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ABSTRACT 

This paper examines the applicability o f  belief functions methodology in three 
reasoning tasks: (1) representation of  incomplete knowledge, (2) belief updating, 
and (3) evidence pooling. We find that belief functions have difficulties representing 
incomplete knowledge, primarily knowledge expressed in conditional sentences. In 
this context, we also show that the prevailing practices of  encoding if-then rules 
as belief function expressions are inadequate, as they lead to counterintuitive con- 
clusions under chaining, contraposition, and reasoning by cases. Next, we examine 
the role of  belief functions in updating states of  belief and find that, i f  partial 
knowledge is encoded and updated by belief function methods, the updating pro- 
cess violates basic patterns o f  plausibility and the resulting beliefs cannot serve as 
a basis for  rational decisions. Finally, assessing their role in evidence pooling, we 
find that belief functions offer a rich language for describing the evidence gath- 
ered, highly compatible with the way people summarize observations. However, 
the methods available for integrating evidence into a coherent state of  belief ca- 
pable of  supporting plausible decisions cannot make use of  this richness and are 
challenged by simpler methods based on likelihood functions. 

KEYWORDS: belief funct ions,  Dempster-Shafer  theory, knowledge and 
evidence, nonmonotonic reasoning, conditional information 

1. INTRODUCTION AND A BRIEF REVIEW 

In earlier publications (Pearl [27, 28]) I attempted to uncover the epistemo- 
logical basis of the Dempster-Shafer belief functions (BF), so as to form a 
meaningful assessment of their applicability vis-a-vis the Bayesian approach. 
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With the help o f  a canonical model cast in terms of  "probabilities o f  provabil- 
ity," I then identified some basic issues that must be addressed if the theory is to 
provide a viable formalism for evidential reasoning. The purpose o f  this paper 
is to provide an updated examination o f  these issues in light of  recent discus- 
sions I have had with colleagues and coworkers, and in light of  new observations 
made subsequent to these discussions. 

1.1. Knowledge, Belief, and Evidence 

To facilitate our discussion of  belief functions and their applications, I 
will adopt the following distinction between knowledge, belief, and evidence. 
Knowledge encodes judgments about the general tendency of  things to happen, 
evidence summarizes the impact o f  that which actually happened, whereas be- 
lief combines the two--it consists of  assertions about a specific situation inferred 
by applying generic knowledge to a set o f  evidence sentences. 1 For example, the 
sentence "Birds fly" encodes knowledge about the general tendency of  birds to 
enjoy flying capabilities. The sentence "Tweety is a bird" provides an evidence 
by summarizing certain observations made on a specific object named Tweety. 
The sentence "Tweety flies" represents a state o f  belief about Tweety 's  capa- 
bilities, based on both generic knowledge (about birds) and a specific evidence 
(about Tweety). 

Of  course, all sentences are subjective and hence could be annotated with 
various shades o f  confidence. Note that evidence sentences and belief sentences 
both refer to specific situations and may rely on both generic knowledge and 
specific observations. The distinction between the two is that the process by 
which knowledge and observation were combined is made explicit in the case 
of  belief sentences and remains implicit in the case of  evidence sentences. For 
example, "Tweety is a bird" will be treated as an evidence sentence if it is 
fed as an input to a system that reasons about the habits of  birds, but will be 
treated as a belief sentence by a system that reasons about the classification o f  
animals from more rudimentary observations. 

1.2. The Belief Function Formalism 

Belief functions result from assigning probabilities to sets rather than to the 
individual points, with points representing specific worlds and sets reflecting 

1These definitions of knowledge, evidence, and belief correspond to the common distinction in 
AI systems between "domain knowledge," "ground facts," and "inferences." The distinction is 
made solely for the purpose of disambiguating future discussions; I do not claim that people do not 
possess other forms of knowledge (e.g., procedural or normative) or that they do not occasionally 
cross the boundaries of these definitions. I define evidence as a summary of observations, so as 
to allow testimonies that, instead of describing raw observations, assess the impact of undisclosed 
observations on questions of interest, for example, "This object is very likely to be a bird." 
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propositions about those worlds. Given an initial probability assignment m(-) 
to a select set F of propositions (called focal elements), namely, 

E m(B) = 1, m(B) >_ 0 (1) 
B E F  

every proposition in the language then acquires a pair of measures, Bel(.) and 
PI(.), such that 

Bel(A) = E m(B) (2) 
B implies A 

and 
PI(A) = 1 - BeI(-~A) 

Any measure Bel(.) constructed in such a manner is called a belief function, 
and its associated measure PI(-) is called plausibility. 

A necessary and sufficient condition for a function Bel(.) to be a belief func- 
tion is that it satisfies 

and 

Be l (~ )  - -0 ,  Bel(A V ~A) = 1 

Bel(AI V ..- VAn) > ~ B e l ( A i )  - ~ B e l ( Z i  AAj) + . . . .  (3) 
i i < j  

A l, A2 . . . . .  An being any collection of propositions. 
Given two belief functions Bell and Bel2, their orthogonal sum Bell ® Bel2, 

also known as Dempster's rule of combination, is defined by their associated 
probability assignments 

(ml •m2)(A) = K E ml(A1)m2(A2), A ~ f~ (4) 
A1 AA2=A 

where 

K-1 = E ml(A1)m2(A2) (5) 
Al A A 2 ¢ ~  

The operator ~3 is known to be commutative and associative. 
As a special case of Eq. (4), if m2 establishes the truth of proposition B, 

that is, m2(B) = 1, then the combined belief function becomes 

Bell (A V ~B) - Bell (~B) 
Bell ( A  [B) = 1 - Bell (~B) (6) 

This formula is known as Dempster's conditioning. 
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A belief function is called additive or Bayesian if each of its focal elements 
is a singleton, that is, an elementary event or a possible world. Bayesian belief 
functions satisfy Bel(A) = PI(A) = 1 -BeI (~A) .  If Bell is Bayesian, then 
Bell ~3 Bel2 is also Bayesian, and Dempster's conditioning reduces to ordinary 
Bayesian conditioning (Shafer [30]). 

1.3. The Methodology of Belief Functions 

The methodology according to which belief functions have been applied to 
reasoning problems consists of three separate components: 

1. Representation of incomplete knowledge. In cases where fully specified 
probabilistic knowledge is not available, belief functions are often used to 
represent states of partial knowledge, with Bel(A) interpreted as a strength 
of arguments in favor of A. The input information is often elicited by 
assessing the highest probability one is willing to commit to A and to its 
complement ~A, and encoding these assessments as re(A) and m(-~A), 
respectively. 

2. Belief updating. Belief functions offer a method of assimilating the impact 
of new evidence into a state of partial knowledge or partial belief. If the 
initial state is encoded as a belief function Bel(-) and the evidence as a 
belief function Bele (.), then the updated state of belief Bel'(.), accounting 
for the impact of the new evidence, is given by Dempster's combination 
Bel I = Bel ~3 Bele. 

3. Pooling of evidence. When multiple pieces of evidence are available, the 
BF combination method provides a faithful summary of the information 
carried by all the individual pieces. The method consists of encoding each 
piece of evidence as a belief function and combining these functions by 
Dempster's rule of orthogonal sum. Dempster's rule, Eq. (4), reflects two 
assumptions about evidence combination: 
a. Independence. Successive pieces of evidence are independent of each 

other. 
b. Renormalization. Whenever two pieces of evidence impart weights to 

contradictory propositions [A1 A A2 = ~ in Eq. (4)], that weight is 
redistributed among the noncontradictory propositions, proportionally 
to their weights. 

In subsequent discussions I will deal separately with these three components 
of BF methodology. In Section 2, I will examine whether the representational 
scheme offered by BF adequately represents common types of incomplete knowl- 
edge. In Section 3, I will focus on those cases where the BF representation 
is adequate, and will evaluate its belief-updating component. My conclusions 
(Section 4) are that belief functions have serious difficulties serving in these two 
functions, and their potential of serving in the third function, evidence pooling, 
is limited to cases where the evidence thus pooled will ultimately be used to 
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update an ordinary (i.e., additive) probability measure or a purely categorical 
knowledge state. First (Section 1.3), I would like to recount an interpretation 
of belief functions that I have found helpful in understanding the workings of 
the theory and its potential applications. 

1.4. A Probabifistic Interpretation of Belief Functions 

Historically, belief functions were first interpreted as lower and upper proba- 
bilities induced by a special family of probability distributions (Dempster [7]). 
Each member of  the family represents a redistribution of the sets' probabili- 
ties m(-) to individual points within those sets, and each (Bel(A), PI(A)) pair 
provides bounds on the " t rue" probability of A. This interpretation, still a 
favorite of many researchers (Kyburg [20], Fagin and Halperu [11]), is unsatis- 
factory when it comes to evidence combination; the correspondence between the 
constituent families of probabilities and the family resulting from Dempster 's 
rule defies a natural explanation (see Section 3.1). Shafer's [30] interpretation 
of Dempster 's theory abandons the idea that belief functions arise as lower 
bounds of a family of ordinary probability distributions; rather, it views be- 
lief functions as a natural representation of English words such as "belief ,"  
"doubt ,"  "evidence," and "suppor t , " '  and Dempster 's rule of combination as 
the fundamental step in reasoning about uncertain evidence. In Shafer's view, 
"bel ief"  in a hypothesis does not measure the chance that it is true, but rather 
the strength of the arguments we have in favor of the hypothesis. 

In translating Shafer's view into the language of logic, using the notions 
of proofs and constraints (or axioms), it becomes clear that belief functions 
are none other than probabilities ofprovability (Pearl [27], p. 423). In other 
words, BeI(A) stands for the probability that the constraints imposed by the 
available evidence, together with the constraints that normally govern the do- 
main, will be sufficient to compel the truth of A and exclude its negation. 
Formally, we are given a collection of logical theories, T1 . . . . .  Tn, each logi- 
cal theory is characterized by a set of formulas called axioms, and each theory 
is assigned a probability Pi such that the probabilities sum to 1. The belief 
in a formula A is the sum of the probabilities of the theories from which A 
follows as a logical consequence. 2 (I am indebted to Fagin and Halpern [11] 
for this succinct wording.) This interpretation has the advantage that Bel(A) no 
longer represents properties of some nebulous family of probability functions 
but rather an ordinary probability of a bona fide event--the existence of a log- 

2Each theory corresponds to one focal element B in (1), and its probability P~ corresponds to 
m(B). If one associates with each theory the set of worlds (or models) consistent with its defining 
axioms, the resulting theorems can be described as a system of random sets (Nguyen [25]). Our 
notion of "provability" is semantical, resting on logical consequences, to be distinguished from 
syntactical proofs, which are normally embedded in a specific axiomatizntion. 
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ical proof for A. The reason that this event is random is that the set of axioms 
from which the proof is to be assembled is not known with certainty, only with 
probability. Note that both a formula and its negation might have belief 0, since 
neither might follow from any of the theories. 

This interpretation of belief functions now provides a simple semantics for 
Dempster's rule of evidence combination, Eq. (4). Each piece of evidence, 
say el and e2, defines a probability mass over a collection of theories, and the 
combined evidence el • e2 likewise defines a probability mass over a collection 
of joint theories. Each joint theory is made up of a union of two axiom sets, 
one taken from e~ and one from e2. The mass assigned to such a union is the 
product of the individual masses (thus reflecting evidence independence), while 
the mass attributed to any contradictory theory is redistributed among the non- 
contradictory theories in proportion to their weights. Thus, the belief function 
resulting from this combination rule is simply the conditional probability o f  
provability, given that the two pieces of evidence are noncontradictory. 

The advantage of this interpretation is that it enables us to discuss in meaning- 
ful terms whether Dempster's rule is applicable: namely, whether in the context 
of a specific domain it is meaningful to condition beliefs on the evidence being 
noncontradictory. Shafer's canonical model of random codes (Shafer [32]) is 
an example of a context where the assumption of noncontradictory evidence is 
a reasonable one to make. Here messages were presumed to originate from a 
consistent source, and so the event of two deciphered messages yielding two 
incompatible conclusions can be ruled out as a physical impossibility. 

What remains unjustified in this example is why we should concern ourselves 
with "the probability that the evidence implies A "  (Shafer [32]) rather than 
the probability that A is true given the evidence. Motivating this computation is 
one unresolved difficulty with the semantics of belief functions. For example, in 
circuit diagnosis we normally ask for the probability that a particular component 
is faulty, not that it must be faulty for lack of another explanation. Taking the 
latter as a basis for decisions might yield undesirable policies of testing or 
replacing faulty components. The lack of justification for this component in 
Shafer's random code example was also criticized by Good [15] and Levi [22], 
and more of its consequences will be discussed in Section 3.2. 

However, there are situations where it is indeed the probability of necessity 
and possibility that we wish to ascertain, rather than that of truth, and it is within 
such situations that we should seek canonical examples for the construct of belief 
functions. Suppose, for example, we are scheduling a construction project, and 
our body of evidence consists of a set of estimates ml,  m 2 , . . . ,  ran, where each 
mi stands for the chance that resource ri will become unavailable during the 
construction. In this context, it is not uncommon to inquire as to the probability 
that a certain decision (say changing a design option) will have to be made 
out of a compelling necessity, for lack of any viable alternative, rather than the 
probability that it will actually be made, as an option of choice or convenience. 
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Unfortunately, evidence inconsistency in this context means the impossibility of 
meeting all scheduling constraints, not a physical impossibility, and cannot be 
ruled out a priori as in the diagnostic problems discussed earlier. Thus, it would 
not be justified to apply Dempster's nile of combination in such applications. 

My attempts to find natural applications for belief functions have encountered 
the following pattern. In tasks of synthesis and prediction, where we sometimes 
have reasons for computing the probability of necessity (e.g., the scheduling 
problem), we normally find no justification for assuming evidence consistency. 
In tasks of diagnosis or abduction, where we normally find justification for 
assuming evidence consistency (e.g., Shafer's random code or the Three Pris- 
oners puzzle, Section 3.1), we can find little justification for computing the 
probability of necessity. The only example I found that motivates both compo- 
nents together and thus reflects precisely the quantity computed by Bel is the 
retrospective version of the scheduling problem, where, years after the comple- 
tion of the project, one asks: "What is the probability that a certain decision 
had to be made out of absolute necessity?" or, alternatively, "What is the prob- 
ability that the person in charge knew that a certain event must have occurred, 
out of logical necessity?" 

2. DO BELIEF FUNCTIONS FACILITATE AN ADEQUATE 
REPRESENTATION OF INCOMPLETE KNOWLEDGE? 

By "incomplete knowledge" I mean knowledge that is insufficient for fully 
specifying a probability distribution over the set of possible worlds. Indeed, 
the most appealing feature of BF vis-h-vis the Bayesian approach has been that 
the latter requires the full specification of a joint distribution function over the 
variables in the domain while "using belief functions, one need not estimate 
any probabilities that are not readily available" (Strat [36]). Thus, if only some 
probabilities are known, but not all, one obvious semantics of our knowledge 
would be an implicit family of probability functions, a family that contains all 
functions that comply with what we know but makes no commitment relative 
to what we do not know. Alternative semantics are also possible (e.g., the 
maximum-entropy approach), according to which the missing probabilities can 
be recovered. In this section I will discuss the relationships between belief 
functions and families of distributions that reflect naturally occurring cases of 
incomplete knowledge. The discussion should also be relevant to those who 
disavow any relation between belief functions and uncertain probabilities (e.g., 
Shafer [31]), because the emphasis will not be on whether belief functions can 
represent such families with full numerical precision but on whether the two 
representations can adequately capture the meaning intended by the knowledge 
provider. 
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2.1. The Problem of  Representing Unknown Probabilities 

It is well known (Dempster [7], Shafer [31], Kyburg [20]) that although 
every belief function represents a (convex) family of probability distributions, 
the converse is not true; not every family of distributions is compatible with a 
coherent system of [Bel, PI] intervals. I will now argue that the more common 
state of incomplete knowledge corresponds to an implicit family of distributions 
of the latter kind, whereas states of knowledge representable as belief functions 
are rather rare. 

EXAMPLE 1 (After N. Dalkey) Consider a set of three mutually exclusive and 
exhaustive events, E l ,  E2, and E3, and assume we do not know the exact 
probabilities of these events. We know only that each event has a probability 
smaller than 1/2, that is, 

0 <_ P(Ei) <_ 1/2, i = 1, 2, 3 

It can be shown that no belief function can induce the bounds 

(7) 

Bel(Ei) -- 0 and PI(Ei) = 1/2, i = 1, 2, 3 (8) 

as dictated by Eq. (7). In order words, any assignment Bel(.) that satisfies (8) 
must violate the basic definition of belief functions given in (3). 

Admittedly, probability bounds such as those in (7) do not represent naturally 
occurring types of incomplete knowledge, because one can seldom be precise 
about probability intervals. Nevertheless, the example shows how easy it is for 
a family of distributions to escape BF representation. 

EXAMPLE 2 We have two events, El  and E2. We know their marginal proba- 
bilities, 

P(E1) = P(E2) = 1/2 (9) 

but we know nothing about the joint probabilities. This state of partial knowl- 
edge is more common, because we often begin thinking about a problem through 
isolated frames, paying no attention to interdependencies. This case, too, does 
not admit belief function representation. The information given in (9) per- 
mits the probability of each of the four joint events {El A E2, El  A-~E2, 
~E1 AE2, ~E1 A ~E2} to range between 0 and 1/2, which translates to a Bel 
measure of zero. However, no belief function can assign a zero belief to four 
individual points and, simultaneously, a belief of 1/2 to four pairs of these points 
[as required by (9)]. 

Note that the problem in these examples lies not with Dempster's rule of 
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combination but rather with the inherently limited expressiveness of the BF 
language. In terms of our probability of  provability model, the second example 
means that there is simply no way to assign probabilities to axioms such that 
four mutually exclusive and exhaustive propositions will each have zero chance 
of being proved true while each of four pairwise disjunctions retains a 50% 
chance of being proved. 

EXAMPLE 3 We have two independent events, E1 and E2. We know the 
marginal probability of  E l ,  

P ( E I )  = 1/2 

but we know nothing about E2 (except its being independent of El ). The reader 
might expect that this state of ignorance would be ideal for BF representation, 
since E2 is merely superfluous and irrelevant. However, the knowledge we 
possess about El dictates definite probabilities on certain formulas involving 
E2. For example, 

P[(E1 AE2) V (~El  A ~E2)] ---- 1/2 

and 

P[(E1 A ~ g 2 ) V  (-~E1 AE2)] = 1/2 

The former expresses the probability that the true values of E1 and E2 are the 
same, the latter that they are different. However, no belief function exists that 
is compatible with these equalities while simultaneously reflecting our state of  
ignorance about E2, namely, Bel(E2) -- 0. Example 5 (Section 3.2) describes a 
situation where failing to represent Bel[(El A E2) V (~E1 A ~E2)] ---- 1/2 leads 
to a major clash with intuition. 

2.2. The Problem of Representing Conditional Information 

EXAMPLE 4 Consider the very common case where we are given the conditional 
probabilities 

P(AIB)= p and P(AI~B)=q, O < l - q < _ p < q < l  (10) 

but we are not given any of the prior probabilities. 3 The information given in 

3This form of incomplete knowledge was discussed by Shafer and others under the heading 
"generalization of Bayesian parametric inference" (see Sharer [32]). The word "parametric" might 
create the impression that the difficulties originate with one's insistence on fitting frequency informa- 
tion by precise numeric parameters. Section 2.3 will demonstrate that these translate to fundamental 
qualitative difficulties in handling partial knowledge of any sort, not merely statistical models with 
missing parameters. 
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(10) induces several constraints on the probabilities of other propositions in this 
frame, including, for example, 

0 <_ P(A AB) < p  

p < P(A) <_ q 

1 -  q < P[(A A B) V (-~A A ~B)] _< p 

Again, no belief function exists that matches these upper and lower probabilities 
without violating the basic conditions in (3). 

I consider this latter example to be a major shortcoming of BF theory. Condi- 
tional information is, in my opinion, the basic building block in the organization 
of human knowledge. It is this information that enables us to sort experiences 
and store them in the right context, with the conditioning propositions (con- 
text or reference classes as they are sometimes called) serving to identify the 
conditions under which the future use of this experience would be appropriate. 
It is for that reason that conditional sentences 4 are so common in natural dis- 
course and if-then rules are so popular in the design of AI reasoning systems. 
Therefore, it is a common practice to find an expert feeling very strongly about 
conditional probabilities (e.g., that a given symptom will accompany a given 
disease) while having no feeling at all about the priors. Unfortunately, this type 
of incomplete knowledge cannot be captured by belief functions. 

The source of this weakness lies deep in the very nature of BF theory. Recall 
that the theory rests on assigning probabilities to sets of logical formulas (i.e., 
theories). Thus BF is essentially a theory of randomized monotonic logic, and, 
like every monotonic logic, it lacks a mechanism equivalent to conditioning with 
which context dependencies can be encoded. Indeed, it is well known that the 
information conveyed in a conditional probability statement 

P(A [B) = p 

cannot be represented by assigning probabilities to some Boolean function of 
A and B or to any set of Boolean formulas (Lewis [23], Goodman [16]). 

Example 4 demonstrates that if our knowledge consists of conditional prob- 
abilities and we are missing the necessary priors, this knowledge cannot be 
adequately represented as a belief function. However, even if we are given the 

'*By conditional sentences I mean utterances such as "Birds fly," "Fire causes smoke," "Smoke 
suggests fire," "When it rains, it pours ,"  and many others, that do not concern frequency informa- 
tion as in "Most  of  the people in Lawrence are white." Although the word " i f "  is not mentioned 
explicitly, the common denominator is that the assertions made by such sentences are context- 
dependent; they are applicable to a narrow context circumscribed by the conditioning phrase. It is 
the encoding of such sentences that we examine in this example. 
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priors, the problem of  inadequate representation might arise as soon as some 
conditional probabilities are missing f rom the model.  The reason is that if our 
knowledge is organized hierarchically, then the conditional probabilities at one 
level of  the hierarchy determine the priors of  the next level, where the problem 
demonstrated by Example 4 might recur. 

Other types of  partial knowledge that render BF encoding cumbersome,  if  not 
impossible, or comparative ratings of  probabilities and qualitative conditional 
independence relationships. For example,  suppose we are given the information 
that P ( A  A B) is at least twice as large as P ( A  A C) and that A and B are 
independent given C. Can this information be encoded as belief  functions? We 
know of  no effective procedure for deciding such questions. Currently, the only 
procedure for determining the existence of  belief  function representation is the 
inequality of  Eq. (3), which is computationally infeasible because it requires the 
enumeration of  all bounds that follow from the database. Can the information 
be approximated by belief  functions while preserving its conceptual intent? I 
know of  no research attempting to answer such questions. 

2.3. The Material Approximation 

The reader may wonder at this point how BF practitioners, lacking a con- 
ditioning facility with which to express inexact if-then rules, have nevertheless 
managed to construct rule-based expert  systems. It turns out that the prevailing 
practice in these systems has been to represent the rule " I f A  then B "  by the ma- 
terial implication formula A 3 B (- -  -,A V B) and assign to this formula some 
weight w that purports to measure the strength of  the rule or its validity, thus 
converting the rule into a bona fide belief  function satisfying m(A  ~ B) = w. 
This practice is not entirely without merit. For example,  combining the re- 
suiting belief  function with the evidence A = true does give the expected 
result Bel(BIA) = w. Moreover,  if  we are given a full specification of  a joint 
probability, say in the form of  a causal network (Pearl [27]), we can replace 
every conditional probability P ( x  Icauses-of-x) = q by its material implication 
counterpart m(causes-of-x  3 x)  -- q and combine these m(-) functions using 
Dempster ' s  rule, and the result would be a bel ief  function that is equivalent 
to the original probability model. The problems begin when the probability 
model is incomplete and some of  the conditional probabilities (or the priors) 
are missing. In such cases, the material implication scheme may yield very 
undesirable effects, three examples of  which are shown next. 5 

5Another method of encoding conditional rules was proposed by Smets [35] and named condi- 
tional embedding. The idea is to represent each given rule by the least committed belief function 
Belo that satisfies Bel(A IB) = w and then combine the Belo functions by Dempster's rule. By "least 
committed," he means that of all possible belief functions, Belo allocates the least possible value 
for every proposition. This approximation, as well as others (Eddy and Pei [10]), have apparently 
not been as popular among practitioners as the material implication. Nevertheless, the difficulties 
demonstrated in this section apply to both. 
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CHAINING The facility of chaining inferential links, sometimes known as tran- 
s i t iv i ty ,  is inherent to rules expressed as material implication formulas; from 
A D B and B 3 C there follows A ~ C. When uncertainties are attached to 
such rules, the conclusion A ~ C is weakened but still obtains a positive 
measure of support (equal to the product of the supports given to the indi- 
vidual rules). On many occasions, however, rule transitivity must be totally 
suppressed, not merely weakened, or strange results will surface. One such 
occasion occurs in property inheritance, where subclass specificity should to- 
tally override superclass properties. The rule "Typically penguins don't fly" 
should not be weakened by adding the two rules "Penguins are birds" and 
"Typically birds fly," regardless of how strongly we believe in the latter two. 
Another occasion occurs in causal reasoning, where predictions should not trig- 
ger explanations; for example, "Sprinkler was on" predicts "Ground is wet," 
"Ground is wet" suggests "It rained," yet "Sprinkler was on" should not sug- 
gest "It rained." In such cases, softening the rules by probability assignments 
and combining them by BF methods does not produce the expected behavior 
(Pearl [27], pp. 447-450]; it weakens the flow of inference through the rule 
chain but does not bring it to a dead halt as it should. 

CONTRAPOSITION The formula ~B 3 -~A is logically equivalent to A 3 B, 
so the two will acquire the same Bel measure in any formulation based on 
belief functions. Yet, in many cases we are ready to accept the rule " I f  A 
then B "  but are unwilling to accept " I f  no t -B  then n o t - A . "  For example, in 
a world that is made up primarily of birds (some of which might be sick), 
I am willing to accept the rule "Typically birds fly" but unwilling to accept 
"Typically nonflying things are non-birds," because nonflying things in this 
world are likely to be sick birds. 

The symmetrical nature of the material implication may lead to counterintu- 
itive inferences, 6 especially when the negation of the consequent is established 
by other rules and the rules convey causal relationships. Consider the rules 

I ( x )  -~ P(x) :  If a person is intelligent, then that person is popular. 

F ( x )  --* -~P(x): If a person is fat, then that person is unpopular. 

together with our cultural bias that intelligence is independent of physical ap- 
pearance. Now assume that each of the two rules has a strength m and we 
learn that Joe is fat. Formulating this information in BF terminology (using the 
material implication) produces the strange result that Joe is believed to be not 
intelligent with strength m 2. Most people would agree that it is reasonable to 
believe (with degree m) that Joe is unpopular, yet it is absurd to chain this 

6These are further magnified when we consider criteria by which conditional rules are confirmed 
by empirical data (see Lewis [23] and Goodman [17]). 
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belief with the contraposition of the first rule and conclude (with belief m 2) 
that Joe is not intelligent. 

REASONING BY CASES Suppose we are given the following two rules: 

If  A then B, with certainty 0.9. 

I f  norA then B, with certainty 0.7. 
(11) 

Common sense dictates that even if we do not have any information about 
A we should still believe in B to a degree at least 0.7. The BF formulation 
does not support this intuition. I f  we interpret (11) as statements of conditional 
probabilities, then this information cannot be represented in terms of belief 
functions (see Section 2.2, Example 4). If  we try to force a BF encoding by 
interpreting the rules as material implications, we obtain BeI(B) = 0.63, in 
clear violation of common sense. 

To appreciate the danger of casting rules as graded material implications, 
consider the following (hypothetical) database, rating the commitments of three 
religions toward observing the biblical prohibition on eating pork: 

Jew(x) ~ Observe(x) (0.70) 

Muslim(x) ~ Observe(x) (0.90) 

Christian(x) ~ Observe(x) (0.001) (12) 

Suppose we know that Joe is either a Jew or a Muslim; does he refrain from 
eating pork? The answer we get from the material approximation is rather 
strange: yes, with belief 0.63. Further yet, imagine that instead of the first rule 
in (12), we have a more detailed account of Jews' commitment to dietary laws, 
as given by the table 7 

Orthodox-Jew(x) --, Observe(x) (0.999) 

Conservative-Jew(x) ~ Observe(x) (0.80) 

Reformed-Jew(x) ~ Observe(x) (0.40) 

Nonaffiliated-Jew(x) --~ Observe(x) (0.20) 

How strongly are we now willing to believe that Joe would refrain from eat- 
ing pork? The answer produced by the material approximation is equal to the 
product of all the probabilities listed in Joe 's  category, giving a minute belief of 

7The numbers in this table should not be construed as reflecting statistical data but, rather, subjec- 
tive assessments of the degree to which each antecedent provides an argument for the consequence. 
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only 0.0575. Thus, the more we know about Jewish customs, the less willing 
we are to endow Joe with any trait of  Jewish tradition. 8 
CAN THE MATERIAL APPROXIMATION BE IMPROVED? Strangely, despite the 
weaknesses demonstrated in the examples above, the material implication for- 
mulation of  if-then rules still permeates the practice of  BF systems (Ginsberg 
[14], Baldwin [2], Falkenhainer [13], D 'Ambros io  [5], Lowrance et al. [24], 
Zarley et al. [37], Biswas and Anand [3], Laskey et al. [21], Hsia and Shenoy 
[19]). In some systems (e.g. ,  Laskey et al. [21]), special provisions are installed 
to prevent undesirable chaining. In others (e.g. ,  Ginsberg [14]), metarules are 
proposed to enforce specificity. This brings into question whether a theory 
requiring the protection of  special programming fixes provides an adequate 
account of  evidential reasoning. The difficulty is further compounded by the fact 
that we do not know in advance when such fixes are necessary. Given a partially 
specified knowledge base, we do not have any guidance for deciding whether 
it can be represented by belief  functions or whether the material implication 
formulation will provide a reasonable approximation of  the knowledge available. 

A natural question to ask is whether the material approximation can be im- 
proved. All indications are that every BF encoding is bound to encounter diffi- 
culties similar to those shown above; the very idea of  encoding if-then rules as 
individual belief  functions to be combined by a uniform principle seems to be 
incompatible with the information conveyed by the rules. This can be seen from 
the penguin example of  Section 2.3.1. Suppose we know that Tweety is both 
a penguin and a bird, and we wish to assess her flying capability. Any method 
based on belief  function combination will remain oblivious to the second rule, 
stating that all penguins are birds. Knowing that Tweety is both a penguin and a 
bird renders Bel(Tweety  f l ies)  solely a function of  rule 1, "Typical ly penguins 
do not fly," and rule 3, "Typical ly birds fly," regardless of  whether penguins 
are a subclass of  birds or birds are a subclass of  penguins. This stands contrary 
to common discourse, where people expect class properties of  be overriden by 
properties of  more  specific subclasses. 

In conclusion, whereas it is true that "with belief  functions, one need not es- 
timate any probabilities that are not readily available" (Strat [36]), it is equally 
true that with bel ief  functions, one cannot use some probabilities that are avail- 
able, especially those embodied in if-then rules. 

3. BELIEF U P D A T I N G  

In this section we focus on those cases where partial kno'Tcledge does lend 
itself to BF encoding. In such cases the bounds provided by belief  functions 

SReaders preferring more "practical" examples are invited to exercise this paradox on the 
cholestatic jaundice example of Gordon and Shortliffe [18]. Assume that we know the tendency 
tl of hepatitis to develop a complication C and the tendency t2 of cirrhosis to develop C, and 
we wish to assess the tendency t of a patient known to be definitely suffering from intrahepatic 
cholestasis, that is, from either hepatitis or cirrhosis. The answer produced will be t = tit2. 
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coincide exactly with the envelope of the family of distributions that mirrors 
the input information. We will see that this fortunate coincidence is destroyed 
as soon as we attempt to update knowledge using Dempster's rule. 

3.1.  The Mystery  o f  the Vanished Interval 

Let 6) be a family of distributions compatible with a belief function Bel(.), 
and assume that we receive information that event B has occurred. The natural 
way of assimilating this information would be to replace each distribution P 
in (P by P(.IB), thus obtaining a new set of bounds on the propositions of 
concern. On the other hand, if we treat the new information as a belief function 
Bel'(B) = 1 and combine it with Bel(.) by Dempster's rule, we get [see Eq. 
(6)] 

Bel(A I B) = Bel(A V --B) - Bel(--,B) (13) 
1 - B e l ( ~ B )  

It was noted by Dempster [7], Shafer [31], and Kyburg [20] that the bounds 
produced by Dempster conditioning [i.e., by Eq. (13)] are never wider, and are 
occasionally narrower, than those produced by straight conditioning. Namely, 

min[P(AlB)] < Bel(AIB) < PI(AIB) < max[P(AIB)] (14) 
PE(P PE(P 

What perhaps has not received sufficient emphasis is that the Bel(A IB) and 
PI(A IB) bounds could become so absurdly narrow that one should seriously 
doubt whether they ever represent meaningful information. 9 A classical example 
of such extreme narrowing is the Three Prisoners puzzle, first discussed in 
Diaconis [8] and later in Diaconis and ZabeU [9] and Pearl [27]. To summarize 
formally, the partial model is given by 

P(Ai) = 1/3, i = 1, 2, 3 

P(BIA2) = O, P(BIA3) = 1, P(BIA 0 = unknown (15) 

Ai stands for the event that prisoner i is the one found guilty, and B stands for 
the event that a jailer names prisoner 2 as one who has been found innocent. 
The probability bounds defined by this information are 

0 <_P(A~IB) < 1/2 (16) 

9One should note that the bounds produced by straight conditioning are also inadequate because, 
in practice, they turn out to be very broad and not very informative. They do help, however, 
identify sensitive areas of incompleteness in the knowledge base. 
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while the belief function formulation gives [taking m(Ai) --- 1/3, i = 1, 2, 3] 

Bel(A 1 IB) = 1/2 = PI(A 1 IB) 

Bel(A 11 ~B) = 1/2 = PI(A l I~B) (17) 

This example demonstrates that by encoding a state of partial knowledge as 
a belief function and conditioning it on a certain body of evidence, the gap 
between Bel(.) and PI(-) could mysteriously disappear, thus giving the false 
impression that Bel(.) is based on precise probabilistic information, when such 
information is in fact not available. Any confidence interval interpretation one 
attempts to ascribe to the original belief function is destined to be very short- 
lived; as soon as we receive a piece of evidence, the correspondence between 
the original family of distributions and the one resulting from Dempster's com- 
bination might forever be destroyed. Indeed, Eq. (17) shows that the family 
of distributions defined by the partial model of Eq. (15) shrinks to a singleton 
distribution: 

P(A1 AB) = 1/2, P(A3 AB) ---- 1/2 

as soon as the evidence B = true is obtained. Why such an innocuous piece 
of evidence should bring about the total exclusion of all other distributions, 
perfectly consistent with the evidence, remains a total mystery. 

3.2. The "Spoiled Sandwich" Effect 

One can perhaps dismiss the strange phenomenon demonstrated by the Three 
Prisoners story and claim that the interval [Bel, P1] was never meant to represent 
upper and lower probabilities, but rather a new mental construct that conforms 
to its own norms of coherence, unshared by probabilities. I would be inclined 
to accept such arguments had the quantity Bel computed in (17) been reflective 
of some distinct linguistic expression in natural usage, or had the difficulties 
encountered been confined to numerical disagreements with the predictions of 
probability theory. Unfortunately, the difficulties go much deeper, as they clash 
with some universal principles of plausible reasoning having nothing to do with 
probabilities. One such clash is demonstrated by the "spoiled sandwich" effect, 
which illustrates that Bel(.) does not possess qualities we normally associate 
with the English word "bel ief"  and brings into question whether it can ever 
serve as a basis for decision making. 

The "sandwich" metaphor is borrowed from Aleliunas [1] to describe the 
following principle of plausible reasoning: 

If two diametrically opposed assumptions yield two different degrees of 
belief in a proposition Q, then the unconditional degree of belief merited 
by Q should be somewhere between the two. (Pearl [27], p. 17) 
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It is by virtue of this principle that we agree, given the information in F_,q. (11) 
(Section 2.3), that B should merit a belief somewhere between 0.9 and 0.7. 
In general, for any proposition A and for any assumption or evidence B, we 
should have 

Bel(A) > min[Bel(A IB), Bel(A I-~B)] (18) 

This principle, unfortunately, is not satisfied by belief functions, as we have 
seen in the Three Prisoners puzzle; the unconditional belief was Bel(A 1) = 1/3 
[see Eq. (15)], while the conditional beliefs Bel(A1 tB) and Bel(A11~B) were 
both 1/2 [see Eq. (17)]. 

The real culprit for this phenomenon is not Dempster's normalization but the 
very nature of Bel(A) being the probability of finding a proof for A. Under the 
random-theory model (Section 1.4), it is quite possible that A is not provable 
from any of the random theories available, thus rendering BeI(A) = 0, but if we 
add either B or ~B as an axiom, then A will be provable by some (though not the 
same) theory, thus rendering both BeI(A In) and Bel(A I~n) greater than zero. 
This is illustrated by the following example, where Dempster's normalization 
plays no role. 

EXAMPLE 5 (The Peter, Paul, and Mary Sandwich) Mary challenges Peter to 
guess what kind of sandwich she happened to prepare for lunch that day--ham 
or turkey. She also promises to pay Paul $1000 if Peter guesses correctly. Peter 
says that, for lack of even the slightest clue, he is going to toss a fair coin and 
guess "ham" if it turns up heads, "turkey" if it turns up tails. Mary asks Paul 
if he is not anxious to know what sandwich she actually prepared, but Paul 
brushes her off saying that he already had lunch and that it makes no difference 
to him; regardless of whether it is ham or turkey, in either case he has exactly 
a 50% chance of winning the $1000. 

Mary retorts that Paul is behaving like an incurable Bayesian, and that instead 
of considering the chances of winning he should be considering the chances that 
winning is assured by the specific evidence at hand, namely, by Peter's guessing 
policy. She claims that Paul's current "bel ief"  of winning is, in fact, zero, 
because either outcome of the coin, heads or tails, would leave him with no 
assurance of winning. However, if he would only listen to her for a moment, his 
belief would immediately jump to 1/2, because knowing what kind of sandwich 
it is would give him a 50% assurance of winning. 

Paul answers that he gets enough assurance just thinking about Mary's sand- 
wich: " I f  I have a 50% assurance assuming it is ham, and 50% assuming it is 
turkey, then I have a 50% assurance, period!" 

Why is the sandwich principle so important for rational thinking? The an- 
swer lies, I believe, in its role as a guide to decision making and knowledge 
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acquisition. Translated to decision situations, the sandwich principle leads to 
the "sure-thing principle": 

If the person would not prefer f to g, either knowing that the event B 
obtains, or knowing that the event -~B obtains, then he does not prefer 
f to g. (Savage [29]) 

Stated another way: 

If a person would choose the same action for every possible outcome of 
an experiment, then he ought to choose that action without running the 
experiment. 

While arguments against the universal validity of the sure-thing principle have 
been contrived (see e.g., Blyth [4]), these usually involve intricate situations 
where actions influence the outcome of the experiment. If we violate the sand- 
wich principle, we are bound to compromise the sure-thing principle even in 
those cases where its validity is clear and compelling. For example, a prisoner 
who prefers to wait patiently for his verdict before asking a question would 
suddenly decide to attempt an escape regardless of whether the jailer answers 
" B "  or "not B . "  

In general, if  actions are guided by the value BeI(A) accorded to some hy- 
pothesis A, any inference mechanism that violates the inequality in (18) would 
enable an agent to increase his perceived payoffs without actually observing the 
outcome of an experiment; merely verifying that the experiment was performed 
or just imagining the possible outcomes should suffice. Such an agent will spend 
precious resources chasing after useless information sources (like the jailer in 
the Three Prisoners story), or merely daydreaming about the existence of such 
sources. He will quickly become a victim of money pumping in any betting 
situation where useless information sources are offered for a price. 

In view of this phenomenon, it is hard to see how belief functions could serve 
as a direct basis for rational decision making. It seems that to preserve rationality 
we must devise an updating rule that does satisfy Eq. (18). Alternatively, since 
the maladies associated with belief updating tend to get masked when it applies 
to additive probability distributions, we can go the Bayesian route and insist that 
before committing to any decision (or even to any belief), we first integrate the 
evidence into an additive probability distribution that reflects our prior state 
of belief. The next subsection discusses an attempt that follows the former 
alternative, while Section 4 will pursue the latter. 

3.3. The Fagin-Halpern Conditioning 

Fagin and Halpern (FH) [12] recently proposed a conditioning rule that avoids 
some of the pitfalls of Dempster's rule (similar rules have also been proposed 
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by De Campos et al. [6]). The FH rule reads 

Bel(A A B) 
BeI(AIIB) = Bel(A A B ) +  PI(~A AB) (19) 

Like Dempster's rule, FH conditioning reduces to ordinary Bayesian condition- 
ing when Bel(-) is an additive probability function, but, unlike Dempster's rule, 
it faithfully reflects the probability bounds that are produced by such condition- 
ing. In other words, instead of the inequalities in Eq. (14), FH conditioning 
satisfies the equalities 

max[P(hJB)] = PI(AIIB) >_ Bel(AIIB) = min[P(AlB)]. (20) 
PE(P PE(P 

Unfortunately, although FH conditioning alleviates some of the problems 
encountered with belief functions, it creates new ones. First, FH conditioning 
is not commutative, and hence we cannot process multiple evidence sequentially 
upon arrival. In other words, in order to correctly produce the bounds created 
by the conjunction of two pieces of evidence, B1 -- true and B2 = true, we 
must condition Bel(.) directly on B1 A B2 and compute Bel(A liB1 A B2); we 
cannot compute Bel(A liB1) and then condition the result on BE. 

Second, the FH rule does not specify how to integrate a body of evidence that 
is uncertain. If we have a belief state Bel(.) and we obtain evidence e having 
re(B1) = ml,  re(B2) = 1 - m~, a natural way to update Bel(.) would be to 
take the convex mixture 

BeI(A lie) = ml Bel(A lIB0 + (1 - ml)  Bel(A lIB2) (21) 

which represents the lower bound 

min [mlP(A IB1) + (1 - ml)P(A IB2)] 
P E &  

However, it is not clear that this update captures the intended impact of the 
evidence. For example, a conflicting evidence with Bt = A,  B2 = ~A, and 
ml = 1/2 would always yield Bel(A lie) = 1/2 regardless of the prior state of 
belief Bel(A). 

4. EVIDENCE POOLING 

We have seen that belief functions are often incapable of representing partial 
knowledge, and in those cases where they are, they must first get converted into 



382 Judea Pearl 

an additive probability function before they can absorb evidence in a plausible 
way, so as to support rational decisions. Thus, from the three components of BF 
methodology--representing partial knowledge, belief updating, and evidence 
pooling--we are left with evidence pooling as the only subtask in which belief 
functions can play a useful role. 10 This raises the question of whether it is worth 
invoking the entire BF machinery when conventional likelihood functions can 
offer an adequate solution. 

Consider a body of evidence e characterized by a basic probability assignment 
m(.), and suppose we use this evidence to update a Bayesian belief function 
characterized by mo(w), where each w is a singleton set (i.e., a possible world). 
The updated belief function is governed by 

(mo @ m)(w) --- Kmo(w) E m(A) 
A : w E A  

where K is a normalizing constant. Now assume that we were to update too(W) 
by Bayesian methods, that is, we regard mo(w) as the prior distribution ~r(w), 
and we represent the evidence e by the likelihood function 

X(w) & P(elw) = ~ m(A) (22) 
A : w 6 A  

The posterior probability, in this case, will be identical to (m0 @ m)(w), since 
p(w le) = Kr(w)h(w). We can map any belief function into a likelihood func- 
tion using (22) and be assured that, as long as the final belief is Bayesian, this 
Bayesian updating would yield identical results. Moreover, given that ml( . )  
maps into hi(w) and that m2(.) maps into )~2(w), we can combine hi(w) and 
~,2(w) directly into )~3(w) such that ml ~3 m2 properly maps into h3(w). This 
is done by ordinary multiplication, ha(w) -- Xl(W)),2(w), an even simpler op- 
eration than the orthogonal sum required for m. Why, then, do we need the 
powerful machinery of belief functions, if we can accomplish the same task 
with likelihood functions? 

True, belief functions convey more information than likelihood functions; 
two belief functions with totally different structures can be mapped into the 
same likelihood function, and their structures lost. But where is this structural 
information ever used? Clearly, since this information gets lost the moment it 
is absorbed into an additive probability function, the only way it can be used 
is prior to belief updating and decision making, namely, in the process of  ev- 
idence pooling itself. But, in what way? A natural area of application would 
be that of  evidence assessment and knowledge elicitation; an expert may feel 

l°Fagin and Halpern [12] reached the same conclusion but, intrigued by BF's ability to mimic 
likelihood functions, they see wider applications for belief functions than I do. 
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more comfortable describing the impact of an evidence in terms of weight as- 
signment to classes rather than to individual points (see Gordon and Shortliffe 
[18]). However, here too, the likelihood function approach does a fairly decent 
job in an amazingly simple way (see Pearl [26]). Other possibilities are to use 
the structural information of belief functions for tracing back sources of contra- 
diction and for identifying areas of incompleteness. Unfortunately, we have seen 
that the interval P1 - Bel does not reflect the degree of conflict in the evidence 
or the degree of ignorance in our knowledge. Thus, the challenge remains that 
of identifying how the rich mathematical structure of belief functions can be 
harnessed to facilitate the task of automated reasoning. 

My personal assessment is that the most natural role for belief functions is to 
serve as a mechanism for processing evidential information prior to conversion 
into likelihood functions. This is based on the following observation: When a 
person says, "I  am 50% sure that B . . . .  " he does not mean to sound neutral 
about B but expects to convey a positive support in favor of B. Even when a 
person says, "I  think B is true but I am only 20% sure," he still expects the 
listener to increase his degree of belief in B. As strange as it sounds, people use 
absolute probabilities to communicate instructions about probability updates! In 
the Bayesian language, we need to convert such update statements to likelihood 
functions. For example, the statement "the evidence e supports B to a degree 
p "  would be translated [see Eq. (22)] into the likelihood ratio 

L -  P ( e l B )  - 1 

P ( e I ~ B )  1 - p 

This translation is indirect and lacks an immediate, natural justification. In the 
BF language, on the other hand, the statement above is encoded directly as 
a basic probability assignment r e ( B )  = p .  This suggests that there might be 
some phase of reasoning where people use belief functions, possibly in inter- 
preting the impact of an observation, or during the mental exercise of estimating 
probabilities from a qualitative knowledge. It is possible that during such an ex- 
ercise, which requires that exceptions and assumptions be summarized in terms 
of numbers, a person does indeed resort to random sampling of logical theories 
(Section 1.4) and computes (by stochastic simulation) the probability that a 
proof is found for B. 

If this is so, then the BF theory could serve as a useful interface between a 
human probability assessor and a mechanical reasoner--a translator from collo- 
quial assertions about probability assignments into likelihood functions. In this 
view, the application of belief functions in reasoning systems would parallel the 
role that likelihood functions have served in statistical analysis, namely, sum- 
marizing the impact of past observations (and arguments) and organizing them 
for absorption into a knowledge base that is compatible with one's background 
information, thus serving as a basis for decision making. 
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5. DISCUSSION 

The limitations demonstrated in this paper raise some interesting issues con- 
cerning the relationships between the Bayesian and BF models. First, if the BF 
formulation is a generalization of the Bayesian one, how can the former suffer 
from limitations that escape the latter? In other words, why don't we regard 
the conclusions reached by the Bayesian analysis as a special case of what can 
be obtained by the BF analysis? 

The answer is that the source of the difference between the two formalisms 
lies in their mode of application. While every additive probability function is 
indeed a special kind of a belief function, the Bayesian analysis concerns not 
one but a family of such functions. Interpreting a rule as a restriction on a 
family of ordinary probability functions gives different results than interpreting 
the rule as a single belief function, which is the prevailing interpretation in the 
BF strategy. If  we give up this latter convenience and, mirroring the Bayesian 
strategy, we venture to treat each rule as a restriction on a family of belief 
functions, a new calculus of belief functions might emerge that might resolve 
some of the difficulties noted above. However, this new calculus would no longer 
possess the attractive features of Dempster's rule and, additionally, would still 
not guarantee to yield the intended results. The reason is that the space of 
belief functions complying with a given constraint, say Bel(A IB) -- p ,  is much 
richer than the corresponding space of simple probability functions and might 
include some belief functions that exhibit undesirable features. This is a price 
we normally pay for generalization and needs to be further explored in the case 
of belief functions. 

The second question relates to belief functions as a representation of evidence. 
In Section 4 we saw that the BF language offers a more refined representation of 
evidence than the ones used in the Bayesian analysis (e.g., the likelihood-ratio 
representation), and the question arises as to why it encounters such difficulties 
expressing simple items of information as if-then rules, which, presumably, also 
reflect and arise out of empirical evidence. 

The answer lies in the distinction between knowledge and evidence and in the 
realization that if-then rules encode the former, not the latter. Belief functions 
offer a rich language for conversing about an item of evidence that has just been 
obtained but a rather inadequate language for describing cumulative evidence 
that has already been crystallized and elevated to a level of knowledge, that 
is, suitable for interpreting other items of evidence. In the words of Shafer and 
Srivastava [34]: "when we use the belief function formalism we always work 
with specific items of evidence" and "Statistical evidence is not, however, the 
kind of evidence for which the belief-function formalism is most simple and 
most natural." Translated into AI terminology, belief functions are not natural 
for representing "domain knowledge"-- generic knowledge that an expert ex- 
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tracts either from statistical observations or from other experts in the field, as 
opposed to specific items of evidence. Conditional rules such as "Birds fly," 
"Fire causes smoke," "Smoke suggests fire," are the basic building blocks 
of expert knowledge, and it is in the representation of such rules that the BF 
formalism finds difficulties. 

This distinction between knowledge and evidence must also be made in the 
Bayesian framework, and its importance in reasoning systems cannot be overem- 
phasized, even in dealing with hard rules such as "All penguins are birds" (see 
Geffner and Pearl [13a]). Treating such a sentence as a generic rule that applies 
to all objects would yield totally different results than treating it as an item of 
evidence pertaining specifically to Tweety, saying " I f  Tweety is a penguin then 
she must be a bird" (equivalently, "There is indisputable evidence that Tweety 
is not both a penguin and non-bird"). 

The Bayesian formalism offers us the fiexibility of distinguishing between 
these two interpretations; the former is treated as a restriction on a space of 
admissible probability functions, and the latter as an observation upon which 
the admissible functions should be conditioned. Given that Tweety is a penguin 
and a bird, the former treatment yields the expected conclusion that Tweety 
does not fly (see Pearl [27]), while the latter yields the vacuous range [0, 1], 
that is, 

0 < P(Flies(Tweety) I Penguin(Tweety), Bird(Tweety)) <_ 1 

because the added information Penguin(Tweety) D Bird(Tweety) is subsumed 
in the available observation Penguin(Tweety) A Bird(Tweety), and so it is un- 
able to exploit the information that penguins are birds. 

The BF approach, unfortunately, does not distinguish items of evidence re- 
garding specific individuals from generic rules that reflect beliefs about all 
individuals, and it is for this reason that Bel(Flies(Tweety)) remains oblivious 
to whether penguins are a subclass of birds or birds are a subclass of penguins. 
It should be noted that the problems associated with the representation of rules 
plague the BF approach only when rules are subject to exceptions. In domains 
where all rules are categorical, such as in strict taxonomic hierarchies, the 
distinction between knowledge and evidence is unnecessary and the paradoxes 
uncovered in Section 3 will not surface. 

6. CONCLUSIONS 

The current popularity of the belief function formalism stems from two fac- 
tor s: 

1. Its willingness to admit partial knowledge, knowledge insufficient for spec- 
ifying a complete probabilistic model. 
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2. The uniform and incremental manner in which it encodes and combines 
partial specifications, being reminiscent of logical deduction. Each speci- 
fication (say a rule) is encoded as a belief function and then combined by 
a uniform principle, namely, Dempster's rule of combination. 

This paper raises concerns relative to the ability of belief functions to properly 
handle partial knowledge. Our concerns have been twofold: 

1. The BF analysis computes probabilities of logical necessity rather than 
probabilities of truth. The former may behave contrary to expectations 
(relative to the notion of "measure of belief") and may not provide the 
desired answers in diagnostic or abductive tasks 

2. The BF formalism encounters difficulties representing domain knowledge, 
especially class-property relationships, conditional a~ertions, and default 
rules. Encoding and combining such rules as belief functions may yield 
counterintuitive conclusions. 

Shafcr (personal communication) has defined the scope of BF applications as 
follows: "Belief functions are useful when we can formulate evidence bearing 
on one question in terms of probabilities, and then relate these probabilities, 
through a compatibility relation, to another question." In AI terminology, this 
scope limits the application of belief functions to cases where domain knowl- 
edge is articulated in purely deterministic terms, using a compatibility relation. 
Uncertainty may characterize the impact of specific items of evidence but may 
not enter into the stable relationships that govern entities in the domain. Such 
applications include strict taxonomic hierarchies, terminological definitions, and 
descriptions of deterministic systems (e.g., electronic circuits) but exclude do- 
mains in which the rules tolerate exceptions (e.g., medical diagnosis, default 
reasoning). Conditional rules, like those discussed in Section 3, do not lend 
themselves to direct BF analysis, and the problem of managing incomplete 
probabilistic knowledge remains unresolved. 

But even limiting ourselves to applications where domain knowledge is ex- 
pressible in categorical terms, serious thought must still be given as to whether 
the probabilities of provability computed by belief functions would be adequate 
for our purpose. Circuit diagnosis is one typical example where categorical re- 
lationships adequately describe the relations between the input and the output. 
However, shouldn't we really be concerned with the likelihood that a component 
is faulty as opposed to the likelihood that it can be proven faulty? If circuits are 
diagnosed by BF methods and components are replaced on the basis of the mag- 
nitude of Bel and P1, we are back at the mercy of the spoiled sandwich effect, 
which in diagnosis problems might lead to unreasonable test-and-replacement 
strategies. Extensive experimental and theoretical studies should be undertaken 
to assess the behavior of such strategies, and to understand where and how they 
can be implemented safely. 

This paper is written in the hope that by identifying areas where BF theory 
should not be applied, we will improve our ability to search and find admissible 
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applications for the theory. As DeGroot once remarked relative to the Bayesian 
approach, "Like all powerful weapons, it must be used only with the utmost care 
and in accordance with the highest ethical standards" (see discussion following 
Shafer [33]). In order to use our weapons with care, we must understand their 
powers, dangers, and limitations. 
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