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1. BACKGROUND 

The field of statistics has seen many well-meaning cru- 
sades against threats from metaphysics and other heresy. 
In its founding prospectus of 1834, the Royal Statistical 
Society resolved "to exclude carefully all Opinions from 
its transactions and publications-to confine its attention 
rigorously to facts." This clause was officially struck out 
in 1858, when it became obvious that facts void of the- 
ory could not take statistics very far (Annals of the Royal 
Statistical Society 1934, p. 16). 

Karl Pearson launched his own metaphysics "red scare" 
about causality in 1911: "Beyond such discarded fundamen- 
tals as 'matter' and 'force' lies still another fetish amidst the 
inscrutable arcana of modern science, namely, the category 
of cause and effect" (Pearson 1911, p. iv). Pearson's objec- 
tion to theoretical concepts such as "matter" and "force" 
was so fierce and his rejection of determinism so absolute 
that he consigned statistics to almost a century of neglect 
within the study of causal inference. Philip Dawid was one 
of a handful of statisticians who boldly protested the stale- 
mate over causality: "Causal inference is one of the most 
important, most subtle, and most neglected of all the prob- 
lems of statistics" (Dawid 1979). 

In the past two decades, owing largely to progress in 
counterfactual, graphical, and structural analyses, causal- 
ity has been transformed into a mathematical theory with 
well-defined semantics and well-founded logic, and many 
practical problems that were long regarded as either meta- 
physical or unmanageable can now be solved using elemen- 
tary mathematics. (See Pearl 2000 for a gentle introduction 
to the counterfactual, graphical, and structural equation ap- 
proaches to causality.) In the article, Professor Dawid wel- 
comes the new progress in causal analysis but expresses 
mistrust of the quasi-deterministic methods by which this 
progress has been achieved. 

Attitudes of suspicion toward counterfactuals and struc- 
tural equation models are currently pervasive among statis- 
ticians, and Dawid should be commended for bringing such 
concerns into the open. By helping to dispel misconcep- 
tions about counterfactuals, Dawid's article may well have 
rescued statistics from another century of stagnation over 
causality. 

2. THE EMPIRICAL CONTENT OF 
COUNTERFACTUALS 

The word "counterfactual" is a misnomer. Counterfac- 
tuals carry as clear an empirical message as any scientific 
laws, and indeed are fundamental to them. The essence of 
any scientific law lies in the claim that certain relation- 
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ships among observable variables remain invariant when 
the values of those variables change relative to our imme- 
diate observations. For example, Ohm's law (V = IR) as- 
serts that the ratio between the current (I) and the voltage 
(V) across a resistor remains constant for all values of I, 
including yet-unobserved values of I. We usually express 
this claim in a function or a hypothetical sentence: "Had the 
current in the resistor been I (instead of the observed value 
Io) the voltage would have been V = I(Vo/Io)," know- 
ing perfectly well that there is no way to simultaneously 
measure I and Io. (Every mathematical function is inter- 
preted hypothetically, and the study of counterfactuals is 
merely a study of standard mathematical functions.) Such 
sentences appear to be counterfactual, because they deal 
with unobserved quantities that differ from (and hence seem 
to contradict) those actually observed. Nonetheless, this cir- 
cumstantial nonobservability and apparent contradiction do 
not diminish whatsoever the ability to submit physical laws 
to empirical tests. Scientific methods thrive on attempts to 
confirm or falsify the predictions of such laws. 

The same applies to stochastic processes (or data- 
generation models), usually written in the form of func- 
tional relations y = f(x, U), where X and U stand for two 
sets of random variables, with joint distribution P(x, u), 
and f is a function (usually of unknown form) that deter- 
mines the value of the outcome Y = y in terms of ob- 
served and unobserved quantities, X = x and U = u. To 
see how counterfactuals and joint probabilities of counter- 
factuals emerge from such a stochastic model, I consider 
a simple case where Y and X are binary variables (e.g., 
treatment and response) and U is an arbitrary complex set 
of all other variables that may influence Y. For any given 
condition U u, the relationship between X and Y must 
be one of the (only) four binary functions 

fo: y = 0 or {Yo = O,Y,= 0}, 
fl: y = x or {Yo = O,Y1 = 1} 

f2: y x Xor {Yo = 1, Y,= 0}, 
and 

f3: y = or {Yo = 1, Y =1}. (1) 

As u varies along its domain, the only effect it can have 
on the model is to switch the relationship between X and 
Y among these four functions. This partitions the domain 
of U into four equivalence classes, where each class con- 
tains those points u that correspond to the same function. 
The probability P(u) thus induces a probability function 
over the potential response pairs {Yo, Y1 } shown in (1). This 
construction is the inverse of the one discussed in Dawid's 
Section 13; one starts with genuine concomitants U, and 
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they turn into jointly distributed counterfactual concomi- 
tants {Yo, Y1 } that Dawid calls metaphysical and fatalistic. 

Admittedly, when u stands as the identity of a person, 
the mapping of u into the pair {Yo, Y1 } appears horridly 
fatalistic, as if that person is somehow doomed to react in 
a predetermined way to treatment (X = 1) and no treat- 
ment (X = 0). However, if one views u as the sum total 
of all experimental conditions that might possibly affect 
that individual's reaction (including biological, psychologi- 
cal, and spiritual factors, operating both before and after the 
application of the treatment), then the mapping is seen to 
evolve reasonably and naturally from the functional model 
y = f (x, u). This quasi-deterministic functional model mir- 
rors Laplace's conception of nature (Laplace 1814), accord- 
ing to which of nature's laws are deterministic, and random- 
ness surfaces merely due to our ignorance of the underlying 
boundary conditions. (The structural equation models used 
in economics, biology, and stochastic control are typical 
examples of Laplacian models.) Dawid detests this concep- 
tion. This is not because it ever failed to match macro- 
scopic empirical data (only quantum mechanical phenom- 
ena exhibit associations that might conflict with the Lapla- 
cian model), but rather because it appears to stand contrary 
to the "familiar statistical framework and machinery" (Sec. 
7). I fail to see why a framework and machinery that did 
not exactly excel in the causal arena should be deprived of 
enhancement and retooling. 

3. EMPIRICISM VERSUS IDENTIFIABILITY 

Dawid's empiricism is summarized in his abstract: 

By definition, one can never observe such [counterfactual] 
quantities, nor assess empirically the validity of any model- 
ing assumption made about them, even though one's conclu- 
sions may be sensitive to these assumptions. 

This warning is not entirely accurate. Many counter- 
factual modeling assumptions do have testable implica- 
tions; for example, exogeneity (or ignorability) (Y1 ii X) 
and monotonicity (Y1 (u) > Yo (u)) each can be falsified by 
comparing experimental and nonexperimental data (Pearl 
2000, p. 294). More important, the warning is either empty 
or self-contradictory. If one's conclusions have no practi- 
cal consequences, then their sensitivity to invalid assump- 
tions is totally harmless, and Dawid's warning is empty. 
If, on the other hand, one's conclusions do have practical 
consequences, then their sensitivity to assumptions auto- 
matically makes those assumptions testable, and Dawid's 
warning turns contradictory. 

The two queries about aspirin and headache, which 
Dawid uses to distinguish effects of causes from causes of 
effects ("sheep" from "goats"), may serve well to illustrate 
the inconsistency in Dawid's philosophy. The two queries 
are 

I. I have a headache. Will it help if I take aspirin? 
II. My headache has gone. Is it because I took aspirin? 

Letting X =1 stand for "taking aspirin" and and Y =1 
stand for "having a headache" (after 1/2 hour, say), the 
counterfactual expressions for the probabilities of these two 

queries read: 

QI = P (Y1 = 0) - P (YO = 0) 

and 

QII = P (YO 1|X = i,Y = 0). (2) 

In words, Qll stands for the probability that my headache 
would have stayed had I not taken aspirin (Yo = 1), given 
that I did in fact take aspirin (X = 1) and the headache 
has gone (Y = 0). (I restrict the population to persons who 
have headaches prior to considering aspirin.) Dawid is cor- 
rect in stating that the two queries are of different types, 
and the language of counterfactuals displays this difference 
and its ramifications in vivid mathematical form. By exam- 
ining their respective formulas, one can immediately detect 
that Qll is conditioned on the outcome Y = 0, whereas QI 
is unconditioned. This implies that some knowledge of the 
functional relationship (between X and Y) must be invoked 
in estimating Qll (Balke and Pearl 1994). I challenge Dawid 
to express Qll, let alone formulate conditions for its esti- 
mation in a counterfactual-free language. For background 
information, the identification of QI requires exogeneity 
(i.e., randomized treatment), whereas that of Qll requires 
both exogeneity and monotonicity; both assumptions have 
testable implications (Pearl 2000, p. 294). Epidemiologists 
are well aware of the difference between QI and Qll [they 
usually write Qll = QI/P (Y = O|X = 1)], though the cor- 
responding identification conditions for Qll are often not 
spelled out as clearly as they could (Greenland and Robins 
1988). 

What is puzzling in Dawid's article is that he considers 
Qll to be, on one hand, valid and important (Sec. 3) and, on 
the other hand, untestable (Sec. 11); the two are irreconcil- 
able. If Qll is valid and important, then one should expect 
the magnitude of Qll to affect some future decisions, and 
can then use the correctness of those decisions as a test 
(hence interpretation) of the empirical claims made by Qll. 
What are those claims, and how can they be tested? 

According to the interpretation given in the previous sec- 
tion, counterfactual claims are merely conversational short- 
hand for scientific predictions. Hence Qll stands for the 
probability that a person will benefit from taking aspirin 
in the next headache episode, given that aspirin proved ef- 
fective for that person in the past (i.e., X = 1,Y = 0). 
Therefore, Qll is testable in sequential experiments where 
subjects' reactions to aspirin are monitored repeatedly over 
time. (One needs to assume that a person's characteristics 
do not change over time, an assumption that is testable in 
principle.) In such tests one can easily verify whether sub- 
jects who have had one positive experience with aspirin 
(X = 1, Y = 0) have a higher than average probability of 
benefiting from aspirin in the future. 

I have argued elsewhere (Pearl 2000, p. 217) that counter- 
factual queries of type II are the norm in practical decision 
making, whereas causal effect queries (type I) are the excep- 
tion. The reason is that decision-related queries are usually 
brought into focus by observations that could be modified 
by the decision (e.g., a patient suffering from a set of symp- 
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toms). The case-specific information provided by those ob- 
servations is essential for properly assessing the effect of 
the decision, and conditioning on these observations leads 
to queries of type II, as in Qll. The Bayesian approach pro- 
posed by Dawid cannot properly handle conditioning on 
factors that are affected by the treatment, and thus pre- 
cludes answering the most common type of decision-related 
queries. (Detailed dynamic models or temporally indexed 
data for every conceivable set of observations would be 
needed for specifying the probabilities in the decision trees 
of such analyses.) 

I agree with Dawid that certain assumptions needed for 
identifying causal quantities are not easily understood (let 
alone ascertained) when phrased in counterfactual terms. 
Typical examples are assumptions of ignorability (Rosen- 
baum and Rubin 1983), which involve conditional inde- 
pendencies among counterfactual variables. However, this 
cognitive difficulty comes not because counterfactuals are 
untestable, but rather because dependencies among counter- 
factuals are derived quantities that are a few steps removed 
from the way we conceptualize cause-effect relationships. 
To overcome this difficulty, a hybrid form of analysis can 
be used, in which assumptions are expressed in the friendly 
form of functional relationships (or diagrams), and causal 
queries (e.g., Qll) are posed and evaluated in counterfactual 
vocabulary (Pearl 2000, p. 215-7, 231-4). Functional mod- 
els, in the form of nonparametric structural equations, thus 
provide both formal semantics and conceptual basis for a 
complete mathematical theory of counterfactuals. 

In Section 5.4, Dawid restates his empiricist philosophy 
in the form of a requirement which he calls Jeifreys's law: 

... mathematically distinct models that cannot be distin- 
guished on the basis of empirical observation should lead 
to indistinguishable inference. 

This requirement reads like a tautology: If two models en- 
tail two distinguishable inferences, and if the difference be- 
tween the two inferences matters at all, then the two mod- 
els can easily be distinguished by whatever (empirical) cri- 
terion used to distinguish the two inferences. Dawid may 
have meant the following: 

... mathematically distinct models that cannot be distin- 
guished on the basis of past empirical observation should 
lead to indistinguishable inference regarding future observa- 
tion (which may be obtained under new experimental condi- 
tions). 

This is none other but the requirement of identifiability (see, 
e.g., Pearl 1995). It requires, for example, that if our data are 
nonexperimental, then two models that are indistinguishable 
on the basis of those data entail the same value of the av- 
erage causal effect (ACE)-a quantity discernible in exper- 
imental studies. It likewise requires that if one's data come 
from static experiments, then two models that are indistin- 
guishable on the basis of those data entail the same value 
of Q1I-a quantity discernible in sequential experiments. 

If the aim of Dawid's empiricism is to safeguard identi- 
fiability, his proposal would be welcome by all causal an- 
alysts, including adventurous counterfactualists. Unfortu- 

nately, careful reading of his article shows that David aims 
to impose an overly restrictive and unworkable type of safe- 
guard, a type rejected in almost every branch of science. 

4. PRAGMATIC VERSUS DOGMATIC EMPIRICISM 

The requirement of identifiability, as just stated, is a re- 
striction on the type of queries one may ask (or inferences 
one may make) and not on the type of models one may use. 
This brings up the difference between pragmatic and dog- 
matic empiricism. A pragmatic empiricist insists on asking 
empirically testable queries, but leaves the choice of theo- 
ries to convenience and imagination; the dogmatic empiri- 
cist insists on positing only theories that are expressible in 
empirically testable vocabulary. As an extreme example, a 
strictly dogmatic empiricist would shun the use of negative 
numbers, because negative quantities are not observable in 
isolation. For a less extreme example, a pragmatic empiri- 
cist would welcome the counterfactual model of individual 
causal effects (ICE) (see Sec. 5.2) as long as it leads to 
valid and empirically testable estimation of the quantity of 
interest (e.g., ACE). Dawid rejects this model a priori be- 
cause it starts with unobservable unit-based counterfactual 
terms, Y1 (u) and Yo (u), and thus fails the dogmatic require- 
ment that the entire analysis, including all auxiliary sym- 
bols and all intermediate steps, "involve only terms subject 
to empirical scrutiny." What is gained by this prohibition, 
according to Dawid, is protection from asking nonidentifi- 
able queries. His proposal, in the form of Bayesian decision 
trees, indeed ensures that one does not ask certain forbidden 
questions, but unfortunately, it also ensures that one never 
asks or answers important questions (such as Qll) that can- 
not be expressed in his restricted language. It is a stifling 
insurance policy, analogous to banning division from arith- 
metics to protect one from dividing by 0. (Overprotection 
may also tempt the counterfactual camp; see Imbens and 
Rubin 1995.) 

Science rejected this kind of insurance long ago. The 
Babylonians astronomers were masters of black box pre- 
diction, far surpassing their Greek rivals in accuracy and 
consistency (Toulmin 1961, pp. 27-30). Yet science favored 
the creative-speculative strategy of the Greek astronomers, 
which was wild with metaphysical imagery: circular tubes 
full of fire, small holes through which the fire was visible as 
stars, and hemispherical earth riding on turtle backs. It was 
this wild modeling strategy, not Babylonian rigidity, that 
jolted Eratosthenes (276-194 B.C.) to perform one of the 
most creative experiments in the ancient world and measure 
the radius of the earth. 

This creative speculate-test-reject strategy (which is 
my understanding of Popperian empiricism) is practiced 
throughout science because it aims at understanding the 
mechanisms behind the observations and thus gives rise to 
new questions and new experiments, which eventually yield 
predictions under novel sets of conditions. Quantum me- 
chanics was invented precisely because J. J. Thomson and 
others dared take deterministic classical mechanics very se- 
riously, and boldly asked "metaphysical" questions about 
physical properties of electrons when electrons were un- 
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observable. The language of counterfactuals likewise en- 
ables the statistician to pose and reject a much richer set 
of "what if" questions than does the language of Bayesian 
decision theory. Giving up this richness is the price to pay 
for Dawid's insurance. 

5. COUNTERFACTUALS AS INSTRUMENTS 

Dawid reports (at the end of Sec. 10.2) that the bounds 
for causal effects in clinical trials with imperfect com- 
pliance (Balke and Pearl 1997) are "sheep-like"-namely 
valid, meaningful, and safe even for counterfactually averse 
statisticians. Ironically, when we examine the conditional 
probabilities that achieve those bounds, we find that they 
represent subjects with deterministic behavior, compliers, 
never-takers, and defiers, precisely the kind of behavior that 
Dawid rejects as "fatalistic" (Sec. 7.1). The lesson is illu- 
minating: Even starting with the best sheep-like intentions, 
there is no escape from counterfactuals and goat-like deter- 
minism in causal analysis. 

This lesson leads to a new way of legitimizing coun- 
terfactual analysis in the conservative circles of statistics. 
Researchers who mistrust the quasi-deterministic models 
of Laplace (i.e., y = f(x, u)) can now view these mod- 
els as limit points of a space of nondeterministic models 
P(ylx) constrained to agree with the observed data. Ac- 
cordingly, the mistrustful analysis of counterfactuals can 
now be viewed as a benign analysis of limit points of or- 
dinary probability spaces, in much the same way that irra- 
tional numbers can be viewed as limit points (or Dedekind 
cuts) of benign sets of rational numbers. 

Dawid is correct in noting that many problems about the 
effects of causes can be reinterpreted and solved in non- 
counterfactual terms. Analogously, some of my colleagues 
can derive De-Moivre's theorem, cosnO = Re[(cos0 + 
i sin O)n], without the use of those mistrustful imaginary 
numbers. So, should we strike complex analysis from our 

math books? Examining the major tangible results in causal 
inference in the past two decades (e.g., propensity scores, 
identification conditions, covariate selection, asymptotic 
bounds) reveals that, although these results could have been 
derived without counterfactuals, they simply were not. This 
may not be taken as a coincidence if one asks why it was 
Eratosthenes that measured the size of the earth and not 
some Babylonian astronomer, master in black box predic- 
tion. The success of the counterfactual language stems from 
two ingredients necessary for scientific progress in general: 
(a) the use of modeling languages that are somewhat richer 
than the ones needed for routine predictions, and (b) the use 
of powerful mathematics to filter, rather than muzzle, the 
untestable queries that such languages tempt us to ask. 

Dawid is inviting causality to submit to the Babylonian 
safeguard of black box mentality. I dare predict that causal- 
ity will reject his offer. 
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Comment 
James M. ROBINS and Sander GREENLAND 

By narrowly concentrating on randomized experiments 
with complete compliance, Dawid, in our opinion, incor- 
rectly concludes that an approach to causal inference based 
on "decision analysis" and free of counterfactuals is com- 
pletely satisfactory for addressing the problem of infer- 
ence about the effects of causes. We argue that when at- 
tempting to estimate the effects of causes in observational 
studies or in randomized experiments with noncompliance 
(termed broken experiments by Barnard et al. (1998), 
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reliance on counterfactuals or their logical equivalents can- 
not be avoided. 

Causal inference from observational data and broken 
experiments historically has been viewed as problematic, 
and even illegitimate, by most statisticians. Thus we re- 
gard it as a serious oversight for Dawid to deny the 
usefulness of a counterfactuals without a more careful 
consideration of observational studies and broken exper- 
iments. The purpose of this discussion is to redress that 
oversight, by reviewing the considerations that have led 
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