
Artificial Intelligence 55 (1992) 87-107 87
Elsevier

From local to global
consistency*

R i n a D e c h t e r * *

Information and Computer Science, University of California, Irvine, CA 92717, USA

Received November 1990
Revised August 1991

Abstract

Dechter, R., From local to global consistency, Artificial Intelligence 55 (1992) 87-107.

In reasoning tasks involving the maintenance of consistent databases (so-called QQcon-
straint networks/Q/Q), it is customary to enforce local consistency conditions in order to
simplify the subsequent construction of a globally coherent model of the data. In this paper
we present a relationship between the sizes of the variables' domains, the constraints' arity
and the level of local consistency sufficient to ensure global consistency. Based on these
parameters a new tractability classification of constraint networks is presented. We also
show, based on this relationship, that any relation on bi-valued variables which is not
representable by a network of binary constraints cannot be represented by networks with
any number of hidden variables.

I. Introduction

One of the major forces shaping resource-bounded reasoning stems from the
requirement of local computation, namely, from the need to consider only a
few data items at any inference step and to avoid the decision where to store
intermediate results. All realistic models of human reasoning invoke this
notion of locality in one form or another. For example, spreading activation in
conceptual memories is grounded in the notion that activity spreads locally
among conceptually neighboring entities, but does not leap toward remotely
designated addresses.

Correspondence to: R. Dechter, Information and Computer Science, University of California,
Irvine, CA 92717, USA.

* Revised extension of the paper that won the Artificial Intelligence Journal Best Paper Award
at CSCSI-90. This work was supported in part by the National Science Foundation, Grant
#IRI-88215522 and by the Air Force Office of Scientific Research, Grant #AFOSR-90-0136 while
the author was visiting the Cognitive Systems Lab at UCLA.

** The work was done while the author was at the Computer Science Department, Technion,
Haifa, Israel.

0004-3702/92/$05.00 (~ 1992--Elsevier Science Publishers B.V. All rights reserved

TECHNICAL REPORT
R-135

88 R. l)echter

In reasoning tasks involving the maintenance of a consistent set of informa-
tion items (so-called "constraints"), the principle of locality has been embodied
in techniques that enforce local consistency among groups of related variables.
The rationale being that such local consistency will simplify the task of
constructing a globally coherent model of the data. For example, the scene
labeling scheme of Waltz [28] often leads to globally consistent objects,
although each step examines only neighboring edges and vertices. Truth
maintenance systems [9] often sacrifice completeness by limiting the inferential
steps to those involving constraint propagation [20, 21]. Such local techniques
share the computational advantages mentioned earlier: there are only a few
data items participating in each inference step, these items bear meaningful
conceptual relationships to one another, partial results are stored exactly where
they will be useful, computational steps can be performed in any order, and
there is no need to remember which part of the knowledge has been processed
and which part has not.

For a collection of constraints to be globally cons&tent means that it is
completely explicit, namely the set of "partial solutions" to each subset of the
constraints can always be extended to a "full solution" that satisfies all the
constraints. This property makes globally consistent "constraint networks"
very attractive computationally. They admit greedy search algorithms which
are guaranteed to generate a solution without any dead-ends (i.e., backtrack-
free [12]). Our wish, therefore, is to enforce global consistency using as local a
computation as possible.

So far all known conditions under which local consistency would entail global
consistency involved topological properties of the network representing the
interactions among the data items (so-called "constraint networks") [7, 12]. In
this paper we consider additional parameters of the problem specification. We
give a general relationship between the sizes of the variables' domains, their
constraints' arity and the level of local consistency required for ensuring global
consistency. Specifically, in any problem having constraints of arity r or less
and domains of size k or less, if all subproblems whose sizes are bounded by
k(r - 1) + 1 are consistent, then the whole problem is globally consistent. The
main theorem and its corollaries are presented in Section 3, It results in a new
classification scheme for constraint networks presented in Section 4. Section 5
modifies these results to directional consistency while Sections 6 and 7 provide
examples and concluding remarks.

2. Definitions and preliminaries

A constraint network, R, (or CN for short) consists of a set of n variables
Xm X,,, each associated with a finite domain of values, D~ D n, and a
set of constraints { C~ C,}. A constraint C i consists of two parts: (1) a

From local to global consistency 89

subset of variables, var(Ci)= { X i ~ , . . . , Xij(,)} called the c-set; and (2) a

relation, rel(Ci) defined on this subset:

rel(Ci) = r e l (X q , . . . , Xij(i)) ~ Di I × " '" × Dij(i) • (1)

rel(C,) stands for all simultaneous value assignments to the variables of var(Ci)
that are restricted by Cg alone. The scheme of R is the set of all its c-sets,
{var(C1) , . . . , var(C,)}. A solution to R is an assignment of a value to each

variable such that all the constraints are satisfied. We say that the network, R,

represents the relation, rel(R), consisting of all its solutions. Formally,

rel(R) = {(X 1 = xl , . . . , Xn = xn)

I V f i , IIvar(ci)rel(R) C (Ci)} . (2)

Ilup stands for the projection of a subset of variables U = U ~ , . . . , U / on the

relation p, which is defined by:

IIu(p) = {xv = (Xu, , xv) I 3~ E p, ~ is an extension of ~fv} •

A relation p, satisfying p = rel(R) is said to be decomposable by R and,

alternatively, R is said to be a network decomposition of p.
Typical tasks defined in connection with networks of constraints are to

de termine whether or not a solution exists, to find one or all solutions, and to

determine whether an instantiation of some subset of variables is a part of a
global solution. These tasks are collectively called constraint satisfaction prob-
lem (CSPs).

A binary constraint network is one in which every c-set involves at most two

variables. In this case the network can be associated with a constraint graph,
where each node represents a variable and the arcs connect nodes whose

variables are explicitly constrained. An r-ary CN involves constraints with arity
r or less. Figure 1 shows the constraint graph of a binary constraint network

where each node represents a variable having values {a, b, c} and each link is

associated with a strict lexicographic order (where X i < X j i f f i < j) . (The
domains and the constraints are shown explicitly on some of the links.)

Given a constraint network, R, any subset, X, of its variables determines a

subnetwork R x that contains all those constraints in R whose c-sets are
contained in X. In the following paragraphs we define the notions of local,
relative and global consistency which are central to this paper. Throughout the

X6 X5 X2 X3
~ (~,b,~)

(~ i f(a,b)
I I (a,c)

~ (b,c)

X 7 X1 X 4

Fig. 1. An example of a binary constraint network.

90 R. Dechter

paper , n stands for the number of variables, k for the number of values and r
for the constraints ' arity.

Definition 2.1. A partial instantiation of variables (X~ = x~ X i ---xi) is

locally consistent if it satisfies all the constraints in the subnetwork restricted to

the set {X~ Xi}.

Definition 2.2. Given two subnetworks R x and R v such that X C Y, sub-

network R x is consistent relative to subnetwork R y if any partial instantiation of

variables in R x which is locally consistent can be extended to a consistent
instantiation of Rv.

Definition 2.3 (Global consistency).
(a) A subnetwork R x is globally consistent if it is consistent relative to the

overall network.

(b) A binary constraint network is said to be the minimal network [24] if

every subnetwork of size two is globally consistent.
(c) A globally consistent network is one all of whose subnetworks are

globally consistent.

Looking, for instance, at the network of Fig. 1, we see that the assignment

a = (X I = a, X 2 = b, X 7 = c) is locally consistent. However , the network,

R{x1,xz,XT} , is not consistent relative to R{x1,x2,xs,x7}, since the consistent
assignment a cannot be consistently extended to any value of X s. Moreover , in
this case most subnetworks are not globally consistent since the overall network

is inconsistent, thus representing the empty relation.

We will now redefine the notion of i-consistency [12] in terms of relative
consistency.

Definition 2.4.
(a) A network of constraints is said to be i-cons&tent if every subnetwork of

size i - 1 is cons&tent relative to any containing subnetwork of size i.
(Equivalently, any locally consistent instantiations can be extended by

any ith variable.) A network is strong i-cons&tent if it is j-consistent for
every j = 1, 2 i.

(b) Networks that are 2-consistent and 3-consistent are called arc-cons&tent
and path-cons&tent, respectively [18, 24].

The notion of global consistency generalizes Montanari 's notion of decom-
posability which was defined for the minimal network. Since a globally
consistent network is completely explicit, its solutions can be generated in a
backtrack-free manner in any chosen ordering [4]. Clearly, a network is
/-consistent for all i (i.e., it is strong n-consistent) iff it is globally consistent.

From local to global consistency 91

When a network is not/-consistent, consistency-enforcing algorithms can be
used to get it to the required consistency level [3, 10]. A brute-force algorithm
for enforcing consistency of level i can be bounded by O(n2ik2ii r) and
~((nk)i ir) , as well as by O((2nk) 2i) and ~((nk) i) for unbounded r (see
Appendix B for more details). Optimal algorithms for realizing the lower
bound are available in [3]. For simplicity, we will use the brute-force upper
bound complexity in our analysis.

3. Local consistency in constraint networks

3.1. Multi-valued r-ary networks

In this section we present a relationship between the maximum constraints'
arity, r, the maximum domain's cardinality, k, and the level of local con-
sistency that can ensure global consistency. For simplicity we assume that all
variables have equal-sized domains. We refer to networks having at most r-ary
constraints as r-ary constraint networks.

Theorem 3.1. Any k-valued r-ary constraint network that is strong
(k(r - 1) + 1)-consistent is globally consistent. In particular, any k-valued bi-
nary constraint network that is strong (k + 1)-consistent is globally consistent.

Proof. For simplicity we provide the proof for the special case, r = 2. This
restricted case contains the main ideas and is much less cumbersome. The
proof for the general case is given in Appendix A.

We will prove the theorem by showing that strong (k + 1)-consistent binary
networks are (k + i + 1)-consistent for any i/> 1. According to the definitions,
we need to show that, if £ = (xl, x 2 xk+i) is any locally consistent
subtuple of the subset of variables {X1, X 2 Xk+i}, and if Xk+i+ 1 is any
additional variable, then there is an assignment xk+,+ 1 to Xk+i+ 1 that is
consistent with £. We call an assignment to a single variable a unary assignment
and we view £ as a set of such unary assignments. With each value j, in the
domain of Xk+i+ 1 we associate a subset A / t h a t contains all unary assignments
in £ that are consistent with the assignment Xk+~+~ = j. Since variable Xk_l_i+ 1

may take on k possible values { 1 , 2 , . . . k} this results in k such subsets,
A ~ , . . . , A , . We claim that there must be at least one set, say A 1, that
contains the set £. If this were not the case, each subset A /wou ld be missing
some member, say x~, which means that the tuple generated by taking a

t ! missing unary assignment from each of the A i ' s , i.e. £ ' = (X'l, X2 , . . . ,Xk),
whose length is k or less (there might be repetitions), could not possibly be
consistent with any of Xk+i+l'S values. This leads to a contradiction because as
a subset of £, £ ' is locally consistent, and from the assumption of strong

92 R, Dechter

(k + l)-consistency, this tuple should be extensible by any additional variable
including Xk+i+ 1. Note that we need not assume that the {x~}'s are distinct
unary assignments because strong (k + 1)-consistency renders the argument
applicable to subtuples £' of length less than k.

Assume now, without loss of generality, that A1 spans all the k + i unary
assignments. This means that each assignment Xj = xj, j ~ {1 k + i}, is
consistent with the assignment Xi~k+ ~ = 1, hence, we found a value (1 of
Xk.~+~) that is consistent with ~f. []

3.2. Binary constraint networks

Continuing our focus on binary constraints, we may be tempted to conclude
from Theorem 3.1 that any k-valued binary network can be solved polynomial-
ly be enforcing strong (k + 1)-consistency. However, enforcing (k + 1)-consis-
tency may require the addition of non-binary constraints, resulting in a
(k + 1)-consistent problem that is no longer binary. We can, however, con-
clude a weaker result.

Corollary 3.2. A k-valued binary network, in which all induced constraints
(generated by enforcing strong-(k + 1)-consistency) are decomposable into bi-
nary constraints, can be solved in O((nk) 2(k + l)) steps.

Proof. One can enforce strong (k + 1)-consistency in O((nk) 2(k+1~) steps (see
Appendix B). Then, each new recorded constraint is decomposed to its
minimal network (by projecting the constraint on all subsets of two variables).
Since we assumed that such a binary network represents each induced con-
straint precisely, the intersection of all the binary constraints results in an
equivalent binary network which is strong (k + 1)-consistent. Consequently,
from Theorem 3.1, we can conclude that the resulting network is globally
consistent. Since a globally consistent network can be solved in a backtrack-
free manner, the cost of generating a solution is the cost of verifying that a
partial instantiation of variables satisfies all the constraints. In binary networks
this can be accomplished by O(n 2) constraint checks. []

An interesting special case arises in the context of the k-colorability prob-
lem: given a set of k colors and a graph, assign a color to each node in the
graph such that adjacent nodes will have different colors. This problem is
clearly an instance of a k-valued binary constraint network. Moreover, since
there are always enough colors (i.e., k) to consistently extend any locally
consistent coloring of k - 1 nodes (or less) by a color to one additional node,
the problem is inherently strong k-consistent. Theorem 3.1 implies that if only
we could extend the consistency level from k to k + 1, the problem would
become globally consistent and, hence, polynomially solvable. However,

From local to global consistency 93

Lemma 3.3 [16]. A k-colorability problem is (k + 1)-consistent iff each node
has at most k - 1 neighbors, namely the graph degree is bounded by k.

Proof. Clearly, if each node's degree is less than k, the problem is (k + 1)-
consistent. Assume now that we have a (k + 1)-consistent problem and a node
X having k neighbors. Assigning a unique color to each neighbor results in a
locally consistent assignment which is not extensible to X, thus yielding a
contradiction. []

The colorability example strengthens the result of Theorem 3.1 since it
provides an instance of a k-valued binary network that is strong k-consistent
while not globally consistent (unless it has a degree bounded by k). We can
conclude, therefore, that:

Theorem 3.4. The level of strong local consistency required to ensure global
consistency for k-valued binary networks is at least k + 1. []

3.3. Bi-valued binary networks

Another interesting special case occurs when the constraints are binary and
all variables are bi-valued, that is, k = 2. This is the only value of k for which
the network remains binary after enforcing the required level of (k + 1)-
consistency. According to Theorem 3.1, bi-valued networks require strong
3-consistency (i.e., path-consistency) in order to be globally consistent. Since
this level of consistency can be enforced by adding binary constraints only, we
have the following corollary:

Corollary 3.5. A strong 3-consistent bi-valued binary network is globally
consistent and, in particular, minimal.

Proof. Follows immediately from Theorem 3.1. []

We get that:

Theorem 3.6.
(1) The minimal network of a bi-valued binary constraint network can be

obtained in O(n 3) steps.
(2) The consistency of a bi-valued binary constraint network can be de-

termined in O(n 3) steps.

Proof. The minimal network is obtained by enforcing strong 3-consistency
which takes O(n 3) steps [19]. Since the minimal network is globally consistent,
a solution can be generated without encountering dead-ends, therefore, requir-

94 R. Dechter

ing only O(n 2) additional steps. Note that finding a solution to a bi-valued

binary network is equivalent to the 2-satisfiability problem [13] which is known
to be linear. Thus part (2) of Theorem 3.6 does not provide the tightest bound
for this task. However , we do not know of any better algorithm for the task of
generating the minimal network. []

Theorem 3.6 has a surprising implication regarding the expressive power of
hidden variables in bi-valued binary constraint networks. Given a bi-valued

relation p, we can generate the minimal network of p by taking the projection
of p on each pair of variables. The set of all solutions of this minimal network

always contains p and it is the best binary network approximation of p [24].
When the minimal network represents p exactly, we say that p is binary-

network-decomposable. In general, a relation p is not binary-network-decom-
posable, and the question is whether it can be decomposed using a larger
network containing auxiliary bi-valued variables, or, equivalently, whether p
can be a projection of some other relation that is binary-network-decompos-
able. In [5] we showed that if a bi-valued relation is not network-decompos-
able, adding any number of auxiliary bi-valued variables will not remedy the
situation. We will provide here an alternative proof based on Theorem 3.1.

Definition 3.7. Let p be any n-ary bi-valued relation over a set of variables
X = {X~ X,,}. We say that relation p is h-network-decomposable if there
exist h additional bi-valued variables Y = { Y ~ , . . . , Yh} for which there is a

binary network R(X , Y) defined over X U Y such that p = I I x rel(R(X, Y)).
The additional variables needed for decomposition will be called hidden
variables.

Theorem 3.8. A bi-valued relation that is not network-decomposable is also not

h-network-decomposable, for any h.

Proof. Suppose the contrary, that p is a bi-valued relation that is not network-
decomposable over variables X = { X ~ , . . . , X , } , and let Y = { Y~ Yh} be
a set of hidden variables such that there is a relation p ' over X U Y satisfying
p = H x p ' and p ' is network-decomposable. Since p ' is network-decomposable,
its minimal network, M, must be a binary-network decomposition of p' and
since it is minimal, it is also strong 3-consistent. Let M x be the subnetwork
restricted to the set X. According to Theorem 3.1, since M is a bi-valued strong
3-consistent binary network, any tuple which is locally consistent is also
globally consistent. In particular, locally consistent solutions of M x are globally
consistent and, hence, rel(Mx) is identical to the projection of rel(M) on the
set X, namely:

rel(Mx) = H x rel(M) , (3)

From local to global consistency 95

or, substituting, p ' = rel(M),

rel(Mx) = H x p ' . (4)

The assumption p = H x p ' yields,

P = re l (Mx) , (5)

which means that M x is an exact network decomposition of p, thus contradict-
ing our initial supposition. []

4. Classes of tractability

Theorem 3.1 supplies us with the ability to pose useful conjectures for
certain families of constraint networks. When the maximum number of values
is k, and the maximum constraint arity is r, we may try to prove that strong
(k (r - 1) + 1)-consistency can be achieved using constraints with arity not
exceeding r. If this is proved, Theorem 3.1 ensures that the resulting network is
globally consistent, hence tractable.

The "level of local consistency" which is sufficient for global consistency can
serve as a parameter for classifying problem instances into different classes of
tractability. If we have a k-valued binary network, for instance, we can apply
strong (k + 1)-consistency to it, and if this is achievable using binary con-
straints only, we know that the problem is tractable and we say that it belongs
to class I. However, if the newly induced constraints are not "binary-
decomposable", they may be of arity k, at worse, thus resulting in a k-valued
k-ary constraint network. To make this new problem globally consistent, we
are advised by Theorem 3.1 to enforce strong (k (k - 1)+ 1)-consistency. If
this is achievable with k-ary constraints only, we know the problem is globally
consistent and we say it is in class 2. Else, the resulting problem may have
k (k - 1) - a r y constraints and, accordingly, we need to enforce now strong
(k (k (k - 1) - 1) + 1)-consistency and so on. Continuing in this fashion, we can
define higher classes of tractability, depending on the number of times we have
to increase the consistency level until achieving global consistency.

In summary, we can divide k-valued binary constraint problems having n
variables into approximately IOgk n + 1 complexity classes. Class 1 contains
those problems that can be made (k + 1)-consistent with only binary con-
straints, class 2 contains problems that can be made (k(k - 1) + 1)-consistent
using constraints of arity k or less, and, in general:

Definition 4.1. Let K i be defined by

K o = r ,

V i > O , K i = k i (r - 1) - k i-L - k i -2 k .
(6)

96 R. Dechter

A k-valued r-ary constraint network is in class i if it "can be made" strong
(Kg + 1)-consistent via constraints of arity Ki_ ~ or less. We say that a problem
"can be made" strong consistent via constraints of size Ki - 1 if, when applying
BFC(]) (see Appendix B) for increasing values of / , each new level-j constraint
(j = K i_ ~ + 1 K~ + 1) can be decomposed into constraints of size Ki ~.

Theorem 4.2. A n y constraint network in class i can be solved in O((2nk) z¢l~i+ i))
steps.

Proof. If a problem is in class i, we can make it globally consistent by enforcing
strong (K~ + 1)-consistency which is bounded by O((2nk) 2~K'+~)) steps (see
Appendix B). Since the problem is in class i, we know that it can be made
strong (K~ + 1)-consistent with constraints of arity K~_ 1 or less. From Theorem
3.1 it follows that, since the resulting problem (after enforcing (Ki+ 1)-
consistency) has k values and at most K~_l-ary constraints, it needs be only
(k(Ki_ 1 - 1) + 1)-consistent to ensure global consistency. By substituting the
expression for Ki_ l (equation (6)), we get:

k(K, i - 1) + l = k (k ' - l (r - 1) - U - 2 - k `-3 k - 1) + l

= k i (r - 1) - k i 1 _ U - 2 k + l

= K~ + 1, (7)

which has already been enforced on the network. We can conclude, therefore,
that the problem is globally consistent. As a result, for bounded k and r,
problems in class i are tractable. []

We suspect that determining the lowest class to which a given problem
belongs is NP-hard. However, the membership in a specific class can be
decided polynomially.

Theorem 4.3. Deciding whether a problem is in class i takes O((2nk) 2~Ki+l))
steps.

Proof. First, we run the problem through a strong (K i + 1)-consistency al-
gorithm ~ which takes O((2nk)2~/~i+l)). The resulting problem may have new
constraints of arity between K i I + 1 and K~. For each such constraint we need
to determine whether it is expressible using constraint of arity not exceeding
Ki t. Let C be one such constraint. For each such constraint we generate a

~Note that Definition 4.1 is procedure-based in that it requires decomposability of the
constraints recorded by the consistency enforcing algorithm, BFC(i). A more "declarative"
definition would have rendered the membership problem intractable.

From local to global consistency 97

network, R~) of Ki_l-ary constraints by projecting C on each subset of Ki_ ~
variables. This operation is bounded by the cardinality of C, O(kri). We then
have to solve the resulting network R~) in order to check if it has the same
solution set as the original relation C. This corresponds to solving a constraint
network problem having at most Ki variables and k values, which takes O(k ~i)
steps. The number of constraints, like C, that we may need to process is O(n ri)
hence, the overall complexity is O((2nk)2~K~+~)). []

Clearly, class 1 is the most useful class; it is both most tractable and easiest
to recognize. We will now define a subclass of class 1 which is particularly
useful and which is frequently encountered. As already stated, a problem is in
class 1 if it can be made strong (k(r - 1) + 1)-consistent with r-ary constraints.
If this level of consistency is achieved by enforcing only (r + 1)-consistency, we
know that the problem is globally consistent, since (r + 1)-consistency records
at most r-ary constraints. Accordingly, we define:

Definition 4.4. A k-valued r-ary network that can be made strong
(k (r - 1) + 1)-consistent by enforcing strong (r+ 1)-consistency is called
regular.

Lemma 4.5. The complexity of regular networks is O((2nk)2~r+l)).

Proof. Follows immediately from Theorem 3.1. []

Theorem 4.6. Membership in the regular class can be determined in
O((2nk)k(r-1)+2).

Proof. We first perform strong (r+ 1)-consistency which is bounded by
(2nk) 2tr+~). Then we have to check if the resulting network is (r + 2)-consis-
tent, (r + 3)-consistent, and so on, until we reach (k(r - 1) + 1)-consistency. If
all these levels of local consistency are verified, we know, based on Theorem
3.1, that the problem is globally consistent. The verification of all levels of local
consistency between r + 2 and k(r - 1) + 1 is bounded by

k (r - l) + l

ff'~ (2nk) i= O((2nk)k~-l)+Z). [] (81
i = r + 2

Thus, regular networks are more tractable (once recognized) and also are
easier to recognize than general class-1 problems. Examples are given in
Section 6.

In the next section we show that complexity can be further reduced by
restricting processing to only directional consistency.

98 R. Dechter

5. Directional consistency

The notion of directional consistency was introduced in [7] as a speed-up
device which weakens local consistency while still ensuring global consistency
along a given ordering. It allows all the constraints to be processed just once,
resulting in a brute-force complexity bound of O(n ~* ~k~T) (see Appendix B).
This weaker consistency condition is easier to enforce than full /-consistency
while ensuring backtrack-free search using the selected ordering. The direc-
tional bound is a square-root of the undirectionat one.

Definition 5.1. A network of constraints is said to be directional /-consistent,
with respect to an ordering d = X~ X,, if every subnetwork of size i - 1
which is locally consistent can be consistently extended by any variable that
succeeds all the subnetwork's variables in the ordering d. It is directional strong
i-consistent if it is directional j-consistent for j ~< i. A network of constraints is
directional globally consistent, with respect to an ordering d, if it is directional
/-consistent for every i.

Following is the directional version of Theorem 3.1.

Theorem 5.2. Any k-valued r-ary constraint network that is directional strong
(k(r - 1) + 1)-consistent with respect to d is also directional globally consistent.

Proof. Same as the proof of Theorem 3.1. []

For completeness sake we present the algorithm adaptive-consistency that
enforces directional consistency to any desirable level. The algorithm can be
defined in terms of a procedure adaptive(level, d) [6] that enforces directional
strong (level + 1)-consistency along an ordering d, where level is a parameter
indicating the highest cardinality of constraints that are recorded, and d is an
ordering X~ , X , , on the set of variables.

adaptive(level, X I X,,)
Begin
1. for i = n to 1 by - 1 do
2. compute PARENTS(X~)

.

4.

End

/*PARENTS(Xi) is the set of vari-
ables that are currently adjacent to and precede X/ in the
constraint network.
perform new-record(level, Xi, PARENTS(X/))
for level i> 2, connect all elements in PARENTS(X~) (if they are
not yet connected)

From local to global consistency 99

Procedure new.record(level, var, set) records only constraints of size less than
or equal to level from the subset set and is defined as follows:

new-record(level, var , set)
Begin
1. if level ~ Isetl then
2. for every subset S in set such that IS] = level do
3. record.constraint(var , S)
4. end
5. else, record-constraint(var, set)
End

The procedure record-constraint(var, set) generates and records (in the form of
a new constraint on set) those locally consistent tuples of variables in set that
are also consistent with at least one value of var. The new constraint is added
to the original problem. Clearly, the algorithm enforces directional strong
(level+ 1)-consistency, and its complexity is bounded by both
O((nk) tevet+ l(level + 1)r) and O((2nk) tewt+ 1) . The extension to adaptive-consis-
tency is made by recording constraints on all the parent set (modifying line 3 of
adaptive), and its complexity is bounded by both O(kW*+tW *r) and
O((2k) w*+L) where W* is the maximum parent size resulting from applying the
algorithm. See Appendix B and [8].

Definition 5.3. Given an ordering d, an r-ary k-valued constraint network is in
directional class i if directional strong (K i + 1)-consistency "can be enforced"
using constraints of arity Ki_l or less.

As we saw, the cost of enforcing this level of directional consistency by
adaptive (Kg + 1, d) is O((2nk) ri+t) compared to O((2nk) 2~r~+1)) in the undi-
rectional version, namely the bound for the directional case is a square-root of
the undirectional bound. We can also conclude that:

Theorem 5.4. Given an ordering o f the variables, d, the membership o f a
problem in directional class i can be determined in O((2nk) Ki+l) steps.

6. Examples

Example 6.1. Tasks of reasoning with time and space provide many examples
of constraint networks having special local consistency properties. Allen's
algebra [1], for example, defines thirteen possible relations between time
intervals and provides a transitivity table for their propagation. This algebra
can be described as a traditional constraint network where the variables are the
relationships between two intervals, each having 13 values, and the transitivity

100 R. Dechter

table defines ternary constraints on triplets of variables. Having k - -13 and
r = 3, we conclude (Theorem 3.1) that i f we can enforce strong 27-consistency
without introducing higher than ternary constraints, we can generate a globally
consistent network using a polynomial algorithm of degree 27. However, since
Allen's algebra is known to be NP-complete, this is not a realistic assumption.

Example 6.2. A second example comes from temporal constraints limited to
relationships between time points. Vilain and Kautz [27] suggested that if we
consider three temporal relations between any two time points {<, =, >} and
define the transitive relationship induced by such relations, we get a simpler
network that can be made globally consistent using a 3-consistent algorithm,
This claim was later corrected by van Beek and Cohen [26], showing that
4-consistency is necessary for global consistency.

This PA t algebra (as termed by van Beek and Cohen [26]) can be described
as a traditional constraint network, where the variables are the relationships
between two points and the transitivity table defines ternary constraints. This
yields a constraint network with k = 3, r = 3. Theorem 3.1 suggests that if such
a network is strong 7-consistent, it is globally consistent. To show that the
problem belongs to class 1, one has to show that it is feasible to enforce
7-consistency with ternary constraints. It can be shown that since 6-consistency
for our formulation is equivalent to 4-consistency in the PA ~ formulation, and
since the latter can be achieved using ternary constraints, so is 7-consistency.
Thus implying global consistency, as also shown in [26]. It is still unclear
whether this formulation of the point algebra (when the arcs are the variables)
is a regular network.

Example 6.3. Consider a temporal constraint network, denoted I N T * , where
the variables' domains are finite sets of integers and the constraints between
pairs of variables are taken from the set {<, ~<, =, > , I>}, with no inequalities.
This is a binary constraint network. Thus, if (k + 1)-consistency can be
enforced with binary constraints we have a tractable problem (Theorem 3.1).
We will show, however, that this is a directional regular problem, namely,
given a certain ordering any level of directional local consistency is enforceable
by directional 3-consistency. In fact, for these networks even directional
2-consistency suffices.

We associate a given problem with a directed acyclic graph as follows: the
nodes denote variables and for each constraint of the form X < Y or X ~< Y, we
direct an arc from X to Y and label it with the constraint's inequality. Cycles in
this graph can be easily detected (using a connected component algorithm). If a
cycle contains a strict inequality, we can conclude that there is no solution.
Otherwise, we can conclude that all variables on the cycle have the same value
and they can be collapsed to one, thus resulting in an acyclic directed graph.

From local to global consistency 101

Theorem 6.4. Networks in class INT*, having an acyclic graph representation,
can be made directional globally consistent using directional 2-consistency.

Proof. Given an acyclic graph representation of the problem, we can generate
an ordering, d, of the nodes which is consistent with the partial order dictated
by the graph. We will show that the problem is directional regular along the
ordering d by showing that enforcing directional 2-consistency is sufficient to
render it directional (k + 1)-consistent and, therefore, directional globally
consistent (Theorem 5.2). Suppose we want to enforce directional (k + 1)-
consistency using algorithm adaptive-consistency (with level = k). At each step
we have a parent node P, a set of child nodes C ~ , . . . , C, and a set of t
constraints. Each constraint is between a C i and P, stating either Ci < P or
C~ ~< P. By enforcing directional 2-consistency on each Cg separately, we
achieve any higher level of consistency, thus (k + 1)-consistency. The reason is
that any value remaining in C~'s domain after enforcing directional 2-consisten-
cy with P, has the property that it is less than or equal to some value Pi in P.
Thus, any value assignment to all C~ C, from these restricted domains is
extensible by the maxi{p~ } in P. []

Van Beek [25] and independently Meiri and Pearl [22] have treated the full
point-algebra problem using similar techniques and showed the same complexi-
ty bounds. However, once integer domains are introduced the full algebra
(containing the # relation) becomes intractable.

Example 6.5. A different family of constraint networks arises in the domain of
scene labeling. Huffman [15] and Clowes [2] developed a basic labeling scheme
for blocks world picture graphs. Given a basic labeling set: + (convex), -
(concave), --~ (occluding, object on arrowhead side with two possible senses),
and a standard set of simplifying assumptions on scene content, the physically
realizable junction labelings are just those shown in Fig. 2. Freuder [11]
provided algorithms for labeling this restricted set while Waltz [28] explored a
richer label set.

A network composed of the junctions in Fig. 2 can be viewed in two ways:
Each line can be viewed as a variable having four values while the constraints
are binary or ternary depending on whether two or three lines intersect. From
this view, Theorem 3.1 states that if a given network is also strong 9-consistent,
it is already globally consistent. The second view treats each junction as a
variable, each variable has 3, 4 or 6 values (the number of possible labeling
combinations of a junction) and the constrains are binary. Theorem 3.1 states
that if the problem is 7-consistent, it is globally consistent. The second view,
therefore, provides a weaker consistency/demand for guaranteeing global
consistency. Nevertheless, since this problem is known to be NP-complete [17],

102

Fork labels

R. Dechter

+2+ A
Arrow labels

L labels

+

T labels

Fig. 2. Junction labels.

we know that there are problem instances where such a consistency level
cannot be enforced without increasing the constraints arity.

We conclude with two additional examples of regular classes. One, men-
tioned earlier, is the class of bi-valued binary constraint networks. In this case
the set of class-1 problems and regular problems coincide since k(r - 1) ÷ 1 --
r + 1 when k = 2 and r = 2. A different class are those termed "distributive" by
Montanari [24]. He showed that when the constraints satisfy the distributivity
property, 3-consistency will make the network globally consistent.

7. Conclusions

A globally consistent network permits the construction of a consistent
solution in linear time. We showed that the amount of local consistency
required for achieving global consistency is dependent on the product of two
parameters: the number of values in each variable and the constraint arity. The
complexity of achieving the required local consistency is exponential in this
product.

Based on this parameter we introduced a tractability classification of con-
straint networks, where each k-valued r-ary network falls into one of log k n
classes. Problems in class i can be solved in O((2nk) 2(k~(r i))) steps, and
deciding whether a problem belongs to class i takes also O((2nk) z(k~(r-1)))
steps. A special class of tractable problems, called regular was identified and
special examples were presented.

From local to global consistency 103

As a consequence of Theorem 3.1, we showed that if a bi-valued relation is
not representable by a binary constraint network, it cannot be helped by any
number of hidden variables. This could be viewed as a generalization to
Peirce's relation thesis. Peirce claimed that any relation could be decomposable
into ternary relationships if the domain of the hidden variable is not bounded
[14]. Here we showed that when one limits the domain into two values only, no
expressiveness is gained. In another paper [5] we show that if the hidden
variables have three or more values in their domains, then any relation is

h-network-decomposable for some h.

Appendix A. Proof of Theorem 3.1

Theorem 3.1. Any k-valued r-ary constraint network that & strong
(k(r - 1) + 1)-consistent is globally consistent.

Proof. We will show that strong (k (r - 1) + 1)-consistency implies that the
network is also (k (r - 1) + i + 1)-consistent for any i > 0 . We need to show
that, if J? = (xl, x 2 xk~r_l)+i) is a locally consistent subtuple over variables
(X 1, X 2 X~r_l)+i }, and if Xk~,_l).i+l is any additional variable, then
there is an assignment x~ r 1)+~+1 to Xk~r_l)+i+l that is consistent with ~?. As for
the binary network case, we will call a unary assignment any assignment to a
single variable and we will view partial assignments both as sets (of unary
assignments) or as sequences.

Since the network has constraints of arity r or less it means that a unary
assignment

Xk(r_l)+i+l ~ Xk(r_l)+i+l

has to be independently consistent with each subset of (r - 1)-ary assignments
of the set ~? = {xl , x 2 , . . . , Xk(r_l)+i). The compatibility of such a subset with a
unary assignment to Xk~ r_1)+/÷1 is verified via the relevant constraints, having
arity r or less. These are defined on the variable X~,_1)+~+1 and on a subset of
the r - 1 variables from { X 1, X 2 , . . . ,Xk~,_l)+l }. In other words, all the
constraints having arity r or less that involve variable Xk~,_l)÷~+l have to be
verified in checking the consistency of any extension. Each such constraint can
be uniquely identified by its c-set.

Variable Xk~,_l)+~ ÷ 1 may take on k possible values {1, 2 , . . . , k}. According-
ly, we define k sets A~ , A k as follows. A s is the set of all s i z e - (r - 1)
subsets of unary assignments from ~ that are compatible with the assignment
Xk~r_l)+i+l = j. Note that each subset must be locally consistent as it is a subset
of ~, and since the network is strong (k(r - 1) + 1)-consistent, and, in particu-
lar, strong r-consistent, any such partial assignment must have at least one
matching value in Xk~_ 1)+i+ 1. The participation of an (r - 1)-ary assignment,

104 R. Dechter

t, in a subset Aj means that all the constraints involving its variables and
variable X~tr-1)+i+l have to be satisfied. Let us denote by Sj(t) the subset of
constraints involved in the consistency verification of a tuple t with the value j
of Xkcr_l)+i+~, and by S (j) all the constraints that are relevant to all tuples in
Aj. Let S denote all the constraints which are relevant to checking the
consistency of Y with a value of Xk~r_~+~+~. Clearly,

S (j) = U S , (j) and S = U S (j) .
tEAj j

We claim that there must be at least one set, say A1, that requires all the

constraints in S to be verified, namely that S = S(1). Otherwise, each set, A j,
must have a constraint C E S such that C ~ S (j) . Let

v a r (C) = { X , , Xlj, Xk(r_l)+,+l}, l < ~ r - 1

be the constraint's c-set of that unverified constraint. This means that the
partial assignment Ej = (X u = x u Xtj---xtj) is not in Aj. Therefore, the
union of all these excluded (r - 1)-ary assignments, E' = E~ U E 2, . . . , U E~, is
not consistent with any of X~¢r_ ~)+~+ ~'s values. However, the length of E' is less
or equal to k(r - 1), and since we assumed strong (k(r - 1) + 1)-consistency, it
must be consistent with at least one value, hence yielding a contradiction.
Assume now, without loss of generality that S = S(1). As a result, all partial
assignments of ,f having size r - 1 or less are consistent with the value "1" of
X k (r _ l) + i + l and we, consequently, found a value 1 of Xk~r_~+i.~ which is
consistent with £. []

Appendix B. The complexity of brute-force consistency algorithm

Following is a worse-case analysis of a brute-force algorithm for enforcing
/-consistency. Most of the analysis in the literature is for the special cases of
i = 2 or i = 3 and for binary constraint networks [18, 23]. A detailed analysis of
general k-consistency is given in [3]. Nevertheless, Cooper's analysis is quite
involved and for the sake of this paper brute-force analysis will suffice. Since
we do not restrict our treatment to binary networks we will express the
complexity as a function of the constraints' arity as well, while assuming that
the consistency level, i, is greater than the constraint's arity, r. Following is a
description of the /-consistency algorithm, which is a generalization of Mack-
worth's PC-1 algorithms [18].

Brute-force-consistency BFC(i).
1. Begin
2. repeat until there is no change
3. for each subnetwork, Ri_i,

X1 X i - l do
of size i - 1 on variables

From local to global consistency 105

4. for each X ~ R - Ri_ 1 do
5. reeord-constraint(Ri- 1, X).
6. end-for
7. end-for
8. end-repeat
9. end

Proposition B.1. Algorithm BFC is bounded by O(n2ikZii r) and by l~((nk)ii ')
steps, and, when r is unbounded it is bounded by O((2nk) 2i) and by l~((2nk) i)
steps respectively.

Proof. The algorithm has to process all subnetworks of size i (loop 3-7). The
number of such networks is:

(n)_o(ni) . (B.1)

On each subnetwork the algorithm records constraints of arity i - 1 that ensure
its consistency relative to any one additional variable (inner loop, lines 4-6).
Checking the consistency of one tuple of length i - 1 against an ith variable
may require checking constraints which are defined on every subset of the
variables, namely, if the constraints' arity is bounded by r, the number of
constraints of size r is bounded by

and otherwise it can be bounded by 2 i.
Since there are at most k i tuples whose consistency is verified, processing

each size-i network is bounded by both

O(kii ") and O((2k)i) . (B.2)

From (B.1) and (B.2) we get that one (3-7) loop is bounded by O((nk)~i ") and
O((2nk)~). The number of times these loops are executed (i.e., the number of
cycles through loop 2-8) until convergence is bounded by the number of tuples
of length i, namely by O((nk) i) (assuming that only one tuple is deleted for
each loop). We get, therefore, overall bounds of O((nk)2ii ") and O(2nk) 2~, for
the cases that r is bounded and unbounded, respectively.

A lower bound for achieving/-consistency is derived by observing that just
to verify that the network is/-consistent, requires checking all the constraints,
a procedure that is equivalent to one (3-7) loop in the BFC algorithm, thus
resulting in both ~((nk)ii ") and ~((2nk) i. []

Directional consistency algorithms [7] allow all subnetworks to be processed
exactly once, hence we can show that:

106 R. Dechter

Proposition B.2. Directional i-consistency is both O(n iÈ lk'ff) and O(n i~k '2 g)
for bounded and unbounded r, respectively.

Proof. The algorithm processes the constraints in a decreasing order of d, each
time making the subnetwork restricted to variables 1, 2 j - 1 directional
i-consistent with respect to variable j. Since there are at most O(n i) sub-
networks, and since each should be processed by O(k'i r) steps, we get that
making the network /-directional consistent with respect to one variable is
O((nk)ii r) and (if r is not bounded) O((2nk)i). []

Proposition B.3. The complexity of the algorithm adaptive-consistency is
O(kW*+li r) and O((2k)W*+l), for bounded and unbounded r, respectively.

Proof. We have to process at most n constraints, each of arity bounded by W*,
which yields the above bounds. For more details see [8]. []

Acknowledgement

I would like to thank Itay Meiri and Judea Pearl for their useful comments
on different versions of this manuscript, and Caroline Ehrlich for proofreading
it.

References

[1] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983)
832-843.

[2] M.B. Clowes, On seeing things, Artif. Intell. 2 (1971) 79-116.
[3] M.C. Cooper, An optimal k-consistency algorithm, Artif. lntell. 41 (1) (1990) 89-95.
[4] R. Dechter, Studies in the use and generation of heuristics, Ph.D. Thesis, UCLA, Los

Angeles, CA (1985).
[5] R. Dechter, On the expressiveness of networks with hidden variables, in: Proceedings

AAAI-90, Boston, MA (1990).
[6] R. Dechter and I. Meiri, Experimental evaluation of preprocessing techniques in constraint

satisfaction, in: Proceedings IJCA1-89, Detroit, MI (1989).
[7] R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems, Artif.

Intell. 34 (I) (1987) 1-38.
[8] R. Dechter and J. Pearl, Tree clustering for constraint networks, Artif. lntell. 38 (1989)

353 -366.
[9] J. Doyle, A truth maintenance system, Artif. Intell. 12 (1979) 231-272.

[10] E.C. Freuder, Synthesizing constraint expression, Commun. ACM 21 (11) (1978) 958-965.
[11] E.C. Freuder, On the knowledge required to label a picture graph, Artif. Intell. 15 (1) (1980)

1-17.
[12] E.C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1) (1982) 24-32.
[13] M.R. Garey and D.S. Johnson, Computer and Intractability, A guide to NP-Completeness

(Freeman, San Francisco, CA, 1979).

From local to global consistency 107

[14] H.G. Herzberger, Pierce's remarkable theorem, in: L.W. Sumner, J.G. Slater, F. Wilson,
eds., Pragmatism and Purpose: Essays Presented to Thomas A. Goudge (University of
Toronto Press, Toronto, Ont., 1981).

[15] D.A. Huffman, Impossible objects as nonsense sentences, in: B. Meltzer and D. Michie, eds.,
Machine Intelligence 6 (Edinburgh University Press, Edinburgh, Scotland, 1971) 195-234.

[16] S. Kasif, Private communication (October 1990).
[17] L.M. Kirousis and C.H. Papadimitriou, The complexity of recognizing polyhedral scenes, in:

Proceedings Symposium on Foundations of Computer Science, Portland, OR (1985) 175-185.
[18] A.K. Mackworth, Consistency in networks of relations, Artif. Intell. 8 (1) (1977) 99-118.
[19] A.K. Mackworth and E.C. Freuder, The complexity of some polynomial network consistency

algorithms for constraint satisfaction problems, Artif. Intell. 25 (1) (1985) 65-74.
[20] D.A. McAllester, An outlook on truth-maintenance, Tech. Rept., AI Memo No. 551, MIT,

Boston, MA (1980).
[21] D.A. McAllester, Truth maintenance, in: Proceedings AAA1-90, Boston, MA (1990) 1109-

1115.
[22] I. Meiri and J. Pearl, Faster constraint satisfaction algorithms for temporal reasoning, Tech.

Rept. R-151, Cognitive Systems Lab, UCLA, Los Angeles, CA (1990).
[23] R. Mohr and T.C. Henderson, Arc and path consistency revisited, Artif. Intell. 28 (2) (1986)

225 -233.
[24] U. Montanari, Networks of constraints: fundamental properties and applications to picture

processing, Inf. Sci. 7 (1974) 95-132.
[25] P. van Beek, Reasoning about qualitative temporal information, in: Proceedings AAAI-90,

Boston, MA (1990) 728-734.
[26] P. van Beek and R. Cohen, Approximation algorithms for temporal reasoning, in: Proceed-

ings IJCAI-89, Detroit, MI (1989).
[27] M. Vilain and H. Kautz, Constraint propagation algorithms for temporal reasoning, in:

Proceedings AAA1-86, Philadelphia, PA (1986) 377-382.
[28] D. Waltz, Understanding line drawings of scenes with shadows, in: P.H. Winston, ed., The

Psychology of Computer Vision (McGraw-Hill, New York, 1975).

