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BAYESIANISM AND CAUSALITY, OR, WHY I AM
ONLY A HALF-BAYESIAN

1 INTRODUCTION

I turned Bayesian in 1971, as soon as I began reading Savage’s monographThe
Foundations of Statistical Inference [Savage, 1962]. The arguments were unas-
sailable: (i) It is plain silly to ignore what we know, (ii) It is natural and useful
to cast what we know in the language of probabilities, and (iii) If our subjective
probabilities are erroneous, their impact will get washed out in due time, as the
number of observations increases.

Thirty years later, I am still a devout Bayesian in the sense of (i), but I now doubt
the wisdom of (ii) and I know that, in general, (iii) is false. Like most Bayesians, I
believe that the knowledge we carry in our skulls, be its origin experience, school-
ing or hearsay, is an invaluable resource in all human activity, and that combining
this knowledge with empirical data is the key to scientific enquiry and intelligent
behavior. Thus, in this broad sense, I am a still Bayesian. However, in order to
be combined with data, our knowledge must first be cast in some formal language,
and what I have come to realize in the past ten years is that the language of proba-
bility is not suitable for the task; the bulk of human knowledge is organized around
causal, not probabilistic relationships, and the grammar of probability calculus is
insufficient for capturing those relationships. Specifically, the building blocks of
our scientific and everyday knowledge are elementary facts such as “mud does
not cause rain” and “symptoms do not cause disease” and those facts, strangely
enough, cannot be expressed in the vocabulary of probability calculus. It is for this
reason that I consider myself only a half-Bayesian.

In the rest of the paper, I plan to review the dichotomy between causal and sta-
tistical knowledge, to show the limitation of probability calculus in handling the
former, to explain the impact that this limitation has had on various scientific dis-
ciplines and, finally, I will express my vision for future development in Bayesian
philosophy: the enrichment of personal probabilities with causal vocabulary and
causal calculus, so as to bring mathematical analysis closer to where knowledge
resides.

2 STATISTICS AND CAUSALITY: A BRIEF SUMMARY

The aim of standard statistical analysis, typified by regression and other estimation
techniques, is to infer parameters of a distribution from samples drawn of that
population. With the help of such parameters, one can infer associations among
variables, estimate the likelihood of past and future events, as well as update the
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likelihood of events in light of new evidence or new measurements. These tasks
are managed well by statistical analysis so long as experimental conditions remain
the same. Causal analysis goes one step further; its aim is to infer aspects of
the data generation process. With the help of such aspects, one can deduce not
only the likelihood of events under static conditions, but also the dynamics of
events underchanging conditions. This capability includes predicting the effect of
actions (e.g., treatments or policy decisions), identifying causes of reported events,
and assessing responsibility and attribution (e.g., whether eventx was necessary
(or sufficient) for the occurrence of eventy).

Almost by definition, causal and statistical concepts do not mix. Statistics deals
with behavior under uncertain, yet static conditions, while causal analysis deals
with changing conditions. There is nothing in the joint distribution of symptoms
and diseases to tell us that curing the former would not cure the latter. In general,
there is nothing in a distribution function that would tell us how that distribu-
tion would differ if external conditions were to change—say from observational
to experimental setup—every conceivable difference in the distribution would be
perfectly compatible with the laws of probability theory, no matter how slight the
change in conditions.1

Drawing analogy to visual perception, the information contained in a probabil-
ity function is analogous to a precise description of a three-dimensional object; it
is sufficient for predicting how that object will be viewed from any angle outside
the object, but it is insufficient for predicting how the object will be viewed if ma-
nipulated and squeezed by external forces. The additional properties needed for
making such predictions (e.g., the object’s resilience or elasticity) is analogous to
the information that causal models provide using the vocabulary of directed graphs
and/or structural equations. The role of this information is to identify those aspects
of the world that remain invariant when external conditions change, say due to an
action.

These considerations imply that the slogan “correlation does not imply cau-
sation” can be translated into a useful principle: one cannot substantiate causal
claims from associations alone, even at the population level—behind every causal
conclusion there must lie some causal assumption that is not testable in observa-
tional studies. Nancy Cartwright [1989] expressed this principle as “no causes
in, no causes out”, meaning we cannot convert statistical knowledge into causal
knowledge.

The demarcation line between causal and statistical concepts is thus clear and
crisp. A statistical concept is any concept that can be defined in terms of a distri-
bution (be it personal or frequency-based) of observed variables, and a causal con-

1Even the theory of stochastic processes, which provides probabilistic characterization of certain
dynamic phenomena, assumes a fixed density function over time-indexed variables. There is nothing in
such a function to tell us how it would be altered if external conditions were to change. If a parametric
family of distributions is used, we can represent some changes by selecting a different set of parameters.
But we are still unable to represent changes that do not correspond to parameter selection; for example,
restricting a variable to a certain value, or forcing one variable to equal another.
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cept is any concept concerning changes in variables that cannot be defined from
the distribution alone. Examples of statistical concepts are: correlation, regression,
dependence, conditional independence, association, likelihood, collapsibility, risk
ratio, odd ratio, and so on.2 Examples of causal concepts are: randomization, in-
fluence, effect, confounding, disturbance, spurious correlation, instrumental vari-
ables, intervention, explanation, attribution, and so on. The purpose of this de-
marcation line is not to exclude causal concepts from the province of statistical
analysis but, rather, to make it easy for investigators and philosophers to trace the
assumptions that are needed for substantiating various types of scientific claims.
Every claim invoking causal concepts must be traced to some premises that invoke
such concepts; it cannot be derived or inferred from statistical claims alone.

This principle may sound obvious, almost tautological, yet it has some far
reaching consequences. It implies, for example, that any systematic approach to
causal analysis must acquire new mathematical notation for expressing causal as-
sumptions and causal claims. The vocabulary of probability calculus, with its
powerful operators of conditionalization and marginalization, is simply insuffi-
cient for expressing causal information. To illustrate, the syntax of probability
calculus does not permit us to express the simple fact that “symptoms do not cause
diseases”, let alone draw mathematical conclusions from such facts. All we can
say is that two events are dependent—meaning that if we find one, we can expect
to encounter the other, but we cannot distinguish statistical dependence, quantified
by the conditional probabilityP (disease jsymptom) from causal dependence, for
which we have no expression in standard probability calculus.3 Scientists seeking
to express causal relationships must therefore supplement the language of proba-
bility with a vocabulary for causality, one in which the symbolic representation for
the relation “symptoms cause disease” is distinct from the symbolic representation
of “symptoms are associated with disease.” Only after achieving such a distinction
can we label the former sentence “false,” and the latter “true.”

The preceding two requirements: (1) to commence causal analysis with
untested,4 judgmentally based assumptions, and (2) to extend the syntax of proba-
bility calculus, constitute, in my experience, the two main obstacles to the accep-
tance of causal analysis among statisticians, philosophers and professionals with
traditional training in statistics. We shall now explore in more detail the nature of
these two barriers, and why they have been so tough to cross.

2The term ‘risk ratio’ and ‘risk factors’ have been used ambivalently in the literature; some authors
insist on a risk factor having causal influence on the outcome, and some embrace factors that are merely
associated with the outcome.

3Attempts to define causal dependence by conditioning on the entire past (e.g., Suppes, 1970) vi-
olate the statistical requirement of limiting the analysis to “observed variables”, and encounter other
insurmountable difficulties (see Eells [1991], Pearl [2000a], pp. 249-257).

4By “untested” I mean untested using frequency data in nonexperimental studies.
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2.1 The Barrier of Untested Assumptions

All statistical studies are based on some untested assumptions. For examples, we
often assume that variables are multivariate normal, that the density function has
certain smoothness properties, or that a certain parameter falls in a given range.
The question thus arises why innocent causal assumptions, say, that symptoms do
not cause disease or that mud does not cause rain, invite mistrust and resistance
among statisticians, especially of the Bayesian school.

There are three fundamental differences between statistical and causal assump-
tions. First, statistical assumptions, even untested, are testable in principle, given
sufficiently large sample and sufficiently fine measurements. Causal assumptions,
in contrast, cannot be verified even in principle, unless one resorts to experimental
control. This difference is especially accentuated in Bayesian analysis. Though the
priors that Bayesians commonly assign to statistical parameters are untested quan-
tities, the sensitivity to these priors tends to diminish with increasing sample size.
In contrast, sensitivity to priors of causal parameters, say those measuring the ef-
fect of smoking on lung cancer, remains non-zero regardless of (nonexperimental)
sample size.

Second, statistical assumptions can be expressed in the familiar language of
probability calculus, and thus assume an aura of scholarship and scientific re-
spectability. Causal assumptions, as we have seen before, are deprived of that
honor, and thus become immediate suspect of informal, anecdotal or metaphysical
thinking. Again, this difference becomes illuminated among Bayesians, who are
accustomed to accepting untested, judgmental assumptions, and should therefore
invite causal assumptions with open arms—they don’t. A Bayesian is prepared
to accept an expert’s judgment, however esoteric and untestable, so long as the
judgment is wrapped in the safety blanket of a probability expression. Bayesians
turn extremely suspicious when that same judgment is cast in plain English, as in
“mud does not cause rain.” A typical example can be seen in Lindley and Novick’s
[1981] treatment of Simpson’s paradox.

Lindley and Novick showed that decisions on whether to use conditional or
marginal contingency tables should depend on the story behind the tables, that
is, on one’s assumption about how the tables were generated. For example, to
decide whether a treatmentX = x is beneficial (Y = y) in a population, one
should compare�zP (yjx; z) to �zP (yjx

0; z) if Z stands for the gender of pa-
tients. In contrast, ifZ stands for a factor that is affected by the treatment (say
blood pressure), one should compare the marginal probabilities,P (yjx) vis-�a-vis
P (yjx0), and refrain from conditioning onZ (see [Pearl, 2000a; pp. 174-182] for
details). Remarkably, instead of attributing this difference to the causal relation-
ships in the story, Lindley and Novick wrote: “We have not chosen to do this; nor
to discuss causation, because the concept, although widely used, does not seem to
be well-defined” (p. 51). Thus, instead of discussing causation, they attribute the
change in strategy to another untestable relationship in the story—exchangeability
[DeFinetti, 1974] which is cognitively formidable yet, at least formally, can be
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cast in a probability expression. In Section 4.2, we will return to discuss this trend
among Bayesians of equating “definability” with expressibility in probabilistic lan-
guage.

The third resistance to causal (vis-�a-vis statistical) assumptions stems from their
intimidating clarity. Assumptions about abstract properties of density functions
or about conditional independencies among variables are, cognitively speaking,
rather opaque, hence they tend to be forgiven, rather than debated. In contrast, as-
sumptions about how variables cause one another are shockingly transparent, and
tend therefore to invite counter-arguments and counter-hypotheses. A co-reviewer
on a paper I have read recently offered the following objection to the causal model
postulated by the author:

“A thoughtful and knowledgeable epidemiologist could write down
two or more equally plausible models that leads to different conclu-
sions regarding confounding.”

Indeed, since the bulk of scientific knowledge is organized in causal schema, sci-
entists are incredibly creative in constructing competing alternatives to any causal
hypothesis, however plausible. Statistical hypotheses in contrast, having been sev-
eral levels removed from our store of knowledge, are relatively protected from
such challenges.

I conclude this subsection with a suggestion that statisticians’ suspicion of
causal assumptions, vis-�a-vis probabilistic assumptions, is unjustified. Consid-
ering the organization of scientific knowledge, it makes prefect sense that we per-
mit scientists to articulate what they know in plain causal expressions, and not
force them to compromise reliability by converting to the “higher level” language
of prior probabilities, conditional independence and other cognitively unfriendly
terminology.5

2.2 The Barrier of New Notation

If reluctance to making causal assumptions has been a hindrance to causal anal-
ysis, finding a mathematical way of expressing such assumptions encountered a
formidable mental block. The need to adopt a new notation, foreign to the province
of probability theory, has been traumatic to most persons trained in statistics; partly
because the adaptation of a new language is difficult in general, and partly because
statisticians have been accustomed to assuming that all phenomena, processes,
thoughts, and modes of inference can be captured in the powerful language of
probability theory.6

5Similar observations were expressed by J. Heckman [2001].
6Commenting on myset(x) notation [Pearl, 1995a, b], a leading statistician wrote: “Is this a

concept in some new theory of probability or expectation? If so, please provide it. Otherwise, ‘meta-
physics’ may remain the leading explanation.” Another statistician, commenting on thedo(x) notation
used inCausality [Pearl, 2000a], insisted: “...the calculus of probability is the calculus of causality.”
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Not surprisingly, in the bulk of the statistical literature, causal claims never
appear in the mathematics. They surface only in the verbal interpretation that in-
vestigators occasionally attach to certain associations, and in the verbal description
with which investigators justify assumptions. For example, the assumption that a
covariate is not affected by a treatment, a necessary assumption for the control
of confounding[Cox, 1958], is expressed in plain English, not in a mathematical
equation.

In some applications (e.g., epidemiology), the absence of notational distinction
between causal and statistical dependencies seemed unnecessary, because investi-
gators were able to keep such distinctions implicitly in their heads, and managed
to confine the mathematics to conventional probability expressions. In others, as
in economics and the social sciences, investigators rebelled against this notational
tyranny by leaving mainstream statistics and constructing their own mathematical
machinery (called Structural Equations Models). Unfortunately, this machinery
has remained a mystery to outsiders, and eventually became a mystery to insiders
as well.7

But such tensions could not remain dormant forever. “Every science is only so
far exact as it knows how to express one thing by one sign,” wrote Augustus de
Morgan in 1858 — the harsh consequences of not having the signs for expressing
causality surfaced in the 1980-90’s. Problems such as the control of confound-
ing, the estimation of treatment effects, the distinction between direct and indirect
effects, the estimation of probability of causation, and the combination of experi-
mental and nonexperimental data became a source of endless disputes among the
users of statistics, and statisticians could not come to the rescue. [Pearl, 2000a] de-
scribes several such disputes, and why they could not be resolved by conventional
statistical methodology.

3 LANGUAGES FOR CAUSAL ANALYSIS

3.1 The language of diagrams and structural equations

How can one express mathematically the common understanding that symptoms
do not cause diseases? The earliest attempt to formulate such relationship mathe-
matically was made in the 1920’s by the geneticist Sewall Wright [1921]. Wright
used a combination of equations and graphs to communicate causal relationships.
For example, ifX stands for a disease variable andY stands for a certain symptom
of the disease, Wright would write a linear equation:

(1) y = ax+ u

supplemented with the diagramX �! Y , wherex stands for the level (or sever-
ity) of the disease,y stands for the level (or severity) of the symptom, andu stands

7Most econometric texts in the last decade have refrained from defining what an economic model
is, and those that attempted a definition, erroneously view structural equations models as compact
representations of probability density functions (see [Pearl, 2000a, pp. 135-138]).
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for all factors, other than the disease in question, that could possibly affectY (U
is called “exogenous”, “background”, or “disturbance”.) The diagram encodes
the possible existence of (direct) causal influence ofX onY , and the absence of
causal influence ofY onX , while the equation encodes the quantitative relation-
ships among the variables involved, to be determined from the data. The parameter
a in the equation is called a “path coefficient” and it quantifies the (direct) causal
effect ofX onY ; given the numerical value ofa, the equation claims that, ceteras
paribus, a unit increase inX would result in ana-unit increase ofY . If correlation
betweenX andU is presumed possible, it is customary to add a double arrow
betweenX andY .

The asymmetry induced by the diagram renders the equality sign in Eq. (1) dif-
ferent from algebraic equality, resembling instead the assignment symbol ( := ) in
programming languages. Indeed, the distinctive characteristic of structural equa-
tions, setting them apart from algebraic equations, is that they stand for a value-
assignment process — an autonomous mechanism by which the value ofY (not
X) is determined. In this assignment process,Y is committed to track changes in
X , whileX is not subject to such commitment.8

Wright’s major contribution to causal analysis, aside from introducing the lan-
guage of path diagrams, has been the development of graphical rules for writing
down (by inspection) the covariance of any pair of observed variables in terms
of path coefficients and of covariances among disturbances. Under certain causal
assumptions, (e.g. ifCov(U;X) = 0), the resulting equations may allow one to
solve for the path coefficients in terms of observed covariance terms only, and this
amounts to inferring the magnitude of (direct) causal effects from observed, non-
experimental associations, assuming of course that one is prepared to defend the
causal assumptions encoded in the diagram.

The causal assumptions embodied in the diagram (e.g, the absence of arrow
fromY toX , orCov(U;X) = 0) are not generally testable from nonexperimental
data. However, the fact that each causal assumption in isolation cannot be tested
does not mean that the sum total of all causal assumptions in a model does not
have testable implications. The chain modelX �! Y �! Z for exam-
ple, encodes seven causal assumptions, each corresponding to a missing arrow or
a missing double-arrow between a pair of variables. None of those assumptions
is testable in isolation, yet the totality of all those assumptions implies thatZ is
unassociated withX , conditioned onY . Such testable implications can be read off
the diagrams (see [Pearl 2000a, pp. 16–19]), and these constitute the only open-
ing through which the assumption embodies in structural equation models can be
tested in observational studies. Every conceivable statistical test that can be ap-
plied to the model is entailed by those implications.

8Clearly, if we intervene onX, Y would continue to track changes inX. Not so when we intervene
onY , X will reman unchanged. Such intervention (onY ) would alter the assignment mechanism for
Y and, naturally, would cause the equality in Eq. (1) to be violated.
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3.2 From path-diagrams to do-calculus

Structural equation modeling (SEM) has been the main vehicle for causal analysis
in economics, and the behavioral and social sciences [Goldberger 1972; Duncan
1975]. However, the bulk of SEM methodology was developed for linear anal-
ysis and, until recently, no comparable methodology has been devised to extend
its capabilities to models involving discrete variables, nonlinear dependencies, or
situations in which the functional form of the equations is unknown. A central
requirement for any such extension is to detach the notion of “effect” from its al-
gebraic representation as a coefficient in an equation, and redefine “effect” as a
general capacity to transmitchanges among variables. One such extension, based
on simulating hypothetical interventions in the model, is presented in Pearl [1995a,
2000a]

The central idea is to exploit the invariant characteristics of structural equations
without committing to a specific functional form. For example, the non-parametric
interpretation of the chain modelZ �! X �! Y corresponds to a set of three
functions, each corresponding to one of the variables:

(2)
z = fZ(w)
x = fX(z; v)
y = fY (x; u)

together with the assumption that the background variablesW ,V , U (not shown
in the chain) are jointly independent but, otherwise, arbitrarily distributed. Each
of these functions represents a causal process (or mechanism) that determines the
value of the left variable (output) from those on the right variables (input). The ab-
sence of a variable from the right hand side of an equation encodes the assumption
that it has no direct effect on the left variable. For example, the absence of variable
Z from the arguments offY indicates that variations inZ will leaveY unchanged,
as long as variablesU andX remain constant. A system of such functions are said
to bestructural (or modular) if they are assumed to be autonomous, that is, each
function is invariant to possible changes in the form of the other functions [Simon
1953; Koopmans 1953].

This feature of invariance permits us to use structural equations as a basis for
modeling actions and counterfactuals. This is done through a mathematical oper-
ator calleddo(x) which simulates physical interventions by deleting certain func-
tions from the model, replacing them by constants, while keeping the rest of the
model unchanged. For example, to represent an intervention that sets the value of
X to x0 the model for Eq. (2) would become

(3)
z = fZ(w)
x = x0
y = fY (x; u)

The distribution ofY and Z calculated from this modified model characterizes
the effect of the actiondo(X = x0) and is denoted asP (y; zjdo(x0)). It is
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not hard to show that, as expected, the model of Eq. (2) yieldsP (yjdo(x 0)) =
P (yjx0) andP (zjdo(x0)) = P (z) regardless of the functionsfX , fY andfZ .
The general rule is simply to remove from the factorized distributionP (x; y; z) =
P (z)P (xjz)P (yjx) the factor that corresponds to the manipulated variable (X in
our example) and to substitute the new value of that variable (x 0 in our exam-
ple) into the truncated expression — the resulting expression then gives the post-
intervention distribution of the remaining variables [Pearl, 2000a; section 3.2]. Ad-
ditional features of this transformation are discussed in the Appendix; see [Pearl,
2000a; chapter 7] for full details.

The main task of causal analysis is to infer causal quantities from two sources
of information: (i) the assumptions embodied in the model, and (ii) the observed
distributionP (x; y; z), or from samples of that distribution. Such analysis requires
mathematical means of transforming causal quantities, represented by expressions
such asP (yjdo(x)), intodo-free expressions derivable fromP (z; x; y), since only
do-free expressions are estimable from non-experimental data. When such a trans-
formation is feasible, we say that the causal quantity isidentifiable. A calculus
for performing such transformations, calleddo-calculus, was developed in[Pearl,
1995a]. Remarkably, the rules governing this calculus depend merely on the topol-
ogy of the diagram; it takes no notice of the functional form of the equations, nor
of the distribution of the disturbance terms. This calculus permits the investigator
to inspect the causal diagram and

1. Decide whether the assumptions embodied in the model are sufficient to
obtain consistent estimates of the target quantity;

2. Derive (if the answer to item 1 is affirmative) a closed-form expression for
the target quantity in terms of distributions of observed quantities; and

3. Suggest (if the answer to item 1 is negative) a set of observations and ex-
periments that, if performed, would render a consistent estimate feasible.

4 ON THE DEFINITION OF CAUSALITY

In this section, I return to discuss concerns expressed by some Bayesians that
causality is an undefined concept and that, although thedo-calculus can be an ef-
fective mathematical tool in certain tasks, it does not bring us closer to the deep
and ultimate understanding of causality, one that is based solely on classical prob-
ability theory.

4.1 Is causality reducible to probabilities?

Unfortunately, aspirations for reducing causality to probability are both untenable
and unwarranted. Philosophers have given up such aspirations twenty years ago,
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and were forced to admit extra-probabilistic primitives (such as “counterfactuals”
or “causal relevance”) into the analysis of causation (see Eells [1991] and Pearl
[2000a, Section 7.5]). The basic reason was alluded to in Section 2: probability
theory deals with beliefs about an uncertain, yet static world, while causality deals
with changes that occur in the world itself, (or in one’s theory of such changes).
More specifically, causality deals with how probability functions change in re-
sponse to influences (e.g., new conditions or interventions) that originate from
outside the probability space, while probability theory, even when given a fully
specified joint density function on all (temporally-indexed) variables in the space,
cannot tell us how that function would change under such external influences.
Thus, “doing” is not reducible to “seeing”, and there is no point trying to fuse
the two together.

Many philosophers have aspired to show that the calculus of probabilities, en-
dowed with a time dynamic, would be sufficient for causation [Suppes, 1970]. A
well known demonstration of the impossibility of such reduction (following Otte
[1981]) goes as follows. Consider a switchX that turns on two lights,Y andZ,
and assume that, due to differences in location,Z turns on a split second before
Y . Consider now a variant of this example where the switchX activatesZ, and
Z, in turns, activatesY . This case is probabilistically identical to the previous one,
because all functional and temporal relationships are identical. Yet few people
would perceive the causal relationships to be the same in the two situations; the
latter represents cascaded process,X �! Z �! Y , while the former represents
a branching process,Y  � X �! Z. The difference shows, of course, when we
consider interventions; intervening onZ would affectY in the cascaded case, but
not in the branching case.

The preceding example illustrates the essential role ofmechanisms in defining
causation. In the branching case, although all three variables are symmetrically
constrained by the functional relationships:X = Y , X = Z, Z = Y , these
relationships in themselves do not reveal the information that the three equalities
are sustained by only two mechanisms,Y = X andZ = X , and that the first
equality would still be sustained when the second is violated. A set of mechanisms,
each represented by an equation, is not equivalent to the set of algebraic equations
that are implied by those mechanisms. Mathematically, the latter is defined asone
set ofn equations, whereas the former is defined asn separate sets, each containing
one equation. These are two distinct mathematical objects that admit two distinct
types of solution-preserving operations. The calculus of causality deals with the
dynamics of such modular systems of equations, where the addition and deletion
of equations represent interventions (see Appendix).

4.2 Is causality well-defined?

From a mathematical perspective, it is a mistake to say that causality is unde-
fined. Thedo-calculus, for example, is based on two well-defined mathemati-
cal objects: a probability functionP and a directed acyclic graph (DAG)D; the
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first is standard in statistical analysis while the second is a newcomer that tells
us (in a qualitative, yet formal language) which mechanisms would remain invari-
ant to a given intervention. Given these two mathematical objects, the definition
of “cause” is clear and crisp; variableX is a probabilistic-cause of variableY if
P (yjdo(x)) 6= P (y) for some valuesx andy. Since each ofP (yjdo(x)) andP (y)
is well-defined in terms of the pair(P;D), the relation “probabilistic cause” is,
likewise, well-defined. Similar definitions can be constructed for other nuances
of causal discourse, for example, “causal effect”, “direct cause”, “indirect cause”,
“event-to-event cause”, “scenario-specific cause”, “necessary cause”, “sufficient
cause”, “likely cause” and “actual cause” (see [Pearl, 2000a, pp. 222–3, 286–7,
319]; some of these definitions invoke functional models).

Not all statisticians/philosophers are satisfied with these mathematical defini-
tions. Some suspect definitions that are based on unfamiliar non-algebraic objects
(i.e., the DAG) and some mistrust abstract definitions that are based on unverifiable
models. Indeed, no mathematical machinery can ever verify whether a given DAG
really represents the causal mechanisms that generate the data — such verification
is left either to human judgment or to experimental studies that invoke interven-
tions. I submit, however, that neither suspicion nor mistrust are justified in the case
at hand; DAGs are no less formal than mathematical equations, and questions of
model verification need be kept apart from those of conceptual definition.

Consider, for example, the concept of a distributionmean. Even non-Bayesians
perceive this notion to be well-defined, for it can be computed from any given (non-
pathological) distribution function, even before ensuring that we can estimate that
distribution from the data. We would certainly not declare the mean “ill-defined”
if, for any reason, we find it hard to estimate the distribution from the available
data. Quite the contrary; by defining the mean in the abstract, as a functional of
any hypothetical distribution, we can often prove that the defining distribution need
not be estimated at all, and that the mean can be estimated (consistently) directly
from the data. Remarkably, by taking seriously the abstract (and untestable) notion
of a distribution, we obtain a license to ignore it. An analogous logic applies to
causation. Causal quantities are first defined in the abstract, using the pair(P;D),
and this abstract definition then provides a theoretical framework for deciding,
given the type of data available, which of the assumptions embodied in the DAG
are ignorable, and which are absolutely necessary for establishing the target causal
quantity from the data.9

The separation between concept definition and model verification is even more
pronounced in the Bayesian framework, where purely judgmental concepts, such
as the prior distribution of the mean, are perfectly acceptable, as long as they can
be assessed reliably from one’s experience or knowledge. Dennis Lindley has re-
marked recently (personal communication) that “causal mechanisms may be easier

9I have used a similar logic in defense of counterfactuals [Pearl, 2000a], which Dawid [2000]
deemed dangerous on account of being untestable. (See, also Dawid [2001], this volume.) Had
Bernoulli been constrained by Dawid’s precautions, the notion of a “distribution” would have had
to wait for another “dangerous” scientist, of Bernoulli’s equal, to be created.
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to come by than one might initially think”. Indeed, from a Bayesian perspective,
the newcomer concept of a DAG is not an alien at all — it is at least as legitimate
as the probability assessments that a Bayesian decision-maker pronounces in con-
structing a decision tree. In such construction, the probabilities that are assigned
to branches emanating from a decision variableX correspond to assessments of
P (yjdo(x)) and those assigned to branches emanating from a chance variableX

correspond to assessments ofP (yjx). If a Bayesian decision-maker is free to as-
sessP (yjx) andP (yjdo(x)) in any way, as separate evaluations, the Bayesian
should also be permitted to express his/her conception of the mechanisms that en-
tail those evaluations. It is only by envisioning these mechanisms that a decision
maker can generate a coherent list of such a vast number ofP (yjdo(x)) type as-
sessments.10 The structure of the DAG can certainly be recovered from judgments
of the formP (yjdo(x)) and, conversely, the DAG combined with a probability
functionP dictates all judgments of the formP (yjdo(x)). Accordingly the struc-
ture of the DAG can be viewed as a qualitative parsimonious scheme of encoding
and maintaining coherence among those assessments. And there is no need to
translate the DAG into the language of probabilities to render the analysis legiti-
mate. Adding probabilistic veneer to the mechanisms portrayed in the DAG may
make thedo calculus appear more traditional, but would not change the fact that
the objects of assessment are still causal mechanisms, and that these objects have
their own special grammar of generating predictions about the effect of actions. In
summary, recalling the ultimate Bayesian mission of fusing judgment with data, it
is not the language in which we cast judgments that legitimizes the analysis, but
whether those judgments can reliably be assessed from our store of knowledge and
from the peculiar form in which this knowledge is organized.

If it were not for this concern to maintain reliability (of judgment), one could
easily translate the information conveyed in a DAG into purely probabilistic formu-
lae, using hypothetical variables. (Translation rules are provided in [Pearl, 2000a,
p. 232]). Indeed, this is how the potential-outcome approach of Neyman [1923]
and Rubin [1974] has achieved statistical legitimacy: judgments about causal re-
lationships among observables are expressed as statements about probability func-
tions that involve mixtures of observable and counterfactual variables. The diffi-
culty with this approach, and the main reason for its slow acceptance in statistics,
is that judgments about counterfactuals are much harder to assess than judgments
about causal mechanisms. For instance, to communicate the simple assumption
that symptoms do not cause diseases, we would have to use a rather roundabout
expression and say that the probability of the counterfactual event “disease had
symptoms been absent” is equal to the probability of “disease had symptoms been
present”. Judgments of conditional independencies among such counterfactual
events are even harder for researchers to comprehend or to evaluate.

10Coherence requires, for example, that for anyx, y, andz, the inequalityP (yjdo(x); do(z)) �
P (y; xjdo(z)) be satisfied. This follows from the property of composition (see Appendix, Eq. (6), or
[Pearl, 2000a; pp. 229]
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5 SUMMARY

This paper calls attention to a basic conflict between mission and practice in
Bayesian methodology. The mission is to express prior knowledge mathemati-
cally and reliably so as to assist the interpretation of data, hence the acquisition of
new knowledge. The practice has been to express prior knowledge as prior proba-
bilities — too crude a vocabulary, given the grand mission. Considerations of re-
liability (of judgment) call for enriching the language of probabilities with causal
vocabulary and for admitting causal judgments into the Bayesian repertoire. The
mathematics for interpreting causal judgments has matured, and tools for using
such judgments in the acquisition of new knowledge have been developed. The
grounds are now ready for mission-oriented Bayesianism.

APPENDIX

CAUSAL MODELS, ACTIONS AND COUNTERFACTUALS

This appendix presents a brief summary of the structural-equation semantics of
causation and counterfactuals as defined in Balke and Pearl [1995], Galles and
Pearl [1997, 1998], and Halpern [1998]. For detailed exposition of the structural
account and its applications see[Pearl, 2000a].

Causal models are generalizations of the structural equations used in engineer-
ing, biology, economics and social science.11 World knowledge is represented as a
modular collection of stable and autonomous relationships called “mechanisms”,
each represented as a function, and changes due to interventions or unmodelled
eventualities are treated as local modifications of these functions.

A causal model is a mathematical object that assigns truth values to sentences
involving causal relationships, actions, and counterfactuals. We will first define
causal models, then discuss how causal sentences are evaluated in such models.
We will restrict our discussion to recursive (or feedback-free) models; extensions
to non-recursive models can be found in Galles and Pearl [1997, 1998] and Halpern
[1998].

DEFINITION 1 (Causal model).
A causal model is a triple

M = hU; V; F i

where

(i) U is a set of variables, calledexogenous. (These variables will represent back-
ground conditions, that is, variables whose values are determined outside
the model.)

11Similar models, called “neuron diagrams” [Lewis, 1986, p. 200; Hall, 1998] are used informally
by philosophers to illustrate chains of causal processes.
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(ii) V is an ordered setfV1; V2; : : : ; Vng of variables, calledendogenous. (These
represent variables that are determined in the model, namely, by variables in
U [ V .)

(iii) F is a set of functionsff1; f2; : : : ; fng where eachfi is a mapping from
U � (V1 � : : : � Vi�1) to Vi. In other words, eachfi tells us the value of
Vi given the values ofU and all predecessors ofV i. Symbolically, the set of
equationsF can be represented by writing12

vi = fi(pai; ui) i = 1; : : : ; n

wherepai is any realization of the unique minimal set of variablesPA i in
V (connotingparents) sufficient for representingf i.13 Likewise,Ui � U

stands for the unique minimal set of variables inU that is sufficient for
representingfi.

Every causal modelM can be associated with a directed graph,G(M), in which
each node corresponds to a variable inV and the directed edges point from mem-
bers ofPAi towardVi (by convention, the exogenous variables are usually not
shown explicitly in the graph). We call such a graph thecausal graph associated
with M . This graph merely identifies the endogenous variablesPA i that have
direct influence on eachVi but it does not specify the functional form off i.

For any causal model, we can define anaction operator,do(x), which, from a
conceptual viewpoint, simulates the effect of external action that sets the value of
X to x and, from a formal viewpoint, transforms the model into asubmodel, that
is, a causal model containing fewer functions.

DEFINITION 2 (Submodel).
Let M be a causal model,X be a set of variables inV , andx be a particular
assignment of values to the variables inX . A submodelMx of M is the causal
model

Mx = hU; V; Fxi

where

(4) Fx = ffi : Vi 62 Xg [ fX = xg

In words,Fx is formed by deleting fromF all functionsf i corresponding to mem-
bers of setX and replacing them with the set of constant functionsX = x.

If we interpret each functionfi in F as an independent physical mechanism
and define the actiondo(X = x) as the minimal change inM required to make

12We use capital letters (e.g.,X, Y ) as names of variables and sets of variables, and lower-case
letters (e.g.,x, y) for specific values (called realizations) of the corresponding variables.

13A set of variablesX is sufficient for representing a given functiony = f(x; z) if f is trivial in
Z—that is, if for everyx; z; z0 we havef(x; z) = f(x; z0).
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X = x hold true under anyu, thenMx represents the model that results from
such a minimal change, since it differs fromM by only those mechanisms that
directly determine the variables inX . The transformation fromM toM x modifies
the algebraic content ofF , which is the reason for the namemodifiable structural
equations used in[Galles and Pearl, 1998].14

DEFINITION 3 (Effect of action).
Let M be a causal model,X be a set of variables inV , andx be a particular
realization ofX . Theeffect of action do(X = x) onM is given by the submodel
Mx.

DEFINITION 4 (Potential response).
Let Y be a variable inV , let X be a subset ofV , and letu be a particular value
of U . Thepotential response of Y to actiondo(X = x) in situationu, denoted
Yx(u), is the (unique) solution forY of the set of equationsFx.

We will confine our attention to actions in the form ofdo(X = x). Conditional
actions, of the form “do(X = x) if Z = z” can be formalized using the replace-
ment of equations by functions ofZ, rather than by constants[Pearl, 1994]. We
will not consider disjunctive actions, of the form “do(X = x or X = x 0)”, since
these complicate the probabilistic treatment of counterfactuals.

DEFINITION 5 (Counterfactual).
LetY be a variable inV , and letX be a subset ofV . The counterfactual expression
“The value thatY would have obtained, hadX beenx” is interpreted as denoting
the potential responseYx(u).

Definition 5 thus interprets the counterfactual phrase “hadX beenx” in terms
of a hypothetical external action that modifies the actual course of history and im-
poses the condition “X = x” with minimal change of mechanisms. This is a cru-
cial step in the semantics of counterfactuals[Balke and Pearl, 1994], as it permits
x to differ from the actual valueX(u) of X without creating logical contradiction;
it also suppresses abductive inferences (or backtracking) from the counterfactual
antecedentX = x.15

It can be shown[Galles and Pearl, 1997] that the counterfactual relationship
just defined,Yx(u), satisfies the following two properties:
Effectiveness:
For any two disjoint sets of variables,Y andW , we have

(5) Yyw(u) = y:

14Structural modifications date back to Marschak [1950] and Simon [1953]. An explicit translation
of interventions into “wiping out” equations from the model was first proposed by Strotz and Wold
[1960] and later used in Fisher [1970], Sobel [1990], Spirtes et al. [1993], and Pearl [1995]. A similar
notion of sub-model is introduced in Fine [1985], though not specifically for representing actions and
counterfactuals.

15Simon and Rescher [1966, p. 339] did not include this step in their account of counterfactuals and
noted that backward inferences triggered by the antecedents can lead to ambiguous interpretations.
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In words, setting the variables inW tow has no effect onY , once we set the value
of Y to y.
Composition:
For any two disjoint sets of variablesX andW , and any set of variablesY ,

(6) Wx(u) = w =) Yxw(u) = Yx(u):

In words, once we setX tox, setting the variables inW to the same values,w, that
they would attain (underx) should have no effect onY . Furthermore, effectiveness
and composition arecomplete wheneverM is recursive (i.e.,G(M) is acyclic)
[Galles and Pearl, 1998; Halpern, 1998], that is, every property of counterfactu-
als that follows from the structural model semantics can be derived by repeated
application of effectiveness and composition.

A corollary of composition is a property calledconsistency by [Robins, 1987]:

(7) (X(u) = x) =) (Yx(u) = Y (u))

Consistency states that, if in a certain contextu we find variableX at valuex, and
we intervene and setX to that same value,x, we should not expect any change in
the response variableY . Composition and consistency are used in several deriva-
tions of Section 3.

The structural formulation generalizes naturally to probabilistic systems, as is
seen below.

DEFINITION 6 (Probabilistic causal model).
A probabilistic causal model is a pair

hM;P (u)i

whereM is a causal model andP (u) is a probability function defined over the
domain ofU .

P (u), together with the fact that each endogenous variable is a function ofU ,
defines a probability distribution over the endogenous variables. That is, for every
set of variablesY � V , we have

(8) P (y)
�
= P (Y = y) =

X

fu j Y (u)=yg

P (u)

The probability of counterfactual statements is defined in the same manner, through
the functionYx(u) induced by the submodelMx. For example, thecausal effect
of X onY is defined as:

(9) P (Yx = y) =
X

fu j Yx(u)=yg

P (u)

Likewise, a probabilistic causal model defines a joint distribution on counter-
factual statements, i.e.,P (Yx = y; Zw = z) is defined for any sets of variables
Y;X;Z;W , not necessarily disjoint. In particular,P (Yx = y;X = x0) and
P (Yx = y; Yx0 = y0) are well defined forx 6= x0, and are given by
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(10) P (Yx = y;X = x0) =
X

fujYx(u)=y & X(u)=x0g

P (u)

and

(11) P (Yx = y; Yx0 = y0) =
X

fu j Yx(u)=y & Y
x
0 (u)=y0g

P (u):

Whenx andx0 are incompatible,Yx andYx0 cannot be measured simultane-
ously, and it may seem meaningless to attribute probability to the joint statement
“Y would bey if X = x and Y would bey 0 if X = x0.” Such concerns have
been a source of recent objections to treating counterfactuals as jointly distributed
random variables[Dawid, 2000]. The definition ofYx andYx0 in terms of two
distinct submodels, driven by a standard probability space overU , demonstrates
that joint probabilities of counterfactuals have solid mathematical and conceptual
underpinning and, moreover, these probabilities can be encoded rather parsimo-
niously usingP (u) andF .

Computer Science Department, University of California, USA.
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