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Abstract

Counterfactual quantities representing path-specific effects ariseds vdere
we are interested in computing the effect of one variable on another g a
certain causal paths in the graph (in other words by excluding a segedtbm
consideration). A recent paper [7] details a method by which suchadunséan can
be specified formally by fixing the value of the parent node of each dzdiedge.
In this paper we derive simple, graphical conditions for experimengatitiability
of path-specific effects, namely, conditions under which path-spedficts can
be estimated consistently from data obtained from controlled experiments.

1 Introduction

Total, direct and indirect effects are important quargiiie practical causal reasoning
about legal, medical, and public policy domains, amongrsthEhe task of explicating,
and computing these quantities has been successfully ssdatén the framework of
linear structural equation models (SEM), but encounteiffitdties in non-linear as
well as non-parametric models. See for instance [9], [4], [7

In the linear SEM framework, thiotal effectof Z onY is the response df to a
unit change in the setting &f. On the other hand, trdirect effects the effect ofZ on
Y not mediated by any other variable in the model whileittulirect effectis the effect
of Z onY excluding the direct effect.

In non-parametric models, we can define tioatrolleddirect effect as the change
in the measured responselotto a change i, while all other variables in the model,
henceforth called¢ontext variablesare held constant. Unfortunately, there is no way
to construct an equivalent notion of controlled indiredeefs, since it is not clear to

*This research was partially supported by AFOSR grant #Fa@821-0055, NSF grant #11S-0097082,
and ONR (MURI) grant #N00014-00-1-0617.


kaoru mulvihill
Text Box
TECHNICAL REPORT
R-321-L
June 2005

kaoru mulvihill
Text Box
Shortened version to appear in Proceedings of the International Joint Conference, Edinburgh, Scotland, August 2005.


what values other variables in the model need to be fixed iardameasure such an
effect.

Recently, a novel formulation afatural [7] or pure[9] effects was proposed which
defined effects in a more refined way by holding variables womsot to predeter-
mined values, but to values they would have attained in sotumation. For example,
the natural direct effect o onY is the sensitivity ofY” to changes irZ, while the
context variables are held fixed to the values they would lasteened had no change
in Z taken place. Similarly, the natural indirect effect is thagtivity of Y to changes
the context variables would have undergone Hadeen changed, whil& is actually
being fixed.

Being complex counterfactual quantities, natural efféetsl to have intricate ver-
bal descriptions. It is often easier to explain such effesiang the visual intuitions
provided by graphical causal models. Graphical causal magpresent causal as-
sumptions as graphs, with vertices representing variabled edges representing di-
rect causal paths. In such models, natural direct effecbeanterpreted as the effect
along the edge&Z — Y, with the effect along all other edges 'turned off. Similar
the natural indirect effect can be interpreted as the efflectg all edges except the one
betweenZ andY. Using this interpretation, the suggestive next step instiely of
natural effects is to consider effects along a select sudfsedges betweed andY
which are callegath-specifieffects.

1.1 A Motivating Example

Consider the following example, inspired by [8], A study erformed on the effects
of the AZT drug on AIDS patients. AZT is a harsh drug known tas® a variety
of complications. For the purposes of the model, we restrigtattention to two —
pneumonia and severe headaches. In turn, pneumonia casabedtwith antibiotics,
and severe headache sufferers can take painkillers. Wéiyall the above variables,
except headache, are assumed to have a direct effect onrthieabchances of the
patient. The graphical causal model for this situation mashin Fig. 1.

The original question considered in this model was the tefigct of AZT and
antibiotics treatment on survival. However, a variety dfastquestions of interest can
be phrased in terms of natural effects. For instance, whheidirect effect of AZT on
survival, if AZT produced no side effects in the patient, @hhis just the natural direct
effect of AZT on survival. See Fig. 2 (a). Similarly, we midig interested in how just
the side effects of AZT affect survival, independent of tffea of AZT itself. This
corresponds to the natural indirect effect of AZT on survi&ee Fig. 2 (b).

Furthermore, certain interesting questions cannot besghran terms of either di-
rect or indirect natural effects. For example we might beriested in the interactions
between antibiotics and AZT that negatively affect surlvifa study such interactions,
we might consider the effect of administering AZT on surViaghe idealized situation
where the antibiotics variable behaved as if AZT wa$ administered, and compare
this to the total effect of AZT on survival. Graphically, sremounts to 'blocking’ the
direct edge between antibiotics and survival or more pedgigeeping the edge func-
tioning at the level it would have had no AZT been given, witliéing the rest of the
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Figure 1: The AZT exampleA: AZT, P: pneumoniaH: headaches3: antibiotics,
K painkillers,S: survival

edges function as usual. This is shown graphically in Figa)3 The edges which we
wish to block will be crossed out in the graph.

1.2 Outline and Discussion of Our Approach

Our goal is to study and characterize situations where pagitific effects like the one
from the previous section can be computed uniquely from #ita dvailable to the
investigator. Our main result is a simple, necessary, gcapbondition for the iden-
tifiability of path-specific effects from experimental dateurthermore, our condition
becomes sufficient for models with no spurious correlatlmtsveen observables, also
known as Markovian models.

The condition can be easily described in terms of blockedwantdocked paths as
follows. Let X, Y be variables in a causal mod&f inducing a grapl. Then given
a set of blocked edges the corresponding path-specific effectXfon Y cannot be
identified if and only if there exists a nod& with an unblocked directed path from
X to W, an unblocked directed path frol to Y, and a blocked directed path from
W to Y. For instance, the effects of on S are identifiable in Fig. 2 (a), (b), and Fig.
3 (b), but not in Fig. 3 (a). Therefore, in general we cannadlgtthe interractions of
AZT and antibiotics in the way described above, but we cadysthbe interractions of
AZT and painkillers. The latter case is made tractable byksease of blocked and
unblocked paths sharing edges.

Our condition also shows that all identifiable path-spediffects are 'equivalent’,
in a sense made precise later, to effects where only rootating edges are blocked.
Thus identifiable path-specific effects are a generalinaifdoth natural direct effects,
where a single root-emanating edge is unblocked, and ofalatdirect effects, where
a single root-emanating edge is blocked.

To obtain this result formally, we treat effects as prolitibg of statements in a
certain counterfactual logic. However, rather than malaijing these probabilities di-
rectly, we convert them to subgraphs of the original causadeh and reason about
and perform manipulations on the subgraphs. We then int®dimple counterfactual
formulas whose probabilities are not identifiable, and prihat certain simple graph-
ical conditions must be described by such formulas, anddéskich conditions leads
to subgraphs corresponding to identifiable effects.

Due to space considerations, the proofs of some lemmas lesvedmitted, while
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Figure 3: Path specific effects

the proofs included generally are missing some technidallde Our technical report
contains the complete proofs.

2 Preliminaries

This paper deals extensively with causal models and cdascteals. We reproduce
their definitions here for completeness. A full discussian be found in [6]. For the
remainder of the paper, variables will be denoted by cafgtéérs, and their values
by small letters. Similarly, sets of variables will be dezwbty bold capital letters,
sets of values by bold small letters. We will also make useoaies graph theoretic
abbreviations. We will writePa(A)g, De(A)g, and An(A)q, to mean the set of
parents, descendants (inclusive), and ancestors (imejusf nodeA in graphG. G

will be omitted from the subscript when assumed or obviotia. ariable is indexed,
i.e. V%, we will sometimes denote the above set®as$, De?, andAn?, respectively.

2.1 Causal Models and Counterfactual Logic

Definition 1. A probabilistic causal model (PCM) is a tupld = (U, V, F, P(u)),
where



(i) U is a set of background or exogenous variables, which caneatiserved or
experimented on, but which can influence the rest of the mode

(i) Visaset{V1l, .. V"} of observable or endogenous variables. These variables
are considered to be functionally dependent on some sub&étoV'.

(i) Fisasetoffunctiongf!,..., f*} such that eaclf’ is a mapping from a subset
of UUV \ {Vi}toV? and such that ) F is a function fromlJ to V.

(iv) P(u)is ajoint probability distribution over the variables .

A causal modelM induces a directed grapH, where each variable corresponds
to a vertex inG' and the directed edges are from the variables in the domafit @fe
Pa?) to V' for all the functions. For the remainder of this paper, wesider causal
models which induce directed acyclic graphs.

A Markovian causal model/ has the property that each exogenous variéble
in the domain of at most one functiofi A causal model which does not obey this
property is called semi-Markovian. By convention, nhodesegponding to variables
in U are not shown in graphs corresponding to Markovian models.

For the purposes of this paper, we will represent counterddstatements in a kind
of propositional modal logic, similar to the one used in [Blrthermore, the distribu-
tion P(w) will induce an additional probabilistic interpretation the statements in the
logic.

Definition 2 (atomic counterfactual formula)Let M be a causal model, leX be a
variable andZ be a (possibly empty) set of variables. Then for any valoé X, and
valuesz of Z, z is a term, andX, (u) is a term, taken to mean ’'the valué attains
whenZ is forced to take on values, andU attain valuesu.

For two termst; andt,, an atomic counterfactual formula has the fotm= ¢.
We will abbreviate formulas of the fori, (u) = z asz, (u).

The ’forcing’ of the variables te is called an intervention, and is denoted by
do(z) in [6]. Counterfactual formulas are constructed from d@toformulas using
conjunction and negation.

Definition 3 (counterfactual formula)
(i) An atomic formulax(u) is a counterfactual formula.
(i) If «(u) is a counterfactual formula, then so(is«)(u).
(iii) If o(u) andB(u) are counterfactual formulas, then so(is A 5)(u).

The satisfaction of counterfactual formulas by causal neidedefined in the stan-
dard way, which we reproduce from [4].

Definition 4 (entailment) A causal modelM satisfies a counterfactual formutg(u),
written M = a(u), if all variables appearing inv are in M and one of the following
is true



() a(u) = t; = t2 and for the given setting af, the termg; andt, are equal in
M.

(i) a(u) = (—8)(w) and M I Blu).
(i) a(w) = (8 A7)(w) andM = Blu) andM k= y(w)

Thus a formulax(u) has a definite truth value if/. If the valuesu are unknown,
we cannot in general determine the truttnofHowever, we can easily define a natural
notion of probability of« in M as follows:

PlalM)= > P(u) 1)

{u|Ma(u)}

We will omit the conditioning on\/ if the model in question is assumed or obvious.

If we consider each value assignments apossible world, then we can view
P(u) as describing our degree of belief that a particular worlttue, andP(«) as
our belief that a particular statement is true in our causadehif viewed as aype 2
probability structure [5].

2.2 Submodels and Identifiability

Definition 5 (submodel) For a causal modeM = (U, V', F, P(u)), an intervention
do(z) produces a new causal mod&l, = (U,V ., F,, P(u)), whereV  is a set
of distinct copies of variables i, and F',, is obtained by taking distinct copies of
functions inF', but replacing all copies of functions which determine thaables in
Z by constant functions setting the variables to values

The joint distributionP(V ) over the endogenous variables fitfi, is called an
interventional distribution, and is sometimes denote@®askFor a given causal model
M, defineP, as{P,|Z C V,z avalue assignment &}. In other words P, is the
set of all possible interventional (or experimental) digttions of M.

Intuitively, the submodel is the original causal model, imally altered to render
Z equal toz, while preserving the rest of its probabilistic structure.

Because there is no requirement that interventions in ataminterfactuals in a
formula«a be consistent with each other, it is in general impossibbdter the original
model using only interventions in such a way as to make theediormula true. Thus,
we introduce a causal model which encompasses the 'panaliéds’ described by the
counterfactual formula.

Before doing so, we give a simple notion of union of submadedgollows:

Definition 6 (causal model union)Let M, and M, be submodels derived from'.
ThenM, U M, is defined to be\l,, if z = , and(U,V,UV ., F, U F,, P(u)),
otherwise.

Definition 7 (parallel worlds model)Let M be a causal modety a counterfactual for-
mula. Then the parallel worlds mod#f,, is the causal model union of the submodels
corresponding to atomic counterfactualscaf



We call the joint distribution?(V ,,) over the endogenous variableshify, a coun-
terfactual distribution, and will sometimes denote itAs In the language of the
potential outcomes framework [10], we can vid&y as the joint distribution over the
unit-response variables mentionechin

The parallel worlds model is a generalization of the twinwgagk model, first ap-
pearing in [1], to more than two possible worlds. It displaydependence assumptions
between counterfactual quantities in the same way a regalasal model displays in-
dependence assumptions between observable quantitiepeshing counterfactuals
are independent of their non-descendants given their fsaren

Given a causal model/ and a formular, we are interested in whether the cor-
responding counterfactual joint distributidf, (or its marginal distributions) can be
computed uniquely from the set of joint distributions azhlE to the investigator. The
formal statement of this question is as follows:

Definition 8 (identifiability). Let M be a causal model from a set of moda{induc-
ing the same grapl, M, a parallel worlds model, and) be a marginal distribution
of the counterfactual joint distributio®?,. Let K be a set of known probability distri-
butions derived fromd/. Then( is K-identifiable inM if it is unique and computable
fromK inanyM € M.

It follows from the definition that if we can construct two nedsl in M with the
sameK but different@, then@ is not identifiable. An important, well-studied spe-
cial case of this problem — which we call evidential idenlifiidy of interventions —
assumes is an atomic counterfactual, atd is the joint distribution over the endoge-
nous variables id/, or P(V'). Being able to identify an interventional marginal in this
way is being able to compute the effects of an interventiahavit having to actually
perform the intervention, and instead relying on passitssgovational data.

In this paper we are concerned with identifying probaleititof counterfactuals for-
mulas using the seP, of all interventional distributions of\/ as a given. In other
words, we are interested in computing probabilities of ¢erfactuals from experi-
mental and observational probabilities.

3 Path-Specific Effects

Our aim is to provide simple, graphical conditions for tRgidentifiability of path-
specific effects. To do so, we must formalize such effectoasterfactual formulas,
and translate the identifiability conditions on the formigdaonditions on the graph.

The following is the formalization of the notion of path-sjffec effect in terms of
a modified causal model, as it appears in [7]:

Definition 9 (path-specific effect) Let G be the causal graph associated with model
M, and letg be an edge-subgraph 6f containing the paths selected for effect analy-
sis (we will refer tog as theeffect subgraph). The g-specific effect of on Y (rel-
ative to reference:*) is defined as the total effect efon Y in a modified model
M, formed as follows. Let each parent Setd* in G be partitioned into two parts
PA" = {PA(g), PA'(g)}, whereP A*(g) represents those members/ofi’ that are



linked to V¥ in g, and PA%(g) represents the complementary set. We replace each
function £ in M with a new functiorf; in M, defined as follows: for every set of in-
stantiationgpa’(g) of PA"(g), f4(pa’(9), w) = f'(pa'(g),pa’(9)", u), wherepa'(g)*
takes the value dPA*(g).~ (u) in M. The collection of modified functions forms a new
modelM,. Theg-specific effect of onY, denotedSE,(z, z*; Y, u) is defined as

the total effect (abbreviated as TE)06nY in the modified model:

SEy(z,2";Y,u)y = TE(z, 2% Y, u)n, 2)

whereT'E(z, z*; Y, u)p, = Yz(u)Mg — Y. (u),, .

g

If we wish to summarize the path-specific effect over allisg#t of u, we should
resort to the expectation of the above difference, or theebgal path-specific effect.
To identify this effect, we need to identifi?(y.) and P(y.-) in M. For our purposes
we can restrict our attention #(y. ), as the second term corresponds to the quantity
P(y.~) in the original modelM/, and so is triviallyP,-identifiable.

In this paper we assume, without loss of generality, edges 41 G \ g are all
along directed paths betweehandY . The next theorem states that any path specific
effect, expressed as a total effect in the modified mddg| can be expressed as a
counterfactual formula in the original modgf.

Theorem 1. Every path specific effed?(y.)as, has a corresponding counterfactual
formulaa in M s.t for everyu,

M, b y.(u) < M E a(w)

Proof outline: The proof is for causal models with finite domains. BiX u, y, z
andg. To prove the theorem, we need to 'unrall’and remove any implicit references
to modified functions inM,, while preserving the truth value of the statement. Our
proof will use the axiom of composition, known to hold true éausal models under
consideration. In our language, the axiom states that fptlanee variablesZ, Y, W,
and any settings, z, w,y, (W, =w =Y, , = Y,)(u).

Fix u;. LetS = An(Y) N De(Z) Then by axiom of compositiony. (u,) has
the same truth value as a conjunction of atomic formulas efféinm U;ai(g)’ where
Vi e S, PA'(g) is the set of parents df in M, andpa’(g) andv’ are suitably
chosen constants. Denote this conjunctign

For every termv;ai(g) in o corresponding td’* with PA‘(g) c PA?, replace
it by v[i)ai(g) pai(g)s N pa‘(g):. in the conjunction, wherga’(g)* takes the value of

PAY(g):-(up)in M. Denote the result}. Note that; isin M andM,, = y.(uy) <
M = aj(u1). We construct a similar conjunctioni; for every instantiations; in M.
Leta = \/j aj. It's easy to see the claim holds farby construction. o

An easy corollary of the theorem is, as before, théy.. ) s, = P(c) . Note that
different«; in the proof only differ in the values they assign to variahileS. Since
M is composed of functions, the values of variables§iare fixed giveru, and since
Pla) = Z{UUV[\:\/i o ()} P () by definition, we can expres8(«) as a summation
over the variables i \ {Y'}.
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Figure 4: Bold edges represent directed pathdz@Rule (b) R, Rule

For instance, the first term of the path-specific effect in Riga) can be expressed
as

P(sa)IMgQa = Z P(sk,b,p,a A kh A bp /\pa* A ha*)
k,b,p,h

- Z P(sa,h,p A ha* /\pa*) (3)
h,p

which is just the direct effect. The more general case of Biga) can be expressed
as?

P(sa)Myse = O PlskbpaNkn Abas Apa Aha)
k,b,p,h

= " P(5a,b A ba-) (4)
b

It looks as if the expressions in Eq. (3) and (4) for the tweetff are very similar,
moreover we know that direct effects are alwa@sidentifiable in Markovian models.
Surprisingly, the path specific effect of Fig. 3 (a) and EQ.i¢Mot P,-identifiable as
we will show later.

We will find it useful to modify the effect subgraphwhile preserving the value
of the path-specific effect. We do so by means of the follovtiag rules. LetM be a
causal model with the graph, g an effect subgraph af, andg = G \ g. For a node
V, letin(V) denote the set of edges incoming ifto andout(V') denote the set of
edges outgoing fron’, in G.

R;: Ifthere is a nodd/ in G such thabut(V) C g, thenR(g) = (g \ out(V)) U
(V). See Fig. 4 (a).

Ry If there is an edge € g, such that for all directed paths frof to Y which
includee, there exists another edgec g, which occurs 'upstream’ fror, then

Rs(g) = g\ {e}. See Fig. 4 (b).

INote that Eq (4) is different from_, . P(sqp A bg+) which is just a marginalization over the coun-
terfactual variableé,, «




Theorem 2 (Effect-Invariant Rules) If R, is applicable theR; (g)-specific effect is
equal to they-specific effect. IR, is applicable theR,(g)-specific effect is equal to
the g-specific effect.

Proof outline: The proof is by induction on graph structure, and is an eagg&0
guence of the definition af-specific effect, and th&; and R, rules. o

Intuitively, R; 'moves’ the blocked edges closer to the manipulated vaigbhnd
R, removes redundant blocked edges. Thus, it is not surpribiese two identities
cannot be applied forever in a dag.

Lemma 1. Let M be a causal modely an effect subgraph. Then any sequence of
applications ofR; and R, to g will reach a fixed poing*.

4 Problematic Counterfactual Formulas

Identification of a distribution must precede its estimatias there is certainly no hope
of estimating a quantity not uniquely determined by the nindeassumptions. Fur-
thermore, uniqueness frequently cannot be guaranteedigaktmodels. For instance,
when identifying interventions from observational datgaaticular graph structure,
the 'bow-arc’, has proven to be troublesome. Whenever thehgoh a causal model
contains the bow-arc, certain experiments become unfiié [6]. Our investigation
revealed that a similarly problematic structure existsemperimental identifiability,
which we call the ’kite graph’, due to its shape. The kite ¢grapises when we try to
identity counterfactual probabilities of the forf(r.- A ).

Lemma 2. Let M be a causal model, lef and R be variables such that is a parent
of R. ThenP(r.« A 1) is not P.-identifiable ifz* # z.

Proof outline: The proof is by counter example. We tet= .. A7, and construct
two causal modeld/' and /2 that agree on the interventional distribution gt but
disagree onP(«). In fact, we only need 2 variables. The two models agree on the
following: Z is the parent o, Uz, Z and R are binary variabled/r be a ternary
variable,f; = Uz, andP(uz), andP(upr) are uniform. The two models only differ
on the functionsfg, which are given by table 2. It's easy to verify our claim refdr
the two models for any values # z of 7. o

The next theorem shows how a particular path-specific eféacts to problematic
counterfactuals from the previous lemma.

Theorem 3. The g-specific effect o/ on Y as described in Fig. 7 (a) is naP,-
identifiable.

Proof: We extend modeld/' and M? from the previous proof with additional
variablesV, Y, andUy. We assumé®(uy ) is uniform, and bothP(V,Y'|R) and the
functions which determin& andY” are the same in both models.

Note that since all variables are discrete, the conditipnabability distributions
can be represented as tables. If we reqliie= |V| and|Y'| = |V| | R|, then the con-
ditional probabilities are representable as square nestrid/e fix the functiongy, and

10



Table 1: The functiong’ and f2

R = fr(z,ur) | R= fr(z,ur)

il E=lE=lEk=]\
ll;.)l\)léil;.)l\Jlémq

O O|FR| KL O
OO Ol -

fy, as well as the exogenous parentd’oindY” such that the matrices corresponding
to P(V,Y|R) andP(V|R) are matrices are invertible.

Call the extended model&® and M. Note that by construction, the two models
are Markovian. SinceV/! and M? have the samé’,, and since the two extended
models agree on all functions and distributions navifh andM 2, they must also have
the sameP..

Consider the-specific effect shown in Fig. 7 (a). From Theorem 1 we cane&sgr
the path-specific effect i/, 5’ in terms of M3, In particular:

P(yZ)Mg’ = ZP(yrv N T /\UZ)M3

= Z P(Yry AToe Avpr AT0) pps

rv,r!

= > P(yro)ms Pvr ) ags Pz, v ao

rv,r’

The last step is licensed by the independence assumptianglesh in the parallel
worlds model ofy,., A7+ Av,» Ar.,. The same expression can be derived®¢y. ) 5;4.
Note that sinceP, is the same for both models they have the same values for the in
terventional distribution®(y,,) andP(v,-). Note that sincé?(Y |R, V') andP(V|R)

are sgquare matrices, the summing oug§l"|R, V') and P(V|R) can be viewed as a
linear trans formation. Since the matrices are invertible, the transformatioa®ae

to one, and so if their composition. Siné¥y,.,,) = P(y|r,v) andP(v,) = P(v|r’),

and sinceP(r.- A r’) is different in the two models, we obtain th&(y.)a: #
P(y.)ae. Since adding directed or bidirected edges to a graph cdrelptidentifi-
ability, the result also holds in semi-Markovian models. o

5 Main Result

The main result of this section is that a simple sufficient aedessary (in Markovian
models) graphical criterion exists. This condition is Bastated and can be derived
from the effect subgraph in linear time. By contrast, the only other methods known
to us for obtaining identifiability results of probabiliief general counterfactual logic

11
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Figure 5: (a) Problematic effect (b) The kite graph

formulas are proof search procedures based on results,ifd]3] Such procedures
are far less intuitive, do not have running time bounds, arthot be used to obtain
non-identifiability proofs.

First let's define this criterion:

Definition 10 (Recanting witness criterion)Let R # Z be a node inG, such that
there exists a directed path ipfrom Z to R, a directed path fronR to Y in g, and a
direct path fromR to Y in G but notg. ThenZ, Y, andg satisfy the recanting witness
criterion with R as a witness

The recanting witness criterion is illustrated graphical the ’kite pattern’ in Fig.
7 (b). The name 'recanting witness’ comes from the behavithe variableR in the
center of the ’kite.” This variable, in some sense, 'triehi&ve it both ways.” Along
one path fromR to Y, R behaves as if the variablé was set to one value, but along
another pathR behaves as i/ was set to another value. This 'changing of the story’
of R is what causes the problem, and as we will show it essentedigs to the the
existence of a no®, -identifiable expression of the type discussed in section 4.

To proceed, we must make use of the following helpful lemnhasy be an effect
subgraph of7 andg* the fixed point ofR; andR,. Letg* = G \ g*.

Lemma 3. g* satisfies the recanting witness criteriongffloes. Moreover, if* does
satisfy the criterion, then there exists a witnéss.tout(R) N g* # . If g* does not,
theng* C out(Z).

Lemma 3 states that repeated applications of rilesnd R, preserves the satis-
faction of the recanting witness criterion. Moreover, i€ thitness exists in the fixed
point g*, then some outgoing edge from it is blocked. If the witnesssduot exist in
g*, then only root-emanating edges are blocked.

Lemma 4. Assume thg*-specific effect of onY is P,-identifiable. LetE be any set
of edgesiny*. Letg’ = EUg*. Then thg/-specific effect of onY is P,-identifiable.

Lemma 4 states that if a path specific effect is not identifieeln adding blocked
directed edges 'does not help,’ in that the effect remaindamnified. Now we can state
and prove the main results:

12



Theorem 4. If ¢ satisfies the recanting witness criterion, then thspecific effect of
Z onY is not P,-identifiable.

Proof: Let M be our model and assume thasatisfies the recanting witness crite-
rion. By Lemma 3 so doeg", let R be the witness from the lemmas.= R — V' is
in g*. Assume thej-specific effect is identifiable, By Theorem 2 so is ftespecific
effect. Letg’ be the path specific effect obtained by adding all edgeg tbute. By
Lemma 4 they’-specific effect is alsd,-identifiable. Now by composing the func-
tions in g’ we can obtain a new modal’ which is exactly the model of Fig. 7 @)
and P(y.)m,, = P(yz)M;/. From Theorem 3 we know tha’?(yZ)M;, is not P,-

identifiable, hence, neither 13(y. ) »s,, and they’-specific effect is noP, -identifiable.
Contradiction. o To illustrate the use of the theorem, consider the examiin(4)
from Section 3. The expression, P(sqp A by-) =

= Z P(Sa,b AN bp/ /\p;*)
b,p

=Y P(Sapp Nby ADje Apa) (5)

b,p,p’

= Z P(Sa,b,p A bp/)P(p/a* /\pa)

b,p,p’

The first two steps are by definition, the last step is licermethe parallel worlds
model corresponding to the formula in Eq. 5. The theorem shtbat, as in this exam-
ple, non-identifiability arises because formulas of therfef,.. A p, appear whenever
the recanting witness criterion holds.

Theorem 5. If ¢ does not satisfy the recanting witness criterion, thengtspecific
effect ofZ onY is P.-identifiable in Markovian models.

Proof: From theorem 2 we have th&t(yz)Mg* = P(y.)um,. Sinceg does not
satisfy the recanting witness criterion, by Lemma 3 all tiges ing* emanate from
Z. From Theorem 1 there is a formuldg™) corresponding t@(y.),. that contains
only atomic counterfactuals of the forvgai. Since all blocked edges emanate fr@m

it can be easily observed that for each two atomic counterféEina(g*), U;i)ai’ v;aj,

i # j. This follows, since we only introduce atomic counterfatsuwithdo(z*) where

we cut edges. Now since in Markovian models any two diffevaniables are indepen-

dent if you set all their parents, all the atomic countedfatin a(¢g*) are independent

of each other which makes the expressi@ridentifiable. o
For example, we stated earlier that thepecific effect of Fig 3 (b) is identifiable,

this is true sincg; does not satisfy the recanting witness criterion. In paldicthe

2or a similar model where we “cut” the edge— V and not the edg& — Y’
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expression for the path-specific effect is:

P(Sa)]wgab = Z P(Sk,b,p,a ANkp ANbg Apg N ha*)
k,b,p,h

=" P(snaAhar) 6)
h

=" P(sn.a)P(ha-)
h

As before, the first two steps are by definition, and the lagp & licensed by the
parallel worlds model corresponding to the formula in Eq. But now note that
P(spq), P(he~) € Py, therefore the above expression can be computed from experi
ments.

6 Conclusions

Our paper presented a sufficient and necessary graphiaditioms for the experimen-
tal identifiability of path-specific effects, using tool®ifn probability theory, graph
theory, and counterfactual logic. We related identifialdéhpspecific effects to direct
and indirect effects by showing that all such effects onbcklroot-emanating edges.

While it is possible to give a sufficient condition for iderdlfility of general coun-
terfactual formulas in our language, using induction onmfglia structure, this does
not give a single necessary and sufficient condition for ddanikovian models. The
search for such a condition is a good direction for futurelwor

Another interesting direction is to consider special cafesausal models where
path-specific effects can be identified even in the presehite dkite’ — this is true in
linear models, for instance.

Finally, our result assumes causal models with finite domaind 'small’ graphs.
An interesting generalization is to consider causal moddls’large’ or infinite graphs
and infinite domains. Such models may require adding firdéofeatures to the lan-
guage.
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8 Appendix: Proofs

Theorem 1. Every path specific effe@?(y. ), has a corresponding counterfactual
formulaca in M s.t for every,

M, | y(u) < M a(u)
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Proof: The proof is for causal models with finite domains. Rk, u, vy., and
g. To prove the theorem, we need to 'unrgjl and remove any implicit references
to modified functions inM,, while preserving the truth value of the statement. Our
proof will use the axiom of composition, known to hold true éausal models under
consideration. In our language, the axiom states that fptlanee variablesZ, Y, W,
and any settings, z, w,y, (W, =w =Y, , = Y;)(u).

Fix u;. Let Sbe the set of variables betwegnandY” (inclusive). Then by axiom
of compositiony (u; ) has the same truth value as as a conjunction of atomic foenula
of the formv, ;. WhereV* € S, PA’(g) is the set of parents of* in M, and

pa‘(g) andv® are suitably chosen constants. Denote this conjunction

For every terrrw;ai(g) in oy corresponding td/* with in(V?) ¢ g, replace it
by v;ai(g),pai(g)* A pa’(g):. in the conjunction, wherea®(g)* takes the value of
PAY(g).-(u)in M. Denote the result;. Note that} isin M andM, = y,(u;) <~
M = aj(ur). We construct a similar conjunctiam; for every instantiation; in M.
Leta = \/j aj. It's easy to see the claim holds farby construction. o

Theorem 2 (Effect-Invariant Rules) If R, is applicable theR; (g)-specific effect is
equal to they-specific effect. IR, is applicable theR,(g)-specific effect is equal to
the g-specific effect.

Proof: Fix u. Let W be the variable such thatit(W) C g, andin(W) C R1(g).

We want to prove that the values of all variables downstream ¥ in Mg, )
are the same as i, for a givenu.

Let N be the set of non-descendantssf let n be their values iV, for a given
u. Similarly, letD be the set of descendants1df, let d be their values inV/, for a
givenu.

Note that any node iiN retains the same set of incoming edgesir{g) as ing,
and so retains the same value. Now orBetopologically, and consider each variable
in turn. The first variableD! must have parents in the sgt’} U N. Note that the
values of all variables itN stay the same by previous argument. Similarlygji?”
was not in the parent set @', but the function behaved aslif was set to the value
W+ (u), call itw*. In Mg, (4, W is set to that value explicitly, s®' must retain the
same value. The same argument applies inductively to ahy @hi’, and thus to any
descendant.

Let e be the edge unblocked by an applicationff. Assumee € out(P) and
e €in(C)in M.

As before, lefN be the set of non-descendantsbfletn be their values i, for
a givenu. Similarly, letD be the set of descendantsiéf, letd be their values i/,
for a givenu.

Note that any node iiN retains the same set of incoming edges\iiz, ;) as in
My, and so retains the same value.

Let O be the set of parents @f in M,,.

By definition, the value o in A/, behaves as © were set td) . (u), andP was
set toP,« (u).

In Mg, (4, the value ofC' behaves as iO were set toO (u), and P was set to
P,+(u) (because all the paths frofito P are blocked by assumption). Thus the value
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of C does not change from/, to Mg, ).

Consider any nod® in D. Since the set of incoming edges did not change fgpom
to Ry (g) for these nodes, and all upstream variables retain thaiesaby induction),
the nodeD must retain its value also.

The conclusion follows. o

Lemma 1. Let M be a causal modely an effect subgraph. Then any sequence of
applications ofR; and R to g will reach a fixed poing*.

Proof of lemma 1: Assume there is no fixed point. Then eithRr is applied
infinitely many times, otR; is applied infinitely many times. The former case is only
possible in a cyclic graph or an infinite dag, sinBe moves the 'block’ up some
directed path. The latter case is only possible in an infigigaoh with infinitely many
‘blocked’ edges, sinc&- reduces the number of blocked edges.

Next consider two sequences of applicationfaf and R» that produce different
subgraphs, say; andgs.

Note thatR, preserves the existing set of blocked paths, since any étbpkth is
either left alone, or the blocked edge is 'moved up’ but stayshe path. The same is
true of R,, since only edges which are not relevant for the purposesitbi-plocking
are removed.

Thus,g7, g5 andg share the same set of blocked paths. Assume there is a blocked
edgee; in g7 but notg;. Fix a path blocked by different edgesgh andg;, by edges
ey, ande, respectively. Denote the parent nodecpfasW. Assume without loss of
generalitye; is belowes on the path. Since we cannot apghy to g7, there must
exist an unblocked path throud# in ¢g7. Say the path igq, wherep = Z — W and
q=W =Y.

If e is in p, then the patipqg is blocked ing; (by e2) but not ing; by construction.

If es is not inp, and since an unblocked path must still exist, then therst®xi
another path fron& to W in g3, sayp'. o

Lemma 2. Let M be a causal model, and |1&, X be non-empty sets of variables in
M. Then for any variabl&@” which is a descendant of all variableszZru X, P(yx Ay5)
is not P,-identifiable, ifx # z

Proof of Lemma 2: The proof is by counterexample. We will construct two mod-
els M', M? which share the graph shown in figure 6 (A), and which have #nees
interventional distributions,, but produce two differenP(Q). For both models the
variablesZ andY are binaryuz anduy are the unobserved variables, whegeis a
uniform binary variable andy is a uniform variable with values drawn from the set
{1,2,3}. In both models the function faf is Z = f(uz) = uz, i = 1,2). The
models differ in the functiong; which determing” in M' and M2, which are shown
in the Table 1.

Next we show that the interventional distributioR$ for M'and P? for M? are
the same. We have only four possible experiments tyges:, y), do(z), do(y), and
the null experiment where no variable is forced. If we perfal(z, y) it is clear that
P!,(-) = PZ2,(-) no matter which values andy are forced to take. If we are only
performingdo(z) there are two cases= 1 or z = 0. In both cases’!(-) = P2(-)
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Figure 6: (a) The graph of the original causal model. (b) Thgraph of the p-model

Table 2: The functiong- and ¢

Z[ Uy |Y=fl(z,uy) | Y = fZ(z,uy)
0| 1 0 1
0| 2 1 1
0| 3 1 0
1] 1 1 1
1] 2 0 0
1] 3 0 0

Table 3: Probabilities 0P (y..,y.) in M andM?, z* =0,z =1

P MY ] M?
P(Y..=0,Y.=0) | 0 | %
P(Y..=0,Y:=0) | &+ [ 0
PY,=0Y.=0) [ 7 [ 3
P(Y..=0Y,=0 ] 0 | %
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Figure 7: (a) The 'kite pattern’ (b) An example

Table 4:P(V,. = v) in M3 andM*

PV,=v) |v=0|v=1
=0 1 0

(note that in both models doingchanges the distribution @f). If we do(y) it does
not influenceZ so it reduces to the case of null experiment and we can obdwat/éor
all possibleP(z,y) the two models agree”(0,0) = P(1,1) = 1/6 and P(1,0) =
P(0,1) = 1/3 so againP; (-) = P; ().

Let’s look now at the counterfactual quanti®(Q) = P(Y.,Y,-). The p-model
corresponding t@) is shown in figure 6 (B). IfP(Q) were P, — identi fiable then we
could express it in terms @?, which means it would have the same value untier
andM?2. If we can show it has two different values ' and M/? this would imply
that P(Q) is not experimental identifiable. Using the above table, eethat inM/*,
P(Y.—o =0,Y.—; = 1) = 1. Onthe other hand, if/? P(Y,—g = 0,Y.—1 = 1) =
0. o

The reasoning behind this failure is that in order to fid@)) from P, we need to
separate the expressions@hinto independent experiments each of which belong to
P,. We fail to do so since the only way to separate the experisierthe twin model
of figure 6 (i.eY,, Y,-) is to condition onuy. But we cannot condition on exogenous
variables by assumption.

Theorem 3. The g-specific effect o7 on Y as described in Fig. 7 (b) is naP,-
identifiable.

Proof of Theorem 3:

We extend modeld/® and M? from the previous proof with additional binary
variablesV, Y, andUy. We assumd’(uy ) is uniform, and we let the new functions
be defined as

fo(rour) = fi(ryur) =r.
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Table 5: P(Y,,, = y) in M3 andM*

P(er:y) y:() y:1
w=0,r=0]| 1/2 1/2

w=07r=1 0 1
=1,r= 0 1
w=1r=1 0 1

Table 6:P(Y,—; = y) in M3 andM*

M3 | ME

g g
P(Yoei =0)ar, | O | 1/6
P(Yooi =, | 1 | 5/6

2 (v,ryuy) = fy(v,r,u) =vVrVauy.

Call the extended model&/® andM*. SinceM* andM? have the samé,, and
since the two extended models agree on all functions andidigbns not inA/* and
M?, they must also have the sarfg.

Consider they-specific effect shown in Fig. 7 (b). From Theorem 1 we canes®r
the path-specific effect in/ in terms of M3, In particular:

P(yz)mz = > Pyry Arae Avs)ass

= Z P(Ypro A7ox ANvpr AT0)0gs

ro,r!

= > P(yro) s P ) ags P17 a0

rv,r!

The last step is licensed by the independence assumptianglesh in the parallel
worlds model ofy,., A7~ Av,» Ar.,. The same expression can be derivedR®¢y. ) 5;4.
Note that sinceP, is the same for both models they have the same values for the in
terventional distribution$(y,..,) and P(w,-). All the values of these expressions are
shown in Tables 3, 4, 5 and we can check th&y. )1z # P(y-) s as shown in table

6. )

Lemma 3. g* satisfies the recanting witness criteriongffloes. Moreover, if* does
satisfies it, then there exist a witneBss.t out(R) N g* # 0. If g* does not, then
g* C out(Z2).

The first statement in the Lemma is true according to this tars:

Claim 1. ¢, Z, andY satisfy the recanting witness criterion if and onlyAf (g), Z,
andY do.
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Proof: AssumeR;(g), Z, Y satisfy the recanting witness criterion. LBtbe the
witness. Lek be the edge added tato constructR; (¢). Assumee is not a part of any
of the three directed paths involved in the criterion. Themaovinge from g will have
no effect on the criterion, thus it will be satisfied byZ, Y.

Assumee is part of the 'blocked’ path fronR to Y. Then removing: from R;(g)
to obtaing, we note that the path frorR to Y will remain blocked, so the criterion is
still satisfied.

Assumee is part of either the 'unblocked’ path frod to R or the 'unblocked’
path fromR to Y. Bute was only added tg because all paths froR going through
e were blocked, which is a contradiction.

Assumey, Z, Y satisfy the recanting witness criterion, Rtbe the witness. Let
be the edge added pto constructR; (g). Assumee is not a part of any of the three
directed paths involved in the criterion. Then adding ¢ will have no effect on the
criterion, thus it will be satisfied by, (g), Z, Y.

Assumee is part of the 'blocked’ path fronRR to Y. But if we addede to g to
obtainR; (¢) then all paths td” throughe are blocked. Since an unblocked path from
Z 10 R exists by assumption, all paths througfrom R to Y are blocked inR;(g). o

Claim 2. ¢, Z, andY satisfy the recanting witness criterion if and onlyR§(g), Z,
andY do.

Proof: AssumeRz(g), Z, Y satisfy the recanting witness criterion, IBtbe the
witness. Assumé’ lies on some path of the criterion. Since all of incoming edgke
V' are blocked, it must lie on the blocked path frdfrto Z. However, unblocking all
incoming edges while blocking all outgoing edges will diitbck all paths involving/.
Thus the recanting criterion will be satisfied py~Z, Y. If V does not lie on any path
of the criterion, then the unblocking of all incoming edgeslesblocking all outgoing
edges ofl” will not affect any paths involved in the criterion. Theredg, Z, Y will
still satisfy it.

Assumeg, Z, Y satisfy the recanting witness criterion, lBtbe the witness. We
conclude thatR»(g), Z, andY satisfy the recanting witness criterion by a symmetric
argument. o

Proof of Lemma 3: First we'll prove that ifg* does not satisfies the recanting
witness criterion, then all deleted edges @*¢ emanates fron¥. Assume it is false
and lete be the witness such thatemanates fronR # Z into V. SinceR; is not
applicable ¢* is a fixed point) there is a patd to R. Sine R; is not applicableR
has another childl with the edgeR — X in g*. Since there is a path i@ from X
to Y and a path fronV to Y3, ¢* satisfies the recanting witness criterion withas a
witness. Contradiction.

Next we’'ll prove that ifg* satisfies the recanting witness criterion, then there is a
witnessRR such thatsomeof his outgoing edges are g and some are ig*. Lete

be the deepest edge gn (with respect to BFS fron¥), if e emanates fronZ then all
edges iy* emanates fronx and it is easy to see that does not satisfies the recanting
witness criterion. So assumeemanates fronk # Z. But, then sinceR?,; and R, are

not applicableR is clearly a witness to the claim. o

3this is true since we are only considering nodes that lie eens andY’, note thaty” may beX or R
or none of them.
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Lemma 4. Assume th@*-specific effect of onY is P,-identifiable. LeE be any set
of edges iny*. Letg’ = EU g*. Then they'-specific effect of onY is P,-identifiable.

Proof of Lemma 4:For every edge < E, letV be the node emanates from. Note
thatV must have at least one other outgoing edgemanate from it such that € g*
and there is a path froiff to V in g* otherwise we can either apply; or Ry.4

Let a(g*) be the counterfactual formula which is equaktoin M - that contain
only atomic counterfactual of the fomjmi whereP A’ stand for the parents 6f’, or

of the formv!., such a formula exist as showen in Theorem 1.
Now, the counterfactual formula(g’) corresponding to thg/-specific effect is the
same as the formula(g*), except that for each € E, the corresponding’. atomic

counterfactual is replaced wiﬂjm,;. But since an unblocked path frofto V andV
toY exist,a(g*) must already contains the tempai in the conjunction. o

Theorems 4 and 5.(i) If g satisfies the recanting witness criterion, then ghgpecific
effect ofZ onY is not P.-identifiable.

(ii) If g does not, then the-specific effect of onY is P.-identifiable in Markovian
models.

Proof: (i) Let M be our model and assume thatatisfies the recanting witness
criterion. By Lemma 3 so doegg, let R be the witness from the lemmas& R — V
isin g*. Assume the-specific effect is identifiable, By Theorem 2 so is tHiespecific
effect. Letg’ be the path specific effect obtained by adding all edgeg*tdut e.
By Lemma 4 theg’-specific effect is alsdP,-identifiable. Now by composing the
functions ing’ we can obtain a new mod@él/’ which is exactly the model of Fig. 7
(b)® andP(yz)Mg, = P(yz)M(/,. From Theorem 3 we know thdt(y. ), is not P,-
identifiable, hence, neitherBJ(yz)Mg, and they’-specific effect is noP*-gidentifiabIe.
Contradiction.

(if) From theorem 2P(y.)r,. = P(y.)m,. Sinceg does not satisfy the recanting
witness criterion, by Lemma 3 all the edgegjinemanates fron. From Theorem 1

the formulaa(g*) corresponding td>(y. ) as,. contains only atomic counterfactuals of
the formuw,,v. Since all blocked edges emanate framit can be easily observed that

for each two atomic counterfactualsdrg*), U;ai , v;aj, i # 7. This follows, since we
only introduce atomic counterfactuals with(z*) where we cut edges. Now by Claim
3 all the atomic counterfactual w(¢g*) are independent of each other which makes the

expressionP,-identifiable. o
Claim 3. In Markovian models for two diffrent variablés?, V9 we have:

Vi, v

pa’ pai

4an exception is whel = Z and all edges emanating frofhare ing*, in this special case the Lemma
is true as we shows later
Sor a similar model where we “cut” the edge — V" and not the edg& — Y
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