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Abstract 

This paper develops axioms and formal semantics for statements of the form “X is causally 
irrelevant to Y in context Z”, which we interpret to mean “Changing X will not affect Y once Z 
is held constant”. The axiomization of causal irrelevance is contrasted with the axiomization of 
informational irrelevance, as in “Finding X will not alter our belief in Y, once we know Z”. Two 
versions of causal irrelevance are analyzed: probabilistic and deterministic. We show that, unless 
stability is assumed, the probabilistic definition yields a very loose structure that is governed by just 
two trivial axioms. Under the stability assumption, probabilistic causal irrelevance is isomorphic to 
path interception in cyclic graphs. Under the deterministic definition, causal irrelevance complies 
with all of the axioms of path interception in cyclic graphs except transitivity. We compare our 
formalism to that of Lewis (1973) and offer a graphical method of proving theorems about causal 
relevance. @ 1997 Elsevier Science B.V. 
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1. Introduction 

In [ IO], a set of axioms was developed for a class of relations called gruphoids. 
These axioms characterize informational relevance* among observed events based on 

the semantics of conditional independence in probability calculus. This paper develops 
a parallel set of axioms for causal relevance, that is, the tendency of certain events to 

* Corresponding author. Email: judea@cs.ucla.edu. 

’ Email: galles@cs.ucla.edu. 

2 “Relevance” will be used primarily as a genetic name for the relationship of being relevant or irrelevant. It 
will be clear from the context when “relevance” is intended to negate “irrelevance”. 
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affect the occurrence of other events in the physical world, independent of the observer- 
reasoner. Informational irrelevance is concerned with statements of the form “X is 
independent of Y given Z”, which means that, given the value of Z, gaining information 

about X gives us no new information about Y. Causal irrelevance is concerned with 

statements of the form “X is causally irrelevant to Y in context Z”, which we take to 
mean “Changing X will not alter the value of Y, if Z is fixed”. 

The notion of causal relevance has its roots in the philosophical works of Good [ 121, 

Suppes [ 451, and Salmon [ 371, who attempted to give probabilistic interpretations to 
cause-effect relationships, and recognized the need to distinguish causal from statistical 

relevance. Although these attempts have not produced an algorithmic definition of causal 
relevance, they led to methods for testing the consistency of relevance statements against 
a given probability distribution and a given temporal ordering among the variables 
[ 3,5,32]. The current paper aims at axiomatizing relevance statements in themselves, 

with no reference to underlying probabilities or temporal orderings. 

Axiomatic characterization of causal relevance may serve as a normative standard for 

analyzing theories of action as well as a guide for developing representation schemes 
(e.g., graphical models) for planning and decision-making applications. For example, 
instead of explicitly storing all possible effects of an action, as in STRIPS [6], such 

representation schemes should enable an agent to examine only direct effects of actions 
and to infer which actions are relevant for a given goal and which actions cease to be 
relevant once others are implemented. 

Another application of causal relevance lies in the area of automatic language gener- 
ation-for example, in complex diagnostic systems, where machine-generated explana- 

tions are loaded with causal utterances. The formalization of causal relevance and causal 

relationships in general should assist a machine in distinguishing and selecting proper 
linguistic nuances in causal conversations. Statements such as “A normally causes B”, 

“B was caused by A”, “A was the cause of B “, “B occurred despite A”, or “B would not 

have occurred if it were not for A” all express some form of causal relevance between 
A and B, yet these utterances are not entirely equivalent and making the appropriate 
choice may require careful understanding of the relation between A and B in the context 

of the discussion. 
Axiomization of causal relevance could also be useful to experimental researchers in 

domains where exact causal models do not exist. If we know, through experimentation, 
that some variables have no causal influence on others in a system, we may wish to 

determine whether other variables will exert causal influence, perhaps under different 

experimental conditions, or may ask what additional experiments could provide such 

information. For example, suppose we find that a rat’s diet has no effect on tumor 
growth while the amount of exercise is kept constant and, conversely, that exercise has 
no effect on tumor growth while diet is kept constant. We would like to be able to 
infer that controlling only diet (while paying no attention to exercise) would still have 
no influence on tumor growth. A more subtle inference problem is deciding whether 
changing the ambient temperature in the cage would have an effect on the rat’s physical 
activity, given that we have established that temperature has no effect on activity when 
diet is kept constant and that temperature has no effect on (the rat’s choice of) diet 
when activity is kept constant. 
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We provide two formal definitions of causal irrelevance. The probabilistic definition, 
which equates causal irrelevance with inability to change the probability of the effect 
variable, has intuitive appeal but is inferentially very weak; it does not support a very 

expressive set of axioms unless further assumptions are made about the underlying causal 

model. If we add the stability assumption (i.e., that no irrelevance can be destroyed by 
changing the nature of the individual processes in the system), then we obtain the same 
set of axioms for probabilistic causal irrelevance as the set governing path interception 
in directed graphs. The deterministic definition, which equates causal irrelevance with 
inability to change the effect variable in any state of the world, allows for a rich set 

of axioms without our making any assumptions about the causal model. All of the 

path-interception axioms for directed graphs, with the exception of transitivity, hold for 
deterministic causal irrelevance. 

In Section 2, we define causal models, a formal system for interpreting causal state- 
ments. In Section 3, we provide a definition of probabilistic causal irrelevance and 

determine which of the graphoid axioms hold under this definition. Finally, in Section 4, 

we give a nonprobabilistic definition of causal irrelevance and offer a graphical method 

for proving statements about causal irrelevance. 

2. Causal models 

A causal model is a complete specification of the causal relationships that govern a 
given domain; namely, it is a mathematical object that provides an interpretation (and 

computation) of every causal query about the domain. Following [29] we will adopt 
here a definition that generalizes most of the causal models used in engineering and 
economics. 

Definition 1 (Causal model). A causal model is a 3-tuple 

M= (YU,F), 

where 

(i) V={Xl,... , Xn} is a set of endogenous variables determined within the system, 
(ii) U={Ui,..., U,*} is a set of exogenous or background variables that represent 

disturbances, abnormalities, assumptions, or boundary conditions, and 
(iii) F is a set of n nontrivial functions {ft , . . . , f,,}, each having the form 

Xi = fi(pUi,U), i = 1,. . . ,n, (1) 

where pUi are the values of a set of variables PAi G V \ Xi (connoting parents), called 
the direct causes of Xi. We will assume that the set of equations in (iii) has a unique 
solution for Xl, . . . , X,,, given any value of the background variables Ut , . . . , U,,,. Thus 

we can consider each variable X E V to be a function XM ( U) of the background (I in 
the causal model M. 

The uniqueness assumption is always satisfied in recursive models, where PAi are 
predecessors of Xi in some order, but may be violated in nonrecursive systems, that is, 
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V = {X, Y} binary x=ut v ‘y X- 
U = { UI } binary y=ut AZ x yy 

Fig. 1. A valid nonrecursive causal model, with unique values for X and Y for all values of U. 

systems with feedback. For example, consider the equations x = y V u and y = x v u. 

The state U = 0 permits two possible solutions for X and Y-namely, (X = 1, Y = 

1) and (X = 0, Y = 0)-so such functions would be disallowed in a causal model. 

The uniqueness requirement in nonrecursive models conveys the understanding that F 

represents a deterministic physical system in equilibrium. Indeed, if we assume that 
all relevant background conditions U were accounted for, such a system can only be 
in one state. Systems possessing several equilibrium states indicate the existence of 
dynamic factors, not modeled in U. Such factors often can be summarized by the 
notion of previous state, and incorporated into our analysis as a third kind of variables 
supplementing V and U [ 91. 

The assumption that there is a unique solution for X1, . . . , X,, while limiting the scope 
of Definition 1, does not prevent the use of causal models to describe feedback systems 

in stable equilibrium. The equations do not need to be recursive to ensure uniqueness. 

For example, the causal model shown in Fig. 1 dictates unique values for X and Y for 

UI =0 and UI = 1. 
Drawing arrows between the variables PAi and Xi defines a directed graph G(M), 

which we call the causal graph of M. In general, G(M) can be cyclic. For some 
examples of causal models, see Section 2.1. 

Definition 1 merely provides a description of the mathematical objects that enter 

into a causal model. To fulfill our requirement that a causal model be capable of 
computing answers for causal queries, we need to supplement Definition 1 with an 

interpretation of the sentence “X = x causes Y = y”. In ordinary discourse, such a 
sentence implies that we can bring about the condition Y = y by locally enforcing 
the condition X = x. Thus, Definition 1 must be supplemented with a formal inter- 

pretation of the notion “locally enforcing X = x” that is compatible with its common 

usage. 
External intervention normally implies changing some mechanisms in the domain. In 

a logical circuit, for example, the act of enforcing the condition Xi = 0 by connecting 
some intermediate variable Xi to ground amounts to changing the mechanism that nor- 
mally determines Xi. If Xi is the output of an OR gate, then after the intervention, Xi 

would no longer be determined by the OR gate but by a new mechanism (involving 
the ground) that clamps Xi to 0 regardless of the input to the OR gate. In the equa- 
tional representation, this amounts to replacing the equation xi = fi(pai, U) with a new 
equation, Xi = 0, that represents the grounding of Xi. 
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The replacement of just one equation, not several, reflects the principle of locality 
in the common understanding of imperative sentences such as “Raise taxes” or “Make 
him laugh”. When told to clean his face, a child does not ask for a razor, nor does he 
jump into the swimming pool. The proper interpretation of the modal sentence “do p” 
corresponds to a a minimal perturbation of the existing state of affairs, and this, in the 

context of Definition 1, corresponds to the replacement of the minimal set of equations 
necessary to make p compatible with U. 

In general, we will consider concurrent action of the form do( X = x), where X 

involves several variables in V. 3 This leads to the following definitions. 

Definition 2 (Submodel). Let M be a causal model, X be a set of variables in V, and 
x be a particular realization of X. A submodel M, of M is the causal model 

M, = (U VF,), 

where 

F,={_h 1 ~~x}u{x=x}. (2) 

In words, F, is formed by deleting from F all functions fi corresponding to members 
of X and replacing them with the set of functions X = x. Implicit in the definition of 

submodels is the assumption that F, possesses a unique solution for every U. 

Submodels are useful for representing the effect of local actions and changes. If we 
interpret each function fi in F as an independent physical mechanism and define the 

action do( X = x) as the minimal change in M required to make X = x hold true under 
any U, then M, represents the model that results from such a minimal change, since it 
differs from M by only those mechanisms that determine the variables in X. 

Definition 3 (Effect of action). Let M be a causal model, X be a set of variables in 
V, and x be a particular realization of X. The effect of action do( X = x) on M is given 
by the submodel M,. 

Definition 4 (Potential response). Let Y be a variable in V, and let X be a subset of 
V. The potential response of Y to action do( X = x), denoted Y,(U), is the solution for 

Y of the set of equations F,. 

Definition 5 (Countelfactual). Let Y be a variable in V, and let X a subset of V. 
The counterfactual sentence “The value that Y would have obtained, had X been x” is 
interpreted as denoting the potential response Y,(u) . 4 

3 The formalization of conditional actions of the form “do( X = x) if Z = z” is straightforward [ 281. 

4 The connection between counterfactuals and local actions is made by Lewis [ 171 and is further elaborated 

by Balke and Pearl [ 1 ] and Heckerman and Shachter [ 141. Readers who are disturbed by the impracticality 

of actions in the interpretation of some counterfactuals (e.g., “If 1 were young”) are invited to replace 
the word “action” with the word “modification” (see [ 161). Pearl [29, p. 7061 explains the advantage of 

using hypothetical external interventions, rather than spontaneous changes, in thinking about causation and 

counterfactuals. 
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The syntactical transformation described in Definition 4 corresponds to replacing the 
old functional mechanisms Xi = fi (PAi, u) with new mechanisms Xi = xi that represent 

the external forces that set the values xi for each Xi E X. As before, we will assume 
each variable Y E V to be a unique function of the background U in any model M,: 
Y = YM.~ (u) . For brevity, the subscript M is often omitted, leaving Y,(U) . 

The notation Y,(U) is sometimes used in the statistical literature [ 361 to stand for the 
counterfactual sentence “The value that Y would take in person u had X been x”, where 

X stands for a type of treatment that a person can receive. There is a strong connection 
between the sentence above and our formal interpretation of Yx( U) [ 291. Definition 4 
interprets this abstract, counterfactual sentence in terms of the processes responsible for 

Y taking on the value Y,(U) as X changes to x. It treats u not as merely the index of 

an individual but, rather, as the set of attributes u that characterize the individual, the 
experimental conditions under study, and so on. In fact, every causal model meeting the 

requirements of Definition 1 can be translated into a set of counterfactual statements of 

the type used in the statistical literature [ 29, p. 7031. In Section 4, we will further show 
that the process-based semantics given in Definition 4 will uncover new properties of 

Y,(U) that were not formalized in the statistical literature. 
An explicit translation of intervention into “wiping out” equations in the causal model 

was first proposed by Strotz and Wold [431 and used by Fisher [ 71 and Sobel [40]. 
Graphical ramifications are explicated by Spirtes et al. [41] and Pearl [27]. Inter- 
pretations of causal and counterfactual utterances in terms of Yx( U) are provided by 
Pearl [ 311. Other formulations of causality, in terms of event trees, are given by 
Robins [33] and Shafer [39]. 

Note that Y,(U) is well defined even when U = u and X = x are incompatible in M 

(i.e., X(U) # x) , thus allowing for actions to enforce propositions that are not realized 

under normal conditions, or under the abnormalities modeled in U. For example, if M 
describes a logic circuit we might wish to intervene and set some voltage X to x, even 
though the input dictates X # x. It is for this reason that one must invoke some notion 
of mechanism breakdown or “surgery” in the definition of interventions. 

The unique feature of our formulation of actions-the feature that sets it apart from 

the formulations in control theory or decision analysis [ 14,381 -is that an action is 
treated as a modality, namely, it is not given an explicit name but acquires the names 
of the propositions that it enforces as true. This enables the model to predict the 
effects of a huge number of action combinations without the modeler having to at- 

tend to such combinations. Instead, the causal model is constructed by specifying the 
characteristics of each individual mechanism under normal conditions, free of interven- 

tion. 
We can extend the notion of causal models to encode probabilistic information as 

follows: 

Definition 6 (Probabilistic causal model). A probabilistic causal model is a pair 

(MT P(u))* 

where M is a causal model and P(u) is a probability function defined over the domain 

of u. 
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SPRINKLER RAIN 

\ J 

0 x4 WET 

0 X5 SLIPPERY 

Fig. 2. Causal graph illustrating causal relationships among five variables. 

P(U) , together with the fact that each endogenous variable is a function of U, defines a 

probability distribution over the endogenous variables. That is, for every set of variables 
Y C V, we have 

P(Y) = c P(u). 

tuIV,)=Y) 
(3) 

The probability of counterfactual statements is defined in the same manner, through the 

function Y,(U) induced by the submodel M,: 

P(Y, = y) = c P(u). (4) 
tulY,(u)=B) 

We note that a causal model defines a joint distribution on all counterfactual state- 
ments, that is, P (Y, = y, Z, = z) is defined for any sets of variables Y, X, Z, W, not 
necessarily disjoint. In particular, P(Y, = y, Y,J = y’) is well defined and is given by 

C{ulu,cu,=~ar,,(U,=V’} P(u) . Likewise, P (Y, = y, X = x’) is well defined and is given by 

c{U,Y,(U)=y&x(U)=x’) p(u).5 

2.1. Examples 

Next we demonstrate the generality of the mathematical object defining causal mod- 
els using two familiar applications: evidential reasoning and linear structural equation 

models. 

5 The existence of such joint distributions has prompted some of the objections to treating counterfactuals 

as random variables, because, when x and x’ are incompatible, it is hard to attribute probability to the joint 
statement “Y would be y if X were x and X is actually x’“. The definition of Yx in terms of submodel not only 

avoids such problems but also illustrates that such joint probabilities can be encoded rather parsimoniously 

using P(u) and F. 



16 D. Galles. J. Peari/Art#cial Intelligence 97 (1997) 9-43 

2.1.1. Sprinkler example 
Fig. 2 is a simple yet typical causal graph used in common sense reasoning. It 

describes the causal relationships among the season of the year (Xi ), whether rain falls 

(X2) during the season, whether the sprinkler is on (X3), whether the pavement is wet 

(X4), and whether the pavement is slippery (Xs). All variables in this graph except the 
root variable Xt take a value of either “True” or “False”. Xi takes one of four values: 
‘Spring”, “Summer”, “Fall”, or “Winter”. Here, the absence of a direct link between, 
for example, Xt and Xs, captures our understanding that the influence of the season on 
the slipperiness of the pavement is mediated by other conditions (e.g., the wetness of 

the pavement). The corresponding model consists of five functions, each representing 

an autonomous mechanism: 

x1 =u1 

x2 = f2(-vvu2) 

x3 = f3(XlTU3) (5) 

x4 = _f4(x3,x2,u4) 

x5 = _/-5(x47 u5) 

The disturbances Ut , . . . , Us are not shown explicitly in Fig. 2 but are understood to gov- 

ern the uncertainties associated with the causal relationships. The causal graph coincides 
with the Bayesian network associated with P( XI, . . . , x5) whenever the disturbances are 
assumed to be independent, UillJ \ Ui. 

A typical specification of the functions {ft, . . . , fs} and the disturbance terms is 

given by the Boolean model 

x2 = [(Xi = Winter) V (Xl = Fall) V ab23 A labi 

x3 = [ (XI = Summer) V (Xl = Spring) V abs] A labi 

x4 = (x2 V x3 V ab4) A Tub; 
(6) 

x5 = (x4 Vub5) A lab; 

where xi stands for Xi = true, and ubi and ubi stand, respectively, for triggering and 
inhibiting abnormalities. For example, ub4 stands for (unspecified) events that might 
cause the pavement to get wet (x4) when the sprinkler is off (1x2) and it does not 
rain (7x3) (e.g., pouring a pail of water on the pavement), while labi stands for 
(unspecified) events that will keep the pavement dry (7x4) in spite of rain falling 

(x3), the sprinkler being on (x2), and ub4 (e.g., covering the pavement with a plastic 
sheet). 

To represent the action “turning the sprinkler ON”, or du(X3 = ON), we replace 
the equation x3 = fs(xt ,ug) in the model of Eq. (5) with X3 = ON. The resulting 
submodel, M,+oN, contains all the information needed for computing the effect of the 
action on the other variables. It is easy to see from this submodel that the only variables 
affected by the action are X4 and Xs, that is, the descendants of the manipulated variable 
X3. Note, however, that the operation do( X3 = ON) stands in marked contrast to that of 
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Fig. 3. Causal graph illustrating the relationship between supply and demand. 

jinding the sprinkler ON; the latter involves making the substitution X3 = ON without 

removing the equation for X3, and therefore may potentially influence (the belief in) 

every variable in the network. This mirrors the difference between seeing and doing: 

after observing that the sprinkler is ON, we may wish to infer that the season is dry, that 
it probably did not rain, and so on; no such inferences can be drawn about the reasons 
for the action “turning the sprinkler ON”. 

2.1.2. Policy analysis in linear econometric models 

Causal models are often used to predict the effect of policies on systems in dynamic 
equilibrium. In the economic literature, for example, we find the system of equations 

q=blp+dli+ul, (7) 

p = b2q + d2w + 2.42, (8) 

where q is the quantity of household demand for a product A, p is the unit price of 
product A, i is household income, w is the wage rate for producing product A, and ut 

and 4 represent error terms, namely, unmodeled factors that affect quantity and price, 
respectively [ 111. 

This system of equations constitutes a causal model (Definition 1) if we define 

V = {Q, P} and U = {(It, U2, I, W} and assume that each equation represents an au- 
tonomous process in the sense of Definition 3. The causal graph of this model is 

shown in Fig. 3. It is normally assumed that I and W are known, while Ut and 

lJ2 are unobservable and independent in I and W. Since the error terms UI and 
U2 are unobserved, the model must be augmented with the distribution of these er- 

rors, which is usually taken to be a Gaussian distribution with the covariance matrix 

2, =COV(Ui,Uj). 

We can use this model to answer queries such as: 
( 1) Find the expected demand (Q) if the price is controlled at P = PO. 

(2) Find the expected demand (Q) if the price is reported to be P = PO. 

(3) Given that the current price is P = PO, find the expected demand (Q) had the 

price been P = pl. 
To find the answer to the first query, we replace Eq. (8) with p = PO, leaving 

q=blp+dli+ul. 

P ‘PO. 

(9) 

( 10) 
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The demand is then 4 = pabt + dti + ut, and the expected value of Q can be obtained 
from i and the expectation of Ut, giving 

E[Q I611 =E[Ql +bl(p-E[Pl)+dl(i-E[zl). 

The answer to the second query is given by conditioning Eq. (7) on the current 
observation {P = po, I = i, W = w} and taking the expectation, 

E[Q I PO, 6 WI = hpo + dli + E[Ul I PO, i, WI. (11) 

The computation of E[ Ut 1 po, i, w] is a standard procedure once Sij is given. Note 
that, although Ut was assumed independent of I and W, this independence no longer 

holds once P = po is observed [ 2 1 I. Note also that Eqs. (7) and (8) both participate in 

the solution and that the observed value pa will affect the expected demand 4 (through 
E[ Ut 1 po, i, w] ) even when bt = 0, which is not the case in the first query. 

The third query requires the conditional expectation of the counter-factual quantity 
QPzP,, given the current observations {P = po, I = i, W = w}, namely, 

HQp,, I po,L WI = hpl + d~i + -%(/I / PO, i, WI. (12) 

The expected value E[ U1 I po, i, w] is the same in the solutions to the second and third 
queries; the latter differs only in the term btpt. A general method for solving such 
counterfactual queries is described in [ 21. 

2.1.3. Linguistic notions of causality 

Causal models provide a precise language for defining intuitive causal concepts. In 

this section, we provide some brief examples, all relating to a given causal model M. 

l “X is a cause of Y”, if there exist two values x and x’ of X and a value u of U 

such that Y,(U) # Yxl(u). 

0 “X is a cause of Y in context 2 = z”, if there exist two values x and x’ of X and 
a value u of U such that Y,, # Yxlz (u). 

l “X is a direct cause of Y”, if there exist two values x and x’ of X, and a value u 
of U such that Y,,(U) # Y,l,( U) where r is some realization of V \ X. 

l “X is an indirect cause of Y”, if X is a cause of Y, and X is not a direct cause of Y. 
l “Event X = x may have caused Y = x” if 

(i) X = x and Y = y are true, and 

(ii) there exists a value u of U such that X(U) = x, Y(u) = y, Y,(u) = y and 
Y,,(u) # y for some x’ # x. 

l “The unobserved event X = x is a likely cause of Y = y” if 
(i) Y = y is true, and 

(ii) P(Yx=y,Yxt #yIY=y)ishighforsomex’#x 

l “Event Y = y occurred despite X = x”, if 
(i) X = x and Y = y are true, and 

(ii) P(Y, =y> is low. 

The preceding list demonstrates that, by varying the quantifiers of U and X, we 
have the flexibility of finding appropriate formalization for many nuances of causal 
expressions. 
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1.1 (Symmetry) (XIY ] Z) =+ (YIX ] Z) 

1.2 (Decomposition) (X_LYIV ] Z) =+ (XIY 1 Z) 

1.3 (Weak union) (XIYW 1 Z) j (XIY 1 ZW) 

1.4 (Contraction) (XIY I Z>&(X_LW ) ZY) ==+ (XIYW ) Z) 

1.5 (Intersection) (XIW I ZY)& (XIY 1 ZW) =+ (XUW 1 Z) 
Intersection requires a strictly positive probability distribution. 

Fig. 4. The graphoid axioms 

3. Probabilistic causal irrelevance 

The existence of a probability distribution over all variables in a probabilistic causal 
model leads to a natural definition of the probabilistic version of causal irrelevance. 

Definition 7 (Probabilistic causal irrelevance). X is probabilistically causally irrele- 

vant to Y given Z, written (X f, Y ) Z)p, iff 

vx,x’, y,z P(y 1 ?,q = P(y I T,x”). (13) 

Read: “Once we hold Z fixed (at z), changing X between any two values will not 

change the probability of Y”. 

3.1. Comparison to informational relevance 

If we remove the “hats” from Definition 7, we get the standard definition of con- 
ditional independence in probability calculus, denoted (XIY I Z), which is governed 
by the graphoid axioms [ 10,241 given in Fig. 4. Dawid [4] and Spohn [42] intro- 
duced these axioms in a different form, and Pearl and Paz [24] conjectured that these 

axioms were complete. This conjecture has been refuted by Studeny [44], who also 
proved that conditional independence in probability theory has no finite axiomatization. 

Nevertheless, the graphoid axioms capture the most important features of informational 
relevance: “Learning irrelevant information should not alter the relevance status of other 

propositions in the system; what was relevant remains relevant, and what was irrelevant 
remains irrelevant” [ 261. 

One of the salient differences between informational and causal relevance is the 
property of symmetry, Axiom 1.1. Informational relevance is symmetric, namely, if X 
is relevant to Y, then Y is relevant to X as well. For example, learning whether the 
sprinkler is on provides information on whether the pavement is wet, and, vice versa, 

learning whether the pavement is wet provides information on whether the sprinkler is 
on. This property is clearly violated in causal models: turning a sprinkler on tends to 
make the pavement wet, so turning on the sprinkler gives us information about the state 
of the pavement; conversely, wetting the pavement has no physical effect on the state 
of the sprinkler and gives us no information about whether the sprinkler was on or off. 
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V = {X, Y} binary 

U = (Ut} binary 

1 if x=ut 
Y= 0 otherwise 

P(U,) = 0.5 

Fig. 5. An example of P(y) > MAX,P(y ( ?). 

Another basic difference between informational and causal relevance is that in the 
former, the rule of the hypothetical middle [26, p. 171 always holds: 

MIW’(y I x> < P(Y) 6 MAW’(Y I xl. (14) 

In causal relevance, P ( y ) might be greater than MAX,P ( y 1 2) or less than MIN,P ( y 1 
2). Fig. 5 illustrates such a possibility. 

In Fig. 5, there are two endogenous variables X and Y, as well as an exogenous 
variable Ut . Without any intervention, X will always have the same value as Ui , thus, Y 
will have the value 1. If X and Ut have different values, however, then Y will have the 
value 0. If we intervene and set X = 1, then Y will have the value 1 when CJ1 = 1, which 
has a probability 0.5, and Y will have the value 0 when lJ1 = 0, which has a probability 
0.5: P( Y = 0 1 set( X = 1) ) = P( Y = 1 I set( X = 1) ) = 0.5. Similarly, we can see that 
P(Y=O( set(X=O)) =P(Y= 1 I set(X=O)) =0.5. Thus, MAX,P(y 1%) =0.5, and 
P(Y=1)=1>0.5=MAX,P(y(?). 

Note that, given this violation of the rule of the hypothetical middle (Eq. ( 14)), 
Definition 7 is not equivalent to 

v’x,y,z P(y I Z-92) = P(y I a. (15) 

Read: “Once we hold Z fixed (at z > , controlling X will not affect the probability 
of Y”. In fact, Eq. (15 is stronger than Definition 7, furthermore, Statement 2.5.2 
(left-intersection of Theorem 8, below) follows from the former but not from the 
latter. 

The notion of probabilistic causal irrelevance may bring to mind the concept ignor- 
ability [35] which is extremely important in analyzing the effectiveness of treatments 
(e.g., drugs, diet, educational programs) from uncontrolled studies. The two concepts 
are related but different. Ignorability allows us to ignore how X obtained its value x, 
while irrelevance allows us to ignore which value X actually obtained. Ignorability is 
defined as the condition 

P(Yx=y I z) =P(Y=y I LX>, 

which implies 

(16) 

P(y I?;‘> AP(Y,=y) =E,(y I z,x>. (17) 



D. Galles, .I. Pearl/Artijicial Intelligence 97 (1997) 9-43 21 

Thus, ignorability allows an investigator to relate the potential response Y, to observable 
conditional probabilities. Central in experimental design is the question of how to select 
a set of observables Z that would make Eq. (16) true, given causal knowledge of the 
domain. Ignorability in itself does not provide such a criterion although it does state 
the problem in formal counterfactual language: “Z can be selected if, for every x, the 
value that Y would obtain had X been x is conditionally independent of X, given Z”. 
A practical criterion for selecting Z can be obtained from the graph G(M) underlying 

a causal model (e.g., the back-door criterion in [ 291) . 
The question we attempt to answer in this section is whether the relation of causal 

irrelevance, (A f, B 1 C) p, is governed by a set of axioms similar to those governing 

the relation of informational irrelevance, (AIB 1 C). More generally, one may ask 

whether there are any constraints that prohibit the assignment of arbitrary functions 
P( y 1 2) to any pair (X, Y) of variable sets in V, in total disregard of the fact that 

P( y 1 2) represents the probability of (Y = y) induced by physically setting X = x in 
some causal model M. Our finding indicate that, although the assignment P(y ) 2) is 

not totally arbitrary, it is only weakly constrained by qualitative axioms such as those 

in Fig. 4. 

3.2. Axioms of probabilistic causal relevance 

We have found only two qualitative properties that constrain probabilistic causal 

irrelevance. 

Theorem 8. For any causal model, the following two properties must hold: 

2.2.1 (Right-Decomposition) (X fi YW 1 Z), j (X + Y 1 Z)p & (X f, W 1 Z)p. 

2.5.2 (Left-Intersection) (X j+ Y 1 ZW) p & ( W + Y 1 ZX) p j (XW j+ Y I Z) p. 

Property 2.2.1 is read: “If changing X has no effect on Y and W considered jointly, 
then it has no effect on either Y or W considered separately”. This follows trivially 
from the fact that P( .) is a probability function, but it does not reflect any quality of 

causation. 
Property 2.5.2 is read: “If changing X cannot affect P(y) when W is fixed, and 

changing W cannot affect l’(y) when X is fixed, then changing X and W together 
cannot affect P(y)“. 

Many seemingly intuitive properties do not hold, however. For instance, none of the 
following sentences hold for all causal models. 

2.2.2 (Left-Decomposition-l) (XW f, Y I Z), =+ (X ft Y I Z)p V (W f, Y I Z)p. 

2.2.3 (Left-Decomposition-2) (XW ft Y 1 Z)p I (X ft Y ) Z)p V (X f+ W j Z)p. 

2.2.4 (Left-Decomposition-3) 

(XW ft Y I Z>P & (XY + z I WP * G f, Y I ZIP v (X f, w I ZIP. 

2.3 (Weak Union) (X ft WY I Z)p =+ (X f, Y ) ZW)p. 

2.4 (Contraction) (X ft Y I Z)p &(X ft W I ZY)p ==+ (X fi WY I Z)p. 
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x = u1 

V = {X, WY} binary w = Ui 
Y 

U= {VI} binary y = Putity( x, w, Ut ) 

P(Ul) = 0.5 

Fig. 6. Counterexample to Property 2.2.2. 

2.5.1 (Right-Intersection) (X f, Y 1 ZW)p & (X f, W ) XY>p I (X f, WY 1 Z)p. 

2.6 (Transitivity) 

The sentences above were tailored after the graphoid axioms (Fig. 4) with the pro- 
vision that symmetry does not hold, which necessitates left and right versions of de- 
composition and intersection. Many of these sentences have intuitive appeal and yet are 

not sound relative to the semantics of P ( y ( 2). For example, Property 2.2.2 states, 
“If changing X has an effect on Y, and changing W has an effect on Y, then changing 
X and W simultaneously should also affect Y”. A simple real-life example that refutes 

this assertion is difficult to come by. Still, as will be shown in Section 3.4 and in 
Appendix B, each of these sentences is refuted by some specific causal model. 

3.3. Proofs of axioms of probabilistic causal irrelevance 

We now prove the two sentences of Theorem 8. 

2.2.1 (x f, w 1 z)~ - (X ft Y / Z>P 8~ (X b W I -0~ holds trivially. 

(X ++ W 1 ZIP =+ Pow I ?,a = P( yw I i‘, 2). We can sum over W to get 
p ( y ) z, 2) = p( y 1 r, T), which implies (X f, Y 1 Z)P. A symmetric argument shows 

(Xft WI ZIP. 0 

2.5.2 (By contradiction) Assume (X j+ Y 1 ZW)P 8~ (W f, Y 1 z-0~ & l(XW f, 

Y 1 Z)p. Since -(XW f, Y I Z) p, by definition of probabilistic causal irrelevance 

EI~,~,x’,w,w’,z P(Y (z^,G,F) z P(y Iz^,i7,2').However, (X~,YIZWP implies 

v~,~,x’,z,w P(Y I T,j;,G) = P(y I ~?‘,X,w^l. Furthermore, W’f, Y I .WP implies 

ljy,x’,w,w’,z P(y I ?‘,T,,_) = P(y I T‘,j;l,;;l), SO kx’,w,w’,z P(Y I ~,Zw^) = 
P(y / F‘,2’,;3) = P(y / F,z?,G’). Thus Vx,x’,w,w’,z P(y / F,Zw^) = P(Y I 
~,?,G’), which contradicts ~x,x’,w,w’,z P(y I ?,j;-,@) + P(Y I ?,T,w^‘). 0 

3.4. Counterexample to Property 2.2.2 

We now disprove Property 2.2.2 by counterexample. This counterexample is not 
necessarily meant to model a common, real-life situation. Rather, it disproves the claim 
that all possible causal models must conform to the property. 
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2.2.2 (XW f+ Y 1 Z>P 3 (X j+ Y 1 Z)P v (W f+ Y 1 ZIP. 
Fig. 6 shows a counterexample to this sentence. In this model, (XW f, Y 1 0) p & 

-4X j-, Y I 0)P & -(W ++ Y ( 0)P. Th is counterexample is more ciear when we 
consider its contrapositive form, which would state that changing W can affect the 

probability of Y, and changing X can affect the probability of Y, but changing W and 
X simultaneously has no effect on the probability of Y. This is extremely counterin- 
tuitive; if tweaking X has an effect on Y, and tweaking W has an effect on Y, we 
would expect the more flexible option of changing X and W simultaneously to also 

affect Y. 
The key to this counterexample is the fact that setting W removes the connection 

between W and U,. When we intervene on only X, W takes on the same value as UI, 
and Y will always have the value of X. When we intervene on both X and W, there is 
no longer any connection between U1 and W. Thus, the probability that W and U1 will 

have the same value is 0.5, and P(y) = 0.5. 

Counterexamples to the other six properties that do not hold for all causal models are 

in Appendix B. 

3.5. Numeric constraints 

Although Definition 7 imposes only weak constraints (Axioms 2.2.1 and 2.5.2) on 
the structure of probabilistic causal irrelevance, the probability assignments P ( y / 2) , 
which describe the effects of actions in the domain, are constrained nevertheless by 

nontrivial numerical bounds. For instance, the inequality 

(Y/%2) >P(Y,Z 12) (181 

must hold in any causal model. This can easily be shown by the definition of P(y. z 1 2) 
and P( y 1 2, z^). Recall from Eq. (4) that 

P(y,z 1% = c P(u)* P(y 1 %a = c P(u). 
{ulK:(u)=Y&.G(u)=zJ {XIYCZ (u)=.v) 

Consider V, the set of all values u of U such that Y,(U) = Y and Z,(u) = z , and Uy , 
the set of all values u’ of U such that Y,, (u’) = y. Since all values u of Uyz already 
constrain 2 to have the value z, fixing Z at z will not affect the value of Y. Thus, 

for all values u of UYz, Yxz(u) = y. Hence, U$ 2 UYz and P(y / l?,z^) b P(yz IL?). 
This can be shown more formally using Corollary 16 proven in Section 4.2. Additional 

constraints were explored in [ 301. 

3.6. Axioms of causal relevance for stable models 

The set of axioms we obtained for causal irrelevance is much smaller than we would 
expect from our intuition of cause-effect relations. We have two explanations for this 
discrepancy. One possibility is that our intuition of causal relevance is based on a de- 
terministic rather than a probabilistic conception of physical reality. This possibility 



24 D. Galles, J. Pearl/Artificial Intelligence 97 (1997) 9-43 

will be explored in Section 4, which gives a deterministic definition of causal irrele- 
vance that yields a more complete set of axioms. The other possibility is that the type 

of examples exploited in Section 3.4 and Appendix B are not commonly observed in 

everyday life. In this section, we explore what assumptions need to be made for proba- 
bilistic causal irrelevance to acquire properties that we intuitively associate with causal 

irrelevance. 
A more expressive set of causal relevance axioms is obtained if we confine the 

analysis to stable causal models, that is, causal models whose irrelevances are implied 

by the structure of the causal model and, hence, remain invariant to changes in the 
forms of each individual function fi. Our definition of stability employs the concept of 

a replacement class. A replacement class 7 is the set of all models that have the same 

variables V and U, and the same functional arguments. In other words, the functions 
are allowed to change between members of 7, but the arguments of these functions are 

not allowed to vary. Formally, for any two models Mt , h42 E T and any two functions 

f,(PAi) E MI and f;(PAi) E M2, PAi = PA;. The class r(M) represents the replacement 
class that contains the model M. 

We now define stability using replacement classes (see also [ 251 6 ). 

Definition 9 (Stability). Let M be a causal model. An irrelevance (X ft Y 1 Z) p in 

M is stable if it is shared by all models in r(M). The model M is stable if all of the 

irrelevances in M are stable. 

Stability requires that irrelevance be determined by the structure of the equations, not 
merely by the parameters of the functions. Thus, a causal model is not stable if we can 

remove an irrelevance relationship by replacing an equation or set of equations to obtain 

a new model with fewer irrelevance statements. In each of the examples in Section 3.4 
and Appendix B, for instance, a minor change in the form of one of the equations 

would destroy an irrelevance. Note that none of the models presented in Fig. 6 and the 
Appendix is stable. 

There are, however, many stable causal models. All monotonic linear systems, for 
example, are stable. One might think that any causal models that contained only additive, 

monotonic functions fi would be stable. The causal model of Fig. B.7 refutes that 
conjecture. 

Definition 10 (Path inteerception). Let (X * Y 1 Z)c stand for the statement “Every 

directed path from X to Y in graph G contains at least one element in Z”. 

Theorem 11. If a causal model M is stable, then X is probabilistically causally irrel- 

evant to x given Z, in M iff Z intercepts all directed paths from X to Y in the graph 

G(M) defined by M. That is, 

(X f, Y I Z)P e (X -++ y I ZIG(M) 

6 The probabilistic notion of stability (also called “DAG-isomorphism”, “nondegeneracy” [ 26, p. 3911, 

and “faithfulness” [ 411) was used by Pearl and Verma [ 19911 to emphasize the invariance of certain 

independencies to functional form. 
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Proof. (i) (X ft Y ) Z)P* (X--Y 1 Z)G(M). Assume that there exists a stable causal 
model M that induces a probabilistic causal irrelevance relation (A ft B 1 C)p, and 
assume that, for some sets of variables X, I: Z, (X ft Y ] Z)p and -(X -+ Y 1 Z)o(,,,,). 

Since there is a directed path from X to Y that is not intercepted by Z in G(M), we 
can easily construct a model M’ such that G( M’) = G(M) and -(X f, Y 1 Z), in M’. 
We can do this by changing all of the functions that lie on the path from X to Y to 
disjunctions and then modifying the other functions to ensure that P(y 1 ?) < 1. Thus, 
if we force X to have the value 1, Y will also have the value 1, and P ( y 1 F, 2) # 
P( y I T) . By assumption, (X f, Y / Z)p, so an irrelevance in M is not shared in a 
member of r(M). Thus, M is not a stable causal model, a contradiction. 

(ii) (X++Y / Z) G(M) ==+- (X ft Y I Z)p. We will use the following lemma: 

Lemma 12. For any structural equation fr in a causal model M, if a series of 
functional substitutions results in a nav function gy such that X is an argument of gy, 
then there must be a directed path from X to Y in G(M). 

We will prove this lemma by induction on the number of functional substitutions. 
Base case: If we make no substitutions into fy, then every argument X of fy must 

be a parent of Y in G(M), by our definition of G(M). Thus, there is a directed path 
from each argument of fy to Y in G(M). 

Inductive case: Assume that n - 1 functional substitutions into fy always results in 

the new function gr such that for each argument X of gr, there is a directed path from 
X to Y in G(M). We use this assumption to prove that after n substitutions resulting 

in gk, there is a directed path from every argument of gk to Y in G(M), as follows: 
When we do a single substitution, we replace a variable with a function of its parents 
in G(M). So, for any new argument X’ that is introduced into gb by substituting in for 
X, X’ must be a parent of X in G(M). By the inductive hypothesis, there must be a 

directed path from X to Y in G(M). Thus, there must be a directed path from X’ to Y 

in G(M). 
We can now prove the implication (X + Y I Z)G(M) ==+ (X f, Y 1 Z)p. We will 

consider fr, the functional equation for Y in M,. After we do a functional substitution 
for all variables in fy except for X and Z, we are left with a new function gr. By 
Lemma 12, since there is no directed path from X to Y in G( M,), X is not an argument 

of gr, so gr is a function of only Z and U. Since gr is a function of only Z and U, and 

not of X, Yxz(u> = Yz(u), so P(y I jz,?) = P(y I F), and (X fi Y 1 Z),. 0 

Since (X f, Y I Z)p _ (X -H Y I Z)G(M) in stable causal models, probabilistic 
causal irrelevance is completely characterized by the axioms of path interception in 

directed graphs. A complete set of such axioms was developed in [ 22,231 and is given 
in Fig. 7. 

4. Deterministic causal relevance 

The notion of causal irrelevance obtains a deterministic definition when we consider 
the effects of an action conditioned on a specific state of the world u. 
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3.2.1 (Right-Decomposition) (X-++YW 1 Z)o=+ (X++Y 1 Z)o&(X+W (Z),. 

3.2.2 (Left-Decomposition) (XW -M Y 1 Z)o ==+ (X 4 Y 1 Z), & (W ++ Y ( Z)o. 

3.4 (Strong Union) (X+ Y 1 Z)o =+ (X* Y 1 ZW)o VW. 

3.5.1 (Right-Intersection) (X+Y I ZW)G&(X-+ W) ZY)G* (X+YW Z),. 

3.5.2 (Left-Intersection) (X+Y 1 ZW)C&(W++Y 1 ZX)Gq (XW+Y I Z)G. 

3.6 (Transitivity) (X ++ Y 1 Z)o =+ (a * Y I Z)o V (X * a ( Z)o Vu 4 XU Z u Y. 

Fig. 7. Sound and complete axioms for path interception in directed graphs. 

V = {X, W, Y} binary 

U = {Vi, Uz} binary 

ifx=w \id 
Y 

otherwise 

w=x 

Fig. 8. Example of a causal model that requires the examination of submodels to determine causal relevance. 

Definition 13 (Causal irrelevance). X is causally irrelevant to Y, given Z, written 

(Xf,YIZ),ifforeverysetWdisjointofXUYUZ,wehave: 

Vu, z,x,x’, w &v(u) = yx%v(u). (19) 

This definition captures the intuition “If X is causally irrelevant to Y, then X cannot 

affect Y under any circumstance”. It is stronger than the probabilistic definition, in that 

(XftYIZ)=+(Xf,YIZ)P. 

Unlike the probabilistic definition of causal irrelevance (see Eq. ( 15) ) , the deterministic 
definition implies 

v’u,z,x K,(u) = y,(u). (20) 

To see why we require the equality Y,,,(u) = Y,,,,(u) to hold in every context 

W = w, consider the causal model of Fig. 8. In this example, Z = {8}, W follows X 

and, hence, Y follows X, that is, YX=O (u) = YX=I (u) = u2. However, since y( x, w, ~2) is 
a nontrivial function of x, X is perceived to be causally relevant to Y. Only holding W 
constant would reveal the causal influence of X on Y. To capture this intuition, we must 
consider all contexts W = w in Definition 13. 
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This definition of irrelevance bears some similarity to the idea of limited unrespon- 
siveness presented in [ 141. However, whereas Heckerman and Shatter define causality 
in terms of limited unresponsiveness to a specific set of actions, we view causal rele- 

vance as a property of the configuration of the mechanisms in a causal model. In fact, 
a version of their definition of causality, translated into our language, will be shown to 
be a theorem of causal relevance in Section 4.7.2 (see Eq. (27)). 

4.1. Axioms of causal irrelevance 

With this definition of causal irrelevance, we have the following theorem: 

Theorem 14. For any causal model, the following sentences must hold: 

4.2.1 (Right-Decomposition) (X ft YW ( Z) d (X f, Y 1 Z) & (X f, W 1 Z). 

4.2.2 (Left-Decomposition) (XW f, Y 1 Z) =+ (X f, Y 1 Z) & (W ft Y 1 Z). 

4.4 (Strong Union) (X + Y 1 Z) 3 (X ft Y 1 ZIV) VW. 

4.5.1 (Right-Intersection) (X fi Y I ZIV) & (X ft W I ZY) ==+ (X f, YW 1 Z). 

4.5.2 (Left-Intersection) (X j+ Y I ZW) & (W ft Y I ZX) ==+ (XW f+ Y I Z). 

Comparing to Fig. 7, we see that all axioms of path interception, except transitivity, 
are sound relative to deterministic causal relevance. The proof of Theorem 14 is in 

Section 4.4. below. 

4.2. Properties of counte$actual statements 

The axioms listed in the preceding section are based on three fundamental properties 
of counterfactuals, namely composition, effectiveness, and reversibility, which we will 

motivate using the action semantics of Definition 3. 

Composition. For any two singleton variables Y and W and any set of variables Z in a 
causal model, 

X,(u) =x-y,,(u) =Yz(u) (21) 

Composition states that, in any context Z = z, if we force a variable X to a value 
x that it would have had without our intervention, then the intervention will have no 

effect on other variables in the system. 
Since composition allows for the removal of a subscript (i.e., reducing yZx(u) to 

Y, (u) ) , we need an interpretation for a variable with an empty set of subscripts which, 
naturally, we identify with the variable under no interventions. 

Definition 15 (Null action). Y@(u) A Y(u). 

Corollary 16 (Consistency). For any variables Y and X in a causal model, 

X(u) =x ==+ Y(u) = Y,(u) (22) 
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Corollary 16 follows directly from composition and null action. The implication in 
Eq. (22) was called consistency by Robins [ 341. 7 

Effectiveness. For all variables X and W in a causal model, 

Xxw(u) = x. (23) 

Effectiveness specifies the effect of an intervention on the manipulated variable itself, 

namely, that if we force a variable X to have the value x, then regardless of other 

enforcements W = w, X will indeed take on the value x. 

Reversibility. For any two variables Y and W and any set of variables X in a causal 

model, 

(Lv(u> = Y> & (W,,(u) = w) =+ Y,(u) = y. (24) 

Reversibility reflects memoryless behavior-the state of the system, V, tracks the state 
of U, regardless of U’s history. Given a context X = x as in Eq. (24), if forcing W 

to a value w results in a value y for Y and forcing Y to y results, in turn, in W = w, 

then W and Y will have the values w and y, respectively, without any intervention. This 

follows from the requirement that the equations in every context X = x have a unique 
solution. Thus, if we assume a solution W = w and obtain Y = y and, in turn, assuming 

a solution Y = y yields W = w, then (W = w, Y = y) is indeed the solution to the 

equations. 
A typical example of irreversibility is a system of two agents who adhere to a tit- 

for-tat strategy (e.g., the prisoners’ dilemma). Such a system has two stable solutions, 
cooperation and defection, under the same external conditions U, and thus it does not 
satisfy the reversibility condition; forcing either one of the agents to cooperate results 
in the other agent’s cooperation (Y,(U) = y, W,(u) = w), yet this does not guarantee 

cooperation from the start (Y(U) = y, W(u) = w) . Irreversibility, in such systems, is a 
product of using a state description that is too coarse, one where all of the factors that 

determine the ultimate state of the system are not included in U. In a tit-for-tat strategy, 

the state description should include factors such as the previous actions of the players, 
and reversibility is restored once the missing factors are included. 

In recursive systems, reversibility follows directly from composition. This can easily 
be seen by noting that in a recursive system, either Yx,,,(u) = Y,(U) or Wxy(u) = W,(u). 

Thus, reversibility reduces to ( Yxw( u) = y ) & (W,(u) = w) =+ Yx( u) = y, which is 
another form of composition, or to (Y,(u) = y) & ( Wxr( u) = w) j Y,(u) = y, which 
is trivially true. In non-recursive systems, reversibility is a property of causal loops. If 
forcing X to a value x results in a value y for Y, and forcing Y to the value y results 

’ Consistency and composition are tacitly used in economics [ 201 and statistics within the so-called Rubin’s 

model [ 361. To the best of our knowledge, Robins was the first to state consistency formally and to use it 

to derive other properties of counterfactuals 1341. Composition was brought to our attention by J. Robins 

(personal communication, February 1995). A weak version of composition is mentioned explicitly in [ 15, 

p.9681. 
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in X achieving the value x, then X and Y will have the values x and y, respectively, 
without any intervention. 

4.3. Soundness of composition, effectiveness, and reversibility 

Following the tradition of standard logic, we will consider a property of causal 
relationships to be sound if that property holds in all causal models. 

Theorem 17. Composition is sound. 

Proof. Since Yz (u) has a unique solution, forming M, and substituting out all other 

variables would yield a unique solution for Y, regardless of the order of substitution. So 
we will form M, and examine the structural equation for Y in M,, Y, = fy( z, w, x, u), 
where W stands for the rest of the parent set of Y. To solve for W, we substitute out 

all variables except Z,Y, and X. In other words, we substitute out all variables in M, 
without substituting into Z, X, and Y and express W as a function of z, x, and u. We 

then plug this solution into fy to get Y, = fu( z, x, W( z, x, u) , u), which we can write as 
Yz = f (z, x, u). At this point, we can solve for X by substituting out all variables in Mz 
other than Z, which leaves Yz = f(z,X(u,z),u). We can now see that if x =X,(U), 
then Y,(u) = Yzx(u). q 

This proof is still valid in cases where X = 8. 

Theorem 18. Eflectiveness is sound. 

Proof. This theorem follows from Definition 1, where Y,(u) is interpreted as the unique 
solution for Y of a set of equations under X = x. 0 

Theorem 19. Reversibility is sound. 

Proof. Reversibility follows from the assumption that the solution for V in every sub- 

model is unique. Since Y,(u) has a unique solution, forming M, and substituting out 
all other variables would yield a unique solution for Y, regardless of the order of sub- 

stitution. So, we will form M, and examine the structural equation for Y in Mx, which 
in general might be a function of X,W,U, and additional variables: Y, = fy(x, w, z, u), 
where Z stands for parents of Y not contained in X U W U U. We now solve for Z by 

substituting out all variables except X,Y, and W. That is, we substitute out all variables 

in M,, without substituting into X, W, and Y and express Z as a function of x, w, and 
U. We then plug this solution into fy to get Y, = fy(x, w, Z(x, w, u), u), which we can 
write as Y, = f (x, w, u). We now consider what would happen if we solved for Y in 
M,,. Since we avoided substituting anything into W when we solved for Y in M,, we 
will get the same result as before, namely, Y,, = f (x, w, u). In the same way, we can 
show that W, = g(x,y,u) and Wxy = g(x,y,u). So, solving for y = Yx(u), w = W,(u) 
is the same as solving for y = f(x, w, u) and w = g(x, y, u), which is the same as 
solving for y = Y,,(u), w = Wxy (u). Thus, any solution y to y = Y,,(u), w = W,,(u) 
is also a solution to y = Y*(u) . Cl 
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Given a causal ordering of variables in V, that is, Y,, (u) = yZ (u) for any set 2 when- 
ever Y precedes X in the ordering, one can show that effectiveness and composition are 
complete [ 91. Joseph Halpern [ 131 has recently shown that composition, reversibility, 
and effectiveness are complete in all causal models, recursive as well as nonrecursive, 

as long as the uniqueness assumption holds. 

4.4. Proofs of causal relevartce axioms 

Using the properties from Section 4.2, we can prove Theorem 14, that the axioms of 

causal relevance are sound. 

4.2.1 Holds trivially. 0 

4.2.2 (By contradiction) Assume that there exists a causal model such that (XW ft 

Y I Z) &-((Z % y I Zl &(W + y I Z)>. s o, either (XW ft Y 1 Z) &-(X ft Y 1 Z) 

or(XWftYjZ)&~(WftY(Z). 
First, we consider (XW ft Y 1 Z) & -(X ft Y 1 Z). By our definition of causal 

irrelevance, -(X ft Y 1 Z) implies that there exist two values x, x’ of X and some 

value u of U such that Yx, (u) # Y,/, (u). Now, let us consider the values x, x’, z, 
u such that Y,, (u) # Yxjz (u). Using these values, we can determine w and w’ as 

follows: Let w = Wxz(u), and w’ = WXtz (u). It does not matter whether w = w’ or 

w # w’. By composition, Y,,,(u) Z Yxlzw( u). Thus, 3x, w, z, u Yxwz (u) Z Yntwfz (u), 
which contradicts (XW fi Y 1 Z) _ Thus, (XW ft Y 1 Z) & 1(X ft Y ) 2) leads to a 

contradiction. 
We can use a symmetric argument to show that (XW f+ Y I Z) & -( W ft Y I Z) 

also leads to a contradiction. q 

4.4 By our definition of causal irrelevance, (X ft Y I Z) + Y*,(u) = Yxlz (u) for 

all submodels of M,,. For an arbitrary W, we consider the submodel M, where W is 

forced to have the value w. By our definition of causal irrelevance, yXzw(u) = y*jzw for 
all values w. In addition, since (X ft Y 1 Z) 3 Yxz (u) = Yxfz (u) for all submodels 

of M, K&u) = Y,rzw for all submodels of M,. Since W was arbitrary, (X ft Y I 

Z) * (Xft Y 1 ZW) for all W. q 

4.5.1 (By contradiction) Assume (X ft Y I ZW)&(X ft W I ZY)&l(X 74 YW I Z). 

7(X + YW ) Z) implies 3x,x’,z (Yxz(u) f Y,!,(u)) V (Wxz(u> + Wxjz(u)), Since 
W and Y are symmetric, we will only consider Y. Consider the values of x, x’, z, u 
such that Yxz(u) Z Y,),(u). Let y = Y,,(u) and y’ = Yxtz(u). 

By composition, Y,,(u) = Yxzw(u> for w = W,,(u). By assumption, I’&(u) = 
Ynl,,( u). Also by composition, W,,(u) = Wxry(u) for y = Y,,(u). By assumption, 
Wxzy (u) = Wxfzy (u) . By reversibility, since y is a solution to the simultaneous equations 

Y = yx’zw and w = Wxfzy, then y must also be a solution to Yxfz (u). Thus y = y’, a 

contradiction. We can use a symmetric argument to show that W,, (u) f Wxlz (u) also 
leads to a contradiction. 0 
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4.5.2 (By contradiction) Assume (X ft Y 1 ZW) & (W f, Y / ZX) & 7(XW f, 
Y 1 Z). Since -(XW f, Y ( Z), by definition &,x’,w,w’,z Yxwz(u) # Yx,,,,,z(~). 
However, (X ft Y 1 ZW) implies Vx, x’, z, w YxZw(u) = YxtZW(u). Furthermore, ( W fi 
Y ( ZX) implies Vx’, w, w’, z Y,~,,(u) = Yx$fz (u). Thus, vu’x, x’, w, w’, z Yxwz (U) = 
Yxtwz (u) = Yx,w~z (u), thus Vx, x’, w, w’, z Y,,,(u) = Y,t,t, (u). This contradicts 3x,x’, 

w,w’,z Y&.(u) # Y&Q(u). 0 

4.5. Causal relevance and Lewis’ counteflactuals 

It is instructive to compare our framework to that of Lewis [ 181. We give here a 
version of Lewis’ logic for counterfactual sentences (from [ 191) . 

Rules 
( 1) If A and A * B are theorems, so is B. 

(2) If (Bl&...)+C) isatheorem, thensois ((APB])...) rj (A-C) 

Axioms 
( 1) All truth-functional tautologies. 

(2) Act-+ A. 
(3) (AD-+B)&(BE-+A)~(AD-+C) -(B-C). 

(4) ((AVB) n-+A) V ((AVB) MB) V (((AVB) 0-C) - (A-C) 
& (BE-C)). 

(5) A-B-A-B. 

(6) A&B-A-B. 

The statement A CT+ B stands for “In all closest worlds where A holds, B holds 
as well”. Lewis is careful to not put any restrictions on definitions of closest worlds, 
beyond the obvious requirement that world w be no further from itself than any other 
w’ # w. In essence, causal models with local interventions define an ordering among 
worlds that gives a metric by which to define what worlds are closest. As such, all of 
Lewis’ axioms are true for causal models and follow from effectiveness, composition, 

and (for nonrecursive systems) reversibility. 

In order to relate Lewis’ axioms to our framework, we need to translate his syntax 
’ into the language of causal models. We will equate Lewis ’ “world” with an instantiation 

of all variables in a causal model, including the variables in U. Propositions, such as A 

and B in the statements above, will be limited to the assignment of values to subsets of 

variables in a model. Thus, the meaning of the statement A cw B in causal models is 
“If we force a set of variables to have the values A, a second set of variables will have 
the values B”. Let A stand for a set of values XI,. . . ,x, of the variables Xl,. . . ,X,, 
and let B stand for a set of values yt, . . . , y,,, of the variables Yl , . . . , Y,,. Then, 

A D-+ B = Y~x,...~,,(u) = YI & 

L,.&(U) = Y2 & (25) 
. . . 

Ex,...x,,(u) = Yn & 
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Fig. 9. Example of the failure of reversibility in Lewis’ framework: W = w holds in all closest y-worlds, and 

Y = y holds in all closest w-worlds, yet Y + Y and W f w. 

Conversely, we need to define what statements such as Y,(U) = y mean in Lewis’ 

notation. Let A stand for the proposition X = x, and B stand for the proposition Y = y. 

Then, 

Y,(u) = y E A ci+ B 

We can now examine each of Lewis’ axioms in turn. 

(26) 

(1) 
(2) 

(3) 

(4) 

(5) 
(6) 

Trivially true. 
This axiom is the same as effectiveness. Namely, if we force a set of variables 

X to have the value n, then the resulting value of X is x. That is, Xx(u) = x. 
This axiom is a weaker form of reversibility, which is relevant only for nonre- 
cursive causal models. 
Since actions in causal models are restricted to conjunctions of literals, this axiom 
does not apply. However, under the interpretation do( A V B) 3 &I( A) V do(B) , 

this axiom does hold. 
This axiom follows directly from composition. 
This axiom follows directly from composition. 

Likewise, composition and effectiveness follow from Lewis’ axioms. Composition 
is a consequence of Lewis’ axiom (5) and rule (l), while effectiveness is Lewis’ 
axiom (2). Thus, causal models do not add any restrictions to counterfactual statements 

above those imposed by Lewis’ framework, when we are considering recursive models. 
When we consider nonrecursive systems, we see that reversibility is not enforced by 
Lewis’ framework. Lewis’ axiom (3), while similar, is not as strong as reversibility. 
For instance, Y = y may hold in all closest w-worlds, W = w may hold in all closest 
y-worlds and, still, Y = y may not hold in our world. A graphical example violating 

reversibility in Lewis’ framework is given in Fig. 9. 

4.6. Why transitivity fails in causal relevance 

Causal transitivity is a property that makes intuitive sense. If a variable A has a causal 
influence on B, and B has a causal influence on C, one would think that A would have 
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V = {x, KY}, x, y E (0, l}, w E (0, 1,2,3} 
w=x+2*242 

u= {h,U2}, Ul,U2 E {OJ} 
x = u1 

y=(w> 1) 

Fig. 10. Counterexample to transitivity in causal irrelevance. 

x = UI 

WI = 7x&7u2 

w2 = x & 7u2 

V = {X, WI, W2, W3, W4, Y} binary w3 = TX&U2 

U = {Ui,U2} binary W4 =X&U2 

Y= 
(w3 & 7w1 & lW2) v 

(w4 & 1WI & -7w2) 

P(Ul) = P(u2) =0.5 

Ul 

i 

xi P’ 
i 
Y 

Fig. Il. Transitivity fails, even when a variable is more completely controlled by its parents than in Fig. 10. 

a causal influence on C. This is not always the case, however, even in deterministic 
causality. Consider the causal model described in Fig. 10. In this example, X is causally 

relevant to W, and W is causally relevant to Y, but X is causally irrelevant to Y. The 
intuition behind this example is that changing X can only cause a minor change in 
W, while Y only responds to large changes in W. However, the failure of transitivity 

is deeper than this. Even when X has more complete control over the intermediate 
variable W, we still may not be able to achieve transitivity. Consider the causal model 
of Fig. 11. 

This model is the same as the model of Fig. 10 except W has now been split into 
WI,. . . , W4, corresponding to W’s four possible values. That is, WI is true if x + 1.42 = 0, 
W2 is true if x + ~2 = 1, W3 is true if x + z.42 = 2, and W4 is true if x + ~2 = 3. 

Now, by fixing X, we can cause any of the intermediate variables WI,. . . , W4 to 
be false in any given state of the world U. Likewise, each of the intermediate vari- 

ables WI,. . . , W4 can affect Y in any state U. However, X has no effect on Y in any 
state u. 
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4.7. Causal relevance and directed graphs 

4.7.1. Causal graphs as irrelevance-maps 
Comparing Axioms 3.2-3.5 to Axioms 4.2-4.5, we see that causal irrelevance is quite 

similar to path interception in directed graphs. Since people (and machines) can easily 

reason about graphs it would be useful to create a graph that represents all of the causal 
relevances and irrelevances of a given causal model. That is, we would like to create a 

graph G*(M) such that 
(i) Each variable X in M corresponds to exactly one node X* in G*(M), 

(ii) For all subsets of nodes X*, Y*, Z* in G*(M), (X* +Y* 1 Z*)~.(.+.Q j (X ft 

Y 1 Z), and 
(iii) For all subsets of variables X, Y, Z in M, (X ft Y 1 Z)=+(X*-tY* 1 Z*)Q(M). 
In such a graph G*(M), if all directed paths from X* to Y* were intercepted by some 

variables in Z, then X would be causally irrelevant to Y in the model M. Likewise, if a 
set of variables X was causally irrelevant to a set Y given fixed Z, then all paths from 
nodes in X* to nodes in Y” would be intercepted by some variables in Z. 

The obvious choice for G*(M) is G(M), the graph associated with the causal model 
itself, as defined by Eq. ( 1). If we use G*(M) = G(M), then implication (ii) holds, 

since in Section 3.6 we showed that (X -.+Y 1 Z)ocM) ==+ Y,,(U) = Yz(u>, and thus 

(X f, Y 1 Z) . However, since transitivity always holds in path interception but does not 
always in causal irrelevance, for a given model M there might be no graph G*(M) such 
that implications (ii) and (iii) hold simultaneously. Nonetheless, we can use directed 
graphs to validate candidate theorems of causal irrelevance, as we show below. 

4.7.2, Directed graphs as theorem provers 
Consider an oracle that takes in statements about path interception and returns YES 

if the statement holds in all directed graphs and NO otherwise. We will show that such 

an oracle can be used to validate or refute sentences about causal relevance. 
First, let us consider a language of causal relevance in which the literals stand for 

simple irrelevance statements of the form (X ft Y I Z), where X, Y and Z are sets 

of variables. Second, let the canonical form for sentences in the language of causal 

irrelevance be an implication al & a2 &. . .62 ai q bl V b2 V . . * V bk, whose antecedent 
consists of a conjunction of non-negated literals and whose consequent consists of 
non-negated literals. For instance, consider the sentence * 

(Xf,Y~Z)&~(Xj+Y~0)=+~(Z++Y~0). (27) 

This sentence is not in canonical form because the second conjunct in the antecedent 

is negated and the statement in the consequent is negated. The canonical form of this 

sentence is 

~Xf,~l~~~~~ft~I0~~~~ft~I0~. (28) 

Any causal irrelevance sentence can be written in a unique canonical form using 
standard logical procedures. 

* A version of this sentence was chosen in [ 141 as the definition of causality. 
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Definition 20 (Horn component). A Horn component H of a causal irrelevance sen- 
tence S is a sentence H such that 

(i) H is in canonical form, 
(ii) the consequent of H contains no disjunctions, and 

(iii) H+ S. 

If a sentence S is in the canonical form at &a:! & ’ . . & ai ==+ bl V b2 V. . . V bk, then a 

Horn component of S is any sentence of the form at & a2 &. . s &ai ==+ bj. For example, 

Eq. (28) has no disjunctions in its consequent and, hence, is itself a Horn component. 
For any causal irrelevance statement A of the form (X ft Y 1 Z), we will consider 

A,, the graphical translation of A to be the corresponding path-interception statement 
(X + Y 1 Z)G(M). Using this convention, we can define 

Theorem 21 (Graphical theorem verification). A causal irrelevance sentence S is true 
for all causal models iff there exists a Horn component H of S such that Hg, the 
graphical translation of H, is true for all graphs. 

For example, consider the sentence in Eq. (27). The canonical form of this sentence 
is given in Eq. (28)) and is itself a Horn component. The sentence corresponding 
to Eq. (28) for path interception in directed graphs, (X + Y 1 Z)o & (Z * Y 1 

0)~ ==+ (X -+ Y 1 @)o, states that if all paths from X to Y are intercepted by Z, and 
there are no paths from Z to Y, then there is no path from X to Y. This sentence is true 

for all directed graphs, so Eq. (27) is a valid theorem of causal relevance. 

Next, consider transitivity, stated as (X f, Y 1 Z) =+ (a f, Y / Z) V (X f, a I Z). 
The Horn components of this sentence are 

H’: (X ft Y l z> - (0 ft y I z>, (29) 
H2: (Xf,YIZ)=+(Xf,aIZ). (30) 

Looking at each of the corresponding path-interception sentences in turn, we find that 
H; : (X * Y / Z), * (a ++ Y 1 Z)o is not true for all directed graphs G, and 

H;:(X-+YIZ)o-(X * a ( Z>o is also not true for all directed graphs G, that is, 
if Z intercepts all paths from X to Y, it is not the case that either Z intercepts all paths 
from any other variable to Y or Z intercepts all paths from X to any other variable. 
Thus, transitivity is not a theorem of causal relevance. 

Proof of Theorem 21. First, we prove that if there are no disjunctions in the consequent 
of a canonical form sentence, then the sentence is true iff the corresponding sentence is 
true for path interception in directed graphs. 

We will prove this by contradiction. Assume that there exists some theorem A j B, 
where A and B are conjunctions of literals such that 

l A q B is not a theorem in causal irrelevance, and 
l A, ==+ B, is a theorem in path interception in directed graphs. 

Since A, =+ B, is a theorem in path interception, then we must be able to generate 
B, from A, using the axioms of path interception in directed graphs. However, since 
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A I B is not a theorem in causal irrelevance, every such generation of B, from A, 

must include the application of the axiom of transitivity. When the axiom of transitivity 
is used, a disjunction is created. This disjunction must be used in the generation of 

B,. By assumption, B, does not contain a disjunction. Also, none of the antecedents 

of any of the axioms of path interception contain disjunctions. Thus the only way to 
use this disjunction in the generation of B, is to resolve the disjunction with a negated 
clause. Since A, started with no negated statements, and none of the axioms of path 

interception can be used to create negated statements, we cannot resolve the disjunction 
with anything. Thus, generating B, from A, did not require an application of transitivity, 

a contradiction. 
Next, we prove that if a theorem A ==+ B V C is a theorem in causal irrelevance, 

then either A =+ B is a theorem in causal irrelevance or A =+ C is a theorem in causal 
irrelevance. If A ==+ B V C is a theorem in causal irrelevance, then we must be able to 
generate B V C from A using the axioms of causal irrelevance. Since no axiom creates 

a disjunction, to generate B V C from A we must either generate B from A and add C 

or generate C from A and add B. 
Thus, a causal irrelevance sentence is a theorem iff there is a path-interception theorem 

that corresponds to one of the Horn components of the original sentence. q 

5. Conclusion 

How do scientists predict the outcome of one experiment from the results of other 
experiments run under totally different conditions? Such transfer of experimental knowl- 
edge involves inferences that cannot easily be formalized in the standard languages of 

logic, physics, or probability. 

The formalization of such inferences requires a language within which the experimen- 
tal conditions prevailing in one experiment can be represented, such that the outcome of 

the experiment can be posed as constraint in the design and analysis of the next exper- 
iment. The description of experimental conditions, in turn, involves both observational 
and manipulative sentences, and it requires that manipulative phrases (e.g., “having 

no effect on”, “holding Z fixed”), as distinct from observational phrases (e.g., “being 

independent of”, “conditioning on Z”), 9 be given formal notation, semantical interpre- 
tation, and axiomatic characterization. It turns out that standard algebras, including the 

algebra of equations, Boolean algebra, and probability calculus, are all geared to serve 
observational but not manipulative sentences. 

This paper bases the semantics of manipulative sentences on a set of structural equa- 
tions that we call a causal model. Unlike ordinary algebraic equations, a causal model 
treats every equation as an independent mathematical object attached to one and only 
one variable. Actions are treated as modalities and are interpreted as the nonalgebraic 

operator of replacing equations. 

’ Philosophers, statisticians, and economists have often confused “holding Z constant” with “conditioning on 

a given Z” [ 291. 
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This semantics permits us to develop an axiomatic characterization of manipulative 
statements of the form “Changing X will not affect Y if we hold Z constant”. This 

axiomatization highlights the differences between causal irrelevance, as in “X is causally 
irrelevant to Y in context Z”, and informational irrelevance, as in “Finding X will 
not affect our belief in Y, once we know Z”. The former shows a closer affinity 
to graphical representation than the latter. Under the deterministic definition, causal 
irrelevance complies with all of the axioms of path interception in cyclic graphs except 

transitivity. This affinity leads to graphical methods for proving theorems about causal 

relevance and explains, in part, why graphs are so prevalent in causal talk and causal 
modeling. 

Outside of artificial intelligence, our results have interesting ramifications in the fields 

of statistics and epidemiology where, thus far, the only accepted formalization of cau- 
sation has been Rubin’s framework of counterfactuals [ 33,361, which is a rather cum- 
bersome language for expressing causal knowledge. Graphical and structural equation 

models, popular as they are in econometrics and the social sciences, are viewed with 
suspicion by statisticians because the causal interpretation of these models has not been 

adequately formalized [ 8,461. 
Our translation of counterfactuals into statements about structural equation models 

(Definition 5) generalizes and unifies the structural and counterfactual approaches, and 
greatly clarifies their conceptual and mathematical bases. The soundness of effectiveness 

and composition-the only properties of counterfactuals used in Rubin’s framework- 
assures that every theorem in that framework is also a theorem in structural equations 
models. The completeness of effectiveness and composition in recursive models [9] 

further assures that the structural interpretation of counterfactuals introduces no extra- 
neous properties beyond those embodied in Rubin’s framework. Most significantly, this 
unification permits investigators to express causal knowledge in the intuitively appealing 

language of causal graphs, use the graphs as inferential machinery and be assured of 
the validity of the results. 
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Appendix A. Independence of composition, effectiveness, and reversibility 

We show that reversibility, composition, and effectiveness are independent by creating 
a table of counterfactual statements such that two of the properties hold but the third 
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x = 2.41 

V = {X, W, Y} binary w= (x & Ul) 

U = (~7,) binary 
Y 

y = Putizy( x, w, 2.41) 

P(u,) = 0.5 

Fig. B.1. Counterexample to Property 2.2.3. 

does not. We will consider a small model, one with only two binary variables X and Y 

and a single value for U. 

A. 1. Composition and effectiveness, not reversibility 

x=0 Y=O 

xx,=0 Yx*=O XX=o,Y=o = 0 YX=o,Y=o = 0 
xx,1 = 1 YX=l = 1 XX=o,Y=l = 0 YX=o,Y=l = 1 

xy=o = 0 Yy,o=O XX=l,Y=o = 1 YX,l,YdJ = 0 

xy,t = 1 Yy=I = 1 XX=l,Y=l = 1 YX=l,Y=l = 1 

A.2. Effectiveness and reversibility, not composition 

x=0 Y=l 

xx=0 =o Yx,o = 1 XX=o,Y=o = 0 YX=o,Y=o = 0 

xx=1 = 1 YX,l = 0 XX=o,Y=l = 0 YX=o,Y=l = 1 

xy,o=o Yy,=O XX=I,Y=o = 1 YX=l,Y=o = 0 

xy=1 = 1 Yy,1 = 1 XX,l,Y=] = 1 YX=l,Y=l = 1 

A.3. Composition and reversibility, not effectiveness 

x=0 Y=l 

xx,=0 Yx* = 1 XX=o,Y=o = 0 YX=o,Y,o = 1 

xx=1 = 0 Yx,, = 1 XX=o,Y=l = 0 Yx*,y=t = 1 

xy,, = 0 Yy+ = 1 XX,l,Yzcl = 0 YX=l,Y=o = 1 

xy=t = 0 Yy=t = 1 XX=l,Y=l = 0 YX=l,Y=l = 1 

Appendix B. Counterexamples 

2.2.3 (XW + Y 1 Z)p I (X j+ Y 1 Z)p v (X f, W 1 Z)p. 
In the causal model of Fig. B.l, we can see that 

~~~ft~l0~P~~~~fr~I0~P~~~~ft~I0~P. 
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x = Ul 

{ 

Ul 

V = {X, W Y} binary y = Parity(x, w, u,) 

U = { Ut , U2) binary Pa~$Y(x,Y,ul) w = 

1 u1 

P(Ul) = P(u2) = 0.5 

UI UZ 

vi4 
if u2 = 0 I WA ,-y 

if u:! = 1 
Y f/ ,. 

if u2 = 0 

if u2 = 1 

Fig. 8.2. Counterexample to Property 2.2.4 

In this counterexample, changing X can affect the probability of Y, and changing 

X can affect the probability of W, but changing X and W together cannot affect the 
probability of Y. Since changing X affects the value of W, it makes sense to think that 
intervening on W while intervening on X would not interfere with the effect that X has 

on Y. However, X does not completely control W. That is, when we only intervene on 

X, 1/t still has some effect on W. Controlling both X and Y removes the influence of 

Ut on W. As in the counterexample to Property 2.2.2, removing the connection between 

Ut and W prevents X from having an effect on Y. 

2.2.4 (XW+YIZ)p&(XYftWIZ)p=+(Xf,YIZ)pV(XftWIZ)~. 
In Fig. B.2, we can see that 
0 P(w) = P(y) = 0.5; 
0 P(w 1 set(X= 1)) =P(y 1 set(X= 1)) =0.75; 
l P( w 1 9, y^) = 0.5 for all values of 2, j? and 
0 P( y 1 2, i3) = 0.5 for all values of L?, w^. 

Thus, (XW f, Y I 0)~ c!k (XY f+ W 1 0)~ 8~ -((X f, Y ) 0)~ V (X f, W I @PI. 
This counterexample actually contains two causal models, each similar to the model 

of counterexample 2.2.2 (see Section 3.4, Fig. 6). In one, W is a function of X, Y, and 
171, and Y is a function of U1. As for Property 2.2.2, X can affect W when Y has the 

same value as U2, but X has no effect on P(w) when Y is held constant. In the other, 
W is a function of U1, and Y is a function of X, W, and Ul. Also as in Property 2.2.2, 

X can affect Y when W has the same value as U1, but it has no effect on P(w) when 
W is fixed. U2 determines which model is in effect at any given time. While intervening 
on only X can affect P(w) and P(y), simultaneously changing X and Y has no effect 

on P(w) , and simultaneously changing X and W has no effect on P(y) . 

2.3 (X ft WY ) Z)p - (X f, Y 1 ZW)p. 

In the causal model of Fig. B.3, (X f, YW I 0)~ & -(X f, W I Y)P. 

In this counterexample, X does not have any effect on Y since P(y) = 0, and X can 
only act as an inhibitor of Y. When we intervene on W, then it is possible for Y to have 

the value 1, and X can affect the probability of Y. Thus, X can only affect Y when we 
intervene on W, and X has no effect on W. 
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x = t.41 

V = {X, W Y} binary w = u2 
Y 

U = {Ul , U2) binary y=(~ & (wXORu2)) 

P(q) = P(u2) =os 

Fig. B.3. Counterexample to Property 2.3. 

V = {X, U: Y} binary 
i 

Y = u2 \e 
W 

U2 1’ 4 
x Y 

x = u1 

U = {VI, lJ2) binary w = Putity( x, y, ll2) 

P(u,) = P(LQ) = 0.5 

Fig. B.4. Counterexample to Property 2.4. 

V = {X, W, Y} binary 
i 

y = t42 UJ 
W 

u2 Y’ 4 
x Y 

x = Ul 

U = (U1,U2) binary w = Purity( x, y, u:!) 

P(q) = P(u2) = 0.5 

Fig. B.5. Counterexample to Property 2.5.1. 

2.4 (XftYI Z)P&(X++WI zY)~e(Xf,~l Z>P. 
In the causal model of Fig. B.4, (X f, Y ( (b)p & (X f, W 1 Y)P &7(X f, WY / 0)~. 
While changing X can affect P(w) (and hence P ( y. w) ) when Y is not held fixed, 

and changing X has no effect on P(y), fixing Y blocks the effect that X has on W. 

2.5.1 (X f+ Y ) zW)p & (X f+ W 1 Zr>p - (X ++ WY 1 Z)P. 
In the causal model of Fig. B.5, (X f, Y I W)p&(X f, W I Y)p&-(X f, WY I 0)~. 
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x = u1 

V = {X, u! I: Z} binary 

U = {VI, U2) binary 

Y = u2 

W = Purizy(x,y,z) 

z = u:! 

P(q) = P(u2) = 0.5 

Fig. B.6. Counterexample to Property 2.5. I in which each variable in U has a single child. 

V={X,WY}, 
x = z41 

x,y E (0, l}, w E (C),1,2,3} 
w=x+2*r4 

U={U,,U2}, Ul,U2E {OJ} 
y = (w > 1) 

P(Ul = 1) = P(u2 = 1) = 0.5 

Ul 

6 
xt P’ 

W 

JI 
Y 

Fig. B.7. Counterexample to Property 2.6. 

Fixing W prevents X from altering the probability of Y, and fixing Y prevents X from 

altering the probability of W, but X can change the probability of W (and hence the 
probability of W & Y) if there is no intervention on Y. 

Up to this point, all of the counterexamples have relied on some exogenous variable 
from U having two different children in V. Obviously, this is not essential, since we 
could always create similar examples in which each exogenous variable has exactly one 

child. For example, in the model of Fig. B.5, we could replace ZJ2 with Z to get the 
model of Fig. B.6. 

In this model, all of the exogenous variables U have exactly one child, yet Property 
2.5.1 still does not hold. There is still an undirected cycle in the underlying causal graph, 
which is required for Property 2.5.1 to be false. Properties 2.2.1-2.6 are all true for all 
causal models whose causal graphs are trees. In addition, Properties 2.2.1-2.5.2 are true 

for all causal models whose causal graphs are polytrees. Property 2.6, as we will see 
now, is not always true, even when we restrict its causal graph to be a polytree. 

2.6 (X~,YIZ)~~(U~~YIZ)~V(X~,QIZ)P~‘~~XUZUY. 
In the causal model of Fig. B.7, 
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X can only cause a minor change in W, while a large change in W is required to 
affect Y. Thus, X can affect W, and W can affect Y, but X has no effect on W. Even if 
we restrict all variables to be binary, transitivity will not hold. For this counterexample, 

W could be split into four binary variables WI,. . . , W4, with fw, = 1(x V uz), fw, = 

x & 342, fw, = TX & u2, fw, = x & u2, and fy = w3 V ~4. Section 4.6 elaborates this 
counterexample. 
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