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ABSTRACT OF THE DISSERTATION

Graphical Methods for Identification in Structural
Equation M odels

by

Carlos Eduardo Fisch de Brito
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2004

Professor Judea Pearl, Chair

Structural Equation Models (SEM) is one of the most important tools for causal anal-
ysisin the social and behaviora sciences (e.g., Economics, Sociology, etc). A central
problem in the application of SEM modelsis the analysis of Identification. Succintly,
amodel isidentified if it only admits a unique parametrization to be compatible with
a given covariance matrix (i.e., observed data). The identification of a model isim-
portant because, in general, no reliable quantitative conclusion can be derived from

non-identified models.

In thiswork, we develop a new approach for the analysis of identification in SEM,
based on graph theoretic techniques. Our main result is a general sufficient criterion
for model identification. The criterion consists of a number of graphical conditions
on the causal diagram of the model. We aso develop a new method for computing
correlation constraints imposed by the structural assumptions, that can be used for
model testing. Finally, we also provide a generalization to the traditional method of
Instrumental Variables, through the concept of Instrumental Sets.



CHAPTER 1

| ntroduction

Structural Equation Models (SEM) is one of the most important tools for causal anal-
ysis in the social and behaviora sciences [Bol89, Dun75, McD97, BW80, Fis66,
KKB98]. Although most developmentsin SEM have been done by scientistsin these
areas, the theoretical aspects of the model provideinteresting problemsthat can benefit

from techniques developed in computer science.

In a structural equation model, the relationships among a set of observed variables
are expressed by linear equations. Each equation describes the dependence of one
variable in terms of the others, and contains a stochastic error term accounting for the
influence of unobserved factors. Independence assumptions on pairs of error terms are

also specified in the model.

An attractive characteristic of SEM models is their ssmple causal interpretation.
Specifically, the linear equation Y = X + e encodes two distinct assumptions: (1)
the possible existence of (direct) causal influence of X on Y'; and, (2) the absence of
(direct) causal influence on Y of any variable that does not appear on the right-hand
side of the equation. The parameter /5 quantifies the (direct) causal effect of X onY'.
That is, the equation claims that a unit increase in X would result in 3 units increase

of Y, assuming that everything else remains the same.

Let us consider a ssimple example taken from [Pea00a]. This model investigates

the relations between smoking (.X') and lung cancer (Y"), taking into consideration the



amount of tar (£) deposited in aperson’slungs, and allowing for unobserved factorsto

affect both smoking (X') and cancer (Y"). Thissituation isrepresented by the following

eguations:
X = &1
7 =aX + &9
Y =bZ + £3

cov(ey, e3) = cov(eg,e3) =0

cov(ey,e3) =

The first three equations claim, respectively, that the level of smoking of a person
depends only on factors not included in the model, the amount of tar deposited in the
lungs depends on the level of smoking as well as external factors, and the level of
cancer depends on the amount of tar in the lungs and external factors. The remaining
eguations say that the external factors that cause tar to be accumulated in the lungs
are independent of the external factors that affect the other variables, but the external

factors that have influence on smoking and cancer may be correlated.

All the information contained in the equations can be expressed by a graphical
representation, called causal diagram, asillustrated in Figure 1.1. We formally define
the model and its graphical representation in section 2.1.

Figure 1.2 shows a more elaborate model used to study correlations between rela-
tivesfor systolic and diastolic blood pressures [TEM93]. The squares represent blood
pressures for each type of individual, and the circles represent genetic and environ-
mental causes of variation: A the additive genetic contribution of the polygenes; D
the dominance genetic contributions;, £ all the environmental factors; and S those

environmental components only shared by siblings of the same sex.
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Figure 1.1: Smoking and lung cancer example

1.1 DataAnalysiswith SEM and the I dentification Problem

The process of data analysis using Structural Equation Models consists of four steps
[KKB98]:

1. Specification: Description of the structure of the model. That is, the qualitative
relations among the variables are specified by linear equations. Quantitative infor-

mation is generally not specified and is represented by parameters.

2. Identification: Analysisto decide if there is a unique valuation for the parameters
that make the model compatible with the observed data. The identification of a
SEM model isformally defined in Section 2.1.

3. Estimation: Actual estimation of the parameters from statistical information on the

observed variables.

4. Evaluation of fit: Assessment of the quality of the model as a description of the

data

In this work, we will concentrate on the problem of Identification. That is, we
leave the task of model specification to other investigators, and develop conditions
to decide if these models are identified or not. The identification of a model is im-

portant because, in general, no reliable quantitative conclusion can be derived from a
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Figure 1.2: Model for correlations between blood pressures of relatives



non-identified model. The question of identification has been the object of extensive
research [Fis66], [Dun75], [Pea00a], [McD97], [Rig95]. Despite all this effort, the
problem still remains open. That is, we do not have a necessary and sufficient condi-
tion for model identification in SEM. Some results are available for special classes of

models, and will be reviewed in Section 1.3.

In our approach to the problem, we state Identification as an intrinsic property of
the model, depending only on its structural assumptions. Since all such assumptions
are captured in the graphical representation of the model, we can apply graph theoretic
techniques to study the problem of Identification in SEM. Thus, our main results con-
sist of graphical conditions for identification, to be applied on the causal diagram of
the model.

As abyproduct of our analysis, estimation methods will also be provided, as well
as methods to obtain constraints imposed by the model on the distribution over the

observed variables, thus addressing questionsin steps 3 and 4 above.

1.2 Overview of Results

The central question studied in this work is the problem of identification in recursive
SEM models, that is, models that do not contain feedbacks (see Section 2.1 for more
details). The basic tool used in the analysis is Wright's decomposition, which allows
us to express correlation coefficients as polynomials on the parameters of the model.
The important fact about this decomposition is that each term in the polynomial corre-

sponds to a path in the causal diagram.

Based on the observation that these polynomials are linear on specific subsets of
parameters, we reduce the problem of Identification to the analysis of simple systems

of linear equations. As one should expect, conditions for linear independence of those



systems (which imply a unique solution and thus identification of the parameters),

trandate into graphical conditions on the paths of the causal diagram.

Hence, the fundamental step in our method of Auxiliary Sets for model identifica-
tion (see Chapter 3) consistsin finding, for each variable Y, a set of variables Ay with

specific restrictions on the paths between Y and each variablein Ay-.

As it turns out, the restrictions that allow us to obtain the maximum generality
from the method are not so easy to verify by visual inspection of the causal diagram.
To overcome this problem, we developed an algorithm that searches for an Auxiliary
Set for a given variable Y (see Chapter 4). We aso provide the Bow-free condition
and the Instrumental condition (Section 3.5), which are special cases of the general

method, but have straightforward application.

The machinery developed for the method of Auxiliary Sets can also be used to
compute correlation constraints. These constraints are implied by the structural as-
sumptions, and alow us to test the model [McD97]. The basic idea is very simple.
While in the case of Identification we take advantage of linearly independent equa-
tions, it follows that correlation constraints are immediately obtained from linearly
dependent equations (see Chapter 5). Despite its simplicity, thisis a very powerfull
method for computing correlation constraints.

Themain goa of thisresearch isto solve the problem of Identification for recursive
models. Namely, to obtain a necessary and sufficient condition for model identifica-
tion. The sufficient condition provided by the method of Auxiliary Setsisvery general,
and in Chapter 6 we present our initial efforts on our attempt to prove that it is also

necessary for identification.

Finaly, in Chapter 7, we consider the problem of parameter identification. This
problem is motivated by the observation that even on non-identified models there may

exist some parameters whose value is uniquely determined by the structural assump-



tionsand data. We provide a solution based on the concept of Instrumental Sets, which
generalizes the traditional method of Instrumental Variables[BT84]. The criterion for
parameter identification involves d-separation conditions, and the proofs required the

development of new techniques of independent interest.

1.3 Reated Work

The use of graphical modelsto represent and reason about probability distributionshas
been extensively studied [WL83, CCK83, Pea88]. In many areas such models have be-
come the standard representation, e.g., Bayesian networks for dealing with uncertainty
in Artificial Intelligence [Pea88], and Markov random fields for speech recognition
and coding [KS80]. Some reasons for the success of the language of graphs in many
domains are: it provides a compact representation for alarge class of probability dis-
tributions; it is convenient to describe dependencies among variables; and it consists
of a natural language for causal modeling. Besides these advantages, many methods
and techniques were devel oped to reason about probability distributions directly at the
level of the graphical representation [LS88, HD96]. An example of such atechnique
isthe d-separation criterion [Pea00a], which alows usto read off conditional indepen-

dencies among variables by inspecting the graphical representation of the model.

The Identification problem has been tackled in the past half century, primarily by
econometricians and socia scientists [Fis66, Dun75]. It is still unsolved. In other
words, we are not in possession of a necessary and sufficient criterion for deciding
whether the parameters in a structural model can be determined uniquely from the

covariance matrix of the observed variables.

Certain restricted classes of models are neverthel ess known to be identifiable, and

these are often assumed by social scientists as a matter of convenience or convention



Figure 1.3: McDonald's regressional hierarchy examples

[Dun75]. McDonald [1997] characterizes ahierarchy of three such classes (see Figure
1.3): (1) uncorrelated errors, (2) correlated errors restricted to exogenous variables,
and (3) correlated errors restricted to pairs of causally unordered variables (i.e., vari-
ables that are not connected by uni-directed paths.). The structural equations in all
three classes are regressional (i.e., the error term in each equation is uncorrelated with
the explanatory variables of that same equation) hence the parameters can be estimated

uniquely using Ordinary Least Squares techniques.

Traditional approaches to the I dentification problem are based on algebraic manip-
ulation of the equations defining the model. Powerful algebraic methods have been
developed for testing whether a specific parameter, or a specific equation in a model
isidentifiable . However, such methods are often too complicated for investigators to
apply in the pre-analytic phase of model construction. Additionally, those specialized
methods are limited in scope. The rank and order criteria [Fis66], for example, do
not exploit restrictions on the error covariances (if such are available). The rank cri-
terion further requires precise estimate of the covariance matrix before identifiability
can be decided. |dentification methods based on block recursive model s [Fisher, 1966;
Rigdon, 1995], for another example, insist on uncorrelated errors between any pair of
ordered blocks.

Recently, some advances have been achieved on graphical conditions for identi-



fication [Pea98, Pea00a, SRM98]. Examples of such conditions are the “back-door”
and “single-door” criteria[Peal0a, pp. 150-2]. The backdoor criterion consists of ad-
separation test applied to the causal diagram, and provides a sufficient condition for the
identification of specific causal effectsinthe model. A problem with such conditionsis
that they are applicable only in sparse models, that is, modelsrich in conditional inde-
pendence. The same holds for criteria based on instrumental variables (V) (Bowden
and Turkington, 1984), since these require search for variables (called instruments)

that are uncorrelated with the error termsin specific equations.



CHAPTER 2

Problem Definition and Background

2.1 Structural Equation M odels and I dentification

A structural equation model M for avector of observed variablesY = [Y7,...,Y,] is
defined by a set of linear equations of the form

Yj:ZcﬂYpLej ,forj=1,...,n.
Or, in matrix form
Y=C-Y+¢
whereC' = [cj;] ande = [eq, ..., e,]'.

The term e; in each equation corresponds to an stochastic error, assumed to have
normal distribution with zero mean. The model also specifies independence assump-
tionsfor those error terms, by the indication of which entriesin the matrix ¥ = [¢;;] =

Couv(e;, e;) have value zero.

In this work, we consider only recursive models, which are characterized by the
fact that the matrix C' is lower triangular. This assumption is reasonable in many
domains, sinceit basically forbidsfeedback causation. That is, a sequence of variables
Y1, ..., Y, where each Y; appears in the right-hand side of the equation for Y;,, and
variable 7, appearsin the equation for 7.

10



The structural assumptions encoded in amodel M consist of:

(1) the set of variables omitted in the right-hand side of each equation (i.e., the zero

entriesin matrix C'); and,

(2) the pairs of independent error terms (i.e., zero entriesin ).

The set of parameters of model M, denoted by O, is composed by the (possibly)

non-zero entries of matrices C and .

A parametrization = for model M is a function = : © — R that assigns a real
value to each parameter of themodel. The pair (M, ) determines a unique covariance

matrix over the observed variables, given by [Bol89]:

Su(r) = (I - @) vm[(1-om)'] 2.1)

where C'(r) and ¥ (x) are obtained by replacing each non-zero entry of C' and ¥ by
the respective value assigned by .

Now, we are ready to define formally the problem of Identificationin SEM.

Definition 1 (Model Identification) A structural equation model M is said to be iden-

tified if, for almost every parametrization = for M, the following condition holds:

Yu(r)=2yr") = =7 (2.2)

That is, if we view parametrization 7 as a point in /©!, then the set of points in which

condition (2.2) does not hold has Lebesgue measure zero.

The identification status of simple models can be determined by explicitly calcu-

lating the covariances between the observed variables, and analyzing if the resulting

11



expressions imply a unique solution for the parameters. This method isillustrated in

the following examples.

Consider the model defined by the equations:

X = €x
W = e Cov(ex,ew) = «
w (ex, ew) (2.3)
Y = aX +ey Cov(ey,ew) =p3
Z = bY +cW +ey

where the covariances of pairs of error terms not listed above are assumed to be zero.
We aso make the assumption that each of the observed variables has zero mean and
is standardized (i.e., has variance 1). Thisassumption is not important because, if this
is not the case, a simple transformation can put the variables in this form. Immediate
consequences of this last assumption are: Cov(X,Y) = E[X - Y] and Var(X) =
E[X?].

Calculating the covariances between observed variables, we obtain:

Cov(X,)Y) = E[X-Y]
= E[X . (CLX +€y)]

(2.4)
= aVar(X)+ Cov(ex,ey)
= a
and, by similar derivations,
Cov(X, W) = «
Cov(Y, W) = aa+p
Cou(Y,Z) = b+cp (2.9)
Cov(W,Z) = bf+c
Cov(X,7Z) = ab+ ca

12



Now, it is easy to see that the values of parameters a, o, 5 are uniquely deter-
mined by the covariances Cov(X,Y), Cov(X, W) and Couv(Y, W). Parameters b and
¢ are obtained by solving the system formed by the expressions for Cov(Y, Z) and
Cov(W, Z). Hence, if two parametrizations = and 7" induce the same covariance ma-

trix they must be identical, and the model is identified.

Note, however, that this argument does not hold if parameter 5 isexactly 1. Inthis
case, the equations for Cov(Y, Z) and Cov(W, Z) do not alow us to obtain a unique
solution for parameters b and ¢. A unique solution can still be obtained from the
expression for Cov(X, Z), but if we also have a = o = 1, then the parameters b and ¢
are not uniquely determined by the covariance matrix of the observed variables. This
explainswhy we only require condition (2.2) to hold for amost every parametrization,

and allow it to fail in a set of measure zero.

The simplest example of a non-identified model corresponds to:

Yi = e
Yo = aY]+es
Cov(ey,ey) =3

In this case, the covariance matrix for the observed variables Y7, Y5 contains only

one entry, whose valueis given by:

Cov(1,¥y) = EY: Yy EV}]- B[
= E[Y]-(aY] + ey)]
= aVar(Y1)+ Cou(e,ez)
= a+pf

Now, given any parametrization 7, it is easy to construct another one parametriza-
tion7’ # m, withm(a)+7(5) = n'(a)+7'(5). Butthisimpliesthat 3, (7) = X, (7'),

and so the mode! is non-identified.

13
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Figure 2.1: A simple structural model and its causal diagram

In general, if amodel M is non-identified, for each parametrization 7 there exists
an infinite number of distinct parametrizations ' such that 3, (7) = Xy, (7). How-
ever, it isalso possible that for most parametrizations 7 only afinite number of distinct
parametrizations generate the same covariance matrix. We will return to thisissuein
Chapter 6, where we study sufficient conditionsfor non-identification, and will provide

an example of this situation.

A few other algebraic methods, like algebra of expectations [Dun75], have been
proposed in the literature. However, those techniques are too complicated to analyze
complex models. Here, we pursue a different strategy, and study the identification
status of SEM models using graphical methods. For this purpose, we introduce the
graphical representation of the model, called a causal diagram [Pea00a].

The causal diagram of amodel M consists of a directed graph whose nodes corre-
spond to the observed variables Y7, ..., Y, inthe model. A directed edge from Y; to
Y indicates that Y; appears on the right-hand side of the equation for Y; with a non-
zero coefficient. A bidirected arc between Y; and Y indicates that the corresponding
error terms, e; and e;, have non-zero correlation. The graphical representation can be
completed by labeling the directed edges with the respective coefficients of the linear

eguations, and the bidirected arcs with the non-zero entries of the covariance matrix

14



Figure 2.2: A causal diagram

¥, Figure 2.1 showsthe causal diagram for the example givenin Eq. (2.3). Note that
the causal diagram of a recursive model does not have any cycle composed only of

directed edges.

The next section presents some basi ¢ definitions and facts about the type of directed
graphs considered here. Then, in section 2.3 we establish the connection between the

| dentification problem and the graphical representation of the model.

2.2 Graph Background

A path between variables X and Y inacausal diagram consists of a sequence of edges
(e1,€3,...,€,) Such that e; isincident to X, e, isincident to Y, and every pair of
consecutive edges in the sequence has a common variable. Variables X and Y are
called the extreme points of the path, and every other variable appearing in some edge
e; is said to be an intermediate variable in the path. We say that the path points to
extreme point X (Y) if the edge e; (e,,) has an arrow head pointingto X (Y)).

For example, the following are some of the paths between X and U in the causal

diagram of Figure 2.2

15



o X -/ —>V U
o X -/ >V &U
e X Y& /- W—=U

o X -/ Vs YsZ-W-—=U

Note that only the third path points to variable X, but all of them point to U.

A pathp = (ey,...,e,) between X and Y isvalid if variable X only appearsin
e1, variable Y only appearsin e,,, and every intermediate variable appears in exactly
two edges in the path. Among the examples above, only the first three are valid. The

last oneisinvalid because variable Z appears in more than two edges.

The special case of a path composed only by directed edges, all of which oriented
in the same direction, is called achain. Thefirst example above correspondsto achain

from X toU.

We will also make use of a few family terms to refer to variables in particular
topological relationships. Specificaly, if the edge X — Y is present in the causal
diagram, then we say that X is aparent of Y. Similarly, if there exists a chain from
X toY, then X issaid to be an ancestor of Y, and Y isadescendant of X. Clearly,
in a recursive model, we cannot have the situation where X is both an ancestor and a
descendant of some other variable Y. In the causal diagram of Figure 2.2, W and V'

are the parents of variable U, and X isan ancestor of both U and V.

Given a path p between X and Y, and an intermediate variable Z in p, we denote
by p[X..Z] the path consisting of the edges of p that appear between X and Z. !
Variable Z isacollider in path ap between X and Y, if both p[X..Z] and p[Z..Y]

'Here, and in most of the following, we are only concerned about valid paths, so this concept is
well-defined

16



point to Z. A path that does not contain any collider is said to be unblocked. Next, we

consider a few important facts about unblocked paths.

Define the depth of a node Y in a causal diagram as the length (i.e., number of
edges) of the longest chain from any ancestor of Y to Y. Nodes with no ancestors

have depth 0.

Lemmal Let X and Y be nodes in the causal diagram of a recursive model such that
depth(X) > depth(Y). Then, every path between X and Y which includes a node Z
with depth(Z) > depth(X) must have a collider.

Proof: Consider a path p between X and Y and node Z satisfying the conditions
above. We observe that Z cannot be an ancestor of either X or Y, otherwise we would
have depth(Z) < depth(X') or depth(Z) < depth(Y").

Now, consider the subpath of p between Z and Y. If this subpath has the form
Z — ...Y, thenit must contain a collider, since it cannot be a directed path from 7
to Y. Similarly, if the subpath of p between X and Z hastheform X ... + Z, thenit

must contain a collider.
In all theremaining cases Z is acollider blocking the path. O

If pisapath between X andY’, and ¢ isapath between Y and 7, then p& ¢ denotes
the path obtained by the concatenation of the sequences of edges corresponding to p
and q.

Lemma2 Let p be an unblocked path between X and Y, and let Y be an unblocked
path between Y and Z. Then, p & ¢ is a valid unblocked path between X and Z if and
only if:

(i) p and ¢ do not have any intermediate variable in common;
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Figure 2.3: A causal diagram

(i) either pis achain from Y to X, or ¢ is a chain from Y to ~Z.

Definition 2 (d-separation)
A set of nodes Z d-separates X from Y in a graph, if Z closes every path between X
and Y. A path p is closed by a set Z (possibly empty) if one of the following holds:

(i) p contains at least one non-collider that is in Z;

(if) p contains at least one collider that is outside Z and has no descendant in Z.

For example, consider the path X <+ Y — V — U in Figure 2.3. This path is
closed by any set containing variables Y or . On the other hand, the path X < Y «
Z — W — U isclosed by the empty set {}, but is not closed by any set containing
Y or V but not Z or W. It is easy to verify by inspection that the set {V, W} closes
every path between X and U, and so {V, W'} d-separates X from U.

2.3 Wright'sMethod of Path Analysis

The method of path analysis [Wri34] for identification is based on a decomposition of

the correlations between observed variables into polynomials on the parameters of the
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Figure 2.4: Wright’s equations.

model. More precisely, for variables X and Y in a recursive model, the correlation

coefficient of X and Y, denoted by pxy, can be expressed as:

pPxy = Z T (p) (2.6)

paths p;
where the term T'(p;) represents the product of the parameters of the edges along path
p, and the summation ranges over al unblocked paths between X and Y. For this
equality to hold, the variables in the model must be standardized (i.e., variance equal
to 1) and have zero mean. We refer to EQ.(2.6) as Wright's decomposition for pxy-.
Figure 2.4 shows a smple model and the decompositions of the correlations for each

pair of variables.

The set of equations obtained from Wright’s decompositions summarizes all the
statistical information encoded in the model. Therefore, any question about identifica-
tion can be decided by studying the solutions for this system of equations. However,
since this is a system of non-linear equations, it can be very difficult to analyze the

identification of large models by directly studying the solutions for these equations.
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CHAPTER 3

Auxiliary Setsfor Model |dentification

3.1 Introduction

In this chapter we investigate sufficient conditions for model identification. Specifi-
cally, we want to find graphical conditions on the causal diagram that guarantee the
identification of every parameter in the model. One example of the type of result ob-
tained here is the Bow-Free Condition, which states that every model whose causal

diagram has at most one edge connecting any pair of variablesisidentified.

The starting point for our analysis of identification is the set of equations provided
by Wright's decompositions of correlations. Then, we make the following important

observation.

For an arbitrary variable Y, let S be a set of incoming edgesto Y (i.e., edges with
an arrow head pointing to Y'). Then, any unblocked path in the causal diagram can
include at most one edge from S. This follows because if two such edges appear in
a valid path, then they must be consecutive. But since both edges point to Y (e.g.,
... =Y < ...), the path must be blocked.

Now, recall that each term in the polynomial of Wright's decomposition corre-
sponds to an unblocked path in the causal diagram. Thus, the observation above im-

pliesthat such polynomialsare linear in the parameters of the edgesin S.

Hence, our approach to the problem of Identification in SEM can be summarized
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asfollows. First, we partition all the edges in the causal diagram into sets of incoming
edges. Then, we study the identification of the parameters associated with each set by

analyzing the solution of a system of linear equations.

Two conditions must be satisfied to obtain the identification of the parameters cor-
responding to a set of edges S. First, there must exist a sufficient number of linearly
independent equations. Second, the coefficients of these equations, which are func-

tions of other parameters in the model, must be identified.

To address the first issue, we developed a graphical characterization for linear in-
dependence, called the G Criterion. That is, for afixed variable Y, if a set of variables
{71, ..., Z} satisfies the graphical conditions established by the G criterion, then the
decompositionsof pz,y, ..., pz.y arelinearly independent (with respect to the param-
eters of edgesin S). These conditions are based on the existence of specific unblocked

paths between Y and each of the Z;’s.

The second point is addressed by establishing an appropriate order to solve the
systems of equations.

The following sections will formally develop this graphical analysis of identifica-

tion.

3.2 Basic Systemsof Linear Equations

We begin by partitioning the set of edges in the causal diagram into sets of incoming
edges.

Fix an ordering A for the variables in the model, with the only restriction that if
depth(X) < depth(Y"), then X must appear beforeY in A. For each variable Y, we
define Inc(Y") asthe set of edges in the causal diagram that connect Y to any variable
appearing before Y in the ordering A.
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It easily follows from this definition that, for each variable Y, Inc(Y') contains all

directed edges pointingto Y (i.e., X — Y).

Lemma 3 Any unblocked path between Y and some variable Z can include at most
one edge from Inc(Y’). Moreover, if depth(Z) < depth(Y'), then any such path must

include exactly one edge from Inc(Y').

Proof: Thefirst part of thelemmafollowsfrom the argument givenin Section 3.1. For
the second part, assume that p is an unblocked path between Z and Y, which does not
contain any edge from Inc(Y'). Let W bethevariable adjacent to Y in path p. Clearly,
depth(W) > depth(Y") (otherwise edge (17, Y") would belong to Inc(Y')). But then

Lemma 1 saysays that p contains a collider, which is a contradiction. O

Now, fix an arbitrary variable Y, and let A4, ..., )\,, denote the parameters of the
edgesin Inc(Y'). Then, Lemma 3 alows us to express Wright's decomposition of the

correlation between Z and Y as alinear equation onthe \;’s:

pzy = ao—l—Zaj - Aj
7j=1

where aq = 0 if depth(Z) < depth(Y).
Figure 3.1 shows the linear equations obtained from the correlations between Y

and every other variable in amodel.

Now, given aset of variablesZ = {7, ..., Z;}, welet 7y * denote the system

of equations corresponding to the decompositions of correlations pz,v, . . ., pz,.v:

(

m
Pz,y = Qip + Z ayj - Aj
Jj=1

m
Pzy = Qo + Y ki Aj
\ j=1

'Whenever clear from the context, we drop the referenceto Y and simply write @ .
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Pzyy = aAg +bA3
Pzyy = Ao+ eXs
PXYy = A1+ Ao+ (ab+ef)A3
pxy = (ab+ef)ho+ A3+ Ny

Figure 3.1: Wright's equations.

3.3 Auxiliary Setsand Linear |ndependence

Following the ideas presented in Section 3.1, we would like to find a set of variables
that provides a system of linearly independent equations. This motivatesthe following

definition:

Definition 3 (Auxiliary Sets) A set of variables Z = {Z,..., Z;} is said to be an
Auxiliary Set with respect to Y if and only if the system of equations ®z - is linearly

independent.

Next, we obtain sufficient graphical conditions for a given set of variables to be
an auxiliary set for Y. Since the terms in Wright’s decompositions correspond to
unblocked paths, it is natural to expect that linear independence between equations
trandate into properties of such paths. In the following, we explore this connection by

analyzing afew examples, and then we introduce the G criterion.

For each of themodelsin Figure 3.2 wewill verify if theset Z = {7, Z,} qudlifies
asan Auxiliary Set for Y. Inmodel M, the system of equations @z is given by:
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Figure 3.2: Figure

Pziy = aAy+ bAj
Pzy = C)\z—f—d)\g

It is easy to see that the equations are linearly independent 2, and so Z is an Auxiliary
Set for Y. We also call attention to the fact that unblocked pathsp, : Z; — X; — Y

and p, : Z5 — X5 — Y have no intermediate variables in common.

In model M, system &5 isformed by:

Pzy = (l)\g + b)\g
P2y = cady+cbh3 = c-[ady + bA;]

Clearly, the equations are not linearly independent in this case. This occurs because
every unblocked path between Z; and Y in M, can be extended by theedge 7, — 75
to give an unblocked path between 7, and Y'.

Finally, in model M3, the system &z isgiven by:

2Thisis not trueif ad = bc, but this condition only holds on a set of measure zero (see discussionin
Section 2.1)
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Figure 3.3: Exampleillustrating condition (i7) in the G criterion

{ ley = 0)\24‘[))\3

Pz,y = CQAy

and again we obtain a pair of linearly independent equations. The important fact to
note hereisthat, if we extend path 7, <+ X, — Y by edge Z, — Z;, we obtain a path
blocked by Z;.

In general, the situation can become much more complicated, with one equation
being alinear combination of several others. However, as we will see in the following,
the exampl es discussed above illustrate the essential graphical properties that charac-

terize linear independence.

G Criterion: AsetofvariablesZ = {Z, ..., Z;} satisfies the G criterion with respect

to Y if there exist paths pq, ..., p; such that:

(i) p; is an unblocked path between Z; and Y including some edge from Inc(Y);

(i) fore < j, Z, isthe only possible common variable in paths p; and p; (other than
Y), and in this case, both p; and p,[Z;..Z;] must point to Z; (see Figure 3.3 for

an example).
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Next, we prove atechnical lemma, and then establish the main result of this Chap-

ter.

Let Z = {Zi,...,Z;} be a set of variables, and assume that paths p, ..., p
witness the fact that Z satisfies the G criterion with respect to Y. Let \y,..., \,
denote the parameters of the edgesin Inc(Y'), and, without loss of generality, assume
that, for 1 < ¢ < k, path p; contains the edge with parameter \;. (It is easy to see
that condition (:7) of the G criterion does not allow paths p; and p; to have a common
edge.)

Lemma4 For ;7 > 1, let p be an unblocked path between Z; and Y including the

edge with parameter );. Then, p must contain an edge that does not appear in any of

Pi,-- -, Pn-

Proof: Without loss of generality, we may assume that, for al s,z < [ < k, if both
variables Z,, Z, appear in path p;, and Z, is an intermediate variable in p;[ Z;.. Z,], then
s > t. If thisis not the case, then we can always rename the variables such that this

condition holds, and condition (i) of the G criterion is not violated.

Now, let p be a path satisfying the conditions of the lemma, and assume that p
contains only edges appearing in pq, . .., px. Inthe following we show that p must be

blocked by acollider.

Clearly, we can divide the path p into segments ¢, . . ., ¢, such that all the edgesin
each segment belong to the same path p;.

Now, note that variable Z; can appear only in a path p, for t > j (from condition
(1) of the G criterion). On the other hand, the edges of the last segment ¢, belong to

Since j > 14, there must exist two consecutive segments ¢, ¢, and indices a >

j > b, such that the edgesin ¢, belong to p, and the edgesin ¢, ; belong to p,.
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The common variable of ¢, and ¢, appear in both p, and p,. Since a > b, it must

be Z,, and ¢, ; must point to it.

If the edges in ¢, belong to subpath p,[Z,..7Z], then ¢, also pointsto Z,. In this

case, 7, isacollider in path p and the lemmafollows.

In the other case, ¢, cannot be the first segment of path p, and we consider segment
¢s—1 Whose edges belong to, say, path p.. Since we assumed that ¢, is the first

segment with edges from a path p; with [ < j, we conclude that ¢ > b.

But we a'so have that 7, appearsin subpath p,[Z,..Z.], and the initial assumption

isthat b > ¢. Thus, we have a contradiction, and the lemma follows. O

Theorem 1 If the set of variables Z = {Z,,..., Z;} satisfies the G criterion with

respect to Y, then Z is an Auxiliary Set for Y.

Proof: The system of equations 7 can be written in matrix form as:
p=A-A
where p = [(pz,y — ai0) .- (pz,y — aro)|'s A = [ai;] isak by m matrix, and A =

A Al

Let A, denote the submatrix corresponding to the first £ columns of A. We will
show that Det(Ay) # 0, which impliesthat rank(A) = k and the equationsin & are
linearly independent with respect to the \;’s.

Applying the definition of determinant, we obtain

g

k
Det(Ag) =Y (—1) 11 a0t (3.2

where the summation ranges over all permutations of (1, ..., k), and |o| denotes the

parity of permutation o.
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First, observe that entry a;; corresponds to unblocked paths between Z; and Y
including the edge from Inc(Y") with parameter \;. In particular, p; is one of these
paths, and we can writea;; = (@ + a;i). Thisimpliesthat theterm 7™ = [H %]

appears in the summand corresponding to permutation o = (1, ..., k). Also, nzote that

every factor in T isthe parameter of an edge in some p;.

On the other hand, any term in the summand of a permutation distinct from o
must contain a factor from some entry a;, with 5 > 7. Such an entry corresponds to
unblocked paths between Z; and Y including the edge from Inc(Y') with parameter
A;. But lemma 4 says that those paths must have at |east one edge that does not appear
inany of pq, ..., pg. Thisimpliesthat 7™ is not cancelled out by any other termin 3.1,

and so Det(Ay,) does not vanish, completing the proof of the theorem. O

3.4 Modd Identification Using Auxiliary Sets

Assumethat for each variable Y thereisan Auxiliary Set Ay, with | Ay | = [Tnc(Y)].

This implies that for each Y there exists a system of linear equations ® 4, that
can be solved uniquely for the parameters A4, ..., \,, of the edgesin Inc(Y). This
fact, however, does not guarantee the identification of the \;’s, because the solution for
each )\; isafunction of the coefficients in the linear equations, which may depend on

non-identified parameters.

To prove identification we need to find an appropriate order to solve the systems
of equations. This order will depend on the variables that compose each auxiliary set.

The following theorem gives a simple sufficient condition for identification:
Theorem 2 Assume that the Auxiliary Set Ay of each variable Y satisfies:

() |Ay| = [Inc(Y)
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(ii) depth(Z;) < depth(Y'), forall Z; € Ay.
Then, the model is identified.

Proof: We prove the theorem by induction on the depth of the variables.
Let Y beavariable at depth 0.

Note that Inc(Y") can only contain bidirected edges connecting Y to another vari-
able at depth 0. Let (W,Y") € Inc(Y'). Observing that the only unblocked path be-
tween 1 and Y consists precisely of edge (W, Y"), we get that the parameter of edge
(W,Y) isidentified and given by pyy-.

Now, assume that, for every variable X at depth smaller than &, the parameters of

the edgesin Inc(X) areidentified.

Let Y be avariable at depth &, and let Z; € Ay. Lemma 1 implies that every
intermediate variable of an unblocked path between Z; and Y has depth smaller than
k. The inductive hypothesis then implies that the coefficient of the linear equationsin

d 4, areidentified. Hence, the parameters of the edgesin Inc(Y') areidentified. O

In the general case, however, the auxiliary set for some variable Y may contain
variables at greater depths than Y, or even descendants of Y. This would force usto
solvethe systems of equationsin adifferent order than the one established by the depth

of the variables.

In the following, we provide two rules that impose restrictions on the order in
which the linear systems must be solved. We will see that if these restrictions do not

generate a cycle, then the model is identified.

R1: If, for every bidirected edge (V;,Y) in Inc(Y), variable V; is not an ancestor of

any Z; € Ay, then ® 4. can be solved at any time.

R2: Otherwise,
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Figure 3.4: Exampleillustrating rule R2(b).

a) Forevery Z € Ay, ® 4, must be solved before @ 4, is solved.
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b) If Z € Ay isadescendant of Y, and (U, Z) is a bidirected edge with U an
ancestor of Y, then for every W lyingonachainfrom U to Y (see Figure 3.4),

® 4,, must be solved before @ 4, .

For amodel M and a given choice of Auxiliary Sets, the restrictions above can be

represented by a directed graph, called the dependence graph D, as follows:

e Eachnodein D, correspondsto a variable in the model;

e Thereexistsadirected edgefrom Z toY in D, if rule R1 does not apply to Y,

and rule R2 imposes that ® 4, must be solved before @ 4, .
The next theorem states our general sufficient condition for model identification:

Theorem 3 Assume that there exist Auxiliary Sets for each variable in model A, such
that the associated dependence graph D, has no directed cycles. Then, model M is

identified.

The proof of the theorem is given in appendix A.

Figure 3.5 shows an examplethat illustrates the method just described. Apparently,
thisisavery simplemodel. However, it actually requiresthefull generality of Theorem
3. The Figure also shows the auxiliary sets for each variable, and the corresponding
dependence graph D,,. The fact that rule R1 can be applied to variable Z avoids a
dependence of Z on W and eliminates the possibility of acycle.

3.5 Simpler Conditionsfor Identification

The sufficient condition for identification presented in the previous section is very

general, but complicated to verify by visual inspection of the causal diagram. The

31



«
\\\.
Y
X. .Z
°Z
W” W e L34
R1 appliesto Z.
‘AX = @ R2 appliesto Y ,W.
AY = {X, W}
Az ={Y}
'AW = {Z? X}

Figure 3.5: Exampleillustrating Auxiliary Sets method.

main difficulty resides in finding the required unblocked paths witnessing that a set
of variablesisan Auxiliary Set. A solution for this problem is provided in Chapter 4,
where we devel op an algorithm to find an appropriate Auxiliary Set for afixed variable
Y. However, simple conditions for identification still seem to be useful, and thisisthe

subject of this section.

3.5.1 Bow-free Models

A bow-free model is characterized by the property that no pair of variablesis connected
by more than one edge. Actually, this represents the ssmplest situation for our method
of identification.

Corollary 1 Every bow-free model is identified.
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Figure 3.6: Example of a Bow-free model.

Proof: Fix an arbitrary variable Y, and let X = { X}, ..., X} be the set of variables
such that, fori = 1,...,k, edge (X;,Y) belongsto Inc(Y'). Since the model is bow-
free, it follows that |X| = |Inc(Y')|. Moreover, the set of paths {p1, ..., pr}, where
each p; isthetrivia path consisting of the single edge (X, Y"), witnesses that X isan
Auxiliary Set for Y.

Now, let A be the ordering used in th construction of the sets of incoming edges
Inc(Y). Then, for every Y, al the variablesin Ay appear before Y in A. Thisimplies
that the dependence graph D, is acyclic, and the corollary follows. O

Figure 3.6 shows an interesting example. A brief examination of this causal dia
gram will reveal that no conditional independence holds among the variables X, Y,
Z and W. As aconsequence, most traditional methods for Identification (e.g., Instru-
mental Variables, Back-door criterion) would fail to classify this model as identified.

However, as can be easily verified, thismodel is bow-free and hence identified.

3.5.2 Instrumental Condition

From the preceding result, it is clear that al the problems for identification arise from
the existence of bow-arcs in the causal diagram (i.e., pairs of variables connected by
both a directed and a bidirected edge). Let us examine thisstructure in more detail and

try to understand why it represents a problem for identification.
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Assume that there is a bow-arc between variables X and Y, and let §, A denote
the parameters of the directed and bidirected edges in the bow, respectively. Then,

Wright's decomposition for correlation p xy gives3:

pPxy = 0+ A

Now, if thisisthe only constraint on the values of 6 and ), then there exists an infinite
number of solutionsfor § and \ that are consistent with the observed correlation p xy .
Thissituation occurs, for example, when both edgesin the bow pointto Y, and thereis
no other edge in the model with an arrow head pointingto X . Inthiscase, by analyzing
the decomposition of the correlations between any pair of variables, we observe that
either they do not depend on the values of 6, A at all, or they only depend on their
sum (See Figure 3.7(a) for an example). From this observation it is possible to derive
a proof that any such model is non-identified. Similar techniques will be explored in

Chapter 6 to obtain graphical conditions for non-identification.

Now, consider the situation where there exists a third variable Z with a directed
edge pointing to X. A variable Z with such properties is sometimes called an Instru-
mental Variable. Figure 3.7(b) shows an example of this situation, with the respective
decompositions of correlations. It is easy to verify that there exists a unique solution

for parameters a, 9, A in terms of the observed correlations.

Hence, the basic idea for our next sufficient condition for identification is to find,
for each bow-arc between X; and Y, adistinct variable Z; with an edge pointing to .X;.

The condition is precisely stated as follows.

For afixed variable Y let Bow(Y) = {X;,..., X;} bethe set of variables that are
connected to Y by adirected and a bidirected edges, both pointingto Y.

3Here, we are assuming that thereis no other unblocked path between X and Y.



W Z X Y
PXz = a
PXW = pzx =4
pxy =0+ A pzy = a0
pyzza+a(5+)\) pXY:5+)\
pYW:C—l-b((S—i-)\)
(a) (b)

Figure 3.7: Examplesillustrating the instrumental condition.

Instrumental Condition: We say that a variable Y satisfies the Instrumental Condi-
tion if, for each variable X; € Bow(Y), there existsa unique variable Z; satisfying:

(i) depth(Z;) < depth(Y);
(if) Z; isnot connected to Y by any edge;

(i) there exists an edge between Z; and X; that pointsto X;.

Corollary 2 Assume that the Instrumental Condition holds for every variable in model

M. Then model M is identified.
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CHAPTER 4

Algorithm

In some elaborate models, it is not an easy task to check if a set of variables satisfies
the GAV criterion. Moreover, the criterion itself does not provide any guidance to find
aset of variables satisfying its conditions. In this chapter we present an algorithm that,
finds an Auxiliary Set Ay for afixed variable Y, if any such set exists.

The basic ideais to reduce the problem to an instance of the maximum flow prob-
lem in a network.

Cormen et al [CCR90] define the maximum flow problem as follows. A flow
network G = (V, E) is a directed graph in which each edge (u,v) € E has a non-
negative capacity c(u,v) > 0. We distinguish two vertices in the flow network: a

sources andasink t. A flow in G isarea-valued function F : V' x V' — R, satisfying:

e F(u,v) < c(u,v),foralu,veV;
e F(u,v) = —F(v,u),foral u,veV;

e > v F(u,v)=0,fordlueV —{s,t}.

That is, condition (i) states that the amount of flow on any edge cannot exceed its
capacity; condition (i7) says that the amount of flow running on one direction of an
edgeisthe same asthe flow in the other direction, but with opposite sign; and condition
(1ii) establishes that the amount of flow entering any vertex must be the same as the

amount of flow leaving the vertex.
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Intuitively, the value of aflow F' isthe amount of flow that is transfered from the

source s to the sink ¢, and can be formally defined as
|F| = Z F(s,v)
veV
In the maximum flow problem, we are given a flow network G, with source s and
sink ¢, and we wish to find a flow of maximum value from s to ¢.

Before describing the construction of the flow network, we make a few observa-

tions. Fix an arbitrary variable Y.

Lemma5 Assume that the set of variables Z satisfies the conditions of the GAV crite-
rion with respect to Y. Then, there exists a set of variables Z’ and paths p1, ..., pz

such that

(i) 2] = |Z]
(il) pi1,...,pz witness that Z' satisfies the GAV criterion;

(iii) fori =1,...,|Z|, every intermediate variable in p; belongs to Z'.

Proof: Let Z = {Z,,...,Z;}, and let ¢y, .. ., q; be paths witnessing that Z satisfies

the GAV criterion. The lemmafollows from the next observation.

Let W ¢ Z be an intermediate variable in the path ¢; associated with variable
Z; € Z. Then the paths q1,...,4;—1, qZ[WY], Qit1y-- -5 4k witness that {Zl, ce
Zi AW, Zisa, ..., Zy} satisfiesthe GAV criterion with respect to Y. O

Let Z be a set of variables, and py, ..., pr be paths satisfying the conditions of
Lemmab. Then, it follows that each of the paths p; must be either a bidirected edge
(Z; <> Y),orachan (Z; — ... = Y), or the concatenation of abidirected edge with

achan(Z, < Z; — ... =Y).
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From these observations we conclude that, in the search for an Auxiliary Set for

Y, we only need to consider:

e ancestorsof Y

e variables connected by a bidirected edge to either Y or an ancestor of Y;

Now, from condition (i7) of the GAV criterion, we get that an ancestor Z; of Y can
appear in at most two paths: (1) the path p; between Z; and Y'; and (2) some path p;,
asan intermediate variable. To allow this possibility, for each ancestor of Y, we create

two vertices in the flow network.

Since non-ancestors of Y can appear in a most one path, there will be only one

vertex in the flow network corresponding to each such variable.

Directed edges between ancestors of Y in the causal diagram are represented by
directed edges between the corresponding vertices in the flow network. Bidirected
edges incident to Y and non-ancestors of Y are also represented by directed edges.
Bidirected edges between ancestors Z; and Z; require special treatment, because they
can appear asthe first edge of either p; or p;, but not in both of them. To enforce this

restriction we make use of an extravertex.

Next, we define the flow network Gy that will be used to find an Auxiliary Set for
Y.

The set of vertices of Gy consists of
e for each ancestor Z of Y, we include two vertices, denoted 17 and V;;
e for each non-ancestor W, we include vertex Viy;

e for each bidirected edge 7 <« U connecting ancestors of Y, we include the

vertex Vyy,
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e asourcevertex s;

e asink vertex t, corresponding to variable Y'.

The set of edges of GGy is defined as follows:

e for each ancestor Z of Y, weinclude the edge V5; — V;

e for each directed edge Z — U inthe causal diagram, connecting ancestorsof Y/,

we includethe edge V; — Vi;
o for each directed edge Z — Y, weinclude the edge V5 — ¢;

¢ for each bidirected edge 7 <>, where Z isan ancestor of Y, we include the edge

V2—>t;

e for each bidirected edge W «+» Z, where W isanon-ancestor and 7 is an ances-

tor of Y, we include the edge Vi — V7;

e for each bidirected edge W <> Y, where W is a non-ancestor, we include the

edge Viy — t;

e for each bidirected edge Z <+ U, where both Z and U are ancestors of Y, we

includethe edges: Vi, — Vi, Viy = Vau, Vau — Vi, Var — Vi
e for each ancestor Z of Y, weincludetheedge s — V;

¢ for each non-ancestor W, we include the edge s — Viy.

To solve the maximum flow problem on the flow network Gy defined above, we
assign capacity 1 to every edge in Gy. We also impose the additional constraint of

maximum incoming flow capacity of 1 to every vertex in Gy (this can be implemented
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by splitting each vertex into two and connecting them by an edge of capacity 1), except

for vertices s and ¢.

We solve the Max-flow problem using the Ford-Fulkerson agorithm. From the
integrality theorem ([CCR90], p.603), the computed flow F' allocates a non-negative
integer amount of flow to each edge in G'y. Since we assign capacity 1 to every edge,
this solution corresponds to disjoint directed paths from s to t. The Auxiliary Set
returned by the algorithmis simply the set of variables corresponding to thefirst vertex
in each path.

Theorem 4 The algorithm described above is sound and complete. That is, the set of

variables returned by the algorithm is an Auxiliary Set for Y~ with maximum size.

Proof: Fix avariable Y in model M, and let GGy be the corresponding flow net-
work. Let F' be the flow computed by the Ford-Fulkerson algorithm on Gy, and let
k=|F|.

As described above, weinterpret the flow solution F' as a set of edge digoint paths

P ={py,...,px} fromthe source s to the sink ¢.

First, we show that each such path corresponds to an unblocked path in the causal
diagramof M. Letp;, = s — v; — u; — ... — u; — t be one of the pathsin P. We

make the following observations:

e v; is either a vertex Vy corresponding to a non-ancestor of Y, or a vertex V,

corresponding to an ancestor Z of Y in the causal diagram.

e forj=1,...,(, eachu; iseither avertex V5 corresponding to ancestor U of Y/,
or avertex V corresponding to a bidirected edge between ancestors 7 and U

of Y, but the later can only occur if j = 1 and V.
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Now, we establish a correspondence between the edges of p; and the edges of the
causal diagram.

1. The directed edge u; — t corresponds to the directed edge from the respective
ancestor U, to variable Y.

2. If twoverticesu; and u;,; are both vertices of thetype VU—j and VW’ then the edge

u; — uj41 iNp; correspondsto the edge U; — U, inthe causal diagram.

3. If v; isavertex of type Vyy, thentheedge v; — u, correspondstotheedge W « Uy,
and path p; corresponds to the path W < U; — ... — U, — Y in the causd
diagram.

4. If v; isavertex of type V;; and v, is a vertex of type Vi, then the edge v; — uy
corresponds to the edge Z — U, and path p; corresponds to the path 7 — U; —
... = U, — Y inthe causal diagram.

5. If v; isavertex of type V;, and u, isof type V7, then the edge v; — w, corresponds
totheedge Z < U,, and path p; correspondstothepath Z < Uy — ... - U, — Y
in the causal diagram.

Now, let vy, ..., v bethefirst verticesin each of the pathsin P, and let 74, .. ., Z,

be the variables associated with those vertices in the causal diagram.

Note that the constraint of maximum incoming flow capacity of 1 on the vertices
of Gy impliesthat the paths p,, ..., p, are vertex digoint (and also implies that the
variables 7, . . ., Z, are dl distinct). However, this constraint does not imply that the

corresponding paths in the causal diagram are vertex digoint.

For an ancestor Z of Y, it is possible that vertices V> and V, appear in distinct

paths p; and p;, and so Z would appear in two of the corresponding paths on the causal
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Figure4.1: A causal diagram and the corresponding flow network

diagram. In fact, thisis the only possibility for a variable to appear in more than one
such paths, and in this case it is easy to verify that the conditions of the G criterion

hold. This provesthat the algorithm is sound.

Completeness easily follows from the construction of the flow network, and the

optimality of Ford-Fulkerson agorithm a

Figure 4.1 shows an example of a simple causal diagram and the corresponding

flow network Gy-.

Theorem 5 The time complexity of the algorithm described above is O(n?).

Proof: The theorem easily follows from the facts that the number of verticesin
the flow network is proportional to the variablesin the model, and that Ford-Fulkerson

agorithm runsin O(m?), where m is the size of the flow network. O
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CHAPTER S

Correlation Constraints

It is a well-known fact that the set of structural assumptions defining a SEM model
may impose constraints on the covariance matrix of the observed variables [McD97].
That is, a given set of structural assumptions may imply that the value of a particular

entry in X, isafunction of some other entriesin this matrix.

An immediate consequence of this observation isthat amodel M/ may not be com-
patible with an observed covariance matrix 3, in the sense that for every parametriza-
tion = we have ¥, () # X. Thisalowsto test the quality of the model. That is, by
verifying if the constraints imposed by the structural assumptions are satisfied in the
observed covariance matrix (at least approximately), we either increase our confidence

in the model, or decide to modify (or discard) it.

Thefirst type of constraint imposed by a SEM model isassociated with d-separation
conditions. Such condition is equivalent to a conditiona independence statement
[Peal0a], and implies that a corresponding correlation coefficient (or partial corre-
lation) must be zero. Figure 5.1 shows two examples illustrating how we can obtain
correlation constraints from d-separation conditions. In the causal diagram (a), it is
easy to see that variables X and Y are d-separated (the only path between them is
blocked by variable 7). Thisimmediately givesthat p xy = 0. For themodel in (b), it
followsthat variables X and IV are d-separated when conditioningon . Thisimplies

that pxw.z = 0. Applying the recursive formulafor partial correlations, we get:
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Figure 5.1: D-separation conditions and correlation constraints.

_ PXW — PXZ * Pzw -
Pxw.z = = 0

\/1 - (pXZ)2 : \/1 - (PWZ)2

and so, pxw = pxz - Pzw-

The d-separation conditions, however, do not capture all the constraints imposed
by the structural assumptions. In the model of Figure 5.1(¢) no d-separation condition
holds, but the following algebraic analysis shows that there is a constraint involving

the correlations px z, py z, pxw and py .

Applying Wright's decomposition to these correlation coefficients, we obtain the

following equations:

pxz = a-+ab

pyz = aa+b

pxw = ac+ abe
| pyw = aac+ be

Observe that factoring ¢ out in the right-hand side of the equation for pxw, we

obtain the expression for px . Thus, we can write



Pxw = C* Pxz

Similarly, we obtain

Pyw = C- pPyz

Now, it is easy to see that the following constraint isimplied by the two equations

above

PYw * PXz
pPxw = —""—
Py z

Clearly, this type of analysis is not appropriate for complex models. In the fol-
lowing we show how to use the concept of Auxiliary Sets to compute constraintsin a

systematic way.

5.1 Obtaining Constraints Using Auxiliary Sets

The ideais smple, but gives a general method for computing correlation constraints.
Fix avariable Y, and let \;,. .., \,, denote the parameters of the edgesin Inc(Y).
Recall that if Ay = {Z1,..., Z} isan Auxiliary Set for Y, then the decomposition of
the correlations pz,v, . . ., pz, v givesalinearly independent system of equations, with

respect to the \;’s. Let us denote thissystemby @ 4, .

Now, if |Ay| = |Inc(Y)|, then this system of equations is maximal, in the sense
that any linear equation on parameters A4, ..., A, can be expressed as a linear com-
bination of the equationsin ® 4,.. Hence, computing this linear combination for the
decomposition of pyy, Where W ¢ Ay, gives a constraint involving the correlations

among pwy, Pz,y s -« - PZ,Y -
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In the following, we describe the method in more detail.

Let Ay = {Z1,...,Z,} be an Auxiliary Set for Y, and assume that |Ay| =

|Inc(Y')|. The decomposition of the correlations pz,y, - . ., pz,y Can be written as:

Pzyy = iy Gyt A
(5.1)
Pz Y = Doy Gt A
Or, in matrix form,
p=A-A

Since Ay isan Auxiliary Set and | Ay | = |Inc(Y)], it followsthat A isanm by m

matrix with rank m.

Now, let W' ¢ Ay U {Y'}, and write the decomposition of pyy as

pwy =Y _bi+ A (5.2)

=1
Clearly, the vector B = [b; ... b,,] can be expressed as alinear combination of the

rows of matrix A as

where A, denotes the ;" row of matrix A, and the d,’s are the coefficients of the linear

combination.

But thisimpliesthat we can express the correlation pyy as

Pwy = Z di pzy

=1

by considering the left-hand side of Equations 5.1 and 5.2.

46



S
e

Y

Figure 5.2: Example of amodel that imposes correlation constraints

We also note that the coefficients d; are functions of the parameters of the model.
But if themodel isidentified, then each of these parameters can be expressed asafunc-
tion of the correlations among the observed variables. Hence, we obtain an expression

only in terms of those correlations.

Toillustrate the method, let us consider the model in Figure5.2. It isnot difficult to
check that Ay = {7, X1, X,, X3} isan Auxiliary Set for variable Y. Next, we obtain

aconstraint involving the correlations pwy, pwz, pzy and pw x,.

The decompositions of the correlations between Y and each variable in A, gives
the following system of equations:

4

Pzy = Cl)\l + b)\g + CO[)\4
pPxX.y — )\1 + ab)\g + ClCOé)\4
PX.Y — Clb)\l + )\2)\3 + bCOé)\4

Pxsy = acad; + beady + Mg

and the decomposition of pyyy givesthe equation

Pwy = C(l)\l + Cb)\g + a)\4

The corresponding matrix A and vector B are then given by:
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1 ab 0 aca

ab 1 1 bex

aca bear 0 1

B= lca cb 0 q

After some calculations, one can verify that vector B can be expressed as a linear

combination of thefirst and fourth rows of A as;

Cc — OzZC o — CZOZ
b= (ﬁ) At (ﬁ) A 53

Since the model isidentified, we can expressthe parameters . and ¢ in terms of the
correlation coefficients. In this case, we obtain o = py x, and ¢ = py . Substituting
these expressions in Equation 5.3 and performing some algebraic manipulations, we

obtain the following constraint:

pwyll = Plx, - Pzl = pwzpavl = piyx,) + pwx, pxav[l — Py )
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CHAPTER 6

Sufficient Conditions For Non-Identification

The ultimate goa of this research is to solve the problem of identification in SEM.
That is, to obtain a necessary and sufficient condition for identification, based only on

the structural assumptions of the model.

In Chapter 3, weintroduced our graphical approach for identification, and provided
avery general sufficient conditionfor model identification. Indeed, we are not aware of
any example of an identified model that cannot be proven to be so using the method of
auxiliary sets. Here, we present the results of our initial efforts on the other side of the
problem. That is, we investigate necessary graphical conditions for the identification
of a SEM mode!.

The method of auxiliary sets imposes two main conditions to classify a model M
asidentified. First, for each variable Y in M we must find a sufficiently large auxiliary
set. Second, given the choice of auxiliary sets, a precedence relation is established
among the variables, and represented by a dependence graph D,,. This graph cannot

contain any directed cycle.

A natural strategy, then, is to assume that one of these conditions does not hold,
and try to prove that the model is non-identified. The proof of non-identification is
conceptually simple. We begin with an arbitrary parametrization = for model M.
Then, we show that, under the specified conditions, it is possible to construct another

parametrization 7' # m such that ¥y, (w) = X, (7). This proves that the model is
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Figure 6.1: Figure

non-identified.

6.1 Violatingthe First Condition

In this section we analyze two sets of conditions that prevent the existence of a suffi-
ciently large Auxiliary Set for agiven variable Y. In both cases we can show that they
imply the non-identification of the underlying model. These conditions, however, do
not provide acomplete characterization of the situation where the first condition of the
Auxiliary Sets method does not hold. At the end of this section, we give an example
that illustrates this fact. At this point, such a characterization is the major difficulty to

obtaining a more general condition for non-identification.

The simplest example of non-identification, briefly discussed in Section 3.5.2, con-
sists of a model in which a pair of variables X, Y is connected by a directed and a
bidirected edge, both pointing to Y, and there is no other edge pointing to X in the
causal diagram (see Figure 6.1(a)).

The next theorem provides a simple generalization of this situation. We assume

that, for afixed variableY’, there existsan Auxiliary Set Ay, with not enough variables.
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We also assume that every edge connecting avariable Z € A, and avariable outside
Ay U{Y} does not point to Z (see Figure 6.1(b)). Under these conditions, itispossible
to show that there exists no Auxiliary Set for Y whichislarger than A,-. The theorem

proves that any such model is non-identified.

Theorem 6 Let Y be an arbitrary variable in model M, and let Ay = {Z,,..., Zx}

be an Auxiliary Set for Y. Assume that

(1) [Ay| < |Inc(Y)

(if) Ay only contains non-descendants of Y;

(iii) There exists no edge between some Z; € Ay and a variable W ¢ Ay, U {Y'}
pointing to Z;.

Then, model M is non-identified.

Proof: Let \,..., A\, denote the parameters of the edges in Inc(Y). First, we es-
tablish that, for every pair of variables U, V' the correlation py only depends on the
values of the \;'s through the correlations p,y, ..., pz,y. That is, any modification
of the values of the )\;’s that does not change the values of p,y, ..., pz, v, also does

not change the value of p;;y-. Thisisformally stated as follows:

Lemma6 Let U and V' be arbitrary variables in model M. Then, the correlation py

can be expressed as

k
puv = Co + Zci Pz
=1
where the independent term ¢, and the coefficients ¢;’s do not depend on the parame-

ters Ay, ..., Am.
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The proof of the lemmais given in Appendix B.

Now, fix an arbitrary parametrization 7 for model M. This parametrization induces
a unigue correlation coefficient for each pair of variables U, V', that we denote by
puv ().

According to Wright's decomposition, the correlations p,y (), ..., pz,v(7) de-

pend on the values of parameters \;’s through the linear equations:

pzyy(m) = YL ay(m) - A

pzyy () = S ag(m) - N

Since |Ay| < |[Inc(Y)], this system of equations has more variables than equa-
tions, and so there exists an infinite number of solutions for the \;’s. The values as-
signed to the \;’s by parametrization 7 corresponds to one of these solutions. Any

other solution gives a parametrization 7' with X,/ (7) = Xy (7). O

The next theorem considers a much weaker set of assumptionsthat still prevent the
existence of an Auxiliary Set for Y with enough variables. The theorem shows that

any such model is non-identified.

Let Y be an arbitrary variable in model A, and let Ay = {Z;,...,7Z;} bean
Auxiliary Set for Y. Define the boundary of variables of Ay, denoted Ay, as the
subset of variables Z; in Ay for which there existsavariable W ¢ Ay, U {Y'} and an
edge (W, Z;) pointing to Z;.

Theorem 7 Assume that for a given variable Y in model M, the following conditions

hold:

(1) [Ay| < |Inc(Y)];

(if) Forany W ¢ Ay, there exists no edge (W, Y") pointing to Y’;
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Figure 6.2: Figure

(iii) Forany Z; € Ay and Z; € (Ay — Ay) U{Y}, there is no edge (Z;, Z;) pointing
to Z;.

Then, model M is non-identified.

The proof of thistheorem in givenin Appendix B.

Figure 6.2(a) shows a causal diagram satisfying the conditions in Theorem 7. In
thismodel, the Auxiliary Set for Y isgivenby Ay, = { X, Xy, X3, Z}, with boudary
Ay = {X3,7}. Notethat X3 — Y and Z — X, arethe only edges between avariable
in Ay and avariablein (Ay — Ay) U {Y'}, and they do not point to Z and Xs.

Figure 6.2(b) shows a causa diagram where the conditions of Theorem 7 do not
hold. Inthiscase, the Auxiliary Setfor Y isgivenby Ay = { X, Xy, X3, 71, Z»}, with
boudary Ay = {Z,}. Note that edge 7, ++ Z, violates condition (iii). However, it is

till possible to show that thereisno Auxiliary Set for Y with more than 5 variables.
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6.2 Violating the Second Condition

In the previous section we studied the problem of identification under two sets of
assumptions. In both cases we could show that, for every parametrization = for model
M, there exists an infinite number of distinct parametrizationsfor M that generate the
same covariance matrix X, (7). We conjecture that this will be the case whenever the
first condition of the method of Auxiliary Sets fails. Equivalently, we believe that the
conditionsthat characterize an Auxiliary Set are also necessary for linear independence
among the equations given by Wright's decompositions.

Surprisingly, the situation seems to be very different when the second condition
fails. Next, we discuss an examplein which every variable hasalarge enough auxiliary
set, but the corresponding dependence graph D, containsacycle. A simple algebraic
analysis shows that, for amost every parametrization 7, there exists exactly one other

distinct parametrization 7' such that X, (7) = Xy, (7').

At this point, we still cannot provide conditions for the existence of only a finite
number of parametrizations generating the same covariance matrix. So, we |leave the
problem open. However, this seems to be an important question. According to the
definition in section 2.1, any such model would be considered non-identified. On the
other hand, if there exists only asmall number of parametrizations compatible with the
observed correlations, the investigator can decide to proceed with the SEM analysis,
and decide which parametrization is more appropriate for the case in hand, based on

domain knowledge.

Consider the mode! illustrated by Figure 6.3. Applying Wright's decomposition to

the correlations between each pair of variables, we obtain the following eguations:
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Figure 6.3: Figure

' pPxy = a+«
pxz = (a+a)b+p
pxw = (a+ a)bc+ fey
pyz = b+af
pyw = (b+aB)c+ay
| pzw = c+ aby

Using the equationsfor px, and py, we can express parameters b and 3 in terms

of a:

b:PYZ—a'PXZ BZPXZ_pXY'pYZ
l—a-pxy IL—a-pxy

Similarly, we use the equations for pxy and pyyw, to obtain expressions for pa-

rameters c and v in terms of a:

C_pYW_a'pXW _ Pyz Pxw — Pxz " PYw

Pyz — G- Pxz Pyz — G- Pxz

Now, substituting the expressionsfor b, ¢ and ~y in the equation for p 7y, we get
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_ Pyw —apxw
pzw = ————— + a [
Pyz — APxz

Pyz — aple [pYZpXW — PXZPYW

1 —apxy Pyz — GPpxz

After some algebraic manipulation, we obtain the following quadratic equation in

termsof a:

a[pzwpxzPxy — PXYPXW + PXZ2PYZ2PXW — PX 7PV X]
+alpxy pyw + pxw + Py zpxzPYw — PZWPY ZPXY — PZWPXZ — pQYZpXW]

+pzwpyz — pyw =0

where it is possible to show that the coefficient of the quadratic term does not vanish.

This implies that there exist exactly two distinct parametrizations for this model
that generate the same covariance matrix. For example, it is not hard to verify that the

following two parametrizations generate the same covariance matrix:

a = 2 a = 5

b = 3 g = 2

c =1 vy = 3
a = 0.3225 a = 6.6774
b = 0.3333 g = 20.666
c = —11 v = 279
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CHAPTER 7

| nstrumental Sets

So far we have concentrated our efforts on questions related to the entire model, such
as. "Isthe model identified?’, or " Does the model impose any constraint on the corre-

lations among observed variables?’.

In this chapter we focus our attention on the identification of specific subsets of pa-
rameters of the model. Thisgoal isbased on the observation that, even when we cannot
prove the identification of the model (or, when the model is actually non-identified),
we may still be able to show that the value of some parametersis uniquely determined

by the structural assumptionsin the model and the observed data.

This type of result may be valuable in situations where, even though a model is
specified for all the observed variables, the main object of study consists of the rela-

tions among a small subset of those variables.

We also restrict ourselves to the identification of parameters associated with di-
rected edges in the causal diagram. Those parameters represent the strength of (direct)
causal relationships, and are usually more important that the spurious correlations (as-

sociated with bidirected edges).

The main result of the chapter is a sufficient condition for the identification of the
parameters of a subset of directed incoming edgesto avariable Y (i.e., directed edges
with arrow head pointing to Y'). An important characteristic of this conditionisthat it

does not depend on the identification of any other parameter in the model.
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Thisresult actually generalizes the graphical version of the method of Instrumental
Variables [Pea00a]. According to this method, the parameter of edge X — Y is
identified if we can find a variable Z and a set of variables W satisfying specific d-
separation conditions. A more detailed explanation of this method is given in the next

section.

Our contribution isto extend thismethod to allow the use of multiplepairs (Z,, W), ..., (Zx, W)
to prove, simultaneously, the identification of the parameters of directed edges X; —
Y,..., X, — Y. Aswewill seelater, there exist examplesin which our method of In-
strumental Sets proves the identification of a subset of parameters, but the application

of the original method to the individual parameters would fail.

Before proceeding, we would like to call attention to a few aspects of the proof
technique developed in this chapter, which seem to be of independent interest. The
method imposes two main conditions for a set of variables to be an Instrumental Set.
First, werequire the existence of a number of unblocked paths with specific properties.
This condition is very similar to the one in the GAV Criterion, and basically ensures
the linear independence of a system of equations. The second consists of d-separation

conditions between Y and each Z;, given the variablesin W .

Now, to be able to take advantage of these d-separation conditions, we have to
work with partial correlations instead of the standard correlation coefficients used in
Chapter 3. The problem, however, isthat no technique similar to Wright's decomposi-
tion was available to express partial correlation aslinear expressions on the parameters

of interest.

This difficulty is overcome by developing a new decomposition of the partial cor-
relation pxy.z,...z, into alinear expression in terms of the correlations among the vari-
ables X,Y, Z,...,Z,. Thisleadsto a linear equation on parameters of the model,
by applying Wright's decomposition to each of the correlation coefficients. The d-
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separation conditions then imply that only the parameters under study appear in these
equations. The result finally follows by showing that all the coefficients in the linear
eguations can be estimated from data.

7.1 Causal Influence and the Components of Correlation

This section introduces some concepts that will be used in the description of Instru-

mental Variables methods.

Intuitively, we say that variable X has causal influence on variable Y, if changes
in the value of X lead to changes in the value of Y. This notion is captured in the
graphical language as follows.

An observed variable X has causal influence on variable Y if there exists at |east
one path in the causal diagram, consisting only of directed edges, going from X to Y.
This path reflects the existence of variables 71, . . ., Z; such that

e X appearsinther.h.s. of the equation for Z;;
e fori=1,...,k— 1, each Z; appears on ther.h.s. of the equation for 7, , 1;
e 7, appearsinther.h.s. of the equation for Y.
Now, it is easy to see that any change on the value of X would propagate through the

equationsfor the Z;'s and affect the value of Y.

Similarly, an error term e; has causa influence on variable Y if either there ex-
ists a directed path from X, to Y, or a path consisting of a bidirected edge (X;,U)
concatenated with adirected path from U to Y (the error term e; can be viewed as sit-
ting on the top of bidirected edge (X, U)). Note that observed variables do not have
causal influence on error terms, and the causal relationships among error terms are not

specified by the model.
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We also say that the causal influence of X' (or someerror terme;) on Y is mediated
by avariable W, if W appearsin every directed path from X to Y (and the unblocked
paths starting with bidirected edges, in the case of error terms).

The correlation between two observed variables X, Y can then be explained as the

sum of two components:

e thecausa influenceof X onY’; and,

e the correlation created by other variables (or error terms) which have causal

influence on both X and Y (sometimes called spurious correlation).

The problem of identification consists in assessing the strength of the (direct)
causal influences of one variable on another, given the structure of the model and
the correlations between observed variables. This requires the ability to separate the

portions of the correlation contributed by each of the components above.

7.2 Instrumental Variable Methods

The traditional definition qualifies variable Z as instrumental, relative to a cause X
and effect Y if [Pea00al:

1. Every error term with causal influence on Y not mediated by X isindependent

of Z (i.e., uncorrelated);

2. Z isnot independent of X.

Property (1) impliesthat the correlation between Z and Y iscreated by the correla
tion between Z and X, and the causal influence of X on Y, represented by parameter
c. Thisimpliesthat pzy = ¢ - pzx. Property (2), allows us to obtain the value of ¢ by

writing ¢ = pzy pzx. Hence, parameter ¢ isidentified.
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Figure 7.1: Typical Instrumental Variable

Figure 7.1 shows a typical example of the use of an instrumental variable. In this
model, it is easy to verify that variable Z has properties (1) and (2). Note that this
causal diagram could be just a portion of alarger model. But, aslong as properties (1)

and (2) hold, variable Z can be used to obtain the identification of parameter c.

A generalization of the method of Instrumental Variables (1V) is offered through
the use of conditional IV’s. A conditional 1V isavariable Z that does not have prop-
erties (1) and (2) above, but after conditioning on a set of variables W such properties
hold (with independence statements replaced by conditional independence). When
suchapair (Z, W) isfound, the causal influence of X on Y isidentified and given by
Pzy.wW / PZX.W -

Now, given the graphical interpretation of causal influence provided in Section 7.1,
we can express the properties of aconditional IV in graphical termsusing d-separation
[Pea00b]:

Let M beamodel, and let GG, denote its causal diagram. Variable Z is a condi-
tiona 1V relativeto edge X — Y if there existsa set of variables W (possibly empty)
satisfying:

1. 'W contains only non-descendents of Y;

2. W d-separates Z from Y in the subgraph G obtained from G'5; by removing edge
X =Y,

3. W does not d-separate Z from X inG.
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Figure 7.2: Conditiona 1V Examples

As an example, let us verify if 7 isaconditional 1V for the edge X — Y in the
model of Figure 7.2(a). Thefirst step consistsin removing the edge X — Y to obtain
the subgraph G, shown in Figure 7.2(b). Now, it is easy to see that, after conditioning
on variable W, Z becomes d-separated from Y but not from X in G.

7.3 Instrumental Sets

Before introducing our method of Instrumental Sets, et us analyze an example where

the procedure above fails.

Consider the model in Figure 7.3(a). A visual inspection of this causal diagram
showsthat variable Z; does not qualify asaconditional 1V for theedge X; — Y. The
problem here isthat Z; cannot be d-separated from Y, no matter how we choose the
set W. If W does not include variable X, then the path Z; — X, — Y remains

open. However, including variable X, in W would open the path Z; — X, <> Y.

By symmetry, we also conclude that 7, does not qualify asaconditional IV for the
edge X, — Y, and the situation is exactly the same for Z,. Hence, the identification
of parameters ¢; and ¢, cannot be proved using the graphical criterion for the method

of conditional 1V.

However, observe the subgraph in Figure 7.3(b), obtained by deleting edges X; —
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Figure 7.3: Simultaneous use of two Vs

Y and X, — Y. Itiseasy to verify that properties (1) — (3) hold for Z; and Z in this
subgraph (by taking W = ¢ for both 7; and 7,).
Thus, theideaiisto let Z; and Z, form an Instrumental Set, and try to prove the

identification of parameters ¢; and ¢, sSsmultaneously.

Note that the d-separation conditions are not sufficient to guarantee the identifica-
tion of the parameters. In the model of Figure 7.3(c), variables 7, and 7, also become
d-separated from Y after removing edges X; — Y and X, — Y. However, parame-
ters ¢; and ¢, are non-identified in this case. Similarly to the GAV criterion, we have

to require the existence of specific paths between each of the Z;’sand Y.

Next, we give a precise definition of Instrumental Sets, in terms of graphical con-

ditions, and state the main result of this chapter.

Definition 4 (Instrumental Sets) Let X = {X;,..., X\} be an arbitrary subset of
parentsof Y. ThesetZ = {Z,,..., Z,} is said to be an Instrumental Set relative to

X and Y if there exist triplets (Z, Wy, p1), ..., (Z,, Wy, p,) such that:

(i) for: =1,...,k, variable Z; and the elements of W, are non-descendents of Y;

(ii) Let G be the subgraph obtained by deleting edges X, — Y,..., X,, — Y from
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Figure 7.4: More examples of Instrumental Sets

the causal diagram of the model. Then, for: = 1, ..., k, the set W, d-separates

Z; fromY in G; but W, does not block path p;;

(iii) fori = 1,..., k, p; is an unblocked path between Z; and Y including the edge

(iv) fori < j, the only possible common variable in paths p; and p; (other than Y') is

variable Z;, and, in this case, both p; and p;[Z;..Z;] must point to Y’;

Theorem 8 IfZ = {Z,,..., Z,} is an Instrumental Set relative to variable Y and set
of parents X, then the parameters of edges X; — Y, ..., X,, — Y are identified, and

can be computed by solving a system of linear equations.

The proof the theorem is given in Appendix C.

Figure 7.4 shows more examplesin which the method of conditional 1V’sfails, but
our new criterion is able to prove the identification of parameters ¢;’s. In particular,
model (a) is a bow-free model, and thus is completely identifiable. Model (b) illus-
trates an interesting case in which variable X, is used as the instrument for X; — Y/,

while Z is the instrument for X, — Y. Finally, in model (¢) we have an example



in which the parameter of edge X3 — Y is nonidentifiable, and still the method can

prove the identification of ¢; and c,.
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CHAPTER 8

Discussion and Future Work

An important contribution of this work was to offer a new approach to the problem
of identification in SEM, based on the graphical analysis of the causal diagram of the
model. This approach allowed us to obtain powerful sufficient conditions for identifi-

cation, and a new method of computing correlation constraints.

This new approach has important advantages over existing techniques. Traditional
methods [Dun75, Fis66] are based on algebraic manipulation of the equations that
define the model. As a consequence, they have to handle the two types of structural
assumptions contained in the model (e.g., (a) which variables appear in each equation;
and, (b) how the error terms are correlated with each other) in different ways, which
makes the analysis more complicated. The language of graphs, on the other hand,
allows us to represent both types of assumptions in the same way, namely, by the
presence or absence of edges in the causal diagram. This permits a uniform treatment

in the analysis of identification.

Another important advantage of our approach relates to conditional independen-
cies implied by the model. Most existing methods [Fis66, BT84, Pea00b] strongly
rely on conditional independencies to prove that a model is identified. As a conse-
guence, such methods are not very informative when the model has few such relations.
Since we do not make direct us of conditional independencies in our derivations, we
can prove identification in many cases where most methods fail. Even the method of

instrumental sets, which involves a d-separation test, is not very sensitive to condi-
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tional independencies, because the tests are performed on a potentially much sparser
graph.

The sufficient conditions for identification obtained in this work correspond to the
most general criteria current available to SEM investigators. To the best of our knowl-
edge, thisis also the first work that provides necessary conditions for identification.
Although these results answer many questions in practical applications of SEM, find-
ing a necessary and sufficient condition for identification is still an outstanding open

problem from atheoretical perspective.

Another important question that remains open is the application of our graphical
methods to non-recursive models. Since the basic tool for our analysis (i.e., Wright's
decomposition of correlations) only applies to recursive models, this problem may

require the devel opment of new techniques.
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APPENDIX A

(Proofsfrom Chapter 3)

Proof of Theorem 3:

Fix an arbitrary variable Y with Auxiliary Set Ay = {Z;,..., Z,}.

Let X = {Xy,..., X } betheset of parentsof V. Fori = 1,...,d, let 9; denote
the parameter of edge X; — Y.

Similarly, let V.= {V7,...,V;} bethe set of variables such that bidirected edge
V; <> Y belongsto Inc(Y). For j = 1,....k, let \; denote the parameter of edge
V; <+ Y. [Notethat we may have X NV # ¢.]

Assume first that condition C1 can be applied to the pair (Y, Ay ). Let Z be any

variable from Ay-. Then, we can write the decomposition of p,y as:

d k
Pzy = Z c,-éi + Z bj)\j
i=1 j=1

and we show that coefficients ¢;'s and b,’s are identified.

First, notethat every unblocked path between Z and Y includingand edge X; — Y
can be decomposed into an unblocked path between Z and X; and the edge X; — Y.
Moreover, every unblocked path between Z and .X; can be extendend by edge X; — YV
to give an unblocked path between Z and Y. These factes imply that ¢; is identified
and given by px..

Now, let (V;,Y) be an arbitrary bidirected edge from Inc(Y). If Z = V; then
b; = 1, because there is only one unblocked path between Z and Y including (V,Y)
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which consists precisely of this edge. In the other case, we have that b; = 0, because
any unblocked path between Z and Y including (V;,Y") should consist of a chain
from V; to Z concatenated to the edge (V;,Y"), but no such chain exists. Hence, b; is
identified.

Assume now that condition C2 is applied to (Y, 4y). Let 7 € Ay, and let
{Wy,...,W;} bethe set of parentsof Z. For s = 1, ...,1, let a; denote the parameter
of edge W, — Z.

The ideais to replace the equation corresponding to the decomposition of pzy Iin

® 4, vy, by the following linear combination:
[ d k
pzy — 522:1 aspw.y = Co + 22::1 cid; + ]2:1 b\

This equation is also linearly independent of all the other onesin ® 4, y (has to
show that). However, since many of the unblocked paths between 7 and Y can be
obatined by concatenation of some edge W, — Z and an unblocked path between W
and Y, many terms are cancelled out in ther.h.s.. We also observe that term ¢, in the
r.h.s. corresponds to pahts that do not included edges from Ine(Y'), and is zero when

Z isanon-descendant of Y (?).

Next lemma proves the identification of coefficients b,’s.
Lemma 7 Each coefficient b, in the r.h.s. of (*) is identified and has value either 0 or
1.
Proof:

Fix abidirected edge (V;, Y") with parameter \;. We consider afew separate cases:
(a) Z # V; and Z isanon-descendant of V;.

Any unblocked path beween Z and Y including edge (V;,Y) must consist of a
chain from V; to Z concatenaed with the edge (1;,Y"). Since Z is a non-descendant
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of V;, no such chain exists. Thus, the coefficient of \; in the decomposition of py is
zero. Since each parent 1V, of Z is also a non-descendant of 1, the coefficient of \;

in the decomposition of pyy,y isalso zero. Hence, b; = 0.
(b) Z=V;

Notethat, in thiscase, thereisonly one unblocked path between Z and Y including
(V;,Y), which consists precisely of theedge (V;,Y"). Thus, the coefficient of \; inthe
decomposition of pzy is 1. Again, each parent W, of Z is anon-descendant of Y, so
the coefficient of )\; in the decomposition of pyy,y iSzero. Hence, b; = 1.

(c) Z isadescendant of V.
Let C'; denote the set of chains from V; to Z that do not include Y. (For non-

descendants of Y this is the set of all chains from V; to 2)

Clearly, each of these chains must include a parent of 7. Thus, we can partition
the chains in C'; according to the last parent of Z appearing in each of them. More
precisely, let C' v, denote the set of chainsin C'; that include edge W, — Z. Now,we

can write

T(Cz) = Yw.T(Czw,)
= Xw. as[T(Czw,)/cs]

Observing that 7'(C' ) isthe coefficient of \; in the decomposition of py-, and that

[T(Cyw,)/ s isthe coefficient of \; in the decomposition of pyy,y-, we conclude that
b; = 0. O

Now, it just remain to analyze the coefficients ¢;’s. The next lemma takes care of

the case when 7 is anon-descendant of Y.

Lemma 8 Let U be a non-descendant of Y. Then, the coefficient of §; in the decom-

position of pyy is identified and given by py x, .
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Proof:

Recall that §; isth parameter of directed edge X; — Y. Then, the lemmafollows
from the facts that every unblocked path between U and X; can be extended by edge
X; — Y to give an unblocked path between U and Y, and those are all the unblocked
paths between U and Y including edge X; — Y. O

The identification of coefficients ¢;’s when Z is a non-descendant of Y, then fol-

lows from the identification of the «,’s.
Now, consider the identification of the ¢;’swhen 7 is a descendant of Y.

First, we observe that any unblocked path between Z and Y that containsadirected
edgepointing to Z can be decomposed into an unblocked path between W, and Y, and
edge W, — Z (for some W;). Thus, all terms associated with such path are cancelled
outin (*).

Thisimmediately givesthat ¢, = 0, since every unblocked path between Y and Z
must either end with a directed edge pointing to Z, or be abidirected edge between Y
and Z. However, inthe later case, Y would be inthe Auxiliary Set for Z, which would

create acycle in the dependency graph.

For: = 1,...,k, each term in coefficient ¢; corresponds to a path consisting of
the concatenation of bidirected edge (U, Z) and achain from U to X;. Since ® 4, »
and all ®4,, w, where W is an intermediated variable in the chain from U to Z, are
solved brfore @ 4, y, @l paramtersin this path are identified. But thisimplesthat C’; is
identified. O
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APPENDIX B

(Proofsfrom Chapter 6)

Proof of Lemma 6:
Let A\q,. .., \, denote the parameters of the edgesin Inc(Y).

Let () denote the set of unblocked paths between U and V' that do not include any
edge from Inc(Y). Then, ¢, is given by T'(Q)), and clearly does not depend on the

values of the \;’s.

Now, let P denote the set of unblocked paths p between U and V' that include
some edge from I'nc(Y'), with such edge appearing in subpath p[U..Y] (the other case
issimilar).

Let p be an arbitrary path from P. Then, it follows from assumption (iii) in the

theorem that p[U..Y'] must contain at least one variable from Ay. We let Z; denote the
first (i.e., closest to U) variable from .4y to appear in p, and divide the path into three

segments:
e p1 =p[U..Z;];
o py = plZi.Y];
o p3=p[Y.V];

where both p; and p; can benull, if U = Z; or Y = V, respectively. We aso note
that p, isachain from Z; to U (by assumption (7i:)), and p3 isachain fromY to V,

because every edge from Inc(Y") pointsto Y and p is unblocked.
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Now, for each Z; € Ay, let C; denote the set of all chainsfrom Z; to U that do not
contain any variable from Ay U {Y'}; and, let B denote the set of al chainsfrom Y to
V.

Also, for each 7Z; € Ay, let R; denote the set of unblocked paths between 7; and
Y.

Proposition 1 For any 7Z; € Ay, letp, € C;, let p, € R;, and let p; € B. Then, the
concatenation of py, po, and p3 gives a valid unblocked path between U and V' if and

only if p; and p; do not have any intermediate variable in common.

Proof: If p; and p3 have a common variable, then clearly the concatenation gives an
invalid path.

In the other case, the proposition follows by observing that every intermediate
variable in p, belongs to Ay (follows from assumption (iii)), and that intermediate

variablesin p; and p; cannot belong to Ay (by definition, and by assumption (i7)). O

The arguments above give that we can write
T(P)=3 ciT(R)
where

¢ = Z T(p1) - T(ps)

p1€C;,p3€B,p1Np3=¢
Clearly, each of the ¢; isindependent of the values of parameters A;’s. The lemma

follows by observing that T'(R;) = pz,y- O

12
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Proof of Theorem 7:

For each variable Z; € Ay — Ay, let R; denote the set composed by the following
unblocked paths between Z; and Y-

a) al chainsfrom Z; to Y whose intermediate variables belong to Ay — Ay;

b) all unblocked paths p that point to Z; and do not have avariable W ¢ (Ay — Ay)U
{Y} whichisadescendant of Z; and p[Z;..W] point to TV'.

For each variable Z; € Ay, let R; denote the set composed by all chains from Z;
to Y whose intermediate variables belong to Ay — Ay

Wefirst show that the correlations of each variable 7 € A, and Y’ can be expressed
asalinear combination of theterms T'(R;)'sand T'(R;)’s.
Casel: Z; € Ay — Ay.

Let P; be the set of unblocked paths between Z; and Y, so that pz,y = T(P;).

Clearly, we canwrite pz,y = T(R;) +T(P;— R;). Thus, wejust need to show that the

second term on the right-hand sideis alinear combination of the T'(R;)’sand T'(R;)’s.

There are two types of pathsin P; — R;:

1) chainsfrom Z; to Y with some intermediate variable that does not belong to Ay —
Ay

2) unblocked paths p that include a variable W ¢ (Ay — Ay) U {Y'} which is a
descendant of Z; and p[Z;..1V] point to 1.

Let us consider paths of type (1) first.

Proposition 2 Every path p € P; — R, of type (1) contains a variable from A-.
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Proof: Assume that the proposition does not hold for some path p of type (1). Then, p
must include at least one variable that does not belong to A,-. Let W be the last such
variablein p (i.e, closest to Y), and let V' be the variable adjacent to W in p[IW..Y].
Since p is a chain from Z; to Y, it follows from condition (4i:) in the theorem that
V # Y, and so we must have V' € Ay. But then edge (W — V) witnesses that
V € Ay, which contradicts the initial assumption. O

Fix apathp € P; — R; of type (1), and let Z; be the last variable from A, in p.
Let g be an arbitrary path from R;.

Proposition 3 The concatenation p[Z;..Z;| @ ¢ gives a valid chain from Z; to Y.

Proof: Sincep|Z;..Z;] isachainfrom Z; to Z;, and ¢ isachainfrom Z; to Y, it follows
that the concatenation of p[Z;..Z;] @ ¢ isachain from Z; to Y. Now, such chain must
be a valid one, otherwise we would have a contradicion to the recursiveness of the

model. O

It follows from the two propositions above that 7'(P; — R;|()) can be expressed as

alinear combination of the T'(R;)’s.

Now, we consider the paths of type (2).

Proposition 4 Every path p € P; — R; of type (2) contains a variable Z; € Ay such
that

(i) Z;isadescendant of Z;;

(ii) p[Z;..Z;] points to Z,.

Proof: Assume that the proposition does not hold for some path p of type (2). Then, p
must include at least one variable that does not belong to .Ay- and satisfies (i) and (i)
above. Let IV bethelast such variableinp (i.e, closestto Y), and let V' bethe variable
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adjacent to T in p[W..Y']. Since p isunblocked and p[Z;..1W] pointsto W, we get that
p[W..Y] must be a chain from 1" to Y. This fact, together with condition (ii:) gives
that V' # Y, and so we must have V' € Ay. But then edge (W — V') implies that

V € Ay, which contradicts the initial assumption. O

Fix apath p € P; — R; of type (2), and let Z; be the last variable from Ay in p.
Proposition 5 Every intermediate variable in p[Z;..Z;] is an ancestor of Z;.

Proof: Let Z; bethelast variablein p[Z;..Z;] suchthat p[Z,..Z;] is not achain from Z;
to Z;. Clearly, any intermediate variable in p[Z,..Z;] is an ancestor of Z;. Moreover,
subpath p[Z;..Z;] must point to Z;. Since p is unblocked, it followsthat p[~Z;..Z;] must
be a chain from Z, to Z;. But thisimpliesthat Z; and every intermediate variable in

plZ;..Z;] isan ancestor of Z;. Since Z; isan ancestor of Z; the proposition holds. O

Let ¢ be an arbitrary path from R;.

Proposition 6 The concatenation p[Z;..Z;] @ ¢ gives a valid unblocked path between

ZjandY.

Proof: Since g isachan from Z; to Y, the path obtained from the concatenation is
unblocked. The validity of the path followsfrom the facts that every intermediate vari-
ableinp[Z;..Z;] is an ancestor of Z;, every intermediate variable in ¢ is a descendant

of Z;, and the recursiveness of the moddl. a

It follows from the two propositions above that 7'(P; — R;|2)) can be expressed as

alinear combination of the T'(R;)’s.

Case2: 7Z; € Ay.

Let P; be the set of unblocked paths between Z; and Y, so that pzy = T(P;).
Clearly, we can write pzy = T(R;) + T(P; — R;). Thus, we only need to show
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that the second term on the right-hand side is alinear combination of the 7'(R;)’s and
T(Rj),s.

There are two types of pathsin P; — R;:

1) chainsfrom Z; to Y with some intermediate variable that does not belong to A, —

Ay;

2) unblocked paths between Z; and Y that point to ;.
Let us consider first paths of type (1).

Proposition 7 Every path p € P; — R; of type (1) contains an intermediate variable

from Ay

Proof: (same as proof of proposition 2) O

Fix apathp € P; — R; of type (1), and let Z, be the last intermediate variable from
Ay inp. Let ¢ be an arbitrary path from R;.

Proposition 8 The concatenation of p[Z;..Z;] @ ¢ gives a valid chain from Z; to Y.

Proof: (same as proof of proposition 3) O

It follows from the two propositions above that T'(P; — R;|(1)) can be expressed as

alinear combination of the T'(R;)’s.

Now, we consider paths of type (2), and further divide them into:

a) pathsp that have an intermediate variable Z; from Ay — Ay, suchthat p[Z;..Z,;] is

achain from Z; to Z;;

b) al the remaining paths.
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Let p € P; — R; beof type (2a), and let Z; be thefirst variable from A, — Ay in
p (i.e., closest to Z;). Let ¢ be an arbitrary path from R;.

Proposition 9 The concatenation p[Z;..Z;] @ ¢ gives a valid unblocked path between

ZjandY.

Proof: Since p[Z;..Z;] is a chain from Z; to Z;, the path obtained from the con-
catenation is unblocked. Now, let V' be an intermediate variable in p[Z;..Z;]. Then,
V ¢ (Ay — Ay) U {Y} and V isadescendant of Z;. But, by definition, no pathin R;
contain such variables. Thus, it follows that the concatenation produces a valid path.

O

It follows from the two propositions above that T'(P; — R;|(2q)) Can be expressed

asalinear combination of the T'(R;)’s.

Now, consider paths p of type (2b).

Proposition 10 Every path p € P, — R; be of type (2b) contains an intermediate
variable Z; from Ay such that p[Z;..Y] is a chain from Z, to Y.

Proof: Let p be a path of type (2b), and let W be the first variable in p such that
p[Z;..W] is not a chain. Clearly, such variable must exist, otherwise p would be a
chain from Y to Z; that does not include any edge from Inc(Y'). Moreover, p[Z;..W]
pointsto W, and so p[IV..Y'] must be achain from W to Y.

If W € Ay, then we are done. So, we consider the two remaining cases.

Assume that W ¢ Ay. Then, the proposition easily follows from the facts that
p[W..Y]isachainfrom ¥ to Y, and that thereis no edge (U, Z) pointing to Z, where
UdAyandZ € (Ay — Ay) U {Y}.

Finadly, if W € (Ay — Ay), thenlet VV bethe variable adjacent to W in p[Z,..W].
Since edge (V, W) pointsto IV, it follows that V' € Ay. But VV cannot belong to
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(Ay — Ay), because p[Z;..V] isachain from V to Z;, and then p would be of type
(2a). Thus, we must have V' € Ay, and condition (ii) of the theorem gives that

p[V..W]isadirected edgefrom V' to W. Hence, p[V..Y]isachainfromV toY. O

Fix apath p € P; — R; of type (2b), and let Z; be the last intermediate variable
from Ay inp. Let ¢ be an arbitrary path from Z,.

Proposition 11 The concatenation p[Z,..Z;] & g gives a valid unblocked path between

ZjandY.

Proof: Since ¢ is achain from Z; to Y, the path obtained from the concatenation is
unblocked. Now, let V' be the last variable in p[Z;..Z;] such that p[Z,..V] is a chain
from V' to Z; (if thereis no such variable, wetake V' = 7;). It followsthat, sincep is
of type (2b), p[Z;..V] does not contain any variable from (A, — Ay-). Moreover, every
intermediate variable in p[V..Z;] is an ancestor of Z;. But, by definition, intermediate
variables in any path from R; must belong to (Ay — Ay) and be descendants of Z;.

Hence, the concatenation produces a valid path. O

It follows from the two propositions above that T'(P; — R;|(2»)) can be expressed

asalinear combination of the T'(R;)’s.

Case3: W & Ay.
Let P,, denotethe set of unblocked pathsbetween W and Y, sothat pyy = T'(Py)-

There are two types of pathsinP,,:

1) chainsfromW toY;

2) unblocked paths between W and Y that point to V.

Let us consider paths of type (1) first.
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Proposition 12 Every path p € P, of type (1) contains an intermediate variable from

Ay

Proof: Followsfrom thefact that thereisno edge (U, Z) pointingto Z, whereU ¢ Ay
and Z € (Ay — Ay U{Y'}. 0

Fix apathp € P,, of type (1), and let Z; be the last intermediate variable from A,
inp. Let ¢ be an arbitrary path from R;.

Proposition 13 The concatenation of p[W..Z;] @ ¢ gives a valid chain from 1V to Y.

Proof: (same as proof of proposition 3) O

It follows from the two propositions above that 7'(P,|(1)) can be expressed as a

linear combination of the T'(R;)’s.

Now, we consider paths of type (2), and further divide them into:

a) paths p that have an intermediate variable Z; from (Ay — Ay) such that p[IV..Z}]

isachainfrom Z; to W;

b) all the remaining paths.

Fix apath p € P,, of type (2a), and let Z; be thefirst variable from (Ay — Ay) in
p. Let ¢ be an arbitrary path from R;.

Proposition 14 The concatenation p[WW..Z,;] @ q gives a valid unblocked path between

WandY.

Proof: (same as proof of proposition 9) O

It follows from the two propositions above that 7'(P,,|(24)) Can be expressed as a

linear combination of the T'(R;)’s.

Now, we consider paths of type (2b).
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Proposition 15 Every path p € P,, of type (2b) contains an intermediate variable Z;

from Ay such that p[Z;..Y] is a chain from Z; to Y.

Proof: (same as proof of proposition 10) O

Fix apath p € P, of type (2b), and let Z; be the last intermediate variable from
Ay inp. Let g be an arbitrary path from R;.

Proposition 16 The concatenation p[V..Z;] & ¢ gives a valid unblocked path between

WandY.

Proof: (same as proof of proposition 11) O

It follows from the two propositions above that T'(P,, |2s)) can be expressed as a

linear combination of the T'(R;)’s. O
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APPENDIX C

(Proofsfrom Chapter 7)

C.1 Preiminary Results

C.1.1 Partial Correlation Lemma

Next lemma provides a convenient expression for the partial correlation coefficient of

Y; and Y5, givenYs, ..., Y, denoted pio5.,,. The proof isgivenin Section C.3.

Lemma9 The partial correlation py, 3., can be expressed as the ratio:

B 6(1,2,...,n)
P12.3..n = (.3, n) 023, ) (Cl)

where ¢ and ¢ are functions of the correlations among Y7, Y5, ..., Y, satisfying the

following conditions:

() o(1,2,...,n) =0(2,1,...,n).
(i) ¢(1,2,...,n) is linear on the correlations pis, P32, - - ., pn2, With no constant

term.

(iii) The coefficients of pia, P32, - . ., pu2, IN (1,2, ..., n) are polynomials on the cor-
relations among the variables Y7, Y3, . .., Y;,,. Moreover, the coefficient of p,, has
the constant term equal to 1, and the coefficients of pss, ..., p.2, are linear on

the correlations pq3, p14, . . ., P1n, With Nno constant term.
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(iv) (¢(iy,...,in—1))?, isapolynomial on the correlations among the variables Y;,,. . .,

Y; _,, with constant term equal to 1.

C.1.2 Path Lemmas

The following lemmas explore some consequences of the conditions in the definition

of Instrumental Sets.

Lemma 10 W.l.o.g., we may assume that, for 1 < : < j < n, paths p; and p; do not

have any common variable other than (possibly) Z;.

Proof: Assume that paths p; and p,; have some variablesin common, different from Z;.

Let V' be the closest variable to X; in path p;, which also belongsto path p;.

We show that after replacing triple (Z;, W, p;) by triple (V, W, p;,[V..Y]), condi-
tions () — (u41) still hold.

It follows from condition (7i7) that subpath p;[V..Y] must point to V. Since p; is

unblocked, subpath p;[Z;..V] must be adirected path from V' to Z;.

Now, variable V' cannot be a descendent of Y, because p;[Z;..V] isadirected path
from V to Z;, and Z; is anon-descendent of Y. Thus, condition (7) still holds.

Consider the causal graph G. Assume that there exists a path p between VV and Y
witnessing that W; does not d-separate VV from Y in G. Since p;[Z;..V] is a directed
path from V' to Z;, we can always find another path witnessing that W; does not d-
separate Z; from Y in G (for example, if p and p;[Z;..V] do not have any variable
in common other than V', then we can just take their concatenation). But thisis a
contradiction, and thusit is easy to see that condition (::) still holds.

Condition (4iz) follows from the fact that p,[V..Y| and p;[Z;..V]| pointto V. O

In the following, we assume that the conditions of lemma 10 hold.
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Lemmall For all 1 < 7 < n, there exists no unblocked path between Z; and Y,

different from p;, which includes edge X; — Y and is composed only by edges from

Pi,...,Pi-

Proof: Let p be an unblocked path between Z; and Y, different from p;, and assume

that p is composed only by edgesfrompq, ..., p;.

According to condition (i:7), if Z; appearsin some path p;, with j # 4, then it must
bethat j > . Thus, p must start with some edges of p;.

Since p isdifferent from p;, it must contain at least one edge fromp+, ..., p;_;. Let

(V1, Va) denote thefirst edge in p which does not belong to p;.

From lemma 10, it follows that variable V; must be a 7, for some k& < 4, and by
condition (iii), both subpath p[Z;..V;] and edge (V;, V) must point to V;. But this

impliesthat p isblocked by V3, which contradicts our assumptions. O

The proofsfor the next two lemmas are very similar to the previous one, and so are

omitted.

Lemmal2 Forall 1 < i < n, there is no unblocked path between Z; and some W;,

composed only by edges from pq, ..., p;.
Lemma 13 Forall 1 < i < n, there is no unblocked path between Z; and Y including

edge X; — Y, with j < ¢, composed only by edges from py, ..., p;.

C.2 Proof of Theorem 8

C.2.1 Notation and Basic Linear Equations

FixavariableY inthemodel. Let X = { X1, ..., X} betheset of all non-descendents
of Y which are connected to Y by an edge (directed, bidirected, or both). Define the



following set of edges with an arrowhead at Y':
Inc(Y)={(X;,Y): X; € X}

Note that for some X; € X there may be more than one edge between X; and Y (one
directed and one bidirected). Thus, [Inc(Y)| > |X]|. Let Ay, ..., A\, m > k, denote
the parameters of the edgesin Inc(Y').

It followsthat edges X; — Y, ..., X,, — Y, belongto Inc(Y'), because X1, ..., X,,,
are clearly non-descendents of Y. W.l.0.g., let \; be the parameter of edge X; — Y,

1<i<n,andlet \,.1,..., A\, bethe parameters of the remaining edgesin I'nc(Y’).
Let Z be any non-descendent of Y. Wright's equation for the pair (Z,Y"), is given

by
pzy = D T(p) (C.2)

paths p;

where each term 7T'(p;) corresponds to an unblocked path between Z and Y. Next

lemma proves a property of such paths.

Lemma 14 Let Y be a variable in a recursive model, and let Z be a non-descendent
of Y. Then, any unblocked path between Z and Y must include exactly one edge from
Inc(Y).

Lemma 14 allows us to write Eq. (C.2) as
Pzy = Z aj - Aj (C3)
j=1

Thus, the correlation between Z and Y can be expressed as alinear function of the
parameters A, ..., \,,, with no constant term.
Consider atriple (Z;, W;, p;), andlet W; = {W,,, ..., W; } 1. Fromlemma9, we

can express the partial correlation of Z; and Y given W, as:

1To simplify the notation, we assumethat |[W ;| = k,fori = 1,...,n
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— ¢7« (Zi,Y,Wil aaaa Wzk)
pZiY'W'L - ’l/)Z (ZiaWil ..... Wik )1/11(Y,W11 ..... Wik) (C'4)

where function ¢; is linear on the correlations pz,y, pw, v, ..., PW;, Vs and ¢; isa
function of the correlations among the variables given as arguments. We abbreviate

Gi(Zi, Y, Wip, o, Wi ) by 6i(Z3, Y, W), and o (V, Wiy, Wiy ) by i (V, W5).

We have seen that the correlations pz,y, PWi, Y - PW;, v, CAN be expressed as
linear functions of the parameters 4, ..., \,,. Since ¢, islinear on these correlations,

it follows that we can express ¢; as alinear function of the parameters A, ..., \,.

Formally, by lemma, ¢,(Z;, Y, W;) can be written as:
0i(Zi,Y,Wi) = bigpzy + bipw,y + ...+ bipw, v (C.5)
Also, for each V; € {Z;} UW,, we can write:
vy = iAot GimAn (C.6)

Replacing each correlation in Eq.(C.5) by the expression given by Eg. (C.6), we
obtain

0i(Zi, Y, W,) = qgah + ... + Gimdm (C.7)

where the coefficients ¢;;’s are given by:

k
G =Y bi,a;, JI=1,...,m (C.8)
§j=0
Lemma 15 The coefficients ¢; 11, . . ., ¢:im iN Eq. (C.7) are identically zero.

Proof: The fact that W; d-separates Z; from Y in G, implies that pzy-w, = 0inany
probability distribution compatible with G ([Peal0a], pg. 142). Thus, ¢;(Z;, Y, W;)
must vanish when evaluated in GG. But this implies that the coefficient of each of the
Ai’sin Eq. (C.7) must beidentically zero.
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Now, we show that the only difference between evaluationsof ¢;(Z;, Y, W;) onthe

causa graphs G and GG, consists on the coefficients of parameters Ay, ..., \,.

First, observethat coefficientsb b;, arepolynomialson the correlationsamong

the variables Z;, W, , ..., W;,. Thus, they only depend on the unblocked paths be-
tween such variables in the causal graph. However, the insertion of edges X; — Y,

.., X, — Y, in G does not create any new unblocked path between any pair of

Zi, Wi, ..., W, (and obviously does not eliminate any existing one). Hence, the co-
efficients b,,, . . ., b;, have exactly the same value in the evaluations of ¢;(Z;,Y, W;)
onG and G.

Now, let \; besuch that | > n, and let V; € {Z;} U W;. Note that the insertion of
edges X, —» VY, ..., X,, — Y, in G does not create any new unblocked path between
V; and Y including the edge whose parameter is \; (and does not eliminate any existing

one). Hence, coefficients a;,;, j = 0, .. ., k, have exactly the same value onG and G.

From the two previous facts, we conclude that, for [ > n, the coefficient of A; in
the evaluationsof ¢;(Z;, Y, W;) on G and GG have exactly the same value, namely zero.

Next, we argue that ¢;(Z;, Y, W;) does not vanish when evaluated on G.

Finaly, let A, be such that [ < n, and let V; € {Z,} U W,. Note that there is no
unblocked path between V; and Y in G including edge X; — Y, because this edge
does not exist in GG. Hence, the coefficient of ); in the expression for the correlation

pv;y on G must be zero.

On the other hand, the coefficient of )\; in the same expression on G is not neces-
sarily zero. In fact, it follows from the conditionsin the definition of Instrumental sets

that, for | = i, the coefficient of \; contains theterm 7'(p;). O

From lemma 15, we get that ¢;(7;, Y, W;) isalinear function only on the param-

eters\q,..., \,.
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C.2.2 System of Equations ®

Rewriting Eq.(C.4) for each triple (Z;, W;, p;), we obtain the following system of

linear equations on the parameters A ¢, ..., \,:

03} (Zl, Y, W1) = PzZ1Y.W,
1 (Z1, Wi) -1 (Y, W)

¢n(Zn, Y, Wn) = PZ, YW,

where the terms on the right-hand side can be computed from the correlations among

thevariablesY, Z;, W;,,..., W, , estimated from data.

k )
Our god is to show that & can be solved uniquely for the \;’s, and so prove the
identification of Ay, ..., \,. Next lemma proves an important result in this direction.

Let () denote the matrix of coefficients of ®.
Lemma 16 Det(Q) is a non-trivial polynomial on the parameters of the model.

Proof: From Eq.(C.8), we get that each entry ¢;; of Q) isgiven by
k
G = Y bi; - aiy
§=0

where b;; is the coefficient of [R% (or pz,y, if j = 0), in the linear expression for
¢i(Z;, Y, W;) in terms of correlations (see Eq.(C.5)); and a;,; is the coefficient of ),
in the expression for the correlation pwi, v in terms of the parameters A, ..., \,, (see
Eq.(C.6)).

From property (zi:) of lemma9, we get that b;, has constant term egual to 1. Thus,

we can write b;, = 1 + b;,, where b;, represent the remaining terms of b;,.
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Also, from condition (i) of Theorem 8, it follows that a;,; contains term T'(p;).
Thus, we can write a;,; = T'(p;) + a;,;, where a;,; represents all the remaining terms

of Qg -

Hence, adiagonal entry ¢;; of ), can be written as

k
@i = T(Pi)[1 + big) + Gigi - big + Y by - a5 (C.9)

7j=1
Now, the determinant of () is defined as the weighted sum, for all permutations 7 of
(1,...,n), of the product of the entries selected by 7 (entry ¢, is selected by permuta-
tion 7 if the i element of 7 isl), where the weights are 1 or (—1), depending on the

parity of the permutation. Then, it is easy to see that the term

7" =] T(ps)
7j=1
appears in the product of permutation = = (1,...,n), which selects all the diagonal

entries of ().

We prove that det((Q) does not vanish by showing that 7* appears only once in the
product of permutation (1, ..., n), and that 7* does not appear in the product of any

other permutation.

Before proving those facts, note that, from the conditions of lemma 10, for 1 < i <
J < n, paths p; and p,; have no edge in common. Thus, every factor of 7 is distinct

from each other.
Proposition 17 Term T* appears only once in the product of permutation (1,...,n).

Proof: Let 7 beaterminthe product of permutation (1, ..., n). Then, 7 has onefactor

corresponding to each diagona entry of Q).

A diagonal entry ¢;; of () can be expressed as a sum of three terms (see Eq.(C.9)).
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Let 7 be such that for al [ > i, the factor of 7 corresponding to entry ¢; comes
from the first term of ¢ (i.e., 7'(p:)[1 + by, ])-

Assume that the factor of 7 corresponding to entry ¢;; comes from the second term
of g;; (i.e., a;,; - b;,). Recall that each termin a;,; corresponds to an unblocked path be-
tween Z; and Y/, different from p;, including edge X; — Y. However, from lemma 11,
any such path must include either an edge which does not belong to any of p+, ..., p,,
or an edge which appearsin someof p; 1, ..., p,. Inthefirst case, it iseasy to see that
7 must have a factor which does not appear in T*. In the second, the parameter of an
edge of some p;, [ > ¢, must appear twice as a factor of 7, while it appears only once

inT*. Hence, 7 and T* are distinct terms.

Now, assume that the factor of 7 corresponding to entry ¢;; comes from the third
term of ¢;; (i.e, Zle bi; - a;;;). Recal that b;; is the coefficient of pw, Y in the ex-
pression for ¢;(Z;, Y, W;). From property (iii) of lemma9, b;; is a linear function
on the correlations PZW;, s+ PZW;, with no constant term. Moreover, correlation
pzw;, can be expressed as a sum of terms corresponding to unblocked paths between
Z; and W;,. Thus, every termin b;; has the term of an unblocked path between Z; and
some V;, as afactor. By lemma 12, we get that any such path must include either an
edge that does not belong to any of py, ..., p,, or an edge which appears in some of

Dis1, - - -, Pn- ASabove, in both cases 7 and 7 must be distinct terms.

After eliminating al those terms from consideration, the remaining terms in the
product of (1,...,n) are given by the expression:

n

T T10+ by)

=1

Since 8,-0 is a polynomial on the correlations among variables W; W;,, with no

12"

constant term, it followsthat 7 appears only once in this expression. O

Proposition 18 Term 7 does not appear in the product of any permutation other than
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(1,...,n).

Proof: Let 7 be a permutation different from (1,...,n), and let 7 be a term in the

product of 7.

Let ¢ be such that, for al [ > i, 7 selects the diagonal entry intherow [ of Q). As
before, for [ > i, if the factor of 7 corresponding to entry ¢; does not come from the
first term of gy (i.e., T'(p;)[1 + by,]), then 7 must be different from 7. So, we assume

that thisisthe case.

Assume that 7= does not select the diagonal entry ¢;; of Q. Then, = must select
some entry ¢;;, with [ < 4. Entry ¢;; can be written as:
ki
it = bigiot + Y, b, a4,
7j=1
Assumethat the factor of 7 corresponding to entry ¢;; comesfrom term b;, - a;,;. Recall
that each term in a;,; corresponds to an unblocked path between Z; and Y including

edge X; — Y. Thus, inthiscase, lemma 13 impliesthat = and 7* are distinct terms.

Now, assume that the factor of 7 corresponding to entry ¢; comes from term
Zle bi; @i 1- Then, by the same argument as in the previous proof, terms 7 and 7™

aredistinct. O

Hence, term T is not cancelled out and the lemma holds. O

C.2.3 ldentification of \{,..., A,

Lemma 16 gives that det(Q) is a non-trivial polynomial on the parameters of the
model. Thus, det(Q) only vanishes on the roots of this polynomial. However, [Oka73]
has shown that the set of roots of a polynomial has Lebesgue measure zero. Thus,

system ¢ has unique solution amost everywhere.

It just remains to show that we can estimate the entries of the matrix of coefficients
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of system ¢ from data.

Let us examine again an entry ¢;; of matrix QQ:
k
qir = Z bi; - aiji
§=0

From condition (4ii) of lemmas, the factors b;; in the expression above are polynomi-

alson the correlationsamong thevariables Z;, W, . . ., W;, , and thus can be estimated

"
from data.

Now, recall that a;,; is given by the sum of terms corresponding to each unblocked
path between Z; and Y including edge X; — Y. Precisely, for eachtermtina;,;, there
is an unblocked path p between Z; and Y including edge X; — Y/, such that ¢ is the
product of the parameters of the edges along p, except for A;.

However, notice that for each unblocked path between Z; and Y including edge
X, — Y, we can obtain an unblocked path between Z; and X;, by removing edge
X, — Y. On the other hand, for each unblocked path between 7; and X; we can
obtain an unblocked path between Z; and Y, by extending it with edge X;, — Y.

Thus, factor a;,; is nothing else but p, x,. It is easy to see that the same argument

holdsfor a;,; with j > 0. Thus, a;,; = pWin,,j =0,...,k.

Hence, each entry of matrix () can be estimated from data, and we can solve the

system of equations ® to obtain the parameters A, ..., A,,.

C.3 Proof of Lemma9

Functions ¢(1,...,n) and ¢ (i1, ..., i,—1) are defined recursively. For n = 3,

¢3(1, 2, 3) = P12 — P13P23
7/)2(i1,i2) = (1 - P%l,iz)
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For n > 3, we have

o"(1,...,n) = (" 2(n,3,...,n—1))"
" 1(1,2,3,...,n — 1)
— (" %(n,3,...,n—1))2
-q&”*l(l,n,?),...,n— 1)
-¢”*1(2,n,3,...,n— 1)

wn_l(ila s 7in71) = [(T/)n_z(ila i27 s 7in72)
. . . 2
) wn_2(ln717 12y.. ., anQ))
%
- (¢n_1(i17 infla i27 s 7in72))2:| ?

Using induction and the recursive definition of p535..,, it iseasy to check that:

\

— ¢N(1727"'7N)
P12.3..N SN-I(,N3,..N 1)oN-2(N3,.,N 1)

Now, we prove that functions ¢™ and /"' as defined satisfy the properties (i) — (iv).
Thisisclearly the case for n = 3. Now, assume that the properties are satisfied for all

n<N.

Property (i) follows from the definition of ¢™V(1,..., N) and the assumption that
it holdsfor ¢ ~1(1,..., N — 1).

Now, ¢¥~!(1,...,N — 1) is linear on the correlations pis,...,px_12. Since
oN"Y(2,N,3,...,N — 1) isequa to ¢"~'(N,2,3,...,N — 1), it is linear on the
correlations psy, . . ., pn2. Thus, ¢V (1,..., N) islinear on pis, psa, - - -, pv2, With no

constant term, and property (zi) holds.

Terms (VN =2(N,3,...,N—1))*and¢"~'(1, N, 3,...,N—1) are polynomialson
the correlations among the variables 1, 3,..., N. Thus, the first part of property (i)
holds. For the second part, note that correlation pi, only appears in the first term of
oV (1,...,N), and by theinductive hypothesis (¢ ¥ 2(N, 3,..., N —1))* has constant
term equal to 1. Also, since ™ (1,2,3,...,N) = ¢™(2,1,3,..., N) and thelater one
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is linear on the correlations pis, p13, ..., p1n, We must have that the coefficients of

#N (1,2, ..., N) must be linear on these correlations. Hence, property (iv) holds.

Finally, for property (iv), we note that by the inductive hypothesis, the first term
of (yN=2(N,3,..., N —1))* has constant term equal to 1, and the second term has no

constant term. Thus, property (iv) holds. O
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