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Abstract 

Dechter, R., From local to global consistency, Artificial Intelligence 55 (1992) 87-107. 

In reasoning tasks involving the maintenance of consistent databases (so-called QQcon- 
straint networks/Q/Q),  it is customary to enforce local consistency conditions in order to 
simplify the subsequent construction of a globally coherent model of the data. In this paper 
we present a relationship between the sizes of the variables' domains, the constraints' arity 
and the level of local consistency sufficient to ensure global consistency. Based on these 
parameters a new tractability classification of constraint networks is presented. We also 
show, based on this relationship, that any relation on bi-valued variables which is not 
representable by a network of binary constraints cannot be represented by networks with 
any number of hidden variables. 

I. Introduction 

One of the major forces shaping resource-bounded reasoning stems from the 
requirement of local computation, namely, from the need to consider only a 
few data items at any inference step and to avoid the decision where to store 
intermediate results. All realistic models of human reasoning invoke this 
notion of locality in one form or another. For example, spreading activation in 
conceptual memories is grounded in the notion that activity spreads locally 
among conceptually neighboring entities, but does not leap toward remotely 
designated addresses. 
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In reasoning tasks involving the maintenance of a consistent set of informa- 
tion items (so-called "constraints"), the principle of locality has been embodied 
in techniques that enforce local consistency among groups of related variables. 
The rationale being that such local consistency will simplify the task of 
constructing a globally coherent model of the data. For example, the scene 
labeling scheme of Waltz [28] often leads to globally consistent objects, 
although each step examines only neighboring edges and vertices. Truth 
maintenance systems [9] often sacrifice completeness by limiting the inferential 
steps to those involving constraint propagation [20, 21]. Such local techniques 
share the computational advantages mentioned earlier: there are only a few 
data items participating in each inference step, these items bear meaningful 
conceptual relationships to one another, partial results are stored exactly where 
they will be useful, computational steps can be performed in any order, and 
there is no need to remember which part of the knowledge has been processed 
and which part has not. 

For a collection of constraints to be globally cons&tent means that it is 
completely explicit, namely the set of "partial solutions" to each subset of the 
constraints can always be extended to a "full solution" that satisfies all the 
constraints. This property makes globally consistent "constraint networks" 
very attractive computationally. They admit greedy search algorithms which 
are guaranteed to generate a solution without any dead-ends (i.e., backtrack- 
free [12]). Our wish, therefore, is to enforce global consistency using as local a 
computation as possible. 

So far all known conditions under which local consistency would entail global 
consistency involved topological properties of the network representing the 
interactions among the data items (so-called "constraint networks") [7, 12]. In 
this paper we consider additional parameters of the problem specification. We 
give a general relationship between the sizes of the variables' domains, their 
constraints' arity and the level of local consistency required for ensuring global 
consistency. Specifically, in any problem having constraints of arity r or less 
and domains of size k or less, if all subproblems whose sizes are bounded by 
k(r - 1) + 1 are consistent, then the whole problem is globally consistent. The 
main theorem and its corollaries are presented in Section 3, It results in a new 
classification scheme for constraint networks presented in Section 4. Section 5 
modifies these results to directional consistency while Sections 6 and 7 provide 
examples and concluding remarks. 

2. Definitions and preliminaries 

A constraint network, R, (or CN for short) consists of a set of n variables 
Xm . . . . .  X,,, each associated with a finite domain of values, D~ . . . . .  D n, and a 
set of constraints { C~ . . . . .  C,}. A constraint C i consists of two parts: (1) a 
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subset  of variables,  var(Ci)= { X i ~ , . . . ,  Xij(,)} called the c-set; and (2) a 

relation, rel(Ci) defined on this subset: 

rel( Ci)  = r e l ( X q ,  . . . , Xij(i)) ~ Di I × " '"  × Dij(i) • (1) 

rel(C,) stands for all simultaneous value assignments to the variables of var(Ci) 
that  are restricted by Cg alone. The scheme of R is the set of all its c-sets, 
{var(C1) , . . .  , var(C,)}. A solution to R is an assignment of a value to each 

variable such that all the constraints are satisfied. We say that the network,  R, 

represents the relation, rel(R), consisting of all its solutions. Formally,  

rel(R) = {(X 1 = xl ,  . . . , Xn = xn) 

I V f i ,  IIvar(ci)rel(R) C (Ci )}  . (2)  

Ilup stands for the projection of a subset of variables U = U ~ , . . . ,  U / on the 

relation p, which is defined by: 

IIu(p) = {xv = (Xu, . . . .  , xv)  I 3~ E p, ~ is an extension of ~fv} • 

A relation p, satisfying p = rel(R) is said to be decomposable by R and, 

alternatively,  R is said to be a network decomposition of p. 
Typical tasks defined in connection with networks of constraints are to 

de termine  whether  or not a solution exists, to find one or all solutions, and to 

determine whether  an instantiation of some subset of variables is a part  of a 
global solution. These tasks are collectively called constraint satisfaction prob- 
lem (CSPs). 

A binary constraint network is one in which every c-set involves at most two 

variables. In this case the network can be associated with a constraint graph, 
where each node represents a variable and the arcs connect nodes whose 

variables are explicitly constrained. An r-ary CN involves constraints with arity 
r or less. Figure 1 shows the constraint graph of a binary constraint network 

where each node represents  a variable having values {a, b, c} and each link is 

associated with a strict lexicographic order  (where X i < X j i f f i  < j ) .  (The 
domains  and the constraints are shown explicitly on some of the links.) 

Given a constraint network,  R, any subset, X, of its variables determines a 

subnetwork R x that contains all those constraints in R whose c-sets are 
contained in X. In the following paragraphs we define the notions of local, 
relative and global consistency which are central to this paper.  Throughout  the 

X6 X5 X2 X3 
~ (~,b,~) 

(~  i f(a,b ) 
I I (a,c) 

~ (b,c) 

X 7 X1 X 4 

Fig. 1. An example of a binary constraint network. 
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paper ,  n stands for the number  of variables, k for the number  of values and r 
for the constraints '  arity. 

Definition 2.1. A partial instantiation of variables (X~ = x~ . . . . .  X i ---xi) is 

locally consistent if it satisfies all the constraints in the subnetwork restricted to 

the set {X~ . . . . .  Xi}. 

Definition 2.2. Given two subnetworks R x and R v such that X C Y, sub- 

network R x is consistent relative to subnetwork R y if any partial instantiation of 

variables in R x which is locally consistent can be extended to a consistent 
instantiation of Rv.  

Definition 2.3 (Global consistency). 
(a) A subnetwork R x is globally consistent if it is consistent relative to the 

overall network.  

(b) A binary constraint network is said to be the minimal network [24] if 

every subnetwork of size two is globally consistent. 
(c) A globally consistent network is one all of whose subnetworks are 

globally consistent. 

Looking,  for instance, at the network of Fig. 1, we see that the assignment 

a = (X  I = a, X 2 = b, X 7 = c) is locally consistent. However ,  the network,  

R{x1,xz,XT} , is not consistent relative to  R{x1,x2,xs,x7}, since the consistent 
assignment a cannot be consistently extended to any value of X s. Moreover ,  in 
this case most subnetworks are not globally consistent since the overall network 

is inconsistent, thus representing the empty relation. 

We will now redefine the notion of i-consistency [12] in terms of relative 
consistency. 

Definition 2.4. 
(a) A network of constraints is said to be i-cons&tent if every subnetwork of 

size i -  1 is cons&tent relative to any containing subnetwork of size i. 
(Equivalently,  any locally consistent instantiations can be extended by 

any ith variable.) A network is strong i-cons&tent if it is j-consistent for 
every j = 1, 2 . . . . .  i. 

(b) Networks that are 2-consistent and 3-consistent are called arc-cons&tent 
and path-cons&tent, respectively [18, 24]. 

The notion of global consistency generalizes Montanari 's  notion of decom- 
posability which was defined for the minimal network. Since a globally 
consistent network is completely explicit, its solutions can be generated in a 
backtrack-free manner  in any chosen ordering [4]. Clearly, a network is 
/-consistent for all i (i.e.,  it is strong n-consistent) iff it is globally consistent. 
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When a network is not/-consistent,  consistency-enforcing algorithms can be 
used to get it to the required consistency level [3, 10]. A brute-force algorithm 
for enforcing consistency of level i can be bounded by O(n2ik2ii r) and 
~((nk)i ir) ,  as well as by O((2nk) 2i) and ~((nk)  i) for unbounded r (see 
Appendix B for more details). Optimal algorithms for realizing the lower 
bound are available in [3]. For simplicity, we will use the brute-force upper 
bound complexity in our analysis. 

3. Local consistency in constraint networks 

3.1. Multi-valued r-ary networks 

In this section we present a relationship between the maximum constraints' 
arity, r, the maximum domain's cardinality, k, and the level of local con- 
sistency that can ensure global consistency. For simplicity we assume that all 
variables have equal-sized domains. We refer to networks having at most r-ary 
constraints as r-ary constraint networks. 

Theorem 3.1. Any  k-valued r-ary constraint network that is strong 
(k(r - 1) + 1)-consistent is globally consistent. In particular, any k-valued bi- 
nary constraint network that is strong ( k + 1)-consistent is globally consistent. 

Proof. For simplicity we provide the proof for the special case, r = 2. This 
restricted case contains the main ideas and is much less cumbersome. The 
proof for the general case is given in Appendix A. 

We will prove the theorem by showing that strong (k + 1)-consistent binary 
networks are (k + i + 1)-consistent for any i/> 1. According to the definitions, 
we need to show that, if £ =  (xl, x 2 . . . . .  xk+i) is any locally consistent 
subtuple of the subset of variables {X1, X 2 . . . . .  Xk+i}, and if Xk+i+ 1 is any 
additional variable, then there is an assignment xk+,+ 1 to Xk+i+ 1 that is 
consistent with £. We call an assignment to a single variable a unary assignment 
and we view £ as a set of such unary assignments. With each value j, in the 
domain of Xk+i+ 1 we associate a subset A / t h a t  contains all unary assignments 
in £ that are consistent with the assignment Xk+~+~ = j. Since variable Xk_l_i+ 1 

may take on k possible values { 1 , 2 , . . .  k} this results in k such subsets, 
A ~ , . . . ,  A , .  We claim that there must be at least one set, say A 1, that 
contains the set £. If this were not the case, each subset A /wou ld  be missing 
some member,  say x~, which means that the tuple generated by taking a 

t ! missing unary assignment from each of the A i ' s  , i.e. £ ' =  (X'l, X2 , . . .  ,Xk), 
whose length is k or less (there might be repetitions), could not possibly be 
consistent with any of Xk+i+l'S values. This leads to a contradiction because as 
a subset of £, £ '  is locally consistent, and from the assumption of strong 
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(k + l)-consistency, this tuple should be extensible by any additional variable 
including Xk+i+ 1. Note that we need not assume that the {x~}'s are distinct 
unary assignments because strong (k + 1)-consistency renders the argument 
applicable to subtuples £' of length less than k. 

Assume now, without loss of generality, that A1 spans all the k + i unary 
assignments. This means that each assignment Xj = xj, j ~ {1 . . . . .  k + i}, is 
consistent with the assignment Xi~k+ ~ = 1, hence, we found a value (1 of 
Xk.~+~) that is consistent with ~f. [] 

3.2. Binary constraint networks 

Continuing our focus on binary constraints, we may be tempted to conclude 
from Theorem 3.1 that any k-valued binary network can be solved polynomial- 
ly be enforcing strong (k + 1)-consistency. However, enforcing (k + 1)-consis- 
tency may require the addition of non-binary constraints, resulting in a 
(k + 1)-consistent problem that is no longer binary. We can, however, con- 
clude a weaker result. 

Corollary 3.2. A k-valued binary network, in which all induced constraints 
(generated by enforcing strong-(k + 1)-consistency) are decomposable into bi- 
nary constraints, can be solved in O((nk) 2(k + l)) steps. 

Proof. One can enforce strong (k + 1)-consistency in O((nk) 2(k+1~) steps (see 
Appendix B). Then, each new recorded constraint is decomposed to its 
minimal network (by projecting the constraint on all subsets of two variables). 
Since we assumed that such a binary network represents each induced con- 
straint precisely, the intersection of all the binary constraints results in an 
equivalent binary network which is strong (k + 1)-consistent. Consequently, 
from Theorem 3.1, we can conclude that the resulting network is globally 
consistent. Since a globally consistent network can be solved in a backtrack- 
free manner, the cost of generating a solution is the cost of verifying that a 
partial instantiation of variables satisfies all the constraints. In binary networks 
this can be accomplished by O(n 2) constraint checks. [] 

An interesting special case arises in the context of the k-colorability prob- 
lem: given a set of k colors and a graph, assign a color to each node in the 
graph such that adjacent nodes will have different colors. This problem is 
clearly an instance of a k-valued binary constraint network. Moreover, since 
there are always enough colors (i.e., k) to consistently extend any locally 
consistent coloring of k - 1 nodes (or less) by a color to one additional node, 
the problem is inherently strong k-consistent. Theorem 3.1 implies that if only 
we could extend the consistency level from k to k + 1, the problem would 
become globally consistent and, hence, polynomially solvable. However, 



From local to global consistency 93 

Lemma 3.3 [16]. A k-colorability problem is (k + 1)-consistent iff each node 
has at most k - 1 neighbors, namely the graph degree is bounded by k. 

Proof. Clearly, if each node's degree is less than k, the problem is (k + 1)- 
consistent. Assume now that we have a (k + 1)-consistent problem and a node 
X having k neighbors. Assigning a unique color to each neighbor results in a 
locally consistent assignment which is not extensible to X, thus yielding a 
contradiction. [] 

The colorability example strengthens the result of Theorem 3.1 since it 
provides an instance of a k-valued binary network that is strong k-consistent 
while not globally consistent (unless it has a degree bounded by k). We can 
conclude, therefore, that: 

Theorem 3.4. The level of  strong local consistency required to ensure global 
consistency for k-valued binary networks is at least k + 1. [] 

3.3. Bi-valued binary networks 

Another interesting special case occurs when the constraints are binary and 
all variables are bi-valued, that is, k = 2. This is the only value of k for which 
the network remains binary after enforcing the required level of (k + 1)- 
consistency. According to Theorem 3.1, bi-valued networks require strong 
3-consistency (i.e., path-consistency) in order to be globally consistent. Since 
this level of consistency can be enforced by adding binary constraints only, we 
have the following corollary: 

Corollary 3.5. A strong 3-consistent bi-valued binary network is globally 
consistent and, in particular, minimal. 

Proof. Follows immediately from Theorem 3.1. [] 

We get that: 

Theorem 3.6. 
(1) The minimal network of  a bi-valued binary constraint network can be 

obtained in O(n 3) steps. 
(2) The consistency of  a bi-valued binary constraint network can be de- 

termined in O(n 3) steps. 

Proof. The minimal network is obtained by enforcing strong 3-consistency 
which takes O(n 3) steps [19]. Since the minimal network is globally consistent, 
a solution can be generated without encountering dead-ends, therefore, requir- 
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ing only O(n 2) additional steps. Note that finding a solution to a bi-valued 

binary network is equivalent to the 2-satisfiability problem [13] which is known 
to be linear. Thus part (2) of Theorem 3.6 does not provide the tightest bound 
for this task. However ,  we do not know of any better  algorithm for the task of 
generating the minimal network. [] 

Theorem 3.6 has a surprising implication regarding the expressive power of 
hidden variables in bi-valued binary constraint networks. Given a bi-valued 

relation p, we can generate the minimal network of p by taking the projection 
of p on each pair of variables. The set of all solutions of this minimal network 

always contains p and it is the best binary network approximation of p [24]. 
When the minimal network represents p exactly, we say that p is binary- 

network-decomposable. In general, a relation p is not binary-network-decom- 
posable, and the question is whether it can be decomposed using a larger 
network containing auxiliary bi-valued variables, or, equivalently, whether p 
can be a projection of some other relation that is binary-network-decompos- 
able. In [5] we showed that if a bi-valued relation is not network-decompos- 
able, adding any number of auxiliary bi-valued variables will not remedy the 
situation. We will provide here an alternative proof based on Theorem 3.1. 

Definition 3.7. Let p be any n-ary bi-valued relation over a set of variables 
X = {X~ . . . . .  X,,}. We say that relation p is h-network-decomposable if there 
exist h additional bi-valued variables Y = { Y ~ , . . .  , Yh} for which there is a 

binary network R(X ,  Y )  defined over X U Y such that p = I I  x rel(R(X, Y)).  
The additional variables needed for decomposition will be called hidden 
variables. 

Theorem 3.8. A bi-valued relation that is not network-decomposable is also not 

h-network-decomposable, for any h. 

Proof. Suppose the contrary, that p is a bi-valued relation that is not network- 
decomposable over variables X = { X ~ , . . . ,  X , } ,  and let Y = { Y~ . . . . .  Yh} be 
a set of hidden variables such that there is a relation p '  over X U Y satisfying 
p = H x p '  and p '  is network-decomposable.  Since p '  is network-decomposable,  
its minimal network, M, must be a binary-network decomposition of p' and 
since it is minimal, it is also strong 3-consistent. Let M x be the subnetwork 
restricted to the set X. According to Theorem 3.1, since M is a bi-valued strong 
3-consistent binary network, any tuple which is locally consistent is also 
globally consistent. In particular, locally consistent solutions of M x are globally 
consistent and, hence, rel(Mx) is identical to the projection of rel(M) on the 
set X, namely: 

rel(Mx) = H x rel(M) , (3) 
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or, substituting, p ' =  rel(M), 

rel(Mx) = H x p ' .  (4) 

The assumption p = H x p '  yields, 

P = re l (Mx) ,  (5) 

which means that M x is an exact network decomposition of p, thus contradict- 
ing our initial supposition. [] 

4. Classes of tractability 

Theorem 3.1 supplies us with the ability to pose useful conjectures for 
certain families of constraint networks. When the maximum number of values 
is k, and the maximum constraint arity is r, we may try to prove that strong 
( k ( r - 1 )  + 1)-consistency can be achieved using constraints with arity not 
exceeding r. If this is proved, Theorem 3.1 ensures that the resulting network is 
globally consistent, hence tractable. 

The "level of local consistency" which is sufficient for global consistency can 
serve as a parameter for classifying problem instances into different classes of 
tractability. If we have a k-valued binary network, for instance, we can apply 
strong (k + 1)-consistency to it, and if this is achievable using binary con- 
straints only, we know that the problem is tractable and we say that it belongs 
to class I. However, if the newly induced constraints are not "binary- 
decomposable", they may be of arity k, at worse, thus resulting in a k-valued 
k-ary constraint network. To make this new problem globally consistent, we 
are advised by Theorem 3.1 to enforce strong ( k ( k -  1)+ 1)-consistency. If 
this is achievable with k-ary constraints only, we know the problem is globally 
consistent and we say it is in class 2. Else, the resulting problem may have 
k ( k - 1 ) - a r y  constraints and, accordingly, we need to enforce now strong 
( k (k (k  - 1) - 1) + 1)-consistency and so on. Continuing in this fashion, we can 
define higher classes of tractability, depending on the number of times we have 
to increase the consistency level until achieving global consistency. 

In summary, we can divide k-valued binary constraint problems having n 
variables into approximately IOgk n + 1 complexity classes. Class 1 contains 
those problems that can be made (k + 1)-consistent with only binary con- 
straints, class 2 contains problems that can be made (k(k  - 1) + 1)-consistent 
using constraints of arity k or less, and, in general: 

Definition 4.1. Let K i be defined by 

K o = r ,  

V i > O ,  K i = k i ( r - 1 ) - k  i-L - k  i -2  . . . . .  k .  
(6) 
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A k-valued r-ary constraint network is in class i if it "can be made" strong 
(Kg + 1)-consistent via constraints of arity Ki_ ~ or less. We say that a problem 
"can be made"  strong consistent via constraints of size Ki - 1 if, when applying 
BFC(] )  (see Appendix B) for increasing values of / ,  each new level-j constraint 
( j  = K i_ ~ + 1 . . . . .  K~ + 1) can be decomposed into constraints of size Ki ~. 

Theorem 4.2. A n y  constraint network in class i can be solved in O((2nk)  z¢l~i+ i)) 
steps. 

Proof. If a problem is in class i, we can make it globally consistent by enforcing 
strong (K~ + 1)-consistency which is bounded by O((2nk) 2~K'+~)) steps (see 
Appendix B). Since the problem is in class i, we know that it can be made 
strong (K~ + 1)-consistent with constraints of arity K~_ 1 or less. From Theorem 
3.1 it follows that, since the resulting problem (after enforcing (Ki+  1)- 
consistency) has k values and at most K~_l-ary constraints, it needs be only 
(k(Ki_ 1 - 1 ) +  1)-consistent to ensure global consistency. By substituting the 
expression for Ki_ l (equation (6)), we get: 

k(K,  i - 1 )  + l = k ( k ' - l ( r - 1 ) -  U - 2 -  k `-3 . . . . .  k - 1 )  + l 

= k i ( r - 1 ) - k  i 1 _ U - 2  . . . . .  k + l  

= K~ + 1, (7) 

which has already been enforced on the network. We can conclude, therefore, 
that the problem is globally consistent. As a result, for bounded k and r, 
problems in class i are tractable. [] 

We suspect that determining the lowest class to which a given problem 
belongs is NP-hard. However, the membership in a specific class can be 
decided polynomially. 

Theorem 4.3. Deciding whether a problem is in class i takes O((2nk) 2~Ki+l)) 
steps. 

Proof. First, we run the problem through a strong (K i + 1)-consistency al- 
gorithm ~ which takes O((2nk)2~/~i+l)). The resulting problem may have new 
constraints of arity between K i  I + 1 and K~. For each such constraint we need 
to determine whether it is expressible using constraint of arity not exceeding 
Ki t. Let  C be one such constraint. For each such constraint we generate a 

~Note that Definition 4.1 is procedure-based in that it requires decomposability of the 
constraints recorded by the consistency enforcing algorithm, BFC(i). A more "declarative" 
definition would have rendered the membership problem intractable. 
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network, R~ ) of Ki_l-ary constraints by projecting C on each subset of Ki_ ~ 
variables. This operation is bounded by the cardinality of C, O(kri). We then 
have to solve the resulting network R~ ) in order to check if it has the same 
solution set as the original relation C. This corresponds to solving a constraint 
network problem having at most Ki variables and k values, which takes O(k ~i) 
steps. The number of constraints, like C, that we may need to process is O(n ri) 
hence, the overall complexity is O((2nk)2~K~+~)). [] 

Clearly, class 1 is the most useful class; it is both most tractable and easiest 
to recognize. We will now define a subclass of class 1 which is particularly 
useful and which is frequently encountered. As already stated, a problem is in 
class 1 if it can be made strong (k(r - 1) + 1)-consistent with r-ary constraints. 
If this level of consistency is achieved by enforcing only (r + 1)-consistency, we 
know that the problem is globally consistent, since (r + 1)-consistency records 
at most r-ary constraints. Accordingly, we define: 

Definition 4.4. A k-valued r-ary network that can be made strong 
( k ( r - 1 ) +  1)-consistent by enforcing strong ( r+  1)-consistency is called 
regular. 

Lemma 4.5. The complexity of  regular networks is O((2nk)2~r+l)). 

Proof. Follows immediately from Theorem 3.1. [] 

Theorem 4.6. Membership in the regular class can be determined in 
O((2nk)k(r-1)+2).  

Proof. We first perform strong ( r+  1)-consistency which is bounded by 
(2nk) 2tr+~). Then we have to check if the resulting network is (r + 2)-consis- 
tent, (r + 3)-consistent, and so on, until we reach (k(r - 1) + 1)-consistency. If 
all these levels of local consistency are verified, we know, based on Theorem 
3.1, that the problem is globally consistent. The verification of all levels of local 
consistency between r + 2 and k(r - 1) + 1 is bounded by 

k ( r - l ) + l  

ff'~ (2nk) i= O((2nk)k~-l)+Z). [] (81 
i = r + 2  

Thus, regular networks are more tractable (once recognized) and also are 
easier to recognize than general class-1 problems. Examples are given in 
Section 6. 

In the next section we show that complexity can be further reduced by 
restricting processing to only directional consistency. 
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5. Directional consistency 

The notion of directional consistency was introduced in [7] as a speed-up 
device which weakens local consistency while still ensuring global consistency 
along a given ordering. It allows all the constraints to be processed just once, 
resulting in a brute-force complexity bound of O(n ~* ~k~T) (see Appendix B). 
This weaker consistency condition is easier to enforce than full /-consistency 
while ensuring backtrack-free search using the selected ordering. The direc- 
tional bound is a square-root of the undirectionat one. 

Definition 5.1. A network of constraints is said to be directional /-consistent, 
with respect to an ordering d = X~ . . . . .  X,,  if every subnetwork of size i - 1 
which is locally consistent can be consistently extended by any variable that 
succeeds all the subnetwork's variables in the ordering d. It is directional strong 
i-consistent if it is directional j-consistent for j ~< i. A network of constraints is 
directional globally consistent, with respect to an ordering d, if it is directional 
/-consistent for every i. 

Following is the directional version of Theorem 3.1. 

Theorem 5.2. Any k-valued r-ary constraint network that is directional strong 
( k( r - 1) + 1)-consistent with respect to d is also directional globally consistent. 

Proof. Same as the proof of Theorem 3.1. [] 

For completeness sake we present the algorithm adaptive-consistency that 
enforces directional consistency to any desirable level. The algorithm can be 
defined in terms of a procedure adaptive(level, d) [6] that enforces directional 
strong (level + 1)-consistency along an ordering d, where level is a parameter 
indicating the highest cardinality of constraints that are recorded, and d is an 
ordering X~ . . . .  , X , ,  on the set of variables. 

adaptive(level, X I . . . . .  X,, ) 
Begin 
1. for i = n to 1 by - 1  do 
2. compute PARENTS(X~) 

. 

4. 

End 

/*PARENTS(Xi) is the set of vari- 
ables that are currently adjacent to and precede X/ in the 
constraint network. 
perform new-record(level, Xi, PARENTS(X/)) 
for level i> 2, connect all elements in PARENTS(X~) (if they are 
not yet connected) 
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Procedure new.record(level, var, set) records only constraints of size less than 
or equal to level from the subset set and is defined as follows: 

new-record(level, var , set) 
Begin 
1. if level ~ Isetl then 
2. for every subset S in set such that IS] = level do 
3. record.constraint( var , S) 
4. end 
5. else, record-constraint(var, set) 
End 

The procedure record-constraint(var, set) generates and records (in the form of 
a new constraint on set) those locally consistent tuples of variables in set that 
are also consistent with at least one value of var. The new constraint is added 
to the original problem. Clearly, the algorithm enforces directional strong 
(level+ 1)-consistency, and its complexity is bounded by both 
O((nk) tevet+ l(level + 1)r) and O((2nk) tewt+ 1 ) .  The extension to adaptive-consis- 
tency is made by recording constraints on all the parent set (modifying line 3 of 
adaptive), and its complexity is bounded by both O(kW*+tW *r) and 
O((2k) w*+L) where W* is the maximum parent size resulting from applying the 
algorithm. See Appendix B and [8]. 

Definition 5.3. Given an ordering d, an r-ary k-valued constraint network is in 
directional class i if directional strong (K i + 1)-consistency "can be enforced" 
using constraints of arity Ki_l or less. 

As we saw, the cost of enforcing this level of directional consistency by 
adaptive (Kg + 1, d) is O((2nk) ri+t) compared to O((2nk) 2~r~+1)) in the undi- 
rectional version, namely the bound for the directional case is a square-root of 
the undirectional bound. We can also conclude that: 

Theorem 5.4. Given an ordering o f  the variables, d, the membership o f  a 
problem in directional class i can be determined in O((2nk) Ki+l) steps. 

6. Examples 

Example 6.1. Tasks of reasoning with time and space provide many examples 
of constraint networks having special local consistency properties. Allen's 
algebra [1], for example, defines thirteen possible relations between time 
intervals and provides a transitivity table for their propagation. This algebra 
can be described as a traditional constraint network where the variables are the 
relationships between two intervals, each having 13 values, and the transitivity 
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table defines ternary constraints on triplets of variables. Having k - -13  and 
r = 3, we conclude (Theorem 3.1) that i f  we  can enforce strong 27-consistency 
without introducing higher than ternary constraints, we can generate a globally 
consistent network using a polynomial algorithm of degree 27. However, since 
Allen's algebra is known to be NP-complete, this is not a realistic assumption. 

Example 6.2. A second example comes from temporal constraints limited to 
relationships between time points. Vilain and Kautz [27] suggested that if we 
consider three temporal relations between any two time points {<, =, >} and 
define the transitive relationship induced by such relations, we get a simpler 
network that can be made globally consistent using a 3-consistent algorithm, 
This claim was later corrected by van Beek and Cohen [26], showing that 
4-consistency is necessary for global consistency. 

This PA t algebra (as termed by van Beek and Cohen [26]) can be described 
as a traditional constraint network, where the variables are the relationships 
between two points and the transitivity table defines ternary constraints. This 
yields a constraint network with k = 3, r = 3. Theorem 3.1 suggests that if such 
a network is strong 7-consistent, it is globally consistent. To show that the 
problem belongs to class 1, one has to show that it is feasible to enforce 
7-consistency with ternary constraints. It can be shown that since 6-consistency 
for our formulation is equivalent to 4-consistency in the PA ~ formulation, and 
since the latter can be achieved using ternary constraints, so is 7-consistency. 
Thus implying global consistency, as also shown in [26]. It is still unclear 
whether this formulation of the point algebra (when the arcs are the variables) 
is a regular network. 

Example 6.3. Consider a temporal constraint network, denoted I N T * ,  where 
the variables' domains are finite sets of integers and the constraints between 
pairs of variables are taken from the set {<, ~<, =,  > ,  I>}, with no inequalities. 
This is a binary constraint network. Thus, if (k + 1)-consistency can be 
enforced with binary constraints we have a tractable problem (Theorem 3.1). 
We will show, however, that this is a directional regular problem, namely, 
given a certain ordering any level of directional local consistency is enforceable 
by directional 3-consistency. In fact, for these networks even directional 
2-consistency suffices. 

We associate a given problem with a directed acyclic graph as follows: the 
nodes denote variables and for each constraint of the form X < Y or X ~< Y, we 
direct an arc from X to Y and label it with the constraint's inequality. Cycles in 
this graph can be easily detected (using a connected component algorithm). If a 
cycle contains a strict inequality, we can conclude that there is no solution. 
Otherwise, we can conclude that all variables on the cycle have the same value 
and they can be collapsed to one, thus resulting in an acyclic directed graph. 
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Theorem 6.4. Networks in class INT*, having an acyclic graph representation, 
can be made directional globally consistent using directional 2-consistency. 

Proof. Given an acyclic graph representation of the problem, we can generate 
an ordering, d, of the nodes which is consistent with the partial order dictated 
by the graph. We will show that the problem is directional regular along the 
ordering d by showing that enforcing directional 2-consistency is sufficient to 
render it directional (k + 1)-consistent and, therefore, directional globally 
consistent (Theorem 5.2). Suppose we want to enforce directional (k + 1)- 
consistency using algorithm adaptive-consistency (with level = k). At each step 
we have a parent node P, a set of child nodes C ~ , . . . ,  C, and a set of t 
constraints. Each constraint is between a C i and P, stating either Ci < P or 
C~ ~< P. By enforcing directional 2-consistency on each Cg separately, we 
achieve any higher level of consistency, thus (k + 1)-consistency. The reason is 
that any value remaining in C~'s domain after enforcing directional 2-consisten- 
cy with P, has the property that it is less than or equal to some value Pi in P. 
Thus, any value assignment to all C~ . . . . .  C, from these restricted domains is 
extensible by the maxi{p~ } in P. [] 

Van Beek [25] and independently Meiri and Pearl [22] have treated the full 
point-algebra problem using similar techniques and showed the same complexi- 
ty bounds. However, once integer domains are introduced the full algebra 
(containing the # relation) becomes intractable. 

Example 6.5. A different family of constraint networks arises in the domain of 
scene labeling. Huffman [15] and Clowes [2] developed a basic labeling scheme 
for blocks world picture graphs. Given a basic labeling set: + (convex), - 
(concave), --~ (occluding, object on arrowhead side with two possible senses), 
and a standard set of simplifying assumptions on scene content, the physically 
realizable junction labelings are just those shown in Fig. 2. Freuder [11] 
provided algorithms for labeling this restricted set while Waltz [28] explored a 
richer label set. 

A network composed of the junctions in Fig. 2 can be viewed in two ways: 
Each line can be viewed as a variable having four values while the constraints 
are binary or ternary depending on whether two or three lines intersect. From 
this view, Theorem 3.1 states that if a given network is also strong 9-consistent, 
it is already globally consistent. The second view treats each junction as a 
variable, each variable has 3, 4 or 6 values (the number of possible labeling 
combinations of a junction) and the constrains are binary. Theorem 3.1 states 
that if the problem is 7-consistent, it is globally consistent. The second view, 
therefore, provides a weaker consistency/demand for guaranteeing global 
consistency. Nevertheless, since this problem is known to be NP-complete [17], 
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we know that there are problem instances where such a consistency level 
cannot  be enforced without increasing the constraints arity. 

We conclude with two additional examples of regular classes. One, men- 
tioned earlier, is the class of bi-valued binary constraint networks. In this case 
the set of class-1 problems and regular problems coincide since k(r - 1) ÷ 1 -- 
r + 1 when k = 2 and r = 2. A different class are those termed "distributive" by 
Montanari  [24]. He showed that when the constraints satisfy the distributivity 
property,  3-consistency will make the network globally consistent. 

7. Conclusions 

A globally consistent network permits the construction of a consistent 
solution in linear time. We showed that the amount of local consistency 
required for achieving global consistency is dependent  on the product of two 
parameters:  the number  of values in each variable and the constraint arity. The 
complexity of achieving the required local consistency is exponential in this 
product.  

Based on this parameter  we introduced a tractability classification of con- 
straint networks, where each k-valued r-ary network falls into one of log k n 
classes. Problems in class i can be solved in O((2nk) 2(k~(r i))) steps, and 
deciding whether a problem belongs to class i takes also O((2nk) z(k~(r-1))) 
steps. A special class of tractable problems, called regular was identified and 
special examples were presented. 
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As a consequence of Theorem 3.1, we showed that if a bi-valued relation is 
not  representable by a binary constraint network, it cannot be helped by any 
number  of hidden variables. This could be viewed as a generalization to 
Peirce's relation thesis. Peirce claimed that any relation could be decomposable 
into ternary relationships if the domain of the hidden variable is not bounded 
[14]. Here  we showed that when one limits the domain into two values only, no 
expressiveness is gained. In another paper [5] we show that if the hidden 
variables have three or more values in their domains, then any relation is 

h-network-decomposable for some h. 

Appendix A. Proof of Theorem 3.1 

Theorem 3.1. Any  k-valued r-ary constraint network that & strong 
(k(r  - 1) + 1)-consistent is globally consistent. 

Proof. We will show that strong ( k ( r -  1 ) +  1)-consistency implies that the 
network is also ( k ( r -  1 ) +  i + 1)-consistent for any i > 0 .  We need to show 
that,  if J? = (xl, x 2 . . . . .  xk~r_l)+i ) is a locally consistent subtuple over variables 
( X  1, X 2 . . . . .  X~r_l)+i }, and if Xk~,_l).i+l is any additional variable, then 
there is an assignment x~  r 1)+~+1 to Xk~r_l)+i+l that is consistent with ~?. As for 
the binary network case, we will call a unary assignment any assignment to a 
single variable and we will view partial assignments both as sets (of unary 
assignments) or as sequences. 

Since the network has constraints of arity r or less it means that a unary 
assignment 

Xk(r_l)+i+l  ~ Xk(r_l)+i+l 

has to be independently consistent with each subset of (r - 1)-ary assignments 
of the set ~? = {xl ,  x 2 , . . . ,  Xk(r_l)+i ). The compatibility of such a subset with a 
unary assignment to Xk~ r_1)+/÷1 is verified via the relevant constraints, having 
arity r or less. These are defined on the variable X~,_1)+~+1 and on a subset of 
the r - 1  variables from { X  1, X 2 , . . .  ,Xk~,_l)+l }. In other words, all the 
constraints having arity r or less that involve variable Xk~,_l)÷~+l have to be 
verified in checking the consistency of any extension. Each such constraint can 
be uniquely identified by its c-set. 

Variable Xk~,_l)+~ ÷ 1 may take on k possible values {1, 2 , . . . ,  k}. According- 
ly, we define k sets A~ . . . .  , A k as follows. A s is the set of all s i z e - ( r -  1) 
subsets of unary assignments from ~ that are compatible with the assignment 
Xk~r_l)+i+l = j. Note that each subset must be locally consistent as it is a subset 
of ~, and since the network is strong (k(r  - 1) + 1)-consistent, and, in particu- 
lar, strong r-consistent, any such partial assignment must have at least one 
matching value in Xk~_ 1)+i+ 1. The participation of an (r - 1)-ary assignment, 
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t, in a subset Aj means that all the constraints involving its variables and 
variable X~tr-1)+i+l have to be satisfied. Let us denote by Sj(t) the subset of 
constraints involved in the consistency verification of a tuple t with the value j 
of Xkcr_l)+i+~, and by S ( j )  all the constraints that are relevant to all tuples in 
Aj. Let S denote all the constraints which are relevant to checking the 
consistency of Y with a value of Xk~r_~+~+~. Clearly, 

S ( j ) =  U S , ( j )  and S = U S ( j ) .  
tEAj j 

We claim that there must be at least one set, say A1, that requires all the 

constraints in S to be verified, namely that S = S(1). Otherwise, each set, A j, 
must have a constraint C E S such that C ~ S ( j ) .  Let 

v a r ( C ) = { X , ,  . . . .  Xlj, Xk(r_l)+,+l},  l < ~ r - 1  

be the constraint's c-set of that unverified constraint. This means that the 
partial assignment Ej = ( X  u = x u . . . . .  Xtj---xtj  ) is not in Aj. Therefore, the 
union of all these excluded (r - 1)-ary assignments, E' = E~ U E 2, . . . ,  U E~, is 
not consistent with any of X~¢r_ ~)+~+ ~'s values. However, the length of E' is less 
or equal to k(r  - 1), and since we assumed strong (k(r  - 1) + 1)-consistency, it 
must be consistent with at least one value, hence yielding a contradiction. 
Assume now, without loss of generality that S = S(1). As a result, all partial 
assignments of ,f having size r - 1 or less are consistent with the value "1" of 
X k ( r _ l ) + i + l  and we, consequently, found a value 1 of Xk~r_~+i.~ which is 
consistent with £. [] 

Appendix B. The complexity of brute-force consistency algorithm 

Following is a worse-case analysis of a brute-force algorithm for enforcing 
/-consistency. Most of the analysis in the literature is for the special cases of 
i = 2 or i = 3 and for binary constraint networks [18, 23]. A detailed analysis of 
general k-consistency is given in [3]. Nevertheless, Cooper's analysis is quite 
involved and for the sake of this paper brute-force analysis will suffice. Since 
we do not restrict our treatment to binary networks we will express the 
complexity as a function of the constraints' arity as well, while assuming that 
the consistency level, i, is greater than the constraint's arity, r. Following is a 
description of the /-consistency algorithm, which is a generalization of Mack- 
worth's PC-1 algorithms [18]. 

Brute-force-consistency BFC(i). 
1. Begin 
2. repeat until there is no change 
3. for each subnetwork, Ri_i, 

X1 . . . . .  X i -  l do 
of size i - 1  on variables 
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4. for each X ~ R - Ri_ 1 do 
5. reeord-constraint(Ri- 1, X). 
6. end-for 
7. end-for 
8. end-repeat 
9. end 

Proposition B.1. Algorithm BFC is bounded by O(n2ikZii r) and by l~((nk)ii ') 
steps, and, when r is unbounded it is bounded by O((2nk) 2i) and by l~((2nk) i) 
steps respectively. 

Proof. The algorithm has to process all subnetworks of size i (loop 3-7). The 
number of such networks is: 

(n)_o(ni) .  (B.1) 

On each subnetwork the algorithm records constraints of arity i - 1 that ensure 
its consistency relative to any one additional variable (inner loop, lines 4-6). 
Checking the consistency of one tuple of length i - 1 against an ith variable 
may require checking constraints which are defined on every subset of the 
variables, namely, if the constraints' arity is bounded by r, the number of 
constraints of size r is bounded by 

and otherwise it can be bounded by 2 i. 
Since there are at most k i tuples whose consistency is verified, processing 

each size-i network is bounded by both 

O(kii ") and O((2k)i) .  (B.2) 

From (B.1) and (B.2) we get that one (3-7) loop is bounded by O((nk)~i ") and 
O((2nk)~). The number of times these loops are executed (i.e., the number of 
cycles through loop 2-8) until convergence is bounded by the number of tuples 
of length i, namely by O((nk) i) (assuming that only one tuple is deleted for 
each loop). We get, therefore, overall bounds of O((nk)2ii ") and O(2nk) 2~, for 
the cases that r is bounded and unbounded, respectively. 

A lower bound for achieving/-consistency is derived by observing that just 
to verify that the network is/-consistent, requires checking all the constraints, 
a procedure that is equivalent to one (3-7) loop in the BFC algorithm, thus 
resulting in both ~((nk)ii ") and ~((2nk) i. [] 

Directional consistency algorithms [7] allow all subnetworks to be processed 
exactly once, hence we can show that: 
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Proposition B.2. Directional i-consistency is both O(n iÈ lk'ff ) and O(n i~k '2  g) 
for bounded and unbounded r, respectively. 

Proof. The algorithm processes the constraints in a decreasing order of d, each 
time making the subnetwork restricted to variables 1, 2 . . . . .  j -  1 directional 
i-consistent with respect to variable j. Since there are at most O(n i) sub- 
networks, and since each should be processed by O(k'i r) steps, we get that 
making the network /-directional consistent with respect to one variable is 
O((nk)ii r) and (if r is not bounded) O((2nk)i). [] 

Proposition B.3. The complexity of the algorithm adaptive-consistency is 
O(kW*+li r) and O((2k)W*+l), for bounded and unbounded r, respectively. 

Proof. We have to process at most n constraints, each of arity bounded by W*, 
which yields the above bounds. For more details see [8]. [] 
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