjunctionα∗
j for every instantiationuj in M .

Let α =
∨

j α∗
j . It’s easy to see the claim holds forα by construction. 2

An easy corollary of the theorem is, as before, thatP (yz)Mg
= P (α)M . Note that

differentαi in the proof only differ in the values they assign to variables in S. Since
M is composed of functions, the values of variables inS are fixed givenu, and since
P (α) =

∑
{u|M |=

W

i
αi(u)} P (u) by definition, we can expressP (α) as a summation

over the variables inS \ {Y }.
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Figure 4: Bold edges represent directed paths (a)R1 Rule (b)R2 Rule

For instance, the first term of the path-specific effect in Fig. 2 (a) can be expressed
as

P (sa)Mg2a
=

∑

k,b,p,h

P (sk,b,p,a ∧ kh ∧ bp ∧ pa∗ ∧ ha∗)

=
∑

h,p

P (sa,h,p ∧ ha∗ ∧ pa∗) (3)

which is just the direct effect. The more general case of Fig.3 (a) can be expressed
as:1

P (sa)Mg3a
=

∑

k,b,p,h

P (sk,b,p,a ∧ kh ∧ ba∗ ∧ pa ∧ ha)

=
∑

b

P (sa,b ∧ ba∗) (4)

It looks as if the expressions in Eq. (3) and (4) for the two effects are very similar,
moreover we know that direct effects are alwaysP∗-identifiable in Markovian models.
Surprisingly, the path specific effect of Fig. 3 (a) and Eq. (4) is notP∗-identifiable as
we will show later.

We will find it useful to modify the effect subgraphg while preserving the value
of the path-specific effect. We do so by means of the followingtwo rules. LetM be a
causal model with the graphG, g an effect subgraph ofG, andḡ = G \ g. For a node
V , let in(V ) denote the set of edges incoming intoV , andout(V ) denote the set of
edges outgoing fromV , in G.

R1: If there is a nodeV in G such thatout(V ) ⊆ ḡ, thenR1(g) = (g \ out(V )) ∪
in(V ). See Fig. 4 (a).

R2: If there is an edgee ∈ ḡ, such that for all directed paths fromZ to Y which
includee, there exists another edgee′ ∈ ḡ, which occurs ’upstream’ frome, then
R2(g) = g \ {e}. See Fig. 4 (b).

1Note that Eq (4) is different from
P

ba∗
P (sa,b ∧ ba∗) which is just a marginalization over the coun-

terfactual variableba∗

9



Theorem 2 (Effect-Invariant Rules). If R1 is applicable theR1(g)-specific effect is
equal to theg-specific effect. IfR2 is applicable theR2(g)-specific effect is equal to
theg-specific effect.

Proof outline: The proof is by induction on graph structure, and is an easy conse-
quence of the definition ofg-specific effect, and theR1 andR2 rules. 2

Intuitively, R1 ’moves’ the blocked edges closer to the manipulated variableZ, and
R2 removes redundant blocked edges. Thus, it is not surprisingthese two identities
cannot be applied forever in a dag.

Lemma 1. Let M be a causal model,g an effect subgraph. Then any sequence of
applications ofR1 andR2 to g will reach a fixed pointg∗.

4 Problematic Counterfactual Formulas

Identification of a distribution must precede its estimation, as there is certainly no hope
of estimating a quantity not uniquely determined by the modeling assumptions. Fur-
thermore, uniqueness frequently cannot be guaranteed in causal models. For instance,
when identifying interventions from observational data, aparticular graph structure,
the ’bow-arc’, has proven to be troublesome. Whenever the graph of a causal model
contains the bow-arc, certain experiments become unidentifiable [6]. Our investigation
revealed that a similarly problematic structure exists forexperimental identifiability,
which we call the ’kite graph’, due to its shape. The kite graph arises when we try to
identity counterfactual probabilities of the formP (rz∗ ∧ r′z).

Lemma 2. LetM be a causal model, letZ andR be variables such thatZ is a parent
of R. ThenP (rz∗ ∧ r′z) is notP∗-identifiable ifz∗ 6= z.

Proof outline: The proof is by counter example. We letα = rz∗∧r′z, and construct
two causal modelsM1 andM2 that agree on the interventional distribution setP∗, but
disagree onP (α). In fact, we only need 2 variables. The two models agree on the
following: Z is the parent ofR, UZ , Z andR are binary variables,UR be a ternary
variable,fZ = UZ , andP (uZ), andP (uR) are uniform. The two models only differ
on the functionsfR, which are given by table 2. It’s easy to verify our claim holds for
the two models for any valuesz∗ 6= z of Z. 2

The next theorem shows how a particular path-specific effectleads to problematic
counterfactuals from the previous lemma.

Theorem 3. The g-specific effect ofZ on Y as described in Fig. 7 (a) is notP∗-
identifiable.

Proof: We extend modelsM1 andM2 from the previous proof with additional
variablesV , Y , andUY . We assumeP (uY ) is uniform, and bothP (V, Y |R) and the
functions which determineV andY are the same in both models.

Note that since all variables are discrete, the conditionalprobability distributions
can be represented as tables. If we require|R| = |V | and|Y | = |V |∗ |R|, then the con-
ditional probabilities are representable as square matrices. We fix the functionsfV and
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Table 1: The functionsf1
R andf2

R

Z UR R = f1

R(z, uR) R = f2

R(z, uR)

0 1 0 1
0 2 1 1
0 3 1 0
1 1 1 1
1 2 0 0
1 3 0 0

fY , as well as the exogenous parents ofV andY such that the matrices corresponding
to P (V, Y |R) andP (V |R) are matrices are invertible.

Call the extended modelsM3 andM4. Note that by construction, the two models
are Markovian. SinceM1 and M2 have the sameP∗, and since the two extended
models agree on all functions and distributions not inM1 andM2, they must also have
the sameP∗.

Consider theg-specific effect shown in Fig. 7 (a). From Theorem 1 we can express
the path-specific effect inM3

g in terms ofM3, In particular:

P (yz)M3
g

=
∑

rv

P (yrv ∧ rz∗ ∧ vz)M3

=
∑

r,v,r′

P (yrv ∧ rz∗ ∧ vr′ ∧ r′z)M3

=
∑

r,v,r′

P (yrv)M3P (vr′)M3P (rz∗ , r′z)M3

The last step is licensed by the independence assumptions encoded in the parallel
worlds model ofyrv∧rz∗ ∧vr′ ∧r′z. The same expression can be derived forP (yz)M4

g
.

Note that sinceP∗ is the same for both models they have the same values for the in-
terventional distributionsP (yrv) andP (vr′). Note that sinceP (Y |R, V ) andP (V |R)
are square matrices, the summing out ofP (Y |R, V ) andP (V |R) can be viewed as a
linear transformation. Since the matrices are invertible, the transformations are one
to one, and so if their composition. SinceP (yrv) = P (y|r, v) andP (vr′) = P (v|r′),
and sinceP (rz∗ ∧ r′z) is different in the two models, we obtain thatP (yz)M3

g
6=

P (yz)M4
g
. Since adding directed or bidirected edges to a graph cannothelp identifi-

ability, the result also holds in semi-Markovian models. 2

5 Main Result

The main result of this section is that a simple sufficient andnecessary (in Markovian
models) graphical criterion exists. This condition is easily stated and can be derived
from the effect subgraphg in linear time. By contrast, the only other methods known
to us for obtaining identifiability results of probabilities of general counterfactual logic
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formulas are proof search procedures based on results in [3], [4]. Such procedures
are far less intuitive, do not have running time bounds, and cannot be used to obtain
non-identifiability proofs.

First let’s define this criterion:

Definition 10 (Recanting witness criterion). Let R 6= Z be a node inG, such that
there exists a directed path ing from Z to R, a directed path fromR to Y in g, and a
direct path fromR to Y in G but notg. ThenZ, Y , andg satisfy the recanting witness
criterion withR as a witness

The recanting witness criterion is illustrated graphically as the ’kite pattern’ in Fig.
7 (b). The name ’recanting witness’ comes from the behavior of the variableR in the
center of the ’kite.’ This variable, in some sense, ’tries tohave it both ways.’ Along
one path fromR to Y , R behaves as if the variableZ was set to one value, but along
another path,R behaves as ifZ was set to another value. This ’changing of the story’
of R is what causes the problem, and as we will show it essentiallyleads to the the
existence of a nonP∗-identifiable expression of the type discussed in section 4.

To proceed, we must make use of the following helpful lemmas:Let g be an effect
subgraph ofG andg∗ the fixed point ofR1 andR2. Let g∗ = G \ g∗.

Lemma 3. g∗ satisfies the recanting witness criterion iffg does. Moreover, ifg∗ does
satisfy the criterion, then there exists a witnessR s.tout(R) ∩ g∗ 6= ∅. If g∗ does not,
theng∗ ⊆ out(Z).

Lemma 3 states that repeated applications of rulesR1 andR2 preserves the satis-
faction of the recanting witness criterion. Moreover, if the witness exists in the fixed
point g∗, then some outgoing edge from it is blocked. If the witness does not exist in
g∗, then only root-emanating edges are blocked.

Lemma 4. Assume theg∗-specific effect ofZ onY is P∗-identifiable. LetE be any set
of edges ing∗. Letg′ = E∪g∗. Then theg′-specific effect ofZ onY is P∗-identifiable.

Lemma 4 states that if a path specific effect is not identified,then adding blocked
directed edges ’does not help,’ in that the effect remains unidentified. Now we can state
and prove the main results:

12



Theorem 4. If g satisfies the recanting witness criterion, then theg-specific effect of
Z onY is notP∗-identifiable.

Proof: Let M be our model and assume thatg satisfies the recanting witness crite-
rion. By Lemma 3 so doesg∗, let R be the witness from the lemma s.te = R → V is
in g∗. Assume theg-specific effect is identifiable, By Theorem 2 so is theg∗-specific
effect. Letg′ be the path specific effect obtained by adding all edges tog∗, but e. By
Lemma 4 theg′-specific effect is alsoP∗-identifiable. Now by composing the func-
tions in g′ we can obtain a new modelM ′ which is exactly the model of Fig. 7 (a)2

and P (yz)Mg′
= P (yz)M ′

g′
. From Theorem 3 we know thatP (yz)M ′

g′
is not P∗-

identifiable, hence, neither isP (yz)Mg′
and theg′-specific effect is notP∗-identifiable.

Contradiction. 2 To illustrate the use of the theorem, consider the example inEq. (4)
from Section 3. The expression

∑
b P (sa,b ∧ ba∗) =

=
∑

b,p

P (sa,b ∧ bp′ ∧ p′a∗)

=
∑

b,p,p′

P (sa,b,p ∧ bp′ ∧ p′a∗ ∧ pa) (5)

=
∑

b,p,p′

P (sa,b,p ∧ bp′)P (p′a∗ ∧ pa)

The first two steps are by definition, the last step is licensedby the parallel worlds
model corresponding to the formula in Eq. 5. The theorem shows that, as in this exam-
ple, non-identifiability arises because formulas of the form p′a∗ ∧ pa appear whenever
the recanting witness criterion holds.

Theorem 5. If g does not satisfy the recanting witness criterion, then theg-specific
effect ofZ onY is P∗-identifiable in Markovian models.

Proof: From theorem 2 we have thatP (yz)Mg∗
= P (yz)Mg

. Sinceg does not
satisfy the recanting witness criterion, by Lemma 3 all the edges ing∗ emanate from
Z. From Theorem 1 there is a formulaα(g∗) corresponding toP (yz)Mg∗

that contains
only atomic counterfactuals of the formvi

pai . Since all blocked edges emanate fromZ,

it can be easily observed that for each two atomic counterfactuals inα(g∗), vi
pai , v

j

paj ,
i 6= j. This follows, since we only introduce atomic counterfactuals withdo(z∗) where
we cut edges. Now since in Markovian models any two differentvariables are indepen-
dent if you set all their parents, all the atomic counterfactual inα(g∗) are independent
of each other which makes the expressionP∗-identifiable. 2

For example, we stated earlier that theg specific effect of Fig 3 (b) is identifiable,
this is true sinceg does not satisfy the recanting witness criterion. In particular the

2or a similar model where we “cut” the edgeR → V and not the edgeR → Y
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expression for the path-specific effect is:

P (sa)Mg3b
=

∑

k,b,p,h

P (sk,b,p,a ∧ kh ∧ ba ∧ pa ∧ ha∗)

=
∑

h

P (sh,a ∧ ha∗) (6)

=
∑

h

P (sh,a)P (ha∗)

As before, the first two steps are by definition, and the last step is licensed by the
parallel worlds model corresponding to the formula in Eq. 6.But now note that
P (sh,a), P (ha∗) ∈ P∗, therefore the above expression can be computed from experi-
ments.

6 Conclusions

Our paper presented a sufficient and necessary graphical conditions for the experimen-
tal identifiability of path-specific effects, using tools from probability theory, graph
theory, and counterfactual logic. We related identifiable path-specific effects to direct
and indirect effects by showing that all such effects only block root-emanating edges.

While it is possible to give a sufficient condition for identifiability of general coun-
terfactual formulas in our language, using induction on formula structure, this does
not give a single necessary and sufficient condition for semi-Markovian models. The
search for such a condition is a good direction for future work.

Another interesting direction is to consider special casesof causal models where
path-specific effects can be identified even in the presence of the ’kite’ – this is true in
linear models, for instance.

Finally, our result assumes causal models with finite domains, and ’small’ graphs.
An interesting generalization is to consider causal modelswith ’large’ or infinite graphs
and infinite domains. Such models may require adding first-order features to the lan-
guage.
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8 Appendix: Proofs

Theorem 1. Every path specific effectP (yz)Mg
has a corresponding counterfactual

formulaα in M s.t for everyu,

Mg |= yz(u) ⇐⇒ M |= α(u)
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Proof: The proof is for causal models with finite domains. FixM , u, yz, and
g. To prove the theorem, we need to ’unroll’yz and remove any implicit references
to modified functions inMg, while preserving the truth value of the statement. Our
proof will use the axiom of composition, known to hold true for causal models under
consideration. In our language, the axiom states that for any three variablesZ, Y,W ,
and any settingsu, z, w, y, (Wz = w ⇒ Yz,w = Yz)(u).

Fix u1. Let S be the set of variables betweenZ andY (inclusive). Then by axiom
of composition,yz(u1) has the same truth value as as a conjunction of atomic formulas
of the formvi

pai(g), whereV i ∈ S, PAi(g) is the set of parents ofV i in Mg, and

pai(g) andvi are suitably chosen constants. Denote this conjunctionα1.
For every termvi

pai(g) in α1 corresponding toV i with in(V i) 6⊆ g, replace it

by vi
pai(g),pai(ḡ)∗ ∧ pai(ḡ)∗z∗ in the conjunction, wherepai(ḡ)∗ takes the value of

PAi(ḡ)z∗(u) in M . Denote the resultα∗
1. Note thatα∗

1 is inM andMg |= yz(u1) ⇐⇒
M |= α∗

1(u1). We construct a similar conjunctionα∗
j for every instantiationui in M .

Let α =
∨

j α∗
j . It’s easy to see the claim holds forα by construction. 2

Theorem 2 (Effect-Invariant Rules). If R1 is applicable theR1(g)-specific effect is
equal to theg-specific effect. IfR2 is applicable theR2(g)-specific effect is equal to
theg-specific effect.

Proof: Fix u. Let W be the variable such thatout(W ) ⊂ ḡ, andin(W ) ⊂ R1(g).
We want to prove that the values of all variables downstream from W in MR1(g)

are the same as inMg, for a givenu.
Let N be the set of non-descendants ofW , let n be their values inMg for a given

u. Similarly, letD be the set of descendants ofW , let d be their values inMg for a
givenu.

Note that any node inN retains the same set of incoming edges inR1(g) as ing,
and so retains the same value. Now orderD topologically, and consider each variable
in turn. The first variableD1 must have parents in the set{W} ∪ N. Note that the
values of all variables inN stay the same by previous argument. Similarly, ing, W
was not in the parent set ofD1, but the function behaved as ifW was set to the value
Wz∗(u), call it w∗. In MR1(g), W is set to that value explicitly, soD1 must retain the
same value. The same argument applies inductively to any child of W , and thus to any
descendant.

Let e be the edge unblocked by an application ofR2. Assumee ∈ out(P ) and
e ∈ in(C) in M .

As before, letN be the set of non-descendants ofC, letn be their values inMg for
a givenu. Similarly, letD be the set of descendants ofW , let d be their values inMg

for a givenu.
Note that any node inN retains the same set of incoming edges inMR2(g) as in

Mg, and so retains the same value.
Let O be the set of parents ofC in Mg.
By definition, the value ofC in Mg behaves as ifO were set toOz(u), andP was

set toPz∗(u).
In MR2(g), the value ofC behaves as ifO were set toOz(u), andP was set to

Pz∗(u) (because all the paths fromZ to P are blocked by assumption). Thus the value
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of C does not change fromMg to MR2(g).
Consider any nodeD in D. Since the set of incoming edges did not change fromg

to R2(g) for these nodes, and all upstream variables retain their values (by induction),
the nodeD must retain its value also.

The conclusion follows. 2

Lemma 1. Let M be a causal model,g an effect subgraph. Then any sequence of
applications ofR1 andR2 to g will reach a fixed pointg∗.

Proof of lemma 1: Assume there is no fixed point. Then eitherR1 is applied
infinitely many times, orR2 is applied infinitely many times. The former case is only
possible in a cyclic graph or an infinite dag, sinceR1 moves the ’block’ up some
directed path. The latter case is only possible in an infinitegraph with infinitely many
’blocked’ edges, sinceR2 reduces the number of blocked edges.

Next consider two sequences of application ofR1 andR2 that produce different
subgraphs, sayg∗1 andg∗2 .

Note thatR1 preserves the existing set of blocked paths, since any blocked path is
either left alone, or the blocked edge is ’moved up’ but stayson the path. The same is
true ofR2, since only edges which are not relevant for the purposes of path-blocking
are removed.

Thus,g∗1 , g∗2 andg share the same set of blocked paths. Assume there is a blocked
edgee1 in g∗1 but notg∗2 . Fix a path blocked by different edges ing∗1 andg∗2 , by edges
e1, ande2 respectively. Denote the parent node ofe1 asW . Assume without loss of
generalitye1 is belowe2 on the path. Since we cannot applyR1 to g∗1 , there must
exist an unblocked path throughW in g∗1 . Say the path ispq, wherep = Z → W and
q = W → Y .

If e2 is in p, then the pathpq is blocked ing∗2 (by e2) but not ing∗1 by construction.
If e2 is not in p, and since an unblocked path must still exist, then there exists

another path fromZ to W in g∗2 , sayp′. 2

Lemma 2. Let M be a causal model, and letZ, X be non-empty sets of variables in
M . Then for any variableY which is a descendant of all variables inZ∪X, P (yx ∧y′

z)
is notP∗-identifiable, ifx 6= z.

Proof of Lemma 2: The proof is by counterexample. We will construct two mod-
els M1, M2 which share the graph shown in figure 6 (A), and which have the same
interventional distributionsP∗, but produce two differentP (Q). For both models the
variablesZ andY are binary,uZ anduY are the unobserved variables, whereuZ is a
uniform binary variable anduY is a uniform variable with values drawn from the set
{1, 2, 3}. In both models the function forZ is Z = f i

z(uZ) = uZ , i = 1, 2). The
models differ in the functionsf i

y which determineY in M1 andM2, which are shown
in the Table 1.

Next we show that the interventional distributionsP 1
∗ for M1andP 2

∗ for M2 are
the same. We have only four possible experiments types:do(z, y), do(z), do(y), and
the null experiment where no variable is forced. If we perform do(z, y) it is clear that
P 1

zy(·) = P 2
zy(·) no matter which valuesz andy are forced to take. If we are only

performingdo(z) there are two casesz = 1 or z = 0. In both casesP 1
z (·) = P 2

z (·)
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Figure 6: (a) The graph of the original causal model. (b) The w-graph of the p-model

Table 2: The functionsf1
Y andf2

Y

Z UY Y = f1
Y (z, uY ) Y = f2

Y (z, uY )
0 1 0 1
0 2 1 1
0 3 1 0
1 1 1 1
1 2 0 0
1 3 0 0

Table 3: Probabilities ofP (yz∗, y
′
z) in M1 andM2, z∗ = 0, z = 1

P M1 M2

P (Yz∗ = 0, Yz = 0) 0 1
3

P (Yz∗ = 0, Yz = 0) 1
3 0

P (Yz∗ = 0, Yz = 0) 2
3

1
3

P (Yz∗ = 0, Yz = 0) 0 1
3
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Figure 7: (a) The ’kite pattern’ (b) An example

Table 4:P (Vr = v) in M3 andM4

P (Vr = v) v = 0 v = 1
r = 0 1 0
r = 1 0 1

(note that in both models doingz changes the distribution ofy). If we do(y) it does
not influenceZ so it reduces to the case of null experiment and we can observethat for
all possibleP (z, y) the two models agree:P (0, 0) = P (1, 1) = 1/6 andP (1, 0) =
P (0, 1) = 1/3 so againP 1

∅ (·) = P 2
∅ (·).

Let’s look now at the counterfactual quantityP (Q) = P (Yz, Yz∗). The p-model
corresponding toQ is shown in figure 6 (B). IfP (Q) wereP∗ − identifiable then we
could express it in terms ofP∗ which means it would have the same value underM1

andM2. If we can show it has two different values inM1 andM2 this would imply
thatP (Q) is not experimental identifiable. Using the above table, we see that inM1,
P (Yz=0 = 0, Yz=1 = 1) = 1

3 . On the other hand, inM2 P (Yz′=0 = 0, Yz=1 = 1) =
0. 2

The reasoning behind this failure is that in order to findP (Q) from P∗ we need to
separate the expressions inQ into independent experiments each of which belong to
P∗. We fail to do so since the only way to separate the experiments in the twin model
of figure 6 (i.eYz, Yz∗ ) is to condition onu2. But we cannot condition on exogenous
variables by assumption.

Theorem 3. The g-specific effect ofZ on Y as described in Fig. 7 (b) is notP∗-
identifiable.

Proof of Theorem 3:
We extend modelsM1 and M2 from the previous proof with additional binary

variablesV , Y , andUY . We assumeP (uY ) is uniform, and we let the new functions
be defined as

f3
V (r, uR) = f4

V (r, ur) = r.

18



Table 5:P (Ywr = y) in M3 andM4

P (Ywr = y) y = 0 y = 1
w = 0, r = 0 1/2 1/2
w = 0, r = 1 0 1
w = 1, r = 0 0 1
w = 1, r = 1 0 1

Table 6:P (Yz=1 = y) in M3 andM4

M3
g M4

g

P (Yz=1 = 0)Mg
0 1/6

P (Yz=1 = 1)Mg
1 5/6

f3
Y (v, r, uY ) = f4

Y (v, r, u) = v ∨ r ∨ uY .

Call the extended modelsM3 andM4. SinceM1 andM2 have the sameP∗, and
since the two extended models agree on all functions and distributions not inM1 and
M2, they must also have the sameP∗.

Consider theg-specific effect shown in Fig. 7 (b). From Theorem 1 we can express
the path-specific effect inM3

g in terms ofM3, In particular:

P (yz)M3
g

=
∑

rv

P (yrv ∧ rz∗ ∧ vz)M3

=
∑

r,v,r′

P (yrv ∧ rz∗ ∧ vr′ ∧ r′z)M3

=
∑

r,v,r′

P (yrv)M3P (vr′)M3P (rz∗ , r′z)M3

The last step is licensed by the independence assumptions encoded in the parallel
worlds model ofyrv∧rz∗ ∧vr′ ∧r′z. The same expression can be derived forP (yz)M4

g
.

Note that sinceP∗ is the same for both models they have the same values for the in-
terventional distributionsP (yrw) andP (wr′). All the values of these expressions are
shown in Tables 3, 4, 5 and we can check thatP (yz)M3

g
6= P (yz)M4

g
as shown in table

6. 2

Lemma 3. g∗ satisfies the recanting witness criterion iffg does. Moreover, ifg∗ does
satisfies it, then there exist a witnessR s.t out(R) ∩ g∗ 6= ∅. If g∗ does not, then
g∗ ⊆ out(Z).

The first statement in the Lemma is true according to this two claims:

Claim 1. g, Z, andY satisfy the recanting witness criterion if and only ifR1(g), Z,
andY do.
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Proof: AssumeR1(g), Z, Y satisfy the recanting witness criterion. LetR be the
witness. Lete be the edge added tog to constructR1(g). Assumee is not a part of any
of the three directed paths involved in the criterion. Then removinge from g will have
no effect on the criterion, thus it will be satisfied byg, Z, Y .

Assumee is part of the ’blocked’ path fromR to Y . Then removinge from R1(g)
to obtaing, we note that the path fromR to Y will remain blocked, so the criterion is
still satisfied.

Assumee is part of either the ’unblocked’ path fromZ to R or the ’unblocked’
path fromR to Y . But e was only added tog because all paths fromR going through
e were blocked, which is a contradiction.

Assumeg, Z, Y satisfy the recanting witness criterion, letR be the witness. Lete
be the edge added tog to constructR1(g). Assumee is not a part of any of the three
directed paths involved in the criterion. Then addinge to g will have no effect on the
criterion, thus it will be satisfied byR1(g), Z, Y .

Assumee is part of the ’blocked’ path fromR to Y . But if we addede to g to
obtainR1(g) then all paths toY throughe are blocked. Since an unblocked path from
Z to R exists by assumption, all paths throughe from R to Y are blocked inR1(g). 2

Claim 2. g, Z, andY satisfy the recanting witness criterion if and only ifR2(g), Z,
andY do.

Proof: AssumeR2(g), Z, Y satisfy the recanting witness criterion, letR be the
witness. AssumeV lies on some path of the criterion. Since all of incoming edges of
V are blocked, it must lie on the blocked path fromR to Z. However, unblocking all
incoming edges while blocking all outgoing edges will stillblock all paths involvingV .
Thus the recanting criterion will be satisfied byg, Z, Y . If V does not lie on any path
of the criterion, then the unblocking of all incoming edges while blocking all outgoing
edges ofV will not affect any paths involved in the criterion. Therefore g, Z, Y will
still satisfy it.

Assumeg, Z, Y satisfy the recanting witness criterion, letR be the witness. We
conclude thatR2(g), Z, andY satisfy the recanting witness criterion by a symmetric
argument. 2

Proof of Lemma 3: First we’ll prove that ifg∗ does not satisfies the recanting
witness criterion, then all deleted edges (i.eg∗) emanates fromZ. Assume it is false
and lete be the witness such thate emanates fromR 6= Z into V . SinceR2 is not
applicable (g∗ is a fixed point) there is a pathZ to R. SineR1 is not applicableR
has another childX with the edgeR → X in g∗. Since there is a path inG from X
to Y and a path fromV to Y 3, g∗ satisfies the recanting witness criterion withR as a
witness. Contradiction.
Next we’ll prove that ifg∗ satisfies the recanting witness criterion, then there is a
witnessR such thatsomeof his outgoing edges are ing∗ and some are ing∗. Let e
be the deepest edge ing∗ (with respect to BFS fromZ), if e emanates fromZ then all
edges ing∗ emanates fromZ and it is easy to see thatg∗ does not satisfies the recanting
witness criterion. So assumee emanates fromR 6= Z. But, then sinceR1 andR2 are
not applicableR is clearly a witness to the claim. 2

3this is true since we are only considering nodes that lie betweenZ andY , note thatY may beX or R

or none of them.
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Lemma 4. Assume theg∗-specific effect ofz onY is P∗-identifiable. LetE be any set
of edges ing∗. Letg′ = E∪g∗. Then theg′-specific effect ofZ onY is P∗-identifiable.

Proof of Lemma 4:For every edgee ∈ E, letV be the nodee emanates from. Note
thatV must have at least one other outgoing edgee′ emanate from it such thate′ ∈ g∗

and there is a path fromZ to V in g∗ otherwise we can either applyR1 or R2.4

Let α(g∗) be the counterfactual formula which is equal toyz in Mg∗ that contain
only atomic counterfactual of the formvi

pai wherePAi stand for the parents ofV i, or
of the formvi

z∗ , such a formula exist as showen in Theorem 1.
Now, the counterfactual formulaα(g′) corresponding to theg′-specific effect is the

same as the formulaα(g∗), except that for eache ∈ E, the correspondingvi
z∗ atomic

counterfactual is replaced withvi
pai . But since an unblocked path fromZ to V andV

to Y exist,α(g∗) must already contains the termvi
pai in the conjunction. 2

Theorems 4 and 5.(i) If g satisfies the recanting witness criterion, then theg-specific
effect ofZ onY is notP∗-identifiable.
(ii) If g does not, then theg-specific effect ofZ on Y is P∗-identifiable in Markovian
models.

Proof: (i) Let M be our model and assume thatg satisfies the recanting witness
criterion. By Lemma 3 so doesg∗, letR be the witness from the lemma s.te = R → V
is in g∗. Assume theg-specific effect is identifiable, By Theorem 2 so is theg∗-specific
effect. Letg′ be the path specific effect obtained by adding all edges tog∗, but e.
By Lemma 4 theg′-specific effect is alsoP∗-identifiable. Now by composing the
functions ing′ we can obtain a new modelM ′ which is exactly the model of Fig. 7
(b)5 andP (yz)Mg′

= P (yz)M ′

g′
. From Theorem 3 we know thatP (yz)M ′

g′
is notP∗-

identifiable, hence, neither isP (yz)Mg′
and theg′-specific effect is notP∗-identifiable.

Contradiction.
(ii) From theorem 2P (yz)Mg∗

= P (yz)Mg
. Sinceg does not satisfy the recanting

witness criterion, by Lemma 3 all the edges ing∗ emanates fromZ. From Theorem 1
the formulaα(g∗) corresponding toP (yz)Mg∗

contains only atomic counterfactuals of
the formvpaV . Since all blocked edges emanate fromZ, it can be easily observed that
for each two atomic counterfactuals inα(g∗), vi

pai , v
j

paj , i 6= j. This follows, since we
only introduce atomic counterfactuals withdo(z∗) where we cut edges. Now by Claim
3 all the atomic counterfactual inα(g∗) are independent of each other which makes the
expressionP∗-identifiable. 2

Claim 3. In Markovian models for two diffrent variablesV i, V j we have:

V i
pai ⊥⊥ V j

paj

4an exception is whenV = Z and all edges emanating fromZ are ing∗, in this special case the Lemma
is true as we shows later

5or a similar model where we “cut” the edgeR → V and not the edgeR → Y
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