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ABSTRACT 

This paper presents generalizations of Bayes 
likelihood-ratio updating rule which facilitate an 
asynchronous propagation of the impacts of new 
beliefs and/or new evidence in hierarchically or- 
ganized inference structures with multi-hypotheses 
variables. The computational scheme proposed 
specifies a set of belief parameters, communica- 
tion messages and updating rules which guarantee 
that the diffusion of updated beliefs is accom- 
plished in a single pass and complies with the 
tenets of Bayes calculus. 

Introduction 

This paper addresses the issue ofefficiently 
propagating the impact of new evidence and beliefs 
through a complex network of hierarchically organ- 
ized inference rules. Such networks find wide 
applications in expert-systems Cl], [2],[3],speech 
recognition [4], situation assessment [5], the 
modelling of reading comprehension [6] and judicial 
reasoning [7]. 

Many AI researchers have accepted the myth 
that a respectable computational model of inexact 
reasoning must distort, modify or ignore at least 
some principles of probability calculus. Conse- 
quently, most AI systems currently employ ad-hoc 
belief propagation rules which may hinder both the 
inferential power of these systems and their 
acceptance by their intended users. The primary 
purpose of this paper is to examine what computa- 
tional procedures are dictated by traditional 
probabilistic doctrines and whether modern require- 
ments of local asynchronous processing render these 
doctrines obsolete. 

We shall assume that beliefs are expressed in 
probabilistic terms and that the propagation of 
beliefs is governed by the traditional Bayes trans- 
formations on the relation P(DIH), which stands for 
the judgmental probability of data D (e.g., a tom- 
bination of symptoms) given the hypothesis H (e.g., 
the existence of a certain disease). The unique 

(*)The paper "An Essay Towards Solving a Problemin 
the Doctrine of Chances by the late Rev. Mr. Bayes", 
Phil. Trans. of Royal Sot., 1763,marks the begin- 
ing of the science of inductive reasoning. 

(**) Supported in part by the National Science 
Foundation, Grant IST 80 19045. 

feature of hierarchical inference systems is that 
the relation P(DIH) is computable as a cascade of 
local, more elementary probability relations in- 
volving intervening variables. Intervening vari- 
ables, (e.g., organisms causing a disease) may or 
may not be directly observable. Their computation- 
al role, however, is to provide a conceptual 
summarization for loosely coupled subsets of obser 
vational data so that the computation of P(HID)can 
be performed by local processes, each employing a 
relatively small number of data sources. 

The belief maintenance architecture proposed 
in this paper is based on a distributed asynchro- 
nous interaction between cooperating knowledge 
sources without central supervision similar to that 
used in the HEARSAY system [4]. We assume that 
each variable (i.e., a set of hypotheses) is repro 
sented by a separate processor which bothmaintains 
the parameters of belief for the host variable and 
manages the communication links to and from theset 
of neighboring, logically related variables, The 
communication lines are assumed to be open at all 
times, i.e., each processor may at any time inter- 
rogateits message-board forrevisionsmade by its 
neighbors,update its own belief parameters and post 
newmessages on its neighbors' boards. In this fashion 
the impact of new evidence may propagate up and 
down the network until equilibrium is reached. 

The asynchronous nature of this model requires 
a solution to an instability problem. If a stron- 
ger belief in a given hypothesis means a greater 
expectation for the occurrenceof a certain sup- 
porting evidence and if, in turn, a greater cer- 
tainty in the occurrenceof that evidence adds 
further credence to the hypothesis, how can one 
avoid an infinite updating loop when the two 
processors begin to communicate with one another? 
Thus, a second objective of this paper is to pre- 
sent an appropriate set of belief parameters, 
communication messages and updating rules which 
guarantee that the diffusion of updated beliefs is 
accomplished in a single pass and complies with 
the tenets of Bayes calculus. 

A third objective is to demonstrate that pro- 
per Bayes inference can be accomplished amongmulti- 
valued variables and that, contrary to the claims 
made by Pednault, Zucker and Muresan [8], this 
does not render conditional independence incompa- 
tible with the assumption of mutual exclusivity 
and exhaustivity. 
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Definitions and Nomenclature 

A node in an inference net represents a vari- 
able name. Each variable represents a finite par- 
tition of the world given by the variable values or 
states. It may be a name for a collection of hy- 
potheses (e.g., identity of organism: ORG1, ORG2, 
. . . . . ) or for a collection of possible observations 
(e.g., patient's temperature: high, medium, low). 
Let a variable be labeled by a capital letter,e.g., 
A,B,C ,-*., and its various states subscripted, 
e.g., A1,A2,... . 

An inference net is a directed acyclical 
graph where each branch @ - @ represents a 
family of rules of the form: if Ai then Bi. The 
uncertainties in these rules are quantified by a 
conditional probability matrix, I(BIA),with entries: 
M(BlA)ij= P(BjlAi). The presence of a branch be- 
tween A and B signifies the existence of a direct 
communication line between the two variables. The 
directionality of the arrow designates A as theset 
of hypotheses and B as the set of indicators or 
manifestations for these hypotheses. We shall say 
that B is a son of A and confine our attention to 
trees, where every node has onlyonemulti-hypothe- 
ses father and where the leaf nodes represent 
observable variables. 

In principle, the model can also be generalized 
to include some graphs (multiple parents), keeping 
in mind that the states of each variable in the 
tree may represent the power set of multi-parent 
groups in the corresponding graph, 

Structural Assumptions 

Consider the following segment of the tree: 
The likelihood of the 
various states of B 
would, in general, D 
depend on the entire 
data observed so far, k/ 
i.e., data from the tree A 
rooted at B, the tree B 
rooted at C and the tree C 
above A. However, the 

' 4i42 
'I F 

fact that B can communi- 
E 

cate directly only with 
Y , , 

* t 
its father (A) and its 

; '4 

sons (F and E) means that the influence of the en- 
tire network above B on B is completely summarized 
by the likelihood it induces on the states of A. 
More formally, let Dd(B) stand for thedataobtained 
fromthetree rooted atB,and D"(B) for the data ob- 
tained fromthe network above B. The presenceofonly 
onelinkconnectingDU(B)and (B)implies: 

P(BjlAi,DU(B)) = P(BjlAi) (1) 

This structural assumption of local communication 
immediately dictates what is normally called "Con- 
ditional Independence"; if C and B are siblings and 
A is their parent, then 

P(Bj,CkIAi) = P(BjIAi) * P(CkIAi) (2) 

because the data C=Ckis part of D"(B) and hence (7) 
implies P(Bj/Ck,Ai) = P(BjlAi), from which (2)follows. 

Note the difference between the weak form of 
conditional independence in (2) and the over- 
restrictive form adapted by Pednault et al. [8], 
who also asserted independence with respect to the 
complements Ai. 

Combining Top and Bottom Evidences 

Our structural assumption (1) also dictates 
how evidences above and below somevariable B should 
be combined. Assume we wish to find the likelihood 
of the states of B induced by some data D, part of 
which, D"(B), comes from above B and part, Dd(B), 
from below. Bayes theorem, together with (l),yields 
the product rule: 

P(BilDU(B),Dd(B))=UPCDd(B)IBiI*PIBiIDu(B)I, (3) 

where a is a normalization constant. This is a 
generalization of the celebrated Bayes formula for 
binary variables: 

O(HI E) = X(E) O(H) (4) 

where A(E)=P(E[H)/P(EIn) is known as the likelihood 
ratio, and O(H)=P(H)/P(fl) as the prior odds [2]. 

Equation (3) generalizes (4) in two ways. 
First, it permits the treatment of non-binary vari- 
ables where the mental task of estimating P(EIR) is 
often unnatural, and where conditional independence 
with respect to the negations of the hypotheses is 
normally violated (i.e., P(El,E21R)fP(El/R)P(E2l~)). 
Second, it identifies a surrogate to the prior 
probability term for any intermediate node in the 
tree, even after obtaining some evidential data. 
According to, the multiplicative role of the 
prior probability in Equation (4) is taken over by 
the conditional probability of a variable based 
only on the evidence gathered by the network above 
it, excluding the data collected from below. Thus, 
the product rule (3) can be applied to any node in 
the network, without requiring prior probability 
assessments. 

The root is the only node which requires a 
prior probability estimation. Since it has no net- 
work above, D"(B) should be interpreted as the 
available background knowledge which remains unex- 
plicated by the network below. This interpretation 
renders P(BilD'(B)) identical to the classical no- 
tion of subjective prior probability. The proba- 
bilities of all other nodes in the tree are unique- 
ly determined by the arc-matrices, thedataobserved 
and the prior probability of the root. 

Equation (3) suggests that the probability 
distribution of every variable in the networkcan 
be computed if the node corresponding to that vari- 
able contains the parameters 

x(Bi) a, P(Dd(B)IBi) (5) 
and 

q(Bi) 4 P(BilD'(B)). (6) 

q(Bi) represents the anticipatory support attributed 
to Bi by its ancestors and X(Bi) represents the 
evidential support received byBi from its diagnostic 
descendants. The total strength of belief in Bi 
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would be given by the product 

P(Bi) = aX(Bi) q(Bi). (7) 

Whereas only two parameters, x(E) and O(H),were 
sufficient for binary variables, an n-state variable 
needs to be characterized by two n-tuples: 

Propagation of Information Through the Network 

Assuming that the vectors h and 9 are stored 
with each node of the network, our task is now to 
prescribe how the influence of new information 
spreads through the network. Traditional probabi- 
lity theory, together with some efficiency consi- 
derations [9], dictate the following propagation 
scheme which we first report without proofs. 

1. Each processor computes two message vectors: 
P and r. P is sent to every son while r is deliv- 
ered to-the- father. The message p is identical to 
the probability distribution of the sender and is 
computed from h and 4 using Equation (7). r is 
computed from x using the matrix multiplication: - 

r=M=aA (8) - - 

where fi is the matrix quantifying the link to the 
father. Thus, the dimensionality of r is equal to 
the number of hypotheses managed by the father. 
Each component of r represents the diagnostic con- 
tribution of the data below the host processor to 
the belief in one of the father's hypotheses. 

2. When processor B is called to update its 
parameters, it simultaneously inspects the P(A) 
message communicated by the father A and the mes- 
sages g,~2, . . . , communicated by each of its sons 
and acknowledges receiving the latter. Using 
these inputs, it thenupdates h and 4 as follows: - 

3. Bottom-up propagation: h is computed using 
a term-by-term multiplication of the vectors ~1, 
9, . . . : 

X(Bi) = (VJ)i X (Q)i X ... = n(ck)j (9) 
k 

4. Top-down propagation: 4 is computed using: 

q(Bi) = B 1 P(BilAj)P(Aj)/(~‘)j 
j 

(10) 
where B is a normalization constant and r' is the 
last message from B to A acknowledged by-the father 
A. (The division by c' amounts to removing from 
P(A) the contribution due to Dd(B) as dictated by 
The definition of q in Equation (6)). 

5. Using the updated values of 1 and 4, the 
messages c and r are then recomputed as in step 1 
and are posted on the message-boards dedicated for 
the sons and the father, respectively. This upda- 
ting scheme is shown schematically in the diagram 
below, where multiplications and divisions of any 
two vectors stand for term-by-term operations. 

The terminal nodes in 
boundary conditions. Here 
between the two cases: 

CURRENTMES%lCE TO 
ALL SONS 

the tree require special 
we have to distinguish 

1. Anticipatory node: an observable variable 
whose state is still unknown. For such variables, 

therefore, we should set 

2. Data-node: an observable variable with a 
known state. Following Equation (5), if the jth 
state of B was observed to be true, set x = 
(O,O...O,l,O...) with 1 at the jth position. 

Similarly, the boundary conditions for the root 
node is obtained by substituting the prior proba- 
bility instead of the message P-(A) expected from 
the father. 

A Token Game Illustration 

Figure 2 shows six successive stages of belief 
propagation through a simple binary tree, assuming 
that updating is activated by changes in the belief 
parameters of neighboring processes. Initially 
(Figure 2a), the tree is in equilibrium and all 
terminal nodes are anticipatory. As soon as two 
data nodes are activated (Figure 2b), white tokens 
are placed on their links, directed towards their 
fathers. In the next phase, the fathers, activated 
by these tokens, absorb the latter and manufacture 
the appropriate number of tokens for their neighbors 
(Figure 2c), white tokens for their fathers and 
black ones for the children (the linksthroughwhich 
the absorbed tokens have entered do not receive new 
tokens, thus reflecting the division of P by rl), 
The root node now receives two white tokens, one 
from each of itsdescendants. That triggers the 
production of two black tokens for top-down deliv- 
ery (Figure 2d). The process continues in this 
fashion until , after six cycles, all tokens are 
absorbed and the network reaches a new equilibrium. 

135 



Figure 2 

Properties of the Updating Scheme 

1. The local computations required by the pro- 
posed scheme are efficient in both storage andtimp. 
For an m-ary tree with n states per node, each pro- 
cessor should store n2+mnt2n real numbers, and per- 
form 2n2tmn+2n multiplications per update. These 
expressions are on the order of the number of rules 
which each variable invokes. 

2. The local computations are entirelyindepen- 
dent of the control mechanism which activates the 
updating sequence. They can be activated by either 
data-driven or goal driven (e.g., requests for 
evidence) control strategies, by a clock or at 
random. 

3. New information diffuses through the net- 
work in a single pass. Infinite relaxations have 
been eliminated by maintaining a two-parameter sys- 
tem (4 and r) to decouple top and bottom evidences. 
The time required for completing the diffusion (in 
parallel) is equal to thediameterof the network. 

A Summary of Proofs 

From the fact that X is only influenced by 
changes propagating from the bottom and 9 only by 
changes from the top, it is clear that the tree 
will reach equilibrium after a finite number of up- 
dating steps. It remains to showthat,atequilibrium, 
the updated parameters P(Vi), in every node V, corre- 
spondtothecorrectprobabilities P(VilDU(V),Dd(V)) 
or (see Equation (3)),thatthe equilibriumvalues of 
h(Vi) and q(Vi)actuallyequal the probabilities 
P(Dd(V)IVi)and P(VilD'(V)) This can be shown byinduc- 
tion bottom-up for&and then top-down for 4. 

Validity of A: x is certainly valid for leaf 
nodes, as was explained above in setting the boun- 
dary conditions. Assumming that theX's are valid 
at all children of node B, the validity of x(B) 
computed through steps (8) and (9) followsJirectly 
from the conditional independence of the data be- 
neath B's children (Equation (2)). 

Validity of q: if all the X's are valid, then 
P is valid for the root node. ‘iissuming now that 
P(A) is valid, let us examine the validity of q(B), 
where B is any child of A. By definition (equation 
(6)), q(B) should satisfy: 

where S denotes the set of B's siblings. The sec- 
ond factor in the summation differs from P(Aj) = 
P(AjjD'(A),Dd(A)) in that the latter has also in- 
corporated B's message (r')j in the formation of 

bility ensues. 

When we divide P(Aj) by 
(lo), the correct proba- 

Conclusions 

The paper demonstrates that the centuries-old 
Bayes formula still retains its potency for serving 
as the basic belief revising rule in large, multi- 
hypotheses, inference systems. It is proposed, 
therefore, as a standard point of departure formore 
sophisticated models of belief maintenance and 
inexact reasoning. 
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