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ABSTRACT OF THE DISSERTATION
Studies in Causal Reasoning and Learning
by

Jin Tian
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Building intelligent systems that can learn about and reason with causes and
effects is a fundamental task in artificial intelligence. This dissertation ad-
dresses various issues in causal reasoning and learning in the framework of causal
Bayesian networks. We offer a complete characterization of the set of distri-
butions that could be induced by local interventions on variables governed by
a causal Bayesian network. The characterization provides a symbolic inferential
tool for tasks in causal reasoning. We propose a new method of discovering causal
structures, based on the detection of local, spontaneous changes in the underlying
data-generating model. We show that the use of information about local changes
increases our power of causal discovery beyond the limits set by independence
equivalence that governs Bayesian networks. In the presence of unmeasured vari-
ables, causal models may impose non-independence functional constraints and
no general criterion is previously available for finding those constraints. We offer
a systematic method of identifying functional constraints, which facilitates the
task of testing causal models. Causal effects permit us to predict how systems
would respond to actions or policy decisions. We establish new graphical crite-
ria for ensuring the identification of causal effects that generalize and simplify
existing criteria in the literature, and we provide computational procedures for

systematically identifying causal effects. Assessing the probability of causation,
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that is, the likelihood that one event was the cause of another, guides much of
what we understand about and how we act in the world. We show how useful
information on the probabilities of causation can be extracted from empirical
data, and how data from both experimental and nonexperimental studies can be
combined to yield information that neither study alone can provide. Our results
clarify the basic assumptions that must be made before statistical measures such
as the excess-risk-ratio could be used for assessing attributional quantities such

as the probability of causation.
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CHAPTER 1

Causal Models

1.1 Introduction

A major challenge in artificial intelligence is to build autonomous intelligent sys-
tems that can make sense of their environment, so that they can respond to
unexpected events or changes in the environment. Traditional probabilistic and
statistical approaches assume a static time-invariant environment, and they can
not predict what happens if the environment changes or some external actions
occur. Such predictions are not discernible from probabilistic information; they
rest on causal relationships. We human beings communicate about the world in
the language of causation, and we would like to build intelligent systems that
understand causal talk. We must build intelligent systems that can learn about
and reason with causes and effects. The two challenges that we will face are:

1. How should an intelligent agent acquire causal information from the envi-
ronment?

2. How should an intelligent agent process available causal information?

This dissertation addresses both of the problems in the framework of causal
Bayesian networks, also called causal models', which provide a mathematical
language for representing and reasoning about causal relations.

1.2 Causal Models and Interventions

The use of causal models for encoding distributional and causal assumptions
is now fairly standard (see, for example, [Pea88, SGS93, HS95, Jor98, GPRI9,
Lau00, Pea00, Daw02]). The simplest such model, called Markovian, consists of a
directed acyclic graph (DAG) G, called a causal graph, over aset V = {Vi,..., V,}
of vertices, representing variables of interest, and a set of directed edges, or ar-
rows, that connect these vertices (see Figure 1.1 for an example causal graph).

!Throughout this dissertation, we will refer to the terms causal model and causal Bayesian
network interchangeably.
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Figure 1.1: A typical causal graph.

The interpretation of a causal graph has two components, probabilistic and
causal. The probabilistic interpretation views the arrows as representing proba-
bilistic dependencies among the corresponding variables, and the missing arrows
as representing conditional independence assertions: Each variable is independent
of all its non-descendants given its direct parents in the graph.? These assump-
tions amount to asserting that the joint probability function P(v) = P(v1,...,vn)
factorizes according to the product

P(v) = HP(UHP%) (1.1)

where Pa; denotes the set of parents of variable V; in the graph.?

The causal interpretation views the arrows as representing causal influences
between the corresponding variables. In this interpretation, the factorization of
(1.1) still holds, but the factors are further assumed to represent autonomous
data-generation processes, that is, each conditional probability P(v;|pa;) repre-
sents a stochastic process by which the values of V; are chosen in response to
the values pa; (previously chosen for V;’s parents), and the stochastic variation of
this assignment is assumed independent of the variations in all other assignments.
Moreover, each assignment process remains invariant to possible changes in the
assignment processes that govern other variables in the system.

This modularity assumption enables us to predict the effects of interventions,
whenever interventions are described as specific modifications of some factors in
the product of (1.1). The simplest such intervention, called atomic, involves fixing

?We use family relationships such as “parents,” “children,” “ancestors,” and “descendants,”
to describe the obvious graphical relationships. For example, we say that V; is a parent of V}
if there is an arrow from node V; to V;, Vi — V5.

3We use uppercase letters to represent variables or sets of variables, and use corresponding
lowercase letters to represent their values (instantiations). For example, pa; represents an
instantiation of Pa;.



a set T of variables to some constants T = ¢, which yields the post-intervention
distribution*

_ | Igpvigry Pluilpai)  for all v consistent with 7' = ¢.
Piv) = { 0 for all v inconsistent with T = ¢. (12)

Eq. (1.2) represents a truncated factorization of (1.1), with factors corresponding
to the manipulated variables removed. This truncation follows immediately from
(1.1) since, assuming modularity, the post-intervention probabilities P(v;|pa;)
corresponding to variables in 7" are either 1 or 0, while those corresponding to
unmanipulated variables remain unaltered.® If T stands for a set of treatment
variables and Y for an outcome variable in V\T, then Eq. (1.2) permits us to cal-
culate the probability P,(y) that event Y = y would occur if treatment condition
T = t were enforced uniformly over the population. This quantity, often called
the causal effect of T on Y, is what we normally assess in a controlled experiment
with T randomized, in which the distribution of Y is estimated for each level ¢
of T'.

We see from Eq. (1.2) that the model needed for predicting the effect of
interventions requires the specification of three elements

M =V, G, P(vilpa;))

where (1) V = {Vi,...,V,,} is a set of variables, (ii) G is a directed acyclic graph
with nodes corresponding to the elements of V', and (iii) P(v;|pa;),i = 1,...,n,is
the conditional probability of variable V; given its parents in G. Since P(v;|pa;) is
estimable from nonexperimental data whenever V' is observed, we see that, given
the causal graph G, all causal effects are estimable from the data as well.

1.3 Causal Models with Hidden Variables

Our ability to estimate P;(v) from nonexperimental data is severely curtailed
when some variables in a Markovian causal model are unobserved. We call
unobserved variables hidden or latent variables. If two or more variables in
V are affected by unobserved confounders, the presence of such confounders
would not permit the decomposition in (1.1). Letting V' = {14,...,V,} and
U = {Uy,...,Uy} stand for the sets of observed and hidden variables, respec-

1[Pea95a, Pea00] used the notation P(v|set(t)), P(vldo(t)), or P(v|{) for the post-
intervention distribution, while [Lau00] used P(v|[¢).

°Eq. (1.2) was named “Manipulation Theorem” in [SGS93], and is also implicit in Robins’
(1987) G-computation formula.



tively, the observed probability distribution, P(v), becomes a mixture of prod-
ucts:

P)=Y [ Pllpa,) [] Plulpas) (1.3)

u {VieVv} {i|U;eU}

where Pa,, and Pa,, stand for the sets of parents of V; and U, respectively, and the
summation ranges over all the U variables. The post-intervention distribution,®
likewise, will be given as a mixture of truncated products

Pv) = >ou Hpigr P(uilpas) T1; Pluilpas,) v .consist.ent Wit}.l . (1.4)
0 v inconsistent with £.

And, the question of identifiability arises, i.e., whether it is possible to express
P,(v) as a function of the observed distribution P(v). Clearly, given a causal
model M and any two sets T and S in V', P;(s) can be determined unambiguously
using (1.4). The question of identifiability is whether a given causal effect P;(s)
can be determined uniquely from the distribution P(v) of the observed variables,
and is thus independent of the unknown quantities, P(v;|pa,,) and P(u;|pa,;),
that involve elements of U.

Definition 1 [Causal-Effect Identifiability]

The causal effect of a set of variables T on a disjoint set of variables S is said to be
identifiable from a graph G if the quantity Py(s) can be computed uniquely from
any positive probability of the observed variables—that is, if P (s) = PM2(s)
for every pair of models M, and M, with PM(v) = PM2(v) > 0 and G(M;) =

In other words, given the causal graph G, the quantity FPy(s) can be determined
from the observed distribution P(v) alone; the details of M are irrelevant.

If, in a Markovian model with hidden variables, each hidden variable is a root
node with exactly two observed children, then the corresponding model is called
a semi-Markovian model. In a semi-Markovian model, the observed probability
distribution P(v) in Eq.(1.3) can be written as

Py =Y T] Plvilpas, u') [ | Plu:) (1.5)
where Pa; and U’ stand for the sets of the observed and unobserved parents of
V; respectively. The post-intervention distribution is then given by

Pv) = >oulivigry Ploilpas, w') TT, P(ui) v ftonsist;ent wit]r} t. (1.6)
0 v inconsistent with ¢.

We only consider interventions on observed variables.



Figure 1.2: A semi-Markovian model.

It is convenient to represent a semi-Markovian model with a causal graph
G that does not show the elements of U explicitly but, instead, represents the
confounding effects of U variables using bidirected edges. Divergent edges V; <
Uy — V; will be represented by a bidirected edge between V; and V. The presence
of such bidirected edge in G represents unmeasured factors (or confounders) that
may influence two variables in V'; we assume that substantive knowledge permits
us to decide if such confounders can be ruled out from the model. For example,
Figure 1.1 will be represented by Figure 1.2, assuming that the variable U is a
hidden variable.

Causal Bayesian networks provide a strict mathematical language for reason-
ing with causes and effects. This dissertation addresses various issues in causal
reasoning, including learning causal structures from data, testing causal models,
assessing the effects of actions, and determining the causes of effects.

1.4 Contributions

The principal contributions of this dissertation are

e The establishment of a necessary and sufficient set of properties for inter-
ventional distributions induced by causal Bayesian networks.

e A new method of discovering causal structures, based on the detection of
local, spontaneous changes in the underlying data-generating model.

e A procedure for systematically identifying functional constraints induced
by causal Bayesian networks with hidden variables.

e A procedure for systematically identifying causal effects, in the presence of
unmeasured confounders, from a combination of nonexperimental data and
substantive assumptions encoded in the form of a directed acyclic graph.

e The derivation of tight bounds on probabilities of causation, from data
obtained in experimental and observational studies, under general assump-
tions concerning the data-generating process.



1.5 Overview

In Chapter 2, we offer a complete characterization of interventional distribu-
tions that could be induced by a causal Bayesian network. We show that the
set of interventional distributions must adhere to three norms of coherence, and
we demonstrate the use of these norms as inferential tools in tasks of learning
and identification. In Chapter 3, we propose a new method of discovering causal
structures, based on the detection of local, spontaneous changes in the underlying
data-generating model. We analyze the classes of structures that are equivalent
relative to a stream of distributions produced by local changes, and devised al-
gorithms that output graphical representations of these equivalence classes. We
investigate both the Bayesian approach and an approach that infers structures
by detecting distributional changes. Chapter 4 develops a systematic procedure
of identifying functional constraints induced by causal Bayesian networks with
hidden variables. The procedure facilitates the task of testing causal models as
well as inferring such models from data. Chapter 5 concerns the assessment of the
causal effects in nonparametric models. The chapter establishes new criteria for
deciding whether the assumptions encoded in a causal graph are sufficient for as-
sessing the strength of causal effects and, if the answer is positive, computational
procedures are provided for expressing causal effects in terms of the underlying
joint distribution. Chapter 6 shows how to use the results in Chapter 5 to identify
causal effects in linear models. Chapter 7 deals with the problem of estimating
the probability of causation, that is, the probability that one event was the cause
of another in a given scenario, for example, the probability that event F would
not have occurred if it were not for event C, given that C and F did in fact occur.
Starting from structural-semantical definitions of the probabilities of necessary or
sufficient causation (or both), we show how to bound these quantities from data
obtained in experimental and observational studies, under general assumptions
concerning the data-generating process. The results delineate more precisely the
basic assumptions that must be made before statistical measures such as the
excess-risk-ratio could be used for assessing attributional quantities such as the
probability of causation.



CHAPTER 2

A Characterization of Causal Models

2.1 Introduction

In this chapter, we seek a characterization for the set of interventional distribu-
tions, P;(v), that could be induced by some causal Bayesian network. Whereas
[Pea00, pp.23-4] has given such characterization relative to a given network, we
assume that the underlying network, if such exists, is unknown. Given a col-
lection of arbitrary interventional distributions, we ask whether the collection
is compatible with the predictions of some underlying causal Bayesian network.
Section 2.2 identifies three properties (of the collection) that are both necessary
and sufficient for the existence of such an underlying network. Section 2.3 iden-
tifies necessary properties of distributions induced by semi-Markovian models,
causal Bayesian networks in which some of the variables are unmeasured. Sec-
tion 2.4 shows how the properties uncovered in Sections 2.2 and 2.3 can be used
as symbolic inferential tools for predicting the effects of actions from nonexper-
imental data in the presence of unmeasured variables. The Conclusion section
outlines the use of these properties in learning tasks which aim at uncovering the
structure of the network.

2.2 Interventional Distributions in Markovian Models

Let P, be a set of arbitrary interventional distributions
P, = {P,(u)|[T CV,t € Dm(T)} (2.1)

where Dm(T) represents the domain of 7. For example, assume that V' consists
of two binary variables X and Y with the domain of X being {zg,z;} and the
domain of Y being {yo,y1}, then P, contains distributions P(z,y), Py,(2,y),
P (z,y), Py(,y), Py (x,y), Pugyol2,y),. .., where each Py(x,y) is an arbitrary
probability distribution over XY . For this set of distributions to be induced by
some underlying causal Bayesian network such that each P(z,y) corresponds to
the distribution of X, Y under the intervention do(T = t) to the causal Bayesian
network, they have to satisfy some norms of coherence. For example, it must



be true that P, (z¢) = 1. For another example, if the causal graph is X — Y
then P, (xo) = P(xo), and if the causal graph is X «— Y then Py, (y0) = P(yo),
therefore, it must be true that either Py (o) = P(zo) or Py (yo) = P(y). We
would like to know what properties a P, set must satisfy such that it is compatible
with some underlying causal Bayesian network. In this section, we show that a
P, set induced from a Markovian causal model is fully characterized by three
properties: effectiveness, Markov, and recursiveness.

Property 1 (Effectiveness) For any set of variables T,

Pi(t) = 1. (2.2)

Effectiveness states that, if we force a set of variables T" to have the value ¢, then
the probability of T taking that value ¢ is one.

For any set of variables S disjoint with 7', an immediate corollary of effective-

ness reads:
Pult) = 1, (2.3)

which follows from
Pt,s(t) > P, g(t,s) =1 (2.4)

Equivalently, if T3 € T, then

| 1 1if#; is consistent with 7.
Pi(t,) = { 0 if t; is inconsistent with ¢. (2:5)
We further have that, for 77 € T and S disjoint of T,
[ Py(s) ift; is consistent with ¢.
Pi(s,th) = { 0 if ¢, is inconsistent with ¢. (2.6)
Property 2 (Markov) For any two disjoint sets of variables Sy and S,
Pv\(51U32)(517 52) - Pv\51 (51)P0\32(52>- (27)

An equivalent form of the Markov property is: For any set of variables T C V,

PN = [ Poplor). (2.8)

{ilvieV\T}



Eq. (2.8) can be obtained by repeatedly applying Eq. (2.7), and Eq. (2.7) follows
from Eq. (2.8) as follows:

Pv\(51U52)(51> 52) = H I_)v\{vZ Uz

V;€S51US2

= H Po\foiy (vi) H P wiy (Vi)

Viesy V; €852

= U\Sl(sl)PU\Sz<32)' (2'9)

Definition 2 For two single variables X and Y, define “X affects Y7, denoted
by X ~ Y, as 3W C Viw,z,y, such that Py, (y) # Pu(y). That is, X affects YV
if, under some setting w, intervening on X changes the distribution of Y.

Property 3 (Recursiveness) For any set of variables {Xo,..., Xz} CV,
(XQMXl)/\/\(X]C_l’\/?Xk) :>_‘(Xk’\f>Xo) (210)
Property 3 is a stochastic version of the (deterministic) recursiveness axiom given
n [Hal98]. It comes from restricting the causal models under study to those
having acyclic causal graphs. For k = 1, for example, we have X ~ V¥ = —(YV ~»
X)), saying that for any two variables X and Y, either X does not affect ¥ or
Y does not affect X. [Hal98] pointed out that, recursiveness can be viewed as

a collection of axioms, one for each k, and that the case of £ = 1 alone is not
enough to characterize a recursive model.

Theorem 1 (Soundness) Effectiveness, Markov, and recursiveness hold in all
Markovian models.

Proof: All three properties follow from the factorization of Eq. (1.2).

Effectiveness From Eq. (1.2), we have
P(T=t)=0 fort #t, (2.11)
and since

> R{)=1, (2.12)

teDm(T)

we obtain the effectiveness property of Eq. (2.2).



Markov From Eq. (1.2), we have

P(v\t) = PB(t,u\t) = H P(vi|pa;). (2.13)
V;eV\T
Letting 7=V \ {Vi} in Eq. (2.13) yields
Pv\{vi}(vi) = P(vilpai). (2.14)

Substituting Eq. (2.14) back into Eq. (2.13), we get the Markov property
(2.8), which is equivalent to (2.7).

Recursiveness Assume that a total order over V that is consistent with the
causal graph is V; < .-+ < V,,, such that V; is a nondescendant of Vj if
V; < V;. Consider a variable V; and a set of variables S C V' which does
not contain V. Let B; = {Vj|V; < V;,V; € V' \ S} be the set of variables
not in S and ordered before V}, and let A; = {Vj|[V; < Vi, V; € V'\ S} be
the set of variables not in S and ordered after V;. First we show that

. (2.15)
We have

- ZP”J »85 a] ”j 185b5 (aj)ﬂ (by Eq. (2~7)) (2.16)

where P,. ;.,(b;) = HMVGB , P(vilpa;) is a function of b; and its parents.
Since all variables in A; are ordered after the variables in Bj, P, s 4. (b;) is
not a function of a;. Hence Eq. (2.16) becomes

ij,s(bj - v],saj E ij,sb] a]

= Py, s, (b)) (2.17)
Similarly,
= Z Py(vj, aj, b))
Vs Qg
ZPv],s,a sbj (U]Ja’j>
U 05
- v],sa] ZPsb Ujaaj
Uy
= Py 5.0 (b)) (2.18)
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Eq. (2.15) follows from (2.17) and (2.18).

From Eq. (2.15), we have that, for any two variables V; < V; and any set of

variables S,
ij,s(%') = P, (W): (219)

which states that if X is ordered before Y then Y does not affect X, based
on our definition of “X affects Y. Therefore, we have that if X affects YV
then X is ordered before Y, or

XoV=X<Y (2.20)

Recursive property (2.10) then follows from (2.20) because the relation “<”
is a total order.

O

To facilitate the proof of the completeness theorem, we give the following
lemma.

Lemma 1 [Pea88, p.124] Given a DAG over V, if a set of functions f;(v;, pa;)
satisfy

Z .fi(vhpai) = 17 and 0 S fi(vi;pai> S 1: (221>

v, e Dm(V;)

and P(v) can be decomposed as

P(v) = Hfi(vi,pai), (2.22)

then we have

fi(ui,pai) = P(Ui]pai), 1= 1, e, T (223)

Theorem 2 (Completeness) If a P, set satisfies effectiveness, Markov, and
recursiveness, then there exists a Markovian model with a unique causal graph
that can generate this P, set.

Proof: Define a relation “<” as: X <Y if X ~ Y. Then the transitive closure
of <, <*, is a partial order over the set of variables V from the recursiveness
property as shown in [Hal98]. Let “<” be a total order on V' consistent with <*.

We have that
if X <Y then P, (z) = Py(z) (2.24)
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for any set of variables S. This is because if P, (z) # Ps(x), then ¥ ~ X and
therefore Y < X, which contradicts the fact that X < Y is consistent with <*.

Define a set PA; as a minimal set of variables that satisfies
Ppai (UZ) = PU\{W}(’UZ'). (2.25)
We have that
if Vi <V}, then V; € PA,. (2.26)

Otherwise, assuming V; € PA; and letting PA] = PA; \ {V;}, from Egs. (2.24)
and (2.25) we have

PP%(”) = Ppaé,vj (Uz) = P’U\{W}(Ui)7 (2.27)

which contradicts the fact that PA; is minimal. From Eq. (2.26), drawing an
arrow from each member of PA; toward V;, the resulting graph G is a DAG.

Substituting Eq. (2.25) into the Markov property (2.8), we obtain, for any set
of variables T,

Pw\t)= ] Ppailv). (2.28)
{ilvig1y
By Lemma 1, we get
Ppa, (vi) = P(vilpas). (2.29)

From Egs. (2.28), (2.29), and the effectiveness property (2.6), Eq. (1.2) follows.
Therefore, a Markovian model with a causal graph G can generate this P, set.

Next, we show that the set PA; is unique. Assuming that there are two
minimal sets PA; and PA} both satisfying Eq. (2.25), we will show that their
intersection also satisfies Eq. (2.25). Let A = PA, N PA,, B = PA;\ A, B =
PAINA, and S =V \ (PA;UPA, U{V;}). From the Markov property Eq. (2.7),

we have

Pa(b,V,5,01) = Pan, (b0, S)Pv\{vz‘}(vz‘)
= Par,vq‘,(ba bl: S)Pa,b(vi) (2.30)

Summing both sides of (2.30) over B’ and S, we get

Po(b,v:i) = Pop,(b) Pop(vs)- (2.31)
Substituting Ppe, (vi) with Py (v;) in (2.31), we get

Pu(b,v;) = Py (b) Pow (). (2.32)

12



Summing both sides of (2.32) over B, we obtain
Pa(%’) = Pa,b’ (’l}i> = Ppa'i (Ui), (233)

which says that the set A = PA; N PA! also satisfies Eq. (2.25). This contra-
dicts the assumption that both PA; and P A} are minimal. Thus PA, is unique. O

A Markovian model also satisfies the following properties.

Property 4 If a set B is composed of nondescendants of a variable V;, then for
any set of variables S,

P, s(b) = Py(b). (2.34)
Proof: If B is disjoint of S, Eq. (2.34) follows from Eq. (2.15) since B C B;.

If B is not disjoint of S, Eq. (2.34) follows from the Effectiveness property and
Eq. (2.15). O

Property 5 For any set of variables S C V \ (PA; U{Vi}),
Pra, s (Vi) = Ppa, (v4). (2.35)
Proof: Let 8" =V \ (PA, U{V;} US).
Pras (Vi) = ) Poag,s(s', vi)
= Py} (v) Bpas s (5") (by Eq. (2.7))

= Ppa,(0:) > Praysw(s') (by Eq. (2.25))

= Ppa; (vi) (2.36)
O

Property 6
Ppa,(vi) = P(vilpai). (2.37)

Property 6 has been given in Eq. (2.29).

Property 7 For any set of variables S CV, and V; € S,

Py(vilpa;) = P(vilpa;), for pa; consistent with s. (2.38)
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Proof: Let §' = V\ (PA; U{V;}US). Assuming that pa; is consistent with s, we
have

Py(vi, pa;) = ZPS(%Paz‘a s')
— Z Py i3 (Vi) Po i (pas, 8') (by Eq. (2.7))
= P(v;|pay) ZPMZ. (pa;, s') (by Eq. (2.14))
5/

= P(vilpa;) Ps 5, (pa;)
= P(vifpa;) Ps(pa;) (by Property 4) (2.39)

which leads to Eq. (2.38). O

2.3 Interventional Distributions in Semi-Markovian Mod-
els

When some variables in a Markovian model are unobserved, the probability distri-
bution over the observed variables may no longer be decomposed as in Eq. (1.1).
Let V. = {Vi,...,V,} and U = {Ui,..., Uy} stand for the sets of observed
and unobserved variables respectively. In a semi-Markovian model, as defined
in Chapter 1.3, the observed probability distribution and the post-intervention
distribution are given by Eqgs. (1.5) and (1.6) respectively.

If, in a semi-Markovian model, no U variable is an ancestor of more than
one V variable, then Pi(v) in Eq. (1.6) factorizes into a product as in Eq. (1.2),
regardless of the parameters {P(v;pa;,u')} and {P(u)}. Therefore, for such a
model, the causal Markov condition holds relative to Gy (the subgraph of G
composed only of V' variables), that is, each variable V; is independent on all its
non-descendants given its parents PA,; in G'y. And by convention, the U variables
are usually not shown explicitly, and Gy is called the causal graph of the model.

The causal Markov condition is often assumed as an inherent feature of causal
models (see e.g. [KSC84, SGS93]). It reflects our two basic causal assumptions:
(1) include in the model every variable that is a cause of two or more other vari-
ables in the model; and (ii) Reichenbach’s (1956) common-cause assumption, also
known as “no correlation without causation,” stating that, if any two variables
are dependent, then one is a cause of the other or there is a third variable causing
both.

If two or more variables in V' are affected by unobserved confounders, the
presence of such confounders would not permit the decomposition in Eq. (1.1),
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and, in general, P(v) generated by a semi-Markovian model is a mixture of prod-
ucts given in (1.5). However, the conditional distribution P(v|u) factorizes into
a product

u) = HP(Uz«lpai,ui), (2.40)

and we also have
[ liipvery Plvilpai, u?) for all v consistent with 7' = .

I (2.41
Hvlu) = i for all v inconsistent with 7" = ¢. ( )

Therefore all Properties 1-7 hold when we condition on u. For example, the
Markov property can be written as

R}\(S1U32)(817 52‘“) = Pv\sl (311U)Pv\52 (SZ{U)- (242)
Let P,(u) denote the set of all conditional interventional distributions
P,(u) = {P(vju)|T CV,t € Dm(T)} (2.43)

Then P, (u) is fully characterized by the three properties effectiveness, Markov,
and recursiveness, conditioning on u.

Let P, denote the set of all interventional distributions over observed variables
V asin (2.1). From the properties of the P,(u) set, we can immediately conclude
that the P, set satisfies the following properties: effectiveness (Property 1), re-
cursiveness (Property 3), Property 4, and Property 5, while Markov (Property 2),
Property 6, and Property 7 do not hold. For example, Property 5 can be proved
from its conditional version,
Ppa, s (Uz{u) = Ppai (Uitu)7 (2'44)
as follows

Py, s (i) praz,s v;lu) P ZPpaz (vilu)P(u) = Py, (vi). (2.45)

Significantly, the P, set must satisfy inequalities that are unique to semi-
Markovian models, as opposed, for example, to models containing feedback loops.
For example, from Eq. (1.6), and using

P(vilpa;,u’) <1, (2.46)
we obtain the following property.
Property 8 For any three sets of variables, T, S, and R, we have
Py(s) > By(r,s) + P (t,s) — P(t,r,s) (2.47)

Additional inequalities, involving four or more subsets, can likewise be derived by
this method. However, finding a set of properties that can completely characterize
the P, set of a semi-Markovian causal model remains an open challenge.
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2.4 Applications in the Identification of Causal Effects

Given two disjoint sets 7' and S, the causal effect Py(s) is said to be identifiable if,
given a causal graph, it can be determined uniquely from the distribution P(v) of
the observed variables, and is thus independent of the unknown quantities, P(u)
and P(v|pas, u'), that involve elements of U. Identification means that we can
learn the effect of the action T = ¢ (on the variables in S) from sampled data
taken prior to actually performing that action. In Markovian models, all causal
effects are identifiable and are given in Eq. (1.2). When some confounders are un-
observed, the question of identifiability arises. Sufficient graphical conditions for
ensuring the identification of P(s) in semi-Markovian models were established by
several authors [SGS93, Pea93, Pea95a] and are summarized in [Pea00, Chapters

3 and 4]. Since

Py(s) = Py(s|u)P(u), (2.48)

and since we have a complete characterization over the set of conditional inter-
ventional distributions (P, (u)), we can use Properties 1-3 (conditioning on u) for
identifying causal effects in semi-Markovian models.

The assumptions embodied in the causal graph can be translated into the
language of conditional interventional distributions as follows:

For each variable V;,

Py oy (vilu) = Py, (vi]u). (2.49)
The Markov property (2.8) conditioning on u then becomes

PNty = ] B (vsh). (2.50)

{ilvieV\T}

The significance of Eq. (2.50) rests in simplifying the derivation of elaborate
causal effects in semi-Markov models. To illustrate this derivation, consider the
model in Figure 1.2, and assume we need to derive the causal effect of X on
{Z,Y}, a task analyzed in [Pea00, pp.86-8] using do-calculus. Applying (2.50) to
P, (y, z|u), (with z replacing t), we obtain:

Py(y,2) = > Puly, zu)P(u)

= P.(ylu)Ps(2) P(u)

= Fe(2) Px(y) (2.51)
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Each of these two factors can be derived by simple means; P,(z) = P(z|z) because
Z has no unobserved parent, and P,(y) = >, P(y|z', 2) P(2') because X blocks
all back-door paths from Z to Y (they can also be derived by applying (2.50) to
P(z,y,z|u)). As a result, we immediately obtain the desired quantity:

Py(y,2) = P(zl2) ) P(yla’, 2)P(d), (2.52)

a result that required many steps in do-calculus.

In general, from (2.50), we have

\t) = Z H Ppa,(vilu )P(u)

uw {i|V;eV\T}

s
D
[@xt
[o%)

N

Depending on the causal graph, the right hand side of (2.53) may sometimes be
decomposed into a product of summations as

Pi(v\t) = HZ H Ppa, (vilu') P(n;)

n; VieS;

= H Pos; (55), (2.54)
J

where N;’s form a partition of U and S;’s form a partition of V' \ 7. Eq. (2.51)
is an example of such a decomposition. Therefore the problem of identifying
Py(v\ t) is reduced to identifying some P, (s;)’s. Based on this decomposition,
a method for systematically identifying causal effects is developed in Chapter 5.

2.5 Conclusion

We have shown that all experimental results obtained from an underlying Marko-
vian causal model are fully characterized by three norms of coherence: Effective-
ness, Markov, and Recursiveness. We have further demonstrated the use of these
norms as inferential tools for identifying causal effects in semi-Markovian models.
This permits one to predict the effects of actions and policies, in the presence of
unmeasured variables, from data obtained prior to performing those actions and
policies.

The key element in our characterization of experimental distributions is the
generic formulation of the Markov property (2.7) as a relationship among three
experimental distributions, instead of the usual formulation as a relationship
between a distribution and a graph (as in (1.1)). The practical implication of
this formulation is that violations of the Markov property can be detected with-
out knowledge of the underlying causal graph; comparing distributions from just
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three experiments, Py (s,us,) (51, S2), Pos, (51), and Py, (s2), may reveal such vio-
lations, and should allow us to conclude, prior to knowing the structure of G, that
the underlying data-generation process is non-Markovian. Alternatively, if our
confidence in the Markovian nature of the data-generation process is unassailable,
such a violation would imply that the three experiments were not conducted on
the same population, under the same conditions, or that the experimental inter-
ventions involved had side effects and were not properly confined to the specified
sets Sl, SQ, and S1 U Sg.

This feature is useful in efforts designed to infer the structure of G from a
combination of observational and experimental data; a single violation of (2.7)
suffices to reveal that unmeasured confounders exist between variables in 57 and
those in S,. Likewise, a violation of any inequality in (2.47) would imply that
the underlying model is not semi-Markovian; this means that feedback loops may
operate in data generating process, or that the interventions in the experiments
are not “atomic”.
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CHAPTER 3

Causal Discovery from Changes

3.1 Introduction

Inferring causal structures from empirical data has become an active research
area in recent years. Several graph-based algorithms have been developed for
this purpose. Some are based on detecting patterns of conditional independence
relationships [PV91, SGS93], and some are based on Bayesian approaches [CH92,
Gei95, Co099]. These discovery methods assume static environment, that is,
a time-invariant distribution and a time-invariant data-generating model, and
attempt to infer structures that encode dynamic aspects of the environment,
for example, how probabilities would change as a result of interventions. This
transition, from static to dynamic information, constitutes a major inferential
leap, and is severely limited by the inherent indistinguishability (or equivalence)
relation that governs Bayesian networks [VP90].

One way of overcoming this basic limitation is to augment the data with
partial causal knowledge, if such is available. [SGS93], for example, discussed
the use of experimental data to identify causal relationships. [CY99] discussed a
Bayesian method of causal discovery from a mixture of observational and exper-
imental data.

We propose a new method of discovering causal relations in data, based on
the detection and interpretation of local spontaneous changes in the environment.
While previous methods assume that data are generated by a static statistical
distribution, our proposal aims at exploiting dynamic changes in that distribu-
tion. Such changes are always present in any realistic domain that is embedded
in a larger background of dynamically changing conditions. For example, natural
disasters, armed conflicts, epidemics, labor disputes, and even mundane decisions
by other agents, are unexpected eventualities that are not naturally captured in
distribution functions. The occurrence of such eventualities tend to alter the
distribution under study and yield changes that are markedly different from or-
dinary statistical fluctuations. Whereas static analysis views these changes as
nuisance, and attempts to adjust and compensate for them, we will view them as
a valuable source of information about the data-generating process. A controlled
experimental study may be thought of as a special case of these environmental
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changes, where the external influence involves fixing a designated variable to some
predetermined value. In general, however, the external influence may be milder,
merely changing the conditional probability of a variable, given its causes. More-
over, in marked contrast to controlled experiments, we may not know in advance
the nature of the change, its location, or even whether it took place; these may
need to be inferred from the data itself.

The basic idea has its roots in the economic literature. The economist Kevin
Hoover (1990) attempted to infer the direction of causal influences among eco-
nomic variables (e.g., employment and money supply) by observing the changes
that sudden modifications in the economy (e.g., tax reform, labor dispute) in-
duced in the statistics of these variables. Hoover assumed that the conditional
probability of an effect given its causes remains invariant to changes in the mech-
anism that generates the cause, while the conditional probability of a cause given
the effect would not remain invariant under such changes. This asymmetry may
be useful in distinguishing cause and effect.

Today we understand more precisely the conditions under which such asym-
metries would prevail and how to interpret such asymmetries in the context of
large, multi-variate systems. Whenever we obtain reliable information (e.g., from
historical or institutional knowledge) that an abrupt local change has taken place
in a specific mechanism that constrains a given family of variables, we can use
the observed changes in the marginal and conditional probabilities surrounding
those variables to determine the direction of causal influences in the domain.
The statistical features that remain invariant under such changes, as well as the
causal assumptions underlying this invariance, are encoded in the causal graph at
hand, and can be used therefore for testing the validity of a given structure. Like-
wise, conflicts between observed and predicted changes can be used for automatic
restructuring of the topology of the structure at hand.

In this chapter, we will assume that we have data generated from a dynami-
cally changing environment and our task is to recover the actual causal structures.
In Section 3.2, we formally present this learning problem. In Section 3.3, we an-
alyze the equivalence classes of causal structures relative to the given data. In
Section 3.4, we analyze the patterns of distributional changes induced by data
and present recovery methods that infer causal directionality information from
those changes. In Section 3.5, we investigate the Bayesian approach for causal
discovery. The Bayesian approach [HMC97] gives us a consistent way of combin-
ing dynamic datasets to get an overall estimation of causal structures. We show
how to derive a Bayesian scoring metric from various types of dynamic data by
assigning appropriate priors over probability parameters. The Bayesian scores
obtained are extensions of previously derived Bayesian scores [CH92, Gei95]. For
mixed observational and experimental data we obtained the same score as given
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in [CY99]. We show that dynamic data increase our power of causal discovery
beyond the limits set by independence equivalence.

3.2 Mechanism Changes

Let our problem domain be a set of discrete random variables V = {V;,..., V,}.
In this chapter, we denote a causal model over V' by a pair M = <G, ©g>, where
G is the causal graph and O is a set of probability parameters. We assume that
each variable V; can take values from a finite domain, Dm(V;) = {vi1, ..., Vir, },
where 7; is the number of states of V;. Let 0., v; € Dm(V;), pa; € Dm(Pa;)
denote the multinomial parameter corresponding to the conditional probability
P(v;|pa;). We will use the following notations: Opa, = {Ov;pa; Ui € DM(V))}, T, =
UpaieDm(pai)é;mi, Og = UL, ¥,. A causal model M = <G,O¢> generates a
probability distribution given in Eq. (1.1), rewritten as

Pv) = Hgvi;pai' (3.1)

H

A probability distribution P(V) is said to be compatible with a causal graph G
if P(V) can be generated by some causal model M = <G, 0>,

Based on the modularity assumption that each family in the causal graph
represents an autonomous physical mechanism and is subjected to change without
influencing other mechanisms, we formally define mechanism change as follows.

Definition 3 (Mechanism Change) A mechanism change to a causal model
M = <G,0¢g> at a variable V; is a transformation of M that produces a new
model, My, = <G, 04>, where O = V,U(O¢\¥;) and ¥} is a set of parameters
having values that differ from those in U;.

We will assume that the parent set Pa; does not change in a mechanism change.
We see that an intervention that fixes V; to a particular value is a special case
of a mechanism change. Let P(V) be the distribution generated by M, as in
Eq. (3.1). Then the distribution generated by My, is given by

PVi (U> = Qi)i;pai H gvj pag - (32)

We will call (P, Py,) a transition pair (TP) and V; the focal variable of the tran-
sition. Assume that a series of mechanism changes occurred successively to a
causal model M = <G, @°G>, and let F' = (V;,,...,V;,) denote the correspond-
ing sequence of focal variables. We use Ppg = (P P',..., P¥) to denote the
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sequence of distributions generated by such a series, and call the pair (Prg, F') a
transition sequence (TS).

As oracles for cause-and-effect relations, causal models can predict the ef-
fects that any external or spontaneous changes have on the distributions. Con-
versely, by detecting how probability distributions change under various mech-
anism changes, we obtain information on the structure of the model generat-
ing those distributions. We propose to exploit the stream of distributions from
mechanism changes to recover underlying causal structures. In this chapter,
we make the following assumptions: each mechanism change occurs at one sin-
gle variable at a time, and we have the distribution (or samples thereof) after
each single mechanism change, that is, we know when each mechanism change
happens and at which variable. We will then assume that we are given a TS
(Prg, F') corresponding to some causal graph G, or, we have a sequence of datasets
Drs = {D° ..., D"}, where each D' is a set of random samples from a distribu-
tion P*, such that each pair (P/~!, P7) is a TP with focal variable V;,, and our
task will be to recover a causal graph (or a set of graphs) that can generate Dyg.
First, we study what can be learned from a TS.

3.3 Indistinguishability of Causal Graphs

Our ability to recover causal graphs is limited by the statistical indistinguisha-
bility of causal models with given data. In this section, we study the classes of
causal structures that are indistinguishable (or “equivalent”) relative to a T'S.

The statistical information provided by any causal graph is completely en-
coded in the independence relationships among the variables. Therefore, two
causal graphs are statistically indistinguishable given one static distribution if
and only if they are independence equivalent. The graphical conditions for inde-
pendence equivalence are given by the following theorem.

Theorem 3 (Independence Equivalence) Two causal graphs are independence
equivalent if and only if they have the same skeletons and the same sets of v-
structures, that is, two converging arrows whose tails are not connected by an
arrow [VP90].

Now assume that we have a TP with focal variable V;. A causal graph G
is said to be compatible with o transition pair (P, Py,) if P can be generated
by a causal model M = <G,0¢> and Py, can be generated by a causal model
My, = <G, 0> resulted from a mechanism change to A at V;. Note that a
causal graph could be compatible with both P and Py, but not compatible with
the TP (P, Py,). Among those independence-equivalent graphs compatible with
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both P and Py, a TP (P, Py,) can distinguish those that can generate Py, from
P with a single mechanism change from those that can not. Two causal graphs
G, and G4 are called transition pair equivalent with respect to a TP with focal
variable V;, or V;-transition equivalent, if every TP (P, Py,) compatible with G,
is also compatible with G5. Two causal graphs are statistically indistinguishable
given a TP (P, Py;) if and only if they are Vj-transition equivalent.

Theorem 4 (Transition Pair Equivalence) Two causal graphs G1 and G
are Vi-transition equivalent if and only if they have the same skeletons, the same
sets of v-structures, and the same sets of parents for V;.

Proof: Let G1 be compatible with a TP (P, Py;). G5 must have the same skeletons
and the same sets of v-structures as G; to be compatible with P (and Py;) by
Theorem 3. We have the following decomposition:

P(v) = P(vilpa}) [ | Pvjlpaj) = P(vilpai) [T £(v;lpad), (3.3)
J# G

where Pa! and Pa? are parents of V; in Gy and G, respectively. G is compatible

with the TP (P, Py,), hence can generate Py, from P by a mechanism change at
Vi:

Pyi(v) = Py (vilpa) | | Pvjlpa). (3.4)

J#
Plugging the expression for [],_; P(v;lpa;j) from Eq. (3.3) into Eq. (3.4), we have

’Ul pa;
PV@‘ (’U) = PVQ (Ui1pa ;pa HP Uy lpa (35)

G, is also compatible with the transition pair (P, Py;) if and only if
Py (v) = Py, (vilpa?) T Pluslpa?). (3.6)
JF
Egs. (3.5) and (3.6) lead to

P(v|pay)

PVi (Uilpa%)P(v»lpal)

= Py, (vilpa7), (3.7)
which holds for any distribution P and Py, if and only if G; has the same parent
set for V; as Gy (Pa} = Pa?); if G, has a different parent set for V; with Go,
Eq. (3.7) will impose some constraints between P and Py, and will not hold for
arbitrary possible transition pair (P, Py;). O
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Figure 3.1: (a)The Cancer network. (a)-(d) are independence equivalent. (e)-(g)
are B-transition equivalent. A mechanism change on A determines a unique
causal graph (h).
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A TS is simply a series of TP’s. Accordingly, we say that a causal graph is
compatible with a transition sequence Prg = (P°, Pt ..., P¥), F = (Vi,,..., Vi)
if it is compatible with each TP (P/~!, P7) in the sequence. Likewise, two causal
graphs GG; and G4 are called transition sequence equivalent with respect to a TS
(Prs, F), or F-transition equivalent, if every TS (Prg, F') compatible with G| is
also compatible with G5. Two causal graphs are statistically indistinguishable
given a TS (Prg, F') if and only if they are F-transition equivalent.

Theorem 5 (Transition Sequence Equivalence) Two causal graphs are F-
transition equivalent if and only if they have the same skeletons, the same sets of
v-structures, and the same sets of parents for variables in F'.

Theorem 5 says that a TS determines the directions of the edges between the
focal variables and their neighbors (among the set of independence-equivalent
graphs). See Figure 3.1 for an example of TS equivalence.

Given a TS, the most we can expect to recover is a set of causal graphs that
are TS-equivalent, as defined by Theorem 5. We may find this equivalence class
by detecting independence relations and distribution changes.

3.4 Learning Causation by Detecting Changes

In this section, we identify the causal information that can be learned by detecting
various changes in the probability distributions, in particular, changes in the
marginal probability of each variable. The following theorem is obvious.

Theorem 6 A mechanism change at a wvariable X to a causal model M =
<G, 0> may alter the marginal probabilities of the descendants of X in G and
can not alter the marginals of nondescendants of X.

It is possible of course that, for some peculiar parameter changes, the marginal
probabilities of some descendants of X would not change. When recovering causal
information from distributional changes, we assume a restriction on a TS called
influentiality.

Definition 4 (influentiality) A TP (P, Px) generated by a causal model
<G,0g> is said to be influential if for every descendant Y of X in G, the
marginal distribution Px(Y') is different from P(Y"). A TS is influential if every
TP in the sequence is influential.

Assuming influentiality, we can obtain causal information by detecting changes
of marginal probabilities.
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Given a TP (P, Px), and assuming that we can test each variable for marginal
distribution change, we can draw the following inferences. If the marginal of a
variable Y has changed, we conclude that Y is a descendant of X. If the marginal
of a variable Z has not changed, we conclude that Z is a nondescendant of X.
We thus conclude that Z < X < Y should be a causal order consistent with the
causal graph. Next we discuss how to piece together ordering information of this
kind, as obtained from a TS.

3.4.1 Partitioning the variables

Given a TS Prg, F = (V;,,...,V;,), each variable can be characterized by a
sequence of 1's and 0’s, a tag ay, . .., ax, where q; reflects whether the marginal of
that variable changed (a; = 1) or not (a; = 0) in the ith transition of the sequence.
Non-focal variables that are given the same tags cannot be distinguished by the
TS (through detecting marginal changes), and no information can therefore be
extracted about their relative causal order in the causal graph. We may put
all such variables into a bucket labeled with the same tag, denoted by B,,...,.
Clearly, since we have no information on causal relations among variables within
the same bucket, all variables in a bucket stand in the same ordering relation to
all variables in another bucket. Focal variables need special treatment since they
carry more information, and we will put each focal variable into an individual
bucket called a focal bucket, denoted by B/

a1-ap”

We classify variables into buckets with the following algorithm.

Algorithm 1 (Partitioning Variable)

Input: a TS Prs, F'=(Vi,,..., Vi)

Output: A set of buckets, each associated with a tag ay . ..ag, and each containing
a set of variables.

Put all variables in a bucket B.
For the ith mechanism change, i = 1,...,k,
For each bucket By, ...q,_, tncluding focal buckets
if it contains the tth focal variable, put it in a focal bucket Bf;,_‘aiull.
put other changing variables in Bg,..q;_;1-
put non-changing variables in Bg,..q;_j0-

We show the partitioning process by an example. Assume that the actual
causal graph is the DAG shown in Figure 3.2(a) and that we are given a TS
(P, Px, Py). In the first transition, with X as the focal variable, P(Y) does
not change, hence By = {Y}; P(X),P(Z),P(W), P(Q) do change, hence we
form By = {Z,W,Q}, B = {X}. Note that a focal variable is put into an
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individual bucket. In the second transition, with ¥~ as the focal variable, P(Y)
changes, giving Bl, = {Y}; P(Z) and P(W) change, giving B;; = {Z, W};
P(Q) and P(X) do not change, giving By, = {Q} and B}, = {X}. As a result,
the variables are partitioned into four buckets: Bfy = {X},BJ, = {YV}, By =

{Q}a Bll = {Za W}

3.4.2 Extracting causal information

We shall now discuss what causal information we can extract from the tags at-
tached to buckets. Consider any two buckets By, ..., and By, ... If there exists
a bit such as a; < b; (i.e., a; = 0 and b; = 1), it must be that, in the ith tran-
sition, the marginals of variables in B,,..,, did not change and the marginals
of variables in By,..,, did. Therefore, no variable in B,,..q, is a descendant of
any variable in By, ..p,. On the other hand, if there exists another bit such that
aj > b; (a; = 1,b; = 0), then no variable in By,..;, is a descendant of any vari-
able in By, ..,,, which means that there exists no directed path, in particular no
edge, between any variable in B,,..,, and any variable in By, ..;,. The equality
a; = b;,i = 1,...,k can only happen if one of the buckets is a focal bucket, in
which case the focal variable is an ancestor of all the variables in the other bucket.
In summary, the relation between two buckets B,,..q, and By, .., is determined
as follows:

Rl a; <b;,i=1,...,kand 37,a; < b;: variables in B,, .., are nondescendants
of variables in By, .., , denoted by By, ..o, < Bp, ..,

R2 a; > b,1=1,..., k and 3], a; > bjl Bbl"'bk < Bal‘..ak.

R3 There exist two bits ¢ # j such that a; < b; and a; > b;: there can be no
directed path between any variable in B,, ..., and any variable in By, .., .

R4 a; = b5 = 1,...,k, one of the buckets, say B} is a focal bucket:

Q1 Qy?
all variables in By,..,, must be descendants of the focal variable in ngl,,.ak,
which is a stronger relation than that in R1 and R2 but will still be denoted
by Bt{lmak < Bb1~~bk'
The focal buckets convey more information. Let B,, ..,, be a focal bucket contain-
ing the focal variable Vi, for the jth transition. Then if b; = 1, we have that all
variables in By,.., are descendants of V;; since their marginals changed in the jth
transition. This rule is consistent with the above rules R1-R3, hence it is applied
only in R4 when RI-R3 cannot determine a relation. However, in practice, due
to imperfect statistical tests, there may be conflicts between them. For example,

we may determine that there is no edge between B,,..,, and By, .., by R3 and in
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the same time By, .., is a focal bucket for the jth transition and b; = 1. These
conflicts signal mistakes in the statistical tests, and whenever there are conflicts,
we will declare the relation as “unknown”. We summarize the above discussions
with the following algorithm.

Algorithm 2 (Extracting Relation)

Input: two buckets B, ..., and By, ...y, .

Output: the relation between the two buckets, could be “<”, “no-directed-path
(NDP)”, or “unknown”.

1. a; <by,i=1,...,k and 37,a; < b;: if By, s a focal bucket for the Ith
transition and a; = 1 then “unknown”, else By, ..o, < DBp,..p,,-

2.0, > biyi=1,...,k and 3j,a; > b;: if By .., 15 a focal bucket for the Ith
transition and by = 1 then “unknown”, else By,..,, < By, ..qy-

8. There exist two bits i # j such that a; < b; and a; > b;: if By,..4, 5 a focal
bucket for the lth transition and a; = 1 or B,,..,, s a focal bucket for the
[th transition and by = 1 then “unknown”, else “NDP”.

4. a; = bi,i=1,..., k: if both buckets are focal buckets then “unknown”; else
let the focal bucket be Bifl,__%, then Bgl,..% < By, oty -

Consider the binary relation “<” on the set of buckets as defined in the
Algorithm 2. We have the following theorem.

Theorem 7 The binary relation “<” on the set of buckets is a partial order.

Proof: The relation is transitive. If By, ..., < Bpy.w, and By g, < Bejig,,, We
have a; < b; < ¢ 1 =1,... k.

1. 34,a45 < ¢;. If Be .., is not a focal bucket, then we have By, ..o, < Be...c -
If B,.., is a focal bucket for the [th transition and a; = 1, then b = 1
since a; < b < ¢, which contradicts By,..s, < Bej.cy-

2. a; =c¢yt=1,...,k. Then a; = b, = ¢;,2 = 1,...,k, and then B, .., has
to be a focal bucket and By,..4, is not one in order to have the relation
By, .., < By, which then contradicts By, ..o, < Bej...c -

The relation is antisymmetric. If By ..o, < By, .p, and By .p, < Bq,..q,, then

a; = b;,1 = 1,..., k. Since they cannot both be focal buckets, they must be the
same bucket. O
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Figure 3.2: (a) A causal graph; (b) The order graph for the TS (P, Px, Py); (c)
The marked order graph.

A partially ordered set can be represented by a DAG. We construct a graph
with both directed and undirected edges, called an order graph (OG), as follows:
a node represents a bucket; for each pair of buckets B and B’, there is a directed
edge B — B’ if B < B’; there is an undirected edge B—B' if the relation
between them is “unknown”. If we had a perfect statistical test for distributional
changes, an OG would be a DAG. For the causal graph shown in Figure 3.2(a)
and the TS (P, Px, Py), the ideal OG is given in Figure 3.2(b).

In an OG, when B is a focal bucket, a directed edge B — B’ asserts that
there exists a directed path from the focal variable contained in B to all the
variables in B’. Hence, if there is no other mized directed path, a path that could
contain undirected edges but no directed edges in the reverse direction, from B
to B’ in the OG, there must be an edge from B to at least one variable in B’
in the causal graph. We mark this type of edges as B — B’, to distinguish
them from those that only represent potential edges in the causal graph. This
information is useful when the child bucket B’ contains only one variable; we
then assert that the edge B — B’ must exist in the causal graph. We will call
an OG with marked edges a marked order graph (MOG); an example is shown in
Figure 3.2(c).

An algorithm for constructing a MOG is given in the following.

Algorithm 3 (Constructing MOG)
Input: an influential TS with known focal variables.
Output: a marked order graph.

1. Put variables into buckets using Algorithm 1.

2. Eztracting relations among buckets using Algorithm 2.
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3. Let each bucket be a node.

4. For each pair of nodes B and B’
If B < B', add an edge B — B’.
If B' < B, add an edge B' — B.
If the relation is “unknown”, add an edge B—DB’.

5. For each focal bucket B and each of its child B
If there is no other mized directed path from BY to B, mark the edge as
Bl = B.

In summary, the information conveyed by a MOG is as follows:

1. An unmarked edge B — B’: All variables in B can be ordered before all
variables in B’ in the causal graph, in other words, there are no directed
paths from variables in B’ to variables in B. When B is a focal variable,
there exists a directed path from B to each variable in B’ in the causal
graph.

2. A marked edge B — B’: There exists a directed path from B to each
variable in B’. In the case that both B and B’ contain one single variable,
the edge B — B’ must exist in the causal graph.

3. No edge between B and B’: there is no directed path, in particular no edge,
between any variable in B and any variable in B’ in the causal graph.

3.4.3 Limitation of detecting marginal changes

Can we fully recover a causal graph by detecting marginal distribution changes
alone? To fully recover a causal graph, we must construct a MOG in which
each bucket contains only one variable and every edge is marked. This may
not, in general, be achieved. Considering a causal graph G containing a path
X — Z — Y, it is clear that we can never determine if there is an edge
X — Y in G, since all marginal changes produced by transitions would be the
same after adding that edge. What is the best we can get then by detecting
marginal changes?

Given a DAG G, if we remove an edge X — Y whenever there is a directed
path from X to Y, we get the transitive reduction of GG. The transitive reduction
of a DAG G is the graph G’ with the fewest edges such that the transitive closure
of G' is equal to the transitive closure of G. The transitive closure of a DAG G is
the graph G” such that an edge X — Y is in G" iff there is a directed path from
X to Y in G. By detecting marginal changes in TS’s, the best we can hope to
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Figure 3.3: (a) A causal graph; (b) The order graph for the TS (P, Px, Py)
without knowing the focal variables; (¢) The marked order graph.

get is the transitive reduction of the actual causal graph. Since to mark an edge
X — Y, X must be a focal variable, it follows that every node except leaf nodes
must be a focal variable in order to mark every edge in the transitive reduction
graph. To further make each bucket contain only one variable, every leaf node
having the same set of parents as another leaf node must be a focal variable.

In conclusion, by detecting marginal distribution changes, the best we can
learn is the transitive reduction of the causal graph, and we can achieve it by a
TS in which every variable has had its mechanism changed.

3.4.4 Unknown focal variables

In this section we discuss situations where we know that a mechanism change has
occurred at a single variable but we do not know the identity of that variable.

We first note that, without knowing the focal variables, variables can still be
partitioned into buckets using Algorithm 1, and the relations between pairs of
buckets will be determined by rules R1-R3 of Section 3.4.2. Second, an order
graph can be constructed as follows: for each pair of buckets B and B’, there
is a directed edge B —+ B’ if B < B’. For the causal graph of Figure 3.3(a)
and the TS (P, Py, Py), the variables are partitioned into three buckets: Bip =
{X,Q}, Boy = {Y'}, By = {Z, W}, and the OG is shown in Figure 3.3(b).

Finally, we may be able to find to which bucket a focal variable belongs using
the following theorem, assuming influentiality and perfect statistical tests. (We
still call such a bucket a “focal bucket”, because it behaves as a focal variable
with the information at hand.)

Theorem 8 Let S; be the set of buckets for which a; = 1 in their tags ay ... ag,
then the focal bucket FJ for the jth transition is in S; and for any other bucket
B e Sj, FIi < B.
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Proof: Let the focal variable X for the jth transition be tagged as a; ... ag, then
a; = 1, since P(X) must change in this transition. All other variables in the set
of buckets S; must be descendants of X since all their marginals changed in the
jth transition. Therefore, whenever P(X) changes, their marginals must change
too, that is, if a; = 1 then b; = 1 for any variable tagged as by ... b in S}, which
leads to a; < by, ¢ = 1,..., k. Hence for any bucket By, ; € S; not containing
X, we have By, o, < Bp, .5, O

In practice, Theorem 8 may fail to identify a focal bucket when (due to im-
perfect statistical tests) there exists no bucket F7 in S; satisfying F' J < B for any
other bucket B € S;. In the case that an identified focal bucket contains only one
variable, we actually identify a focal variable. For the OG in Figure 3.3(b), the
focal buckets for the first and second transitions can be found as By = {X, Q}
and Bg; = {Y'} respectively, and we actually identify Y as the focal variable of
the second transition.

Finally we can get a MOG by marking edges as in Algorithm 3. For our
working example, the ideal MOG is shown in Figure 3.3(c).

3.4.5 TSs absent of influentiality

If we allow for the possibility that a mechanism change at X may not alter the
marginal probabilities of some of X’s descendants, then detecting no change in
P(Y') provides no information on the causal relation between X and Y. The
information we may obtain is that detecting a change in P(Y") means that ¥ is
a descendant of the focal variable X. First we partition variables into tagged
buckets using Algorithm 1. Then the relationship among buckets is determined
as: let B* be the focal bucket for the ith transition; B* < By, ,, if a; = 1, where
“<” represents that all variables in B,, ,, are descendants of the focal variable
B*. Finally we compute the transitive closure of < relation, denoted by <*, to
get more information. Simultaneous B <* B’ and B’ <* B would mean change
detection errors and the relation between B and B’ will be declared as unknown.
The information conveyed by B <* B’ is that all variables in B" are descendants
of the focal variable B in the underlying causal graph.

It is clear that if the identities of the focal variables are not given, we can not
get any order information from a TS by detecting marginal changes.

3.4.6 Combining static and dynamic information

So far, we discussed how to extract causal information given a TS by detecting
distributional changes. In this section, we briefly describe how to combine this
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information with that obtained from independence tests.

Given data from a static stable distribution, we can recover (partially directed)
causal graphs using conditional independence tests. Several such algorithms have
been developed, including IC algorithm [Pea00, section 2.5] (initially introduced
in [PV91]) and PC algorithm [SGS93]. The output of these algorithms is a par-
tially oriented graph representing an independence-equivalence class as defined
by Theorem 3.

To recover a causal graph from a TS, we first extract causal information
by detecting distribution changes as described in Section 3.4, then run the IC
algorithm using the causal information as prior knowledge. Note that since a TS
i1s composed of a series of different distributions, we need to test independence
relationships across all distributions.

We may obtain three types of causal information as shown in Section 3.4:
causal order among certain variables, no edges between certain variables, and
certain directed edges. The last two types (no-edge and determined-edge) can be
incorporated directly. Causal order information can be used to restrict the search
of candidate conditional sets and thus reduce the complexity of the IC algorithm.
Causal order information can also be used to orient more edges: any undirected
edge X—Y can be oriented as X — Y if X is ahead of YV in the causal order.
These methods of incorporating background knowledge have been discussed in
[SGS93, Section 5.4.5].

When the identities of all focal variables are known, after incorporating these
causal information as background knowledge, the output of the IC Algorithm
would be a partially oriented graph representing the TS equivalence class as de-
fined by Theorem 5. This is due to a theorem in [Mee95] which says that the
orientation rules in the IC algorithm are complete with respect to any consistent
background knowledge. If the identity of a focal variable is not given or iden-
tified as in Section 3.4.4, the edge directions between this focal variable and its
neighbors may not be fixed, hence the output graph is not maximally oriented,
and we have not obtained all the information implied by a TS. Algorithms for
identifying focal variables are currently under investigation.

3.4.7 Experimental results

We use x? test to detect distribution changes. Let D' and D? be two datasets,
consisting of N7 and N, cases respectively. Let Nj, and Ny, be the number of
cases in D! and D? respectively in which a variable X takes the value z. To test
the hypothesis that X has the same distribution in the two datasets, we compute
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which is asymptotically a x? distribution with r, — 1 degree of freedom, where r,
is the number of states of X. Let the significance level be a. If ¥? > x2 then we
decide “change”, else we decide “no-change”.

A mechanism change at a variable V; is simulated as follows. Consider pa-
rameters in Gyq,. If Oy, pa, < 0.5 then let O pa; = Ovipa; + 0, else let 0, ., =
Bu;1pa; — 0, where 6 is a parameter for adjusting the change magnitude. The rest
of the parameters in é;,ai are changed in proportional to their original values as:
O pa; = OOuisipaisJ = 2, 1i, where oo = (1 =0, 0, ) /(1 = 0o, p0,). When we
simulate a mechanism change at V;, we change parameters in gpai as above for
each pa; € Dm(Pa;).

In our experiments, we used data generated from a known network, the Alarm
Bayesian network’ [BSC89]. Samples used in the experiment were generated from
the network using a demo version of Netica API developed by Norsys Software
Corporation. We used equal sample sizes for all datasets in a TS, that is, a

sample size N represents that N cases were generated for each dataset D' in

Drs = {D°,..., D}

3.4.7.1 Errors in detecting changes

There are two types of errors in detecting changes: (i) mistaking “no-change”
for a “change”, known as type I error and denoted NC2C, and (ii) mistaking
“change” as “no-change”, known as type II error and denoted C2NC. Let G
be the causal graph used for generating samples. When a mechanism change
occurs at a variable V;, if our test statistics is perfect, all V;’s descendants in G
should be identified as “change” and V;’s nondescendants as “no-change”. Let
Dec; be the number of descendants of V; in G and NDec; be the number of
nondescendants of V,. Let ¢2nc; be the number of descendants of V; identified
as “no-change” by the x? test, and let nc2c; be the number of nondescendants
of V; identified as “change”. nc2¢; and ¢2nc; represent the number of type I
and type II mistakes made by the x? statistics. In any one run, we simulate a
mechanism change at each node V;,7 = 1,...,n, relative to the original network,
and compute the C2NC error rate as Y. c¢2ne;/ >, Dec; and the NC2C error rate
as Y .nc2c¢;/ Y, NDec;. We computed an average error rate over 5 runs.

'We used the version downloaded from the web site of Norsys Software Corporation,
http://www.norsys.com.
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Figure 3.4: Type I and Type II errors of x? statistics.

We varied the change magnitude 0, the sample size, and the significance level
@, and the results are shown in Figure 3.4. We see that the NC2C (type I) error
rate is nearly the same as the « value for different change magnitudes and sample
sizes, as expected. The C2NC (type II) error could be large when the o value is
small or the change magnitude is small. This suggests that we should consider
using a two-tailed x? test [SBMO0O] to control the C2NC error, especially when
the sample size is not large. In a two-tailed x? test, we use another threshold
o > « such that we decide “no-change” only when x* < x2, but we have to
decide “unknown” when y2, < x? < x2.

3.4.7.2 Errors in order graphs

In an OG, an edge B — B’ represents that all variables in B can be causally
ordered before the variables in B’. We call this type of information “order claims”.
No edge between B and B’ represents the absence of directed paths, in particular
edges, between variables in B and those in B’; this information will be called
“no-directed-path (NDP) claims” and “no-edge claims” respectively. An edge
B—B’ only signals mistakes in the statistical tests and will be called “unknown
claims”. We performed the following experiments: for certain d, «, sample size,
and focal variables, we generate datasets, construct an OG, count the claims,
and check against the true network to compute percentage errors for each type
of claims.?

2(Claims are counted between pairs of variables not between pairs of buckets. Numbers vary
with the focal variables picked, hence we did 100 runs, each time randomly picking a sequence
of k variables as focal variables, and computed average numbers.
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Table 3.1: Errors in order graphs. k: the number of focal variables. m: the
number of buckets. E,: percentage error of order claims. FE,: percentage error
of NDP claims. F,: percentage error of no-edge claims. u: number of unknown
claims.

N =500
order claim NDP claim
) a |m # E, # Lk E. u
5 0.1 001, 8 275 0.13 37 0.3 0.049 O
5 0.1 00511 355 0.12 88 0.32 0.039 3
5 05 0.01]10 379 0.03 84 031 0.027 1
5 0.5 00512 391 0.036 111 0.3 0.03 5
10 0.1 0.01 )15 354 0.13 137 0.3 0.044 1
10 0.1 0.05 21 335 0.11 241 0.3 0.044 11
10 0.5 0.01 18 360 0.02 206 0.3 0.027 b5
10 0.5 0.05]23 323 0.026 274 0.29 0.032 19
N = 5000
order claim NDP claim
k6 a \m  F# E, # K E, u
5 0.1 001,10 369 0.044 8 0.3 0.025 2
5 01 0.05]12 393 0.0561 109 0.3 0.031 5
5 05 0.01|10 400 0.014 78 0.19 0.015 2
5 05 005,12 406 0.026 104 0.26 0.027 7
10 0.1 0.01119 364 0.027 207 0.28 0.02 6
10 0.1 0.05 123 334 0.029 260 0.28 0.033 20
10 0.5 0.01(19 377 0.0081 191 0.25 0.02 9
10 0.5 0.05]23 334 0.018 265 0.26 0.03 22

The results are shown in Table 3.1 for various sample size N, number of
focal variables k£, mechanism change magnitude §, and significance level «. From
Table 3.1, we see that the NDP claims have a high percentage of error; however, if
those claims are interpreted as representing no-edge only, then the error rates are
much lower. As expected, the error rates are lower when d, the change magnitude,
is larger, and a T'S with more focal variables produces more no-edge claims.
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3.5 Causal Discovery by the Bayesian Approach

3.5.1 The Bayesian approach

Assume that we have a set of random samples D generated from a causal model
M = <G,O¢>. In the Bayesian approach, we compute the posterior probability
of a causal graph G given the dataset D as:
P(D|G,§)P(CE[S)
P(G|D,¢) = ,
P8 = = b opg
where ¢ represents our background knowledge. The marginal likelihood of the
data given G is computed as

(3.9)

P(DIG,€) = [ P(DI66,G.)P(O0(G.€)d0c: (3.10)

The term P(D|O¢, G, ) is the probability of the data given a Bayesian network
and is computable. We need to provide prior distributions for the probability
parameters, P(O¢|G,€), and causal graphs, P(G|£). The term P(D|§) is just a
proportional constant.

We can then compute the posterior probability of any hypothesis of interest by
averaging over all possible causal models. For example, the posterior probability
that X causes Y is computed as

P(X —VY|D,§)= Y  P(GID,¢), (3.11)

where the summation is over all causal graphs which contain the edge X — Y.
Since the number of possible graphs is exponential in the number of variables
n, it is impractical to sum over all graphs unless for very small n. One way to
deal with this problem is to use the relative posterior probability P(D,G¢) as a
scoring metric and search for graphs with high scores.

3.5.2 Derivation of Bayesian score

For the case that the dataset D is from a static distribution, closed form expres-
sions for P(D|G, &) have been derived [CH92, Gei95]. We will extend previous
derivations to incorporate dynamic data.

Assume that we have two data sets, D and D', generated from a causal
graph G but with different parameters, O¢ and ©f; respectively. The marginal
likelihood is computed as:

P(D,D’]G,f):/P(D,D’l@G, G EP(Og, 0L, 6)dOedOl.  (3.12)
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Assuming that data cases are random samples, and that the data are complete,
that is, every variable is assigned a value in all data cases, we have

P(D, DI‘GGa /G’7G7£) - P(D‘@GaG’g)P(D/‘@/G>GJ§)

N N’
=[[P(Clec G O] P(Cl66,G.€)

=1 =1

n
Nov;pay IN;%'» ag
:HHHHW;MZ 0 viipai ' (3.13)

i=1 v; po,;

where N is the number of cases in D, C) represents a specific case in D, and
Ny, pa; 18 the number of cases in D for which V; takes the value v; and its parents
Pa; takes the value pa;. We use [], as a shorthand for [, c pyys) and [, for
Hpa,i eDm(Pas)"

Consider the prior distribution P(Qg, |G, £). Assume that, as a back-
ground knowledge, the two datasets D and D’ are from a TP (P, P') with known
focal variable V;. Therefore, the two sets of parameters O and ©; differ only
by those parameters in ¥;. With this knowledge, we assume the following prior:

P(0¢,04|G, Vi,&) = P(86|G, ) P(W)|G, &) [ [ 6(w; — T)), (3.14)

il
where 6(z) is the Dirac delta function. Eq. (3.14) says that for 1 # [, Uj = U,
and the reader can verify that P(Og, O4|G, V], £) integrates to 1 and is a valid

density function. We have put V; as a condition to reflect the fact that V} is
known as the focal variable of the TP.

For the parameter priors P(©¢g|G,¢&) and P(¥)|G, &), we use the following
assumptions given in [Gei95]:

e Global Parameter Independence:
P(86G,€) = [ P(WiIG.€) (3.15)
i=1

e Local Parameter Independence:

PG, &) = [[ P05, |G, €),i=1,...,n. (3.16)

paq

e Parameter Modularity: if V; has the same parents in two causal graphs G
and G, then

P(éjmi]Glag) = P(é;)ai

G, ), pa; € Dm(Pa;). (3.17)
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While these assumptions were originally made for learning Bayesian networks,
[Hec95] discussed their implications for causal Bayesian networks.

Using Eq.s (3.13)—(3.17), and integrating out O\ ¥}, Eq. (3.12) is transformed

to
M’U pa; "
PorelG,vi6) = TTTT [ o5 PG 100,
1# pag
Ny ,Pa
<11 / Hew,;m,l (B €0,
pay
<11 / T"'wi}éé’,‘” G s |€) A0y, (3.18)
pa;
where

— N !
M'Ui;pa"i - ]\'Ui:paz + N

i i (3.19)
We use the notation Drp = {D, D'} and put V] as a condition to emphasize that
Eq. (3.18) is obtained under the assumption that the datasets D and D’ are from
a TP with known focal variable V,. The standard assumption for P(0,,|£) is a

Dirichlet distribution:

P (0, 1€) = Dir (0, |Gpa,), (3.20)

where @, = {@, pa;[vi € Dm(V;)} denotes the set of parameters for the Dirichlet
distribution. Assuming that the set of parameters ¢y, have the same prior
distribution as 6,4, given by Eq. (3.20), we obtain

P(Drp|G, Vi, 6) H H e H U, pa; + My, pa,)

i#l pa; Oépal + MP“ ) v F(avi;l’ai)

« H apal F(avz pa T sz »Paz)
F apal + N:Dflz) v F(avz;P&z)

apal F(avl pay + Nil)l pal>
: 3.21
* H I'(cpa + Nyg,) H (0w pa) ’ ( )

pay; vy

where I'(+) is the Gamma function, and

apaz E : Cey; sPags pll1 E : Nﬂz P paz 2 : Mvz P

v;
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3.5.3 Likelihood equivalence

For two independence-equivalent causal graphs GG; and G5, any distribution com-
patible with G is also compatible with GG;. Hence, it is reasonable to assume that
a dataset D from a static distribution cannot distinguish between independence-
equivalent causal graphs, or, P(D|G1,&) = P(D|Go,&). [Gei95] call this as-
sumption likelihood equivalence. They show that it constrains the space of prior
parameters Qu,.p,, and call the resulting likelihood-equivalent Bayesian scoring
metric the BDe metric. We will use prior parameters that satisfy the like-
lihood equivalence property, and call the associated metric P(Drp, G|V}, &) =
P(Drp|G,V;, £)P(GIE) the BDe TP metric.

The BDe_TP metric is not likelihood equivalent, and for a good reason. A TP
can indeed distinguish independence-equivalent graphs: among those independence-
equivalent graphs compatible with both P and Py;, a TP (P, Py;) can distinguish
those that can generate Py, from P with a single mechanism change from those
that can not.

It is natural to extend the likelihood equivalence requirement and define a new
property: a marginal likelihood P(D|G, &) is said to be Vi-transition likelihood
equivalent if for any dataset I and two Vj-transition equivalent causal graphs Gy
and GQ, P(D‘G1,€> = P(]D)IGQ,&-)

Theorem 9 The marginal likelihood P(Drp|G, Vi, &) given by Eq. (3.21) is V-
transition likelihood equivalent.

Proof: Eq. (3.21) can be rewritten as

I'(apa,) U(v;pa; + My, pa,)

(H (0, )T (0tpa; + Mipa,)
[opa, + NpazW(O‘paz + Npo,)

pay

H F(avzmaz + Noy pa )T (@0, + Nil;, pal>)

(3.22)
[y, ;paz)r(avz pay T My, ,paz)

Uy

Let G, and G5 be two Vj-transition-equivalent causal graphs. Then Gy and G are
independence equivalent and have the same parent set Pa; by Theorem 4. The
first term in Eq. (3.22) has exactly the same form as the BDe score and takes the
same values for two independence-equivalent graphs [Gei95]. The second term
obtains the same values for GG; and (7, since they have the same Pa; set. O
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We see that given data from a TP, previously indistinguishable independence-
equivalent causal graphs may now be distinguished, and in this sense, two datasets
generated from a same causal structure but with different parameters give us
more power to learn the structure. This power comes from our assumption (or
knowledge) that only a single causal mechanism has changed in generating the
two datasets. Indeed, if we have no knowledge on how the two sets of parameters
O¢ and O differ, we may only assume that they are independent and have the
same distributions:

which leads to a marginal likelihood given by
P(D,D'|G,§) = P(D|G, )P (D’tG £)

[ (e [, pa; + Nos pas)
= izv,m 1! S i

i pag

apa F(Qvi;p% + N1,1 Pa; )
X - s 3.24
B0Y Sy ! S oy 024

Eq. (3.24) is a product of two BDe likelihood applied on datasets D and D'
respectively, and is still likelihood equivalent. Hence, without knowledge on how
they came about, two datasets do not increase our power of discrimination, save
for providing more samples.

3.5.4 Incorporating experimental data

Now assume that our knowledge is that the cases in D" are from an experimental
study in which the variable V is fixed to a value v; € Dm(V;), denoted by
do(V; = vy;) or do(vy;). Then instead of the Dirichlet distribution, we assign the

following prior distribution to the parameter set 9-7;,(”:

P(é;])al]d()(vlj)?é) = vlj,pal - H 6 vl,pa/ (325)

VAV

' _{1 ifUl:’Ulj

viper =1 () otherwise

Plugging Eq. (3.25) into Eq. (3.18), we obtain

which asserts that

, (Cpa [ t;ipa; + Mo, pa;)
P(Drp |G, do(viy), bas) dlded 4P
j g g I'(0pa; + Mpa,) I;[ T, pa;)
% H I () [0y, pa, + sz,pal)_ (3.26)
pay apal + Npal) v F(avl;pal)
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Eq. (3.26) has been given in [CY99]. Here we show that it can be derived by
providing an informative parameter prior as given by Egs. (3.14) and (3.25). In
the derivation of Eq. (3.26), we have used the following equation

N pa ’ At
/(H 9 Ul%ll)al l>5(0;1[j;pal - 1) H 6(9vl;pal)d8 pay — 1? (327)
vy

vFEV

which follows from that for v; # vy, Ny, . = 0.
Theorem 10 The likelihood P(Drp|G, do(v,), €) given by Eq. (3.26) is Vi-transition
likelihood equivalent.

Proof: The same proof for Theorem 9. O

3.5.5 Combining various types of dynamic data

So far we have only considered the situations with two datasets. The discussions
can be easily extended to the situations with a sequence of datasets, generated
from a TS. Let D = {D° D! ..., D*} be a sequence of datasets generated from
some causal graph G with parameters ©%, ... ©F respectively, and let Z¢ =
UF ,OL. The marginal likelihood is computed as

PBG.€) = [ POIEG.G,6)P(EalG€)dZc. (3.28)

The term P(D|Z¢, G, £) can be computed as in Eq. (3.13). To give an appropriate
parameter prior P(Z¢|G,&), we need to know how these datasets in I came
about. Assume that we have the knowledge that the sequence of datasets, which
will now be denoted by Drg, are from a TS with a sequence of focal variables
F=(V,,..., V). Then, we assume the following prior:

P(Ea|G, F,€) = P(6YIG, ) (P(¥41G,6) [T o(w! - uD))

1541
(P(wz)c.o T ow? - vh)
i#in
(Peut i, TTocws —wi ), (3.29)
iy,

where we have used the notation ©F, = UP_; ¥/, j = 0,..., k as before. Eq. (3.29)
is an extension of Eq. (3.14), and says that the set of parameters ©7, differs with
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8& ! only by the parameters in \Iﬂ Let I = {i1,...,ix} be the set of indexes for
focal variables. Using the D1r1chlet priors, we obtam the following expression for
the marginal likelihood (3.28):

(0, [ty pa; + Moy, ,pai)
Prs|G, F.6) = ]]] NC T H N

ngI pa;

™ l
+ (a'vil ipai; + Mvil ,pail)

apa, '
x HHr o] Y S v

1= 1pa” Pag, pag, vy,

!
DGy L, )

I'(apa,, ) u
% H H F Of -+ lLl ) H F(C\fuil Wail) ’ <330)

=1 pay, pai; pay, vy,

where

§ . Mk‘+1 l
Uz Pai Uz Pai? Ul Pl Vi,Pas? ”1 pa; 'Uz:paz
§ , v, Do;? P&z § : Mvz Pai § : va Paqi?

and N}, . is the number of cases in the dataset D7 for which V; takes the value

v; and its parents Pa; takes the value pa;. Note that My, o, = L, pa; T M} pas
is the number of cases in the whole dataset Dpg for which V; takes the value v,
and its parents Pa; takes the value pa;. We will call the Bayesian scoring metric
P(Drs,G|F, &) = P(Drs|G, F,§)P(G|€) (with parameters o, pq, satisfying the
likelihood equivalence property) the BDe TS metric.

A marginal likelihood P(D|G, &) is said to satisfy the property of F'-transition
likelihood equivalence if for two F-transition equivalent causal graphs Gy and Go,
P(D|Gy,§) = P(D|G2,§).

Theorem 11 The marginal likelihood P(Drs|G, F,€) given by Eq. (8.30) is F'-
transition likelihood equivalent.

Proof: Similar to the proof of Theorem 9. O

Assume that a series of mechanism changes occurred to a same causal model
M = <G, 08> and let F = (V,,...,V;,) denote the sequence of focal variables,
and Ppg = (P° P, ..., P¥) the corresponding sequence of distributions, where
each pair (P° P7) is a TP with Vj, as the focal variable. We will call the pair
(Pgs, F) an ezperimental sequence (ES). An example of an ES is a series of exper-
imental studies performed on a model. Now assume that we have the knowledge
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that the sequence of datasets, which will now be denoted by Dgg, are from an ES
with the focal variables F' = (Vj,,...,V;,). We then assume the following prior:

P(26|G, F,€) = P(O%IG,€) (P(¥}]G,€) [T o(w} — b))

i#0
(Pews a6 T] o(w2 —9))
iis
(Pewje,o TTow: - u). (3.31)
i,

Eq. (3.31) is also an extension of Eq. (3.14), and says that the set of param-
eters ©F, differs with ©f only by the parameters in \I!fj Using the Dirichlet
distribution, the marginal likelihood is given by

(o Do, pa; + Moy, pa;)
P D G7 F p(ll v“paz Vs ,pa4
(| &= HH [(owpa; + Mpa,) IU:I F(O‘vi;pai)

z(ZI pa;

l
P(O{v” Pagy + Kv,'l Dai; )

(ctpas, )
XHHFQ —i—}(l )H F(O‘w‘ai)
1iP%i;

(=1 P, Paiy vy

[0, ipay, + Ny, pas,)

apa, Vi, Paq
XHHﬁ v e, 6

Oé
=1 pa i pa‘ll pazl Uil

where
! _ Al T !
Kvil pa;, = Mvil pai, Nvil;Pail’ Kpail = g Kvil,pai,' (3.33)

Uz‘l

A special case of ES is a series of experimental studies in which each variable
in I is fixed to some value respectively. Then we use the prior given in Eq. (3.25)
for P(\Ilgj)G,f),j =1,...,k, and we obtain

o T (v ipa; + Mo, pa;)
Drs |G, do( P V33P0 Vi P
P(Dgs|G, do(F HHP paz+Mpa)l;1 T (ctorpar)

z%[ pa;

{
F(Q/Uz‘l 3P + Kv”,pa”)

(Cpay,) / ; s
XHHra-AW>H NS B

=1 paj; Pl bay, i,

Eq. (3.34) has been given in [CY99].

Theorem 12 The marginal likelihood P(Dgg|G, F,€) in (5.82) and
P(Dgs|G,do(F), &) in (5.84) is F-transition likelihood equivalent.
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Table 3.2: The posteriors of edges in the Cancer network.

§ = 0.1, B as the focal variable.

N | P(A= BD) P(A= CD) P(B — D|D) P(C S DY) P(C — ED)
BDeTP BDe BDeTITP BbDe BDeTP BDe BDelP BDe BDeTP BbDe
100 | 0.138 0.419 0.103 0.0394 0.997 0.87 0.853 0.86 0.552 0.441
200 | 0.335 0.482 0.354 0.136 1 0.993 0.983 0.993 0.607 0.403
500 | 0.604 0.686 0.43 0.457 1 0.999 0.996 1 0.713 0.728
1000 | 0.999 0.733 0.338 0.49 1 1 1 1 0.667 0.74
2000 | 1 0.75 0.336 0.5 1 1 1 1 0.666 0.75
¢ = 0.5, B as the focal variable.
100 | 0.999 0.238 0.0325 0.0141 1 0.484 0.284 0.293  0.0733 0.239
200 {1 0.289 0.212 0.0516 1 0.663 0.83 0.546 0.0476 0.0106
500 | 1 0.658 0.495 0.651 1 0.992 1 0.989 0.0476 0.00518
1000 | 1 0.726 0.342 0.547 1 1 1 1 0.645 0.538
2000 | 1 0.75 0.334 0.5 1 1 1 1 0.666 0.75
§ = 0.1, A as the focal variable.
N P(A — BD) P{A - CD) P(B — DD) P{C - D|D) P(C — E|D)
BDeTP BDe BDeTP BDe BDeTP BDe BDeTITP BDe BDeTP BDe
100 | 0.832 0.471 0.226 0.106 0.979 0.911 0.958 0.84 0.477 0.441
200 | 0.827 0.494 0.278 0.0367 0.985 0.978 0.964 0.972 0.389 0.206
500 | 0.997 0.747 0.961 0.505 1 1 1 1 0.697 0.736
1000 | 0.995 0.75 0.948 0.5 1 1 1 1 0.961 0.75
2000 | 1 0.75 0.99 0.5 1 1 1 1 0.986 0.75
§ = 0.5, A as the focal variable.
100 | 1 0.586 0.832 0.57 0.999 0.916 0.961 0.878 0.0882 0.0171
200 |1 0.676 0.992 0.642 1 0.999 1 0.999 0.47 0.113
500 | 1 0.746 1 0.507 1 1 1 1 0.963 0.739
1000 | 1 0.744 1 0.513 1 1 1 1 0.932 0.731
2000 | 1 0.75 1 0.5 1 1 1 1 0.994 0.75
Proof: Similar to the proof of Theorem 9. O

.

In deriving Eq.s (3.30), (3.32), and (3.34), we have assumed that mecha-
nism changes occurred at different variables. The situations in which different
mechanism changes happen at a same variable can be easily incorporated. For
example, in experimental studies, we may set a variable to different values. For
this case, Eq. (3.34) is still applicable while Kf)” pa;, 85 expressed in Eq. (3.33)
should exclude all experimental data for which V;, is set to some fixed value.

In summary, to compute the marginal likelihood for dynamic data, we just
need to provide an appropriate prior P(Z¢|G, £) to reflect our knowledge on how

those data came about. We demonstrated this method with several priors given
in Egs. (3.14), (3.29), (3.31) and (3.25).
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3.5.6 Experimental results

We tested the BDe TP score with data generated from a known network, the
Cancer Bayesian network.> We assumed a uniform prior distribution over all
possible network structures. We used the parameters: u,pe, = 1/7:¢;, where 7
is the number of states of V; and ¢; is the number of states of Pa;, which satisfies
the likelihood-equivalence requirement [Gei95].

A mechanism change at a variable V; is simulated as follows. Consider pa-
rameters in Gy,,. If O, 5, < 0.5 then let Oy pa; = Oviipa; + 0, else let 6, . =
Op;1ipa; — O, Where § is a parameter for adjusting the change magnitude. The rest
of the parameters in é;,ai are changed in proportional to their original values as:
Orpa; = Wgyipaisd = 2, 13, where oo = (1= 0y 00.) /(1 = Ou15p0,). When we
simulate a mechanism change at V;, we change parameters in é;mi as above for
each pa; € Dm(Pa;).

The Cancer network is shown in Figure 3.1(a). It has only 5 nodes, hence
we can exhaustively go through all 29,281 possible structures to compute the
Bayesian average of any hypothesis of interest and to find the graphs with the
maximum posterior probabilities. We computed the probability of each edge in
the true Cancer network as in Eq. (3.11), and compared the results given by the
BDe_TP metric (3.21) with that by the BDe metric (3.24). We experimented with
§ values of 0.1 and 0.5, and focal variables B and A respectively, and generated
a TP dataset Drp = {D° D'} for each case by first generating 2000 cases from
the original network as D then simulating a mechanism change, and finally

generating another 2000 cases as D*.

The results are shown in Table 3.2 for the first N cases in the dataset (N from
D% and N from D'). When using the BDe metric, the Cancer network and its
independence-equivalent graphs of Figure 3.1(b)-(d) obtain the maximum score
when the sample size is large enough, and they obtain a much larger posterior than
all other structures. P(A — B|D) goes to 0.75 because three of the four graphs
of Figure 3.1(a)-(d) have the edge A — B and we assumed a uniform distribution
over structures. For the same reason, with the BDe metric, P(A — C|D) goes to
1/2, P(B — D|D) and P(C — D|D) goes to 1, and P(C — E|D) goes to 3/4.
When using the BDe TP metric and B as the focal variable, the posterior over
structures concentrated sharply around the three B-transition equivalent graphs
of Figure 3.1(e)-(g) when the sample size is large. Hence with the increasing
sample size, P(A — B|D) goes to 1, P(A — C|D) goes to 1/3, and P(C — E|D)
goes to 2/3. With A as the focal variable, the BDe_TP score concentrated sharply

3We used the version downloaded from the web site of Norsys Software Corporation,
http://www.norsys.com.
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around the unique Cancer network (see Figure 3.1(h)) for large sample size, and
the posteriors of all five edges go to 1.

3.6 Conclusion

We proposed a new method of discovering causal structures, based on the de-
tection of local, spontaneous changes in the underlying data-generating model.
We analyzed the classes of structures that are equivalent relative to a stream
of distributions produced by local changes, and devised algorithms that output
graphical representations of these equivalence classes. We derived expressions for
the Bayesian score that a causal structure should obtain from streams of data
produced by locally changing distributions.

We have demonstrated, using simulated data, that the use of information
about local changes may improve the power of discovery up to the theoretical
limits set by statistical indistinguishability. The major advantage of the Bayesian
treatment of local changes in Section 3.5, vis-a-vis the purely topological approach
in Section 3.4, lies in that the Bayesian score is less sensitive to topological errors
(e.g., remote descendants of focal variables that do not change). On the other
hand, the Bayesian method is more computation intensive; hybrid schemes remain
to be investigated.
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CHAPTER 4

Testable Implications of Causal Models

4.1 Introduction

It is known that the statistical information encoded in a causal model is com-
pletely captured by conditional independence relationships among the variables
when all variables are observable [PGV90]. However, when a causal model in-
vokes unobserved variables, or hidden variables, the network structure may im-
pose equality and inequality constraints on the distribution of the observed vari-
ables, and those constraints may not be expressed as conditional independencies
[SGS93, Pea95b]. [VP90] gave an example of non-independence equality con-
straints shown in Figure 4.1(a), in which U is unobserved.! A simple analysis
shows that the quantity >, P(d|a,b, c)P(bla) is not a function of a, i.e.,

> P(dla,b,c)P(bla) = f(c,d), (4.1)

This constraint holds even though no restrictions are made on the domains of
the variables involved and on the class of distributions involved. This chapter
develops a systematic way of finding such functional constraints.

Finding non-independence constraints is useful both for empirically validating
causal models and for distinguishing causal models with the same set of condi-
tional independence relationships among the observed variables. For example,
the two networks in Figure 4.1(a) and (b) encode the same set of independence
statements (A is independent of C given B), but they are empirically distinguish-
able due to Verma’'s constraint (4.1). A structure-learning algorithm driven by
conditional independence relationiships would not be able to distinguish between
the two models unless the constraint stated in Eq. (4.1) is tested and incorporated
into the model-selection strategy.

Algebraic methods for finding equality and inequality constraints implied by
Bayesian networks with hidden variables have been presented in [GM98, GM99].
Those methods assume a priori fixed domains and are limited to small networks

'We use dashed arrows for edges connected to hidden variables.
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Figure 4.1: The network (a) imposes functional constraints; the network (b)
encodes the same set of independence statements as (a) but does not impose
functional constraints.

with small number of probabilistic parameters due to high computational de-
mand. This chapter deals with conditional independence constraints and func-
tional constraints, the type of constraints imposed by a network structure alone,
regardless the domains of the variables and the class of distributions. The condi-
tional independence constraints can be read via the d-separation criterion [Pea88],
but there is no general graphical criterion available for Verma type functional con-
straints that are not captured by conditional independencies [RW97, Des99]. This
chapter shows how the observed distribution factorizes according to the network
structure, establishes relationships between this factorization and Verma-type
constraints, and presents a procedure that systematically finds these constraints.

The chapter is organized as follows. Section 4.2 shows how functional con-
straints emerge in the presence of hidden variables. Section 4.3 shows how the ob-
served distribution factorizes according to the network structure and introduces
the concept of c-component, which plays a key role in identifying constraints.
Section 4.4 presents a procedure for systematically identifying constraints. Sec-
tion 4.5 shows that, for the purpose of finding constraints, instead of dealing with
models with arbitrary hidden variables, we can work with a simplified model in
which each hidden variable is a root node with two observed children. Section 4.6
concludes the chapter.

4.2 Functional Constraints

Letting V = {V4,...,V,} and U = {U4,..., Uy} stand for the sets of observed
and hidden variables respectively, the observed probability distribution P(v) is
given by Eq. (1.3). Since all the factors of non-ancestors of V' can be summed
out from Eq. (1.3), letting U’ be the set of variables in U that are ancestors of
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V', Eq. (1.3) then becomes
= Z H P(v;|pay,) H P(us|pay,). (4.2)
u VeV Uit

Therefore, we can remove from the network G all the hidden variables that are
not ancestors of any V variables, and we will assume that each U variable is an
ancestor of some V' variable.

To illustrate how functional constraints emerge from the factorization of (4.2),
we analyze the example in Figure 4.1(a). For any set S C V, let Q[S](v) denote
the following function?

=> I Pllpas) [ Plulpas,). (4.3)

v {i]V;€S} {i|U;eU}

In particular, we have Q[V](v) = P(v) and, for consistency, we set Q[0](v) = 1,
since 3, [1ijv.ein P(uilpay,) = 1. For convenience, we will often write QS](v)
as Q[S]. For Figure 4.1(a), Eq. (4.2) becomes

P(a,b,c,d) = P(a)P(c|b)Q[{B, D}, (4.4)
where

QUB,D}] = ZP(bfa u)P(d|e, u)P(u). (4.5)

From (4.4), we obtain

P(a,b,c,d)

QUB, D} = Pla)Plelb)

= P(d|a, b, ¢) P(b]a), (4.6)
and from (4.5),
QI{D} = ZP dlc,u)P (4.7)
= ZQ[{B,DH
_.ZP dla, b, c)P(bla). (4.8)

Eq. (4.7) implies that Q[{D}] is a function only of ¢ and d, therefore Eq. (4.8)
induces a constraint that the quantity >, P(d|a,b, ¢)P(b|a) is independent of a.

2Q[S](v) can be interpreted as Q[S](v) = P, ,(s).
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Note that the key to obtaining this constraint rests with our ability to ex-
press Q[{B, D}] and Q[{D}] in terms of observed quantities (see (4.6) and (4.8)),
namely quantities not involving U. Applying the same analyses to Figure 4.1(b),
we have that Q[{D}] gives the same expression as in Eq. (4.8), but now Q[{D}] =
>, P(dle,a,u)P(u) is also a function of a, and no Verma constraint is induced.
In general, for any set S C V, Q[S] in Eq. (4.3) is a function of values only of
a subset of V. Therefore, whenever Q[S] is computable from the observational
distribution P(v), it may lead to some constraints — conditional independence
relations or Verma-type functional constraints. In the rest of the chapter, we will
show how to systematically find computable @[S], but first, we study what the
arguments of Q[S] are.

For any set C, let G denote the subgraph of G composed only of variables
in C, let An(C) denote the union of C and the set of ancestors of the variables in
C, and let An"(C) = An(C)NU denote the set of hidden variables in An(C). In
Eq. (4.3), the factors corresponding to the hidden variables that are not ancestors
of S in the subgraph Gg y can be summed out, and letting U(S) = An"(S)cqy
be the set of hidden variables that are ancestors of S in the graph Ggsuy, Q[S]
can be written as

Z H PU’Lian> H P(“@\I”ﬁﬁ) (4'9)

u(S) {ilV;eS} {i{|U;eu(s

We see that [S] is a function of S, the observed parents of 5, and the observed
parents of U(S). We will call an observed variable V; an effective parent of an
observed variable V; if V; is a parent of V} or if there is a directed path from V;
to V; in G such that every internal node on the path is a hidden variable. For
any set S C V, letting Pa®(S) denote the union of S and the set of effective
parents of the variables in S, then we have that Q[S] is a function of Pa™(S).
Assuming that Q[S] is a function of some set 7', when ¢[S](t) is computable from
P(v), its expression obtained may be a function of values of some set 7" larger
than T (T C T"), and this will lead to constraints on the distribution P(v) that
the expression obtained for Q[S] is independent of the values ' \ ¢, which could
be a Verma-type functional constraint or be a set of conditional independence
statements.

Next we give a lemma that will facilitate the computation of Q[S] and the
proof of other propositions. The lemma provides a condition under which we can
compute QW] from Q[C], where W is a subset of C, by simply summing Q[C]
over the remaining variables (in C\ W). For any set C, let An*(C) = An(C)NV
be the set of observed variables in An(C), and let De’(C) denote the set of
observed variables that are in C' or are descendants of any variable in C. A
set A C V is called an ancestral set if it contains its own observed ancestors
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(A = An"(A4)), and a set A C V is called a descendent set if it contains its
own observed descendants (A = De”(A)). Letting G(C) = Geuyc) denote the
subgraph of G' composed only of variables in C' and U(C') which corresponds to
the quantity Q[C] (see Eq. (4.9)), then we have the following lemma.

Lemma 2 Let W C C C V, and W = C\W. If W is an ancestral set in
G(C) (W = An"(W)g(c)), or equivalently, if W' is a descendent set in G(C)

(W' = De’(W') ey ), then
> qlc) = Q] (4.10)

Proof sketch: By Eq. (4.9)

Yoeer=> >[I Pwilras) ] Plulpau). (4.11)

w u(C) VieC U;eU(C)

All factors in (4.11) corresponding to the variables (observed or hidden) that are
not ancestors of W in G(C') are summed out, and we obtain

Socl= Y [l Pwdpe) T Plulpan).  (412)

An”(W)G(@ ‘/jEW UjeA’llu(W)G(c)

We have An"(W)gey = An*(W)ayoy = U(W) due to that W is an ancestral
set. Therefore the left hand side of (4.12) is equal to Q[W] by Eq. (4.9). O

In the next section, we show how the distribution P(v) decomposes according
to the network structure and how the decomposition helps the computation of

Q[S].

4.3 C-components

P(v) as a summation of products in (4.2) may sometimes be decomposed into a
product of summations. For example, in Figure 4.2, P(v) can be written as

Py, va,v3,04) = ZP v1|uy) US}U27U1)P(U1))
Z P UQFU27UB (U4]U3,U2)P(U2)P(U3]U1))

U2,u3

= QU{V1, Va} QU V2, Vi)l (4.13)
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Figure 4.2: The graph is partitioned into c-components {17, V3} and {V5, V4 }.

The importance of this decomposition lies in that both terms Q[{Vi,V3}] and
Q[{V2, V4}] are computable from P(v) as shown later. First we study graphical
conditions under which this kind of decomposition is feasible.

Assume that P(v) in Eq. (4.2) can be decomposed into a product of summa-
tions as:

= H P(vilpay,) H <Z —‘[ P(vilpay,) H P(ui|pa,, ) (4.14)

VeS80 nj VieS; U,eN;

where the variables in S° have no hidden parents, U is partitioned into N;’s, and
V'\ SY is partitioned into S;’s. U; and U; must be in the same set Ny if (i ) there
is an edge between them (U — Uj or U < Uj), or (ii) they have a common
child (U; = U, <~ Uj or U; = Vj U,) Repeatedly applying these two rules, we
obtain that U; and U; are in the same set IV}, if there exists a path between U; and
U; in G such that (i ) every internal node of the path is in U, or (ii) every node
in V on the path is head-to-head (— V} «—). It is clear that this relation among
U;’s is reflexive, symmetric, and transitive, and therefore it defines a partition
of U. We construct S; as follows: a variable V, € V is in 5; if it has a hidden
parent that is in N;. S;’s form a partition of V'\ S° since N;’s form a partition of
U. Let each variable V; € S° form a set by itself S = {V;}. We have that S;’s
and S{’s form a partition of V. It is clear that if a hidden variable Uy is not in
Nj, then it does not appear in the factors of []y;c5 P(vilpav,) [Iy,en, P(uilpay,),
hence the decomposition of P(v) in Eq. (4.14) follows. We will call each S; or
S? a c-component (abbreviating “confounded component”) of V in G or simply
c-component of (.

Assuming that V' is partitioned into c-components Si, ..., Sk, Eq. (4.14) can
be rewritten as

P(v) =Q[V] = H QlSi], (4.15)
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which follows from

S1=>_ 1] Pwilpa,) [ Plulpas)

v {ilV;€8;} {i|U;eU}

=> " 11 Pwilpaw) [T Plulpan)d 1] Plwilpau,)
n; V;€S; U;eN; u\n; U;€U\N;

=" I Ptwilpan) ] Pluilpau,), (4.16)
n; VieS; U;eN;

where we have used the following formula

Z H P(ui]paui) = 13 for any W C U. (417)

w {i|U;ew}

We will call Q[S;] the c-factor corresponding to the c-component ;. For exam-
ple, Figure 4.1(a) is partitioned into c-components {A}, {C}, and {B, D}, with
corresponding c-factors Q[{A}] = P(a), Q[{C}] = P(c|b), and Q[{ B, D}] in (4.5)
respectively, and P(v) can be written as a product of c-factors as in Eq. (4.4). In
Figure 4.2, V is partitioned into c-components {V3, V3} and {V5, V4}, and P(v)
can be written as a product of c-factors Q[{V1, V3}] and Q[{V2, V4}] as in (4.13).

The importance of the c-factors stems from that all c-factors are computable
from P(v). We generalize this result to proper subgraphs of G and obtain the
following lemma.

Lemma 3 Let H C V, and assume that H is partitioned into c-components
Hy, ..., H, in the subgraph G(H) = Gyoym). Then we have

(1) Q[H] decomposes as
H) =] QlH). (4.18)
(1) Let k be the number of variables in H, and let a topological order of the
variables in H be Vi, < --- < Vi, in G(H). Let HO = {Vi,,..., Vi, } be the set

of wariables in H ordered before Vi, (including Vi, ), i = 1,...,k, and H® = {.
Then each Q[H;], j =1,...,1, is computable from Q[H]| and is given by

(0
Q[H;) = ) WHH } chui 1])] (4.19)

where each Q[HW), i = 0,1,...,k, is given by

HY =" Q[H]. (4.20)

AR
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(i) Each QIHW]/Q[HY] is a function only of Pa™(T;), where T; is the
c-component of the subgraph G(HW) that contains Vj,.

Proof: (i) The decomposition of Q[H] into Eq. (4.18) follows directly from the
definition of c-component (see Eqs. (4.14)-(4.17)).

(ii)&(iii) Eq. (4.20) follows from Lemma 2 since each H" is an ancestral set.
We prove (ii) and (iii) simultaneously by induction on k.

Base: k = 1. There is one c-component Q[H,] = Q[H] = Q[H] which
satisfies Eq. (4.19) because Q[0] = 1, and Q[H,] is a function of Pa*(H,).

Hypothesis: When there are k variables in H, all Q[H;|’s are computable from
Q[H] and are given by Eq. (4.19), and (iii) holds for ¢ from 1 to k.

Induction step: When there are k + 1 variables in H, assuming that the
c-components of G(H) are Hy, ..., Hy, H', and that V},, € H', we have

Q[H] = QH"™V] = Q[H'] H Q[H;]. (4.21)

Summing both sides of (4.21) over V,,,, leads to

> QH] = QHM] = (> QH) HQ (4.22)

Vb1 Vhig

where we have used Lemma 2. It is clear that each H;, ¢ = 1,...,m, is a c-

component of the subgraph G(H®). Then by the induction hypothesis, each

Q[H,],i = 1,...,m, is computable from Q[H*)] = D, QUH] and is given by
k+1

Eq. (4.19), where each Q[H®"], i = 0,1,...,k, is given by
QU= > QE¥ =3 QlH (4.23)

RN L) JAVAQ)

From Eq. (4.21), Q[H'] is computable as well, and is given by

QU] Q[H(l)]
QH'] = = s (4.24)

which is clear from (4.19) and the chain decomposition Q[H*+1] = [Ti! »@mﬁiﬁr

By the induction hypothesis (iii) holds for ¢ from 1 to k. Next we prove that
it holds for Q[H**V]/Q[H®*)]. The c-component of G that contains V,,, is H'.
In Eq. (4.24), Q[H'] is a function of Pa*(H'), and each term Q[H®]/Q[H~Y)],
Vi, € H and V), # Vj,,,, is a function of Pa™(T;), where 7} is a c-component



of the graph G(H®) that contains Vj, and therefore is a subset of H'. Hence we
obtain that Q[H®*+Y]/Q[H®] is a function only of Pa™t(H’). O
The proposition (iii) in Lemma 3 may imply a set of constraints to the distribution
P(v) whenever Q[H] is computable from P(v).

4
A special case of Lemma 3 is when H = V, and we obtain the following
corollary.

Corollary 1 Assuming that V is partitioned into c-components Sy,..., Sk, we
have

(i) P(v) = II; QSi].

(1i) Let a topological order over V be Vi < ... <V, and let Vi ={V, ..., Vi},
i=1,...,n, and VIO = 0. Then each Q[S;], 7 = 1,...,k, is computable from
P(v) and is given by

Qis]= J[ Pwil) (4.25)

{ilvies;}
(i) Each factor P(v;|vV) can be ezpressed as
P(u;[v""Y) = P(vilpa* (T;) \ {vi}), (4.26)
where T; is the c-component of G(V®) that contains V;.

We see that when hidden variables were invoked, a variable is independent of
its non-descendants given its effective parents, the non-descendant variables in
its c-component, and the effective parents of the non-descendant variables in its
c-component, reminiscence of the property that each variable is independent of
its non-descendants given its parents when there is no hidden variables.

4.4 Finding Constraints

With Lemma 2, 3, and Corollary 1, we can systematically find constraints implied
by a network structure. First we study a few examples.

4.4.1 Examples

Consider Figure 4.2, which has two c-components {V1, V3} and {V3, V4}. The only

admissible order is V; < V5 < V3 < V4. Applying Corollary 1, we obtain that the
two c-factors are given by

QUV1, Vi (v, v9,v3) = P(vs|vg, v1) P(v1), (4.27)

56



(SN

-~ Uz, U .
- N PP . N
- \ - LN
NV N P K Y
Sy R ves U’
(a) G (b) G({V1,V3,V4}) (c) G({Vs,Va})

Figure 4.3: Subgraphs for finding constraints.

Q{Vz, Vi}|(v1, v2, v3,v4) = P(va]vs, v2, v1) P(v2|v1). (4.28)

They do not imply any constraints on the distribution. Summing both sides of
(4.28) over V5, by Lemma 2, we obtain

Q[{V4 Us,U4 ZP U4fU3,U2,U1 (U21U1)a 7<4-29)

v

which implies a constraint on the distribution P(v) that the right hand side is
independent of v;. Computing Q[{V1}], Q[{V2}], and Q[{V3}] does not give any
constraints.

Consider Figure 4.3(a), which has two c-components {V2} and § = {4, V3, V4 }.
The only admissible order is Vi < V5 < V3 < Vj. Applying Corollary 1, we obtain

QUVa}(vr,v2) = P(va|vr), (4.30)

Q[S](v) = P(va|vs, va, v1) P (vs|ve, v1)P(v1). (4.31)

In the subgraph G(S) = Gsuy (Figure 4.3(b)), V1 is not an ancestor of H =
{V3,V4}, and from Lemma 2, summing both sides of (4.31) over V1, we obtain

Q[H](vz, v3,v4) ZP v4|v3, Vg, v1) P(v3]vg, v1) P(v1). (4.32)

The subgraph G(H) = Gguy (Figure 4.3(c)) has two c-components {V3} and
{Vi}. By Lemma 3, we have Q[H] = Q[{V3}]Q[{V4}], and

Ql{V3}(va, v3) ZQ ZP(U31U2,’U1)P(U1), (4.33)
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_ QH] >0, Pvalvs, v, v1) P(vslvg, v1) P(v1) (4.34)
2, QU] 2y P vslva, v1) P(v1) -
Eq. (4.34) implies a constraint on P(v) that the right hand side is independent

of V2.

Q{Vi}](vs, v4)

From the preceding examples, we see that we may find constraints by alterna-
tively applying Lemma 2 and 3. Next, we present a procedure that systematically
looking for constraints.

4.4.2 Identifying constraints systematically

Let a topological order over V be V; < ... <V}, and let VO = {V,...,Vi},
i =1,...,n Forifrom 1 to n, at each step, we will look for constraints that
involve V; and the variables ordered before V;. At step 7, we do the following:

(A1) Consider the subgraph G(V®). If G(V¥) has more than one c-component,
assuming that V; is in the c-component S; of G(V®), then by Corollary 1,
Q[S;] is computable from P(v) and may give a conditional independence
constraint that V; is independent of its predecessors given its effective par-
ents, other variables in S;, and the effective parents of other variables in .S,
that is, V; is independent of VW \ Pa™(S;) given Pa™(S;) \ {Vi}.

(A2) Consider Q[S;] in the subgraph G(S;). For each descendent set D C S; (D
contains its own observed descendants) in G(S;) that does not contain V;,
by Lemma 2 we have

> QIS =Q[S:i\ D. (4.35)

The left hand side of (4.35) is a function of Pa™(S;)\ D, while the right
hand side is a function of Pa™(S; \ D) C Pa™(S;) \ D. Therefore, if some
effective parents of D are not effective parents of S; \ D, then (4.35) im-
plies a constraint on the distribution P(v) that the quantity »_,Q[S;] is
independent of (Pa™(S;) \ D)\ Pa™(S;\ D).

Let D' = S;\ D. Next we consider @[D’'] in the subgraph G(D'). If
G(D’) has more than one c-component, assuming that V; is in the c-
component F; of G(D'), by Lemma 3, Q[E;] is computable from Q[D'],
and Q[D']/ Y, Q[D'] is a function only of Pa™(E;), which imposes a con-
straint on P(v) if Pa®(D')\ Pa™(E;) # 0.

3We need to consider every descendent set D that does not contain V;, because it is possible
that for two descendent sets DDy C D,, the constraints from summing Ds are not implied by
that from D1, and vice versa.
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Figure 4.4: A model imposing functional constraints.

Finally we study Q[E;] by repeating the process (A2) with S; now replaced

The preceding analysis gives us a recursive procedure for systematically find-
ing constraints. To illustrate this process, we consider the example in Fig-
ure 4.4(a). The only admissible order over V is V; < ... < V5. The constraints
involving Vi to V; are the same as in Figure 4.2, and here we look for constraints
involving Vs. Vs is in the c-component S = {V1, V3, V5}. By Corollary 1, Q[S] is
given by

Q[S} (U) = P(U5"U4./’U3, Va2, Ul)P(U;),]UQ, Ul)P(’Ul), (436)
which implies no constraints. In the subgraph G(S) (Figure 4.4(b)), the descen-
dent sets not containing Vs are {V1}, {V3}, and {V7, V3}.

(a) Summing both sides of (4.36) over vy, we obtain

QU Vs, Vs}(va, v3, v4, v5) = ZP(Us}W,U&”UQaUl)P(UB,}Uz,Ul)P(Ul)J (4.37)

vy
which implies no constraints. The subgraph G({V3, V5}) is partitioned into two
c-components {V3} and {Vs}, and by Lemma 3, we have

QU Vs (v4,v5) = ZQ[S[/;/‘S%H

_ Zvl P(U51U4aU37U23Ul)P(U3‘U27U1)P(U1)
2, Plvslva, v1) Pvn) ’

which implies a constraint that the right hand side is independent of vy and vs.

(4.38)

(b) Summing both sides of (4.36) over vz, we obtain

Q[{Vl, %H(U1>U47U5) = ZP(U5[U4aUs»U2)U1>P(03[U2,U1)P(U1)a (4-39)

v3
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which implies a constraint that the right hand side is independent of vy. G({V4, V5})
can not be further partitioned into c-components.

(¢) Summing both sides of (4.36) over v; and v3, we obtain

QU{V5}(vg, v5) = Z P(us|vg, v, v2, v1) P(vs|vg, v1) P(vy), (4.40)

V1,U3

which implies a constraint that the right hand side is independent of vy. This
constraint is implied by that obtained from Eq. (4.38).

4.5 Projection to Semi-Markovian Models

If, in a causal model with hidden variables, each hidden variable is a root node
with exactly two observed children, then the corresponding model is a semi-
Markovian model. The examples we have studied in Figure 4.1, 4.3, and 4.4
are semi-Markovian models while Figure 4.2 is not. Semi-Markovian models are
easy to work with, and we will show that a causal model with arbitrary hidden
variables can be converted to a semi-Markovian model with exactly the same set
of constraints (that can be found through the procedure in Section 4.4.2) on the
observed distribution P(v).

In a semi-Markovian model, the observed distribution P(v) is given by Eq. (1.5).
And the function Q[S](v) in (4.3) becomes

u {i|V;eS} i

The appearance of hidden variables is represented by bidirected edges in the
causal graph of a semi-Markovian model. It is easy to partition a graph with
bidirected edges into c-components. Let a path composed entirely of bidirected
edges be called a bidirected path. Two observed variables are in the same c-
component if and only if they are connected by a bidirected path. Letting Pa(S)
denote the union of S and the set of parents of S, then it is clear that Q[S] is
a function of Pa(S). For semi-Markovian models, Lemma 2 and 3 still hold, in
which G(C) (G(H)) will be replaced by G¢ (Gg), and Pa™(-) replaced by Pa(-).

A causal model with arbitrary hidden variables can be converted to a semi-
Markovian model by constructing its projection [Ver93].

Definition 5 (Projection) The projection of a DAG G over V.UU on the set
V', denoted by PJ(G,V), is a DAG over V with bidirected edges constructed as
follows:
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1. Add each variable in'V as a node of PJ(G, V).

2. For each pair of variables X, Y € V, if there is an edge between them in G,
add the edge to PJ(G,V).

3. For each pair of variables X,Y € V, if there exists a directed path from
X toY in G such that every internal node on the path is in U, add edge
X =Y to PJ(G,V) (if it does not exist yet).

4. For each pair of variables X, Y € V', if there exists a divergent path between
X and Y in G such that every internal node on the path is in U (X «--
U; -+ Y), add a bidirected edge X «-—--->Y to PJ(G,V).

It is shown in [Ver93] that G and PJ(G,V) have the same set of conditional
independence relations among V. Next we show that the procedure presented in
Section 4.4.2 will find the same sets of constraints on P(v) in G and PJ(G, V).
To this purpose, we need to show that for any set H C V, G and PJ(G,V) have
the same arguments for Q[H], the same topological relations over H, and the
same sets of c-components.

Lemma 4 For any set H C V', Q[H] has the same arguments in G and PJ(G, V),
that is, Pat(H) in G is equal to Pa(H) in PJ(G,V).

Lemma 4 is obvious from Definition 5.

Lemma 5 For any set H C V, and any two variables V;,V; € H, V; is an
ancestor of V; in G(H) if and only if V; is an ancestor of V; in PJ(G,V )y (the
subgraph of PJ(G, V') composed only of variables in H ).

Lemma 5 has been shown in [Ver93].

Lemma 6 For any set H C V, G(H) is partitioned into the same set of c-
components as PJ(G, V).

Proof: (1) If two variables X, Y € H are in the same c-component in PJ(G, V),
then there is a bidirected path between X and Y in PJ(G,V)p:

XNewmoriie—03 Ve i e——5Y

From the definition of a projection, there is a path between X and Y in G(H)
on which each observable is head-to-head:

XewU->VieomViem = Vi e Up - Y
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Therefore X and Y are in the same c-component in G(I).

(2) If X,Y € H are in the same c-component in G(H), then there exist U;
and U; such that U; is a parent of X, U; is a parent of ¥, and U; = Uj or there
is a path p between U; and U; such that every observable on p is head-to-head
and every hidden variable on p is in U(H). We prove that X and Y are in the
same c-component in PJ(G, V) g by induction on the number k£ of head-to-head
nodes on p.

- Base: k = 0. There is no head-to-head node on p, then there is a divergent
path between X and Y in G:

X U—- =Y

Therefore there is a bidirected edge X ¢----» Y in PJ(G,V )y, and X and Y
are in the same c-component in PJ(G,V)y.

Induction hypothesis: If there are k& head-to-head nodes on p, X and Y are
in the same c-component in PJ(G,V)g.

If there are k + 1 head-to-head nodes on p, let W be the head-to-head node
closest to X on p. If W is an observable, let V; = W, otherwise let V; be an
observable descendant of W such that there is a directed path from W to V; on
which all internal nodes are hidden variables. From the base case, X and V; are
in the same c-component in PJ(G,V )y, and from the induction hypothesis, V;
and Y are in the same c¢-component in PJ(G, V) g, hence we have that X and Y
are in the same c-component in PJ(G,V)y. O

By Lemma 4-6, we conclude that the procedure presented in Section 4.4.2 will
find the same sets of constraints on P(v) in G and PJ(G,V). Since it is easier
to work in a semi-Markovian model, we can always convert a Bayesian network
with arbitrary hidden variables to a semi-Markovian model before searching for
constraints on the distribution P(v).

4.6 Conclusion

This chapter develops a systematic procedure of identifying functional constraints
induced by causal Bayesian networks with hidden variables. The procedure can
be used for devising tests for validating causal models, and for inferring the
structures of such models from observed data. At this stage of research we cannot
ascertain whether all functional constraints can be identified by our procedure;
however, we could not rule out this possibility.
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CHAPTER 5

Identification of Causal Effects

5.1 Introduction

This chapter explores the feasibility of inferring cause effect relationships from
various combinations of data and theoretical assumptions. The assumptions con-
sidered will be represented in the form of an acyclic causal diagram which con-
tains both arrows and bi-directed arcs [Pea95a, Pea00]. The arrows represent
the potential existence of direct causal relationships between the corresponding
variables, and the bi-directed arcs represent spurious dependencies due to un-
measured confounders. Our main task will be to decide whether the assumptions
represented in any given diagram are sufficient for assessing the strength of causal
effects from nonexperimental data and, if sufficiency is proven, to express the tar-
get causal effect in terms of estimable quantities.

It is well known that, in the absence of unmeasured confounders, all causal
effects are identifiable, that is, the joint response of any set Y of variables to
intervention on a set T of treatment variables P,(y) can be estimated consistently
from nonexperimental data [Rob86, SGS93, Pea93]. If some confounders are not
measured, then the question of identifiability arises, and whether the desired
quantity can be estimated depends critically on the precise locations (in the
diagram) of those confounders vis a vis the sets 7' and Y. Sufficient graphical
conditions for ensuring the identification of P,(y) were established by several
authors [SGS93, Pead3, Pead5a] and are summarized in [Pea00, Chapters 3 and
4]. For example, a criterion called “back-door” permits one to determine whether
a given causal effect P;(y) can be obtained by “adjustment”, that is, whether a
set C' of covariates exists such that

Py(y) =) Plyle,t)P(c) (5.1)

When there exists no set of covariates that is sufficient for adjustment, causal
effects can sometimes be estimated by invoking multi-stage adjustments, through
a criterion called “front-door” [Pea95a]. More generally, identifiability can be
decided using do-calculus derivations [Pea95a], that is, a sequence of syntactic
transformations capable of reducing expressions of the type FP;(y) to subscript-free

63



expressions. Using do-calculus as a guide, [GP95] devised a graphical criterion for
identifying P,.(y) (where X and Y are singletons) that combines and expands the
“front-door” and “back-door” criteria (see [Pea00, pp. 114-8])."! [PR95] further
derived a graphical condition under which it is possible to identify P;(y) where T
consists of an arbitrary set of variables. This permits one to predict the effect of
time varying treatments from longitudinal data, in the presence of unmeasured
confounders, some of which are affected by previous treatments. This criterion
was further extended by [Rob97b] and [KM99].

This chapter develops new graphical identification criteria that generalize and
simplify existing criteria in several ways. In Sections 5.2-5.5, we study the identifi-
ability problem in semi-Markovian models. Section 5.2 concerns the identification
of P,(v), where X is a singleton and V is the set of all variables excluding X. It
asserts that P,(v) is identifiable if and only if there is no consecutive sequence
of confounding arcs between X and X’s children in the graph. When interest
lies in the effect of X on a subset S of outcome variables, not on the entire set
V, it is possible, however, that P,(s) would be identifiable even though P,(v)
is not. Section 5.3 first gives a sufficient criterion for identifying P,(s), which
is an extension of the criterion for identifying P,(v). It says that P,(s) is iden-
tifiable if there is no consecutive sequence of confounding arcs between X and
X'’s children in the subgraph composed of the ancestors of S. Other than this
requirement, the diagram may have an arbitrary structure, including any number
of confounding arcs between X and S. This simple criterion is shown to cover
all criteria reported in the literature (with X singleton), including the “back-
door”, “front-door”, and those developed by [GP95]. However, the criterion is
not necessary for identifying P,(s). Section 5.3 further devises a procedure for
the identification and computation of P,(s), based on systematic removal of cer-
tain nonessential nodes from (. This procedure is shown to be more powerful
than the one devised by [GP95] ([Pea00, pp. 114-8]). Section 5.4 deals with the
identification of general causal effects, P;(s), where T and S are arbitrary subsets
of variables, representing multiple interventions and multiple outcomes, such as
those encountered in the management of time varying treatments. The criterion
established in this section extends those of [PR95] and [KM99], and also provides
a criterion for the identification of direct effects, that is, the effect of one variable
on another when all other variables are held fixed (Section 5.4.4). Section 5.5
deals with the identification of general conditional causal effects P;(s|c). Finally,
in Section 5.6, we show that causal effects in a Markovian model with arbitrary
sets of unobserved variables can be identified by first converting the model into
a semi-Markovian model while keeping the identifiability properties.

HGP95] claimed their graphical criterion to embrace all cases where identification is verifiable
by do-calculus. We show in this chapter (Section 5.3.7) that their criterion is not complete in
this sense.
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5.2 Identification of P,(v)

Let X be a singleton variable. In this section we study the problem of identifying
the causal effects of X on V' \ {X}, (namely, on all other variables in V), a
quantity denoted by P, (v).

5.2.1 The easiest case

Theorem 13 If there is no bidirected edge connected to X, then Py(v) is identi-

fiable and is given by
P,(v) = P(v|z, pay)P(pay) (5.2)

Proof: Since there is no bidirected edge connected to X, we have that the term
P(z|pay, u®) = P(z|pay) in Eq. (1.5) can be moved ahead of the summation,

giving

Pv) = z|pay z H Uz paza P(u)

v {i|Vi#X}
= P(z|pa;)Py(v). (5.3)
Hence,
P.(v) = P(v)/P(z|pa;) = P(v|z, pas) P(pay) (5.4)

Theorem 13 also follows from Theorem 3.2.5 of [Pea00] which states tha
for any disjoint sets S and T in a Markovian model M, if the parents of T'
are measured, then P(s) is identifiable. Indeed, when the parents of X are
measured, there would be no bidirected edge entering X in the semi-Markovian
representation of M and the identification of P,(v) is insured.

5.2.2 A more interesting case

The case where there is no bidirected edge connected to any child of X is also
easy to handle. As an example, consider the graph given in Figure 1.2. We have

P(v) = P(zlz) ZP zlu)P(y|z, u) P(u), (5.5)

P,(v) = P(zlz ZP ylz,u)P(u). (5.6)
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From Eq. (5.5), we have

3 Plah)Plylz WP() = PO)/Ple

2), (5.7)

hence,
ZZP(:);W (y]z, u)P(u) = ZP )/P(zlz). (5.8)
Substituting Eq. (5.8) into Eq. (5.6), we obtain

Py, z) = ZPI y,2)/P(zlz') = ZP ylz', 2)P(z").  (5.9)

This derivation can be generalized to the case where X has several children.
Letting C'h, denote the set of X’s children, we have the following theorem.

Theorem 14 If there is no bidirected edge connected to any child of X, then
P,(v) is identifiable and is given by

P(v)
H{i[wecm}P(Ui[PQi)

rwy=( [ Plila))d (5.10)

{i|Vi€Cha}

Proof: Let S =V \ (Ch, U{X}). Since there is no bidirected edge connected to
any child of X, the factors corresponding to the variables in Ch, can be moved
ahead of the summation in Egs. (1.5) and (1.6), and we have

Pwy=( T Plolpa)) SPlaporw) [T Plulp )P, (1)
{i|V;€Chy} {i|v;€S}

and

Pw) = (I Pilpa)d ] Pluilpai,w)P(u).  (5.12)

{i|VicCho} u {i[Vies}

The variable X does not appear in the factors of H{iIWGS} P(v;|pai, u'), hence we
augment [ [ v.cqy P(vilpas, u') with the term > P(z|pas, u*) = 1, and write

So 11 Plulpas,w)Pu) =3 " Plalpag,u™) [ Plulpas,v’)P(u)
v {i|V;eS} r  u {i|v;eS}

_ P(v)

= ] H{ilwechm}P(Ui‘PaJ (by (5.11))  (5.13)
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Figure 5.1: Theorem 14 is applicable for identifying P,(z1, 22, 23, ).

Figure 5.2: The problem of identifying P, (21, 29, y).
Substituting this expression into Eq. (5.12) leads to Eq. (5.10). I

The usefulness of Theorem 14 can be demonstrated in the model of Figure 5.1.
Although the diagram is quite complicated, Theorem 14 is applicable, and readily
gives

P(x') 21, 29, 23, y)
P — P b 3 3 bl
m<Z17227237y) (Zl‘x,Z2)_:EZ_: P(leiﬂ/,ZQ)

= P(zn|z,2)Y Py, zlr' 2, 2)P@,2).  (5.14)

xr

Note that this expression remains valid when we add bidirected edges between
Zs and Y and between Z3 and Z,.

5.2.3 The general case

When there are bidirected edges connected to the children of X, it may still be
possible to identify P.(v). To illustrate, consider the graph in Figure 5.2, for
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which we have

ZP CEEM 22541,?“ U1 ZP 21\9«" Uz ylfU 21322,U2)P(U2)

(5.15)

and
= ZP(zgle,ul (uy ZP 2|z, ug) Pylz, 21, 22, u2) Pluz).  (5.16)

Let
ZP zluy)P(z2]21, 1) P(us), (5.17)
(5.18)

and
Q. = EP(ZJ:U,u2)P(y‘aj,zl,z2,UQ)P(UQ). (5.19)

Eq. (5.15) can then be written as
Pv) = Q1 Q2 (5.20)

and Eq. (5.16) as
v) = Qy ZQl' (5.21)

Thus, if Q; and Q, can be computed from P(v), then P,(v) is identifiable and
given by Eq. (5.21). In fact, it is enough to show that ¢; can be computed from
P(v) (i.e., identifiable); Q2 would then be given by P(v)/@Q:. To show that ()
can indeed be obtained from P(v), we sum both sides of Eq. (5.15) over y, and
get

P(J?,Zl,ZQ) —_—Q1 'ZP(le.’E,UQ)P(UQ). (522)
Summing both sides of (5.22) over z;, we get
P(x,z;) ZP z1]x, ug) Plus), (5.23)
hence,
Z P(z|z,u0) P(us) = P(z]x). (5.24)

uz
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From Eqs. (5.24) and (5.22),
Qi = P(x,21,2)/P(z1]2) = P(zz, z1)P(z), (5.25)
and from Eq. (5.20),
Q2 = P(v)/Q1 = P(ylz, 21, 22) P(21]x). (5.26)

Finally, from Eq. (5.21), we obtain

Py(v) = P(ylz, 21, 22) P(1|2) Y Pza|a’, 21) P(a). (5.27)

From the preceding example, we see that because the two bidirected arcs in
Figure 5.2 do not share a common node, the set of factors (of P(v)) containing
U, is disjoint of those containing Us, and P(v) can be decomposed into a product
of two terms, each being a summation of products. This decomposition has been
studied in Chapter 4, in which we introduced the ideas of “c-component” and
“c-factor”.

5.2.3.1 C-component

Two variables are in the same c-component if and only if they are connected by
a bidirected path, a path composed entirely of bidirected edges. We will use the
Q[] notation defined in Chapter 4. For any set C C V, Q[C](v) denotes the
following function (see Eq. (4.41))

QIC)(w) = Poclo) =>_ T Pluilpai, ') P(w). (5.28)

. u {i|V;eC}

For any set C, let G¢ denote the subgraph of G composed only of variables in C'.
We rewrite Corollary 1 as a lemma in the following, tailored for semi-Markovian
models.

Lemma 7 Assuming that V is partitioned into c-components Sy, ..., Sk, we have

(i) P(v) =L, Q[Si].
(1) Let a topological order over V be Vi < ... < V,, and let Ve ={1,...,Vi},
i=1,...,n, and VO = 0. Then each c-factor Q[S;], j = 1,...,k, 1s identifiable

and s given by

Qs)= [ Plht), (5.29)

{i|vies;)
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Figure 5.3: An example for applying Lemma 7.

(i1) Bach factor P(v;[v"""Y) can be expressed as
P(v;p"Y) = P(vilpa(T) \ {vi}), (5.30)
where T; 15 the c-component of Gy that contains V;.

We show the use of Lemma 7 by an example shown in Figure 5.3, which has
two c-components S; = { X5, X4} and Sy = {X;, X3,Y}. P(v) decomposes into

P(z1, 22,3, 24, y) = Q[S1]Q[S2], (5.31)

where
Q[S1] = Plaa|w1, us) Pwalws, us) P(us), (5.32)
Q[S2] = Z Pz |u1)P(xs|ey, ur, us) P(yles, us) P(ur) P(us). (5.33)

uy,u3

By Lemma 7, both Q[S;] and Q[Ss] are identifiable. The only admissible order
of variables is X; < X, < X3 < X, <V, and Eq. (5.29) gives

Q[S1] = P(xa|mr, 22, 23) P(x2]21), (5.34)
Q[S:] = P(yfxlal’%$3)954>P($3l$1,$2)P(331). (5.35)

We can also check that the expressions obtained in Eq.s (5.25) and (5.26) for
Figure 5.2 satisfy Lemma 7.

5.2.3.2 An identification criterion for P,(v)

Lemma 7 has important implications on the general identifiability problem, and
in this section we show how to use this property to identify P,(v).
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Let X belong to the c-component S¥, and let other c-components be S, .. ., S.
We have
= QsM 1] @lsi, (5.36)

and

Pu(v) = QIS*\ {X} ] Qlsi (5.37)

Since all Q[S;]’s are identifiable by Lemma 7, P,(v) is identifiable if and only if
Q[S* \ {X}] is identifiable, and we have the following theorem.

Theorem 15 If there is no bidirected path connecting X to any of its children,
then P(v) is identifiable and is given by

Py(v) = 5[?)3} E;Q[SX], (5.38)

where S~ is the c-component that contains X.

Proof: If there is no bidirected path connecting X to any of its children, then none
of X’s children is in S*. Under this condition, removing the term P(x|pa,, u®)
from Q[S¥] is equivalent to summing Q[S*] over X, and we can write

QIST\ {X}] = ZQ [5X]. (5.39)
Hence from Eq.s (5.37) and (5.36), we obtain
)= (Cas o= Cas Dy (540

which proves the identifiability of P,(v). O

We demonstrate the use of Theorem 15 by identifying Py, (22, 23, 24, y) in Fig-
ure 5.3. The graph has two c-components S; = { X5, X4} and S = {X1, X3, Y},
with corresponding c-factors given in (5.34) and (5.35). Since X is in S, and
its child X5 is not in Sy, Theorem 15 ensures that Py, (x2, x5, 24, y) is identifiable
and is given by

Py (2,33, 24,y) = Q[S1] ZQ[Sﬂ

= P($4|$1,932,$3)P(332|$1)Zp(yixllwz,$3’$4)P(ﬂ3311’/1:332)P(33/1)- (5.41)

'l
£

More examples where Theorem 15 is applicable can be found in Figure 3.8 of
[Peal0], some of which required complicated do-calculus derivations.
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5.2.3.3 Necessity of the criterion

Next we will show that the condition given in Theorem 15 is also necessary for
the identifiability of P,(v). To facilitate the proof of necessity, first we prove the
following lemma.

Lemma 8 Let S,T C V be two disjoint sets of variables. If Py(s) is not identifi-
able in G, then Py(s) is not identifiable in the graph resulted from adding a directed
or bidirected edge to G. Equivalently, if P,(s) is identifiable in G, then P(s) is
still identifiable in the graph resulted from removing a directed or bidirected edge

from G.

Proof: If P,(s) is not identifiable in G, then there exist two models with the same
causal graph G, M; and M>, such that

PMi(y) = PM2(y) > 0, and PM (s) # P} (s), (5.42)
where

PM(y ZHP (vilpag, v ) PMe(u),  k=1,2. (5.43)

For a graph G’ with extra edges added to G, we can always construct new models
in such a way that the added edges are ineffective.

(i) Let G’ be the graph identical to G except with an extra edge ¥ — V).
P(v) decomposes as

=" P(vlpay,y,w') [ [ P(vilpas, u') P(u). (5.44)
u i
We construct two models M| and M} with the causal graph G’ as

PM;C(Uz[pCI/“U ) Piwk(vllpalu ) 7é jv k= 13 27 (545)

PMi(ujlpag, y, ) = PYe(vjlpag,u?), k=12, (5.46)

PMi(y) = PMe(u), k=1,2. (5.47)

Clearly, if the pair (M, M) satisfies (5.42), so would the pair (M7, M;). Hence

P,(s) is not identifiable in G’.

(i1) Let G be the graph identical to G except with an extra edge V, <— V.
P(v) decomposes as

= z P(u) ZP(vj]paj, w! u') P (v|pay, ut, o) H P(vi|pas, u') P(u),
u u ik il
(5.48)
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Figure 5.4: A graph used in proving Theorem 16.

where U’ represents the new unobserved variable. We construct two models M}
and M) with the causal graph G’ as
PM;(l}iipaiaui) - PMk(U‘ipaia i)) i ?é j: i ?/‘é l’ k= 17 29 {5
PM;“(Uiipa’iaui)ul) = Pwk(ul‘paza i)a i = jala k= 1) 27 (5
PMi(y) = PMe(u), k=1,2. (5.

9)
0)
1)

Again, if the pair (M, M,) satisfies (5.42), so would the pair (M|, M}). Hence
P;(s) is not identifiable in G". O

Cﬂ)-lk

C)I

Next we prove that the condition given in Theorem 15 is necessary.

Theorem 16 If there is a bidirected path connecting X to any of its children in
G, then P.(v) is not identifiable.

Proof: Let Y be a child of X and assume that there is a bidirected path connecting
X and Y with variables Z1,..., Z; on the path (see Figure 5.4). We will prove
that, for any k > 1, P.(y, 21,...,2;) is not identifiable in the graph shown in
Figure 5.4, which is a subgraph of G. By Lemma 8, if P.(y,z1,...,2) is not
identifiable in a subgraph of G, then it is not identifiable in G, and therefore
P,(v) is not identifiable in G.

Let U = {U,...,Ugs1}. In Figure 5.4, we have

Pz, y, 21, .., 2k)

= ZP zlur) P(yle, werr) Pz ur, ua) - - Pzilug, o) Pug) -+ - Plugs),

(5.52)
and

Py, 21, 2k)
= Z Pylz, ugy1) P(z1|ur, ug) -+ - Plzg|ug, ugrr) P(ur) - Pugyr).  (5.53)
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Let all variables X, Y, Zy,..., Zy, Uj,...,Ugy1 be binary variables. We will
prove the nonidentifiability of P,(y, z1,..., zx) by constructing two models such
that in both models,

P(z,y,z1,...,2) = (1/2)¥"2, for all possible values of z,y, 21,...,2, (5.54)

while P.(y,z1,...,2) has different values in the two models. The construction
involves the specification of all conditional probabilities in a parametric form, and
shows two different parameterization both satisfying the set of 2°*2 equations in
(5.54). We use the following parameterization, with five parameters, a, b, ¢, d, and
e.

Plu)=1/2, u;=0,1,andi=1,...,k+1 (5.55)

z u | Plaju)
0 01/2+a (5.56)
0 1/1/2-a

Yy o upn | Plylz, ug)

00 0 | 1/2+5b

00 1 | 1/2-b (5.57)

01 0 1/2

01 1 1/2

21wy us | Plzi|ug, ug)

0 0 0] L1/2+c

0 0 1| 1/2-¢ (5.58)

0 1 0] 1/2+d

0 1 1| 1/2-d

2 Ui Uiq l P(Zz'lui, Uz‘+1)

0 0 0 1/2+e

0 0 1 1/2—e 1=2,...,k. (5.59)
0 1 0 1/2~e

0 1 1 1/2—|—e

Substituting (5.55) in (5.52), Eq. (5.54) becomes

1_.

5 > Plafun) Plylz, wess) Pz ug, ug) - - Plzglug, wpsr): (5.60)
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Next, we prove that if Eq. (5.60) is satisfied for x = 0,y = 0,21 =0, ..., 2, = 0,
then it is satisfied for all possible values of x,y, z1,..., zx. We have that for any
a,b,c,d, e, the parameterization given in Egs. (5.55)—(5.59) satisfies the following
properties

> Plafu) =1. (5.61)
uy
> Plyla,upn) = 1. (5.62)
Uk+1
Zp(zm,um) =1,i=1,... k. (5.63)
Uit 1
> P(aifui i) = Li=2,... k. (5.64)

(a) For z = 1 and any values of y, 21, ..., 2, Eq. (5.60) is satisfied:

ZP(:U = 1u)P(ylz = 1, up1) P21 ug, ua) - - - Pzi|ug, Ug11)
1

=5 ZP(&? = 1uy)P(z1|ug, ug) - - Pzklug, ukr) (by Plyle = 1, upsr) = 1/2)
1

=< (by Egs. (5.63) and (5.61)) (5.65)

2

(b) If for a particular set of values z,y, 21, . .., 2k, Eq. (5.60) is satisfied, then for
the set of values z,1 — ¥y, z1,. .., 2k, Eq. (5.60) is also satisfied:

ZP(z[ul)P(l — Y|, up1) P21|ur, ug) P(za|ug, us) - - - P2k g, Uks1)
= ZP(xful)(l — P(ylz, ups1)) P21 [ur, ug) P2a]ug, us) - - - P2g|wg, wrr)

(by Eq. (5.60))

1
= > P(x|ur) Pz1]ur, ug) P(2a|ug, us) - - - P2k ug, ursr) — 5

_ % (by Egs. (5.63) and (5.61))
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(c) If for a particular set of values x,y, 21, ..., 2k, Eq. (5.60) is satisfied, then for
the set of values x,v, 21, ..., 21,1 — 2, Zit1, - 28, for i = 1,...,k, Eq. (5.60)
is satisfied as well:

> Plafun) Plyle, wes) Pz fur, ua) - - P(L = zilui, wign) - Plzelug, wpr1)

= ZP(SU’Ul)P(W%Uk+1)P(21|U1,Uz)"'P(Zi—llui—laUi)P(Zz‘HlUiH,Uz‘+2)

1
- Plaglug, uen) — 5 (by Eq. (5.60))
1 .
=1-3  (by Eas. (5.61)(5.64)
1
= (5.67)
From (a), (b), and (c), we obtain that if Eq. (5.60) is satisfied for = 0,y =
0,21 =0,...,2, = 0, then it is satisfied for all possible values of z,y, 21, ..., 2.

Next, we substitute the conditional probabilities given in Eqs. (5.55)-(5.59)
into Eq. (5.60) for x =0,y = 0,2, =0,...,2 = 0. Define

Furans = Y Plza=0lug, ug) -+ P2, = Ofug, up11) (5.68)

U3,y Uk

We obtain
foo = (1/2+e)F 1+ <k ; 1) (1/2+¢e)F3(1/2 — e)?

+ (k; 1) (1/2+e)f2(1/2—e)" +---

i<h/2 o g
=Y ( ; )(1/2 +e)Im%(1 /2 — €)%, (5.69)
i=0
From Eq. (5.64), we have
qug,uk+1 =1 (570)
ug
From Eq. (5.63), we have
> Fusngs = 1. (5.71)
Uf41
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Let f = foo — 1/2, then fy, 4, is given as

Uy Ukl ‘ fUQauk-l—l

0 0 [1/2+f
0 1 |1/2—f
10 |1/2—f
11 |1/2+F
Therefore, for x = 0,y = 0,2, = 0,...,2; = 0, Eq. (5.60) becomes
1
7= > Ple=0u)P(y = 0jz = 0,u41) P21 = Ofur, u2) funuss,

UL Uf41,U2

= (1/2+a)(1/2+0)[(1/2+c)(1/2+ f) + (1/2 = ) (1/2 = f)]
+(1/2+a)(1/2 = 0)[(1/2+c)(1/2 = f) + (1/2 = c)(1/2+ f)]
+(1/2 = a)(1/2+0)[(1/2+d)(1/2+ f) + (1/2 = d)(1/2 = f)]
+(1/2 = a)(1/2 = D)[(1/2+ d)(1/2 = f) + (1/2 = d)(1/2 + f)]
=1/2+2bf(c+ d+ 2ac — 2ad) (5.72)
which leads to
bf(c+d+ 2ac — 2ad) = 0. (5.73)
P.(y, z1,...,2) is computed as
Poooly =0,21 =0,...,2, = 0)
= 57}:1' > Py =00z =0,ur1) P21 = 0fus, us) fur g
= gm[1+4bf(c+dﬂ (5.74)

Let —1/2 < ey < 1/2 be a number such that f # 0. Consider the following
two models:

Model 1 a=1/4, b=0, c=d=1/4, e =e.
Model 2 a=1/4, b=1/4, c=1/12, d=—1/4, e = e,.

Eq. (5.73) holds in both models, hence the two models have the same distribu-
tion P(z,y, 21,...,2) = (1/2)72 In Model 1, Poep(y = 0,2, =0,...,2,=0) =
(1/2)¥+1. In Model 2, Po—g(y = 0,21 = 0,..., 2, = 0) = (1/2)*7*(1 — f/6). Since
f # 0, we have that Po—g(y = 0,21 = 0,..., 2, = 0) takes different values in
Model 1 and 2. O
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Figure 5.5: P.(y, z) is not identifiable but P, (y) is.

5.3 Identification of P,(s)

Let X be a singleton variable and S C V be a set of variables. In this section, we
study the problem of identifying P,(s). Clearly, whenever P,.(v) is identifiable,
so is P,(s). However, there are obvious cases where FP,(v) is not identifiable and
still P,(s) is identifiable for some subsets S of V. The simplest such example can
be seen in Figure 5.5, which is a special case of Iigure 5.4 with & = 1. Here,
variable Z can be ignored in the computation of P,(y), giving P,(y) = P(y|x)
and P,(z) = P(z), while (by Theorem 16) F,(y,z) is not identifiable. This
example suggests that a criterion similar to that of Theorem 15, applicable in
some subgraphs of G, would establish the identifiability of P,(s). We will show
indeed that P,(s) is identified when a systematic removal of certain nonessential
nodes from G will lead to an identification criterion based on Theorem 15. First
we give a criterion for identifying P, (s) which is a simple extension of Theorem 15.

5.3.1 A criterion for identifying P,(s)

For any set C C V, let An(C) denote the union of C' and the set of ancestors of
the variables in C'. The nonancestors of S are nonessential for identifying P,(s)
and we have the following lemma.

Lemma 9 P,(s) is identifiable if and only if in the subgraph G ansy, Po(s) is
identifiable.

Proof: (only if) By Lemma 8.

(if) Summing both sides of Eq. (1.5) over V\ An(S), we have that the marginal
distribution P(an(S)) decomposes exactly according to the graph G 4,(5). Hence
if P,(s) is identifiable in G 4,(s), then it is computable from P(an(S)), and there-

fore is identifiable in G. O
From Lemma 9, a direct extension of Theorem 15 leads to the following criterion.

Theorem 17 P,(s) is identifiable if there is no bidirected path connecting X to
any of its children in G an(s).

78



Figure 5.6: A graph used in proving Proposition 1.

When the condition in Theorem 17 is satisfied, we can compute P,(an(S)) by
applying Theorem 17 in G 4r(s), and P,(s) can be obtained by marginalizing over
P.(an(S)).

This simple criterion can classify correctly all the examples treated in the
literature with X singleton, including those contrived by [GP95]. In fact, for X
and S being singletons, we will show that if there is a bidirected path connecting
X to one of its children such that every node on the path is in An(S), then none
of the “back-door”, “front-door”, and [GP95] criteria is applicable. The criterion
in [GP95] (which will be called the G-P criterion) is for identifying P,(y) with X
and Y being singletons, and it includes the “front-door” and “back-door” criteria
as special cases (see [Peal0, pp. 114-8]).

Proposition 1 If there is a bidirected path connecting X to one of its children
such that every node on the path is an ancestor of Y, then the G-P criterion is
not applicable.

Proof: There are four conditions in the G-P criterion, among which Condition
1 is a special case of Condition 3, and Condition 2 is trivial. Therefore we only
need to consider Condition 3 and 4.

Assume that there is a bidirected path p from X to its child ¥; such that
every node on p is an ancestor of Y, and that there is a directed path ¢ from Y;
to Y. We will show by contradiction that neither Condition 3 nor Condition 4 is
applicable for identifying P,(y). For any set Z, a node will be called Z-active if
it is in Z or any of its descendants is in Z, otherwise it will be called Z-inactive.

(Condition 3) Assume that there exists a set Z that blocks all back-door
paths from X to Y so that P.(z) is identifiable.? If every internal node on p is an
ancestor of X, or if every nonancestor of X on p is Z-active, then let W; = Y7,
otherwise let W; be the Z-inactive non-ancestor of X that is closest to X on p
(see Figure 5.6). If every internal node on the subpath p(W;, X) ? is Z-active,

2A path from X to Y is said to be a back-door path if it contains an arrow into X.
*We use p(Wy, X) to represent the subpath of p from W; to X.
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Figure 5.7: Graphs used in proving Proposition 1.

then let W, = X, otherwise let W, be the Z-inactive node that is closest to W,
on p(Wi, X). From the definition of Wy and W, W, must be an ancestor of X
(or be X itself), and let p; be any directed path from W, to X. (i) If Wy # Y7,
letting py be any directed path from Wy to Y, then from the definition of W, and
Wy the path p' = (p1 (X, Wa), p(Wa, W1), pa(W1,Y)) is a back-door path from X
to Y that is not blocked by Z (see Figure 5.6) since W, is Z-inactive, all internal
nodes on p(Wy, W) is Z-active, and Wi is Z-inactive. (ii) If W) = Y}, there are
two situations:

(a) Z consists entirely of nondescendants of X. Then the path
P’ = (p1(X, Wa), p(Wa, Y1), ¢(Y1,Y)) is a back-door path from X to Y that is not
blocked by Z.

(b) Z contains a variable Y’ on ¢(Y7,Y") so that P,(z) is identifiable. By the
definition of Wi, every node on p is an ancestor of Z. P,(z) can not be identified
by Theorem 17, and the G-P criterion is not applicable for identifying P,(z) if
Z contains more than one variable. If Z contains only one variable Y’, then
every node on p is an ancestor of Y. If P,(y') is identifiable by Condition 3 of
the G-P criterion (Condition 4 is not applicable as proved later), then from the
preceding analysis there is a Y on the path ¢(Y7,Y”) such that every node on p
is an ancestor of Y and P,(y") is identifiable. By induction, in the end we have
every node on p is an ancestor of Y; and P,(y;) is identifiable, which does not
hold from the preceding analysis.

(Condition 4) Assume that there exist sets Z; and Z5 that satisfy all (1)-(iv)
conditions in Condition 4. Since Z; has to block the path ((X,Y7),¢(Y1,Y)), let
V1 be the variable in Z; that is closest to Y7 on the path ¢ (see Figure 5.7(a)). If
none of the internal node on p is in An(V;)\ An(X) (the set of ancestors of V; that
are not ancestors of X) or if every variable in An(Vy) \ An(X) on p is Z-active,
then let W, = Y7, otherwise let W be the Zs-inactive variable in An(V;)\ An(X)
that is closest to X on p. Let p; be any directed path from W; to V;. If every
internal node on the subpath p(W;, X) is Zs-active, then let W, = X, otherwise
let W, be the Zy-inactive node that is closest to Wi on p(Wy, X). Since Wy must
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Figure 5.8: Subgraphs of G used in computing P, (y).

be an ancestor of Y, from the definition of W; and W,, there are two possible
situations:

(a) Wy is an ancestor of X or Wy, = X. Let p, be any directed path from
Wy to X (see Figure 5.7(a)). From the definition of W, and W5, the path p’ =
(p2(X, Wa), p(Wa, W1), p1 (W1, V1)) is a back-door path from X to V) € Z; that is
not blocked by Z, that does not contain any descendant of X (see Figure 5.7(a)).

(b) Wy is an ancestor of Y but not ancestor of V; (Wy € An(Y')\ An(V7)). Let
ps be any directed path from W; to Y (see Figure 5.7(b)). From the definition
of Wy and Wy, the path p" = (p1(Vi, W1), p(W1, W2), p3(W>,Y)) is a back-door
path from V; € Z; to Y that is not blocked by Z (see Figure 5.7(b)). O

However, the criterion in Theorem 17 is not necessary for identifying P, (s). In
the next section, we give an example in which P,(s) is identifiable but Theorem 17
is not applicable, and the process of computing P,(s) will give us hints on how
to improve the criterion.

5.3.2 An example

To illustrate the general process of computing P,(s) making use of the factor-
ization of P(v) into c-factors, we work out an example in this section. Consider
the problem of identifying P, (y) in Figure 5.8(a). Theorem 17 is not applicable,
but we will show that P,(y) is identifiable. Let V = {X, Z, Y, W, W)} and V' =
{Z,Y,W,,W,}. V is partitioned into three c-components: S¥ = {X,Z, W},
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{W,}, and {Y'}. P(v) can be decomposed into

P(v) = P(wslw:)P(y|2)Q[S™], (5.75)

where
Z P(z|ws, wy) P(wy |y, us) P(z|a, up) P(uy) Plus) (5.76)
= P(U)/(P(w2|w1)P(y]z)) = P(z, z|wy, wy) P(w). (5.77)

P,(v') is decomposed into

P,(v") = Q[V'] = P(wy|wq)P L P(wr|ug, us) P(z]x, ug) P(u1) P(us).

(5.78)
We want to compute P, (y):

Pily)= Y Pul)

= Z QU
= ZP Z P(wi|ug, uz) P(z|z, uz) P(uy) P(us) (Z P(wsglwy) =
= ZP yl2) Z P(z|x,ug) Puy)P(us) (Z Plwy|uy, ug) = 1)

_ ZP SO (5.79)

Note that the key reason for the factors of Wi and W, to be summed out is
that Q[V"] factorizes according to the subgraph Gy and that W, and W, are not
ancestors of Y in Gy (see Figure 5.8(b)). The problem of computing P,(y) is
then reduced to computing Q[{Z}], which may be computed from Q[S*]. Again,
noticing that W is not an ancestor of Z in Ggx (see Figure 5.8(c)), we sum W,
over Eq. (5.76):

}:@ [S¥] = QI{X, 2}] (5.80)
— Z P(x}wy, u)) P2z, ug) P(u1) P(us) (5.81)
- <§: P(z|wy, u1) P(u1)) (> P(2z, uz) P(uz)) (5.82)
= QEX HRHZYH : (5.83)
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To compute Q[{X}] and Q[{Z}], summing Z over Eq. (5.82), we obtain

QUXY =D QIS* =) Plafws,w)P(wy), (5.84)

2,w1

and from Eq. (5.83)

YL QST X, Pz alws, ) Plwn)
QU = =0T = S, Plalws, ) Plun)

Finally, substituting the expression for Q[{Z}] (5.85) into Eq. (5.79), we obtain

Po(y) =) Plyl2) Zzw Pﬁﬂf wf)ljﬁjzif )1> |

(5.85)

(5.86)

From this example, we see that the quantity Q[C] defined in Eq. (5.28)
plays an important role in identifying P,(y). The ingredients that allowed us
to compute P,(y) were (i) our ability to sum out some factors from Q[V'] as in
Eqs. (5.79), due to the fact that W, and W, are not ancestors of ¥ in Gy (ii)
our ability to compute Q[{X}] and Q[{Z}] from Q[{X, Z}], which is due to the
decomposition of Q[{ X, Z}] into the product of Q[{X}] and Q[{Z}] (Eq. (5.83))
because in the graph Gy, zy (Figure 5.8(d)), {X, Z} is partitioned into two c-
components {X} and {Z}. These two points correspond to Lemma 2 and 3 in
Chapter 4 respectively, which will be presented next.

5.3.3 Lemmas

Lemma 2 and 3 in Chapter 4 will be instrumental in facilitating the general
computing of causal effects P,(s). The two lemmas are presented in the following
tailored for the situation of semi-Markovian models.

Lemma 10 Let W CC CV, and W = C\W. If W is an ancestral set in the
subgraph G¢ (that is, An(W)g, = W), or equivalently, if none of the parents of
Woasin W (Pa(W)NW'=0), then

> alc) = Q) (5.87)

Lemma 10 provides a condition under which summing Q[C] over some variables
is equivalent to removing the corresponding factors. It also provides a condition
under which we can compute Q[W] from Q[C], where W is a subset of C, by
simply summing Q[C] over the remaining variables (in C '\ W), like ordinary
marginalization in probability theory.
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Lemma 11 Let H C V, and assume that H is partitioned into c-components
Hy, ..., H in the subgraph Gy. Then we have

(1) Q[H] decomposes as
QU] = [Jolm). (5.88)

(1) Let k be the number of variables in H, and let a topological order of the
variables in H be Vi, < -+ < Vi, in Gy. Let HY = {Vi,,, ..., Vi,.} be the set
of variables in H ordered before V,, (including Vi), i = 1,....k, and H® = §.
Then each Q[H;), 7 =1,...,1, is computable from Q[H] and is given by

()
Q= 11 @C%%:;% (5.89)

where each Q[HW), i =0,1,...,k, is given by
(1] —
o= Y Qi) (5.90

VR

Lemma 11 generalizes Lemma 7 to proper subgraphs of G.

The use of Lemma 11 can be shown with the example studied in Section 5.3.2,
where the subgraph Gx 7z (Figure 5.8(d)) is partitioned into two c-components
{X} and {Z}, and therefore Q[{X}] and Q[{Z}] are both computable from
Q{X, Z}]. We can check that Egs. (5.84) and (5.85) satisfy (5.89).

Next, we present a procedure for computing P,(s) based on Lemmas 7, 10,
and 11.
5.3.4 Computing P,(s)

Let V be partitioned into c-components S¥,Si,...,S;, where X € S*, and let
V' =V \{X}. We have

P(v) = Q[V] = Qs*T] [ QLS (5.91)

and

P() = QV'] = QIs* \ {(x}] [ ] @lsi) (5.92)
We want to compute

Pu(s) = 3 Rw) = 30 QI (593)

VIS VI\S
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Let D = An(S)¢,,. By Lemma 10, Eq. (5.93) becomes

P =Y S v =S alp). (5.94)

D\S VAD D\S

Let DX =DNSY and D; = DN S;,i=1,..., k. From Eq. (5.92), Q[D] can be
written as

QD] =D [ Qb (5.95)
D; is an ancestral set in G, from its definition, hence by Lemma 10,
QD)= > QIS], i=1,...,k (5.96)
Si\D;

However, D* may not be an ancestral set in Ggx (although it is an ancestral set
in Ggx\;x}), because X could be an ancestor of D*. Combining Eqs. 5.94-5.96,
we obtain
P(s) = QD] >_ alsil. (5.97)
D\S i S\D;
X

Assume that in the graph G px, D¥ is partitioned into c-components Dy, ..., D}*.
Then Q[D¥] =[], Q[D;"], and we obtain

P(s)=>_J[Q@I]] > alsi (5.98)

D\Ss j i S\D
Since all the c-factors Q[S;]’s are identifiable, we obtain that P,(s) is identifiable
if all Q[D]’s are identifiable.

Since D C S¥, Q[D;] is identifiable if it is computable from Q[S*]. Next,
we study the conditions for Q[DJ] to be computable from Q[S*]. Let I' =
A?’L(D;-()GSX.

o If FF = DJX, that is, if DJX is an ancestral set in Ggx, then by Lemma 10,
Q[D;'] can be computed as

QD= Y Q¥ (5.99)

X X
SX\D?

e If F =S¥ we are unable to determine whether Q[D]X | is computable from
Q[S¥] at this moment.
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Function Identify(C, T, Q)

INPUT: C C T C V, Q@ = Q[T]. Assuming G is composed of one single
c-component.

OUTPUT: Expression for Q[C] in terms of () or fail to determine.

Let A = An(C)g,.-
e [ A= C, output Q[C] = ZT\C Q.
e II' A =T, output FAIL.
e [FCCACT

1. Assume that in G4, C is contained in a c-component 7"
2. Compute Q[T'] from Q[A] = ZT\A @ by Lemma 11.
3. Output Identify(C, 7", Q[T"]).

Figure 5.9: A function determining if Q[C] is computable from Q[T].

e Agsume that DJX C F c S*. By Lemma 10, we have

QIF = 3 QIsY (5.100)

SX\F

Assume that in the graph Gp, DJX is contained in a c-component H (the
variables in D]X are connected by bidirected paths among themselves hence
belong to one same c-component). By Lemma 11, Q[H] can be computed
from Q[F] and thus is identifiable. We obtain that the problem of whether
QD] is computable from Q[S¥] is reduced to that whether Q[D}] is
computable from Q[H].

The preceding analysis gives a recursive procedure for determining whether Q[ D]
is computable from Q[S*]; at each step, we either find an expression for Q[D7'],
find the problem indeterminable, or reduce the problem to a simpler one in the
sense that H C S*. In general, let C C T C V; a recursive algorithm for
determining if Q[C] is computable from Q[T] is presented in Figure 5.9.

In summary, an algorithm for computing P,(s) is given in Figure 5.10. The
procedure consists of three basic phases. In phase-1, we compute the expres-
sions for all c-factors and find (graphically) the sets D]X from the graph G. In
phase-2, we attempt to compute Q[Dﬂ’s from Q[SX] by calling the function
Identify(D]X, SX Q[S¥]) given in Figure 5.9. In phase-3, if all Q{Dﬁ’s are com-
putable, we output the expression for P.(s) given in Eq. (5.98).
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Algorithm 4 (Computing F,(s))

INPUT: a set S C V.

OUTPUT: the expression for Py(s) or fail to determine.

Phase-1:
1. Find the c-components of G: S*,Sy,..., Sy, where X € S¥.
2. Compute the c-factors Q[S™], Q[S1], ..., Q[Sk] by Lemma 7.
3. Let D = An(S) DX = DnS¥.
4. Let the c-components of Gpx be DY, j=1,...,1.

Gyyixyr

Phase-2:

For each set D¥:

Compute Q[DJX} from Q[S¥] by calling the function Identify(D]X,SX?Q[SX])
given in Figure 5.9. If the function returns FAIL, then stop and output FAIL.

Phase-38:
Output Pp(s) = ZD\S Hj Q[D]X} Hz ZSi\D Q[Sﬂ.

Figure 5.10: An algorithm for computing P,(s)

From the preceding analysis, we see that the problem of identifying P,(s) is
reduced to that of computing Q[C] from Q[T] for some sets C C T C V, for
which we give an algorithm in Figure 5.9. Now the open problem is: Is Q[C]
computable from Q[T] if (i) G¢ has only one c-component (C itself), (ii) Gr
has only one c-component (7" itself), and (iii) in G, all variables in 7'\ C are
ancestors of C' (An(C)g, =T)7

5.3.5 Useful graphical criteria

We have given a procedure for determining the identifiability of P,(s) and finding
its expression (when identifiable) in Figure 5.10. Next, we give some graphical
criteria based on Algorithm 4 which can be used for quickly judging the identifi-
ability of P.(s) by looking at the causal graph G.

The idea lies in systematically removing certain nonessential nodes from G till
Theorem 17 is applicable (or no more nodes can be removed). First, Lemma 9 can
be used to remove nonancestors of S from G. Next, we show that all variables
that are not in the same c-components as X can be removed. To prove this
conclusion, we present a utility lemma first. Let A C B C V. We use Q[A]g, to
denote the function Q[A] = 3_, [ijv.eay £ (vilpas, u') P(u) where PA, = PA;NB.
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The difference between Q[A]q, and Q[A] = Q[A]q, is that some parents of A in
G are removed in Gp.

Lemma 12 Let A C B C V. Q[A] is computable from Q[B] if and only if
Q[A]ey is computable from Q[Blay.

Proof: (only if) By Lemma 8.

(if) Proof by contradiction. Assume that Q[A] is not computable from Q[B],
then there exist two models, M; and M, with the same causal graph G, satisfying

QM [Bl(bc)=>_ [ PY(uilpaj, ci,u') P (u), k=1,2, (5.101)

v {i|V;€B}
where PA, = PA;N B, C; = PA;\ B, and C = U;Cj, such that
QM [B](b,¢) = QM[B](b,c) > 0, for all values b, c, (5.102)
but
QM AV, ) # QM [A)(V, <), for some particular value ¥, ¢ (5.103)

Q[Blg, can be written as

QBle, (®) =Y ] Pluilpai, u)P(u). (5.104)

v {i[V;eB}
We construct two models, M| and M, with the same causal graph Gp as
PMi(v|pal, u') = P (vlpal, C; = cu'), k=1,2, (5.105)
PMi(y) = PMe(u), k=1,2. (5.106)
Then we have
QIBIg (b) = QIBI™ (b.¢), and Q[AlGE(1) = QU (b ¢), k=12 (5.107)

From Egs. (5.107), (5.102) and (5.103), we obtain

Q™:[B]g, (b) = Q™2[B]g, (b) > 0, for all values b, (5.108)

and
QM1 [A)g, (1) # QY2[A]g, (v), for the value b, (5.109)
which says that Q[A]g, is not computable from Q[B]¢,. O

Using Lemma 12, we obtain the following lemma which reduces the identifiability
problem to some subgraph of G.
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Lemma 13 Assume that X isin the c-component S~ , and let D* = An(S)g,, ;N
SX. Then P,(s) is identifiable if in the graph Ggx, P,(D™) is identifiable.

Proof: From Eq. (5.97), P,(s) is identifiable if Q[ D] is identifiable. By Lemma 12,
Q[D*] is identifiable if Q[D¥]¢,, is identifiable. Let EX = (S*\ D¥)\ {X}. In
Ggx, we have

Py(D¥) = > Po(S*\{X}) =) QIS \ {X ey = QD o, (5:110)

where we used Lemma 10 in the last step. Hence we obtain that FP,(s) is identi-
fiable if P,(D%) is identifiable in Ggx. O
Lemma 9 and 13 reduce the original problems of deciding the identifiability of
P.(s) in G to (usually simpler) problems of identifying the causal effect of X
on a different set of variables in some subgraphs of GG. If the latter problem is
not recognized to be identifiable (via Theorem 17), we can of course repeat the
process and attempt to reduce it further, using Lemma 9 and 13 alternatively.®
Such recursive application of Lemma 9 and 13 is illustrated in the next example.

5.3.6 An example

Consider the problem of identifying P, (y) in Figure 5.11(a). By Lemma 9, P,(y)
is identifiable in Figure 5.11(a) if it is identifiable in Figure 5.11(b), then by
Lemma 13, if it is identifiable in Figure 5.11(c). After applying Lemma 9 and
13 again (see Figure 5.11(d) and (e)), the problem is finally reduced to whether
P,(y) is identifiable in Figure 5.11(f), which is obviously true, and we conclude
that P,(y) is identifiable in Figure 5.11(a).

We now demonstrate the use of Algorithm 4 by computing P,(y) in Fig-
ure 5.11(a).
Phase-1:

1. The whole graph is one c-component.
2. DX =D = An({Y})GV\{X} ={Y}
3. We want to compute P,(y) = Q[{Y}].

Phase-2:

“Note that some causal effects identified by Algorithm 4 may not be identified by repeatly
using Lemma 9 and 13 which are meant for quick judgement only.
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(d) GAz

(C) GTl

(f) GAz

(e) GT2

Figure 5.11: Subgraphs of G used in computing P, (y).
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1. Compute Q[{Y}] by calling the function Identify({Y'},V, P(v)) in Fig-
ure 5.9. Let 4; = An({Y })g¢ = {X, Y, W1, Wy, W3, W, }. We have {Y'} C
A; C V. The graph G4, (Figure 5.11(b)) has two c-components: T} =
{X,Y, W, Wy, W3} and {W,}, and we have

=3 P() = P(a) = QILIQEW.}I. (5.111)

A topological sort over Ay is: Wy < Wy < W; < W, < X < Y. By
Lemma 11, we obtain

CQUWLWSY Xuwnwmay Plo)
QWY = QW3] - wahww’y})(al) -

and from (5.111),

QTy] = Play)/ P (walws)
P
P(x y[wl,wz,w3,w4)P(w1,w2,w3). (5113)

Plwyglws),  (5.112)

w1 w21w3,w4)P(U}3)

fl

?u)

2. Call the function Identify({Y'}, 71, Q[T1]).
Let Ay = An({Y})g,, = {X, Y, W1, Ws} (see Figure 5.11(c)). We have
{Y} € Ay € Ti. The graph G4, (Figure 5.11(d)) has two c-components:
Ty, = {X,Y, W} and {W,}, and we have

Z@ (1] = QIT]Q{W-}. (5.114)

A topological sort over A, is: W; < W, < X < Y. By Lemma 11, we
obtain

CQUW WY Dy QLA ol
QHW2}] - Q[{Wl}} - ng,z7yQ[A2] ( 2] 1> (5115>

and from (5.114) and (5.113),

= Z Q1)) P(wylwy)

= ZP(x,y]wl,wg,wg,w4)P(w3{wl,w2)P(w1). (5116)

w3
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3. Call the function Identify ({Y'}, T3, Q[13]). Let Az = An({Y'})e,, = {X, Y}
(see Figure 5.11(e)). We have {Y} C A3 C T,. The graph G4, (Fig-
ure 5.11(f)) has two c-components: {X} and {Y'}, and we have

=Y Q1] = QXYY (5.117)
wi
The only admissible order over A; is: X < Y. By Lemma 11, we obtain

QUXN =D QITa) = Y P(afwy, ws, ws, we) P(wsfwy, wa) Pwr),

Yy wi wi,Ww3

(5.118)
and
QUY} = ZQ [T2]))/QI{ X}
» Zwl,wg P(.CL', ylwla Wy, W3, 7U4)P(U)3"LU1, w2>P<wl) (5 119)
D oy s (w1, w2, w3, wy) P(ws|wy, we) P(wy) '
Phase-3:
Finally, we obtain
ZU)} w3 P(I, y|w1: Wy, W3, w4)P(w3iw1, U)Z)P(wl)
P(y) =QU{Y} = : (5.120)

D s s P (@ w1, wa, wi, wa) Pws|we, wa) P(w)

5.3.7 Galles&Pearl’s graphical criterion vs. do-calculus

[GP95] claimed that their graphical criterion will embrace all cases where identi-
fication is verifiable by do-calculus. Here we show that their criterion is not com-
plete in this sense. Consider the problem of identifying P,(z) in Figure 5.8(a).
Neither “back-door” nor “front-door” criterion is applicable. The graphical cri-
terion in [GP95] also fails because there is no set which can block all back-door
paths from X to Z. However we have that P,(z) = Q[{Z}] is identifiable and is
given in Eq. (5.85). P,(z) can also be computed by do-calculus as

P(z]z) = P(2|%,wy) (5.121)
= P(z|z, ) (5.122)
= P(z|z,ws, ) (5.123)

_ P(z,z,walull) 5
-—-————P(x’w2’wl) (5.124)
_ >w, Pz, w|we, wi) Pw:) (5.125)

Dy P(@we, wi) P(w:)
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Hence we see that the graphical criterion in [GP95] is not complete with respect
to do-calculus. [GP95] may have failed to consider the possibility of removing a
hat by transforming Eq. (5.123) to (5.124).

5.4 Identification of P,(s)

So far, we have assumed that intervention is applied to a single variable X. In
this section we study the problem of identifying P;(s) where S and T are arbitrary
(disjoint) subsets of V. We will show that, as for identifying P,(s), the problem
of identifying P;(s) is also reduced to identifying Q[C] from Q[C'] for some sets
C C ', and we give a procedure for computing P;(s).

5.4.1 Computing P;(s)
Let 7" = V \ T, we want to compute
P(s)=>_PR(t)=>_ QT (5.126)
TS TS
Let D = An(S)q,,. Then by Lemma 10,
s =YY QI = S QIp] (5.127)
D\S T'\D D\S

Let V be partitioned into c-components Si,..., Sk, and let D, = DN S0 =
1,...,k. Eq. (5.127) can be rewritten as

P(sy=>_T]abil (5.128)
D\S i
We obtain that P,(s) is identifiable if all Q[D;]’s are identifiable. Assume that
the graph Gp. is partitioned into c-components Dy, ..., Dy,. Then

Q[D;] = HQ[DU}, i=1,...,k (5.129)

We obtain
Psy=> T[] @D (5.130)
D\S i j

Hence Pi(s) is identifiable if all Q[D;;]’s are identifiable. Whether Q[D;;] is
identifiable can be determined by using the function Identify(D;;, S;, Q[S;]) given
in Figure 5.9.
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Algorithm 5 (Computing P;(s))

INPUT: two disjoint sets S, T C V.

OUTPUT: the expression for Py(s) or fail to determine.
Phase-1:

1. Find the c-components of G: Sy,...,Sk.

2. Compute the c-factors Q[S1],...,Q[Sk] by Lemma 7.

3. LetD:An(S)GV\T, D;=DnNS;, i=1,...,k.

4. Let the c-components of Gp, be Dy, 7=1,... kj, 1 =1,... k.

Phase-2:
For each set D;:

Compute Q[D;;] from Q[S;] by calling the function Identify(Dy;, S;, Q[Si]) in
Figure 5.9. If the function returns FAIL, then stop and output FAIL.

Phase-3:
Output Py(s) = ZD\S I Hj Q[Dis).

Figure 5.12: An algorithm for computing P;(s)

In summary, an algorithm for computing P,(s) is given in Figure 5.12. The
procedure consists of three basic phases. In phase-1, we compute the expressions
for all c-factors and find (graphically) the sets D;; from the graph G. In phase-2,
we attempt to compute Q[D;;]’s by calling the function Identify(D;;, S;, @[Si])
given in Figure 5.9. In phase-3, if all Q[D;;|'s are identifiable, we output the
expression for P;(s) given in Eq. (5.130).

5.4.2 Useful graphical criteria

Next, we give some graphical criteria for quick judgement of the identifiability of
P;(s) by looking at the causal graph G. First we give some graphical conditions
for identifying P,(v) = Py(v\ t), the causal effect of 7" on all other variables in V.
The following criterion is a corollary of Lemma 7.

Theorem 18 If there is no bidirected edge connecting variables in a set T to

variables not in T, then P,(v) is identifiable. Let a topological order over V' be
Vi<...<Vy andlet VD = {Vi,...,Vi}, i =1,...,n, and VI = @. Then
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P,(v) is given by

PBw\t)= ] Plulpa(C)\ {v}), (5.131)

{ilv;evAT}
where C; is the c-component of Gy, that contains V;.

In general, let 7" = V' \ T, let V be partitioned into c-components Si, ..., S,
and let T; =T NS, T/ =T"NnS;,1=1,..., k. We have

p) =] em] (5.132)

Hence P,(t') is identifiable if and only if each Q[T}] is computable from Q[S;]. On
the other hand, we have

P, (w\t) = Q[T [ @lsi (5.133)
i7#]
Hence P, (v\ ;) is identifiable if and only if Q[T}] is computable from Q[S;]. And

we obtain the following lemma.

Lemma 14 Let V' be partitioned into c-components Si,...,Sg, and let T; =
NS, i=1,...,k. Pv) is identifiable if and only if each P, (v),i =1,...,k,
is identifiable.

In the subgraph G,

P(Sj) = Q[Sj}GSj7 and Ptj (Sj \ tj) = Q[:F]/}GS (5.134)

7

Hence by Lemma 12, Q[C;] is computable from Q[S;] if and only if P; (s; \ ¢;) is
identifiable in G;, which gives the following lemma.

Lemma 15 Let S; be a c-component of G, and T; C S;. Py, (v) is identifiable if
and only if Py, (s;) is identifiable in the graph Gsg,.

One simple condition for Q[T}] to be computable from Q[S;] is that 7] is

an ancestral set in Gg,, or 7; contains its own descendants in Gg,. Under this
condition, by Lemma 10,

QT =Y _Q[Si). (5.135)

And we obtain the following theorem.
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Theorem 19 Let S; be a c-component of G, and T; C S;. If the children of vari-
ables in T; are either in T; or outside of S; (i.e. T; contains its own descendants
in Gs,), then Py, (v) is identifiable, and is given by

Py (v\t;) = %ZQ[SJ (5.136)

Next, we give some graphical conditions for quick judgment of the identifia-
bility of Pi(s).

Lemma 18 Let V be partitioned into c-components Sy,...,Sc. Let T, = TN
Si, D; = An(S)GV\T NS;i=1,...,k. Then P,(s) is identifiable if every P, (d;)

is identifiable in Gg, fori=1,... k.

Proof: From Eq. (5.128), Py(s) is identifiable if each Q[D;] is identifiable. By
Lemma 12, Q[D;] is computable from Q[S;] if Q[Dilgs, is computable from
Q[Silas,- Let T) = S;\ T;. In Gs;, we have

Py (di) =Y Pt =Y QT/las, = Q[Dilas,, (5.137)
TI\D; TI\D;

where we used Lemma 10 in the last step. Hence we obtain that P,(s) is identi-
fiable if each P, (d;) is identifiable in Gi,. O

Lemma 17 Let Ty = T 1 An(S). P(s) is identifiable if and only if Py, (s) is
identifiable in G an(s)-

Proof: Tt is well-known that Py(s) = P, (s). The rest of the proof is the same as
Lemma 9. O

Lemma 16 and 17 reduce the original problems of deciding the identifiability
of Py(s) in G to some (usually simpler) identifiability problems in subgraphs of G.
They can be repeatedly applied to further reduce the problems, till inapplicable or
till those problems are recognized to be identifiable (for example, via Theorem 17
or 19).

5.4.3 Examples

Next, we study some examples, to illustrate the use of Algorithm 5 and the
graphical criteria in Section 5.4.2.
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Figure 5.13: By Lemma 16, F,,,,(y) is identifiable if P, (y) is identifiable in G .

Consider the problem of identifying P4, (y) in Figure 5.13(a), which was
studied in [PR95]. G has two c-components S = {X},Z,Y} and {X,}, and X;
and X, are in different c-components. Letting C' = V' \ {X;, Xo} = {Y, Z}, then
An({Y})e, = {Y} € S. By Lemma 16 we have that P, ,,(y) is identifiable if
P, (y) is identifiable in the subgraph Gg (Figure 5.13(b)). Since the latter is
true by Theorem 17, we conclude that P, ., (y) is identifiable. Next we compute
Py 4, (y). We have

from which we obtain
QLS] = P(v)/P(zalz1, 2) = Ply|wy, 72, 2) P21, 2). (5.139)
P, (y) is computed as
Prsly) = QY. 2)] = AUV (5.140)

which can be computed by calling Identify({Y'}, S, Q[S]) in Figure 5.9. Let A =
An({Y})gs, = {X1,Y}. We have {Y} ¢ A C S. The graph G4 has two c-
components: {X:} and {Y'}, and we have

Z@ QUXYQUYY. (5.141)

The only admissible order over A is: X; < Y. By Lemma 11, we obtain

QI{X:1}] ZZQ (5.142)
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Figure 5.14: By Lemma 16, Py, ,(y) is identifiable if P,,(y) is identifiable.

and

QY)Y = Z@ J/QUXY] = D Plylar, 22, 2)P(zlan). (5.143)
Finally, we obtain

P2 (y)=QY} = z P(ylay, x2, 2) P(2]21), (5.144)

which coincides with Eq. (4.3) of [Pea00, page 122].

Consider the problem of identifying P, ., (y) in Figure 5.14, which was studied
n [PRY5]. G has two c-components S = {Xp, W,Y} and {X,}, and X, and
X, are in different c-components. Letting C = V \ {X1, Xy} = {Y, W}, then
An({Y e, = {Y} € S. By Lemma 16, Py ,,(y) is identifiable if P, (y) is
identifiable in Gg. It is clear that P,,(y) is identifiable (by Theorem 17), hence
P,..,(y) is identifiable.

Consider the problem of identifying P,,,,(y) in Figure 5.15, which was studied
in [PR95]. G has three c-components {X},{Y}, and S = {X5, 21, Z1}, and X,
and X, are in different c-components. By Lemma 14, P, ,,(v) is identifiable if
both P, (v) and P,,(v) are identifiable, which is true by Theorem 15. Therefore
Pz, (v) is identifiable. Next we compute P, ,,(v). We have

P(v) = P(z:1]21) P(y|z2, 2)Q[S], (5.145)
from which we obtain

Q[S] = P(v)/(P(z1|z1)P(ylz2, 21)) = P(22, 21|31, 21) P(21)- (5.146)
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Figure 5.15: By Lemma 14, P, ., (v) is identifiable if both P, (v) and P,,(v) are
identifiable.

,/”’Ul AN
x—=_ ™
7 RN T g N
- 1 \A
Y
U% 7
N ZQ e
§X2 //
<. e
- U3/

Figure 5.16: The problem of identifying Py, ,,(y) (from [KM99]).

P, ;,(v) is computed as
lem (y, 21, Z,l) - P(y]xfb Z,l)QHZln Z;H
T2

= P(ylzs, 1) P(%]z1, 21) P(21)
= P(ylzs, 21) P(21, 21)- (5.147)
Next, consider the problem of identifying P, ,,(y) in Figure 5.16, which was
studied in [KM99]. X; and X, are in the same c-component S = {X;, X,, Y}, and

their children other than X5 itself are not in S, hence Theorem 19 is applicable
and Py, ., (v) is identifiable. We have

P(v) = P(21|z1) P(z|21, 22)Q[S], (5.148)
from which we obtain

Q[S] = P(v)/(P(a1]1) P(22]21, 32))
= P(y|z1, 2, 21, 22) P(x2|21, 21) P(21). (5.149)
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G GS GA

Figure 5.17: The problem of identifying Py, 4, (y) (from [KM99]).

From Theorem 19, we have

Priaa(y, 21 22) = Plai|21) P21, 32) Y QS

1,22

= P(z1]z1) P (2|21, 72) Z P(ylay, w5, 21, 22) P22}, 21) P(a}).
5Ty

(5.150)

We further obtain
Pows(y) = Y Plailwn) Ploalwy, @) > Plylal, o, 21, 22) Plahlat, z1) P(ah),

21,22 171#”2

(5.151)

which coincides with Eq. (3.12) of [KM99].

Consider the problem of identifying F,,.,(y) in Figure 5.17(a), which was
studied in [KM99]. X; and X, are in the same c-component S = {X;, X,,Y'}. By
Lemma 15, P, 4, (v) is identifiable if P, ., (y) is identifiable in G (Figure 5.17(b)).
Let A = An({Y})g, = {X1,Y}. By Lemma 17, P, ,,(y) is identifiable in Gg
if P, (y) is identifiable in the subgraph G4 (Figure 5.17(c)). Since Py (y) is
obviously identifiable in G 4, we conclude that P,,,,(v) is identifiable. We have

P(v) = P(alzi, 22)Q[S], (5.152)
from which we obtain
Q[S] = P(v)/P(z|xy1,22) = P(yles, 1, 22) P(21, 22). (5.153)
P, 2, (v) is computed as
Py, (20,y) = P(za]21, 22)QI{Y }]. (5.154)
Q[{Y'}] can be computed by calling Identify({Y'}, S, @[S]) in Figure 5.9. We have

Z@ QUX QY'Y (5.155)
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Figure 5.18: Subgraphs used in identifying Py, ,,(w,y) in G.

from which we obtain

QXY =) Q[A] = P(x), (5.156)
v

and

QUYY =D QISIQUXY =D Plylzs, a1, 2) Pz2]21). (5.157)
Finally, substituting (5.157) into (5.154), we obtain

le,m(z?a y) = P(Z2'371a 552) zp(y|227$1,$/2)P($12[$1), (5158)

and
Puyon(y) = Y Plaalrr, 22) Y Plylze, 21, 75) P(ahz1), (5.159)

which coincides with Eq. (3.21) of [KM99].

In the examples studied so far, in Figure 5.13(a), 5.14, and 5.15, P,,.,(v)
can be identified using the criteria given in [PR95]. In Figure 5.16 and 5.17(a),
P, (y) can be identified by the extended front-door criterion and the mixed-
door criterion given in [KM99] respectively. Next we give an example shown in
Figure 5.18(a), for which P,,.,(w,y) is identifiable, but none of the criteria in
[PR95] and [KM99] is applicable. X; and X, are in the same c-component S =
{X1, X5,Y}. By Lemma 15, P, ,, (v) is identifiable if Py, ,,(y) is identifiable in G'g
(Figure 5.18(b)). The latter is obviously true, hence we conclude that Py, ,, (w, y)
is identifiable. (Formally, let " = An({Y })g, = { X5, Y'}; by Lemma 17, P, ,,(y)
is identifiable in G if Py, (y) is identifiable in the subgraph Gg (Figure 5.17(c)),
which is obvious.)
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5.4.4 Identification of direct effects Py, (v)

Let Y be a single variable and let V4 = V' \ {Y'} be the set of all other variables.
A special case of the identifiability problem is to identify the direct effect P, (y).
We have

va (y) = Ppayy (y) - Q[{Y}] (5160)
Let Y be in the c-component SY. In general, the identifiability of Py, (y) can
be determined by using the function Identify({Y'}, SY, Q[SY]) in Figure 5.9. In
this section we give some graphical criteria for determining whether P,y (y) is
identifiable.

Theorem 20 If Y is not connected to bidirected links, then Py, (y) is identifi-
able, and is given by '

Ppa, (y) = P(ylpay). (5.161)

Theorem 20 is obvious. The use of Theorem 20 can be shown by identifying the
direct effect on Y in Figure 5.15. Theorem 20 says that P, ./ (y) is identifiable
and is equal to P(y|xs, 21).

Theorem 21 Let Y be in the c-component S¥. If there is no bidirected path
connecting Y and any of its parents (i.e., Y is not in the same c-components
with any of its parents), then Py, (y) is identifiable, and is given by

P, ()= > QIS"]. (5.162)

SYA{Y}

Proof: Since none of the variables in S¥\ {Y'} is an ancestor of Y in the subgraph
Gsv, by Lemma 10, Q{Y'}] = > v\ 1y Q[SY]. O
We demonstrate the use of Theorem 21 by identifying the direct effect on Y in
Figure 5.16. Y is in the c-component S = {Xi, X5, Y}, and Q[S] is given in
Eq. (5.149). By Theorem 21, P,, ,,(y) is identifiable and is given by

Pow(y) = Z P(ylz1, 12, 21, 22) P (22|21, 21) P (1) (5.163)

1,22

Lemma 18 The direct effect on Y is identifiable iof and only if the direct effect
on Y is identifiable in G an((vy)-

Lemma 18 follows from Lemma 17.

Lemma 19 Let Y be in the c-component S¥. The direct effect on Y is identifi-
able if and only if the direct effect on'Y 1is identifiable in Ggv.
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Figure 5.19: A graph in which the direct effect on Y is unidentified.

Proof: By Lemma 12, Q[{Y'}] is computable from Q[S¥] if and only if Q[{Y}]¢_,
is computable from Q[S¥]¢,, - O

Lemma 18 and 19 can be applied alternatively to remove nodes from a graph,
until it is clear that the direct effect on Y is identifiable or until neither lemmas
is applicable. This leads to the following criterion.

Theorem 22 The direct effect on'Y is identifiable if there exists no subgraph G
of G satisfying all of the following: (i)Y € S; (ii) Gs has only one c-component,
S atself; (111) All variables in S are ancestors of Y in G.

The graph in Figure 5.19 satisfies conditions (i)-(iii), and for general graphs
of such a type, we are unable to determine the identifiability of the direct effect
on Y.

5.5 Identification of F;(s|c)

Let T, S,C C V. In this section, we study the problem of identifying P;(s|c). This
problem is important for the identifiability of conditional plans, where action 7'
is taken in response to observation C [Pea00, chapter 4].

We have

Psle) = & ]g(t‘z’;).

(5.164)

Therefore, P;(s|c) can be identified by identifying Pi(s,c) and F;(c) using the
method in Section 5.4. P(s|c) is identifiable if Pi(s,¢) is identifiable. P,(s|c) is
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not identifiable if P,(s,c) is not identifiable but Pi(c) is. If neither P(s,c) nor
P;(c) is identifiable, P,(s|c) may still be identifiable if the non-identifiable terms
are canceled out in the expressions for P;(s, ¢) and Py(c) computed as shown in
Section 5.4.1. Next, we study conditions for this canceling out to happen.

First we compute an expression for Py(s, c) with the procedure shown in Sec-

tion 5.4.1. Assume that V is partitioned into c-components Si,...,S,. Let
D= An(SUC)g,p, F'=D\(SUC), and let D; = DNS;i=1,... k. Assume
that each subgraph G'p, is partitioned into c-components D;y, ..., Dj,. Then we

have (see Eq. (5.130))
P(s,c) =Y _JT @Dyl (5.165)
F i,

The identifiability of Q[D;;]’s can be determined by calling the function
Identify(D;;, S;, Q[S:]) given in Figure 5.9. Let Dy;’s be put into two sets: in o
if Q[Dy;] is identified and in H™ if not identified (via the function Identify(., ., .)).
Eq. (5.165) can be rewritten as

Ps,e)=> ( [] @oyh( [ @y (5.166)

F D;‘jGH” Dweffl

This summation over F' can sometimes be decomposed into a product of summa-

tions as
Ps,e)=0" JI em)O. 11 e, (5.167)

Fy D;;e HMUH® Fy D;eH?

where F' is partitioned into two sets Fyy and Fy, and H* is patitioned into two sets
HO and H!. This partition of F' and H* can be determined as follows, using the
fact that each Q[D;;] is a function of Pa(Dy;).
1. Let F() =FN UDUEHnPG,(Dij), Fl = F\F(), and Hl == IT[Z
2. For each D;; € H', if Pa(Dy;) N Fy # 0, then remove Dy; from H' and put
it into H°.

3. Let G = Fy NUp,epoPa(Dy;). If G is not empty, remove variables in G
from Fy and put them into Fy. Then go back to step 2. If G is empty, then
stop, and the partition process is finished.

Now since Pi(c) = Y, Pi(s,c), if none of the variables in S appears in the
terms in HD,;J'GH”UHO Q[Dy], that is, if SN Up, egnumoPa(Dij) = 0, then

re)=0" I eoad O II e, (5.168)

Fy DijEH”UHO S Py DijEHl
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and P;(s|c) is identifiable as

o = Pi(s,c) >or b em QD]
P,(slc) = Pi(c) = ES(ZFl HDijEHl QID;) (5.169)

In summary, an algorithm for computing P;(s|c) is given in Figure 5.20.
The procedure consists of four basic phases. In phase-1, we compute the ex-
pressions for all c-factors and find (graphically) the sets D;; and F' from the
graph G. In phase-2, we attempt to compute Q[D;;]’s by calling the function
Identify(D;;, S;, Q[S:]), and put D;;’s into two sets: H* if identifiable and H™ if
not. In phase-3, we partition F' into two sets and [ into two sets. In phase-4,
when certain conditions are met, we output the expression for P,(s|c) given in
Eq. (5.169).

5.6 Beyond Semi-Markovian Models

In Sections 5.2-5.5 we have studied the identifiability problem in semi-Markovian
models. Our method is based on the decomposition of P(v) into a product of
c-factors and Lemmas 7, 10, and 11. Chapter 4 has shown that, in a Markovian
model with arbitrary sets of unobserved variables, P(v) can still be decomposed
into a product of c-factors and that properties as given in Lemmas 7, 10, and
11 hold as well (see Corollary 1, Lemma 2, and Lemma 3). Therefore, we can
use the same method developed in Sections 5.2-5.5 to identify causal effects in a
Markovian model with arbitrary sets of unobserved variables. In fact, instead of
working directly with a complicated model with arbitrary unobserved variables,
we may work with its semi-Markovian projection defined in Section 4.5. It is
shown in Section 4.5 that G and its projection PJ(G,V') have the same topo-
logical relations over V' and the same partition of V' into c-components. Based
on these results, we conclude that if P,(s) is identified in PJ(G,V) (using the
methods in Sections 5.2-5.5), then it is identified in G with the same expression.

In summary, to identify a causal effect P;(s) in a model with arbitrary unob-
served variables, we first construct the projection graph PJ(G,V), then attempt
to compute P,(s) in PJ(G,V). If P,(s) is computable in PJ(G, V), then P,(s) is
identifiable in GG with the same expression.

5.7 Conclusion

We developed a new method for inferring causal effects based on the concept of
c-component. Using the method, we established some powerful graphical criteria
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Algorithm 6 (Computing P,(s|c))

INPUT: three disjoint sets T',S,C C V.

QUTPUT: the expression for Py(s|c) or fail to determine.
Phase-1:

1. Find the c-components of G: Sy,...,Sk.

2. Compute the c-factors Q[S1],...,Q[Sk] by Lemma 7.

8 Let D= An(SUC)gy,, F=D\(SUC), D;=DnNS,;, i=1,... .k

4. Let the c-components of Gp, be Dy, j=1,... ki, ¢ =1,... k.
Phase-2:

1. For each set Dy;:
Call the function Identify(D;;,S;, @S:]) in Figure 5.9. If the function returns FAIL,
then put Dy, into the set H", otherwise put Dy; into the set HE.

2. If H™ is empty, then stop and output

OID;;
Pt(S|C) — ZF Hi,] Q[ ]}
Zs ZF H” Q[Dij]
Phase-3:
1. Let Fy = FNUp,,ernPa(Dyy), Fy = F\ Fy, and H'=H'
2. For each Dy; € H': if Pa(Di;) N Fy # 0, then remove Dyj from H' and put it into H®.

3. Let G = F1 N UD;jEHOPa(Dij)~
If G # 0, then remove variables in G from Fy and put them into Fy. Go back to step 2.
If G =0, go to Phase-4.

Phase-4:
If SNUp,, egnumo Pa(Dij) = 0, then output the expression for Pi(s|e) as given in Eq. (5.169),
otherwise output FAIL.

Figure 5.20: An algorithm for computing P,(s|c)
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for ensuring the identifiability of causal effects and developed procedures that
systematically identifies causal effects.
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CHAPTER 6

Identification of Causal Effects in Linear Models

In Chapter 5, we studied the identification problem in nonparametric models,
that is, we did not make any assumptions about the functional forms of how the
variables interact with each other. In this chapter, we study the identification
problem in linear models, in which we assume that all interactions among vari-
ables are linear. We will show how the identifiability results in nonparametric

models can be used to identify causal effects in linear models.

6.1 Linear Models

A linear recursive model over a set of variables V = {V7,...,V,} is given by a
set of linear equations

V;Z E Cij‘/j+€ia i:1,...,n, (61)
j<i
where ¢;; is called a path coefficient, and ¢; represents an “error” term and is

assumed to have normal distribution. Without loss of generality, we assume that
the model is standardized as

EVi]=Ele) =0, i=1,...,n, (6.2)

where E[.] represents the expectation.

A linear model can be represented by a DAG G with bidirected links, called a
causal graph, as follows. There is a direct link from Vj to V; in G if the coefficient
of Y} in the equation for Y; is not zero (¢;; # 0). There is a bidirected link between
Vi and V; if the error terms ¢; and ¢; have non-zero correlation. Figure 6.1 shows
a simple linear model and the corresponding causal graph in which each link is
annotated by the corresponding path coefficient.

In linear models, the observed distribution P(v) is fully specified by a co-
variance matrix X over V. The identification problem is that whether a path
coefficient ¢;; is computable from the covariance ¥ given the causal graph. The
problem has been under study for half a century. Some existing methods include
the rank and order conditions [Fis66], the instrumental variable method [BT84],
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X = ¢,

Z =aX +€,

W =bZ + ey
Y=cX+dZ +eW +¢
Cov(ez, €y) # 0
Coule.,ey) #0

Figure 6.1: A linear model.

and graphical methods [McD97, Pea00, BP02]. In the next section, we show how
causal effects (P,(s)) are related to path coefficients, and thus provide a tool for
the identification problem, extending the results in [Pea00].

6.2 Causal Effects

In linear models, we define three types of causal effects as follows. The path
coefficient ¢;; quantifies the direct causal effect of V; on V;, and is called a direct
effect. Assume that there is a directed path p from Vi to V; in the causal graph
G, then the product of path coefficients along the path p is called the partial
effect of Vi on V; along the path p, and is denoted by PE(p). Let I'(V4, V) be
the set of directed paths from V; to Vi, and let v C T'(V, V;). Then > . PE(p)
is called the partial effect of V on V; along the set of paths v and is denoted by
PE(~). In particular, PE(T'(Vy, V;)) is called the total effect of V;, on V; and is
denoted by TE(V, Vi).
The direct effects, partial effects, and total effects as defined above can be
computed from appropriate causal effects P;(s) by computing expectations. Let
E[.|do(t)] denote the expectations in the post-intervention distribution Py(.). The
following proposition is obvious.

Proposition 2 (Total Effects) The total effect of Vi, on V; can be computed as
TE(Vy, Vi) = E[Vi|do(vy)] /v (6.3)

Let Pa; = {Vi,,..., V;,} be the set of parents of V;, we have

Vildo(pa;)) Z Cii; Vi (6.4)

from which we have the following proposition.
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Proposition 3 (Direct Effects) The direct effect of Vi, on Vi can be computed
as

E[V;|do(pa;)], Vi € Pa,. (6.5)

ik — 8vk

Let S = {Vj,,..., Vi, } be a set of variables that does not contain V;. Let ~;
be the set of directed paths from Vi, to V; that does not pass any variables in
S\ {Vi;}. Then we have

E[Vi|do(s) ZPE i) Vi (6.6)

where we define PE(()) = 0. Eq. (6.6) leads to the following proposition.

Proposition 4 (Partial Effects) Given a set of directed paths v C T'(Vy, V3),
assuming that there exists a set of variables S that does not contain variables
lying in the paths in v but contains a variable lying in each path in I'(Vi, Vi) \ 7,
the partial effect PE(7) can be computed as

0

PE(y) = Bor

E[V;|do(s), do(vg)]. (6.7)

Note that such a set S may not exist for some ~.

6.3 Identifying Causal Effects

Next, we show how to compute those expectations with respect to post-intervention
distributions given causal effects expressed in terms of the observed joint P(v).
For two variables V; and V}, and a set of variables S, the coefficient of V; in the
linear regression of V; on V; and S is called a partial regression coefficient, and is
denoted by By,y,.s (Note that the order of the subscripts in By, s is important).
Partial regression coefficients can be expressed in terms of covariance matrices as
follows:
ovy; — C1sCs5Cv;s

V.5 = — 6.8
5%%'5 UV]-V CVSC CVS ( )

where Cgg etc. represents covariance matrices. Let S = {V;,,..., Vi } and
S; = S\ {Vi,}. We have the following formula for conditional expectations
5} g ZIBWVL']”SJ' ’Ui].. (69)
J
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Eq. (6.9) provides the foundation for computing expectations in post-intervention
distributions expressed in terms of P(v). Whenever a causal effect P,(s) is deter-
mined as identifiable (in a nonparametric model), we can use Egs. (6.3)-(6.7) to
compute the causal effects in the corresponding linear model.

Next we study some examples. The “back-door” criterion [Pea93] says that if
a set of variables Z satisfies the back-door criterion relative to (X,Y"), then P,(y)
is identifiable and is given by

= ZP(y1x,z)P(z). (6.10)

Let Z=1{Z,,...,Z} and Z' = Z\ {Z;}. Eq. (6.10) leads to

E[Y |do(x ZE Yz, 2| P(z)

= Z(ﬁyx.z T+ Z Byz.xzi zi)P(z) (by Eq. (6.9))

= Pyxzz (E[Z]=0) (6.11)

Therefore, by Proposition 2, if a set of variables Z satisfies the back-door criterion
relative to (X, V"), then the total effect of X on Y is given by Sy x.z. This result
is given as Theorem 5.3.2 in [Pea00, p. 152].

Consider the “front-door” criterion [Pea95al, which says that if a set of vari-
ables Z satisfies the front-door criterion relative to (X,Y"), then P,(y) is identi-
fiable and is given by

2 (1) VP tx)ZP ylz', 2) P(') (6.12)

Let Z={Z,...,Zx} and Z' = Z\ {Z;}. We have
E[Y|do(z) ZP z|x) ZE Yiz', 2] P(z")
—ZP (z]z) Z Byxz @ +Zﬂyz xzi zi)P(2')
= ZP zlz) Zﬁyszzi Zi
= ZﬂYZ,-.XZiE[ZiIx]
= Zﬁvzi.xziﬁz,;x T (6.13)

111



Therefore, if a set of variables Z satisfies the front-door criterion relative to
(X,Y), then the total effect of X on Y is given by >, By z xziB8zx.

In general, the identifiability of P,(y) may be decided by using Theorem 17
or Algorithm 4 in Chapter 5.3. We can then identify the total effect of X on
Y by computing expectations using Eq. (6.9). Next we show a few examples
in which we can identify path coefficients by identifying direct effect Pp,, (y).
Consider the problem of identifying direct effects on Y in Figure 5.13(a). It is
shown in Chapter 5.4.3 that the direct effect P, .,(y) is identifiable and is given
in Eq. (5.144) rewritten in the following

B . \ » 1
T1, %2, 2)P(zlz1). (6.14)

Py (y) = Z*p(y

z

We have

E[Y|do(xy,x5)] = Z(ﬁyxl.)gz z1 + Byxyxiz T2+ Byzx,x, 2)P(z]a))

r4
= By x, x.2 T1+ Byxs.x1z T2 + Byzx,x.Bzx, T1
= (Byx,.x22 + Brzxix.0zx)%1 + Pyxs.x,z Za. (6.15)

Therefore, by Proposition 3, we have that the direct effects of X; and X5 on Y
are both identifiable and are given by

cyx, = Byx,xo2 + Brzxix.Bzx,, (6.16)
cyx, = Py x,.x12- (6.17)

Consider the problem of identifying direct effects on Y in Figure 5.16. P,, ,,(v)
is identifiable and is given in Eq. (5.163) rewritten in the following

P.o(y) = Y Plylwy, @2, 21, 2) P (32|21, 21) P(21), (6.18)
1,22
which leads to
EY|do(z1, z2))

= Z(ﬁyxl.xzzlzg 21+ By x,xi202, T2+ By iz, x,x02, %1
1,22
+ By z5.x1x22: 22)P(m2]21, 21) P(21)
= By x,.X12, 2 Z(ﬁxle.zl z1+ Bxyzi.x, 21)P(21)
X1
+ By iz X1 X070 21+ By iz x1 X021 %2

= (Byvz.x15:2 + By x0.x12: 2. 852201 ) 21 + Py 2o X1 X021 22 (6.19)
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Therefore we obtain that the direct effects of Z; and Z, on Y are both identifiable
and are given by

Cyz, = 5YZl.X1X2Z2 + 6YX2‘X1Z1226X221.X17 (62())

Cyzy, = By zy X, X221 - (6.21

This method of translating identifiability results in nonparametric models to
linear models provides a new tool for the identification problem in linear models.
First, the method may identify some path coefficients that can not be identi-
fied by the instrumental variable approach. Second, the method may directly
identify some total effects and partial effects even though some individual path
coefficients involved are not identifiable, while standard instrumental variable
approach focuses on the identification of individual path coeflicients.

6.4 Identifying Causal Effects Systematically

For the purpose of identifying individual path coefficients, we suggest the follow-
ing systematic process. Let a topological order over V' be V} < ... < V,, and
let VU = {Vi,...,V;}, 3 =1,...,n For j from 2 to n, at each step, we con-
sider the subgraph G and try to identify the path coefficients associated with
links pointing at V;. At step j, the causal effects involving V; can be computed
as follows. Assuming that Vj is in the c-component S; of Gy, by Lemma 7,
Q[S;] = Pus, (s5) is identifiable. Therefore, we can obtain some partial effects on
V; by computing E[V;|do(v )\ s;))]. We may get further information about causal
effects on V; by looking for subset S of S; that contains V; such that Q[S] is iden-
tifiable. The maximum information is achieved by finding the minimum subset
Spin of S; that contains V; such that Q[Smin] = Pu\s,.,, (Smin) is identifiable and
computing E[Vj|do(v \ spin)].

Such a minimum set can be found out by slightly modifying the function
Identify(C, T, Q) in Figure 5.9 used to determine if, for any set C C T, Q[C] is
computable from Q[7]. The modified function Identify_Min(S, T, @) is given in
Figure 6.2, which, given Q[7] and a set S C T, finds the minimum set Sy, that
contains S such that Q[Spun] s computable from Q[77].

Therefore, at step j, we call the function Identify Min({V;}, S;, Q[S;]) to find
out Sy and Q[Smin] = Pu\syi (Smin). Then we compute E[Vj|do(v \ spmin)] to
get some partial effects on V;. Let Z = {Z,,..., Z;} be the set of variables in
V' \ Spmun such that for each Z; there exists a directed path from Z; to V; that
does not pass any other variables in V'\ Spin. Let ; be the set of directed paths
from Z; to V; that do not pass any other variables in V'\ Sp,;,. By Proposition 4,
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Function Identify_Min (5,7, Q)

INPUT: S C T C V. Q = Q[T]. Assuming Gr is composed of one single
c-component.

OUTPUT: The minimum set Sy, 2 S such that Q[Sn] is computable from

Q[TT.

Let A = An(S)g,.
e I A =S, output Sy = S and Q[S] = ZT\S Q.
o I A =T, output Spin =7 and Q[T].
e [FSCACT

1. Assume that, in G4, S is contained in a c-component 77
2. Compute Q[1"] from Q[A] = ZT\A @ by Lemma 11.
3. Output Identify_Min(S, 7", Q[T"]).

Figure 6.2: A function finding the minimum set Sy, = S such that Q[Smn] is
identifiable from Q[T].

the partial effect PE(~;) is identifiable and is given by
0
PE(v;) = —B;E[Vﬂdo(v \ Smin)]. (6.22)

Let the set of parents of V; be Pa; = {Y7,...,Y;}. Then the partial effect PE(v;)
as a summation of products of path coefficients along some paths from Z; to V;
can be decomposed into

PE(v)= Y. PE(@m)cyy,, for Z; & Pay, (6.23)
maYmesmin
or when Z; is a parent of Vj,
PE(y)=cvyi+ ., PE@m)evy,, for Z, =Y, (6.24)
m,Ym €ESmin

where 6, is the set of directed paths from Z; to Y,, that do not pass any other
variables in V' \ Sy;n,. The summation is for ¥, € Sy, because +y; only contains
paths that do not pass variables in V' \ Spin. Since Py, .. (Smin) is identifiable,
by Proposition 4, the partial effect PE(6;,) is identifiable and is given by

0

PE(0in,) = —a—;E[Ym]do(v \ Smin )]y for Yo, € Spin, (6.25)
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(b) (c) ()

Figure 6.3: Subgraphs for identifying path coefficients in G.

which would have been identified before the step j. From Eqgs. (6.22)—(6.25), we
conclude that, at step j, we will obtain a set of equations which are linear in the
set of path coefficients cy;y,, associated with links pointing at V} and in which
those path coefficients are the only unknowns.

In summary, at step j, we do the following
1. Find the c-component S; of Gy).
2. Find the expression for Q[S;] by Lemma 7.

3. Call the function Identify_Min({V;}, S;, Q[S;]) to find out Sy, and Q[Smin] =
Pv\smm (Smm)~

4. Compute E[V;|do(v \ smin)] to get a set of equations linear in path coeffi-
cients associated with links pointing at V.

5. Try to solve the set of linear equations.

Next, we demonstrate this procedure by some examples. Consider the iden-
tification problem in Figure 6.3(a). The only admissible order of variables is
X < Z, < Zy <Y <W. At step 1, we consider the subgraph in Figure 6.3(b).
It is obvious that P,(z1) = P(21|x), and we obtain

cz.x = E[Z1|do(x)]/x = Bz, x. (6.26)

At step 2, we consider the subgraph in Figure 6.3(c). Z, is in the c-component
{X, Z,} and Lemma 7 gives

QUX, Z;}] = P(#|x, )P (). (6.27)
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Calling the function Identify Min({Z2}, {X, Z2}, Q[{ X, Z2}]), we obtain

QU Z2}] = Puy(22) = Y P(z|z1,2) P(x). (6.28)

Therefore,
2,2, = E|Zs]do(21)]/
= Z(ﬁZng‘X 21+ Brox.z ) P(x) /2
= Pz,z,.x. (6.29)

At step 3, we consider the subgraph in Figure 6.3(d). Y is in the c-component
{V,Z,} and Lemma 7 gives

QUY, Z:}] = Py (y, 21) = Pylz, 21, 2) Pz1]2). (6.30)

Calling the function Identify Min({Y'},{Y, Z1}, Q[{Y, Z1}]) returns {Y, Z1 } as the
minimum set (Q[{Y'}] is not identifiable). We then compute the expectation

E[Y[dO(ﬂf, Zz)J = Z(ﬁyzz.zlx Zo + ﬁyzl.zgx 2+ ﬁyx.2221 CC)P(Z1II)

Z1

= Byzozx %+ (Byz z:x Bz x + Byx.z,2,)% (6.31)
Therefore, we obtain the path coefficient
Cyz, = By 232, % (6.32)
and the following partial effect
cyx + CzyxCyz = Pyx.z2 + BzyxBrzi.z:x, (6-33)

where ¢z, x is identified in Eq. (6.26).

Finally, at the last step, we consider the graph in Figure 6.3(a). W is in the
c-component {W, Y, Z,;} and Lemma 7 gives

QUW,Y, Z1}] = Ppoy(w,y, 1) = P(wly, 22, 21, £) P(y|22, 21, x) P(z1]z).  (6.34)

Calling the function Identify Min({W},{W)Y, Z;}, Q{W,Y, Z1}]) returns
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{W,Y, Z,} as the minimum set. We then compute the expectation

E[W|do(z, 22))

= Z(ﬁwyzgzlx Y+ Bwzyzx 2o+ Bwziyvzx 21+ Pwxyz,z, )

vz

P(ylzz, 21, 1) P(21]7)

= ﬂWY.ZZZIXE{YidO(xa 22)} +Bwzyzx 22+t BwzvzxBax T

+ Bwxyzsz, T
= (Bwv.zezxPrze.zx + Bwzyvzix) 2

+ Bwy.zozx By z,.2:x Bz x + Byx.z.2:)

+ Bwz vz,xBzx + Bwxyz,z,] %, (substitute (6.31) in) (6.35)

from which we obtain the total effect of Z5 on W:

Cyz,Cwy = ﬁwngzlxﬂyzg_zlx + BWZg.YZlXa (6-36)

and the following partial effect of X on W:

ewx + (eyx + czixeyz )ewy
= Bwy.zoz:x By zy zoxBzix + By x.z02,) + BwzvzxBzix + Bwx.yzyz,. (6.37)

The path coefficient cyz, is identifiable and is given in (6.32), and therefore by
Eq. (6.36), the path coefficient ¢y is identifiable and is given by

ﬁWZg.YZlX- (638)

cwy = Bwy.zyz,x +
By z,.2,x

Then from Eqgs. (6.37), (6.33), and (6.38), the path coefficient ¢y x is identifiable
and is given by
Pwarymx

Bz 2 % By z,.2:x Bz, x + Byx.z,2,)
2.4

(6.39)

cwx = Pwxvz.z, + Bwzyvz.xBzx —

6.5 Conclusion

We show how the identifiability results in nonparametric models presented in
Chapter 5 can be used to identify causal effects in linear models. The method
may directly identify some total effects and partial effects even though some
individual path coefficients involved are not identifiable. The method is useful in
models with few bidirected (confounding) links.
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CHAPTER 7

Probabilities of Causation: Bounds and
Identification

7.1 Introduction

Assessing the likelihood that one event was the cause of another guides much of
what we understand about (and how we act in) the world. For example, few of us
would take aspirin to combat headache if it were not for our conviction that, with
high probability, it was aspirin that “actually caused” relief in previous headache
episodes. Likewise, according to common judicial standard, judgment in favor of
plaintiff should be made if and only if it is “more probable than not” that the
defendant’s action was a cause for the plaintiff’s injury (or death). This chapter
deals with the question of estimating the probability of causation from statistical
data.

Causation has two faces, necessary and sufficient. The most common con-
ception of causation — that the effect E would not have occurred in the ab-
sence of the cause C' — captures the notion of “necessary causation”. Competing
notions such as “sufficient cause” and “necessary-and-sufficient cause” are also
of interest in a number of applications, and this chapter analyzes the relation-
ships among the three notions. Although the distinction between necessary and
sufficient causes goes back to J.S. Mill [Mil43], it has received semi-formal ex-
plications only in the 1960s — via conditional probabilities [Goo61] and logical
implications [Mac65]. These explications suffer from basic semantical difficulties
[Kim71] [Pea00, pp. 249-256, 313-316], and they do not yield effective proce-
dures for computing probabilities of causes. This chapter defines probabilities of
causes in a language of counterfactuals that is based on a simple model-theoretic
semantics (to be formulated in Section 7.2).

[RG8&9] gave a counterfactual definition for the probability of necessary causa-
tion taking counterfactuals as primitives, and assuming that one is in possession of
a consistent joint probability function on both ordinary and counterfactual events.
[Pea99] gave definitions for the probabilities of necessary or sufficient causation
(or both) based on structural model semantics, which defines counterfactuals as
quantities derived from modifiable sets of functions [GP97, GP98, Hal98, Peal0].
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The structural models semantics, as we shall see in Section 7.2, leads to effective
procedures for computing probabilities of counterfactual expressions from a given
causal theory [BP94, BP95]. Additionally, this semantics can be characterized
by a complete set of axioms [GP98, Hal98], which we will use as inference rules
in our analysis.

The central aim of this chapter is to estimate probabilities of causation from
frequency data, as obtained in experimental and observational statistical studies.
In general, such probabilities are non-identifiable, that is, non-estimable from
frequency data alone. One factor that hinders identifiability is confounding -
the cause and the effect may both be influenced by a third factor. Moreover,
even in the absence of confounding, probabilities of causation are sensitive to the
data-generating process, namely, the functional relationships that connect causes
and effects [RG89, BP94]. Nonetheless, useful information in the form of bounds
on the probabilities of causation can be extracted from empirical data without
actually knowing the data-generating process. These bounds improve when data
from observational and experimental studies are combined. Additionally, under
certain assumptions about the data-generating process (such as exogeneity and
monotonicity), the bounds may collapse to point estimates, which means that
the probabilities of causation are identifiable — they can be expressed in terms of
probabilities of observed quantities. These estimates will be recognized as familiar
expressions that often appear in the literature as measures of attribution. Our
analysis thus explicates the assumptions about the data-generating process that
must be ascertained before those measures can legitimately be interpreted as
probabilities of causation.

The analysis of this chapter leans heavily on results reported in [Pea99] [Pea00,
pp. 283-308]. Pearl derived bounds and identification conditions under certain
assumptions of exogeneity and monotonicity, and this chapter improves on Pearl’s
results by narrowing his bounds and weakening his assumptions. In particular,
we show that for most of Pearl’s results, the assumption of strong exogeneity can
be replaced by weak exogeneity (to be defined in Section 7.4.3). Additionally,
we show that the point estimates that Pearl obtained under the assumption of
monotonicity (Definition 19) constitute valid lower bounds when monotonicity
is not assumed. Finally, we prove that the bounds derived by Pearl, as well as
those provided in this chapter are sharp, that is, they cannot be improved without
strengthening the assumptions.

The rest of the chapter is organized as follows. Section 7.2 reviews the struc-
tural model semantics of actions, counterfactuals and probability of counterfactu-
als. In Section 7.3 we present formal definitions for the probabilities of causation
and briefly discuss their applicability in epidemiology, artificial intelligence, and
legal reasoning. In Section 7.4 we systematically investigate the maximal infor-
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mation (about the probabilities of causation) that can be obtained under various
assumptions and from various types of data. Section 7.5 illustrates, by example,
how the results presented in this chapter can be applied to resolve issues of attri-
bution in legal settings. Section 7.6 illustrates the use of our results in personal
decision making. Section 7.7 concludes the chapter.

7.2 Structural Model Semantics

In Chapters 1-5, we assumed probabilistic relations between variables in the
model. In this chapter, we assume deterministic, functional relations between
variables, and the causal model will be called functional, which, in addition to
interventions, supports counterfactual readings. This section presents a brief
summary of the structural-equation semantics of counterfactuals as defined in
[BP95, GP97, GP98, Hal98]. Related approaches have been proposed in [SR66]
(see footnote 5) and [Rob86]. For detailed exposition of the structural account
and its applications see [Pea00].

Structural models are generalizations of the structural equations used in engi-
neering, biology, economics and social science.! World knowledge is represented
as a collection of stable and autonomous relationships called “mechanisms,” each
represented as a function, and changes due to interventions or hypothetical even-
tualities are treated as local modifications of these functions.

A causal model is a mathematical object that assigns truth values to sentences
involving causal relationships, actions, and counterfactuals. We will first define
functional causal models, then discuss how causal sentences are evaluated in such
models. We will restrict our discussion to recursive (or feedback-free) models;
extensions to non-recursive models can be found in [GP97, GP98, Hal98].

Definition 6 (functional causal model)
A functional causal model is a triple

M= <UVF >
where

(1) U is a set of variables, called exogenous. (These variables will represent back-
ground conditions, that is, variables whose values are determined outside the
model.)

!Similar models, called “neuron diagrams” [Lew86, Hal02] are used informally by philoso-
phers to illustrate chains of causal processes.
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(1) V is an ordered set {Vi, Vs, ..., V,,} of variables, called endogenous. (These
represent variables that are determined in the model, namely, by variables
inUUV.)

(i31) F is a set of functions {f1, fa,..., fn} where each f; is a mapping from
Ux (Vi x...x Vi) toV,. In other words, each f; tells us the value of
Vi given the values of U and all predecessors of V;. Symbolically, the set of
equations F' can be represented by writing

v; = filpag,u) i=1,...,n

where pa; 15 any realization of the unique minimal set of variables PA; in
V' (connoting parents) sufficient for representing f;*. Likewise, U; C U
stands for the unique minimal set of variables in U that is sufficient for
representing f;.

Every functional causal model M can be associated with a directed graph,
G(M), in which each node corresponds to a variable in V' and the directed edges
point from members of PA; toward V; (by convention, the exogenous variables
are usually not shown explicitly in the graph). We call such a graph the causal
graph associated with M. This graph merely identifies the endogenous variables
PA; that have direct influence on each V; but it does not specify the functional
form of f;.

Basic of our analysis are sentences involving actions or external interventions,

such as, “p will be true if we do ¢” where ¢ is any elementary proposition. To
evaluate such sentences we need the notion of “submodel.”

Definition 7 (Submodel)

Let M be a functional causal model, X be a set of variables in V, and z be a
particular assignment of values to the variables in X. A submodel M, of M is
the functional causal model

M,= <UV,F;, >

where

Fo={f Vi¢ X}U{X =2} (7.1)

2 We use capital letters (e.g., X, Y ) as names of variables and sets of variables, and lower-
case letters (e.g., x, y) for specific values (called realizations) of the corresponding variables.

3 A set of variables X is sufficient for representing a given function y = f(xz,2) if [ is trivial
in Z~that is, if for every z,z,z" we have f(x,z) = f(x,2').

121



In words, F, is formed by deleting from F' all functions f; corresponding to
members of set X and replacing them with the set of constant functions X = z.

Submodels represent the effect of actions and hypothetical changes, including
those dictated by counterfactual antecedents. If we interpret each function f; in
F as an independent physical mechanism and define the action do(X = z) as
the minimal change in M required to make X = x hold true under any u, then
M, represents the model that results from such a minimal change, since it differs
from M by only those mechanisms that directly determine the variables in X.
The transformation from M to M, modifies the algebraic content of F', which is
the reason for the name modifiable structural equations used in [GP98].*

Definition 8 (Effect of action)
Let M be a functional causal model, X be a set of variables in V, and z be a
particular realization of X. The effect of action do(X = x) on M is given by the
submodel M,,.

Definition 9 (Potential response)

Let Y be a variable in V, let X be a subset of V', and let u be a particular value
of U. The potential response of Y to action do(X = z) in situation u, denoted
Yy(u), is the (unique) solution for'Y of the set of equations Fy.

We will confine our attention to actions in the form of do(X = z). Conditional
actions, of the form “do(X = z) if Z = 2” can be formalized using the replacement
of equations by functions of Z, rather than by constants [Pea94]. We will not
consider disjunctive actions, of the form “do(X = z or X = z')”, since these
complicate the probabilistic treatment of counterfactuals.

Definition 10 (Counterfactual)

Let Y be a variable in V', and let X be a subset of V. The counterfactual ex-
pression “The value that Y would have obtained, had X been x” is interpreted as
denoting the potential response Yy (u).

Definition 5 thus interprets the counterfactual phrase “had X been z” in terms
of a hypothetical external action that modifies the actual course of history and
enforces the condition “X = 2”7 with minimal change of mechanisms. This is
a crucial step in the semantics of counterfactuals [BP94], as it permits z to

*Structural modifications date back to [Mar50] and [Sim53]. An explicit translation of
interventions into “wiping out” equations from the model was first proposed by [SW60] and
later used in [Fis70], [Sob90], [SGS93], and [Pead5a]. A similar notion of sub-model is introduced
in [Fin85], though not specifically for representing actions and counterfactuals.
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differ from the actual value X (u) of X without creating logical contradiction;
it also suppresses abductive inferences (or backtracking) from the counterfactual
antecedent X = z.

It can easily be shown [GP97] that the counterfactual relationship just defined,
Y, (u), satisfies the following two properties:
Effectiveness:
For any two disjoint sets of variables, Y and W, we have

Yyw(u) = y. (7.2)

In words, setting the variables in W to w has no effect on Y, once we set the
value of Y to y.

Composition:

For any two disjoint sets of variables X and W, and any set of variables Y,

Wolu) = w = Yy, (u) = Yy(u). (7.3)

In words, once we set X to z, setting the variables in W to the same values,
w, that they would attain (under z) should have no effect on Y. Furthermore,
effectiveness and composition are complete whenever M is recursive (i.e., G(M)
is acyclic) [GP98, Hal98], that is, every property of counterfactuals that follows
from the structural model semantics can be derived by repeated application of
effectiveness and composition.

A corollary of composition is a property called consistency by [Rob87}:
(X(u) =2) = (Ya(u) = Y(u)) (7.4)

Consistency states that, if in a certain context u we find variable X at value z, and
we intervene and set X to that same value, x, we should not expect any change
in the response variable Y. This property will be used in several derivations of
Section 7.3 and 7.4.

The structural formulation generalizes naturally to probabilistic systems, as
is seen below.

Definition 11 (Probabilistic functional causal model)
A probabilistic functional causal model is a pair

< M, P(u) >

where M is a functional causal model and P(u) is a probability function defined
over the domain of U.

>Simon and Rescher [SR66, p. 339] did not include this step in their account of counterfac-
tuals and noted that backward inferences triggered by the antecedents can lead to ambiguous
interpretations.
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P(u), together with the fact that each endogenous variable is a function of
U, defines a probability distribution over the endogenous variables. That is, for
every set of variables Y C V| we have

Py)2P(Y =y)= Y. P (7.5)
{v | Y(w)=y}

The probability of counterfactual statements is defined in the same manner,
through the function Y, (u) induced by the submodel M,. For example, the
causal effect of x on y is defined as:

PY,=y)= Y P (7.6)

{u | Yo(u)=y}

Likewise, a probabilistic functional causal model defines a joint distribution
on counterfactual statements, i.e., P(Y, = y, Z,, = z) is defined for any sets of
variables Y, X, Z, W, not necessarily disjoint. In particular, P(Y, = y, X = 2')
and P(Y, =y, Yy = v/') are well defined for z # 2/, and are given by

PY,=yX=s)= Y PW (7.7)
{ulYe(u)=y & X(u)=az'}

and
P(Ym =y, Yo = yl) = Z P(u) (78)

{u | Ya(u)=y & Y, (u)=y'}

When z and 2’ are incompatible, Y, and Y, cannot be measured simultane-
ously, and it may seem meaningless to attribute probability to the joint statement
“Y would be y if X = z and Y would be ¢ if X = 2'.” Such concerns have been
a source of recent objections to treating counterfactuals as jointly distributed
random variables [Daw97]. The definition of Y, and Y, in terms of two distinct
submodels, driven by a standard probability space over U, demonstrates that joint
probabilities of counterfactuals have solid mathematical and conceptual under-
pinning and, moreover, these probabilities can be encoded rather parsimoniously
using P(u) and F.

In particular, the probabilities of causation analyzed in this chapter (see
Egs. (7.10)-(7.12)) require the evaluation of expressions of the form P(Yy =
y'|X = z,Y = y) with z and y incompatible with " and 3/, respectively. Eq. (7.7)
allows the evaluation of this quantity as follows:

P(Yy =y, X =2z,Y =y)
P(X=2zY =y)
= D P(Yo(u) =y)P(ulz,y) (7.9)

P<Yx’ = y/[X =z,Y =y)
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In other words, we first update P(u) to obtain P(u|z,y), then we use the updated
distribution P(u|z,y) to compute the expectation of the propositional variable
Yy(U) = yl.ﬁ

7.3 Probabilities of Causation: Definitions

In this section, we present the definitions for the three aspects of causation as
defined in [Pea99]. We use the counterfactual language and the structural model
semantics introduced in Section 7.2. For notational simplicity, we limit the discus-
sion to binary variables; extension to multi-valued variables are straightforward
(see [Peal0], page 286, footnote 5).

Definition 12 (Probability of necessity (PN))

Let X and Y be two binary variables in a functional causal model M, let x and
y stand for the propositions X = true and Y = true, respectively, and ' and y'
for their complements. The probability of necessity is defined as the expression

e

PN P(Yy = false | X = true,Y = true)

Pz, y) (7.10)

1>

In other words, PN stands for the probability that event y would not have oc-
curred in the absence of event z, y,,, given that z and y did in fact occur.”

This quantity has applications in epidemiology, legal reasoning, and artificial
intelligence (AI). Epidemiologists have long been concerned with estimating the
probability that a certain case of disease is attributable to a particular exposure,
which is normally interpreted counterfactually as “the probability that disease
would not have occurred in the absence of exposure, given that disease and expo-
sure did in fact occur.” This counterfactual notion, which Robins and Greenland
(1989) called the “probability of causation”, measures how necessary the cause

8In our deterministic model, P(Y, (u) = y') takes on the values zero and one, but in models
involving intrinsic nondeterminism (see Section 7.7), or memoryless stochastic fluctuations,
P(Y,(u) = y') expresses the residual uncertainty in ¥, under the setting X = z’, in situation
U = u. Eq. (7.9) then captures the uncertainty associated with the effect of action do(X = z'},
conditioned on the pre-action evidence X =z and ¥ = y.

"Note a slight change in notation relative to that used Section 7.2. Lower case letters (e.g.,
z,y) denoted arbitrary values of variables in Section 7.2, and now stand for propositions (or
events). Note also the abbreviations y, for Yy = true and y/, for Y, = false. Readers accustomed
to writing “A4 > B” for the counterfactual “B if it were A” can translate Eq. (7.10) to read

PN 2 Pz > y'|z,v).
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is for the production of the effect. It is used frequently in lawsuits, where legal
responsibility is at the center of contention (see Section 7.5).

Definition 13 (Probability of sufficiency (PS))

PS 2 P(y,ly, 2) (7.11)

PS measures the capacity of x to produce y and, since “production” implies a
transition from the absence to the presence of z and y, we condition the prob-
ability P(y,) on situations where z and y are both absent. Thus, mirroring the
necessity of z (as measured by PN), PS gives the probability that setting z would
produce y in a situation where z and y are in fact absent.

PS finds applications in policy analysis, Al, and psychology. A policy maker
may well be interested in the dangers that a certain exposure may present to the
healthy population [KFG89]. Counterfactually, this notion is expressed as the
“probability that a healthy unexposed individual would have gotten the disease
had he/she been exposed.” In psychology, PS serves as the basis for Cheng’s
(1997) causal power theory, which attempts to explain how humans judge causal
strength among events. In Al, PS plays a major role in the generation of expla-
nations [Pea00, pp. 221-223].

Definition 14 (Probability of necessity and sufficiency (PNS))

PNS 2 P(ys, yl) (7.12)

PNS stands for the probability that y would respond to x both ways, and therefore
measures both the sufficiency and necessity of z to produce y.

As illustrated above, PS assesses the presence of an active causal process ca-
pable of producing the effect, while PN emphasizes the absence of alternative
processes, not involving the cause in question, that are capable of explaining the
effect. In legal settings, where the occurrence of the cause, z, and the effect, y,
are fairly well established, PN is the measure that draws most attention, and the
plaintiff must prove that y would not have occurred but for x [Rob97al. Still,
lack of sufficiency may weaken arguments based on PN [G0093, Mic00].

Although none of these quantities is sufficient for determining the others, they
are not entirely independent, as shown in the following lemma.
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Lemma 20 The probabilities of causation satisfy the following relationship:

PNS = P(z,y)PN + P(z',y)PS (7.13)

Proof of Lemma 20
Using the consistency condition of Eq. (7.4),

r= (Yo =vy), 2= Yo =y), (7.14)
we can write

Yo N = (Yo Ayp) AV 2)
= (W AT AY)V (Yo Ay A )
= (WATAY) V(Y AY AT

Taking probabilities on both sides, and using the disjointness of x and z’, we
obtain:

P(Yo ) = Py, x,y)+ Plys ', y")
= P(yylz,y)P(z,y) + P(yz|a", v ) P(z',)

which proves Lemma 20. O

Definition 15 (Identifiability)

Let Q(M) be any quantity defined on a functional causal model M. Q is identifi-
able in a class M of models iff any two models My and My from M that satisfy
Pu, (v) = Py (v) also satisfy Q(My) = Q(Ms). In other words, @ is identifi-
able if it can be determined uniquely from the probability distribution P(v) of the
endogenous variables V.

The class M that we will consider when discussing identifiability will be
determined by assumptions that one is willing to make about the model under
study. For example, if our assumptions consist of the structure of a causal graph
Gy, M will consist of all models M for which G(M) = Gy. If, in addition
to Gy, we are also willing to make assumptions about the functional form of
some mechanisms in M, M will consist of all models M that incorporate those
mechanisms, and so on.

Since all the causal measures defined above invoke conditionalization on ¥,
and since y is presumed affected by x, the antecedent of the counterfactual y,, we
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know that none of these quantities is identifiable from knowledge of the structure
G(M) and the data P(v) alone, even under condition of no confounding. However,
useful information in the form of bounds may be derived for these quantities from
P(v), especially when knowledge about causal effects P(y,) and P(y,) are also
available®. Moreover, under some general assumptions about the data-generating
process, these quantities may even be identified.

To formulate precisely what it means to identify a counterfactual quantity
from various types of data, we now generalize Definition 15 to capture the notion
of “identification from experiments.” By experiment we mean a prescribed mod-
ification of the underlying functional causal model, together with the probability
distribution that the modified model induces on the variables observed in the
experiment.

Definition 16 (Identifiability from experiments)

Let Q(M) be any quantity defined on a functional causal model M, let M be a
modification of M induced by some experiment, exp, and let Y be a set of variables
observed under exp. We say that @) is identifiable from experiment exp in a class
M of models iff any two models My and My from M that satisfy PMlezp(y) =
Py (y) also satisfy Q(My) = Q(Ms). In other words, Q is identifiable from exp
if it can be determined uniquely from the probability distribution that the observed
variables Y attain under the experimental conditions created by exp.

In the sequel, we will consider standard controlled experiments, in which the
values of the control variable X are assigned at random. The outcomes of such
experiments are the causal effects probabilities, P(y,) and P(y, ), which are also
induced by the submodels M, and M, respectively. However, Definition 16
is applicable to a much broader class of experimental designs, corresponding
to both deletion and replacement of the model equations. Note that standard
identifiability (Definition 15) is a special case of identifiability from experiments,

where ¥ = V and M*? = M.

7.4 Bounds and Conditions of Identification

In this section we estimate the three probabilities of causation defined in Sec-
tion 7.3 when given experimental or nonexperimental data (or both) and ad-
ditional assumptions about the data-generating process. We will assume that
experimental data will be summarized in the form of the causal effects P(y,) and

8The causal effects P(y,) and P(y, ) can be estimated reliably from controlled experimental
studies, and from certain observational (i.e., nonexperimental) studies (see Chapter 5).
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P(y,), and nonexperimental data will be summarized in the form of the joint
probability function: Pxy = {P(x,y), P(z',y), P(z,v"), P(z',y')}. *

7.4.1 Linear programming formulation

In principle, in order to compute the probability of any counterfactual sentence
involving variables X and Y we need to specify a functional causal model, namely,
the functional relation between X and Y and the probability distribution on U.
However, since every such model induces a joint probability distribution on the
four binary variables: X, Y, Y, and Y/, specifying the sixteen parameters of this
distribution would suffice. Moreover, since Y is a deterministic function of the
other three variables, the problem is fully specified by the following set of eight
parameters:

= Ple,ve,z) = P(T,Y,Yur)
pro = PUe,yo,2') =Pz, 1)
no = Py ) =P,y,yy)
poo = PYeyp,2) =Py, ys)
pon = P, yw,2) = Plz,y,yw)
powo = Py v, 2') =P y,y,)
poor = Pyp v, 7) = Plz,y,y)
pooo = Pl yp7') =P,y yy)
where we have used the consistency condition Eq. (7.14). These parameters are

constrained by the probabilistic constraints

1 1 1
DD k=1
=0 j=0 k=0

In addition, the nonexperimental probabilities Pyy impose the constraints:

P +pon = Plz,y)
po11 +pon = Plz,y) (7.16)
piio+poe = P2 y)

9For example, if z represents a specific exposure and y represents the outcome of a specific
individual I, then Pxy is estimated from sampled frequency counts in a population that is
deemed representative of the relevant characteristics of I. The choice of an appropriate reference
population is usually based on causal consideration {(often suppressed), and involves matching
the characteristics of I against the causal model (M, P(u)) judged to govern the population.
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and the causal effects, P(y,) and P(y, ), impose the constraints:

P(y,) = pi1+ prio + pror + Proo
P(y,) = put + puio + ot + Poro (7.17)

The quantities we wish to bound are:

PNS = pio + pioo (7.18)
PN = P101/P(37>.7/) (7-19)
PS == ploO/P(x',y') (720)

In the following sections we obtain bounds for these quantities by solving var-
ious linear programming problems. For example, given both experimental and
nonexperimental data, the lower (and upper) bounds for PNS are obtained by
minimizing (or maximizing, respectively) pio1 + pioo subject to the constraints
(7.15), (7.16) and (7.17). The bounds obtained are guaranteed to be sharp be-
cause the optimization is global.

Optimizing the functions in (7.18)—(7.20), subject to equality constraints, de-
fines a linear programming (LP) problem that lends itself to closed-form solution.
[Bal95, Appendix B] describes a computer program that takes symbolic descrip-
tions of LP problems and returns symbolic expressions for the desired bounds.
The program works by systematically enumerating the vertices of the constraint
polygon of the dual problem. The bounds reported in this chapter were produced
(or tested) using Balke’s program, and will be stated here without proofs; their
correctness can be verified by manually enumerating the vertices as described in
[Bal95, Appendix BJ.

7.4.2 Bounds with no assumptions
7.4.2.1 Given nonexperimental data
Given Pxy, constraints (7.15) and (7.16) induce the following upper bound on

PNS:
0< PNS < P(z,y)+ P(z',y'). (7.21)

However, PN and PS are not constrained by Pxy.

These constraints also induce bounds on the causal effects P(y,) and P(y,):

— P(z',y) (7.22)
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7.4.2.2 Given causal effects
Given constraints (7.15) and (7.17), the bounds induced on PNS are:
max[0, P(yz) — P(yw)] < PNS < min[P(yz), P(y.)] (7.23)

with no constraints on PN and PS.

7.4.2.3 Given both nonexperimental data and causal effects

Given the constraints (7.15), (7.16) and (7.17), the following bounds are induced
on the three probabilities of causation:

0 P(ya:)
P(yx) "P(ym’) : P(y;’)
BN P(y) - Py [TV Pla,y) + P(o'y)
P(y:) — Ply) P(yz) — P(ye) + P(z,y') + P(2',y)
(7.24)
0 , 1
max<{ py)-r,) < PN <minq Py ,)-P@'y) (7.25)
P(z.y) P($>y)
0 ) 1
max§ P()-Ply) ¢ < PS<ming py.)-Pew) (7.26)
P(a'y') Pz’ y)

Thus we see that some information about PN and PS can be extracted with-
out making any assumptions about the data-generating process. Furthermore,

combined data from both experimental and nonexperimental studies yield infor-

mation that neither study alone can provide.

7.4.3 Bounds under exogeneity (no confounding)

Definition 17 (Ezogeneity)
A wvariable X is said to be exogenous for Y in model M iff

Ply.) = P(ylz) and P(yy) = P(y}x/)> (7'27)

or, equivalently,
Y,UX and Yyl X, (7.28)

In words, the way Y would potentially respond to experimental conditions x or x'
is independent of the actual value of X.
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Eq. (7.27) has been given a variety of (equivalent) definitions and interpreta-
tions. Epidemiologists refer to this condition as “no-confounding” [RG89], statis-
ticians call it “as if randomized,” and [RR83] call it “weak ignorability.” A
graphical criterion ensuring exogeneity is the absence of a common ancestor of
X and Y in G(M) (more precisely, a common ancestor that is connected to ¥
through a path not containing X, including latent ancestors, which represent
dependencies among variables in U). The classical econometric criterion for exo-
geneity (e.g., [Dhr70, p. 169]) states that X be independent of the error term (u)
in the equation for ¥Y.'** We will use the term “exogeneity”, since it was under
this term that the relations given in (7.27) first received their precise definition
(by economists).

Combining Eq. (7.27) with the constraints of (7.15)—(7.17), the linear pro-
gramming optimization (Section 7.4.1) yields the following results:

Theorem 23 Under condition of exogeneity, the three probabilities of causation
are bounded as follows:

max[0, P(y|z) — P(y|z")] < PNS < min[P(y|z), P(y'|2")] (7.29)

P
max(0, P(yls) = P4le)] _ - minlP(ya), P(y)s")
)

Plyla) SN ST (7:30)
max(0, Plylz) - P(yl) min[P(yz), P(y/}s")]
Py ST Py (73

The bounds expressed in Eq. (7.30) were first derived by [RG89]; a more
elaborate proof can be found in [FFS99]. [Pea99] derived Eqs. (7.29)-(7.31) under
a stronger condition of exogeneity (see Definition 18). We see that under the

condition of no-confounding the lower bound for PN can be expressed as
1 A 1
PN >1- =1—-— 7.32
Pu)/PG) | RR (732)

where RR = P(ylx)/P(y|a’) is the risk ratio (also called relative risk) in epi-
demiology. Courts have often used the condition RR > 2 as a criterion for legal
responsibility [BGG94]. Eq. (7.32) shows that this practice represents a conser-
vative interpretation of the “more probable than not” standard (assuming no
confounding); PN must indeed be higher than 0.5 if RR exceeds 2. [F'S99] argue
that, in general, epidemiological evidence may not be applicable as proof for spe-
cific causation [F'S99] because such evidence cannot account for all characteristics

10This criterion has been the subject of relentless objections by modern econometricians
[EHRA83, Hen95, imb97], but see [Ald93] and [Peal0, pp. 169-170; 245-247] for a reconciliatory
perspective on this controversy.
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specific to the plaintiff. Freedman and Stark further imply that the appropriate
way of interpreting the “more probable than not” criterion would be to consider
the probability of causation in a restricted subpopulation, one that shares the
plaintiff characteristics. Taken to extreme, such restrictive interpretation would
insist on characterizing the plaintiff to minute detail, and would reduce PN to
zero or one when all relevant details are accounted for. We doubt that this in-
terpretation underlies the intent of judicial standards. We believe that, by using
the wording “more probable than not,” law makers have instructed us to ignore
specific features for which data is not available, and to base our determination on
the most specific features for which reliable data is available (see footnote 9).!*
PN ensures us that two obvious features of the plaintiff will not be ignored:
the exposure, x, and the injury, y. In contrast, these two features are ignored
in the causal effect measure P(y,) which is a quantity averaged over the entire
population, including unexposed and uninjured.

7.4.3.1 Bounds under strong exogeneity

The condition of exogeneity, as defined in Eq. (7.27) is testable by comparing
experimental and nonexperimental data. A stronger version of exogeneity can
be defined as the joint independence {Y,, Y,/ } 1L X which was called “strong ig-
norability” by Rosenbaum and Rubin [RR83]. Though untestable, such joint
independence is assumed to hold when we assert the absence of factors that si-
multaneously affect exposure and outcome.

Definition 18 (Strong Ezogeneity)
A variable X 1is said to be strongly ezogenous for Y in model M iff {Y,, Yo } L X,
that is,

P(ye,yor|z) = P(Yss Yor)
Pys, ywlz) = PYar Yor)
Py ywlr) = Py yo) (7.33)
P(yyywle) = Py yw)

The four conditions in (7.33) are sufficient to represent {Y,, Y,/ } 1L X, because for
every event I we have

P(E|z) = P(E) = P(Elz') = P(E). (7.34)

Remarkably, the added constraints introduced by strong exogeneity do not
alter the bounds of Egs. (7.29)-(7.31). They do, however, strengthen Lemma 20:

1 0ur results remain valid when we condition Pxy on a set of covariates that characterize
the specific case at hand.
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Theorem 24 If strong exogeneity holds, the probabilities PN, PS, and PNS are
constrained by the bounds of Egs. (7.29)-(7.31), and, moreover, PN, PS, and
PNS are related to each other as follows [Pea99] :

PNS

PN = Blgla) (7.35)
PNS

7.4.4 Identifiability under monotonicity

Definition 19 (Monotonicity)
A wvariable Y is said to be monotonic relative to variable X in a functional causal

model M iff
Yy N Yo = false (7.37)

Monotonicity expresses the assumption that a change from X = false to X =
true cannot, under any circumstance make Y change from true to false. In
epidemiology, this assumption is often expressed as “no prevention,” that is,
no individual in the population can be helped by exposure to the risk factor.
[BP97] used this assumption to tighten bounds of treatment effects from studies
involving non-compliance. Glymour [Gly98] and Cheng [Che97] resort to this
assumption in using disjunctive or conjunctive relationships between causes and
effects, excluding functions such as exclusive-or, or parity.

In the linear programming formulation of Section 7.4.1, monotonicity narrows
the feasible space to the manifold:

Po1x
poo = 0 (7.38)

7.4.4.1 Given nonexperimental data

Under the constraints (7.15), (7.16), and (7.38), we find the same bounds for
PNS as the ones obtained under no assumptions (Eq. (7.21)). Moreover, there
are still no constraints on PN and PS. Thus, with nonexperimental data alone,
the monotonicity assumption does not provide new information.

However, the monotonicity assumption induces sharper bounds on the causal
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effects P(y,) and P(y.):
Ply) <Ply) < 1-Plz,y)

Compared with Eq. (7.22), the lower bound for P(y,) and the upper bound for
P(yy) are tightened. The importance of Eq. (7.39) lies in providing a simple
necessary test for the assumption of monotonicity. These inequalities are sharp,
in the sense that every combination of experimental and non-experimental data
that satisfy these inequalities can be generated from some functional causal model
in which Y is monotonic in X.

That the commonly made assumption of “no-prevention” is not entirely ex-
empt from empirical scrutiny should come as a relief to many epidemiologists.
Alternatively, if the no-prevention assumption is theoretically unassailable, the
inequalities of Eq. (7.39) can be used for testing the compatibility of the exper-
imental and non-experimental data, namely, whether subjects used in clinical
trials were sampled from the same target population, characterized by the joint
distribution Pxy.

7.4.4.2 Given causal effects

Constraints (7.15), (7.17), and (7.38) induce no constraints on PN and PS, while
the value of PNS is fully determined:
PNS = P(?/ccyy;’) = P(ym) - P(ya:’)

That is, under the assumption of monotonicity, PNS can be determined by ex-
perimental data alone, despite the fact that the joint event y, A y,, can never be
observed.

7.4.4.3 Given both nonexperimental data and causal effects

Under the constraints (7.15)-(7.17) and (7.38), the values of PN, PS, and PNS
are all determined precisely.

Theorem 25 IfY is monotonic relative to X, then PNS, PN, and PS are given

by
PNS = P(ys,yy) = P(ys) — P(yw) (7.40)
PN = Pl = 2 2) (7.41)
Ps = Pluley) = Zi 20 (1.42)
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Corollary 2 If Y is monotonic relative to X, then PNS, PN, and PS are iden-
tifiable whenever the causal effects P(y,) and P(y,) are identifiable,

Eqs. (7.40)—(7.42) are applicable to situations where, in addition to obser-
vational probabilities, we also have information about the causal effects P(y,)
and P(y,). Such information may be obtained either directly, through separate
experimental studies, or indirectly, from observational studies in which certain
identifying assumptions are deemed plausible (e.g., assumptions that permits
identification through adjustment of covariates). Note that the identification of
PN requires only P(y, ) while that of PS requires P(y,). In practice, however,
any method that yields the former also yields the latter.

One common class of models which permits the identification of P(y,) is called
Markovian.

Definition 20 (Markovian models)

A functional causal model M is said to be Markovian if the graph G(M) associated
with M 1s acyclic, and if the exogenous factors u; are mutually independent. A
model is semi-Markovian iff G(M) is acyclic and the exogenous variables are
not necessarily independent. A functional causal model is said to be positive-
Markovian if it is Markovian and P(v) > 0 for every v.

It is shown in [Pea93, Pea95a] that for every two variables, X and Y, in a
positive-Markovian model M, the causal effects P(y,) and P(y,) are identifiable
and are given by

Plys) = ZP(UD?GXJU)P(PGX)

pax

> P(ylpax,z')P(pax) (7.43)

pax

P(ym’>

fl

where pay are (values of) the parents of X in the causal graph associate with M
(see also [SGS93], [Rob86], and [Pea00, p. 73]). Thus, we can combine Eq. (7.43)
with Theorem 25 and obtain a concrete condition for the identification of the
probability of causation.

Corollary 3 If in a positive-Markovian model M, the function Y (u) is mono-
tonic, then the probabilities of causation PNS, PS and PN are identifiable and
are given by Eqs. (7.40)-(7.42), with P(y;) given in Eq. (7.43). If monotonicity
cannot be ascertained, then PNS, PN and PS are bounded by Egs. (7.24)-(7.26),
with P(y.) gwen in Eq. (7.43).
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Broader identification conditions can be obtained through the use of the cri-
teria for identifying P,(y) in Chapter 5. In particular, Theorem 17 leads to the
following corollary:

Corollary 4 Let GP be the class of semi-Markovian models that satisfy the
graphical criterion of Theorem 17. If Y, (u) is monotonic, then the probabilities of
causation PNS, PS and PN are identifiable in GP and are given by Eqgs. (7.40)-
(7.42), with P(y,) determined by the topology of G(M) through Theorem 17.

7.4.5 Identifiability under monotonicity and exogeneity

Under the assumption of monotonicity, if we further assume exogeneity, then
P(y.) and P(y,) are identified through Eq. (7.27), and from theorem 25 we
conclude that PNS, PN, and PS are all identifiable.

Theorem 26 (Identifiability under ezogeneity and monotonicity)
If X is exogenous and Y 1s monotonic relative to X, then the probabilities PN,
PS, and PNS are all identifiable, and are given by

PNS = P(ylz) - Pyl (7.44)
_ Ply) - Pyle") _ Plylz) - Plylz)

PN = = ew - PO (745)
_ Plylz) - Ply)  Plylz) — P(ylz')

PS = “pww - o) (7.46)

These expressions are to be recognized as familiar measures of attribution that
often appear in the literature. The r.h.s. of (7.44) is called “risk-difference”
in epidemiology, and is also misnamed “attributable risk” [HB87, p. 87]. The
probability of necessity, PN, is given by the excess-risk-ratio (ERR)

PN - P(ylﬂz(;lf)(ylx’) 4 % (7.47)

often misnamed as the attributable fraction [Sch82], attributable-rate percent [HB87,
p. 88|, attributed fraction for the exposed [KWE9G, p. 38], or attributable propor-
tion [Col97]. The reason we consider these labels to be misnamed is that ERR
invokes purely statistical relationships, hence it cannot in itself serve to mea-
sure attribution, unless fortified with some causal assumptions. Exogeneity and
monotonicity are the causal assumptions that endow ERR with attributional in-
terpretation, and these assumptions are rarely made explicit in the literature on
attribution.
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The expression for PS is likewise quite revealing
PS = [P(ylz) — P(ylz")]/[L — Pylz")], (7.48)

as it coincides with what epidemiologists call the “relative difference” [Shebg],
which is used to measure the susceptibility of a population to a risk factor z. It
also coincides with what Cheng calls “causal power” [Che97], namely, the effect
of z on y after suppressing “all other causes of y.” See [Pea99] for additional
discussions of these expressions.

To appreciate the difference between Eqs. (7.41) and (7.47) we can rewrite
Eq. (7.41) as

P(y|z)P(z) + Ply|z") P(z') — P(yx)
P(ylz)P(z)

P(ylz) — P(ylz!)  Plylz') — P(yw

(ylz) = Plyla") | Plylz’) = Plysr) (7.49)

Plylz) P(z,y)

The first term on the r.h.s. of (7.49) is the familiar ERR as in (7.47), and repre-
sents the value of PN under exogeneity. The second term represents the correction
needed to account for X'’s non-exogeneity, i.e. P(yy) # P(ylz’). We will call the
r.h.s. of (7.49) by corrected excess-risk-ratio (CERR)).

From Eqs. (7.44)—(7.46) we see that the three notions of causation satisfy the
simple relationships given by Egs. (7.35) and (7.36) which we obtained under the
strong exogeneity condition. In fact, we have the following theorem.

PN =

Theorem 27 Monotonicity (7.87) and exogeneity (7.27) together imply strong
exogeneity (7.83).

Proof of Theorem 27:
From the monotonicity condition, we have

Yo = Yo A (e VUL) = (Yo AYz) V (Yo V Yo) = Yor A Y (7.50)
Thus we can write
P(yu) = P(yz, yar), (7.51)
and
P(ylxl) = P(yx’lxl) = P(yazaym’lxl) (752)

where consistency condition (7.14) is used. The exogeneity condition (7.27) allows
us to equate (7.51) and (7.52), and we obtain

P(y:c: yx’lx/) - P(yzy y:c’), (753)
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Table 7.1: PN (the probability of necessary causation) as a function of assump-
tions and available data. ERR stands of the excess-risk-ratio 1 — P(y|z')/P(y|)
and CERR is given in Eq. (7.49). The non-entries (—) represent vacuous bounds,
that is, 0 < PN < 1.

Assumptions Data Available
Exogeneity Monotonicity Experimental Nonexperimental Combined
+ + ERR ERR ERR
+ - bounds bounds bounds
— + — — CERR
- - — — bounds
which implies the first of the four conditions in (7.33):
Combining Eq. (7.54) with
P(yx) - P(yma yac’) + P(yrv y;’)a (7'55)
Plylz) = Plyslz) = P(Ys, yorl) + Py, v |5), (7.56)

and the exogeneity condition (7.27), we obtain the second equation in (7.33):

Both sides of the third equation in (7.33) are equal to zero from monotonicity
condition and the last equation in (7.33) follows because the four quantities sum
up to 1 on both sides of the four equations. O

7.4.6 Summary of results

We now summarize the results from Section 7.4 that should be of value to prac-
ticing epidemiologists and policy makers. These results are shown in Table 7.1,
which lists the best estimate of PN under various assumptions and various types
of data—the stronger the assumptions, the more informative the estimates.

We see that the excess-risk-ratio (ERR), which epidemiologists commonly
identify with the probability of causation, is a valid measure of PN only when
two assumptions can be ascertained: exogeneity (i.e., no confounding) and mono-
tonicity (i.e., no prevention). When monotonicity does not hold, ERR provides
merely a lower bound for PN, as shown in Eq. (7.30). (The upper bound is
usually unity.) In the presence of confounding, ERR must be corrected by the
additive term [P(ylz’) — P(yw)]/P(x,y), as stated in (7.49). In other words,
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when confounding bias (of the causal effect) is positive, PN is higher than ERR
by the amount of this additive term. Clearly, owing to the division by P(z,y),
the PN bias can be many times higher than the causal effect bias P(y|z") — P(yu ).
However, confounding results only from association between exposure and other
factors that affect the outcome; one need not be concerned with associations
between such factors and susceptibility to exposure, as is often assumed in the
literature [KFG89, Gly98].

The last two rows in Table 7.1 correspond to no assumptions about exogene-
ity, and they yield vacuous bounds for PN when data come from either experi-
mental or observational study. In contrast, informative bounds (7.25) or point
estimates (7.49) are obtained when data from experimental and observational
studies are combined. Concrete use of such combination will be illustrated in
Section 7.5.

7.5 Example 1: Legal Responsibility

A lawsuit is filed against the manufacturer of drug x, charging that the drug is
likely to have caused the death of Mr. A, who took the drug to relieve symptom
S associated with disease D.

The manufacturer claims that experimental data on patients with symptom S
show conclusively that drug = may cause only minor increase in death rates. The
plaintiff argues, however, that the experimental study is of little relevance to this
case, because it represents the effect of the drug on all patients, not on patients
like Mr. A who actually died while using drug x. Moreover, argues the plaintiff,
Mr. A is unique in that he used the drug on his own volition, unlike subjects
in the experimental study who took the drug to comply with experimental pro-
tocols. To support this argument, the plaintiff furnishes nonexperimental data
indicating that most patients who chose drug = would have been alive if it were
not for the drug. The manufacturer counter-argues by stating that: (1) coun-
terfactual speculations regarding whether patients would or would not have died
are purely metaphysical and should be avoided, and (2) nonexperimental data
should be dismissed a priori, on the ground that such data may be highly biased;
for example, incurable terminal patients might be more inclined to use drug z if
it provides them greater symptomatic relief. The court must now decide, based
on both the experimental and non-experimental studies, what the probability is
that drug = was in fact the cause of Mr. A’s death.

The (hypothetical) data associated with the two studies are shown in Table
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Table 7.2: Frequency data (hypothetical) obtained in experimental and nonex-
perimental studies, comparing deaths (in thousands) among drug users, z, and
non-users, z’.

Experimental Nonexperimental

x z' x x'

Deaths(y) 16 14 2 28
Survivals(y') 984 986 998 972

7.2. The experimental data provide the estimates

P(y,) =16/1000 = 0.016
Plye) =14/1000 =0.014
P(y.,) =1—P(yy) =0.986

The non-experimental data provide the estimates

P(y) =30/2000 =0.015
P(z,y) =2/2000 =0.001
P(,y) =972/2000 = 0.486

Since both the experimental and nonexperimental data are available, we can
obtain bounds on all three probabilities of causation through Egs. (7.24)—(7.26)
without making any assumptions about the underlying mechanisms. The data in
Table 7.2 imply the following numerical results:

0.002 < PNS< 0.016 (7.58)
1.0 <PN< 10 (7.59)
0002 <PS< 0.031 (7.60)

These figures show that although surviving patients who didn’t take drug = have
only less than 3.1% chance to die had they taken the drug, there is 100% assur-
ance (barring sample errors) that those who took the drug and died would have
survived had they not taken the drug. Thus the plaintiff was correct; drug x was
in fact responsible for the death of Mr. A.

If we assume that drug z can only cause, but never prevent, death, Theorem 25
is applicable and Eqgs. (7.40)—(7.42) yield

PNS = 0.002 (7.61)
PN = 1.0 (7.62)
PS = 0.002 (7.63)
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Thus, we conclude that drug = was responsible for the death of Mr. A, with or
without the no-prevention assumption.

Note that a straightforward use of the experimental excess-risk-ratio would
yield a much lower (and incorrect) result:

P(y.) — P(yw) _ 0.016 —0.014

. = 0.125 7.64
Ply.) 0.016 > (7.64)

Evidently, what the experimental study does not reveal is that, given a choice,
terminal patients stay away from drug x. Indeed, if there were any terminal
patients who would choose z (given the choice), then the control group (2') would
have included some such patients (due to randomization) and so the proportion
of deaths among the control group P(y,) would have been higher than P(z',y),
the population proportion of terminal patients avoiding x. However, the equality
P(yw) = P(y,z') tells us that no such patients were present in the control group,
hence (by randomization) no such patients exist in the population at large and
therefore none of the patients who freely chose drug x was a terminal case; all
were susceptible to z.

The numbers in Table 7.2 were obviously contrived to show the usefulness
of the bounds in Egs. (7.24)-(7.26). Nevertheless, it is instructive to note that
a combination of experimental and non-experimental studies may unravel what
experimental studies alone will not reveal. In addition, such combination may
provide a test for the assumption of no-prevention, as outlined in Section 7.4.4.1.
For example, if the frequencies in Table 2 were slightly different, they could
easily violate the inequalities of Eq. (7.39). Such violation may be due either to
nonmonotonicity or to incompatibility of the experimental and nonexperimental
groups.

This last point may warrant a word of explanation, lest the reader wonders
why two data sets, taken from two separate groups under different experimental
conditions, should constrain one another. The explanation is that certain quan-
tities in the two subpopulations are expected to remain invariant to all these
differences, provided that the two subpopulations were sampled properly from
the same general population. In fact, every quantity of the form P(Q), where
@ is computable from a functional causal model M, enjoys this invariance prop-
erty, because the two subpopulations are assumed to be governed by the same
functional causal model. Thus, the question whether two data sets, obtained
under different experimental conditions, should constrain one another reduces
to a purely mathematical question of whether the quantities that represent the
two experimental conditions, P(Q) and P(Q’), necessarily constrain one another
in the same functional causal model considered. In our case, the quantities in
question are simply the causal effects probabilities, P(y,) and P(y;). Although
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these probabilities were not measured in the nonexperimental group, they must
nevertheless be the same as those measured in the experimental group. The
invariance of these quantities is the basic axiom of controlled experimentation,
without which no inference would be possible from experimental studies to gen-
eral behavior of the population. This invariance, together with monotonicity,
imply the inequalities of (7.39).

7.6 Example 2: Personal Decision Making

Consider the case of Mr. B, who is one of the surviving patients in the observa-
tional study of Table 7.2. Mr. B wonders how safe it would be for him to take
drug z, given that he has refrained thus far from taking the drug and that he
managed to survive the disease. His argument for switching to the drug rests
on the observation that only 2 out of 1000 drug users died in the observational
study, which he considers a rather small risk to take, given the effectiveness of
the drug as a pain killer.

Conventional wisdom instructs us to warn Mr. B against consulting a non-
experimental study in matters of decisions, since such studies are marred with
uncontrolled factors, which tend to bias effect estimates. Specifically, the death
rate of 0.002 among drug users may be indicative of low tolerance to discomfort,
or of membership in a medically-informed socio-economic group. Such factors
do not apply to Mr. B, who did not use the drug in the past (be it by choice,
instinct or ignorance), and who is now considering switching to the drug by ratio-
nal deliberation. Conventional wisdom urges us to refer Mr. B to the randomized
experimental study of Table 7.2, from which the death rate under controlled ad-
ministration of the drug was evaluated to be P(y,) = 0.016, eight times higher
than 0.002.

What would his risk of death be, if Mr. B decides to start taking the drug?
0.2 percent or 1.6 percent?

The answer is that neither number is correct. Mr. B cannot be treated as a
random patient in either study, because his history of not using the drug and his
survival thus far puts him in a unique category of patients, for which the effect of
the drug was not studied.!? These two attributes provide extra evidence about
Mr. B’s sensitivity to the drug. This became clear already in Example 1, where
we discovered definite relationships among these attributes — for some obscure
reasons, terminal patients chose not to use the drug.

I2The appropriate experimental design for measuring the risk of interest is to conduct a
randomized clinical trial on patients in the category of Mr. B, that is, to subject a random
sample of non-users to a period of drug treatment and measure their rate of survival.
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To properly account for this additional evidence, the risk should be measured
through the counterfactual expression PS = P(y.|z’,y'); the probability that a
patient who survived with no drug would have died had he/she taken the drug.
The appropriate bound for this probability is given in Eq. (7.60):

0.002 < PS <0.031

Thus, Mr. B’s risk of death (upon switching to drug usage) can be as high as
3.1 percent; more than 15 times his intuitive estimate of 0.2 percent, and almost
twice the naive estimate obtained from the experimental study.

However, if the drug can safely be assumed to have no death-preventing effects,
then monotonicity applies, and the appropriate bound is given by Eq. (7.63),
PS = 0.002, which coincides with Mr. B’s intuition.

7.7 Conclusion

This chapter shows how useful information about probabilities of causation can
be obtained from experimental and observational studies, with weak or no as-
sumptions about the data-generating process. We have shown that, in general,
bounds for the probabilities of causation can be obtained from combined exper-
imental and nonexperimental data. These bounds were proven to be sharp and,
therefore, they represent the ultimate information that can be extracted from
statistical methods. We have further illustrated the applicability of these results
to problems in epidemiology and legal reasoning, and we have clarified the two
basic assumptions — exogeneity and monotonicity — that must be ascertained be-
fore statistical measures such as excess-risk-ratio could represent attributional
quantities such as probability of causation.

It is appropriate at this point to discuss the relation between the assumptions
in the example of Section 7.5 (where we have population probabilities and avail-
able experiments) with the general framework with which the chapter begins
(where we have exogenous variables that determine everything and the proba-
bilities enter as an add-on feature). Traditional statisticians might judge the
deterministic model incompatible with the stochastic nature of the data, and
would be tempted to start the analysis at Section 7.3 (see [RG89] and [FS99]),
without the counterfactual model expounded in Section 7.2. However, traditional
statistical analysis cannot commence without explicating the quantity we wish
to estimate (that is, PN), for which we have no empirical data and for which
we have no statistical definition. Instead, our target quantity is defined verbally
by law makers as a mixture of probabilistic and deterministic components: “it
is more probable than not, that the plaintiff injury would not have occurred but
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for the defender action”. The “more probable than not” criterion is probabilistic
while the “but for” criterion is deterministic, implying counterfactual necessity.

The structural approach expounded in this chapter gives a clear semantics
to this mixture, typical of counterfactual expressions, and relates it in a natural
way to empirical data. The stochastic nature of the data is viewed as emerging
from our ignorance of the detailed experimental conditions that prevailed in the
study. The exogenous variables in U represent these missing details; and include
the physiology and previous history of each person, his/her mental and spiritual
attitude, as well as the time and manner in which the exposure occurred. In
short, U summarizes all the factors which “determine” in the classical physical
sense the outcome of the study. P(u) summarizes our ignorance of those factors.

The main application of our analysis to artificial intelligence lies in the auto-
matic generation of causal explanations, where the distinction between necessary
and sufficient causes has important ramifications. As can be seen from the defi-
nitions and examples discussed in this chapter, necessary causation is a concept
tailored to a specific event under consideration (singular causation), whereas suffi-
cient causation is based on the general tendency of certain event types to produce
other event types. Adequate explanations should respect both aspects. If we
base explanations solely on generic tendencies (i.e., sufficient causation) then we
lose important scenario-specific information. For instance, aiming a gun at and
shooting a person from 1,000 meters away will not qualify as an explanation for
that person’s death, owing to the very low tendency of shots fired from such long
distances to hit their marks. This stands contrary to common sense, for when the
shot does hit its mark on that singular day, regardless of the reason, the shooter
is an obvious culprit for the consequence. If, on the other hand, we base expla-
nations solely on singular-event considerations (i.e., necessary causation), then
ambient factors that are normally present in the world would awkwardly qualify
as explanations. For example, the presence of oxygen in the room would qualify
as an explanation for the fire that broke out, simply because the fire would not
have occurred were it not for the oxygen. That we judge the match struck, not
the oxygen, to be the more adequate explanation of the fire indicates that we go
beyond necessity considerations.

Recasting the question in the language of PN and PS, we note that, since
both explanations are necessary for the fire, each will command a PN of unity.
(In fact, the PN is actually higher for the oxygen if we allow for alternative ways
of igniting a spark). Thus, it must be the sufficiency component that endows
the match with greater explanatory power than the oxygen. If the probabilities
associated with striking a match and the presence of oxygen are denoted p,,
and p,, respectively, then the PS measures associated with these explanations
evaluate to PS(match) = p, and PS({oxygen) = py,, clearly favoring the match
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when p, >> p,,. Thus, a robot instructed to explain why a fire broke out has no
choice but to consider both PN and PS in its deliberations.

Clearly, some balance must be made between the necessary and the sufficient
components of causal explanation, and the present chapter illuminates this bal-
ance by formally explicating the basic relationships between the two components.
In Pearl (2000, chapter 10) it is further shown that PN and PS are too crude
for capturing probabilities of causation in multi-stage scenarios, and that the
structure of the intermediate process leading from cause to effect must enter the
definitions of causation and explanation. Such considerations will be the subject
of future investigation (See [HP0O0]).

Another important application of probabilities of causation is found in de-
cision making problems, such as those encountered in medicine, system mainte-
nance, and planning under uncertainty. As was pointed out in [Pea00, p. 217-219],
the counterfactual “y would have been true if x were true” can often be translated
into a conditional action claim “given that currently z and y are false, y will be
true if we do z.” The evaluation of such conditional predictions, and the proba-
bilities of such predictions, are commonplace in decision making situations, where
actions are brought into focus by certain eventualities that demand remedial cor-
rection. In troubleshooting, for example, we observe undesirable effects Y =y
that are potentially caused by other conditions X = z and we wish to predict
whether an action that brings about a change in X would remedy the situation.
The information provided by the evidence y and x is extremely valuable, and
it must be processed (using the updated distribution P(ulz,y), as in Eq. (7.9))
before we can predict the effect of any action’®. Thus, the expressions developed
in this chapter constitute bounds on the effectiveness of pending policies, when
full knowledge of the current state of affairs (u) is not available, yet the current
states of the decision variable (X) and the outcome variable (1) are measured.

For these bounds to be valid in policy making, the context u must be time-
invariant, that is, the probability P(u) should represent epistemic uncertainty
about a static, albeit unknown context U = u. The constancy of u is well jus-
tified in the control and diagnosis of physical systems, where u represents fixed,
but unknown physical characteristics of devices or subsystems. The constancy
approximation is also justified in the health sciences where patients’ genetic at-
tributes and physical characteristics can be assumed relatively constant between
observation and treatment.

The constancy assumption is less justified in economic systems, where agents
are bombarded by rapidly fluctuating stream of external forces (“shocks” in
econometric terminology) as well as by inter-agents communication messages.

13Such processing have been applied indeed to the evaluation of economic policies [BP95]
and to repair-test strategies in troubleshooting [BH96)
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These exogenous factors may vary substantially during the policy making inter-
val and they require, therefore, time-dependent analysis. The canonical violation
of the constancy assumption occurs, of course, in quantum mechanical systems,
where the indeterminism associated with U is “intrinsic”, and the existence of a
deterministic relationship between U and V is no longer a good approximation.
A method of incorporating such intrinsic indeterminism into counterfactual anal-
ysis is outlined in [Pea00, p. 220], and leads to Eq. (7.9), where P(Yy(u) = v')
represents the intrinsic uncertainty in Y associated with the macroscopic state
U = u, under the action do(X = z) (see footnote 6).
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