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Abstract

Graphoids:
A Qualitative Framework for Probabilistic Inference

Dan Geiger

This dissertation investigates properties of conditional independence in relation to the elicita-
tion, organization and inference of probabilistic expert systems. Qualitative notions of interac-
tion, connectedness, mediation and causation are given formal probabilistic underpinning:
graph-based representations and algorithms are developed for processing these notions.

A partial axiomatic characterization is established of the predicate I (X, Z, Y) to read:
"X is conditionally independent of Y, given Z". This characterization facilitates both a graphi-
cal representation of dependence information and a solution to the implication problem, of de-
ciding whether an arbitrary independence statement I (X , Z, Y) logically follows from a given
set X of such statements. The solution of the implication problem is the key for identifying
what information is unnecessary for performing a given computation. An algorithm is
developed that identifies this information in probabilistic networks. The algorithm’s correct-
ness and optimality stems from the soundness and completeness of probabilistic networks with
respect to probability theory. An enhanced version of the algorithm extends its applicability to
networks that encode functional dependencies. Probabilistic dependence is also used to formal-
ize the notion of interactions among variables; a class of distributions is identified for which
this formal definition exhibits qualitative properties normally attributed to the word *‘interact’’.
Finally, the problem is addressed of deciding whether a given distribution can be represented as
a graph of certain structure. Conditions are identified for the existence of a unique solution, an
efficient algorithm is developed to find this solution, and a relationship to the problem of dis-
covering causality from statistical data is discussed.
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CHAPTER 1
The Graphoid Framework

Generally people are bad probability assessors and even worse probability manipula-
tors, yet they manage successfully to control environments full of uncertainties. A
computer system attempting to emulate human behavior in such environments must
therefore be guided by principles that permit qualitative reasoning about uncertainty.
This chapter singles out conditional independence and its graph-based representations
as the most fundamental relationships in such reasoning, reviews previous work on
these concepts, and outlines the contribution of this dissertation.

1.1 Introduction

The volume of information needed in typical inference tasks, such as mineral explora-
tion, weather prediction and medical diagnosis, is so high that reasoning would become
unmanageable without making many assumptions of independence. Not surprisingly,
the design of every system that emulates expert’s behavior in these and other domains
relies heavily on such assumptions (e.g., [1, 5, 7, 10, 16, 31, 43]). It is therefore vital to
set forth these assumptions and to provide a means of testing whether they are suitable.
The practical significance of conditional independence is reflected in three processes
that are supported by expert systems: encoding the experience of an expert (elicitation),
drawing conclusions (inference) and, communicating the system’s recommendations to
the user (explanation). In eliciting probabilistic models from human experts, qualita-
tive dependencies among variables can often be asserted with confidence, while numer-
ical assessments are subject to a great deal of hesitancy. For example, an expert may
willingly state that cancer is related to both smoking habits and asbestos exposure,
however, he would not provide a numeric quantification of these relationships unless he
has rich experience with cancer patients or is aware of a reliable statistical survey that
estimates the strength of these relationships. Developing a direct representation scheme
for judgments about dependencies, which is a major theme of this dissertation, facili-
tates a qualitative organization of knowledge in a manner that is amenable to a human
expert and guards the model builder from assigning numerical values that lead to con-
ceptually unrealistic dependencies.



Knowledge about independence saves space when storing distribution functions
and saves time when computing and updating the probability of an event; if we ignore
independencies, then representing a discrete distribution function would require ex-
ponential size tables and calculating P (x is true) would require a lengthy summation
over the other variables in the table. Recognizing the independencies among the vari-
ables enables us to encode the table with fewer parameters and to considerably reduce
the computations. Furthermore, if we choose to represent and process random vari-
ables by probabilistic networks, and we will argue that this is a plausible choice, then
the topology of such networks, as well as the set of transformations that we are permit-
ted to apply to them are determined by the rules that govern conditional independence.

Finally, a qualitative characterization of conditional independence in terms of
logical axioms that do not refer to numerical quantities highlights plausible lines of rea-
soning that would otherwise be hidden in numerical calculations. Such axioms could
serve as building blocks of systems that provide qualitative explanations as to why cer-
tain facts were or were not taken into account in a given computation. For example,
the axiom (1.5d) below can be phrased to read: ‘‘if two items together are judged to be
unnecessary for a computation, then learning one of them leaves the other still unneces-
sary”’. By contrast, a numeric representation of this argument, would involve compli-
cated equations that hide the intuition behind it. Thus a logical characterization is
preferable, and is pursued in Chapter 2.

Whereas conditions of total independence are rarely encountered in the real
world (due to the existence of weak genuine dependencies), independence assumptions
nevertheless approximate reality extremely well, and allow us to draw meaningful con-
clusions in reasonable time. For example, Markov models that assert the past is ir-
relevant for the future conditioned on the present state of the world, constitute a very
powerful model of temporal data analysis. Structural equations which embody a rich
set of independence assumptions, are the cornerstone of modeling and analysis in the
behavioral sciences. A salient characteristic of these modeling methodologies is that
they deploy a two phase strategy in which qualitative modeling is followed by numeric
analysis. Similar separation between the two phases is also useful in modeling human
experts; medical diagnosis systems, for example, are rendered much more reliable if
qualitative relationships are first carefully structured [32]. For example, a more accu-
rate model of the relationship between cancer and smoking habits would reveal some
genuine independencies because there are many types of cancer only some of which,
such as lung cancer, are actually dependent on one’s smoking habits, while the rest are
independent. This type of independence, called subset independence, was used by
Heckerman [32] both to improve the accuracy of his medical diagnostic system as well
as to speed up the process of knowledge elicitation. His system is based on networks
called probabilistic similarity networks, which is another example of a model based on



realistic assumptions of conditional independence.

A common feature of Markov models, structural equations and similarity net-
works is that they all express assumptions of independence in a graph-based formalism.
This is not surprising. The terms ‘‘dependence’’ and ‘‘connectedness’’ are often relat-
ed in our language; idioms such as ‘‘threads of reasoning”’, ‘‘lines of reasoning’’ and
“‘connected ideas’’ suggest that an expert would conveniently express dependencies
between variables by visualizing trails in some graph-based representation. However,
formalizing a precise relationship between links in a graph and dependence between
variables is not as easy as it seems; when we deal with informational dependencies it is
often hard to distinguish between direct dependencies and indirect dependencies. Even
worst, not every trail in a graph should necessarily represent a dependency; for exam-
ple the three variables ‘‘asbestos exposure’” (a), ‘‘smoking habits’’ (s) and ‘‘cancer”’
(c) are best represented by a graph of the form a — ¢ « 5. The dependence of cancer
in the other two variables is represented by two directed links. However, “‘smoking’’
and ‘‘asbestos exposure”’ which seem connected, can reasonably be assumed indepen-
dent. On the other hand, when a patient is known to have cancer, s and a become
dependent variables; evidence that the patient is a heavy smoker decreases our belief
that the patient has been exposed to asbestos because smoking is an alternative expla-
nation to cancer. Thus, the chain between a, s and ¢ represents the fact that @ and s
are independent, but become dependent given that we know the patient suffers from
cancer.

Another intuitive interpretation of the direct links emanating from ‘‘asbestos
exposure’’ and ‘‘smoking habits’’ into ‘‘cancer’’ is that the former two variables
represent causes of cancer. The relationships between probabilistic dependencies (or
correlations) and causation has long been debated. Clearly, a dependence found
between two variables is not sufficient for us to assert that one causes the other, howev-
er, causal relationships are accompanied with special patterns of dependence. The
basic pattern is that two independent causes become dependent once their common ef-
fect is known, as is well demonstrated by the cancer example. This observation is the
basis for our attempt to formulate a procedure that recovers causal relationships from
information about dependencies. Although this task is short of being complete, the as-
sociation between dependence information, causality and graphical representations pro-
vides us with plausible conditions that must be satisfied if one ever aspires to deduce
causal relationships from statistical data (see Chapter 4).

Causation is not the only high level concept that is associated with conditional
independence. Functional dependencies, interaction between variables and the concept
of information relevance are each characterized by distinct patterns of conditional in-
dependence. A variable that is function of a set variables is conditionally independent



from any variable in the system, given that set. Two variables display an interaction
between them only if they are dependent in some context. If two variables are indepen-
dent, information gathered on one will be irrelevant for learning anything about the
other. This observation is the most immediate reason to concentrate on the notion of
dependence; any system, and in particular systems that operate under uncertainty, must
be able to distinguish between facts that are relevant and those that are not, because
otherwise the system would spend precious time in processing facts that have no bear-
ing to the task at hand.

1.2 Probabilistic Expert Systems

The first step in constructing an expert system based on probabilistic networks is to
identify the variables of interest, their relationships, and a topology that reflects these
relationships. This is best illustrated by a simple example borrowed from Pearl [49],
originally by Cooper [10]:

Metastatic cancer (@) is a possible cause of a brain tumor (a3) and is also an expla-
nation for increased total serum calcium (a5). In turn, either of these could explain a
patient falling into a coma (a4). Severe headache (as) is also possibly associated
with a brain tumor.

In constructing the network, the expert associates a link between a perceived cause into
its direct consequences. The resulting network for this example is given in Figure 1.1.
Validation of the graph topology can be performed by asking the expert questions re-
garding the independencies that are represented in the network. For example, we may
ask: If a patient is known to suffer from a Brain tumor, would his complaining of
severe headaches change your belief about the possibility that he will fall into a Coma?
To comply with the network’s topology (Figure 1.1), the expert’s answer is expected to
be negative because the network shows that the node corresponding to ‘‘Brain tumor’’
blocks all trails between ‘‘Severe headaches’’ and ‘‘Coma’’, thus asserting that the
latter two variables are conditionally independent given the former.



Metastatic cancer

Increased total

4 Brain tumor
serum calcium @ (a3)

Coma Severe headaches

Figure 1.1

The next step is to let the expert estimate for each node a in the network a con-
ditional distribution P (a | m(a)) of its values given any combination of its parents’
values n(a). The outcome is a Bayesian network, which represents a distribution over
all possible values of the variables in the system. The distribution decomposes into:

P(al,---,an)=gP(a; | m(a;)) ; (1.1)

where P (g; | m(a;)) =P (a;) if a; has no parents. This product form reflects the in-
dependencies encoded in the topology of the network given by the expert. In the
Metastatic cancer example, the following parameters could be elicited from an expert:

P(a,): P(+ay)=.20

P(aj!l ay): P(+ajl +a1)= .80 P(+ajl —ay)=.20

P(asl ay): P(+asl +a;)= .20 P (+aszl —aq1) = .05

P (a4l aj aj). P (a4l +a,, +a3)= .80 P (+a4l —aq, +a3)= .80
P (+ag4l +ay,—a3)= .80 P (+a4l —ay, —a3z)= .05

P(asl a3): P(+as! +a3)= .80 P (+asl| —a3) =.60

where +a; and —q; are the positive and negative outcomes of a;, respectively. It has
been noticed that this two-phase strategy, where first a qualitative model is constructed
and only then parameters are elicited considerably improves the reliability of the sys-
tem.

A standard query for a Bayesian network is to find the current belief distribution
of a hypothesis x, given a composite evidence set Y =Y i.e., to compute P (x | Y=Y).
For example, we might want to compute the probability of a patient suffering of Metas-
tatic cancer, given that he complains on severe headaches and given that his level of
serum calcium has increased. The answer to such queries can, in principle, be comput-



ed directly from Eq. (1.1) because this equation defines a full probability distribution
over all variables. However, unless one exploits the independence relationships encod-
ed in the network, this can be very inefficient both in time and space requirements.
Efficient algorithms have been developed that do rely on these independencies [33, 41,
48, 55]. Two of these algorithms are demonstrated below. It should be emphasized,
however, that our toy example serves only as an illustration of the way probability as-
sessments are incorporated into the Bayesian network formulation and how these net-
works are used for inference. For a description of a real system consult [1].

Consider the query: ‘“What is the probability that a patient suffering a metastat-
ic cancer and a brain tumor will have severe headaches’’(i.e., P (+as! +ay, +as)) ?
The answer can immediately be obtained from the network of Figure 1.1. We are in-
terested in the quantity P (+as| + ay, +a3), however, in this case the answer is simply
the entry P (+asl +a3) of the conditional distribution associated with node as. Note
that the fact that the patient suffers from metastatic cancer (+a;) plays no role in this
computation because the network (and the expert) asserts that this information is ir-
relevant for this computation; severe headaches are caused directly by a brain tumor
and this is the only mechanism that associates headaches with metastatic cancer. As a
less trivial example, consider the query: ‘“What is the probability of having Brain tu-
mor given that the level of serum calcium has increased 7’ (P (+as3! +a,)). This
query cannot be answered by observation but requires an inference algorithm. We
shall next describe a number of algorithms for this purpose.

Shachter has developed an algorithm based on two transformations of a net-
work: node-removal and arc-reversal [55]. To compute P (x | Y), these transforma-
tions change the network until the parents of node x are all in Y. First, the algorithm
removes nodes that have no descendants in {x }U Y. Then, the algorithm picks a node
a—parent of x that is not in Y, reorient all a’s adjacent links into a using the transfor-
mation of ‘‘arc reversal’’ and then, when a has no children, it is removed using the
“‘node-removal’’ transformation. In each step, new parameters of the transformed net-
work are computed. This process is repeated until only nodes in Y are parents of x, in
which case the distribution P (x | Y) has been computed. The two transformations are
listed below:

Node removal: A node that has no children is removed.

Arcreversal: Let D be a network, a— b be a link in D, S, be the parents of a, and
Sp be the parents of b. In the transformed network, the link between a and b is re-
versed and a link is added between any node in S, U S, into nodes a and b (if such a
link was missing in the original network).



To compute P (+a3| +aj), this algorithm, first removes nodes which have no
children in {aj, a3}. Thus, node a4 and a5 are removed and the chain @3 « a; — a3
is left. The correctness of this step stems from the fact that the product
P(ay) P(a3l ay) P(ay! a,), represented by this chain, results from summing Eq. (1.1)
over the variables a4 and as.

The termination condition has not been met yet since the parent set {a;} of a3
is not a subset of {a,}. The algorithm now removes a parent of a3. The only parent is
a1. First, link @a1—a3 is reversed and the resulting network becomes a, — a; — as.
Notice that this transformation is the graphical equivalent of Bayes rule. The two
parameters {P(a;), P(azl a;)} are replaced with {P(a;),P(a;! a;)} using Bayes’
formula:

P(ayl ay)P(a))

P@ilay= Play)

where

PMQ=;Pmﬁaonu

The last two transformations reverse the link a;— a3 and remove node a;. The first of
these adds a link from a; to a3 while the latter removes the node a ; from the network,
leaving a single link a; — a3. The distribution P (a3! a5) is computed using Bayes’
rule and the entry P (+a3| +a3) of this distribution is the desired outcome.

Figure 1.2 summarizes the transformations and the corresponding changes in
the parameters. At most two conditional distributions are changed by each transforma-

OO (@)

Removing nodes as and as  Reversing link a; — a, Reversing link a; — a3

. P | =.50 ] =.12
No change in parameters P (+a3) =.32 PEIZ: | 1'33 _ (5)6 I;gzg, 32 - .053

Figure 1.2

Note that in the last step, P (a;! a,, a3) need not be computed because node a is re-
moved in the next step. This is always the case; when the last link is reversed into a



node that is to be removed, then that node’s conditional distribution need not be com-
puted. The parameters of each transformed network in this sequence are computed in
this example directly from the distribution that is defined by the previous network via
Eq. (1.1). However, a simple closed form formula has been developed by Olmsted [44]
and Shachter [55] which provides an efficient method for calculating these parameters.
Interestingly, the only requirement for correctness of this algorithm is that in comput-
ing P (a | Y), the distribution P (a, ¥) represented by the original network must remain
unchanged by the transformations. This requirement is met because the transformed
network never introduces any new independence assertions.

This algorithm has several disadvantages; it computes in each step the distribu-
tion function over all instances of Y, although we may be interested in computing the
distribution only for one specific instance ¥ of Y. Its complexity depends on the order
by which links are reversed, it is not aimed towards producing explanations as to how
the outcome is reached and it is not incremental, namely, when new information be-
comes available, the algorithm must start the computations from scratch. On the other
hand, it is conceptually simple and it operates on arbitrary networks.

Pearl developed an algorithm for singly-connected networks, namely, networks
in which every two nodes are connected with at most one trail. His algorithm is linear
in the number of variables, produces explanations that are meaningful to a human ob-
server, is easily implementable by parallel architectures and is incremental [48]. Un-
fortunately, it works only for singly-connected networks. Adjustments were suggested
to make the algorithm applicable to general networks [49], but many of its advantages
vanish, in particular, its linear complexity. This is not surprising in light of Cooper’s
result showing that inference in Bayesian networks is NP-hard [12]. This realization
motivated Henrion to introduce the method of stochastic relaxation where exact calcu-
lations are abandoned in favor of answers with preselected precision [33]. Chavez and
Cooper analyzed a variant of this method [8, 9]. The main problem of these type of al-
gorithms is their convergence rate which is unbounded when the distribution represent-
ed by the network uses parameters close to zero or one.

Another important algorithm is Lauritzen and Spiegelhalter’s, which initially
compiles a given network to a tree representation [41]. This compilation may be time
and space consuming but it is performed only once. Afterwards, every query can be
answered directly from the tree representation in time exponential in the size of the
largest clique. First, the algorithm adds links to the networks until the networks be-
comes chordal, namely, every undirected cycle of length at least four contains a chord.
In the cancer example, this step results in adding, for example, a link between a, and
as. The problem of adding minimum number of links to obtain a chordal graph is NP-
complete, but efficient algorithms are known that achieve near-to-optimal behavior



[69]. The next step in this algorithm is to form clusters of nodes according to the
cliques of the resulting graph G and to organize them in a structure called join-tree; a
tree of clusters in which every two clusters sharing a variable are connected via a path
through clusters that contain this variable. A join-tree is guaranteed to be formed
whenever G is chordal. For example, a join-tree for the metastatic example is given in
Figure 1.3 below.

a,as3,a4

Figure 1.3

This graph asserts, for example, that a4 and as are independent given ai, a; and as,
because node C; blocks the path between C, and C3. This independence assertion also
holds in the original network of Figure 1.1. Indeed, this is always the case; the join-
tree never introduces independence assertions not supported by the original network
[49]. However, some independence assertions might escape explicit representation in
the join-tree; these are encoded in the numeric parameters computed for the cliques.
The precise formation and manipulation of these probabilistic parameters is omitted;
see [41] and [49] for details.

1.3 Dependency Models

The concept of conditional independence plays a major role in probabilistic expert sys-
tems because it provides a mechanism for determining what information is unnecessary
for performing a given computation. We say that two sets of variables X and Y are
conditionally independent given Z, in some probability distribution P, if
P(X1Z,Y)=P(X|Z) whenever P(Y,Z)>0 (1.2)
for every instance X,Y and Z of X,Y and Z, respectively. This definition conveys
the idea that once Z is known, the value of Y is irrelevant for calculating the probabili-
ty of X namely, propositions represented by the set X are judged to be irrelevant to the
propositions represented by the set Y, once we know Z. This definition captures our
intuition about how dependencies are changed when learning new facts. For example,



it permits two independent variables to become dependent upon learning a new fact, as
in the “‘asbestos exposure’’ and ‘‘smoking habits’’ example, and it also renders depen-
dent variables independent once we learn a fact that mediates between them, as in the
case of two variables representing ‘‘rain’’ and ‘‘slipping on a pavement’’ which are
dependent but become independent upon learning that the pavement is covered. The
former type of dependence is called induced dependence and the later is called mediat-
ed dependence [49]. Thus, probabilistic conditional independence is sufficiently flexi-
ble to represent changes in dependencies and can in principle be employed for identify-
ing which propositions are needed for a computation at any given state of knowledge.

Dependency models are formal ways for qualitatively representing such depen-
dencies. A dependency model is as a truth assignment rule for the predicate
I(X,Z,Y), where I stands for ‘X is independent of Y once Z is known’’. Equivalent-
ly, M can be regarded as a list of triplets (X, Z, Y) for which (X, Z, Y) holds. Every
distribution defines a dependency model through Eq. (1.2). However, a dependency
model can encode the dependencies among variables without necessarily referring to
probability distributions. In particular we are interested in graph-based models which
determine these dependencies by tracing paths in a graph whose nodes represent the
variables of interest. In dependency models based on undirected graphs, two sets of
variables X and Y are said to be conditionally independent given Z if all paths between
nodes corresponding to X and nodes corresponding to Y must traverse Z, i.e., if Z is a
cutset separating X from Y ). A trivial example of such a dependency model is the
empty graph over n nodes, which represents a set of mutually independent variables.
Another simple example is a chain representing a Markov process, say a language
where the probability of the i-th letter is determined solely by the (i-1)-th letter via
P (l; 1 l;_1). The dependencies embedded in the distribution function can be represent-
ed by the Markov chain of Figure 1.4.

Figure 1.4

This graph asserts, for example, that variables /; and /3 are conditionally independent
given /5, since node I, blocks all paths from /, to /3. More generally, for every three
disjoint sets X, Y and Z of nodes in a graph G, we define the predicate I (X, Z, Y)g
by:

(*) The correspondence between vertex separation and conditional independence is the basis for
Markov-fields theory [14, 37, 39].

10



IX,Z,Y)g <=>Z separates X fromY inG.

We say that G represents the dependencies of P if there exists a 1-1 correspondence
between the variables in P and the vertices of G such that:

IX,Z2,Y)s=1X,Z,Y), (1.3)
Such a graph is called an independence-map (I-map) of P. When the implication in

equation (1.3) is bi-directional, we say that G perfectly represents the dependencies of
P and such a graph is called a perfect-map of P.

Undirected graphs have several disadvantages in representing dependencies.
First, induced dependencies have no perfect representation because two nodes that
represent independent variables will always remain independent when new variables
are learned; paths that were blocked by a set of nodes S remain blocked when S is aug-
mented with new nodes (representing additional pieces of information). Directed acy-
clic graphs, on the other hand, are well suited for representing induced dependencies.
Furthermore, links in dags can be quantified compatibly with the independencies en-
coded in the dag in a way amenable to human experts (see Eq (1.1) and the metastatic
cancer example). Undirected graphs lack such a simple quantification procedure.
Despite these two disadvantages, undirected graphs are used in practice because they
provide a conceptually simple representation of dependencies and because they facili-
tate efficient inference procedures [41]. In particular, undirected graphs are useful as
an internal representation for independencies, such as join-trees in Lauritzen and
Spiegelhalter’s inference algorithm, while directed acyclic graphs are useful for elicit-
ing the knowledge from an expert.

The discussion above is summarized by the definitions of dependency models,
perfect maps and /-maps. These definitions were developed by Pearl and Paz [51].

Definition [51]: A dependency model M over a finite set of elements U is any subset
of triplets (X, Z,Y) where X, Y and Z are disjoint subsets of U.

Definition [51]: Let U be a finite set of variables. Let domain (u;), u; € U, be count-
able sets, called the domain of u;. A Probabilistic Dependency Model Mp is defined in

terms of a discrete probability distribution P with a sample space W X domain (u;). If

X,Y and Z are three disjoint subsets of U, and X, Y and Z are any instances from the
domains of the variables in these subsets, then by definition (X, Z,Y) € Mp iff

PX,Y,Z)P(Z)=P(X,Z)P(Y,Z). (1.4)

A Probabilistic Dependency Model is said to be non-extreme if the range of P is res-
tricted to the positive real numbers, (i.e., excluding 0’s and 1’s). Note that Eq. (1.4)is
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equivalent io equation (1.2) whenever P (Y, Z)> 0.

Definition [51]: An Undirected Graph Dependency Model Mg is defined in terms of
an undirected graph G. If X, Y and Z are three disjoint subsets of nodes in G, then by
definition I (X, Z, Y) iff every path between nodes in X and Y contains at least one
nodeinZ.

When speaking about dependency models, we use both set notations and logic nota-
tions. If (X,Z,Y) e M, we say that the independence statement I (X ,Z,Y ), holds for
M. The subscript 2 is omitted when the type of independence is not important. Simi-
larly, we say that M contains a triplet (X,Z,Y) or that M satisfies a statement
I(X,Z,Y). An independence statement / (X,Z,Y) is called an independency and its
negation is called a dependency. The notation P (Z), stands for P (Z) for all instances
Z of Z, or more explicitly, it stands for P(zy=z,, ‘-, z,=z,) where the z;’s are the
variables in Z, and z; ’s are arbitrary instances of z;’s.

Definition [51]: An I-map of a dependency model M is any model M’ such that
M’'cM. A perfect map of M is any model M” such that M"=M. A graph G is a
minimal-edge I-map if the dependency model defined by G is an I-map of M, and G
ceases to be an /-map if any link is removed.

The graph of figure 1.4, for example, is an /-map of the distribution defined by the tran-
sition probabilities P (/;4; | [;) of the corresponding Markov process. This graph, how-
ever, is not necessarily a perfect map because a degenerate Markov process might em-
body independencies that cannot be read from the topology of a chain, for example,
I(l2, D, I3). Interestingly, it has been shown that if a chain is a minimal-edge /-map of
a Markov process, all variables are binary, and every combination of letters is possible,
then the chain must be a perfect map [25].

There are two important types of dependency models that have not been men-
tioned so far: Relational and Correlational. A Relational Dependency Model My is
defined in terms of a discrete probability distribution R. A triplet (X, Z,Y) belongs to
Mp if once Z is fixed, the range of values permitted for X is not restricted by the
choice of Y. A Correlational Dependency Model M¢ is defined in terms of a collec-
tion C of random variables. A triplet (X,Z,Y) belongs to M¢ if the linear estimation
error of the variables in X using measurements on Z would not be reduced by adding
measurements of the variables in Y, hence making Y irrelevant to the estimation of X .
Precise definitions of these independence relations is given in Chapter 2.
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These three types of independence: probabilistic, relational and correlational
provide different formalisms for the notion of irrelevance, each capturing different as-
pects of the word ‘‘irrelevant”’. The similarity between these models is summarized
axiomatically by the following definition of graphoids.

Definition: [51] A graphoid is any dependency model M which is closed under the
%
following inference rules, considered as axioms: ™)

e Trivial Independence:

IX,Z,D) (1.5a)
e Symmetry:

IX,2,Y) = I1¥,Z,X) (1.5b)
e Decomposition:

IX,Z,YUW) = IX,Z,Y) (1.5¢)
® Weak union:

IX,Z,YUW) =2 IX,ZUW,Y) (1.5d)
e Contraction:

IX,Z,Y)&IX,ZUY, W) = IX,Z,YUW) (1.5¢)

Intuitively, the essence of these axioms lies in Egs. (1.5d) and (1.5e) asserting
that when we learn an irrelevant fact, all relevance relationships among other variables
in the system should remain unaltered; any information that was relevant remains
relevant and that which was irrelevant remains irrelevant. These axioms, are very simi-
lar to those assembled by Dawid [15] for probabilistic conditional independence, those
proposed by Smith [61] for Generalized Conditional Independence and those used by
Spohn [64] in his exploration of causal independence. We shall henceforth call axioms
(1.5a) through (1.5e) graphoid axioms. It can readily be shown that all the specialized
classes of dependency models presented thus far are graphoids, and in view of this gen-
erality, these axioms are selected to represent the notion of mediated dependence
between items of information [49]. A proof that the graphoid axioms hold for condi-
tional independence when U, the set of variables, is countable and the cardinality of
the domain of each variable is unrestricted, can be found in [64]. Our reason for avoid-
ing infinite number of variables and non-countable domains is the technical burden im-
posed by removing these restrictions which will severely distract our discussion while
adding no insight.

(*) This definition differs slightly from that given in Pearl and Paz [51] where axioms (1.5b)
through (1.5¢) define semi-graphoid and dependency models obeying also (1.6) are called
graphoids. Axiom (1.5a) is added for future clarity.
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Non?extreme probabilistic dependency models enjoy additional properties that
do not hold for arbitrary probabilistic models. Two such properties are listed below:

e Intersection:
IX,ZOUW,Y) & IX,ZUY, W) = IX,Z,Y UW) (1.6)

e Strong Intersection:
IX,ZUW,Y) & IX,ZuY=Y, W)= IX,Z,Yyuw) @17

The intersection axiom is best visualized using the undirected graph interpretation. If
Z U W is a set of nodes that shield X fromY and Z U Y is a set of nodes that shield X
from W, then their intersection Z shields X from both Y and W. Intersection holds for
non-extreme distributions but does not hold for correlational or relational dependency
models. A graphoid satisfying intersection is called an intersectional graphoid. In
modeling empirical knowledge (e.g., mineral exploration and weather prediction), it is
reasonable to assume that every combinations of facts has some non-zero probability of
occurring, which renders the intersection axiom valid.

Strong intersection differs from the other properties of dependence models in
that it refers to an independence assertion that holds only for one instance of a variable
(ie., Y=Y), thus being asymmetric. A definition of refined dependency models is
developed in Chapter 5, where reference to asymmetric independence is needed.

That strong intersection and intersection hold for non-extreme distributions is
shown by the proof below:

IX,ZUW,Y)p implies P(X | Z,W,Y)=P (X | Z, W),which in particular implies
that PX |1 Z,W,Y=Y)=P(X|Z,W). The first term of these is equal also to
PXI1Z,Y=Y)duetoI(X,ZUY=Y,W)p. Thus, PX | Z,W)=P(X|Z,Y=Y).

PXI|Z )=;P(X | Z, W)P (W | Z). Plugging the previous equality in the latter
sum yields that P(X | Z) equals P(X | Z,Y=Y) which has been shown to equal
PX 1 Z,W). In other words, /(X,Z, W)p must hold (Eq. 1.2). This independence

statement together with /(X,ZUW,Y)p, using contraction (1.5¢), yields
I(X,Z,Y U W)gp, which is the desired consequence. [

That intersection does not hold in general can be seen from the following exam-
ple; if x, y and w are three variables constrained by equality and z= &, then the two
antecedents of the intersection axiom hold but the consequence is violated.
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Note that strong intersection implies intersection but not vice versa. This is an
important observation because it indicates that intersection does not summarize the
difference between extreme and non-extreme probabilistic dependency models; there
are many extreme probabilistic models that satisfy intersection. These distributions en-
joy the computational advantage that intersection offers, namely, an efficient construc-
tion of an undirected graph representation. This construction is discussed below.

1.4 Probabilistic Networks

An important tool in representing probabilistic information is the construction of an ap-
propriate graph representation, directed or undirected, for the dependencies in the
domain. Ideally, to graphically represent all independencies of some distribution P by
a graph G, we would like to require that every independence of P would belong to
Mg, the dependency model defined by G, and vice versa, every triplet in Mg would
represents an independence that holds in P. In other words, that G be a perfect map of
P . This would provide a clear graphical representation of all variables that are condi-
tionally independent. Unfortunately, this requirement is often too strong because there
are many distributions that have no perfect map in a graphs. The spectrum of proba-
bilistic dependencies is in fact so rich that it cannot be cast into any representation
scheme that uses a polynomial amount of storage ) Thus, the topology of a graph
alone cannot always represent all the independencies and dependencies of a given dis-
tribution. Being unable to obtain a graphical representation that displays all indepen-
dencies we compromise this requirement and allow some independencies to escape
representation. Naturally, we seek a graph that displays only genuine independencies
of P and which maximizes the number of such displayed independencies, namely, we
require that G be a minimal-edge /-map of P. The resulting graph is called a Markov
network of P .

Definition [51]: A graph G is called a Markov network of a dependency model M, if
G is a minimal-edge /-map of M, namely, deleting any edge of G would make G
cease to be an /-map of M.

The definition of a Markov network suggests a naive algorithm for constructing
such a network from a given dependency model M; starting with a complete graph,
where every node corresponds to a variable of M, remove any link as long as the
remaining graph is an /-map. There are two difficulties with this algorithm. First, the
resulting network may depend on the order by which links are removed and second,

(*) This claim is established by showing that the number of probabilistic dependency models
over U is at least O(2 exp{2'U'}), thus requiring, on the average, exponential amount of
storage to represent an arbitrary dependency model [71]).
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checking that the remaining graph is an /-map of M may require an exponential
number of steps, one for each independence statement encoded in G. Both problems
are resolved if M satisfies symmetry, decomposition and intersection (e.g., if M is a
non-extreme probability model). These properties guarantee that the Markov network
Go of M is unique and can be obtained by removing a link (a,b) whenever
(@,U—-{a,b},b)e M, namely, whenever a and b are independent given the rest of
the variables. Thus, the order by which links are removed is immaterial. Alternatively,
if M also satisfies weak union, as every probability distribution does, then G can also
be obtained by connecting each node a to a minimal set of nodes N (a), such that
(@,N(a),U —N(a)-{a}) e M, namely, the neighbors of a in G correspond to a
minimal set of variables N (a) that make a conditionally independent of the rest of the
variables of M. A minimal set of variables that makes a variable a conditionally in-
dependent of all other variables is called a boundary of a (it is minimal if no node can
be removed without destroying this  property). The  statements,
I(a,N(a),U-N(a)-{a}), one for each variable of M, are called the neighborhood
basis of M . Similarly, the statements I (@, U~{a, b}, b) that hold for M are called the
pairwise basis. The name basis comes from the fact that these statements are sufficient
to identify a graph uniquely. The two types of bases have a common structure; they
both consists of saturated statements, namely statements I(X,Z,Y) where
XVUYUZ =U and U is the set of all variables [42]. In Chapter 2, we show that the
graphoid axioms are sound and complete for saturated independence, namely, that these
axioms characterize conditional independence if we limit ourselves to saturated state-
ments. In particular, soundness implies that every separation statement I (X, Z, Y)g
that holds in a graph G is derivable by successive applications of the graphoid axioms
from either of its bases.

Pearl and Paz [51] have shown that the boundary of each variable is unique
whenever M satisfies symmetry, decomposition, intersection and weak union. These
conditions, however, are a bit too strong. The axiom below is sufficient to guarantee
unique boundaries. This axiom is implied both from symmetry, decomposition, inter-
section and weak union, and from symmetry, decomposition, intersection and contrac-
tion, but it is weaker than these two sets of axioms.

I(@,ZuV,,WUVy) & I(a,ZUVy, WUV)) = I(a,Z, WUV UV, (1.8)

Proof: Axiom (1.8) states that if §;=ZUV and S, =Z UV, are two boundaries of
a, then their intersection Z is also a boundary. Thus, the intersection of all boun-
daries is a boundary, and is therefore unique.
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The construction of Markov networks is summarized by the following theorem:

Theorem 1.1 [51]: Every dependency model M satisfying symmetry (1.5b), decompo-
sition (1.5¢) and intersection (1.6) has a unique minimal /-map G = (U, E ) produced
by connecting those nodes @ and b for which (a,U—{a,b },b) e M,ie.,

(@a,b)e Eg & (a,U-{a,b},b)e M.

If M further satisfies weak union (1.5d) then G equals to the graph produced by con-
necting each node a to a minimal set of nodes N(a) such that
(asN(a)9 U-N(a)_{a } ) eM.

This local construction of an undirected graph representation can be applied to
any distribution that excludes 0’s and 1’s but is not guaranteed for distributions that do
not satisfy intersection. For example, If P is a distribution of three variables x, y and
z that are constrained to be equal, then each two variables in P are conditionally in-
dependent given the third. Thus, both methods offered by Theorem 1.1 for construct-
ing a Markov network yield an empty graph. This graph is not an I-map of P because
it shows that x, y and z are independent while, in fact, they are dependent because they
must be equal (a correct minimal-edge I-map would be any chain that connects these
three variables). Nevertheless, a construction of a graphical representation for arbitrary
graphoids is available when using the language of directed acyclic graphs (dags) and
the directional-separation (d-separation) criteria.

The definition of d-separation is best motivated by regarding directed acyclic
graphs as a representation of causal relationships. Designating a node for every vari-
able and assigning a link between every cause to each of its direct consequences
defines a graphical representation of a causal hierarchy. For example, the propositions
“‘It is raining’’ (r), ‘‘the pavement is wet’’ (w) and ‘‘John slipped on the pavement’’
(s ) are well represented by a three node chain, from r through w to s ; it indicates that
rain and wet pavement could cause slipping, yet wet pavement is designated as the
direct cause; rain could cause someone to slip if it wets the pavement, but not if the
pavement is covered. Moreover, knowing the condition of the pavement renders
““slipping’’ and ‘‘raining’’ independent, and this is represented graphically by showing
node r and s separated from each other by node w. This configuration represents a
mediated dependence. Furthermore, if we assume that ‘‘broken pipe’’ (b) is another
direct cause for wet pavement, as in Figure 1.5, then an induced dependency exists
between the two events that may cause the pavement to get wet: ‘‘rain’’ and ‘‘broken
pipe’’. Although they appear connected in Figure 1.5, these propositions are marginal-
ly independent and become dependent once we learn that the pavement is wet or that
someone broke his leg. An increase in our belief in either cause would decrease our
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belief in the other as it would ‘‘explain away’’ the observation.

Rain (b) Broken pipe

Wet pavement

Slipping

Figure 1.5

The following definition of d-separation permits us to graphically identify such induced
dependencies from the network. A preliminary definition is needed.

Definition: A trail in a dag is a sequence of links that form a path in the underlying un-
directed graph. A trail is said to contain the nodes adjacent to its links. A node b is
called a head-to-head node with respect to a trail ¢ if there are two consecutive links
a - b and b « c ont. A node that starts or ends a trail ¢ is not a head-to-head node
with respect to ¢.

The definitions of undirected graphs, acyclic graphs, trees, spanning trees, cliques,
paths, adjacent links and nodes can be found in any text on graph algorithms (e.g.,
[18D).

Definition [49]: If X, Y, and Z are three disjoint subsets of nodes in a dag D , then Z is
said to d-separate X from Y, denoted I (X, Z, Y ), iff there exists no trail ¢ between a
node in X and a node in Y along which (1) every head-to-head node (wrt ¢) either is or
has a descendent in Z and (2) every node that delivers an arrow along ¢ is outside Z. A
trail satisfying the two conditions above is said to be active. Otherwise, it is said to be
blocked (by Z).

18



Figure 1.6

In Figure 1.6, for example, X= {a;} and Y ={a3} are d-separated by Z = {a;}; the
trail a3 «-a1 — a3 is blocked by a; € Z while the trail a; — a4 a3 is blocked be-
cause a4 and all its descendants are outside Z. Thus I (a3, a1, a3)p holds in D. How-
ever, X and Y are not d-separated by Z’ = {a, ag} because the trail a, — a4 « as is
rendered active: learning the value of the consequence a¢, renders its causes a, and a;
dependent, like opening a pathway along the converging arrows at a4. Consequently,
I(ay, {a1a6},a3)p does not hold in D. Note that if a dag contains no head-to-head
nodes, then separation and d-separation are equivalent.

Definition: A Dag Dependency Model Mp is defined in terms of a directed acyclic
graph D. If X, Y and Z are three disjoint sets of nodes in D, then, by definition,
(X, Z.Y) e Mp iff there is no active trail by Z between nodesin X and Y.

The task of finding a dag which is a minimal-edge /-map of a given distribution
P was solved in [53, 72]. The algorithm consists of the following steps: assign a total
ordering d to the variables of P. For each variable a; of P, identify a minimal set of
predecessors 7t(a;) that renders @; independent of all its other predecessors in the order-
ing of the first step. Assign a direct link from every variable in 7t(g;) to a;. The result-
ing dag is an /-map of P, and is minimal in the sense that no edge can be deleted
without destroying its /-mapness. The input L for this construction consists of n condi-
tional independence statements, one for each variable, all of the form
I(a;, m(a;), U(a;)-n(a;)) where U(a;) is the set of predecessors of a; and n(a;) is a
subset of U (a;) that renders a; conditionally independent of all its other predecessors.
This set of conditional independence statements is said to generate a dag and is called a
recursive basis drawn from P .
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Definition [49]: A dag D is called a Bayesian network of a dependency model M , if D
is a minimal-edge /-map of M, namely, deleting any edge of D would make D cease to
be an I-map of M.

The two theorems below summarize the discussion above.

Theorem 1.2 (soundness) [72]: If M is a graphoid, and L is any recursive basis drawn
from M, then the dag generated by L is an I-map of M .

Theorem 1.3 (closure) [72]: Let D be a dag generated by a recursive basis L. Then
Mp, the dependency model defined by D, is exactly the closure of L under axioms
(1.5a) through (1.5¢)

The significance of Theorems 1.2 and 1.3 is two fold. From a practitioner’s
view point, it allows us to reason about the structure of one’s problem without the need
to specify the model numerically. From a researcher’s view point, it allows us to for-
malize and derive arguments about independencies by simple steps of logic deductions.
Notably, the main difference between the construction of Bayesian networks and Mar-
kov networks, aside from the intersection axiom that is needed for the latter, is the
stratification required for the construction of Bayesian networks. If a new variable is
added to a Bayesian network, only local changes need to be incorporated, while the
construction of a Markov network must start form scratch because each statement in its
basis depends on the set of all variables U and when U changes, the entire graph needs
to be revised.

Although the structure of the network depends strongly on the node ordering
used in its construction, each network is nevertheless an I -map of the underlying distri-
bution P. This means that all conditional independencies portrayed in the network (via
d-separation) are valid in P and hence, are order independent. An immediate corollary
of this observation yields an order-independent test for minimal J -mapness.

Corollary 1.4: Given a DAG D and a probability distribution P, a necessary and
sufficient condition for D to be a minimal /-map (hence a Bayesian network) of P is
that each variable X; be conditionally independent of all its non-descendants, given its
parents S;, and no proper subset of S; satisfies this condition.

The necessary part follows from the fact that every parent-set S; d-separates X;
from all its non-descendants. The sufficient part holds because X;’s independence of
all its non-descendants entails X; ’s independence of its predecessors in a particular ord-
ering d.
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The construction of a Bayesian network for M requires that the parent set of
each node be minimal, namely, no arc from a parent to a child a; can be removed
without violating the condition (a;, n(a;), U (a;) — ®(a;)) € M. Bayesian networks are
not unique; first, they are very sensitive to the order of M ’s variables—one order may
yield a complete graph while the other would produce a tree. Second, even when the
order is fixed, a minimal set of variables that makes a; independent of its predecessors
in that order may not be unique. However, if M is an intersectional graphoid, or more
precisely, if axiom (1.8) holds, then, once the order is fixed, the resulting dag is unique.

In Chapter 3, the dag representation scheme is extended to include a representa-
tion of deterministic variables, namely, variables that are functions of the variables
corresponding to their parents [55]. In this scheme, more independencies are recorded
in the dag, in particular, given its parents values, a deterministic node is conditionally
independent of its descendants as well as of its non-descendants.

Other types of probabilistic networks are discussed in [38, 73]. Review of the
use of probabilistic networks and decision theory in expert systems can be found in [11,
34].

1.5 The Main Contributions

The research reported in this dissertation establishes a suitable theoretical framework
for expert systems founded on probability theory. Previous approaches to expert sys-
tems construction were mostly ad hoc. These methods, most notably the certainty fac-
tor paradigm upon which MYCIN [58] is based, were invented to overcome the so-
called ‘‘impracticality’’ of probability theory, which if naively applied, seem to require
vast amount of data and insurmountable amounts of computations. The use of certainty
factors, although computationally very efficient, turned out to produce conceptually
unacceptable conclusions even for very simple diagnostic problems. When certainty
factors were found to work correctly, the computations were equivalent to those per-
formed in a Bayesian network of a tree topology [30]. This topology is very restrictive,
implying assumptions of independence, that are unlikely to be met in practice. Conse-
quently, it has been realized that the key to constructing practical expert systems is to
strike a practical balance between computational tractability and semantical-adequacy
[49]. Conditional independence plays a major role in achieving such balance.
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This dissertation investigates properties of conditional independence in relation
to the elicitation, organization and inference of probabilistic expert systems. Qualita-
tive notions of interaction, connectedness, mediation and causation are given formal
probabilistic underpinning, and graph-based representations and algorithms are
developed for processing these notions. Its main contributions are the formal charac-
terization of conditional independence, the development of algorithms that derive such
dependencies and identify them in graphical representations, the development of an al-
gorithm that recovers the topology of a Bayesian network from statistical data, and,
finally, a formalization of the concept of interaction among variables; a tool for organ-
izing probabilistic assessments elicited from a human expert.

Chapter 2 develops a partial axiomatic characterization of conditional indepen-
dence; the graphoid axioms are shown to be complete for special types of independence
such as marginal independence and saturated independence. Conditional indepen-
dence is shown to be a relation that is completely characterized by Horn type axioms.
This property facilitates a proof that any undirected graph and any dag is suitable for
perfectly representing the dependencies embedded in a probability distribution.

Chapter 3 investigates the relationships between conditional independence and
its graph-based representations. In particular, the graphoid axioms are shown to be
powerful enough to fully characterize the independencies that logically follow from the
topology of a network. A new graphical criteria, D-separation, is introduced; it allows
us to detect a maximal set of independencies that are encoded in a Bayesian network
for which some variables are known to be functions of their parents’ variables.

Chapter 4 associates the directionality of a link a— b in a Bayesian network
with the sentence ‘‘a is a cause of b ’*, an association that is implicit in the definition of
d-separation. This association is potentially justified provided that the direction of a
link is not sensitive to the specific order chosen to construct the network. Conditions
are provided under which the directionality of some links is uniquely recoverable; an
essential prerequisite for the recovery of causal relationships from statistical data. An
efficient algorithm is developed that recovers these links whenever possible.

Chapter 5 concentrates on the problem of organizing probabilistic assessments.
Two variables are said to interact if there exists a context in which they are dependent.
The notion of interaction is useful for partitioning a set of variables to clusters that
reflect independent subdomains. It is shown that for a large class of distributions,
called separable, interaction induces a partition that coincides with the connected com-
ponents of the corresponding Bayesian network and argues that it is a plausible choice
to use separable distributions for the construction of these networks. Normal and
strictly-positive binary are example of separable distributions.
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Aside of the contributions of each individual chapter, and perhaps even more
important, this dissertation provides a qualitative framework for research in a field that
has been mostly governed by numerical techniques. The axiomatic approach
developed in the first three chapters resting on the graphoid axioms, helps focus atten-
tion on the structure of probability arguments and on the organization of probabilistic
expert systems. Chapter 4 and 5 present the first fruits of this approach; results which
would be almost impossible to obtain without the axiomatic approach.
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CHAPTER 2
A Study of Three Independence Relations

Three independence relations: correlational, relational and probabilistic are examined.
The traditional numeric exploration of these concepts is abandoned in favor of a logi-
cal characterization. It is shown that the graphoid axioms are powerful enough to
characterize meaningful subsets of these three independence relations. Furthermore,
it is shown that Hom-axioms are sufficient for describing probabilistic and relational
independence, but are not sufficient for correlational independence, which requires
disjunctive axioms.

2.1 Introduction

The traditional definition of conditional independence suggests that in order to verify
whether X is independent of Y, given Z, one must possess at hand a distribution
P (X,Y,Z) and test whether this distribution satisfies a set of equalities (Eq. 1.4). This
definition stands in sharp contrast to the expert’s ability to identify independencies
easily and confidently, while having difficulties assessing the required distribution.
Thus, if one wishes to create a framework in which an expert feels comfortable to ex-
press knowledge, one must provide a language in which information about dependence
can be expressed without reference to numeric distributions. On the other hand, one
must be certain that this language allows only the specification of independence and
dependence assertions that are consistent, namely, assertions that can be realized simul-
taneously by some probability distribution.

A simple example serves to illustrate the problem: Are the following two state-
ments consistent: ‘‘a is independent of both b and ¢’’ and ‘‘a is dependent on b, once
¢ is known’’ ? Could these two assertions be realized simultaneously? The answer is
negative. Whenever the former statement is realized, the negation of the latter is im-
plied. This observation is phrased axiomatically by the weak union axiom (1.5d), or
more explicitly by the axiom below, showing that the negation of the second assertion
is implied from the first:

I(a,d,{b,c}) = I(a,c,b).
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A critical step in assessing whether a given mixed set of dependencies and in-
dependencies is consistent is the solution of the implication problem: Given a set T of
independencies and a single independence statement o, decide whether & logically fol-
lows from Z, namely whether every distribution that satisfies £ must satisfy ¢ as well.
If the answer is negative, then the negation of G is consistent with X, otherwise it is in-
consistent. The basis for the solution of the implication problem is a complete set of
inference rules. A complete set of inference rules is guaranteed to generate all in-
dependence statements that logically follow from a given set of statements. Such infer-
ence rules also serve to answer whether a set of independencies X+ and a set of depen-
dencies X~ are consistent: For each member of X~ determine, using the implication al-
gorithm, whether its negation logically follows from X*. If the answer is negative for
all members of X, then the two sets are consistent, otherwise they are inconsistent.

The correctness of this algorithm is a major result of this chapter. It stems from
the fact that if each member of X~ is individually consistent with T+, then the entire set
2~ is consistent with Z*. Independence relations that possess this property are called
Armstrong relations (Section 2.3). These relations are characterized by the fact that if
a disjunction of independence statements logically follows from a given set of such
statements, then at least one disjunct must follow in itself. Thus, in order to check con-
sistency of a set of assertions articulated by an expert, it suffices to check consistency
of each individual dependency with the set of independencies.

This chapter is organized as follows: Section 2.2 presents the basic notions of
soundness and completeness of a set of axioms. Section 2.3 shows that probabilistic
and relational independence are Armstrong relations while correlational independence
is not. Section 2.4 and 2.5 establish a complete set of axioms for marginal and saturat-
ed statements drawn from three distinct types of independence relations: correlational,
relational and probabilistic. Section 2.6 summarizes most results in three tables.

2.2 Preliminary Definitions

The following notations are employed: o, possibly subscripted, denotes a statement, =
denotes a set of statements and 2 denotes a class of distributions. Among these are
strictly positive discrete distributions (PD*), non-degenerated normal distributions
(PA), distributions over binary variables (PB) and the class of all discrete probability
distributions (PD). A distribution P (X) in PB is any joint distribution of the set of
variables X in which each x; € X has a domain of size two (e.g., {0, 1}). A distribu-
tion in PN’ is defined below. Variable symbols are drawn from a finite set
U={uyuy -} Letters x,y,z,u,v,w, possibly subscripted, denote variables,
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and X,Y,Z,V,W denote sets of variables. The set union symbol is dropped from
complicated expressions: XY is written instead of X U Y and Xa is written instead of
X U {a}. The phrase ‘‘with respect to’’ is abbreviated to ‘‘wrt’’. Three classes of in-
dependence statements are considered:

1) General statements of independence called probabilistic (independence) state-
ments, are denoted by /(X ,Z,Y )p, where X , Y and Z are finite disjoint sets of
variables, and I(X,Z,Y)p is defined by Eq. (1.2). The following are
equivalent definitions for / (X, Z, Y ) [39]:

IX,Z,Y)p <=> P(X,Y,Z)=P(X,Z)P (Y| Z) wheneverP(Z) >0 (2.1a)

IX,Z,Y)p <=> PX.,Y,Z)=f(X,Z) g(Y,Z) (2.1b)

functions f, g

ii) Saturated probabilistic statements (or saturated statements), also denoted
I(X,Z,Y)p, are a special case of probabilistic statements where X U YU Z must sum
to a fixed finite set of variables U .

iii) Statements of marginal independence (marginal probabilistic statements) are
denoted I (X, &, Y )p, where & means that the value of no variable in U is known.

Two types of independence relations, other than probabilistic, are examined in
this chapter: relational and correlational Their definition and the dependency models
they induce are given below.

Definition [51]: Let U be a finite set of variables and let domain (;), u; € U, be
countable sets. A Relational Dependency Model My is defined in terms of a discrete

probability distribution R with a sample space WX Udomain (). IfX,Y and Z are

three disjoint subsets of U, and X, Y and Z are any instances of the variables in these
subsets, then by definition (X, Z,Y) € Mp iff

R(X,Z)>0 & R(Y,Z)>0 = R(X,Y,Z)>0. (2.2)
When the implication above holds we say that / (X, Z, Y)g holds for Mp. The
relation I 4 is called relational independence. This definition views a distribution as

defining a relation that contains all instances that have non-zero probability. It conveys
the idea that, once Z is fixed, knowing Y cannot further restrict the range of values per-
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mitted for X . ™

Saturated relational statements and marginal relational statements are defined
analogously to saturated and marginal probabilistic statements. Readers familiar with
the literature of relational databases should recognize the similarities between relation-
al statements and embedded multi-valued dependencies (EMVD s) [20], as well as the
resemblance between saturated relational statements and multi-valued dependencies
(MVD) [4]. When appropriate, concepts borrowed from database theory are identified.

Definition [51]: A Correlational Dependency Model M is defined in terms of a finite
collection of random variables U having non-zero finite variances and finite means. If
X, Y and Z are three disjoint subsets of U, then by definition (X,Z, Y )e Mc iff
Parz =0foreverya € X and b € Y where pgpz is the partial correlation of ¢ and b,
defined recursively by the following equation [13]:

_ Pab.Z — PaczPbc.Z
Pavzote) = 02 3% (1 - p2. )" 23)

and

A - Elab-E[ab]]
Pab = Pab.2= ET " Ea1))% (E b-E 1%

where E [x] is the mean of x.

When the equation above holds we say that I (X, Z, Y ) holds for M. The re-
lation / . is called correlational independence. This definition conveys the idea that the
linear estimation error of the variables in X using measurements on Z would not be re-
duced by adding measurements on variables in Y, hence making Y irrelevant to the es-
timation of X . The numerator of equation (2.3) shows the change made in the correla-
tion between a and b once c is taken into account. The denominator is a normaliza-
tion factor that keeps the range of py,z. between —1 and 1.

A (non-degenerate) normal distribution is characterized by the multivariate den-
sity function of the form
= 1 - 1 - -1 X — t

where X 1is a vector of wvariables, m =E[X] is a vector of averages,
A=E[X —m) (X —m)' ] is the covariance matrix, and all variables have non-zero

(*) This type of independence has been defined by Fagin [20] in the context of relational
databases and was named qualitative independence in [57].
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finite variances and finite means. The predicate (X, Z, Y ), holds for a normal distri-
bution f , if:

fX1Z)y=fX1Y,Z)

where f stands for the conditional densities given Z. These densities are known to ex-
ists for non-degenerate normal distributions and they are normal [13]. Normal distribu-
tions enforce many properties on the predicate / of which the following is somewhat
surprising:

](X,Z=Z,Y)Q = I(X,Z,Y)T.

If two variables are independent given one instance of Z, then these variables are in-
dependent for any instance of Z. This property is due to the fact that a conditional nor-
mal distribution is always normal and its covariance matrix is not sensitive to the value
of the conditioned variables, only its means are [68, pp. 115]. This property relies on
the convention that a normal distribution is defined by the density function of the form
above. If the density is changed for some zero-measurable sets of points, then the
resulting distribution is no longer called normal.

Correlation and dependence are identical notions for normal distributions [13],
namely,

IX,Z,Y)p & IX,Z,Y)..

In other words, normal distributions portray only linear dependencies between vari-
ables; our investigation into correlational independence is therefore facilitated by exa-
mining probabilistic independence wrt the class of normal distributions.

The term statement will be used to denote any of the nine types of statements
defined above, namely, saturated, marginal, and unrestricted statements drawn from
one of three types of independence: probabilistic, relational and correlational. Unless
otherwise written, a statement / (X, Z, Y') stands for a non-trivial statement, i.e., where
X 2 and Y # . In other words, axiom (1.5a), I (X, Z, @), will be assumed to hold
and will not be stated explicitly.

Definition : An axiom
c1&k o & - &0, >0
is sound wrt a class of distributions 2 if every distribution P € P that satisfies the an-

tecedents of the axiom also satisfies 6. Axioms (1.a) through (1.e) are examples of
sound axioms wrt PD*, PB, PN, and PD.
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Definition: A statement & is logically implied (logically follows) by X, denoted
Sk »0, iff every distribution in 2 that satisfies T also satisfies 6. The set of statements
that logically follow from X (in ) is called the logical closure of T and is denoted by
T, '

Definition: Let 4 be a set of axioms. We say that ¢ is derivable from X using 4,
denoted T |46 or 6 € cly (), if there exists a derivation chain O1 ,..., Op = © such that
for each o, either Cj € X, or O; is derived by an axiom in 2 from previous statements.

Definition: A set of axioms 4 is sound wrt P iff for every statement & and every set of
statements X

if Z'— 40 then Z}: »0

The set 4 is complete wrt P iff

if Ei-: »0 then Zl"“ 20

Proposition 2.1: A set of axioms is sound wrt 2P iff each axiom in the set is sound wrt
P.
The proof is achieved by induction on the length of a derivation.

Proposition 2.2 (After Fagin [19]): A set of axioms 4 is complete wrt 2 iff for every
set of statements X and every statement 6 ¢ ¢l 5(X) there exists a distribution Py in®
that satisfies X and does not satisfy G.

Proof: This is the contra-positive form of the completeness definition: if Tl g0
(equivalently, 6 ¢ cly (Z)) then T kpo. O

A complete set of axioms does not provide sufficient means for deriving all the
information that is implied by a given set of statements. For example, assume that the
setZ={I(X,a,Y)p, I (X,,Y)p} is given, where a is a single variable and all vari-
ables are bi-valued ie., drawn from PB. It can be shown that the disjunction
IX,D,a)por IY,D,a)y logically follows from X [49]. Yet this disjunction cannot
necessarily be derived by a complete set of axioms; A complete set only guarantees to
reveal, correctly, that neither of the disjuncts is logically implied by X but would not
show that one of the two statements must hold. To obtain all disjunctions, a stronger
set of axioms is needed.

Definition (after [4, 19]): A set of axioms 4 is strongly complete wrt a class of distri-

29



butions 2, if for every set of statements X and for every set of single statements
{o;li=1,---,n} the following relation holds:

Tkpoi0or - oroc,. < Zhgoi0r - or o,

Similar to Proposition 2.2, the following holds:

Proposition 2.3 (After [4, 19]: A set of axioms A is strongly complete iff for every set

of statements X closed under axioms 4, there exists a distribution P in P that satisfies
N *k

all statements in ¥ and none other. (7

Note that a strongly complete set of axioms is complete but the converse is not
always true [19].

2.3 Armstrong Relations

The concept of Armstrong relations has evolved in the theory of relational databases
and has been stated by Fagin in rather general terminology that makes it applicable to
probabilistic, relational and correlational independence [21]. We will use this property
to show that completeness and strong completeness are identical concepts when speak-
ing about probabilistic independence but are distinct when speaking about correlational
independence. Furthermore, this property is used to justify the algorithm for checking
consistency which was described in section 2.1.

Fagin’s general setting consists of a class of models, which in our case is a class
of probability distributions, a class of sentences S (for our purposes independence
statements) and a relationship Holds that states whether a sentence holds in a given
model. Holds(P, 6) means that ¢ holds for P or that P satisfies 6. © is a logical
consequence of X, written X[ o, if every model that satisfies the set of sentences T
satisfies the sentence o as well. =¥ 2 {c| ZE o). A set of sentences X is consistent if
there exists a model that satisfies every sentence in X.

Theorem 2.4 [21]: Let S be a set of sentences. The following properties of § are
equivalent.

(a) Existence of a faithful operator. There exists an operator ® that maps

(*) Strong completeness is the analog of completeness in logic. Our completeness definition is
a weaker version of the standard definition. We use this terminology to emphasize the
importance of the latter, as reflected in Chapter 3.
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nonempty families of models into models, such that if ¢ is a sentence in S and
<P;:i € I'> is a nonempty family of models, then & holds for ® <P;:i e >
if and only if ¢ holds for each P;.

(b) Existence of Armstrong models. Whenever X is a consistent subset of S and
Z* is the set of sentences in S that are logical consequences of Z, then there is a
model (an ‘‘Armstrong model’’) that obeys * and no other sentences in .S.

(©) Splitting of disjunctions. Whenever X is a subset of $ and {c;:i € I} is a
nonempty subset of $, then = V{o;:i € I} if and only if there is some i in /
such that Tk o;.

Both b) and c) are important characterizations of Armstrong relations. Part b)
guarantees that for every set of statements X, one can find a model that satisfies all the
statements logically implied by X and none other. Thus, since probabilistic indepen-
dence is an Armstrong relation wrt PD (see Theorem 2.5), Theorem 2.4 assures the ex-
istence of a distribution P that satisfies exactly the logical closure T* of any given set
2 of probabilistic independence statements. We stress that the existence of such a dis-
tribution is unrelated to whether a finite complete set of axioms exists for probabilistic
independence wrt PD; The Armstrong property stands in itself. Part c) states that if a
disjunction of statements is logically implied by X, then at least one of the disjuncts
must be implied in itself. This property is useful in its contra-positive form; we will
use it to prove that probabilistic independence is not an Armstrong relation wrt PA( or
wrt PB.

Fagin provides several applications for his theorem and this dissertation pro-
vides an additional one. We first show the existence of a faithful operator for proba-
bilistic independence. We note that while the theorem holds for any cardinality of the
index set /, we use it only for finite nonempty I. Next we concentrate on two families
of distributions - all discrete distributions, PD, and strictly positive discrete distribu-
tions, PD*. Probabilistic independence is shown to be an Armstrong relation wrt both
families. It should be emphasized that an independence relation can be an Armstrong
relation wrt one class of distributions and not wrt another. For example, probabilistic
independence is shown to be an Armstrong relation wrt 2D but it is not an Armstrong
relation wrt PB; {I(a,<,b),I(a,c,b)} logically implies the disjunction
I(a,d,c)orl(c,D,b) wrt PB but neither of the disjuncts alone follows, thus violat-
ing condition (c) of Theorem 2.4.
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Theorem 2.5: Probabilistic independence is an Armstrong relation wrt PD.

Proof: We construct the operation ® for probabilistic independence using a binary
operation ®” such that if P =P ®" P,, then for every probabilistic independence
Statement we obtain;

®'P; satisfies I (X, Z,Y)p <> Py satisfies/(X,Z,Y)pand P, satisfiesI (X,Z,¥)p. (24

The operation ® is recursively defined in terms of ®” as follows:

® (Pl i=l.n}=((P1®P2)P3)® - P, ).

Clearly, if ®” satisfies Eq. (2.4), then ® satisfies the requirement of an Armstrong re-
lation, i.e.,

P satisfies I (X,Z,Y)p > \ifPl- satisfies I(X,Z,Y)p .

Therefore, it suffices to show that ® satisfies (2.4) (note that since ®’ is associative,
® is well-defined).

Let Py(x1,--+,x,) and Pop(xy, - -,x,) be two distributions sharing the
same set of variables. Let Ay, -+, A, be the domains of xy, -+, x, in P; and let
oy, -, 0, be an instance of these variables. Similarly, let By, ---,B, be the
domains of xy, -, x, in P, and By, - - -, B, an instance of these variables. Let the
domain of P =P ®" P, be the product domain A{xB{, --,A,xB, and denote an
instance of the variables of P by (o, B1), -, (0, Bn), or more condensed by,
ouP1, -, 0, B.. Define P® P, by the following equation:

P(ouBy,00B2,  , 0uBa) =P, 0, , 0)  PaB1, B2y s Ba)

If Py and P, are proper probability distributions, then so is . The distribution P is
called the direct product of P and P,. Note that variables’ domain is being altered
by the product distribution; these are not random variables in the common discourse
of probability theory. The latter are usually defined for a fixed domain.

To prove that @ satisfies the required conditions, we first show that a similar
equation holds for every subset {x;, , - -, x;,} of the variables of P, namely that,

P (0B, 0iBiy e 04 B =Py, 04,0, 04)  PaBi s Biys o By) . (25)

We start by validating Eq. (2.5) fori;=1,ip,=2,---i; =[. When /=n this equation

32



is identical to Eq. (2.4). We proceed by descending induction. Assume Eq. (2.5)
holds for /= k < n, then,

P(ouBr, 0k-1Br-1) =3 P (0uBr, -+ 0k-1Bimt » Xk)

= P a,--.,a_’a .P ,_..’ 1,
(@, BT 4,8, 1o k-1, ) Pa(By Bie-1, Br)

= aﬁgA‘Pl(al L,y Ot Otk)} : li Bk;Bsz(Bl vt Brer s Br)

=Py, -, 04-1) PaB1,- -, Be-1)

The proof of Eq. (2.5) is completed by repeating the induction step for the n! order-
ingsof {x1, - ,x,}.

It is left to show that for every statement I (X, Z, Y ) we have
I(X,Z,Y)pholds for P iff I(X,Z,Y)p holds for both Py and P,.

More explicitly, we show that for every instance of X, Y, Z for which P(Z) > 0, the
equation below holds:

PX,Y,Z)=PX,Z) - P(Y|Z)iff P1(X,Y,Z2)=P,(X,Z)-P;(Y12Z) and

PyX,Y,Zy=P,X,Z)-PXY | Z) 2.6)

Let 0y, 0y, 0, be an instance of X, Y, Z in Py and B, B, B, be an instance
of X,Y,Z in P,. The if part of (2.6) is proved as follows:

P (06 B, 04y By, 0 B2) = P1(0x, Oy, 0z) - P2(Bx, By, B:)

=P (0, az)'Pl(ayI (Xz)'P2(Bx¢ﬁz)'1’2(ﬁyi Bz.)=

=P (0B, 02 B) - { Pi(oy ,0;) - Po(B, ,Bzﬂ

Il

P1(0:) P2(B.)

=P(axBx,asz)'{f—@,§—?&—z’B%—§Eﬁ} =P (0B, 0PB2) - P (0 By | 0B:)
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The only if part of (2.6) follows from:

Pl(“xvay’az)PZ(BxaBy$Bz) = P("wa: %By’azﬁz)
— P(axBx, asz)'P(ayBy, asz) =

P(a.B.)
o | P1(0x,0,) - Py(ey, 00) | | Pa(Bs. Bi) - Py, B.)
Pi(0;) 2(Bz)

= [Pl(ax,az) “Pi(oy | az)} '}:PZ{BX’BZ)'P2(B,V] BZ)}

By summing once over o, and once over B, we get that /(X, Z, Y), holds both in P,
and P, respectively.

If P, and P, are defined over different sets of variables and X = {x1,- -+, x,)
are their common variables, then, instead of applying ® directly on P, and P,, we
form their projections P;’, P’ on X and define

P=Pi®P,=P"®P,.

Clearly, every statement satisfied by P is satisfied by P,” and P’ and therefore also by
P, and P,. The other direction holds as well; a statement 7 (Y, V, W) that holds both
for P, and for P, must satisfy YVW < X. This implies that 7 (Y, V, W) holds in P’ and
in P, and therefore, by our construction, it holds in P as well. 1

The direct product construction is also applicable wrt #D* because ® produces a
strictly positive distribution whenever the input distributions are strictly positive.
Furthermore, since saturated statements and marginal statements are both subclasses of
independence statements, the construction of ® assures that marginal and saturated pro-
babilistic independence are Armstrong relations both wrt 2D and wrt #D*. These con-
siderations are summarized in the following corollary.

Corollary 2.6: Marginal, saturated, and unrestricted probabilistic independence are
Armstrong relations both wrt 20 and wrt 2D+,
The operation ® constructed for probabilistic independence (Theorem 2.5) also

satisfies the requirement of an Armstrong operation for relational independence.

Corollary 2.7: Marginal, saturated, and unrestricted relational independence are
Armmstrong relations both wrt 20 and wrt 2D+,
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Proof: Let ® and ® be the operations defined by Theorem 2.5. If R; and R, are two
discrete distributions then R =R ® R satisfies a relational statement iff both R; and
R satisfy this statement; the proof is analogous to that given for Theorem 2.5. O

The class of normal distributions exemplifies a case where marginal probabilis-
tic independence is an Armstrong relation, while probabilistic independence is not. In
PN, P(a,b)=P(a ) P(b ) iff psy =0, where p,, is the correlation factor of the vari-
ables a and b. Given a set of normal distributions we construct the normal standard
distribution @P; by assigning p,, =0 in @P; iff p,, =0 in every P;. All other correla-
tion factors are assigned a non-zero quantity p, where p satisfies n-p% < 1 to assure that
the covariance matrix of @P; is positive definite. Therefore, since @ satisfies the re-
quirements of the Armstrong definition, marginal independence is an Armstrong rela-
tion in @A Probabilistic independence in PA( is not an Armstrong relation because
although {I(a,D,b),I(a,c,b)) logically implies the disjunction
I(a,D,c)orl(c,2,b) (for jointly normally distributed variables a,b,c, the an-
tecedents can be written as pae * Pes = par =0, hence either p,. =0 or pe = 0.), neither
of the disjuncts alone follow, thus violating condition (c) of Theorem 2.4.

This example suggests, that to fully characterize probabilistic independence one
should start by considering disjunctive axioms, i.e., axioms of the form,

S1& so& - 5, =>0C10r - 0or Oy

(si,0; are statements) and not merely Horn axioms where m =1. However, the
Armstrong property of probabilistic independence (Theorem 2.5, Theorem 2.4 part ¢)
assures that this is unnecessary — Horn axioms are sufficient to derive all disjunctions
(in #» and Pp*). This example also shows that correlational independence, which
identifies with probabilistic independence in the class of normal distributions, is not an
Armstrong relation.

Corollary 2.8: Marginal, saturated and unrestricted correlational independence are
not Armstrong relations in 2D,

Section 2.1 suggested that in order to verify that a set of independencies Z* and
a set of dependencies X~ are consistent, we merely need to verify that each member of
>~ is consistent with Z*. The correctness of this method is now clear. If a dependency
—0 is consistent with I*, then there exists a distribution P that satisfies £* and the
dependency —o. If such a distribution exists for each dependency in -, then the distri-
bution P =® {P | -0 € 7} guarantees the consistency of the the two sets; it satisfies
all the dependencies of £~ and the independencies in Z*.
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2.4 Saturated Independence

This section characterizes probabilistic, relational and correlational saturated indepen-
dence. The interest in these statements stems from their serving as a basis for Markov
networks (see section 1.3 and Theorem 3.16)

Theorem 2.9 (completeness for saturated independence): For every set X of saturat-
ed probabilistic (or relational) statements closed under the axioms:

Symmetry 1X,Z2,Y) = 1(Y,Z,X) (2.7a)
Weak union IX,Z,YW) = I1X,ZY, W) (2.7b)
Weak contraction IXY,Z,W)& IX,ZW,Y) = IX,Z,YW) (2.7¢)

there exists a probability distribution P that satisfies all statements in £ and does not
satisfy any saturated statement outside X.

Remark: Axioms (2.7) are sound wrt both relational and probabilistic independence.

Proof: Let c=1(X,Z,Y) be an arbitrary saturated statement (i.e., U =XYZ) not in X.
We show that without loss of generality one can assume that for all sets X ‘X" and
Y’Y” partitioning X and Y respectively, the statement I (X", Z X”Y”,Y’) is a member
of Z. A saturated statement satisfying this property is called a maximal dependency.
Ifo=I(X,Z,Y) is not a maximal dependency, then we identify a maximal dependen-
cy o’ of the form I (X", ZX”Y”,Y’). Clearly, ¢’ always exists because Z is augmented
by elements of X and Y until the desired property is obtained or until both X’ and ¥’
become singletons, in which case, trivially, ¢’ is a maximal dependency. We will
construct Py, that satisfies X and violates o’. Due to axioms (2.7a, 2.7b), which hold
for all distributions, we know that any distribution that violates ¢’, violates ¢ as well.
In particular, P, violates ¢ ( while satisfying ¥), and therefore satisfies the conditions
of the theorem:.

Let U be a set of binary variables and 6=7(X, Z, Y) be a maximal dependen-
cy. Denote all variables in X by {x;,x2 -+ x1}, those in Y by {y1,y2 - - y=} and
those in Z by {z1,22 -+ z}. The construction of P is obtained by forcing all vari-
ables in X and Y to be equal to one another and letting each z; represent the outcome
of an independent fair coin. The resulting distribution follows:
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Y if all variables in XY are equal to 0
Py(X,Y,Z)=T]P,(z:) % ifall variables in XY are equal to 1
z€2 0  otherwise

Clearly, P, does not satisfy ¢ because -

P,(X=0,Y=11Z=0)#P, (X=01Z=0)-P, (Y =11 Z=0)

It remains to be shown that every saturated statement in X holds for P_,or
~ equivalently that every saturated statement either holds for P, or does not belong to X.
Any saturated statement y can be written as I(X1Y1Z1,X,Y2Z, X3Y3Z3) where
X =X1XX3, Y=Y YYsand Z =Z,Z,Z5. If X,Y, # @ then vy holds in F_ because every
instance of X,Y1Z; and of X3Y3Z3 that is consistent with the values of X,Y» has the
same probability of occurring, namely %'4'- 44'%! If XY, = @ (symmetrically when
X3Y3 =) then again y holds in P because Z; (Z3) is marginally and conditionally in-
dependent of any other set of variables of P o - Otherwise v is of the form
1(X1Y1Z1,Z2,X3Y3Z3) where XY, #@ and X3Y3# Q. We continue by contradiction
and show that in this case y does not belong to X.

Assume I(X,Y,Zy, Z,,X3Y3Z3) does belong to X. I is closed under weak-
union and symmetry. Therefore, 7(XY1,Z,XsY3) € . To reach a contradiction we
show that this statement implies that ¢ must have been in X, contradicting our selec-
tion of 6. The proof uses the weak-contraction and symmetry axioms to infer
I(X1X3,Z,Y1Y3), or o, from I (X1Y1, Z, X3Y3) by ‘‘pushing’’ all the X’s to one side and
all Y’s to the other side. We further assume that X, X3, Y, Y3 are non-empty sets. If
some of these sets are empty, not all the derivations that follow need to be performed
to reach the contradicting conclusion that ¢ € £. The following is a derivation of .

First, I (X1, ZX3Y3,Y ) belongs to X because I (X, Z, Y) is a maximal dependen-
cy. Due to the weak-contraction axiom

IX1Y1,Z,X3Y3) & I(X1,ZX3Y3, Y1) =1(X1,Z,Y1X3Y3),
we conclude that /(X,,Z,YX3)e Z. Due to the symmetry axiom we conclude
I(YX3,Z,X1)e Z as well. 1(X3,ZX,Y) e T because o is a maximal dependency and

therefore (by symmetry) I (Y, ZX;, X 5) is also a member of £. Using weak-contraction
again, we obtain:

I(Y}{?}’Zle) & I(Y9H1,X3) = I(Y’Z,X1X3)'

This result leads to the conclusion that I(Y,Z,X)e Z, and thus, by symmetry,
I(X,Z,Y)e X, a contradiction. Thus, axioms (2.7) are complete for saturated proba-
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bilistic independence.

Next, we show that axioms (2.7) are also complete for saturated relational in-
dependence. '

Let o be an arbitrary saturated relational statement. Since axioms (2.7) can
readily be shown to hold for relational independence, we can repeat the argument
showing that ¢ can be assumed a maximal dependency. Consider the distribution P_
as constructed in the first part of the proof. Clearly, ¢ does not hold in P because

P(x=0,2=0)>0 &P, (y=1,2=0)>0 % P (x=0,y =1,z =0)> 0.

In addition, P_ satisfies all statements T (interpreted as relational independence) be-
cause I(Y,W,V)» implies I(Y,V,W)g, and therefore satisfies the requirement of the
theorem. O

Theorem 2.9 guarantees that by repeated application of axioms (2.7) on a set =
of saturated statements (relational as well as probabilistic), any saturated statement that
logically follows from X will eventually be derived. The distribution P, as constructed
in the proof has an additional property; each combination of values for XYZ has either
zero probability or a constant probability of (Y4)'#'+1. Thus, the distribution P can be
viewed as a database, categorically distinguishing between two sets of tuples. This ob-
servation implies that the proof of Theorem 2.9 can be modified to show that axioms
(2.7) are complete for Multi-Valued-Dependencies (MVDs) [20]. Indeed, the differ-
ence between these axioms and the ones governing MVD s [4] pertains only to the case
of overlapping sets X,Y and Z in /1(X, Z, Y)z. This equivalence permits the employ-
ment of a polynomial implication algorithm devised for MVD s [3] to determine wheth-
er a saturated statement logically follows from a set of such statements.

The next theorem establishes an axiomatization of probabilistic independence
for two narrower classes of distributions: strictly positive and normal. For these
classes, relational independence is a trivial relation, i.e., every relational statement
holds in all distributions of Pp* and PN.

Theorem 2.10: For every set of saturated statements £ closed under the following ax-
ioms:

Symmetry 1X,2,Y) = 1(Y,Z,X) (2.8a)

38



Weak union IX,Z,YW) = IX,ZY, W) (2.8b)
Intersection IX,2Y, W) & IX,ZW,Y) = 1(X,Z,YW) (2.8¢)

and for every saturated statement ¢ not in I there exists a non-degenerate normal distri-
bution P, e P\( that satisfies all statements in ¢/(Z) and does not satisfy o.

Theorem 2.10 ensures the completeness of axioms (2.8) for saturated statements
wrt PD*. Axioms (2.8) are implied by axioms (2.7) but not vice versa. Indeed, the ad-
ditional knowledge that the distributions involved are positive results in more indepen-
dencies being implied by £. However, further restricting the class to that of normal dis-
tributions, no longer has any effect.

Proof: We first show that without loss of generality one can assume o is of the form
I(a,Z,b) where a and b are single variables. If ¢ is not of this form, say
c=I1(X,Z,Y) where Y is not a singleton, then for every element ¥’ € Y, either
IX,ZY-(b"'}),bYorI(X,Z u {b'},Y-{b’}) is not a member of . Otherwise, since
Z is closed under intersection (2.8c), this would imply that I (X, Z,Y) is a member of
Z as well, contradicting our assumption. We repeat this process of augmenting Z by
elements of Y until we obtain a statement of the form /(X,Z(Y—-{b}),b) ¢ =. This
process is guaranteed to terminate because in each step the set Y is decreased by one
element. A similar procedure is repeated on X to obtain a statement ¢’ of the form
I(a,ZX - {a}) (Y — (b}),b) which is not in . Due to the weak-union (2.8b) and
symmetry (2.8b) axioms, which hold for all distributions, any distribution that
violates ¢’ must violate o as well. Thus, it suffices to show the construction of P for
which X and Y are singletons. Consider the distribution

Fsla,b,2)=f(ab)- I f@),

where f (-) is the standard normal distribution and f (-, -) is zero mean-normal distri-
bution with a non-zero correlation factor between its two arguments. Clearly, in P, a
and b are marginally and conditionally dependent and thus o is not satisfied. It is left
to show that P satisfies Z, or equivalently (in contra-positive form), that every sa-
turated statement which P does not satisfy cannot be a member of . However,
every saturated statement that does not hold in P [ must be of the
I{aYuZ,Z,{b)uZ”) where Z = Z'Z"Z. These statements cannot be members of £
because each of them implies that ¢ is a member of Z (by (2.8a) and (2.8b)), contrad-
icting our selection of . O
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Remark: Axioms (2.8) are complete for saturated independence in P8+ and P, since
the selection of the functions f does not depend on the arity of a, b or Z.

Theorem 3.16 provides a graph-based proof of a similar theorem, stating that axioms
(2.8), combined with decomposition (1.5c), are powerful enough to derive all state-
ments, not merely saturated ones, that logically follow from an arbitrary set of saturated
statements. Unlike the proof of Theorem 2.10, the proof of Theorem 3.16 is construc-
tive and therefore provides an algorithm to answer the implication problem.

Next, we show that probabilistic and relational independence are equivalent in
the sense that they induce the same dependency models.

Theorem 2.11 (equivalence of saturated probabilistic and relational indepen-
dence):

1. For every distribution P there exists a distribution R such that for every disjoint
sets of variables X, Y and Z, where XYZ = U, we have,

1X,Z,Y)p iff IX,Z,Y)g

2. For every distribution R there exists a distribution P such that for every disjoint
sets of variables X, Y and Z, where XYZ = U, we have,

1X,Z,Y)x iff IX,Z,Y)e

Proof: Every distribution P satisfies axioms (2.7), thus by theorem 2.9, there exists a
distribution R that satisfies all statements in P and does not satisfy a given depen-
dency. Since relational independence is an Ammstrong relation, the direct product R
of all R4’s satisfies the requirements. The proof of part (b) is analogous. [
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2.5 Marginal Independence
This section characterizes probabilistic, relational and correlational marginal indepen-
dence. '

Theorem 2.12 (Completeness for marginal probabilistic independence): Let X be a
set of marginal probabilistic statements closed under the following axioms:

Symmetry 1X,2,Y) = 1Y ,9,X) (2.92)
Decomposition  I1(X ,D,YW) = IX ,2,Y) (2.9b)
Mixing IX,0,Y) & [XY ,B,W) = I(X,D,YW) (2.9¢)

Then there exists a distribution P, e PB that satisfies all statements in T and no other
marginal statement.

Proof: Let o=(X,d,7Y) be an arbitrary marginal statement not in £. Without loss of
generality we assume that for all non-empty sets X“ and Y’ obeying X’ cX ,Y cY
and XY’ #XY we have (X",0,Y")e Z. A statement obeying this property is called a
minimal statement. If 6 = (X,&, Y) is not a minimal statement then we can always find
a minimal statement ¢’=(X",&,Y’) not in Z, where X" ¢ X and ¥’ c Y, by deleting
elements of X and Y until we obtain the desired property or until both X’ and ¥’ be-
come singletons, in which case, ¢’ is a minimal statement. For each such ¢’, we con-
struct P, that satisfies T and violates ¢’. Due the decomposition axiom (2.9b), which
holds for all distributions, we know that any distribution that violates ¢’, violates ¢ as
well. In particular, P, violates o (while satisfying Z), and therefore satisfies the con-
ditions of the theorem.

For the rest of this proof, we shorten the notation for a marginal statement
X,2,Y)to (X,Y). Let o=(X,Y) be a minimal statement where X = {x1,x2 - x1},
Y={y1,y2 - ym} and let Z ={zy,z, -+ 2z} stand for the rest of the variables,
namely, U - XY. Construct P as follows: Let all variables, except x;, be indepen-
dent binary variables with probability % for each of their two values (e.g., fair coins),
and let

xXp= Eléxi + i}’j (mod?2).
Clearly, F_ has the product form:

PXYZ)=P,(XY) z,I;IzPG (z:). (2.10)
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We first show that o= (X,Y) does not hold in P_ . Instantiate x; to one and all other
variables in XY to zero. For this assignment of values we have

PoCey - xi,yy s ym)# B Gy oo 0) By (v oo ym) 211

because the LHS of Eq. (2.11) is equal to O whereas the RHS consists of a product of
two non-zero quantities.

It is left to show that every statement in X holds in P_, or equivalently, that
for an arbitrary statement (V, W) we have:

(V.W)e T = P(V,W)=P (V) B, (W).

This is done by examining the statement (V, W) for every possible assignment of vari-
ables to the sets V and W and showing that either Py (V,W)=P_ (V) P (W) orthat
V,W)e X

Case 1: Either V or W contain only elements of Z.
By Eq. (2.10), we get B, (V, W) =P (V) - Fy W).

Case 2: Both V and W include anelement of X U Y.

Case 2.1: V U W does not include all the variables of X U Y.
To verify whether (V, W) holds in £, amounts to checking this statement in the
projection of P on the set V.U W. Since the probability of every value assign-
ment to a proper subset § F XUY is (14)'S!, this projection assumes the pro-

duct form y QUVPG (wi). Hence, again, P (V,W)=F_(V) P (W).

Case 2.2: V U W includes all elements of X U Y.

This is the only case for which (V, W) is definitely not in Z.
Let V=XYZ,W=X"Y"Z" where X =X'X",Y =YY" and ZZ" cZ. We
continue by contradiction. Assume (V, W)= XY'Z",X”Y”Z") belongs to
Z. X is closed under decomposition. Therefore, (X'Y',X"Y”")e . To
reach a contradiction we show that this statement implies that o must have
been in X, contradicting our selection of . The proof uses the mixing and
symmetry axioms to infer X'X”,Y’Y”) (i.e., o) from X'Y",X"Y”) by
“‘pushing’’ all the X ’s to one side and all Y’s to the other side. The fol-
lowing is a derivation of o.
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First, (X', Y") belongs to X because (X, Y) is a minimal statement.
Due to the mixing axiom

(Xl , Y/’) & (lel , XH YII) = (XI , lellyﬂ) .

We conclude that (X’,X”Y) e Z. Due to symmetry (X”Y,X’) € £ as well.
(X”,Y) e X because ¢ is a minimal statement and therefore (by symmetry)
also (Y, X”) is a member of . Using the mixing axiom again, we get,

¥.X")& @X",X') = X,XX")

which leads to the conclusion that (Y, X) e Z, and by symmetry that (X, Y)
is in X, contradiction (note that the derivation of ¢ remains valid when
some of X" X" Y’ Y” are empty, aslong as X =X’X” and Y =Y’Y”). O

An O(IZI|-n? implication algorithm based on these axioms has been
developed by Paz [47]. This algorithm, presented below, uses the procedure Find to
answer whether a statement ¢ is derivable from T by axioms (2.9a) through (2.9d). The
notation, span(c) stands for the set of elements represented in a statement o, and simi-
larly, span(Z) denotes the set of elements represented in all the statements of X. For ex-
ample, span({/ (x1, @, x2) I(x1, D, x3)}) 18 {x1, x2, x3}. The projection of ¢ on s, denot-
ed o(s), is the statement derived from ¢ by removing all elements not in s from ¢ e.g.,
if o= (x1xx3, D, x4x5) then o(x1xx3) = (x1x2%3, D, D) and © (x1x3x4%x6) = (x1x3, D, X4).
Similarly, the projection of £ on s, denoted Z(s), stands for {c(s) | c € Z}.

Implication Algorithm

Procedure Find (Z, 5):

1. = ¥(span(c)) { = is the projection of X on the variables of the target
statement o }

2. If o is trivial, or ¢ (or its symmetric image) belongs to X’ then set
Find(Z, o) := True and return.

3. Else if for all nontrivial o’ € ¥’, span(c”) # span(c) then set Find(X, o) := False .

4, Else there exists a statement ¢’e £’ such that span(c’) = span(s), and up 1o
symmetry, ¢’ =(AP,BQ) and ¢ =(AQ,BP) where one of the sets A,B,P,Q
may be empty (If several such ¢’ exist, then choose one arbitrarily).
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Seto;:=(A,P),0,=(B,Q),
Find (X, o) := Find (Z’, 5;) A Find (¥, o).
return,
Begin {Membership}
Input( X, 6)
Print Find( Z, o)
End.

The correctness proof for this algorithm can be found in [47]. Since Fy , constructed in
the proof of Theorem 2.12, belongs to #B the implication algorithm and the axiomati-
zation are also valid for #8. A minor change in the construction of P shows that ax-
ioms (2.9) are complete also wrt PD*. In D and PD* marginal independence is an
Armstrong relation, hence these axioms are strongly complete. Moreover, these com-
pleteness results are also valid for relational independence (using a proof similar to that
of Theorem 2.9).

The axioms that characterize marginal independence for normal distributions are
stronger than those of (2.7); the mixing axiom is replaced by composition:

Theorem 2.13: The following axioms are strongly complete for marginal indepen-
dence wrt PA_ (normal distributions).

Symmetry IX,0,Y) = 1Y ,9,X) (2.12a)
Decomposition  1(X ,Q,YW) = I(X ,3,Y) (2.12b)
Composition IX,2,Y) & IX,0,W) = IX ,2,YW) (2.12¢)

Proof: Let £ be a set of marginal statements closed under Symmetry (2.12a),
Decomposition (2.12b), Composition (2.12c). We construct a normal distribution P
that satisfies £ and no other marginal statement. Let U = {u1, -+ ,u,} be all the
variables appearing in statements of £ and let P be a zero-mean normal distribution
over the variables of U, with the following covariance matrix

0 (u,~ » %] > u,-) e X
I'=(pi,j) where  Pij =105 otherwise

and n-p? < 1 (To assure positive definiteness).
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We need to show that P satisfies £ and no other marginal statement, or
equivalently that /(X ,&,Y)e Zif and only if /(X ,@,Y) holds in P. This is proven
by the following chain of relationships:

IX,@0.1)eZ & ¥V Iw,Qu)el o Y p,;=0 o

e ueY

u:gx I(w;,D,uj)holdse P « I(X,d,Y)holdse P

ey

The first and last relationships hold because axioms (2.6) hold both in £ and in P
making any statement / (X, ,Y) completely determined by statements on singletons.
The middle relationships trivially hold. O

The proof of Theorem 2.13 implies that the the matrix T" constitutes a dense
representation of the logical closure of a set of marginal statements wrt PA(. It requires
O (1Z1-n?) steps, where » is the number of variables appearing in statements of £. To
test whether a statement /(X, &, Y) is in the closure amounts to verifying that p; ; =0
for every u; € X and uj e Y which is of order O (n?).

The difference between the implication algorithm for marginal statements wrt
PA_ vs. PD is significant; the later requires O (I1Z| - n2) operations to decide Tk, o,
while the former requires only O (n?) operations, regardless of |Z!| (note that this is
achieved at the cost of investing O(IZI -n2) steps in constructing a condensed
representation of the closure of X). This advantage, offered by normal distributions,
could be significant since |Z| might be exponential in n.

The question arises whether it is possible to encode the closure (wrt 2D) of an
arbitrary set of marginal statements X in space polynomial in n, such that each implica-
tion query, o, would be answered in time polynomial in n? The answer is no. The
following argument shows that the closure of X requires, on the average, O (2) bits of
storage.

Following Verma [71], we construct O (2¢") (¢ > 1) distinct probability distribu-
tions over the variables {x;,: -, x,}, each inducing a different set of marginal in-
dependencies. This implies that, on the average, an individual set of independencies
requires at least O (c™) bits of storage which is, therefore, a lower bound for the storage
required for an arbitrary closure of marginal statements. Consider the following set of
marginal statements:

B ={I(x;,d,C)| C contains exactly | n/2| variables }.
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We show that an arbitrary subset T of B defines a probabilistic model P, i.e., P satisfies
Z and no other statement in B. This would complete the proof, because there are
O (2%") subsets for B and therefore at least that many distinct probabilistic models. We
construct P as follows: let 6=17(x1, @,{x;, --- x;,}) be an arbitrary marginal statement

in B-Z. Construct ;. that represents the functional dependency:
k
x1=Y x;. (mod2
1 ng ,( )

where x; j=1..k are the outcomes of independent fair coins. The model P satisfies

every marginal statement in B except o. Hence, the model ®{P; | c € B-Z} satisfies &
and no other statement of B.

Theorem 2.14: The number of distinct distributions over n variables (i.e., that embody
a different set of marginal independencies) is greater than 22'”,

It is interesting to note that it is the composition axiom (2.12¢) in PA, which
severely restricts the number of distinct normal distributions to exactly 2*®=1¥2 (which
is not a super exponential growth). Thus, the algorithm offered by Theorem 2.13 is op-
timal in space since it uses only O (n (n—1)/2) bits to encode the symmetric matrix T..
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2.6 Summary and Conclusion

Probabilistic, relational and correlational independence have been investigated; the
results are summarized in Table 1, 2 and 3 respectively. Table 1 displays properties of
classes of distributions versus classes of probabilistic statements. The second row
shows, for example, that for the class PD* of non-extreme distributions we have esta-
blished a strongly complete set of axioms for marginal and saturated statements, while
the existence of a complete axiomatization for unrestricted probabilistic independence
remains an open question. For marginal probabilistic independence in binary distribu-
tions we have not been able to determine the Armstrong property. This is the reason
that axioms (2.9) are stated to be complete and not strongly complete. A question mark

means that the problem remains unresolved as of the writing of this dissertation.

PROPERTIES MARGINAL SATURATED UNRESTRICTED
PROBABILISTIC | PROBABILISTIC | PROBABILISTIC
INDEPENDENCE | INDEPENDENCE | INDEPENDENCE
Complete axiomatization axioms (2.9) axioms (2.7) ?
Strongly complete axiomatization | axioms (2.9) axioms (2.7) ?
?D || Polynomial implication algorithm | Yes Yes ?
Armstrong relation Yes Yes Yes
Complete axiomatization axioms (2.9) axioms (2.7) ?
Strongly complete axiomatization | ? ? ?
P38 || Polynomial implication algorithm | Yes Yes ?
Armstrong relation ? ? No
Complete axiomatization axioms (2.9) axioms (2.8) ?
Strongly complete axiomatization | axioms (2.9) axioms (2.8) ?
PD* || Polynomial implication algorithm | Yes Yes ?
Armstrong relation Yes Yes Yes

Table 1: Probabilistic independence

Table 2 summarizes our knowledge regarding relational independence.
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PROPERTIES MARGINAL SATURATED UNRESTRICTED
RELATIONAL RELATIONAL RELATIONAL
INDEPENDENCE | INDEPENDENCE | INDEPENDENCE

Complete axiomatization axioms (2.9) axioms (2.7) Does not exist [45, 54]

Strongly complete axiomatization | axioms (2.9) axioms (2.7) Does not exist [45, 54]

Polynomial implication algorithm | Yes Yes ?

Armstrong relation Yes Yes Yes

Complete axiomatization axioms (2.9) axioms (2.7) ?

Strongly complete axiomatization | ? ? ?

Polynomial implication algorithm | Yes Yes ?

Armstrong relation ? ? ?

Table 2: Relational independence

The striking similarities between Table 1 and 2 lead us to conjecture that analo-
gously to relational independence, probabilistic independence is not finitely axiomatiz-
able. This does not exclude, however, the existence of an efficient implication algo-
rithm for both probabilistic and relational independence; for example, Z—EMVD is a
non-axiomatizable type of relational independence for which an efficient polynomial
implication algorithm has been found [54].

Table 3 below summarizes the axiomatization of correlational independence.
These results were established by considering conditional independence in normal dis-
tributions where probabilistic independence and correlational independence coincide.

PROPERTIES MARGINAL SATURATED UNRESTRICTED
CORRELATIONAL | CORRELATIONAL | CORRELATIONAL
INDEPENDENCE INDEPENDENCE INDEPENDENCE
Complete axiomatization axioms (2.12) axioms (2.8) ?
Strongly complete axiomatization | axioms (2.12) axioms (2.8) ?
PA. || Polynomial implication algorithm | Yes Yes ?
Armstrong relation Yes Yes No

Table 3: Correlational independence
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Interestingly, none of these three independence relations seem to be axiomatiz-
able and possess many properties that are not implied from the graphoid axioms [45,
67]. The graphoid axioms, nevertheless, are common to these independence relations
and seem to summarize their common properties. It has been shown that all unary ax-
ioms, namely, axioms having one statement in their antecedents are logically implied
from symmetry (1.5b), decomposition (1.c) and weak union (1.5d) [27]. Thus, the gra-
phoid axioms entail all properties expressible as unary axioms. We conjecture that the
graphoid axioms also entail all simple axioms, namely axioms with at most two state-
ments in their antecedents (such as all graphoid axioms).

These results indicate that if expert’s judgments of dependencies is not expres-
sible in a limited language for dependence assertions, then checking consistency might
be very hard or even undecidable. We must therefore devise a language in which con-
sistency of the expert’s input is guaranteed apriori, yet its expressive power is not too
limited. Probabilistic networks offer such a language.
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CHAPTER 3
The Logic of Probabilistic Networks

An important feature of probabilistic networks is that they facilitate explicit encoding
of information about independencies in the domain, information that is indispensable
for efficient inferencing. This chapter characterizes all independence assertions that
logically follow from the topology of a network, and develops a linear time algorithm
that identifies these assertions. Furthermore, it shows that any probabilistic network,
directed as well as undirected, is consistent, namely, it is a perfect map of some pro-
bability distribution.

3.1 Introduction

Qualitative information about dependencies can be specified by a list of independence
statements of the form /(X ,Z,Y) to read:"X 1is independent of Y, given Z". Two
questions arise: first, how to obtain this information from empirical data and, second,
given a partial list of independence statements, how to complete the list by inferring
new statements from the ones given. We concentrate on the second question. We as-
sume that some independencies have already been established either by statistical
analysis or by conceptual understanding of the phenomena, and that our task is to infer
additional independence statements without resorting to numerical calculations.

The task of finding the set of all independence statements that logically follow
from a given set is particularly important in light of the realization that a variable that
is independent in a given context is irrelevant for some computations. Unfortunately,
this task is hard and might be undecidable (Chapter 2). Nevertheless, when a set of in-
dependencies is given in terms of a probabilistic network, then its logical closure can
be computed efficiently. In the construction of Bayesian networks, for example, we en-
code explicitly n statements of independence, one for each variable in the domain.
This set of assertions is called the recursive basis and is said to generates the network
(Section 1.4). Inference algorithms such as Shachter’s make use of these and addition-
al independence assertions that are implied by this basis. Thus, to explore the limits of
such inference algorithms one must characterize all independencies that are implied
from the recursive basis and make sure that they are fully exploited.

50



In other words, to take full advantage of the Bayesian network formulation, the
following two problems must be examined: Given a set of variables Y, a Bayesian net-
work D and the task of computing P (x | Y), determine, without resorting to numeric
calculations: (1) whether the answer to the query is sensitive to the value of a variable
¢, and (2) whether the answer to the query is sensitive to the parameters
pe =P (c | =(c)) stored at node ¢. The answer to these questions is given in terms of
conditional independence: the value of ¢ would not affect the query P(x | Y) if
Px!Y)=P(x!|Y,c)forall instances x,Y and ¢ of x,Y and c, or equivalently, if
X and ¢ are conditionally independent given Y, denoted by 7 (x, Y, ¢)p. Similarly, the
parameters p. stored at node ¢ would not affect this query if x is conditionally in-
dependent of p. given Y. The latter problem is important in particular for efficient eli-
citation. For example, computing P (Brain tumor | Increased level of serum calcium) in
the metastatic cancer example, can be performed without consulting the parameters as-
sociated with ‘““Comma’’ and ‘‘Headeaches’’, hence these parameters need not be
known at the time of the computation.

This chapter shows that the logical closure L* of a recursive basis L can be
detected directly from the topology of the network, by merely examining the trails
along which x, Y and ¢ are connected. The results of Verma and Pearl, reported in
section 1.4 provide a partial solution along this line. They have shown that d-
separation identifies only genuine independencies and that no additional independen-
cies can be derived through repeated applications of the graphoid axioms on L. We
show that the graphoid axioms are also complete in the sense that they are powerful
enough to derive the entire logical closure of L, as defined semantically. In other
words, this criteria is maximal; it can not be strengthen to reveal more independencies.
Moreover, this result holds for three independence relations: probabilistic, relational
and correlational.

The theorem below summarizes this discussion.

Theorem 3.1: Let D be a dag generated by a recursive basis L drawn from a graphoid
M. Let L™ be the logical closure of L, namely the set of all independencies that logi-
cally follow from L wrt probabilistic, or relational or correlational independence. Let
cl(L) be the set of statements derivable from L by the graphoid axioms. Let Mp be
the dependency model defined by D. Then Mp =cl(L)=L".

The first equality characterizes the statements identified by d-separation as be-
ing exactly the statements derivable from a recursive basis L via the graphoid axioms;
it guarantees that d-separation identifies only independencies that hold in the original
graphoid. This equality is due to Verma and Pearl (see Section 1.4). The second
equality assures that a dag displays all statements that logically follow from L, that is,
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the graphoid axioms are capable of deriving the entire logical closure of a recursive
basis wrt probabilistic, relational and correlational definitions of independence. Thus,
Theorem 3.1 implies that for any independence assertion not displayed by d-separation
there exists a distribution that satisfies L and violates this assertion, therefore we can-
not hope to improve the d-separation criterion to display more independencies. More-
over, since a statement in a dag can be verified in linear time (Section 3.3), Theorem
3.1 provides a complete polynomial inference mechanism for deriving all indepen-
dence statements that logically follow from a recursive basis. A generalized version of
this theorem is proven in Section 3.2. Analogous results are obtained in Section 3.4 for
Markov networks.

We conclude by showing how these results can be employed as an inference
mechanism. Assume an expert has identified the following independencies between
variables denoted a through as:

L ={I(as,a1,9), I(as,a1,ay), I(as {ay, as},ay), I(as, as, {a1, az, as})}

(the first statement in L is trivial). We pose two questions. First, what is the logical
closure of L ? Second, in particular, does / (a3, {a1, as}, az) logically follow from L ?
For general lists of independencies the answer to such questions may be undecidable
but, since L is a recursive basis, it defines a dag that graphically displays each and
every independence of L*. The dag is the one shown in Figure 1.1. This dag consti-
tutes a dense representation of the logical closure of L. To answer the second question,
we simply observe that / (a3 {ai, as}, @az)p holdsin D,

The rest of this Chapter is organized as follows: Section 3.2 extends the analysis
of independence to networks in which deterministic variables are present, namely, vari-
ables that are functionally determined by its’ parents. It provides a new graphical cri-
teria, called D-separation, which is shown to be maximal for such networks. Addition-
ally, Section 3.2 also provides a characterization of these independencies for correla-
tional and relational interpretations. Section 3.3 employs the declarative definition of
D-separation as the basis for an efficient linear-time algorithm that identifies both
relevant variables and relevant parameters. Section 3.4 provides a characterization of
independence relations in Markov networks and establishes the consistency of Markov
and Bayesian networks.
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3.2 Networks with Deterministic Nodes

The analysis of independence in Bayesian networks assumes that the information given
by the expert is summarized by a recursive basis L, containing only statements of the
form I (a, n(a), U(a)-n(a)) where U(a) are the variables preceding a in some total
order of the network’s variables and m(a ) is a subset of U (a). Occasionly, however,
we are in possession of stronger forms of independence relationships, in which case,
additional statements should be read off the dag. A common example is the case of a
variable that is functionally dependent on its corresponding parents in the dag ( deter-
ministic variable, [55]). The existence of each such variable a could be encoded in L
by a statement of global independence I (a, n(a), U-n(a)) asserting that, conditioned
on n(a), a is independent of all other variables, not merely of its predecessors. The in-
dependencies that are implied by the modified basis can be read from the dag using an
enhanced version of d-separation, named, D-separation.

A node that corresponds to a deterministic variable is called a deterministic
node and is depicted by a double circle. Other nodes are called chance nodes. For ex-
ample in Figure 3.1 below, node as is a deterministic node; the value of the
corresponding variable a5 is a function of a3 and a4’s values.

Figure 3.1

Definition: A node b is called a tail-to-tail node with respect to a trail ¢ if there are
two consecutive links a « b and b — ¢ on t. A node that starts or ends a trail 7 is
called a tail-to-tail node if it delivers an arrow.

Definition: A node a is (functionally) determined by Z iff a € Z or a is a determinis-
tic node and all its parents are functionally determined by Z. If @ is a deterministic
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node with no parents then it is functionally determined by Z. A set of nodes is deter-
mined by Z if each of its members is determined by Z.

Definition: If X, Y, and Z are three disjoint subsets of nodes in a dag D, then Z is said
to D-separate X from Y, iff there is no trail z between a node in X and a node in ¥
along which (1) every node with converging arrows either is or has a descendant in Z,
(2) every other node is outside Z, and (3) no tail-to-tail node on ¢ is functionally deter-
mined by Z. A trail satisfying the three conditions above is said to be active, otherwise
it is said to be blocked ") (by 2).

The new criterion certifies all independencies that are revealed by d-separation
plus additional ones due to condition 3 of the definition. In the dag of Figure 3.1, for
example, the independence I(as, {a3, a4}, ag)p holds in D (by definition of D-
separation) conveying the idea that once a node (as) is functionally determined, its
value becomes independent of the rest of the network, independent even of its immedi-
ate successors. It should be noted that the definition of D-separation can be condensed
without altering its meaning. This is shown by the following lemma.

Lemma 3.2: The following assertions are equivalent.

a. A trail ¢ is activated by Z. Namely, ¢ is a trail along which (al) every node with con-
verging arrows either is in Z or has a descendant in Z (a2), every other node is out-
side Z, and (a3) no tail-to-tail node (wrt ) is functionally determined by Z.

b. ¢ is a trail along which (b1) every node with converging arrows either is in Z or has
a descendant in Z and (b2) no other node is functionally determined by Z.

Proof: Let ¢ be a trail connecting a and & that satisfies the three conditions in (a).
Assume, by contradiction, that condition (b2) is violated, namely, that there exists a
node a; on ¢ that is not a head-to-head node, yet is determined by Z. By (a3) a; can-
not be a tail-to-tail node. Examine a link in ¢ that points towards a1, say the link
az — aj. Since a; is determined by Z, either a, is in Z, in which case ¢ violates
condition (a2) or a, is determined by Z. We repeat the same argument for a, and ob-
tain the chain a3 — a2 — a; where either a3 is in Z or determined by Z. Eventually
(since the number of nodes is finite), we either reach a node that is in Z, thus violat-
ing condition (a2) or we reach a tail-to-tail node that is determined by Z, in which
case the trail violates condition (a3). Thus both cases contradict our assumption that
¢t satisfies the three conditions stated in (a). The other direction, is immediate. Con-
dition (al) follows from (bl), and (a3) follows from (b2). Condition (a2) follows

(*) For the rest of this chapter, the terms active and blocked will refer to D-separation and not
to d-separation as defined in Section 1.3.
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from (b2) because a node that is not determined by Z must be outside Z. O

Note that in principle, to check whether Z D-separates X and Y, the definition
requires us to examine all trails connecting a node in X and a node in Y, including
trails that form loops. For example, in Figure 3.1, to check whether X = {a;} and
Y ={ag} are D-separated by Z ={ag} would require checking trails such as
ai,as,as,as4, ds, as, ag, and many others. The next lemma shows that such trails
need not be examined because whenever there is an active trail with a loop there is an
active simple trail as well, i.e. a trail that forms no cycles in the underling undirected
graph. In the previous example, the trail a1, a3 and ag is the simple active trail (by
{as}), guaranteed by Lemma 3.3.

Lemma 3.3: Let Z be a set of nodes in a dag D, and let a, b ¢ Z be two additional
nodes of D. Then a and b are connected via an active trail (by Z) only if @ and b are
connected via a simple active trail (by Z).

Proof: Assume the converse holds. Let ¢ =(xy, - - -, x,) be the shortest active trail
(by Z) which is not simple and which connects @ and b (@ 2 x; and b Ax,). Since
g has a cycle, some nodes on g are repeated. Let x;, x;41, * -+, X;1y be a portion of
the trail that is repeated and let x; be a node where j> i+/ such that Xj+m = Xi4m fOr
m=0---1[. Letyj, ---,y; be the nodes between x;,; and xj onq. Let ¢ be the
trail formed from ¢ by removing nodes y1, ..., yx and Xj s Xj41 from g. The result-
ing trail is shorter than ¢ and is shown to be active by Z, contradicting our selection
of g. We consider two cases: />0 and /=0. If / >0 then every pair of adjacent
links on ¢’ is also adjacent on ¢. Thus, ¢’ is active. If / =0, then ¢’ contains one
new pair of links, x;-; — x; — x;41, that are not adjacent in g (see Figure 3.2).

Figure 3.2

55



The trail ¢’ is active only if the following three assertions hold:
1. If x; is a head-to-head node on ¢, then x; is or has a descendent in Z.
2. If x; is not a head-to-head node on ¢" thenx; ¢ Z
3. x; is not determined by Z. :

Let o4, o, ﬁl, Bz stand for the links x; _1— x;, Xj=Xj+1, Xj-1— X;j and x;— x;41.

If x; is a head-to-head node on ¢’, then both links oy and o are directed towards
x;. If either links B; or B, is also directed towards x;, then x; is a head-to-head node on ¢
as well, in which case, since ¢ is active by Z, x; must be or have a descendent in Z. If
both links f3; and [3, are directed away from x; then the trail x;, yy, - -, Y&, X; must con-
tain a head-to-head node because otherwise this trail closes a cycle and D is acyclic. Let
¢ be the closest such node to x;. There exists a directed path from x; to ¢. Node ¢ ison g
and g is active. Thus, ¢ is or has a descendent in Z. Hence x; has a descendent in Z.

If x; is not a head-to-head node on ¢’ then one of the links o or o is directed
away from x;. Without loss of generality assume ¢ is directed away from x;. Conse-
quently, x; is not a head-to-head node on ¢ and therefore it cannot be in Z.

If x; were determined by Z, ¢ would not have been active, by condition (3) of the
definition of D-separation. OJ

The next lemma states that D-separation defines a graphoid.

Lemma 3.4: The predicate / (X, Z, Y),, satisfies the following axioms:

e Trivial Independence:

1X,Z,9) (3.1a)
e Symmetry:
IX,Z2,Y) = I(Y,Z,X) (3.1b)

e Decomposition:

IX,Z,YUW) = IX,Z,Y) (3.1¢c)

e Composition:

IX,Z,Y) & IX,Z,W) = IX,Z,Y UW) (3.1d)

e Weak union:

IX,Z,YUW) = IX,ZUW,Y) (3.1e)

e Contraction:

I1X,Z,Y) & IX,ZUY, W) = IX,Z,YUW) (3.1
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e Weak Transitivity:
IX,Z,Y) & IX,Zu{c},Y) = IX,Z,c)or I(c,Z,Y) (31g

We will prove axiom (3.1g). The first six axioms are proven similarly. The proof is
the same as for d-separation [49, pp. 129]:

Proof: If both X and Y are not D-separated from ¢ in some dag, then there must be
an unblocked trail between X and ¢ and an unblocked trail between Y and ¢. These
two trails form a trail between X and Y via ¢. If that trail traverses ¢ along converg-
ing links, it should be unblocked when we instantiate ¢, so X and Y cannot be D-
separated by ¢. Conversely, if the arrows meeting at ¢ do not converge, then the trail
between X and Y is unblocked when v is uninstantiated, so X and Y cannot be mar-
ginally D-separated. [

Parallel to the discussion of Bayesian networks without deterministic nodes, we
define a new basis and prove soundness and completeness of D-separation with respect
to this basis.

Definition: An enhanced basis L drawn from a dependency model M in an ordering
ai,..., a, of M’s variables, is a set of n independence statements (i.e., triplets)
(a;,m@@;),W(a;))e M, i =1..n, where W(q;) is either U(q;)—n(a;) - {a;} or
U-na)—{a;}, U@)={a;y,..., a1} and n(q;) < U(a;). An enhanced basis is
said to generate a dag over n nodes where each node a; corresponds to a variable g;
and its parents are those nodes corresponding to the variables in n(a;). When the i-th
statement is a global independence, namely, W (q;) = U — n(a;) — {a; }, then node q; is
a deterministic node, otherwise it is a chance node.

The next lemma is needed for establishing the soundness of D-separation; it ex-
plicates those independencies that are implied from the deterministic nodes alone. Re-
call that the union symbol is omitted from complicated expressions and that Xa denotes
X ufial.

Lemma 3.5: Let M be a graphoid over U, and L be an enhanced basis drawn from M.
If Z and X are disjoint subsets of U and Z functionally determines X in the dag gen-
eratedbyL,then X,Z,U-XZ)e M.

Proof: We prove the lemma by induction on the highest index / of an element in X as
determined by the ordering of L. If the highest index is 1, then X is a singleton that
has no parents in the dag. It is therefore determined by Z only if it is a deterministic
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node in which case, (X, &, U-X) is a member of L (and thus a member in M). By
weak union, (X, Z, U-XZ) e M follows. Otherwise, Let X =X’a, where a has the
highest index in X. Since Z determines X', by the induction hypothesis, the triplet
X,Z,U-XZ)e M. '

We will show that the triplet (@, Z, U~Za) is also in M and that the last two
triplets together imply that (X,Z, U~-XZ)e M. Z determines a and a ¢ Z, there-
fore Z determines the parents of a, denoted by V, and a is a deterministic node.
Since all elements of V have a smaller index than a, by the induction hypothesis,
V,Z,U-VZ)e M (2J,). The triplet (a,V,U-Va)e L (=A12) because g is a
deterministic node and therefore this triplet is also a member of M. Letting
W =U-VZa,J and J, are written as

V,Z,Wa)eM and (a,V,WZ)e M.
The triplets (a,Z,V)e M and (a,ZV,W)e M are derived from the previous
ones respectively by symmetry, decomposition, weak union. By using contraction on
the latter triplets, it follows that (a,Z, VW) e M. Substituting U~VZa for W, we
obtainthat (a,Z,U—-aZ)e M.

It remains to be shown that X’,Z, U-XZ)e M and (a,Z,U-aZ)e M

imply that (X,Z, U-XZ) e M. Letting W = U~-ZX’a, we show that
X',Z,Wa)eM & (a,Z,WX)eM = X'a,Z,W)e M

follows from the graphoid axioms. The two triplets
W,Z,X')eM & (W,ZX',a)e M are derived from the antecedents by sym-
metry, decomposition and weak union. Using contraction on the resulting two triplets
and then symmetry yields that (X'a, Z, W) e M. Substituting U ~ZX’a for W and X
for X’a, yields the desired conclusion (X, Z,U-ZX)e M. O

Theorem 3.6 (soundness): If M is a graphoid, and L is any enhanced basis drawn
from M , then the dag D generated by L is an I-map of M .

Proof:  Induct on the number of elements in the graphoid. For graphoids of one
variable it is obvious that the single node dag generated is an /-map. Suppose for gra-
phoids with fewer than £ elements that the dag generated is an /-map. Let M have k
elements, let u be the last element in the ordering of L, let M [u] be the graphoid
formed by removing u and all triplets involving u from M and let D [u] be the dag
formed by removing u and all its incident links from D. Additionally, let L [u] be the
set of triplets formed from L by removing the last triplet and deleting the element u

(*) This proof is essentially taken from [72]. The main change is in case 2 where lemma
3.5 is applied.
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from  the  remaining  triplets, namely L[x] is equal to
{(,B,R-u)l j#u,(j,B,R)e L}. The set L[u] is an enhanced basis of M [u]
and it generates the dag D [u]. Thus, since M [u] has k-1 elements, by the induction
hypothesis, D [1] is an I-map of it. Let Mp be the dependency model corresponding
to the dag D, and Mp,; correspond to D [u], (i.e. Mp contains all triplets (X, Z,Y)
for which X and Y are D-separated by Z in D). Each triplet T of Mp falls into one of
three categories: (1) u does not appear in T', (2) u appears on the first or third entry of
T or (3) u appears in the second entry of 7. These will be treated separately as cases
1, 2 and 3, respectively. For each case we will show that T € Mp implies that
T € M, thus proving that D is an /-map of M .

case-1: If u does not appear in T then T must be (X,Z,Y) with X, Y and Z three
disjoint subsets of elements, none of which contain #. Since T is in Mp it must also
be in Mpy,; for if it were not then there would be an active trail (by Z) in D[u]
between a node in X and a node in Y. But if this trail were active in D [u] then it
would also be active in any dag containing D [1] as a subgraph, specifically this trail
would have remained active in D. By the induction hypothesis, Mp,] is a subset of
M {u], thus T must be an element of M[u]. M[u]isasubsetof M,soT isin M.

case-2: If u appears in the first entry of the triplet, then T = (Xu,Z,Y) with X, Y and
Z three disjoint subsets of elements, none of which contain u. Let (u,B,R) be the
last triplet in L, By, By, Bz and By be a partitioning of B and Ry, Ry, Rz and R be
a partitioning of R such that X =By URy,Y =By URy and Z =Bz URz as in Fig-
ure 3.3. We first show that (Y,ZXBg,u)e M. Then we will show that
(Y,Z,XBp) e M. Since M is a graphoid containing these two statements, it will fol-
low by contraction that (Y, Z,XBou) € M and by decomposition and symmetry that
T=(Xu,Z,Y)e M. This will complete the proof of case 2 because if u appears in
the third entry of T, namely, T = (Y, Z, Xu) then (Xu,Z,Y) be a member of Mp
which would imply that (Xu,Z,Y)e M and since M is closed under symmetry T
would be a member of M as well.

/1
geal
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We now show that (Y,ZXBo,u) e M. Consider the set By, any node in this set is
directly linked to u, thus in order for Y to be D-separated from u given Z, By must
be determined by Z in D (or be empty, in which case, by our definitions, it is deter-
mined by Z). By Lemma 3.5, (By,Z, U-ByZ) e M. Using weak union and decom-
position, it follows that (By,ZXB, u) is in M. The triplet (u, B, R) in L implies (by
decomposition and weak union) that (u,XZB(By,Ry)e M. The last triplet together
with (By,ZXB , u) imply (by symmetry and contraction) that (Y ,ZXBo,u)e M.

It remains to show that (Y, Z, XBo) € M. The triplet (Y, Z, B () must belong
to Mp since otherwise there would have been an active trail between a node in Y and
anode in B which could have been augmented to form an active trail (by Z) between
Y to u, by using the link that connects any element in B to u (pointing to u). This
would contradict the assumption that («,Z,Y) e Mp, as implied by decomposition
from (Xu,Z,Y)e Mp. Thus (Y,Z,Bg)e Mp. (Y,Z,X) e Mp because it is im-
plied by decomposition from the fact that (Xu, Z, Y) is in Mp. By the definition of
D-separation two sets are D-separated iff each of their individual elements is D-
separated. Therefore, (Y,Z,X)e M and (Y,Z,Bo)e M imply that (Y,Z,XBy)
must also be in Mp. The last triplet does not contain u, thus by the argument of
case-1,(Y,Z,XBgo)e M.
case-3: If u appears in the second entry then T € Mp has the form (X,Zu,Y). The
triplet (X, Z, Y) must be a member of Mp as well for if there were an active trail (by
Z) between a node in X and a node in Y, this trail would have remained activated by
Zu because u is a sink on that trail. This would contradict our assumption that
(X,Zu,Y)e Mp. The triplets X,Z,Y)e Mp and (X,Zu,Y) e Mp imply by the
definition of D-separation that either (X, Z, u) e Mp or (u,Z,Y) e Mp (Lemma 3.4).
By definition of D-separation, two sets are D-separated iff each of their individual
elements is D-separated. Therefore, (X, Z,Y) € Mp and the disjunction above imply
that either (X,Z,Yu)eMp or Xu,Z,Y)eMp. By the argument of case 2, it fol-
lows that either (X, Z,Yu)eM or Xu,Z,Y)eM. Inboth case, it follows by weak
union and symmetry that (X, Zu,Y)e M. O

Theorem 3.7 (closure): If L is an enhanced basis drawn from an arbitrary
dependency model M, the dag dependency model Mp generated from L is a perfect
map of the closure ¢/ (L) of L under the graphoid axioms. In other words, a triplet be-
longs to Mp if and only if it can be derived from the triplets of L using the graphoid
axioms (1.5).
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Proof: By Theorem 3.6, Mp < ¢l (L). It remains to show that ¢/ (L) c Mp. We will
show, instead, that L ¢ Mp. This will imply that c/(L) < c/(Mp) and since every
dag dependency model Mp satisfies the graphoid axioms (Lemma 3.4), it must be the
case that ¢/(Mp)=Mp which will complete the proof. Let (u,B,R) be a triplet in
L. There are two cases: R does not contain any successor of u, in which case u is a
chance node, or R contains all of u’s successors, in which case u is a deterministic
node. If u is a deterministic node, then its parents B, D-separate it from any other
node, thus (u,B,R)e Mp. If u is a chance node, then u is D-separated from R
given B in the dag (i.e., (u, B,R) e Mp), for if not, there would be a trail from a
node in R to ¥ which is active given B. But since every link into u is from B the
trail must lead out of # into some node which was placed after . Since, in the case
of a chance node, every node in R was placed before u, this trail must contain a
head-to-head node that was placed after u. But this trail cannot be activated by B
since B contains no nodes placed after u, and thus, B would D-separate # from R in
the dag. (J

The completeness proof for D-separation requires the following lemma.

Lemma 3.8: For every dag D and a triplet T =(a,Z,b) ¢ Mp, there exists a dag D’
with the following properties:

1.D" =(E’,V)isasubgraphof D =(E,V)ie,E CE.

2.(a,Z,b)e Mp

3. The links of D’ consist exclusively of the following three sets:
a. A trail ¢ between a and b.
b. A single directed path p; from every head-to-head node k; on ¢ to a distinct
member z; of Z. The paths p;’s do not share any node with each other and each
pi intersects ¢ only at A; .
c. For each functional tail-to-tail node #; on ¢, D’ contains a directed path r;
from some chance node /; to #; such that /; is the only chance node on r; and the
entire path is disjoint of Z. The paths r;’s do not share any node with each oth-
er or with any p; and each path r; intersects ¢ only at node ¢;.

A dag satisfying the three conditions above is called an ab -trail dag.

Proof: We first construct the dag D’ and then prove it satisfies the requirements. Let
g be an active trail (by Z) between a and b with a minimum number of head-to-
head nodes denoted, from a to b, ky ,h;,....,h,. Such a trail exists because T ¢ Mp.
Due to Lemma 3.3 we can assume ¢ is a simple trail. Let z; be the closest (wrt path
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length) descendent of /; in Z and let p; be a directed path from 4; to z; (if h; € Z
then z; =h;). Let ¢y ... ¢; be all deterministic tail-to-tail nodes on q. Let /; be the
closest chance node, not in Z, that is an ancestor of # such that g;, a directed path
connecting /; and ¢; is entirely disjoint of Z. The paths p; ’s exist because the trail g
is active only if every h-h node on it is or has a descendent in Z. The paths g; ’s exist
in D because otherwise #; would have been functionally determined by Z and the trail
g would not have been active. Let D’ =(E’, V) where E’ consist exclusively of the
links contained in ¢, p;’s and ¢; ’s (e.g., Figure 3.4).

®

&

®
0

=

O

O

Figure 3.4

By our construction, D’ satisfies conditions 1,2 and 3.a. Next we prove it satisfies re-
quirement 3.b. First we claim that the path p;’s are distinct. Assume, by contradic-
tion, that there are two paths p; and p; (i <) with a common node ¢ (Figure 3.5).
Under this assumption, we find an active trail between g and b that has fewer head-
to-head nodes then ¢, contradicting the minimality of the latter. If ¢, the common
node, is neither 4; nor A; then the trail (@, h;, c, h ;» b) is an active trail (by Z); Each
of its head-to-head nodes is or has a descendent in Z because it is either ¢ or a head-
to-head node of ¢ and every node that had been added is not determined by z. Every
other node d lies either on the active trail ¢ and therefore is not determined by Z
(Lemma 3.2) or it lies on either p; or p j- In either of the last two cases, since z; or z;
are the closest descendants of 4; or 4; respectively, d must be outside Z. The result-
ing active trail contradicts the minimality of ¢ since both 4; and A; are no longer
head-to-head nodes while ¢ is the only newly introduced head-to-head node. If
¢ =h; then the trail (a, h;, ¢, hj, b) shrinks to be (a, ;, ¢, b), which, using similar
arguments, has fewer head-to-head nodes than ¢ and is activated by Z ( the case
¢ = h; is similar).
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Figure 3.5

We complete the proof of 3.b by showing that each path p; intersects ¢ only
at node &;. Assume, by contradiction, that p; and ¢ have in common a node ¢ other
then 4; and assume that it lies between 4; and b (the case were ¢ lies between A; and
a is similar) (Figure 3.6). It has been shown that p; is distinct from all other p;’s
therefore, in particular, node ¢ is not a head-to-head node on ¢. Thus, ¢ cannot be-
long to Z because otherwise ¢ were blocked by ¢ and thus would not have been ac-
tive. Hence, the trail ¢’ =(a, h;, ¢, b ) is activated by Z. The trail ¢’ contradicts the
minimality of ¢ because 4; is no longer a head-to-head node on ¢’ while no new
head-to-head nodes are introduced.

Figure 3.6

To prove 3.c we use similar arguments. Assume paths r; and r; have a com-
mon node ¢ (e.g, Figure 3.7). Then the trail (a,%,c,tj,b), depicted in Figure 3.7, is
an active trail that contains fewer head-to-head nodes than g because the fragment of
g between any two tail-to-tail nodes ¢;’s must contain a head-to-head node while the
new bypass does not contain any. The new trail is active because no node on the
bypass is determined by Z. Thus the new trail is active and therefore contradicts the
minimality of ¢ .
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Figure 3.7
If a node ¢ is shared by r; and p; then the trail (a, ¢, ¢, h;, b) (e.g, Figure 3.8) con-
tradicts the minimality of ¢ ; It contains fewer head-to-head nodes than ¢ because 4;

is no longer a head-to-head node and no new head-to-head nodes are added. It is ac-
tive since neither of the nodes on the bypass is in Z or is determined by Z.

O

OO0 0O

Figure 3.8

If ¢ is shared by r; and ¢ then the new trail (a, ¢, ¢, b) (e.g, Figure 3.9) contradicts
the minimality of ¢; It contains fewer head-to-head nodes than g because no new
head-to-head nodes are added while the fragment of g between ¢; and ¢ must contain
a head-to head node for otherwise D would have contained a circle. The new trail is
active since no node on the bypass is in Z or is determined by Z.
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Figure 3.9

Thus D’ satisfies all the requirements of the lemma. (J

Theorem 3.7 states that Mp = cl(L). Thus, Mp cL*, the logical closure of L
wrt probabilistic, relational and correlational independence. Theorem 3.9 below states
the converse for probabilistic dependency models, namely, every statement in L* wrt
probabilistic independence is an independency in Mp. Similar results for correlational

and relational dependency models are given as corollaries; they follow from the proof
of Theorem 3.9.

Theorem 3.9 (completeness) : Let D be a dag generated by an enhanced basis L
drawn from a probabilistic dependency model Mp. Then Mp c L™ wrt probabilistic in-
dependence.

Proof: LetT = (X, Z, Y) be an arbitrary triplet not in Mp (we assume that XZY c U
and that U is finite). We construct a distribution Pr whose dependency model Py *)
contains all triplets of L and does not contain T'. This distribution precludes T from
being a semantic consequence of L and therefore, as the theorem claims, every se-
mantic consequence of L must be a member in Mp,.

The triplet (X, Z,Y) ¢ Mp. Hence the definition of D-separation guarantees
the existent of an active trail between a node a in X and a node b in Y that is not D-
separated by Z. Constructing a distribution Py that does not contain the triplet
(@a,Z,b), denoted T’, guarantees also that (X,Z,Y) e Pr because any distribution

(*) The symbol Pr is overloaded- sometimes it denotes a distribution and sometimes it
denotes the dependency model defined by that distribution. The meaning will be clear
from the context.
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that renders X and Y conditionally independent must render each of their individual
variables independent as well (decomposition (3.1c)). The triplet (a,Z,b) ¢ Mp.
Hence by Lemma 3.8, there exists an ab -trail dag D’ (Figure 3.4). We will construct
a distribution Pr whose dependency model contains all triplets of Mp-( i.e.,
Mp < Pr) and which does not contain T'. This will complete the proof; By property
(i) of Lemma 3.8, Mp < M. By the definition of D-separation, L < Mp. Thus
L ¢ P, as required by the theorem.

Pr is defined as follows: Each chance node with no parents corresponds to an
independent fair binary coin. Every other node corresponds to a variable that is the
sum modulo 2 of the variables corresponding to its parents. A deterministic node
with no parents (a degenerate configuration) corresponds to a binary variable whose
value is known with certainty. It remains to show that Pr satisfies the requirements.
Variables a and b are conditionally dependent given Z in Py because constraining a
and Z to some specific values determines a value for b via the single trail ¢ that con-
nects them in D’. It remains to show that Mpr < Pr. Let L’ be an enhanced basis that
generates D’ in the following ordering of the nodes of D’: All nodes which have no
parents appear first in the ordering followed by the rest of the nodes in any order com-
patible with the partial order defined by D’ (e.g., @ must precede b if a — b is a link
in D"). The basis L’ is contained in P because all chance nodes with no parents
correspond to mutually independent variables and every other variable in Pr is a
function of the variables corresponding to its parents and therefore, it must be in-
dependent from all its other predecessors and successors in the ordering of L’ . Thus
L’c Pr. Taking the closure under the graphoid axioms on both sides yields
cl(L")c cl(Pr). However, Pt =cl(Pr) because Pr is a graphoid and cl(L’) = Mp
(by Theorem 3.7). Thus, Mprc Pr. O

Dags have been used also as a representation scheme for structural equations [6,
17, 74, 75]. Each node represents a variable that is the linear combination of the vari-
ables corresponding to its parents, and a term representing noise. The noise sources are
assumed to be independent, normally distributed, and have zero means and non-zero
variances. Thus, the variable corresponding to node x is given by

X=aiz1+ - apzp +z, (3.2)

where z; - - z; are the variables corresponding to the parents of x, and z is the noise
term. In this interpretation, two variables are ‘‘independent’’ given a set of variables
Z, denoted by I(a,Z, b)c iff the correlation between a and b vanishes when the
influence of Z is removed (see section 3.2, for the precise definition). Each structural
equation corresponds to one independence statement. For example, Eq. (3.2) asserts
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that I(x, {z1...2¢ }, U(x) = {z1,..., z }). where U(x) are the variables preceding x.
The soundness of D-separation in this representation follows because I, being identi-
cal to conditional independence for normal distributions, must satisfy the graphoid ax-
ioms. Completeness is shown by the following corollary of the proof of Theorem 3.9.
A similar, but more restricted, completeness theorem for I (a, Z, b)c, where Z is a sin-
gleton, is given in [28]. We remark that no functional dependencies exist in this in-
terpretation of dags, because all noise terms have non-zero variances, thus D-separation
coincides with d-separation.

Corollary 3.10 (completeness): Let D be a dag generated by a set of structural equa-
tions and let L be the corresponding enhanced basis. Then, Mp < L* wrt correlational

independence.

Proof: In normal distributions, two variables @ and b are conditionally independent
given Z iff the partial correlation p,pz =0 [13]. Therefore, it suffice to construct a
normal distribution Nr with the same properties Py had in the proof of Theorem 3.9.
We define Nr as follows: Each chance node with no parents corresponds to the out-
come of an independent normal variable. Every other node corresponds to a variable
that is a (noisy) sum of the variables corresponding to its parents. Deterministic
nodes are not present. Nr is a multivalued normal distribution. The proof that Ny
fulfills the requirements is the same as in the proof of Theorem 3.9. O

The following corollary shows that D-separation is also complete when dags
represent relational dependency models.

Corollary 3.11 (completeness): Let D be a dag generated by an enhanced basis L.
Then, Mp = L* wrt relational independence.

Proof: Let Py be the distribution constructed in the proof of Theorem 3.9, and let Ry
be the relation defined to be the set of tuples for which Py has a positive probability.
Rr (viewed as a dependency model) contains Py. Pr contains My where D’ is an
ab -trail dag constructed in the proof of Theorem 3.9. Thus Ry contains Mp-. Vari-
ables @ and b are conditionally dependent given Z in Ry because constraining a and
Z to some specific values determines a value for b via the single trail ¢ that connects
them in D’, O
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- Hunter [36] provides similar soundness and completeness results, with respect
to an independence relation based on Spohn’s ordinal conditional functions [65].

3.3 A Linear Time Algorithm for Identifying Independence

Conditional independence assertions encoded in Bayesian networks can be used for
identifying what information and which parameters may be needed for performing a
given computation. The analysis of the previous section guarantees that the D-
separation criteria could identify the maximal set of variables that are independent of a
set of variables X, given another set Z, without resorting to numerical calculations.
However, it does not provide an efficient algorithm to do so. The algorithm we
develop in this section is a variant of the well known Breath First Search algorithm; it
finds all nodes reachable from X through an active trail (by Z), hence the maximal set
of nodes Y satisfying I (X,Z,Y),. This task can be viewed as an instance of a more
general problem of finding a path in a directed graph for which some specified pairs of
links are restricted not to appear consecutively. In this context, D-separation serves to
specify such restrictions. For example, two links 4 — v, v < w cannot appear con-
secutively in an active trail unless v € Z or v has a descendent in Z. The following
notations are employed: D =(V, E) is a directed graph, not necessarily acyclic, where
V is a set of nodes, E ¢ VXV is the set of directed links and F < E XE is a list of pairs
of adjacent links that cannot appear consecutively (F-connotes fail). We say that an
ordered pair of links (e, ) is legal iff (e1, e7) ¢ F, and that a path is legal iff every
pair of adjacent links on it is legal. We emphasize that by ‘‘path’’ we mean a directed
path, not a trail.

First we devise a simple algorithm for the following problem: Given a finite
directed graph D =(V, E), a subset F ¢ E X E of illegal pairs of links, and a set of
nodes X, find all nodes reachable from X via a legal path in D. The algorithm and its
proof of correctness are a slight modification of those found in [18].

Algorithm 1

Input: A directed graph D = (V, E), a set of illegal pairs of links F and a set of nodes
X.

Output: A labeling of the nodes such that a node is labeled with R (connoting "reachable")
' iff it is reachable from X via a legal path.

(i) Add anewnode s to V and for each a € X, add the link s — a to E and label
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them with 1. Label s and all a € X with R. Label all other nodes with
"undefined."”

g i:=1

(iii) Find all unlabeled links v — w adjacent to at least one link ¥ — v labeled i, such

that (4 = v, v — w)is alegal pair. If no such link exists, stop.

(iv) Label each link v — w found in Step (iii) with i+1 and the corresponding node w
with R.

(v) i :=1i+], Goto Step (iii).

The main difference between this algorithm and BFS, a change which has been
proposed by Gafni, ™ is the traversal of the graph according to a labeling of the links
and not according to a labeling of nodes. This change is essential as the example in
Figure 3.10 shows. Let F consist of one pair (o, y). The path from a to ¢ through
links &, B and v is legal while the path not traversing B is not legal because (o, y) € F.
BFS with node labeling would not reveal the legal path (a, b, b, ¢) connecting nodes
a and ¢, because it visits every node, in particular &, only once.

9

Figure 3.10

Lemma 3.12: Algorithm 1 labels with R all nodes that are reachable from s (and thus
from X') via a legal path, and only those nodes.

Proof: First, we show that if a node a; is labeled with R, then there exists a legal
path from s t0 a;. Let a;—; — g; be a link through which @; has been labeled. We in-
duct on the label / of the link @;_; — ¢;. If ] =1 then g; € X and is therefore reach-
able from s. If / > 1, then by step (iii), there exists a link a;_ — @;1 labeled with
-1 such that (a;—2 — a;-1, aj-1 = a;) is a legal pair. Repeatedly applying this argu-

(*) personal communication
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ment for i =/...2 yields a legal path ap — a; — ... a;, where ap — a; is labeled with
1. However, the only links labeled 1 emanate from s, hence the above path is the re-
quired legal path from s to g;.

It remains to show that each node that is reachable from s via a legal path is
labeled with R. Instead, we show that every link @ — a,, that is reachable from s via
a legal path (i.e., it participates in a legal path emanating from s) will eventually be
labeled by the algorithm. The latter claim is stronger than the former because for
every reachable node a,, there exists a reachable link ¢ — a,, and by Step (iv),
whenever a — a,, is labeled with some integer, a,, is labeled with R. We continue
by contradiction. Let [, =a,,-1 — a,, be the closest link to s via a legal path that
remains unlabeled. Let p =s = a1 - ...an-1 > a,, be the legal path emanating
from s and terminating with the link /,,. The portion of this path that reaches the link
lm-1= Gm-2 = a;m-1 is shorter than p. Thus, by the induction hypothesis, /,,-; is la-
beled by the algorithm. Hence, the link /,, is labeled as well (by the next application
of step (iv)), contradicting our assumption that it remains unlabeled. O

The complexity of Algorithm 1 for a general F is O(IE | - 1V ). In the worst
case, each of the |V | nodes might be reached from |V | — 1 entry points and, for each
entry, the remaining links may need to be examined afresh for reachability (For exam-
ple, link ¢ in the example of Figure 3.10 is examined twice). Thus, in the worst case, a
link may be examined |V —21| times before it is labeled, which leads to an
O (IE | - IV ) complexity. However, for the special case where F is induced by the
D-separation condition, we shall later see that each link is examined only a constant
number of times, therefore the complexity reduces to O (1E 1).

Next we solve the problem of identifying the set of nodes that are D-separated
from X by Z. For this aim, we will construct a directed graph D’ with a set of legal
pairs such that a node v is reachable from X via an active trail (by Z) in D iff v is
reachable from X via a legal path in D”. Algorithm 1 is then applied to solve the latter
problem. The following observations are the basis of our algorithm. First, any link on
a trail can be traversed both ways. Therefore, to ensure that every active trail in D
corresponds to a legal (directed) path, D’ must consist of all links of D in their forward
and reverse direction. Second, constructing a table that for each node that indicates
whether it is determined by or has a descendent in Z, would facilitate a constant-time
test for legal pairs in D’.
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Input:

Algorithm 2

A Bayesian network D = (V, E') and two disjoint sets of nodes X and Z .

Data Structure: A list of incoming links (in-list) for eachnode v € V.

Output:

®

AsetofnodesY whereY = {b | I(X,Z,b)p}.

Construct the following tables:

. true ifv is determined by Z
determined [v ] 2{ false otherwise

true ifv is or has a descendent in Z
descendent [v]=7 fajce otherwise

(i)  Construct a directed graph D’ = (V, E’) where
E=Eu{u->v)I(vou)ekE}

(iii) Using Algorithm 1, find the set of all nodes ¥’ which have a legal path from X in D’,
where a pair of links (¥ — v,v — w) is legal iff u #w and either (1) v is a head-to-
head node on the trail u—v—w in D and descendent[v] = true or (2) v is not a head-
to-head node on the trail u—v—w in D and determined[v] = false. *)

iv) Y=V-F' uXuv2)

Return (Y).

The correctness of this algorithm is established by the following theorem.

Theorem 3.13: The set Y returned by the algorithm is exactly {b | I(X,Z, b),}.

Proof: The set Y’ constructed in Step (iii) contains all nodes reachable from X via a
legal path in D”. For any two nodesape X andb ¢ X UZ,ifag—aj ... b is an ac-
tive trail (by Z) in D, then the directed pathag — a; — ... b is a legal path in D’ and
vice versa. Thus Y’ contains all nodes not in X U Z that are reachable from X via an
active trail (by Z) in D. By definition of D-separation, I1(X,Z,b), holds iff
be X UZ and b is not reachable from X (by an active trail by Z). Thus,
Y=V - uX uZ)isexactlytheset {b | I(X,Z,b)p). O

(*) Note that this step uses the alternative definition of D-separation, the one offered by Lemma

3.2
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Next, we show that the complexity of the algorithm is O (1E |). The construc-
tion of descendent[v] is implemented as follows: Initially mark all nodes of Z with
true. Follow the incoming links of the nodes in Z to their parents and then to their
parents and so on. This way, each link is examined at most once, hence this construc-
tion requires O (| E |) operations. The construction of determined [v] is similar and re-
quires the same complexity. Step (ii) of Algorithm 2 requires the construction of a list
for each node that specifies all the links that emanate from v in D (out-list). The in-list
and the out-list completely and explicitly specify the topology of D’. This step also re-
quires O (1E 1) steps. Using the two lists the task of finding a legal pair in step (iii) of
Algorithm 1 requires only constant time; if ¢; =u — v is labeled i then depending
upon the direction of u — v in D and whether v is determined by or has a descendent in
Z, either all links of the out-list of v, or all links of the in-list of v, or both are selected.
Thus, a constant number of operations per encountered link is performed. Hence, Step
(iii) requires no more than O (1E |) operation which is therefore the upper bound (as-
suming |E | 2 1V |) for the entire algorithm.

The above algorithm can also be employed to verify whether a specific state-
ment / (X, Z,Y)p holds in a dag D. Simply find the set Y .« of all nodes that are D-
separated from X given Z and observe that /(X,Z,Y ), holds in D iff Y < Y pay. In
fact, for this task, Algorithm 2 can slightly be improved by forcing termination once
the condition ¥ < Y . has been detected. Recently, another algorithm for the same
task (for networks without deterministic nodes) has been proposed [40]. The algorithm
consists of the following steps. First, form a dag D’ by removing from D all nodes
which are not ancestors of any node inX UY U Z (and removing their incident links).
Second, form an undirected graph G, called the moral graph, by stripping the direc-
tionality of the links of D’ and connecting any two nodes that have a common child in
D’ which is or has a descendent in Z. I(X,Z,Y ), holds by the definition of d-
separation iff all undirected paths between X and Y in G are intercepted by Z.

The complexity of the moral graph algorithm is O (I1V 12) because the moral
graph G may contain up to 1V |2 links, and, so, checking separation in G might re-
quire, in the worst case, O (1V 12) steps. Our algorithm requires O(IEl) steps, which
yields significant gain in sparse graphs, namely, those having |E | =0 (I1V |). If the
maximal number of parents of each node is bounded by a constant, then the two algo-
rithms achieve the same asymptotic behavior i.e, linear in |E |. On the other hand, the
moral graph algorithm is conceptually simpler to communicate and, for small graphs,
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might offer computational advantages as well. ) When the task is to find all nodes d-
separated from X by Z, then a brute force application of the moral graph algorithm re-
quires O (1V 13) steps, because for each node not in X U Z the algorithm must con-
struct a new moral graph. For this task, our algorithm offers a considerable improve-
ment.

An area where Bayesian networks have been used extensively is decision
analysis; an analyst elicits information from an expert about a decision problem, formu-
lates the appropriate network and then, by an automated sequence of graphical and pro-
babilistic manipulations an optimal decision is obtained [35, 44, 55]. When such a net-
work is constructed it is important to determine what information is needed to answer a
given query P (x | Z) because eliciting irrelevant parameters may be a waste of effort
[55]. Assuming that each node a; stores the conditional distribution P (g; | ®(a;)), the
task is to identify the set Q of chance nodes that must be consulted in the process of
computing P (x | Z) or, alternatively, the set of chance nodes that can be assigned arbi-
trary conditional distributions without affecting the quantity P (x | Z). The required set
can also be identified by the D-separation criterion. We represent the parameters p; of
the distribution P (g; | ®(a;)) as value in the domain of a dummy parent 7; of node q;.
This is clearly a legitimate representation complying with the format of Eq. (1), since
for every chance node a;, P (a; | n(a;)) can also be written as P (a; | ®(a;), p;), so =;
can be regarded as a parent of @; [62]. From Theorems 3.6 and 3.7, all dummy nodes
that are D-separated from X by Z represent variables that are conditionally indepen-
dent of X given Z and so, the information stored in these nodes can be ignored. Thus,
the information required to compute P (x | Z) resides in the set of dummy nodes which
are not D-separated from X given Z. Moreover, the completeness of D-separation
further implies that Q is minimal; no node in Q can be exempted from processing on
purely topological grounds (i.e., without considering the numerical values of the proba-
bilities involved). The algorithm below summarizes these considerations:

Algorithm 3
Input: A Bayesian network, two sets of nodes X and Z.
Output: A set of nodes O that contains sufficient information to compute P (x | Z)

(i)  Construct a dag D’ by augmenting D with a dummy node V' for every chance node
v in D and adding a link v/ — v.

(*) The average complexity of Algorithm 2 can be reduced by adapting the first step of the
moral graph algorithm, but the worst case complexity would not be improved.

73



(i)  Use Algorithm 2 to compute the set ¥” of nodes not D-separated from X by Z.

(ili) Q@ is the set of all dummy nodes v’ that are included in Y”.

Note that the algorithm adds dummy nodes only to chance nodes. Hence, the
algorithm should not be used to detect those functional relationships that could be ig-
nored; it identifies, however, the set of probabilistic parameters that are sufficient for a
computation of P (x | Z). In order to identify the functional relationship that could be
ignored, a more elaborated algorithm is required. This subtle point is illustrated in
Shachter’s example (8.d) and his algorithm addresses this task [56].

We conclude with an example. Consider the network D of Figure 3.11(a) and a
query P (as3).

@ (b)

Figure 3.11

The computation of P (a3) requires only to multiply the matrices P (a3l a1) and P (a,)
and to sum over the values of a;. These two matrices are stored at the dummy nodes
b, and b3 of Figure 3.11(b), which indeed are the only dummy nodes not D-separated
from node a3 (given &). Thus, Algorithm 3 reveals the fact that the parameters
represented by node b, and by (P (aj), P (a4l ay, ay)) are not needed for the computa-
tion of P (a3). Note that the questions of the value of a node, or the parameters stored
with a node influencing a given computation, may result in two different answers. For
example, the value of a4 might influence the computation of P (a3), because a3 and a4
could be dependent, while the parameters stored at node a4 never affect this computa-
tion. Algorithm 3, by representing parameters as dummy variables, reveals this fact.
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Shachter was the first to present an algorithm that identifies irrelevant parame-
ters using transformations of arc-reversal and node-removal. A revised algorithm of
Shachter [56] also detects irrelevant variables and it appears that the outcome of this al-
gorithm is identical to ours. In our approach we maintain a clear distinction between
the following two tasks: (1) declarative characterization of the independencies encoded
in the network (i.e., the D-separation criterion) and (2) procedural implementation of
the criterion defined in (1). Such separation facilitates a formal proof of the the
algorithm’s soundness, completeness and optimality. In Shachter’s treatment, task (1)
is inseparable from (2). The axiomatic basis upon which our method is grounded also
provides means for extending the graphical criteria to other notions of independence,
such as relational and correlational dependencies.

3.4 Consistency of Probabilistic Networks

The use of dags has been advocated in chapter 1 as a qualitative representation of judg-
ments about dependencies and independencies in some domain. Is every dag consistent
? Is every dag realizable by a distribution ? Theorem 3.14 below provides an
affirmative answer.

Theorem 3.14: For every dag D or an undirected graph G, there exists a non-extreme
distribution P such that D is a perfect map of P.

Proof: Let Z be the set of all statements that hold in a dag D (or in an undirected
graph G ). For every statement ¢ ¢ X in D, Theorem 3.9 guarantees the existence of
a distribution 7 that satisfies Z and does not satisfy 6. Similarly, if G is an undirect-
ed graph, the construction of Theorem 3.9 applies as well; the trail between a and b
would simply include no head-to-head nodes and no deterministic nodes ([2, 23] pro-
vide a direct proof of this assertion for undirected graphs). Let P be ®{F; l ce Z}
where ® is the direct product operation, guaranteed by Theorem 2.5. P satisfies the

statements in X and none other because these are the only statements that hold in all P
oS- Therefore, P satisfies the requirements of the theorem. O

The construction presented in the proof of Theorem 3.14 leads to a rather com-
plex distribution, where the domain of each variable is unrestricted. We conjecture,
however, that the set of dependencies and independencies represented in a dag or an
undirected graph can be realized in a more limited class of distributions, such as nor-
mal, or those defined on binary variables.
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The next theorem provides the basis for an algorithm that determines whether
an independence statement logically follows (wrt PD*) from a given set of saturated
statements; it complements the results reported in section 2.4.

Theorem 3.15: Let X be a set of saturated statements and let ¢/ (Z) be the closure of
under symmetry (1.5b), decomposition (1.5¢), weak-union (1.5d), and intersection
(1.6). Then, there exists a graph G and a strictly positive distribution P that satisfy ex-
actly the statements in ¢/ (Z).

Proof: Theorem 3.14 assures the existence of a strictly positive distribution that is a
perfect map of any undirected graph. We shall construct an undirected graph G that
satisfies exactly the statements in ¢/ (Z). This will complete our proof. The graph G
is constructed by first starting with the complete graph over U, the set of all variables.
Then removing every edge (a,b), such that a € X ,b € Y for some statement
o;=1(X,Z,Y)e X and only these edges. That G satisfies exactly the statements of
¢l (%) can be shown as follows [46]:

Let k be the number of elements in £. Let 67,62 * * - Ok, Okals - - - ,Om b
the list of all statements in ¢/ (X) ordered in a way such that each 6;, i >k is derived
from previous statements in the list by one of the axioms. We show by finite induc-
tion that every statement in the list is represented in the graph: this proposition clearly
holds for o1, - - - ,0¢ because by our construction, G satisfies all statements of . The
truth for j >k is implied by the induction hypothesis, and by the fact that vertex
separation satisfies the graphoid axioms.

The other direction, namely that every statement that holds in G belongs to
cl(Z) follows from theorem 1.1. This theorem constructs a graph G in which a link
(a, b) is removed from the complete graph if and only if (a, U—{a, b }, b) belongs
to ¢/(X), and guarantees that every statement which holds in G also holds in ¢/ (Z).
The weak-union axiom ensures that every edge removed in the construction of G will
also be absent in Go. Thus, G is an edge-subgraph of G and, so, every statement in
G holds in G and therefore belongs to ¢/ (Z). O

The implication algorithm for saturated statements is now clear: given X, con-
struct G. For instance, consider the language where the probability of the i-th letter is
determined solely by the (i-1)-th letter via P (/; | /;_;)> 0. Suppose that by sampling
5-letter words from this language the following two independencies were identified:
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E={I({l1,12),13, {415 ), I3, {2 14}, {11 I5})}

Are these statements sufficient to guarantee the Markov nature of the language and,
moreover, is the chain a complete representation of all independencies that are implied
by X ? The algorithm answers these questions affirmatively; it generates the chain of
Figure 1.4 which faithfully represents each and every independence in the closure of X.
The algorithm requires O (k-n?2) steps, where k is the size of £ and » is the number of
variables. To verify if a specific statement 6 =7(X, Z,Y) belongs to ¢/ (X) would re-
quire testing, in O (n) steps, whether Z separates X from Y in G. The simplicity of the
algorithm stems from the fact that saturated statements of graph separation and in-
dependence statements wrt PD* possess identical axiomatic structure. This permits us
to interpret X as statements about graph separation and construct a graph that embodies
their closure. '

Another interesting consequence of theorem 3.15 is given below.

Corollary 3.16: Let B be either a pairwise basis or a neighborhood basis of G. The
dependency model defined by G is exactly the logical closure of B wrt PD™.

This follows from the observation that both the neighborhood and the pairwise bases
consists of saturated statements. Corollary 3.16 provides the probabilistic semantics
underlying vertex separation in Markov networks, and might explain the wide use of
these networks.

3.5 Discussion

Researchers in relational database theory have invested much effort in characterizing
dependencies between items of information [22, 70]. Their main goal has been the au-
tomatic construction of relational scheme, namely the construction of relational tables
that facilitate the efficient representation and retrieval of information stored in a rela-
tional database. The initial paradigm has been to define several types of data depen-
dencies, let the user specify those dependencies that govern the domain, and then use
this information to design an efficient database scheme. This approach has been aban-
doned for several reasons. First, many types of dependencies were not common in real
life and were therefore hard to elicit. Second, even when such dependencies were at
hand, the computational difficulties of constructing optimal relational scheme turned
out insurmountable.
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The construction of expert systems based on Bayesian networks faces similar
problems; a specification of independence and dependence assertions does not help in
the automatic construction of optimal networks. It is even hard to determine what is
logically implied by an arbitrary list of such assertions. Instead, this dissertation sug-
gests an alternative approach. The expert is required to express knowledge about in-
dependencies in a graphical language dictated by the D-separation criteria, using infor-
mal guidelines of causation and time ordering. The resulting network possesses a pre-
cise semantics in terms of independence assertions and these can be used to verify
whether the network faithfully represents the domain. The obvious loss is in generali-
ty, not everything can be specified; for example, there is no way to represent, in graphi-
cal language alone, all the dependencies and independencies that govern three variables
constrained by equality—some independencies must be encoded numerically. The gain,
however, is significant; the expert can express relationships between entities of interest
in a convenient graphical format safe from contradictions and be assured that all con-
clusions are semantically valid.
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CHAPTER 4
Discovering Causality from Statistical Data

The existence of some relationship between causality and the pattern of dependencies
conveyed in Bayesian networks is obvious to anyone who constructs these networks
from expert’s judgments; whenever the construction ordering is consistent with the
flow of causation the network ends up sparse and judgments, both structural and nu-
merical, are produced consistently and reliably. However, the converse task, namely,
inferring causal relationships from patterns of dependencies is far less understood.
This chapter provides conditions under which the directionality of some links is not
sensitive to the specific order chosen to construct the network; an essential prere-
quisite for associating a causal interpretation to these links. An efficient algorithm is
developed that recovers these links from statistical data whenever possible.

4.1 Introduction

Most standard texts on the methodology of the social, behavioral and natural sciences
warn the practitioner to refrain from inferring causal relationships from statistical
dependence. This is not surprising in view of the wealth of examples showing the
difficulty and presumably the impossibility of drawing such an inference. Several
researchers in various schools of science have challenged this tradition with more mod-
est goals in mind. The first of these has been to define causality in probabilistic terms
such that the formal definition would 1) model as precisely as possible the common
usage of the word ‘‘causes’’ and 2) would define the physical meaning of a cause [29,
64, 66, 68]. Contrary to Hume’s deterministic view, the motivation to define causality
in probabilistic terms stems from the observation that probabilistic causes are widely
used in our language. The phrase ‘‘reckless driving causes accidents’’ provides an ex-
ample where the relation between a cause and its effect is clearly probabilistic [68].
Since in all practical cases a model cannot reflect precisely the state of the world, the
relationship between cause and effect must summarize entities outside the model and,
hence become probabilistic. The second goal is computationally oriented. Given that
causal models offer computational advantages of storage economy and retrieval time,
one commits to cast statistical data in such models, and aspires to identify the most
convenient causal structure feasible regardless of whether it corresponds to genuine
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causal mechanisms that ties together variables in the domain [28, 49, 52, 63].(*)

The lack of a precise definition of causality, despite the persistent attempts of
philosophers throughout the years to obtain one, indicates that the second pragmatic ap-
proach might be found useful. Of course, one cannot claim to have discovered causal
relationships if one does not possess an operational definition of causality, namely, a
set of qualitative conditions which matches the way causality is used in natural
discourse and which statistical data must satisfy before we are willing to accept the
assertion ‘‘a causes b’’. Although such a definition should in principal be sensitive to
the “‘strength’ of the causal relationships under consideration, we will focus on basic
qualitative features. For example, an operational definition may postulate that causality
is transitive which perfectly complies with our intuition but may not always show in
statistical data; the weather conditions of today may be regarded as a cause for
tomorrow’s weather while the weather in the turn of the century does not seem to
influence tomorrow’s weather [66]. Somewhere along the chain, causality has faded
away contrary to our endorsement of transitivity.

Our attack on the problem of identifying causality is structured as follows; first,
we pretend that Nature possesses ‘‘true’’ cause and effect relationships and that these
relationships can be represented by a causal network, namely, a directed acyclic graph
where each node represents a variable in the domain and the parents of that node
denote directed causes of the corresponding variable. Next, we assume that Nature
selects a joint distribution over the variables in such a way that direct causes of a vari-
able render this variable statistically independent of all other variables except its conse-
quences.(*) Then, we investigate the feasibility of recovering the network’s topology
efficiently and uniquely from the joint distribution. Computationally, solving this
simplified problem is crucial if one aspires ever to deduce causal relationship from
measurements; this is the main concern of this chapter. However, the solution is only
partial because it does not offer a way of distinguishing between spurious correlations
[59] and genuine causes, a distinction that is impossible within the confines of the close
world assumption.

(*) The division of authors into two distinct categories is far of being sharp since the objectives
are complementary. A summary of the different approaches to define causation can be found in
[60].

(*) This matches exactly our formal description of parameterization of a dag D that forms a
distribution for which D is a minimal-edge /-map (i.e., a Bayesian network).
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It is not hard to see that if Nature were to assign totally arbitrary probabilities to
the links, then some distributions would not enable us to uncover the structure of the
network. However, by employing additional restrictions on the conditional distribu-
tions expressing properties we normally attribute to causal relationships, some structure
could be recovered. The basic requirement is that two independent causes should be-
come dependent once their effect is known [49]. For example, two independent inputs
for an AND gate become dependent once the output is measured. This observation can
be phrased axiomatically using conditional independence by the following property,
called Marginal Weak Transitivity:

Ix,8,y) & —I[(x,B,a) & —[(y,D,a) = —I(x,a,y)

This tells us that if two variables x and y are mutually independent, and each is depen-
dent on their effect a, then x and y are conditionally dependent for at least one in-
stance of a. Ifindeed x and y are perceived to be independent causes of @ then people
normally expect to find such relationship. Two additional properties are reasonable to
attribute to causal interactions, and will be useful for recovering the causal network, in-
tersection (1.6) and composition. Intersection is guaranteed if the distributions are
strictly positive and is justified by the assumption that, to some extent, all observations
are corrupted by noise. Composition is a property enforced, for example, by normal
distributions, stating that two sets of variables X and Y are independent iff every
x € X andy € Y are independent. This property is perhaps the most intuitive property
of “‘dependence’’ in common discourse yet it is not enforced by all distributions.

The theory to be developed in the rest of the chapter addresses the following
problem. We are given a distribution P and we know that P is represented as a
singly-connected dag D whose structure is unknown. What properties of P allow the
recovery of D ? It is shown that intersection composition and marginal weak transi-
tivity are sufficient properties to ensure that the dag is uniquely recoverable (up to iso-
morphism) in polynomial time. The recovery algorithm developed considerably gen-
eralizes the method of Rebane & Pearl [49, Chapter 8] for the same task, as it does not
assume the distribution is dag-isomorph (i.e., a distribution that is a perfect map of
some dag). The algorithm implies, for example, that the assumption of a normal distri-
bution is sufficient for a complete recovery of singly-connected dags.
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4.2 Reconstructing Singly Connected Causal Networks

We investigate the feasibility of identifying whether or not a given distribution is in-
duced from a singly-connected causal nétwork and show how to identify the networks’
topology when the distribution satisfies the following three properties:

e Intersection:

IX,ZOY, W) & IX,ZUW,Y) = [X,Z,YUW) (4.1)
e Composition:
IX,Z,Y) & IX,Z,W) = IX,Z,YUW) 4.2)

e Marginal weak transitivity:
IX,Z2,Y) & IX,Zu{c}),W) = IX,Z,c)orl(c,Z,Y) (43)

The following definitions, some repeated from previous chapters, are found use-
ful:

Definition: A graphoid is called intersectional if it satisfies (4.1), semi-normal if it
satisfies (4.1) and (4.2), and pseudo-normal if it satisfies (4.1) through (4.3).

Definition: A singly-connected dag (or a polytree) is a directed acyclic graph with at
most one trail connecting any two nodes. A dag is non-triangular if any two parents of
a common node are never parents of each other. Polytrees are examples of non-
triangular dags. The skeleton of a dag D, denoted skeleton (D), is the undirected graph
obtained from D if the directionality of the links i is ignored.

Definition: A Markov network G of an intersectional graphoid M is the network
formed by connecting two nodes, a and b, if and only if (@, U —{a,b},b)e M. A
reduced graph Gg of M is the graph obtained from G by removing any edge a—b for
which (a,d,b)e M.

Definition: A node b is called a head-to-head node with respect to a trail ¢ in a dag D
if there are two consecutive links @ — b and b « ¢ on ¢. Each occurrence of a head-
to-head node wrt a trail is called a head-to-head connection of D. Each node of D
may define several head-to-head connections, one with respect to each pair of its neigh-
boring nodes.

Definition: Two dags D, and D, are isomorphic if the corresponding dependency
models are equal.
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Isomorphism draws the theoretical limitation of the ability to identify direc-
tionality of links using information on independence. For example, the two dags:
a— b— ¢ and a « b« c, are indistinguishable in the sense that they portray the same
set of independence assertions; these ar¢ isomorphic dags. On the other hand, the dag
a— b« c is distinguishable from the previous two because it portrays a new indepen-
dence assertion, I (a, &, c¢), which is not represented in either of the former dags. An
immediate corollary of the definitions of d-separation and isomorphism is that any two
polytrees sharing the same skeleton and the same head-to-head connections must be
isomorphic. More generaly, it can be shown that two dags are isomorphic iff they
share the same skeleton and the same head-to-head nodes emanating from non adjacent
sources [50].

Lemma 4.1: Two polytrees T'; and T, are isomorphic iff they share the same skeleton,
and the same head-to-head connections.

Sufficiency: If T, and T, share the same skeleton and the same head-to-head connec-
tions then every active trail in T’y is an active trail in T, and vice versa. Thus, Mr,

and M7, the dependency models corresponding to T'; and T, respectively, are equal.

Necessity: T'; and T2 must have the same set of nodes U, for otherwise their depen-
dency models are not equal. If a— b is a link in 7 and not in T, then the triplet
(@,U—{a,b},b)is in My, but not in M7,. Thus, if Mr, and Mr, are equal, then T,
and T must have the same skeleton. Assume T'{ and T, have the same skeleton and
that a > ¢ « b is a head-to-head connection in 7'y but not in T'5. The trail a— c— b is
the only trail connecting a and b in T, because T'; is singly-connected and it has the
same skeleton as T;. Since ¢ is not a head-to-head node wrt this trail,
(a,c,b)e Mg, However, (a,c,b)e Mr, because the trail a— ¢ « b is activated
by ¢. Thus, if M, and My, are equal, then Ty and T, must have the same head-to-
head connections. []

The algorithm below uses queries of the form / (X, Z,Y) to decide whether a
pseudo-normal graphoid M (e.g., a normal distribution) has a polytree I-map represen-
tation and if it does, then D ’s topology is identified. Axioms (4.1) through (4.3) are
then used to prove that if D exists, then it is unique up to isomorphism. The algorithm
is remarkably efficient; it requires only polynomial time, while a brute force approach
would require checking n ! possible dags, one for each ordering of M ’s variables.
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The Recovery Algorithm )

Input: Independence assertions of the form I(X,Z,Y)
drawn from a pseudo-normal graphoid M.

Output: A polytree I-map of M if such exists, or ack-
nowledgment that no such /-map exists.

1. Start with a complete graph.

2. Construct the Markov network G, by removing every edge i—j for
which (i, U-(i,j},j)isin M.

3. Construct Gz by removing from G any link i—j for which (¢, @, j)
is in M. If the resulting graph Gx has a cycle then answer ‘‘NO’’.
Exit.

4, Orient every link a—b in Gz towards b if b has a neighboring node
c¢,suchthat (a,@,c)e M and a—c is in Gy.

5. Orient the remaining links without introducing new head-to-head
connections. If the resulting orientation is not feasible answer
“NO”’. Exit.

6. Find an orientation that does not introduce new head-to-head con-

nections. If the resulting polytree is not an /-map, answer ‘‘NO”’.
Otherwise, this polytree is a minimal-edge /-map of M.

The following sequence of claims establishes the correctness of the algorithm
and the uniqueness of the recovered network; full proofs are given in section 4.3.

Theorem 4.2: Let D be a non-triangular dag that is a minimal-edge I-map of an inter-
sectional graphoid M. Then, for every link a—b inD,(a,U~{a,b},b) e M.

Theorem 4.2 ensures that every link in a minimal-edge polytree I-map (or more pre-
cisely, a link in a minimal-edge non-triangular dag /-map) must be a link in the Markov
network Go. Thus, we are guaranteed that Step 2 of the algorithm does not remove
links that are needed for the construction of a minimal-edge polytree I-map.

Theorem 4.3: Let M be a semi-normal graphoid that has a minimal-edge polytree I-
map T. Then, the reduced graph Gz of M equals skeleton (T').

(*) A variant of this algorithm has been suggested by Pearl (personal communication)
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Corollary 4.4: All minimal-edge polytree I-maps of a semi-normal graphoid have the
same skeleton (Since Gy is unique).

Theorem 4.3 shows that by computing Gg, the algorithm identifies the skeleton of any
minimal-edge polytree /-map T, if such exists. Thus, if G; has a cycle, then M has no
polytree I-map and if M does have a polytree /-map, then it must be one of the orienta-
tions of Gg. Hence by checking all possible orientations of the links of the reduced
graph one can decide whether a semi-normal graphoid has a minimal-edge polytree I-
map. The next two theorems justify a more efficient way of establishing the orienta-
tions of Gp. Note that composition and intersection, which are properties of semi-
normal graphoids, are sufficient to ensure that the skeleton of a polytree I-map of M is
uniquely recoverable. Marginal weak transitivity, which is a property of pseudo-
normal graphoids, is used to ensure that the algorithm orients the skeleton in a valid
way. It is not clear, however, whether axioms (4.1) through (4.3) are indeed necessary
for a unique recovery of polytrees.

Definition: Let M be a pseudo-normal graphoid for which the reduced graph Gy has
no cycles. A partially oriented polytree P of M is a graph obtained form Gy by
orienting a subset of the links of Gy using the following rule: A link @ —b isin P if b
has a neighboring node ¢, such that (a, &, c) € M and the link a—c is in G. All oth-
er links in P are undirected.

Theorem 4.5: If M is a semi-normal graphoid that has a polytree I-map, then M
defines a unique partially oriented polytree P.

Theorem 4.6: Let P be a partially oriented polytree of a semi-normal graphoid M.
Then, every oriented link a —c¢ of P is part of every minimal-edge polytree I-map of
M.

Theorem 4.5 guarantees that the rule by which a partially oriented polytree is construct-
ed cannot yield a conflicting orientation when M is pseudo-normal. Theorem 4.6
guarantees that the links that are oriented in P are oriented correctly, thus justifying
Step 4.

We have thus shown that the algorithm identifies the right skeleton and that
every link that is oriented must be oriented that way if a polytree /-map exists. It
remains to orient the remaining links. Step 5 searches for an orientation that does not
introduce new head-to-head connections. Theorem 4.7 below shows that no polytree
I-map of M introduces new head-to-head connections. Lemma 4.1, shows that all
orientations that do not introduce a head-to-head connection yield isomorphic dags be-
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cause these polytrees share the same skeleton and the same head-to-head connections.
Thus, in order to decide whether or not M has a polytree /-map, it is sufficient to exam-
ine merely a single polytree for /-mapness, as performed by Step 6.

Theorem 4.7: Let P be a partially oriented Polytree of a pseudo-normal graphoid M .
Every orientation of the undirected links of P which introduces a new head-to-head
connection to P yields a polytree that is not a minimal-edge /-map of M.

4.3 Proofs

Theorem 4.2: Let D be a non-triangular dag that is a minimal-edge /-map of an inter-
sectional graphoid M. Then, forevery linka-b inD, (a,U-{a,b},b)e M.

Proof:") ““Let 1.7 be an ordering of the vertices of D. Let Mp be the dependen-
cy model corresponding to D. Let i—j be a link in D. If j=n then
@, U~{i,n},n)e M, for otherwise, D is not minimal. Assume thati< j < n and,
by contradiction, that (i,U-{i,j},j)e M. We will show that D cannot be
minimal-edge. Nodes i and j cannot be both parents of # since this would imply the
configuration i —n <—j with i connected to j in D contrary to its non-triangularity.
Thus either ((,U—{i,n},n) or (j,U-{j,n},n) is in Mp which together with
@,U-{i,j},j)e M imply by intersection (4.1), decomposition (1.5¢) and sym-
metry (1.5b) that G, U-{i,j,n},j) € M. Similarly, n—1 can not be a son of both i
and j. Thus either (i, U~ {i,n,n~-1},n-1)or (j, U~ {j,n,n-1} ,n-1)is in Mp
which together with (i, U- {i, j, n}, j) € M (which is derived in the previous step)
imply that (0, U~ {i, j,n=1,n},j)e M. Continuing this way, by descending in-
duction we get that the triplet (i, R;;, j) is in M where R;; are all vertices in D with
indices less than j not including i. The link i — j is therefore redundant. This con-
tradicts the minimality of D. O

Theorem 4.3: Let M be a semi-normal graphoid that has a minimal-edge polytree I-
map T. Then, the reduced graph Gy of M equals skeleton (T).

Proof: Let a—b be a link in skeleton(T) and let My be the dependency model
defined by T. We show that a—b must be a link in Gg. Since T is a polytree, T is
non-triangular and therefore, by Theorem 4.2, the link a—b is part of the Markov net-
work Go of M. We will show that (a,d,b) ¢ M. Thus the link a—b is not re-

(*) Paz (personal communication)

86



moved from Go. Consequently, a—b is a link in Gg. Without loss of generality as-
sume that a —b is a link in T (same argument when b—a isin T). Let A be the set
of nodes connected to a with a trail not containing b, B be the set of b’s descendants
and C be the rest of the nodes in T'. Being a polytree, A, B and C are disjoint. By
definition of A, node a lies on the single trail connecting each node in A to b, and a
is not a head-to-head node on none of these trails. Thus (b,a,A)e Mr. T is an I-
map of M. Hence (b,a,A) is a member of M as well. Assume, by contradiction,
that (b, D, a) e M. This triplet together with (b, a, A) imply by contraction (1.5¢)
that (b, D, Au{a}) e M. By definition of C, all trails between C and A U {a} con-
tain at least one head-to head node, thus (C,3J,AU {a}) e My and in M as well.
This triplet together with (b,J,AU {a}) imply by composition that
(Cu{b},D,Au{a}) must also be in M. By weak union, (b,AUC,a)e M.
Since AU C is the set of all non-descendants of b, T is not minimal; link b—a
should not be part of T, contradiction.

That the converse holds, namely, a link in Gg must be a link in skeleton (T'),
is shown as follows. Let @ and b be two nodes not connected with a link in 7. We
show that the pair a—b is not a link in the reduced graph Gg. There are three cases to
consider. Either a is an ancestor of & (in T'), b is an ancestor of g or neither is the
case. In the first two cases there is a directed path from a to b or vice versa. The tri-
plet (a,U-{a, b}, b) is in My because U~{a, b} includes a node that blocks this
path. T is an /-map thus (a, U~ {a,b},b)e M. Hence a-b is not in Gy. Conse-
quently, it is not in Gg either. If neither nodes is an ancestor of the other then
(a, <, b) e My because each trail that connects ¢ and b must contain a head-to-head
node. Consequently, (a, D, b) € M, and therefore a—b isnot alink in Gg. 0.

Theorem 4.5: If M is a semi-normal graphoid that has a polytree I-map, then M
defines a unique partially oriented polytree P .

Proof: Assume, by contradiction, that P is not unique, namely that there exists a
conflicting orientation of some links of Gz (by Theorem 4.3, the skeleton of P is
GRr). Let a—b be a link that can be oriented both ways. Then, there exist a neighbor
q of b for which (a,D,q)e M and (a, U~ {a,q},q) e M that supports an orien-
tation from a into b and there exists another node p, neighbor of a, for which
b,D,p)eM and (b,U-{b,p},p)e M that supports the reverse orientation.
Thus, Gg must contain the chain p—a-b—q.
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We reach a contradiction by showing that none of the eight possible orienta-
tions of the trail p—~a—b—q could be part of any minimal-edge polytree /-map of M.
Since M has a polytree /-map, it has also a minimal-edge polytree I-map T. Conse-
quently, the skeleton of T would not equal Gg, contradicting the assertion made by
Theorem 4.3. If neither a nor b is a head-to-head node on this trail, then since
a—b—q is the only trail connecting a and ¢ and this trail is blocked by b, which im-
plies that (a, U- {a, q }, ¢) must be a member of M, contradicting the selection of
g . Otherwise, a or b are head-to-head nodes on this path. Assume & is a head-to-
head node (the case where a is a head-to-head node is symmetric, by changing the
roles of a and b). Then p-a—beqg is part of T. In this case
b,U~{b,p},p) e Mp < M contradicting the selection of p. O

Theorem 4.6: Let P be a partially oriented polytree of a semi-normal graphoid M.
Then, every oriented link a —c of P is part of every minimal-edge polytree I-map of
M.

Proof: By Theorem 4.6, P is unique and by Theorem 4.3, it has the same skeleton as
any minimal-edge polytree /-map T of M. Since a—b is oriented in P, there must
exist a node ¢, neighbor of b, for which (a, J,¢)e M and (a,U-{a,q},q) e M.
Thus T, having the same skeleton of P, contains the trail a—~b—g. Node b must be a
head-to-head node on this trail in 7. Otherwise, (a,U-{a, q}, q) e Mr because
U-{a, g} blocks the trail between a and . Consequently, (a,U- {a,q}, g)isin
M as well, contradicting the selection of a and ¢. Thus b is a head-to-head node and
thereforea—b isinT. O

Theorem 4.7: Let P be a partially oriented Polytree of a pseudo-normal graphoid M.
Every orientation of the undirected links of P which introduces a new head-to-head
connection to P yields a polytree that is not a minimal-edge I-map of M .

Proof: Assume, by contradiction that there exists an orientation of the undirected
links of P that yields a minimal-edge polytree /-map T which introduces a new
head-to-head connection. Let a— ¢ « b be a newly introduced head-to-head con-
nection and let b be the node that is not a parent of ¢ in P (namely, the link c— b is
not oriented in P). Let C be all parents of ¢ in T, excluding a and b. Since T is
singly-connected, (Cu {a}, D, b) e Mr, where My is the dependency model
defined by T. T is an I-map, therefore (CU {a}, D, b) is in M as well. We will
show below that all paths between CU {a } and b in G must path through ¢. This
will complete the proof; G is an I-map, thus (Cu{a},c,b)e M. This triplet, to-
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gether with (CU {a }, &, b) would imply, by marginal weak transitivity and contrac-
tion, that either (Cu {a,c},d,b) or (Cuf{a}, D, {b,c}) are in M. These would
imply, by weak union and symmetry, that either (c,CuU{a},b) or (¢c,CuU{b},a)
are in M. Thus, either link b —¢ or a>c are redundant, contradicting the minimali-
tyof T.

It remains to show that all paths between CU {a} and b in G path through
¢. Let B be the set of nodes connected to b not through ¢ (in T') and let A be the rest
of the nodes excluding ¢. Thus the nodes of T consist of A, B and {c }, and these
sets are disjoint. We will show that there is no link connecting a node in B and a
node in A. Consequently, there exists no path between C U {a} cA and be B that
does not path through ¢

Any node b’ e B is connected to a node a’e A in T only through the link
b— ¢ because T is singly connected. If b’# b, then (0", U—{a’,b"},a’)eMr cM.
Therefore, the pair a’— 5" is not a link in Gy. If "=b, then it cannot be connected
with a link to a parent a” of ¢ because otherwise the link b —c¢ would be oriented in
P because the following two requirements would be met: (b, U—{a’,b},a") eM
and (@', ,b)e M. Node b cannot be connected with a link to any other node
a €A because (b, U—{a’,b},a’ ) eM; c blocks the trail from b to each of ¢ ’s des-
cendants and the parents of a block the path from & to all of ¢’s non-descendants.
Thus, there exists no link connecting anode in A and anodeinB. O

4.4 Discussion

In the absence of temporal information, the uniqueness of directionality is a prere-
quisite for inferring causal relationships from statistical information. This chapter pro-
vides conditions under which the directionality of some links is indeed uniquely recov-
erable. It is shown that if a distribution is generated from a singly connected causal
network, then the topology of the network can be recovered provided that this distribu-
tion satisfies three properties: composition, intersection and marginal weak transitivity.

There is one difficulty with this approach; we are working within the confines
of the closed world assumption, namely, we assume that the set of variables U ade-
quately summarizes the domain and remains fixed throughout the structuring process.
This assumption does not enable us to distinguish between genuine causes and spurious
correlations; a link @ — b that has been determined by our procedure may be represent-
ed by a chain a < ¢ —b where c is a variable not accounted for when the network is
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first constructed. Thus, the dependency between a and b which is marked as causal
when ¢ ¢ U is in fact spurious, and this is revealed when ¢ becomes observable. This
limitation, one must emphasize, is frequent in common discourse as well; whatever is
perceived as a cause today may be chariged when more accurate knowledge becomes
available.

Future research is needed for incorporating variables outside U into the net-
work in order to facilitate sparser dag representations. The addition of extra nodes
often renders graphical representations sparser and more accurate. For example, a net-
work that represents medical symptoms would show all nodes connected and would be
of little use, but when a disease variable is added, the network becomes much sparser
and more useful. Pearl and Tarsi provide an algorithm that constructs tree /-maps with
added variables whenever possible [52]. An extension of this algorithm to polytrees
and other topologies would be extremely valuable. It should be noted that the assump-
tion of singly-connectedness may not be needed for a recovery algorithm. Theorem 1,
which is the basic step of the recovery, assumes only non-triangularity. Thus an
efficient recovery algorithm for non-triangular dags may be found as well.
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CHAPTER 5 _
An Approach to Knowledge Acquisition

An important step in organizing a large body of knowledge is the grouping of related
pieces of information into more or less independent chunks. In constructing large
Bayesian networks from expert’s judgments, this amounts to identifying the connect-
ed components of the network. Asking the expert directly whether variables x and y
are connected may be a hard question to answer, since the expert may not have a clear
global view of the network topology. However, the query: ‘‘does the value of x ever
tells you anything about the value of y ?’ should evoke more reliable judgment.
This chapter identifies the class of distributions, called separable, for which the
answer to this query can safely be interpreted as an assertion about the connectivity of
x and y, and argues that it reasonable to assume these distributions in the construc-
tion of Bayesian networks. Normal and strictly-positive binary distributions are ex-
ample of separable distributions.

5.1 Introduction

The construction of Bayesian networks as faithful representations of a given domain re-
lies on the ease and confidence by which an expert can describe the relationships
between variables in this domain. Explicating these relationships is often straight for-
ward, however, difficulties may arise when variables have many instances. For exam-
ple, in medical diagnosis, a variable corresponding to ‘‘cancer’’ may have dozens of
possible values, each corresponding to a different type of cancer. An expert wishing to
describe the relationship between the different symptoms, tests and treatments of canc-
er may find it rather confusing unless he first partitions the many types of cancer into
several groups sharing common characteristics; in fact, the grouping of related pieces
of information into more or less independent chunks is an important step in organizing
any large body of knowledge.

The need to partitioning large knowledge bases has lead to the construction of
similarity networks, which are an effective tool for eliciting Bayesian networks from
experts [31]. This approach is summarized below: Let & be a distinguished variable
designated for the disease ‘‘hypothesis”’, and let the instances of &, ky, ***, h,, stand
for an exhaustive list of possible diseases. First, a connected undirected graph is con-
structed where each of the n nodes represents a different instance of 4 and each link
represents a pair of ‘‘similar’’ diseases, namely diseases that are sometimes hard to
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discriminate. Next a spanning tree of this graph is formed. Then, for each link h;— h;
in the tree, a local Bayesian network is composed, assuming that either A= h; or h=h;
must hold; it consists of a distinguished root node # whose instances are k; and h;, ad-
ditional nodes representing symptoms that help to discriminate between the two in-
stances of %, and links representing the dependencies among symptoms and their rela-
tionship to the hypothesis node 4. Finally, the global network is formed from the n—1
local networks; it consists of the union of all links and their adjacent nodes in the local
networks.

The conceptual advantage of this approach is clear; the expert can focus his at-
tention on two diseases at a time. This enables the expert to provide more accurate
parameters which considerably improve the reliability of the resulting system. More-
over, although we face the task of constructing n—1 local networks instead of one, the
task is performed faster in practice because it eases the estimation of individual param-
eters [32]. Furthermore, when we concentrate on two specific diseases at a time, many
symptoms are not represented in the local network because they are irrelevant for
discriminating these diseases. Heckerman has shown that under the assumption of
strict-positiveness, namely that every combination of symptoms and diseases is feasi-
ble, the union of the connected components of node 4 in each local network generates
a valid Bayesian network that faithfully represents the domain [32]. Technically, this
means that if each local network is a minimal-edge I-map of a distribution P, then their
graph union is also a minimal-edge /-map of P.

A difficulty with this approach is to identify the set of nodes that are connected
to node 4 in each local network. We could consult the expert by asking him directly
queries of the form: *‘is node s (s connotes symptom) connected to node 4, given that
either h=h; or h=h; must hold ?”’, however, this query may be inadequate because it
refers to a graphical representation of the domain, a language with which the expert
might not be familiar. On the other hand, the query ‘‘does this symptom in any cir-
cumstances help you to discriminate between the two diseases k; and k; ?°’ is much
more appealing since it addresses exactly the specialty of the expert.

The main contribution of this chapter is identifying the class of distributions,
called separable, for which the answer to these two queries is always identical.
Strictly-positive distributions over binary variables and normal distributions are exam-
ples of separable distributions. Our analysis will be based on the notion of interaction,
a stronger from of dependence.
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5.2 Separable Graphoids

The definition of interaction formalizes the sentence: ‘‘does the value of a ever tells us
anything about the value of b ?’’; two variables are said to interact if there exists a
context where they are dependent. More precisely, if U stands for a finite set of
preselected variables of interest, then a and b interact if there exists a set
Z cU—{a,b}suchthat—1I(a,Z, b). One would expect that any two variables a and
b that do not interact can always be placed in two disconnected components of a Baye-
sian network, indicating that they are totally unrelated. In other words, if @ and b do
not interact, one expects to find a partitioning of U into two sets U, and U, that con-
tain @ and b respectively, such that U, and U} are independent. Unfortunately, such a
relationship between connectedness and interaction is not guaranteed by probability
theory. For example, if U consists of three variables a, b and ¢, then it is possible that
a and b do not interact, namely that @ and b are both marginally independent and in-
dependent conditioned on ¢, and yet no variable is independent of the other two. This
happens, for example, if a and b are the outcome of two independent fair coins and ¢
is a variable whose domain is {head, tail } x {head , tail } and whose value is (i, j) if
and only if the outcome of a is i and the outcome of b is j. Any Bayesian network
representation of these variables will render node @ and b connected, either by a direct
link or via a trail through ¢, thus making it impossible to place a and b in two discon-
nected components of the network. A distribution that satisfies the condition that non-
interaction implies non-connectedness (the converse always holds), is said to be separ-
able. The definitions of interaction and separability are phrased below in the language
of graphoids; recall that distributions are special types of graphoids.

‘Definition: Let M be a graphoid over a finite set of variables U. Two variables a and
b of M are said to interact, denoted interact(a,b), 3Z cU-{a,b} such that
(a,Z,b)e M.

Definition: A graphoid M over a finite set of variables U is separable if for every two
elements a and b that do not interact, there exists a partitioning U, and U, of U such
thata € U,,b € Uy and (U,, D, Up) € M.

The requirement that a distribution be separable can be cast in another appeal-
ing format; it is equivalent to the requirement that interact is a transitive relation,
namely, that interact satisfies the following property:

e Transitivity:

interact(a,b) & interact(b,c) = interact(a,c) (5.1
(Theorem 5.6 below). This property is so appealing to our intuition that we are tempt-
ed to speculate that all distributions not obeying this property are epistemologically
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inadequate for modeling a human reasoner, and that distributions that do satisfy this
property are natural in the sense that they adequately represent the conventional pro-
perties of the word ‘‘interact’’. We note that transitivity can be viewed in a dual
fashion: it could serve as a constraint that one would like to impose on an expert when
information on interaction is elicited. Alternatively, it could be employed as a plausi-
ble argument to explain why a system views @ and b as indirectly interacting although
this fact was never explicitly stated by the expert. The following definitions and claims
are needed to establish the equivalence between separability and transitivity.

Definition: Two nodes are connected in a dag D iff there exists a trail connecting
them in D. A connected component in a dag (E,V) is a subgraph (E’,V’) (ie.,
E’ cE and V' c V), for which any two nodes are connected.

Definition: Two elements of a graphoid M are said to be related, denoted
related (a, b), if there exists a minimal-edge /-map dag of M in which the correspond-
ing nodes are connected.

The next lemma and its corollary show that for any graphoid M the relation re-
lated can be determined from any single minimal-edge /-map of M ; if two elements a
and b are connected in some minimal-edge /-map of M then they are also connected in
all such /-maps of M and if they are not connected in one, then they are not connected
in none.

Lemma 5.1: The connected components of any two minimal-edge I-maps of a gra-
phoid M induce the same partitioning on M ’s variables.

Proof: Let D4 and Dp be two minimal-edge /-maps of M. Let C4 and Cp be two
connected components of D4 and Dp respectively. Let A and B be the nodes of Cy4
and Cp respectively. We show that either A =B or AN B = . This will complete
the proof because for an arbitrary connected component C4 in D4 there must exists a
connected component Cp that shares at least one node with C4 and thus, by the above
claim, it must have exactly the same nodes as C4. Thus each connected component
of D4 shares the same nodes with exactly one connected component of Dg. Thus D4
and Dp induce the same partitioning on M ’s variables.

Since Dy is an /-map of M and Cy4 is a connected component of D4, we must
have (A, D, U-A)e M, where U stands for M’s variables. By symmetry (1.5b)
and decomposition (1.5¢), ANB,J,B—A)e M. Hence ANB =D orB—-A =,
for otherwise, due to the minimality of Dg, Cp would not be a connected component
because it would consist of two non-empty independent sets: AN B and B—A4 = Q.
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Similarly, ANB = or A— B =, for otherwise C4 would not be a connected com-
ponent. Thus, either A =B orAN B = must hold. OJ

Corollary 5.2: The relation related defined by a graphoid is a transitive relation.

Proof: related(a, b) implies that a and b are connected in some minimal-edge I-
map D. related (b, c¢) implies that b and c are connected in some other minimal-
edge I-map D’. By Lemma 5.1, b and c are connected also in D. Thus a and ¢
must be connected in D as well. Hence, related(a, ¢) holds forM. O

The definition of interaction can be extended to sets; this is found useful for showing
that interact and related are equal relations for separable graphoids. Consequently,
since related is a transitive relation, interact must be transitive as well.

Definition: Let M be a graphoid over a finite set of variables U. Two disjoint subsets
A and B of U interact, denoted interact(A,B), iff 3Z cU-AUB such that
(A,Z,B)e M. Therelation J(A, B) stands for —interact (A, B).

Interaction between sets, as the next lemma shows, is solely determined by the
interactions between their individual elements. As is well known, this compositional
property does not hold for probabilistic independence; two sets may be dependent
although their individual elements are independent. For example, if @ and & are two
independent fair coins and ¢ is their sum modulo 2 then ¢ is dependent on {a, b} but
is independent of each individual.

Lemma 5.3: Let M be a graphoid over a finite set of variables U. Two subsets A and
B of U do not interact iff every two variables a € A and b € B do not interact.

Proof: It is sufficient to show that for any three subsets A, B and C of U, J(A,B)
and J(A, C) imply J(A, BU C) and vice versa. ThatJ(A, Bu C) implies J(A, B)
follows from decomposition (1.5¢) of M. The converse is shown to follow from con-
traction (1.5¢); J(A,B) implies (A,X,B)eM and J(A,C) implies
(A, XUB,C)e M. Together, these imply by contraction that (A,X,BUC)e M.
Since X is arbitrary, J(A,Bu C)holdsinM. O
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Next, we show that interact and related are two equal relations for separable
graphoids.

Lemma 5.4: Let M be a separable graphoid. Then, for every two variables a, b of M,

interact(a,b) <> related(a,b)

Proof: If a and b do not interact then, since M is separable, there exists a partition-
ing of M’s variables into two disjoint sets U,, U, such that a € U,, b € U and
(Us, D, Up) e M. Let D be a minimal-edge /-map dag of M formed by an ordering
of M’s variables that places all variables in U, before those of U,. The resulting /-
map has no trail between U, and U,. Thus ¢ and b are not connected in D. It fol-
lows that ¢ and b are not connected in any minimal-edge /-map of M (Lemma 5.1).
Thus @ and b are not related in M.

If a and b interact then, by definition, there exists a set of variables Z such
that (a,Z,b)¢ M. Let D be a minimal-edge dag /-map formed by an ordering of
M ’s variables that starts with a, followed by the variables in Z, followed by 4. In
the resulting dag D, there exists a link connecting a and b because otherwise
(a,Z,b)e M. Thus,a and b are connected in D and therefore related in M. [

Corollary 5.5: Let M be a separable graphoid. Then, interact is a transitive relation.

Proof: By Lemma 5.4 the relations interact and related are equal. By Corollary 5.2,
related is a transitive relation. Thus, interact is a transitive relation. [

Next, we establish the equivalence between separability and transitivity.

Theorem 5.6: Let M be a graphoid and interact the relation it defines. Then, M is
separable iff interact is a transitive relation.

Proof: If M is separable, the relation interact is a transitive relation (Corollary 5.5).
It remains to show the converse; transitivity implies separability. Let U stand for
M’s variables. Let a and b be two arbitrary elements of U that do not interact. We
will show by induction on 1U | that if interact satisfies transitivity (5.1) then there
exists a minimal-edge /-map D where a and b are not connected. Consequently, M
is separable because (U,, D, Uy) € M where U, are the variables connected to a in
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D and U, are the rest of the variables.

We construct D in the ordering u; La,u; 2b,us, ..., u, De of M's
variables. Assume »n =2. Variabléss @ and b do not interact, therefore
(@a,3,b)e M. Thus, a and b are not connected. Otherwise, n> 2. Let D, be a dag
formed from M by the ordering u,, ..., u,_; of M’s variables. let A be the set of
nodes connected to @ and let B be the rest of the nodes in D,. The dag D is formed
from D, by adding the last node e as a sink and letting its parents be a minimal set
that makes e independent of all the rest in M (see the construction of Theorem 1.2).
By the induction hypothesis, before ¢ was added, A and B are disconnected. After
node e is added, a trail through ¢ might exists that connects a node in A and a node
in B. We will show that there is none; if the parent set of e is indeed minimal, then
either e has no parents in A or it has no parents in B, rendering a and » disconnect-

ed.

Since a and b do not interact and since M satisfies transitivity (5.1), it fol-
lows that either a or b do not interact with e. Without loss of generality assume that
a and e do not interact. Let @’ be an arbitrary node in A. By transitivity it follows
that either a or e do not interact with a’, for otherwise, a and e would interact, con-
trary to our selection of a. If @ and a’ do not interact, then by the induction hy-
pothesis, A can be partitioned into two independent subsets, thus A would not be
connected in the minimal-edge /-map D,, contradicting our selection of A. Thus,
every variable @’ € A does not interact with e. It follows that the entire set A does
not interact with e (Lemma 5.3). Thus, in particular, (4, B, e)e M where B are the
parents of e in B. Consequently, e has no parents in A because otherwise D were
not minimal. Hence, a and b are on two different connected components of D. [J

5.3 Separable Distributions and Refined Dependency Models

Two important classes of distributions, normal and positive binary, are shown to be
separable. Hence, in dealing with these distributions one is guaranteed that interaction
is transitive. We first examine a property of independence, called propositional transi-
tivity:

1(A1A243A4,8,B1B2B3B4) & I1(A1A2B3Bs, e=¢’,B1B24A344) & I(A1A3B B4, e=e” ,B1B3AsAL) =

I(A1, D, e A2A3A4B1B3B3Ba)orI(B1, D, e A1A2A344BB3Bs)  (5.2)
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Our plan is to show that this axiom, which is satisfied by strictly-positive binary
distributions and normal distributions, implies separability. The first antecedent of this
axiom states that two sets of variables A and B are marginally independent where each
set is the union of four possibly-empty subsets, A 14,4 34 4 and B 1B ,B 3B 4, respective-
ly. The second antecedent states that there exists a partitioning A;A2B3B,4 and
BBjA3A4 of AU B such that the two sets are independent given e=e¢’. Another par-
titioning, given e=e”, is stated by the third antecedent. The two statements in the
consequence of (5.2) assert that either A or B are independent of all other variables,
including e. Note that each statement in the antecedents has one less uninstantiated
variable than each statement of the consequence; this observation is the basis of the in-
ductive proof showing that propositional transitivity implies separability. Note also
that when all sets aside from A; and B are empty and e is a binary variable with a
domain {e’, e” }, then propositional transitivity reduces to the following known proper-
ty of binary distributions:

1(A,9,B1) & I(Ay,e,By) = I(Ae,DB,B)) or I(A, D, eB>)

The proof that propositional transitivity holds for normal distributions is given below.
The proof that it holds for strictly-positive distributions over binary variables can be
found in [24]. We conjecture that propositional transitivity holds for all binary distri-
butions as well.

Lemma 5.7: [24] Propositional transitivity holds for any strictly-positive distribution
over binary variables.

The definition of dependency models and graphoids of section 1.3 concentrates
on independence between variables and not between particular instances of these vari-
ables. Thus, to allow the incorporation of propositional transitivity which refers to
specific instances, a refinement of these definitions is needed in which the domain of
each variable becomes explicit.

Definition: Let U be a set of variables each associated with a set of possible out-
comes, called the domain of . A member in the domain of u is called an instance of
u. An instance X of a set of variables X is a member in the Cartesian product

Xy domain (x ) where domain (x) is the domain of x. A refined dependency model M

over U is a set of triplets (X, Z,Y) where X, Y and Z are disjoint subsets of U, and
X,Y and Z are their instances respectively.
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Clearly, every refined dependency model My, defines a dependency model M
in the sense of section 1.4; a triplet (X,Z,Y) isin M iff (X, Z,Y) is in My for every
instance X,Y,Z of X,Y and Z, respectively. In particular, every probability distribu-
tion defines a refined dependency model.

Definition: A refined graphoid is any refined dependency model that satisfies axioms
(1.5a) through (1.5¢) (the graphoid axioms).

Next, we abstract the notion of conditional distributions.

Definition: Let M (U) be a refined dependency model over a finite set of variables
U={uy, - ,u,}. The  conditional of MU) on u,=u,, denoted
M{uy, -, U1} uy=u,), is a refined dependency model that contains a triplet
X,Z,Y)iff(X,Zu {u,},Y)e M(U)

Theorem 5.8: Every refined graphoid satisfying propositional transitivity is separable.

Proof: Let M be a graphoid and let U be its variables. Let a and b be two arbitrary
elements of U that do not interact. We will show by induction on |U | that if M
satisfies propositional transitivity then there exists a minimal-edge /-map D where a
and b are not connected. Consequently, M is separable because (U,, &, Up)e M
where U, are the variables connected to a in D and U, are the rest of the variables.

We construct D in the ordering u; La,uy 2b,us, ..., u, Le of M’s
variables. Assume n =2. Variables a and » do not interact, therefore
(@a,D,b)e M. Thus,a and b are not connected. Otherwise, n> 2. Let D, be adag
formed from M by the ordering uy, ..., u,_; of M’s variables. let A be the set of
nodes connected to a and let B be the rest of the nodes in D,. Since a and b do not
interact, by the induction hypothesis, A "B =. Thus, (4, D, B)e M (A1 1). The
dag D is formed from D, by adding the last node e as a sink and letting its parents be
a minimal set that makes e independent of the rest of M ’s (see the construction of
Theorem 1.2). Let D, and D ,~ be minimal-edge /-maps of the conditional graphoids
M@AUBle=¢)(AMy)and M(AUB | e =¢”) (A M,) respectively, formed in
the ordering uy, . .. ,u,-1. Since both M and M .~ are subsets of M, a and b do not
interact in neither of these dependency models. By the induction hypothesis M, and
M . are separable. Hence there exists a partitioning A .-, A ¢, By and B e Of AUB
where A=A A,, B=ByBy, acA, and beB,, such that
(AvBy, D, BeAys)e M e (A1), Similarly, there exists another partitioning of
AUB that satisfies, A,s,A,, Bor and By of AUB where A =A A,
B=ByB,,acA, and b € By, suchthat (A, B, @, ByAe)e My (D1s). In
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other words, each of the two instances of e induces a partitioning of A and B into
two independent subsets. There are at most eight disjoint subsets formed by the two
partitioning. These include: A} LAy NA,» Ay LAy NA, A3 LAy NA,»,
Ay BAynA,, B DBynB,, B, AB,nB,, B3AB,nE, and
B4 A B e NB ¢~ These definitions yield the following relationships: A = A 1A 2434 4,
Ay =A1As, Ay =AxAs Ar=A1Ay A =A3Ay B =B ByB3Bs B, =B B,
By =ByBy4, By =B1B, and B, =B3B,. Rewriting assertions /1,7, and 75 with
these notations yields (A1A2A3A4, D, B1BB3sB4g) e M,
(A1A3ByB4s,e=¢€ ,B1B3AA)e M and (A1A2B3B4,e=¢€’,B1B2A3As)e M
which are the three antecedents of propositional transitivity (5.1). Since M is closed
under this axiom, it follows that either

Ay, D, e A2A3A4B13233B4) e M or (B, D, e A1A2A3A4BZB?,B4) e M. Sincea € Aq
and b € B were chosen arbitrarily, M is separable. [

Corollary 5.9: Every strictly-positive distribution over binary variables is separable.

The proof above also shows that normal distributions are separable because they satisfy
propositional transitivity. That propositional transitivity holds for normal distributions
stems from the following axioms which hold for these distributions:

e Composition [13]:

IX,Z2,Y) = I1¥,Z,X) (5.32)
e Unification [68]:

IX,Z2=Z,Y) = IX,Z,Y) (5.3b)
e Marginal weak transitivity [49]:

IX,Z, V& IX,ZUY, W) = IX,Z,YUW) (5.3¢)

Lemma 5.10: Propositional transitivity holds for any refined graphoid satisfying ax-
ioms (5.3a) through (5.3c) (e.g. normal distributions).

Proof: The three statements in the antecedents of propositional transitivity are listed
below:

1(A1A2A3A4,D,B1BB3B4),I(A1AB 3By, e=€' ,B1BAsA,), I(A1A3B B, e=e”, B1B1ALA,)
Applying the unification axiom yields the following assertions:
1(A1A2A3A4, D, B \B3B3By), 1(A1A2B3B4, e, B1BrAsA L), 1(A1A3B 2By, e, B1BaALA ),

denoted by I, I, and I3 respectively. The following three implications are needed for
the proof:

1(A1A2,D,B1B2) & I1(A1A2,e,B1By) = I(A1A2, D, e) or I(e, D, B1B))
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(5.4a)

I(A1Az,e,A3A) & [(A142,T,e) = [(A1A,, D, eAsA,) (5.4b)

I1(A1A2, D, B1BoB3Bs) & 1(A1Ag, D, eA3A4) = 1(A1A2, B, eA3A 4B 1B 2B 3BAC)
The first follows from marginal weak transitivity (5.3c), the second from contraction (1.5¢)
and the third from composition (5.3a).

Next, we show that right hand side of propositional transitivity (5.2),
1(A1, D, e A2A3A4B1BB3By) orl(By, D, e A1A2A3A4B 2B 3B Y),
follows from I, I, and I3; this will complete the proof. The two antecedents of (5.4a) are
derived, by decomposition, from /; and I, respectively. Thus, either 1(A142, 3, e) or
1(B1B3, D, e) is implied. Assume the first disjunct holds. The first antecedent of (5.4b)
follows from I, by decomposition. Thus, (5.4b) yields (A 1A, @, eA3A4). The first an-
tecedent of (5.4c) follows form 7, thus (5.4¢) yields I (A 1A 5, &, eA3A 4B 1B 2B 3B 4).

Assume the second disjunct /(B 1B 3, &, ¢) holds. A similar derivation where the
roles of A and B are switched yields that 7 (B 1B ,, D, eB3B 4A 1A2A 34 4) must hold. Con-
sequently, we have thus shown that, /; and I, imply that either

1(A1A2, D, eA3A4B\BoB3B4) (DJ1) or I1(B1By, D, eB3B4A1A243A4) (D T2)
Similarly, from 7 and /3 we obtain that either
1(A1A3,D, eA2A4B1B2B3B4) (AJ3) or 1(B1B3, D, eB1BA1A2A344) (LT )

hold in M (by switching the roles of A, with A3 and B, with B3). Thus, there are four
cases to consider, by choosing one statement of each of the two disjunctions above. If J;
and J3 hold, then from J, by decomposition, /(4 , &, eA3A 4B 1B,B3B4) follows and
from J3, (A1, D, A2) follows. Together, by composition, /(A 1, @, eA2A3A 4B 1B2B3B 4)
is implied. Similarly, when J, and J4 hold, /(B 1, &, eA 1A2A3A 4B 2B 3B 4) must hold. If
J 1 and J 4 hold, then by decomposition on J4, I (B3, &, ) is obtained. I (B3, e,B}) is im-
plied from /3 by decomposition. Together, the two statements yield, by contraction and
decomposition, that (B3, &,B;) must hold. This statement combined with
1(B1, D, eByB4A1A7A3A ), which follows from J4 by decomposition, yield, using com-
position, that / (B, &, eA 1A2A3A 4B 2B 3B 4) holds in M. The case where J, and J3 hold is
symmetric to the case where J; and J4 hold (by exchanging A ’s with B’s), thus yielding
1(A1, D, eA2A3A4B1B2B3B4). O

The proof of separability of normal distributions is more complex than needed.
Normal distributions satisfy stronger axioms than propositional transitivity which could
have been used to show separability. One such property is the following:
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1(C1C2,D,D1D3) & I(CiD3,e=e,D1Cy) = I(C1, D, eCaDD3) or I(D1, D, eD,C1Cy).

We have chosen, however, to prove propositional transitivity for normal distributions
because this choice allows us to unify the separability proof for two quite different
classes of distributions, thus demonstrating the axiomatic approach.

5.4 Discussion

Our analysis of interaction, involved three steps; the probabilistic definition of the con-
cept, the formalization of a requirement to be satisfied (Eq. 5.1), and finally, the
identification of distributions for which the formal definition of interaction satisfies the
requirement. We call these distributions natural wrt interaction, in the sense that they
adequately represent the conventional properties of the word “‘interact’’.

Chapter 4 followed a similar line of reasoning; recoverability of causal relation-
ships is formally defined, three properties: intersection, composition and marginal weak
transitivity are found sufficient for the recovery of causal relationships, and distribu-
tions that satisfy these requirements are identified (e.g., normal); these distributions are
considered natural in the sense that their structure can be recovered.

These examples indicate that the language of probabilistic dependencies is too
weak to enforce properties that we normally attribute to a human reasoner. Conse-
quently, when we employ probability for modeling a human reasoner, we must careful-
ly select subsets of probability distributions that, on one hand, correctly represent high
level concepts such as causation and interaction and, on the other hand, are sufficiently
rich to express one’s knowledge. Chapter 4 and 5 show that conditional independence
together with graph-based representations provide appropriate tools for delineating
these distributions.
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