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Elasticity Conditions for Storage Versus Error
Exchange in Question—Answering Systems

ALAIN CROLOTTE, MEMBER, IEEE, AND JUDEA PEARL, SENIOR MEMBER, IEEE |

Abstract—It has been conjectured that error-aliowance could improve
dramatically the performance of data processing systems. This hypothesis
is tested in the framework of question-answering (QA) systems with
storage requirements as a complexity measure. Shannon’s rate distortion
function R(D) represents the minimum amount of memory a system must
employ in order to achieve an average distortion less than D (the distortion
can be, for example, the average propertion of erronecus answers produced
by the system). The ability of a system to convert an amocunt D of
distortion into memory savings is measured by the ratio R(D)/R(0). A
system will be called elastic if this ratio goes to zero as the size of the
dataset ensemble goes to infinity. Asymptotic bounds to R(D) are derived
giving rise to elasticity conditions invoking the structure of the distortion
matrix associated with the system. The bounds established represent a
marked improvement over former results by narrowing the gap between
the necessary and sufficient conditions for elasticity. Moreover, conditions
are established under which the amount of computation required for
testing elasticity can be substantially reduced.

I. INTRODUCTION

HE PRESENT WORK concerns itself with the

following problem. Under what general conditions
can the storage requirements of a question-answering
{QA) system be significantly reduced by tolerating a small
amount of error?

In QA systerns a representative summary of an input
data is stored in the computer memory and is consulted
for answering queries about the data. This stored
summary can be viewed as a channel-code connecting the
input messages (data) and the output messages (answers
to queries) reproduced at the receiving end. However,
unlike ordinary transmission problems, the quality of the
code is not judged by its ability to reproduce faithfully the
input data on a symbol-by-symbol basis, but rather by the
quality of the answers it helps generate. A distortion of
the input data is judged to be significant only if it causes
many gueries to be answered incorrectly. In this respect a
QA system can be regarded as a communication channel
serving many users, with each query representing a user
interested in a different aspect of the data.
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The rationale and practical motivations for studying the
memory versus error trade-offs in QA systems are de-
scribed in our previous paper [1], which also establishes
several general principles underlying the trade-off curves
of such an exchange. As in our previous work, we also
seek to provide simple tests for determining under what
conditions a small error tolerance would result in large
savings of memory space, an exchange condition which
we termed elastic. Unlike our previous work, however, the
criteria examined in this paper are based not only on
general system parameters (e.g., the input statistics, the
total number of queries, and the choice of distortion
measure), but also on the logical relationships between the
various queries the system ought to answer. Consequently,
the criteria established in this paper are tighter and more
effective; i.e., many QA systems whose elastic character -
remained undecided by the previous criteria could now be
given a decisive elasticity test.

In Section II we introduce an information-theoretic
model for QA systems which views the latter as com-
munication channels and permits the use of Shannon’s
rate-distortion theory. The problem of elasticity is then
stated in terms of a rate-distortion function R(D), namely,
under what conditions lim,, ,  R(D)/R(0)=0 where M is
the size of the dataset ensemble.

Section III contains the derivation of bounds which
govern the memory—error exchange as measured by the
ratio R(D)/R(0). Both upper and lower bounds are
shown to have identical mathematical formats, but incor-
porate different system parameters.

In Section IV the asymptotic behavior of the bounds is
examined, and general criteria for elasticity are estab-
hished. We show that, under quite general conditions, a
necessary condition for elasticity could be established
without examining the entire distortion matrix but only
that portion of the matrix which corresponds to answer-
strings reflecting some realizable dataset. As a result, the
computation required for testing elasticity could be sub-
stantially curtailed.

Section V demonstrates the applicability of the criteria
established in IV to the testing of elasticity in three QA
systems. We show that systems which admit all binary
valued questions on {0,1}"”, and those admitting singly
conjunctive questions on {0,1}”, are inelastic. On the
other hand, a system which admits size comparison ques-
tions on the integers {1,---,m} is highly elastic.

0018-9448 /79/1100-0653300.75 ©1979 IEEE



654
11, ProBrLEM DEFINITION

A. Background and Nomenclature

Following Minsky er @/. [2] and Pearl [4], a QA system
can be viewed as a device reflecting the pattern of be-
havior described in Fig. 1. It is characterized by two
ensembles: a dataset ensemble Af and a query ensemble

&,
M= (g, i)
0={q, " .4p}.

During a “filing” phase, a storage procedure By, ex-
amines a dataset g € M, summarizes it, and then transfers
the summary into the memory S. Later, during a “find-
ing” phase, a retrieval procedure B, uses the informa-
tion in the memory to answer queries from {.

In order to define an overall performance for the sys-
tem described above, we first define a degree of incon-
venience for the user caused by answering a{ y, g) 1o query
g about dataset g, Le., a real-valued function:

8§ VXM Q-R”

where V is the answer vocabulary, and R™ stands for the
nonnegalive real numbers.

We assume that for every pair (g,g) there exists a
cotrect answer {0 query g about dataset p, ie., an a’eV
such that

8laT, 1. q)=0.
The set
AT={aTaT=a"(w)=(a"(p.q)). - a" (. 9p))

for some MEM}

will be referred to as the set of the admissible answers,

and the system for which only admissible answer strings-

are allowed will be referred to as the restricted or admuissi-
ble system. Note that, under certain circumstances, it
might be advantageous to employ a nonadmissible answer
string. For example, consider the case where M consists of
three equiprobable elements g, =(100), p,=(010), p;=
(001), and the guestions seek the identification of each
data bit, ie., g “Is the jth bit a ‘one’?” The sinng of
correct answers about any dataset would reproduce that
dataset so that a”(y,) is identical to y;. Using the Ham-
ming distance as distortion criterion we have d(p;,p)=
2(1—8,), so that with no additional information about g,
a random selection of any admissible answer string would
produce an average distortion (over the elements of M) of
4/3. However, the choice of the nonadmissible answer
string {000) would produce a lower average distortion,
since df p,(000)]=1, i=1,2,3. Similarly, if the stored
summary of a particular dataset contains only the fact
that it has more ones than zeroes, then the average num-
ber of errors would be minimized by generating the
answer string 11--- 1, even though such a string may not
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Fig. 1. QA system model.

represent the correct answers to any dataset in the ensem-
ble M.

Calling P(p,q) the probability that dataset p would be
presented followed by query g, the overall performance of
the system will be defined as

D= 2 2 P(#:Q)S[G(M’Q)aﬂaﬂ,

pEM g

the average mean distortion relative to P(pu, g}
If the datasets and queries are independent, we will
have

P(pq)=p,m,, REM, qEQ,

and D can be rewritten as

D= 3 pd[pa(u],
pneEM

where

d[ wa(p)]= EQWqﬁ[a(u,Q),u,q]-

The developments in this paper assume a distortion
measure 8 based only on certain relationships between the
generated answer and the correct one, but independent on
the particular query or the dataset:

8[a(q)mq]=8a(pmq)a"(ma)].

It is assumed, as in [1], that § is normalized, i.e., § <1, and
that 8(x,y) is a distance on V.

For the purpose of calculating the minimum size of it
is convenient to regard a QA system as a communication
channel which receives at its input the dataset p, and
reproduces at its output the answer string a. Thus the
source alphabet is M and the reproducing alphabet is Ve

To each dataset i (i=1,---,M) and each question g, a
true answer a’(q) and an actual answer a(gq) are
associated. We can then index each answer string capable
of being generated by the system by an integer j varying
from one to N=V2, denoted by @’'=(a’(1), - -,a/(Q)).
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With this convention the normalized distortion
= > 7,8 d(q.m).a” (g 1))
q

defines a distance between dataset i and answer string J.
In this paper we will assume that all queries in @ are
equally likely, i.e., m,=1/0Q. Letting the set of conditional
probability assignments which lead to an average distor-
tion less than D be

9 ={ 000G, <D ). ()

Shannon’s rate-distortion function is defined by
R(D)= min I{(M,A 2
(D)= min_ I(M.4) @
where I(M,A4) is the mutual information between the

source and the user associated with & (j|i), i.e.,
104,4)= 59 (oe = )

)
where

%= 3 (1) (4)

is the probability mass function of the output.

The definition of R(D) takes its operational signifi-
cance from the negative part of Shannon’s source-coding
theorem, stating that no code exists for which both the
average distortion is less than D and the rate is less than
R(D). This implies, in particular, th
must be provided with an average memory size of at least
R(D) nats per dataset in order to achieve a mean distor-
tion at most D.

The positive form of Shannon’s theorem, stating that
codes exist which achieve a mean distortion D with an
amount of memory arbitrarily close to R(D), would be
applicable only if simultaneous coding of very large num-
bers of datasets was allowed. In the model examined
above, each dataset has to be coded individually; there-
fore R(D) provides only a lower bound to the memory
size, unless a filing procedure, achieving R(D), can be
exhibited. However, if the QA system serves many users
connected to a central unit, each using a dataset y in M,
then R(D) is a proper measure of the average siorage
space (per user) required to serve them with fidelity D.

As shown by Shannon, R(D) is a continuous convex

at any QA system

function for D, <D< D_, with
= Z Pi m_in Py (5)
i J o
Dmax= m,in EP,P,, (6)
i

J
For the QA systems considered, there always exists /
such that p; =0 for a given i, and therefore,
Dmin =0. (7)

Convexity implies strict monotonicity for R(D), which
is strictly decreasing from R(0) to 0 (obtained for D=
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Fig. 2. Typical rate for QA system.

D). Furthermore, R’(D) is continuous, strictly increas-
ing from — co over the range [0, D_,.}.

A QA system is said to be identifiable if every dataset
can be identified knowing its true answer string, i.e., iff
aT(u)y=a"(p,) implies u,=p,. R(0) of identifiable sys-
tems coincides with H, the source entropy. Throughout
this paper we will assume that we are treating identifiable
systems. However, all our results will remain valid for
nonidentifiable systems provided that R(0) and H have
the same asymptotic behavior, i.e., if lim,, ,  R(0)/H >0.

A typical situation for a QA system is depicted in Fig.
2, the superscript “a” referring to the admissible system
{output vocabulary restricted to the admissible answer
strings).

B. Problem Statement

To answer all queries without error requires H=
—2,emP,logp, nats of memory so that R(D)/H is a
measure of the impact of error-allowance on the memory
requirements of QA systems. If this ratio is very small,
error-allowance could be made beneficial.

Definition: A QA system such that R(D)/H tends to
zero for every D >0 when M-scc will be called elastic,
while a system such that R(D,)/ H is bounded away from
zero for some D, >0 will be called inelastic.

Although one can certainly conceive of cases neither
elastic nor inelastic, i.e., cases where R{D)/H oscillates,
only systems exhibiting regularity properties will be
treated here. In all practical cases, both R(D) and H are
monotonic functions of M, and the corresponding systems
are either elastic or inelastic.

For an inelastic system, the fact that R(D,)/ H does not
tend to zero dispels any hope of achieving a drastic
reduction in memory by allowing errors; for such systems
we therefore will not try to find filing schemes achieving
the lower bound R(D).

For elastic systems, there is no theoretical impediment
to the existence of filing schemes achieving a large reduc-
tion in memory by error allowance. However, as pointed
out before, one is not guaranteed achieving R(D) by filing
schemes where each dataset is coded individually. A sep-
arate effort would be required to demonstrate the ex-
istence of such a scheme or at least a scheme which
achieves a memory saving of the same order as R(D)/H.
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There is a case of elastic systems which deserves special
attention. If D, —0 when M—oo, we can eventually
achieve relative error equal to zero without any memory.
Such a case will be referred to as trivially elastic.

Looking at Fig. 2 a legitimate question to ask is “Is it
possible that D_, —0 while D7, is bounded away from
zero?” In other words, is it possible that the entire system
is trivially elastic while the restricted system is not? The

answer is no, as can be seen from the triangular inequality
Pyt 0 > Pris for all i,/ admissible. (8)

Multiplying by p, and summing on i’ yields

Pyt E Pepp; 2 2 Pibyi 2 Do (%)
i i
Let j, be such that
D gy = min ;5;3 Pipry= 2;3 Pibrjy (10)
From (9) and (10)
Py, F Prax 2 Drpaxs  for all admissible 7. (11)

In the column j, there exists an element p; ; which is
lower than the weighted average D_,,,, and consequently

2“’Dmax > piujo + Dmax > ‘D;lax‘ (12)
Therefore, if I, tends to zero, so does D, ..
In this paper our objective will be to investigate what

qualities of a QA system render it elastic or inelastic and
to apply the results to simple yet typical QA systems.

[1I. Bouwps FOR R(D)

It can easily be shown [3] that if u is a function of s
such that

u,» max e’ (13)
1<jeN
where N= V9, then
R (D)= max{H +sD ~logu) {14)

s< 0

is a lower bound to R(D). I wu is differentiable and
log-convex, then (14) reduces to the following set of
parametric equations:

d ‘
=2, )
— logu,, (15a)
R, (DY=H+sD—logu, (15b)

which define R,(}) as a lower bound to R(D).
Suppose now that we define u, and j*(s) so that equality
holds in {13), i.e., write

WAy C (3o
max 2 et & D et
S i

e[l N

(16)

In this case u, is log-convex but not differentiable in
certain points and (15a) has to be modified. More specifi-

Y
U, =
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Fig. 3. Typical functions (a) g, (b) f(s), and (¢} R, (D) participating in
the solution of (18).

cally, f(s) defined by
(17)

can replace {d/ds)logu, in (15a) (See [5, exercise 2.13, p.
62}), giving rise to the lower bound

L s g
— 2 e’ = fls)
s i

i
T 2 pyer, (18a)
&

5

R, (D)= H+sD~logu,. (18b)

Whenever a change in the value of j* occurs, f{s) “jumps”
as illustrated in Fig. 3(a) and (b). However, it is still
possible to define a surjection via (18a) using the follow-
ing convention. Let 5, be a point of discontinuity of f(s)
and let

D =f(s;)
D/ =f(s).

(19a)
(19b)
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Define next
fUD),
s(D)=
k9

for all k such that s, is a discontinuity point of f(s). Then
D=f(s)es=s(D), 2n

for D &[ Dy, D{],

(20)
for D €[ D, D} ],

and

R,(D)=H+ Ds(D)—loguyp). (22)

R,(D) is convex decreasing from H to 0 and has a
continuous derivative equal to s(D) over its entire range
of definition [0,D_,,] (see Fig. 3(c)).

To find an upper bound to R(D), the following formula
due to Haskell [7] will be used:

R(D)= ma())([sD-i- mm{ zp,log(E@ e” )H

(23)

where & varies over the set of all probability N-vectors.

A general technique to find upper bounds to R(D) is to
use (23) and upper bound the second term by fixing P as
an arbitrary value independent of s:

min — Ep, iog( E P e”’V) ‘5‘ P, 1og( 2 Pe’ )

®
(24)
for s <0 and & fixed. In particular, taking
{1/ M, i admissible,
Y 4 e (25)
7 0, - j nonadmissible,
yields (noting that p;=p; for i and j admissible)
M M
R(D)< max sD+logM — 2, p;log E e“"f} (26)
= ]
Let
M
w= > e (27}
i=1
and u, be the geometric average of the /s, i.e.,
logu,= 2 plogu] (28)
J

where the p, are the a priori probabiltiies of the datasets.

Equation {26) can be rewritten
R(DY<R (D)= max [logM +sD—logu,|. (29)
5

Since each u/ is log-convex, so is u,. Therefore, R (D)
is given by the following set of parametric equations:

d
D= Elog u, {30a)
Ry(D)=logM + sD —logu, (30b)
If, instead of (28), we were to define u, by
u, < min 2 e (31

I<j<N =1
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(29) would still hold for the new function u,, but not (30).
Equation (30) holds only if u, is log-convex.

Thus the upper and lower bounds to R(D} have similar
analytical expressions, which become formally identical
when the datasets are equally likely (though they involve a
different function u).

IV. GEeENERAL ELASTICITY CONDITIONS

A. Admissible Systems with Balanced Disiortion Matrices
and Equally Likely Datasets

If the datasets are equally likely and the admissible
distortion matrix is balanced, R*(D) can be computed via
(15) with u, given by

M
u ey

= Ee

'—I

(independent of j).  (32)
We now analyze the asymptotic behavior of the solution
of (15a) by assuming M and @ to be functions of an
intrinsic parameter m, and studying the behavior of the
system when m—>00. The function », as defined by (32} is
clearly log-convex, and equation (15a) defines a unique
solution for D fixed. Let

g .
af . s i f
(s)=—logu,= <5 (33)
e ds 5 Egsp,
Then
me fO{ g me o8 £ el @ 7 £34)
D=fi{s)es=s2(D) for DE[0,Dg,, |- (34)

We shall see further that conditions for elasticity can be
derived from the asymptotic behavior of the (always nega-
tive) function s3(D), and consequently we develop a few
lemmas concerning this behavior.

Lemma 1: As m— oo we have'

0(1) 5|5, (D) <0(0g M)
for all 0<D <D .

d{logu)=log M.

Since |s2(D)] is a decreasing function of D we have
D;&X
S lsa )l dx > Dlsn(D))

Consequently,

Dforall [0,D7, 1.

Is2(D)] < ~«%M (35)

which establishes the first part of the lemma. Note that
since s <0 and p, <1, we now have

[Ze?|Di e <MDy e <[Zp e’ <

max

< Zpe®®

"Throughout this paper we use the following O(-) notation. We say
that w, = O(v,,) when m—oco iff for m large enough 4 <u, /v, <B for
some 4 and B such that 4-8 >0.
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and consequently D2, e’ < f7(s). Therefore,
Diuxe™ PV < £ [5(D) ] =

which implies s2(D) <log(D/ D), i.-€.,

max

D
|sm(D)] > log —== (36)

We shall see that the bounds expressed in Lemma 1 are
tight, i.e., there exist systems which actually achieve them.
Lemma 2: |s3(D)|=o(logM)=R*(D)/log M = o(1).?

Proof: Assume that so(D)=o(ogM). Using the in-
equality

etz Me’,
and taking the logarithm of both sides and inserting in
(15b) yields

RU(D)<(D=1)sp(D)=(1=D)lsn(D)l,

a(p) ls"( )l

IOgM ~( ) 0(1)‘
Furthermore, it can be seen from (37) that the faster the
ratio |sg(D)|/logM tends to zero, the more elastic the
system.

(37

Lemma 3: |s2(D)| = O(log M )= R*D/2)/log M
bounded away from zero.

Proof. Using the convexity of R(D), one gets

rb 1dR(D)
“(D/2)>R”(D)+{ DJ———;—ﬂ—D——
_DdRYD) _ D,
Thus for D<D_,./2
RY(D/2) _ D lsu(D)] _
logM > 2 logM =ol) (39)

which proves the lemma.
Combining Lemmas 2 and 3 yields:

Theorem I: In the balanced case with equally likely
datasets, a necessary and sufficient condition for the in-
elasticity of the admissible systern is that s’ (D), the
unique solution to the first fundamental equation D=
fa(s), satisfies s2(D)= O(log M) for some D >0.

B. Admissible Systems with Unbalanced Distortion Matrices
and Equally Likely Datasets

If the admissible distortion matrix is not balanced, it is
no longer possible to compute explicitly R°(D); a lower
bound to R%D) is, however, available, and conditions
similar to those found previously can be established. De-
fine

a_ Rl T—
ué= max 2, e*®

JEAT

PR (40)

2We say that u,, = o(v,,) when m—oo iff u, /v, —0.
L] m ”m Ld
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Then Rf(D) defined by
1
D=3 Zope™ 2 fals),

R (D)=logM+sD—loguf (41b)

is a lower bound to R D). Conditions sufficient for the
inelasticity of the admissible system can therefore be
drawn from (41). Let s.(D) be the solution to (4la)
defined as in (20).

Lemma 4: O(1)<|si(D)|< O(log M).

(41a)

Proof: The proof proceeds exactly as that of Lemma
1, unaffected by the finite number of discontinuities of

S5

Lemma 5. [si(D)| = o(log M)=R}(D)/log M = o(1).
Proof:
R;(D)=logM+ Ds, (D) —loguip) (42)
Using
=S e > Me*
yields
Ri(D)<(1=D)|sq(D) (43)

as in the proof of Lemma 2.

Lemma 6: |si(D)| = O(log My= R%D/2)/log M is
bounded away from zero.

Proof: Since Rf(D) is convex and has a derivative
equal to s(D), the proof is the same as for Lemma 3.

Theorem 2: If the datasets are equally likely, a neces-
sary and sufficient condition for the inelasticity of the
admissible system is that s3(D) (the unique solution to the
first fundamental equation D = f2(s) associated with u/ =
max; e 472 ;¢ %) satisfies 5,,(D) = O(log M) for some D >0.

C. Systems with Equally Likely Datasets: Relations Be-
tween Admissible and Nonadmissible Answers

To establish the inelasticity of the admissible system, it
is enough to show that R}(D)/logM is bounded away
from zero. In other words, if it is not possible to apply
Theorem 2 directly because of the difficulties involved in
computing s2( D), one can always try to find a function u,
log-convex and differentiable satisfying

u, > max > e, {44)
JEAT
solve (15a) and show that s,(D) associated with (15a)
satisfies s,(D)= O(log M). This, however, insures only the
inelasticity of the admissible system but not that of the
entire unrestricted system. It is tempting to conjecture that
inelasticity of the admissible subsystem implies inelasticity
for the entire system. In this section we prove a slightly
milder version of this conjecture. Actually, we show that if
R}(D}/log M is bounded away from zero, then the entire
system is inelastic. In other words, if the inelasticity of the
admissible system is proven on the basis of a lower bound
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of type (15) associated with u satisfying (44), then the
entire system is inelastic. A few lemmas will be needed.
Lemma 7: R(D)/log M-0=>logugp,/log M-+1
Proof: Assume
Iogu;'f",( D)
logM

Then
log M —logussp,= o(log M)

and Rj(D)=Dsi(D)+o(loght). If |[si(D)|= O(loght)
then R/(D) would be equivalent to Ds; (D) which is
negative. Since R/(D) cannot be negative on [0, D?_ ], we
must have s2(D)= o(log M), and consequently

R{(D)/log M tends to zero.
Lemma 8: If for all 0<D <D, |su(D)|~a(D)logM,
then lim,, o Da(D)=0.
Proof: Clearly

[P lsaldx=Dsg(D)+ [ fa(s)ds
sm(D)

D

0
=Ds?(D)+ d(logu?)
(D)

=IOgM+ DS;(D)"‘IOguSZ:(D)= RE(D).

This shows that the Riemann integral [§=|sz(x)|dx exists
and is equal to RJ(0)=log M. Consequently [g%(x) exists.
Since [s2(D)} is a decreasing function of D, so is a(D)
and

fDa(x) dx > Da(D), for all D <Dy,
0

Therefore
D
im Da(D)< li =
m, Da(D)< fim, [Talx)dx=0
Lemma 9: w/ <M'/*u®)'/?, for all jEA.
Proof: If iy is defined by

D= m}n Pys

we have
ul < Me*Pis, (45)
Applying the triangle inequality yields
oyt 0 2 Py for i,j admissible,
which implies, since s <0, '
e3P p%Pigi e-VP:io,
and thus
e P Z e g 2 e Lyl
i i
or
ul <e syl (46)
Equations (45) and (46) together imply
()’ < Mug, (47)

which establishes Lemma 9.
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Theorem 3: If s5,(Dy)= O(log M) for some fixed Dy>0,
the entire system is inelastic.

Proof: Let
4, = max 2 e, (48)
Note that
R(D)>R,(D,s) £ logM +sD —logu,, for s <0.
In particular,
R(D) >Ry (D,s,(D)). (49)

Since s2(D)=0O(log M) the ratio Rf(D)/logM does not
tend to zero, and consequently
log u;’;( D)

logM

by virtue of Lemma 7. From Lemma 9 we have

1 (50)

log /e py < 3log M + 3loguls ).
Using (50) we obtain
10gap)
log M

and consequently

1, forjed,

max logu/,
logus’:(p) _ j g Sm(D)

log M

1.

log M

More precisely

log Usa(D)
logM

being bounded away from one implies the existence of m,
and 1>7>0 such that

logu,..pn
52( )<1—n,

Ym >m1=>w

forD e [O,D" ]

max

Since [s2(D)] is a decreasing function of D, the assump-
tion s3(D)= O(log M) implies s (D) cannot be of order
less than logM for all D <D, Moreover, by Lemma 1,
so(D) cannot be of order larger than logM, ie,

s2(D)y~—a(D)logM, fora(D)>0
with

lim Da(D)=0

fim, Da(D)
by virtue of Lemma 8. Therefore, there exists a D, >0
such that

D<D=Da(D)<n/2.

Let D=min(D,, D,). Since
$a(D)
T /a(D)I—»I,
there is an m, such that, for m >m,,
52(D)
log M

a(D) <2

s
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i.e.,
5a(D)
log M
Consequently for m > my, = max(m;, m,) and D=
min(Dy, D)),
R(D) | Ri[D.sa(D)]
log M g log M
., Ds(D) logugp)
' log M log M
>1-1/2-(1-n)=n/2,
which establishes the proposition.

~32a(D)>n/2D.

Theorem 4: In the case where the datasets are equally
likely, if there exists a log-convex and differentiable func-
tion u, such that

u, > max >, e
JjeAT
and if the corresponding s, (D) satisfies
s(D) = O(log M),
the system is inelastic.

Proof: Equation (15) associated with u, define a
lower bound R,(D) to Rf(D). Consequently
RZ(D)/log M does not tend to zero, since R, (D)/logM
does not tend to zero, and thus s3(D)= O(logM) by
Theorem 2. By Theorem 3 the system is therefore in-
elastic.

A tighter connection between the admissible and non-
admissible systems can be established in case the former
gives rise to a balanced distortion matrix. In this case, and
with equally likely datasets, we have R;(D)=R*D). We
can therefore state the next theorem.

Theorem 5. In the case of equally likely datasets, if the
admissible answers form a balanced distortion matrix,
then the elasticity properties of the entire system are
completely determined by those of the admissible system.

The power of Theorem 5 will be demonstrated in Sec-
tion V. It often happens that while the distortion matrix of
the entire system is intractable, its admissible submatrix is
balanced, and so the test for elasticity becomes a simple
computational task. Even when the admissible submatrix
is nonbalanced, it is much easier to find a function u
satisfying (44) over the admissible submatrix than the
entire matrix. One can then invoke Theorems 3 and 4 for
establishing the system’s inelasticity.

D. Sufficient Conditions for Elasticity
In Section IV-C we obtained a sufficient condition for

inelasticity by lower bounding R(D) using

u, > max o e
JeAaT

We can similarly find a sufficient condition for elasticity

upper bounding R(D) using a different u,, which satisfies
M
logu, = 3, p;logu/.
J=1

Since the resulting upper bound has exactly the same
analytical form as R9(D} in A4, the results found above, in
particular Theorem 1, apply and lead to the next theorem.

Theorem 6: If s5,(D) associated with u,, the geometric
average of the u/, is such that
(D)= o(log M),
the system is elastic.

A simpler and weaker form of this theorem follows.

Theorem 7: If 5,(D), associated with a log-convex and
differentiable u, such that
u, < min u/

T jeal
satisfies
Su(D)=o(logM),

the system is elastic.

Proof: Let R, (D) be the upper bound to R*(D)
associated with u, via (30). Applying Lemma 2 shows that
R,(D)/log M—0, and therefore R%(D)/log M—0. Since
R4(D) is an upper bound to R(D) the elasticity of the
entire system is insured.

E. Generalization to Nonuniform Input Distributions

If the datasets are not equally likely, # is no longer
equal to logM, and the conditions previously found have
to be slightly altered. The inequalities on R D) estab-
lished in A4 are still valid, so that

[s52D)| _ R*(D) _
b H = H =(-D) logM ~

Consequently, Theorem 1 becomes the following.

s (D)]

Theorern &8 In terms of the conditions of Theorem 1, a
necessary and sufficient condition for inelasticity of the
admissible system is
a —_
lsa(D)|=O(H).

We have not found a straightforward generalization of
Theorem 4; however, we can still state the next theorem.

Theorem 9: If there exists a log-convex and differentia-
ble function %, such that
u > max > e'f
7 jea 2
and if the corresponding s, (D) satisfies
s(D)=O(H),
the system is inelastic.

The function u, might be hard to find, since its legit-
imacy must be tested for every answer string jEA4. The
general upper bound, however, involves the admissible
answers only, and we can state the following theorem.

r
r 3

&
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Theorem 10: In the general case (H <logM) if 5,(D)
associated with the geometric average of the u/ or with a
lower bound to u, for j admissible is such that s,.(D)=
o(H), the system is inelastic. ‘

The proof follows from the inequality

R(D) (D
e =

V. EXAMPLES OF APPLICATIONS

In this section we shall analyze some simple yet typical
QA systems using the techniques developed in Section Iv.
These conditions all involve functions of the type X.e%
for j admissible. A major deterrent to the analysis of even
very simple QA systems is the great computational com-
plexity involved in finding the admissible distortion
matrix itself and a fortiori the functions 2 ,e". Checking
the asymptotic behavior of s,,(D) defined implicitly by the
functions 3¢ can therefore be expected to be a difficult
task. These points are illustrated in the examples selected
throughout this section.

A. The Set of All Binary Valued Questions on {0,1}"

A QA system whose query set consists of all binary
valued questions on the data is called a complete binary
system (CBS). The time-storage exchange in this system
was analyzed by Elias and Flower [8]. If the data requires
a code of m bits, then M={( 1}7, M=2", (
M—{0,1}, and Q@ =2".

For such a system every two distinct datasets produce
identical answers for exactly 50 percent of the questions.
Thus, using the Hamming distance as distortion criterion,
the admissible distortion matrix is balanced and

us“=l+(M-1)eS/2,

sp(D)=—2log M +2log~ D
2
Consequently from Theorem 3 the system is inelastic.
Note that without invoking Theorem 2 it would be
almost hopeless to provide a lower bound to R(D) for the
entire system. One would have to examine matrices of size
2™ % 2%, In fact, in a previous paper [1] we established the
CBS inelasticity using the following.

Theorem 11: Any QA system such that H=logM and
the (normalized) distance between any two distinct admis-
sible answer strings is bound away from zero, is inelastic.

We shall see that this is a direct consequence of Theo-
rem 4.

Proof: Assume that
p; >r>0, for i,/ admissible, i #/.
Then for j admissible
M
S et l+(M~—1)e” = u,.

i=1
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Equation (15a) associated with u, is
(M—1)e”

D=
T M =1)e”

implying
—log(M — ‘1) .

S YO
$,(D)= p {IOgr——D
Therefore
5, (D)y~~ —l—logM= O(log M),

and consequently, using Theorem 4, the system is in-
elastic.

B. The Set of Singly Conjunctive Questions on {0,1}"

Consider the following question—answering system. Let
C={x,,"-",x,} be a collection of m objects and C, a
subset of C w1th p elements. During the filing phase, C is
presented to a QA system and, later, queries such as “has
x; been observed in C,?” are presented to the system. An
answer is at fault (8=1) whenever an element of C, is
declared unobserved or an element of C— C, declared
observed. Each C, can be uniquely represented as a bi-
nary string of length m with a one in the ith position if
x,€ C,, and a zero otherwise. For such a system we have

M =($), Q=m and, if p is kept constant, the system is

trivially elastic since D, ,,—0. When p=am, 0 <a <1, we
have (log M)/ Q~ H,(a) >0, and consequently [1] the sys-
tem is inelastic. Similarly, if p is unrestricted and any
subset of C could be admitted as data, we have M=2"
and (logM)/Q->1, rendering the system inelastic.

Since a necessary condition for elasticity is (logM)/Q
—0 [1], one may wonder if increasing Q by allowing
compound questions would cause the system to turn
elastic (the distortion criterion still being the normalized
Hamming distance, i.e., the probability of producing an
erroneous answer)., Section V-A demonstrates that the
inclusion of all compound binary questions in the query
set results in an inelastic system. In the following analysis,
we limit the queries to be singly conjunctive, i.e., instead
of “has x; been observed?”, each question is now “have
both x, and x; been observed?”. The condition (logM)/Q
—0 is still satxsfxed (O~m*/2) but, unlike the complete
binary system, the distance between the two nearest
admissible answer strings is no longer bounded away from
zero. Two datasets which differ by only one element
would produce at most m — 1 conflicting answers and their
normalized distance 2(m — 1)/ m?* would approach zero.

It turns out that, for unrestricted p, the admissible
distortion matrix is extremely hard to express and the
analysis seems intractable. A simpler version of this prob-
lem is formed by restricting the input to those subsets with
exactly m/2 elements (p=m/2). This is justified by the
fact that, for large m, a significant fraction of the subsets
would have m /2 elements, since

Iog< m72 )~mlog2= log2™.
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Note that for this input restricted system, as well as for
the unrestricted one, we have

2
0= m(m2 1) ~_r112~ and logQM~
which complies with the necessary conditions for elastic-
ity. We will show nevertheless that the system remains
inelastic. The merit of Theorem 3 will again become
apparent, as it will permit us to establish inelasticity on
the basis of the M X M (balanced) distortion matrix of the
admissible answers, rather than the intractable M X
27m=D/2 matrix representing all possible answers.

We first wish to compute the distortion between the
answer strings generated by two datasets a distance d
apart. Consider two binary strings of length m and weight
p representing two arbitrary datasets. The different possi-

" ble configurations are summarized on the following draw-
ing.

2log2 -0,
m

- m
11---1 11---1 00---0 00---0
Im---1 00---0 11 1 00---0
t * u * v x w "

Let d be the distance between the two strings. We have
the constraints that t+ov=p, u+v=d, r+u=p, t+u+v
+ w=m. These imply in particular 2¢/=4d, i.e., d must be
even, let say d=2i. We then get t=p—i, u=u=i, w=m
—~p=-I.

In terms of the present QA system a distance 2/ be-
tween two datasets implies a distance

u(uz—— 1) + u(v;l) —i2p—1-1)

between the two corresponding answer strings, and for
every given data set there are
i

="
data sets situated a distance 2/ from it.

The admissible matrix is balanced and, for p=m/2,
letting z=e*/€

= B [(") e
("/2)<(nz)

m—1—i> -%n- — 1=z M= 1=0 L7 m/2=D),

tu+to+

Note that

and

so that

(L
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Therefore, the simpler function
/2)“_*_2(»1/2)—1Jm/2

“‘(/4

satisfies the condition of Theorem 4 and may be used to
test the inelasticity of the entire system. Equation (15a)
associated with u, can be written

m _ -1
_ 2 m ( 2 ])Z
m(m—=1) 2 1+ z(m/D—1

In order to-determine the asymptotic behavior of s,,(D),
we first guess a certain functional relationship and then
check whether it leads to a fixed D in the equation above.
Trying s,,(D)~am (a>0) and taking the limit as m-—>o0
yields the equality

pol_1

C 2 /2
which establishes a bijection between a and . Therefore,
the assumption on the asymptotic behavior of s, (D) is
validated and

a
S DY~—am= — T(—)—g—z—logM,

ie., 5,(D)=0(logM); this implies inelasticity by Theo-
rem 4 (or Theorem 5, since the adnussible system is
balanced).

C. The Set of Size-Comparison Questions on the Integers
{1, ,m}

Consider a system in which the data consist of one
integer between one and m, and the questions consist of
presenting an integer between one and m and asking if it
is lower than the given integer. The admissible answers for
m=>5 are illustrated in the following table

94 s qs3 94 qs
=1 0 0 0 0 0
po=2 i 0 0 0 0
ny=3 i 1 0 0 0
pa=4 i i i 0 0
ps=35 1 i 1 1 0

The Hamming distance between the admissible answer
strings associated with g, and g, is easily seen to be |i—j.
This is normalized to |i —j|/m.

The same distortion matrix is generated by the ques-
tion: “What is the integer stored to j?” if ¥'={1,--- m}
and an absolute-difference distortion criterion is used.
However, we prefer to view the system in terms of binary
valued question set, as it offers a more solid rationale for
the use of the absolute-difference criterion, especially in
cases where the size of the integers reflect only ordinal
information.

In our case, M= Q=m, and the distortion matrix for
the admissible answers, though unbalanced, is simple
enough for computation. The jth column of the distortion
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maltrix is

@ - ees

[u—

m=j

and therefore (taking z=e*/™),

W=z Iz 2T

5
In order to find a lower bound to ¥/ independent on /, we
note that since

2l for i and j <m,
z+ - +2z/7! can be replaced by z" Ut 4. 4z
and consequently
t—2z" 4

wWol+z+ - +zm = u,,  forjadmissible.

-z
Using this u, function leads to s,(D)~ —a(D) where
a(D) satisfies

a e‘—1"°

By Theorem 10 the system is elastic for input statistics
which give rise to H-—>eo0. The rate of convergence of
R(D)/R(0) is the fastest possible, i.e., O(1/H).

For the case of equally likely datasets, it is also easy to
find a filing scheme achieving similar memory require-
ments. Since each dataset represents an integer between
one and m we can use the following quantizing scheme.
Partition the range from one to m into k intervals of
length ¢ and store the identity of the interval where the
data integer occurs. During the answering phase, answers
would correspond to an integer situated in the middle of
the selected slot. That guarantees a maximum error of ¢ /2
and an average error ¢/4 so that the asymptotic perfor-
mance of this scheme is

R(D)y=logl/4D.
VI. SUMMARY

Several criteria were established for determining
whether a given question-answering system is elastic, i.e.,
whether a small tolerance for errors could be exploited to
yield a sharp reduction in storage requirements. The
criteria established depend on the logical interaction be-
tween the admitted set of questions and are analytically
tractable.

We examined the asymptotic behavior of lower and
upper bounds to the rate-distortion function which are
both defined parametrically and involve a function u, of
the sums of elements in the columns of the matrix
(") - T get a lower bound we take

u, > max > e,
Jo
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and to get an upper bound we take
M
logu,= 2, plog X .
j=1 i

Here { p;} is the probability density function of the data

sets. :
The first equation defining the bounds then reads

= —4—10 u
dS g 5
and the second reads
Ry(D)=X+sD—loguy,

with X = H (the source entropy) for the lower bound, and
X =]og M for the upper bound. If the datasets are equally
likely, then both upper and lower bounds have the same
formal expression (although u_ is not the same).

It is then shown that the asymptotic behavior of these
bounds depends solely upon the first parametric equation.
More specifically, a necessary and sufficient condition for
elasticity of each bound is 5, (D)= o(logM) where s5,(D)
is the solution to the first equation, and M the size of the
dataset ensemble. Necessary conditions (i.e., elasticity of
the lower bound) and sufficient conditions (i.e., elasticity
of the upper bound) for the system’s elasticity are then
established. It is further shown that, when the datasets are
equally likely, elasticity conditions can be determined
solely on the basis of the distortion matrix between the
admissible answers. Thus the computational work re-
quired for elasticity tests is reduced significantiy.

These conditions are then applied to three simple QA
systems:

I} a system which admits the set of all binary questions
regarding an arbitrary binary data (complete binary
system).

2) a system which admits singly conjunctive questions
(e.g., “Are both x; and x; in the dataset?”) and the
data contains m /2 items.

3} a system answering size-comparison questions on the
integers {1,---,m} (e.g., “Is integer j smaller than
the one stored?”).

It is shown that examples 1) and 2) are inelastic, while
3} 1s elastic.

The analysis of the second example demonstrates that
redundancy ((logM)/Q~0) and denseness (min;p;—0,
for i,jEA T), though necessary, are not sufficient to
guarantee elasticity.
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