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ABSTRACT

This paper summarizes several investigations into the prospects of identifying meaningful struc-
tures in empirical data. Starting with an early work on identifying probabilistic trees, we extend
the method to polytrees (directed trees with arbitrary edge orientation) and show that, under cer-
tain conditions, the skeleton of the polytree as well as the orientation of some of the arrows, are
identifiable. We next address the problem of identifying probabilistic trees in which some of the
nodes are unobservable. It is shown that such trees can be effectively identified in cases where
all variables are either bi-valued or normal, and where all correlation coefficients are known pre-
cisely. Finally, it is shown that an effective procedure exists for determining whether a given
categorical relation is decomposable into a tree of binary relations and, if the answer is positive,
identifying the topology of such a tree. Guided by these results, we then propose a general
framework whereby the notion of identifiability is given a precise formal definition, similar to
that of learnability.

1. INTRODUCTION

Discovering meaningful structures in empirical data has long been regarded as the hallmark of
scientific activity. Formally, the task of finding "meaningful structures” can be stated as that of
finding computationally attractive descriptions of the data whenever such descriptions exist. In-
variably, the existence of useful descriptions rests on whether the dependencies among the data
items are decomposable into a small number of more basic interactions. Given that the data was
generated from a model where the dependencies are both sparse and local, one seeks a useful
representation for these dependencies. A classical example would be to find a Markov mode]
with the least number of states that accounts for observed dependencies among contingent sym-
bols in a sequence. In more elaborate settings the dependencies can form a graph (as in the
analysis of Markov fields) or a hypergraph (as in relational databases), and the task is to find the
topology of these structures. Structure learning includes such tasks as finding effective represen-
tations for probability distributions, finding economical decompositions of database schema, or
simplifying expressions of learned Boolean concepts to render subsequent processing tractable.

* This work was supported in part by National Science Foundation Grants #IRI-86-10155 and #IRI-
8815522, and Naval Research Laboratory Grant #N00014-89-J-2007.



Despite the generality and importance of the task at hand, very few formal results have
been established. In the economics literature the topic has been discussed under the heading of
"latent structure analysis" [Lazarsfeld 1966; Glymour et. al. 1987], while in the pattern-
recognition literature it became known as "unsupervised learning" [Duda and Hart 1973]. How-
ever, with the exception of the work of Chow and Liu [1968] the tasks were confined to learning
very simple structures, such as those governing probability mixtures and hidden Markov models
[Laird 1988].

This paper surveys several extensions of the Chow and Liu result (Section 2). These in-
clude identifying polytrees (Section 3), identifying trees with hidden variables (Section 4), and
‘identifying tree decompositions of categorical relations (Section 5). A general formal frame-
work for structure identification tasks and a comparison to Valiant’s [1984] learning mode] are
provided in Section 6.

2. IDENTIFYING TREES

Definition: A distribution P* (x) is said to be tree-dependent relative to the tree ¢; if it can be
written as a product of pair-wise conditional probability distributions,

Pt(X)ziIlep(xi Ixj(,)) , (1)

where X j(iy 18 the variable designated as the parent of X; in some orientation of the tree.

The root X can be chosen arbitrarily, and having no parents, it is characterized by the
prior probability P (x; lx9) =P (x1). For example, the distribution corresponding to the tree
oriented as in Figure 1 has the product form

P'x)=P (P (x51x4) Px3lxy) P(xy Ix9) P (x51x5) P(xglxs).
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Thus, the number of parameters needed for specifying a tree-dependent distribution is
(r =1)[r(n — 1) + 1], where 7 is the number of variables and r their arity. Tree-dependent dis-
tributions are unique in that they facilitate linear time query processing, as well as local unsuper-
vised computations [Pearl 1988].

Chow and Liu asked the following question: Given a distribution P, what is the tree-
dependent distribution P* that best approximates P, in the sense of minimizing the Kullback-
Liebler measure

D(P,P')=ZP(X)10g-§,—(;—))— ? )

This measure is nonnegative and attains the value 0 if and only if P’ coincides with P.

The minimization task can be performed in two surprisingly simple steps. First, we fix
the structure of some tree ¢ and ask what conditional probabilities P’ (x; lx;) would render P*
the best approximation of P. We call this best approximation the projection of P on t, Pp.
Second, we vary the structure of ¢ over all possible spanning trees, and among all the projections
of P on these spanning trees we seek the one that is closest to P.

Theorem 1: The projection of P ont is characterized by the equality
P};(xi lx](,)) =P(x,- Ix](l)) . (3)

In other words, by forcing the conditional probabilities along the branches of the tree 7 to coin-
cide with those computed from P, we get the best ¢-dependent approximation to P . (see Pearl
[1988], Appendix 8-A, for proof).

Theorem 2 [Chow and Liu 1968]: The distance measure of Eq. (2) is minimized by projecting P
on any maximum weight spanning tree (MWST), where the weight on the branch &X;, X;) is
defined by the mutual information measure

P(xi,xj)

I(Xi’Xj)z 2 P(xz»xj)longO.
: J

X,’,Xj

“

Corollary 1: If the underlying distribution P is itself tree-dependent, then its projection on
every MWST must coincide with P .

The merits of the MWST algorithm are several. First, it uses only second-order statistics,
which are easily and reliably measured from sample data and are economical to store. The tree
is developed in O (n?) steps using only weight comparisons, thereby avoiding expensive tests for
conditional independence. Finally, it can be shown that if the branch weights are computed from
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sampled data, then Pp will be a maximum likelihood estimate of P. The consequence of this is
that if the underlying distribution is indeed one of tree-dependence, the approximating probabili-
ty constructed by the MWST algorithm converges with probability 1 to the true underlying dis-
tribution [Chow and Wagner 1973].

These advantages are unique to tree structures and do not apply to general multiply con-
nected graphs. Even if we could afford to enumerate all graphs in a given class, the task of
finding the projection of P on a product form that reflects any of these graphs might involve
enormous computations, unless that graph could be embedded in a simple hyper-tree.

3. IDENTIFYING POLYTREES

A polytree is a directed tree with unrestricted edge orientation, thus allowing nodes to have mul-
tiple parents (see Figure 2). A polytree, though it allows us to describe higher-order interactions,
enjoys many of the computational advantages of simple trees. In particular, it supports local
computations, and its structure can sometimes be identified by second-order distributions using
an MWST algorithm similar to that of Chow and Liu.

Assume we are given a distribution P (x) of n discrete-value variables, and we are told
that P (x) can be represented by some unknown polytree Fy, i.e., P (x) has the form

N
P (X) = irzll P (x,- |le(,~), sz(,-),..., xjm (1)) s (5)

where {X; ;, X jaiy X, iy} 1s the (possibly empty) set of direct parents of variable X; in F,

and the parents of each variable are mutually independent, i.e.,
m .
P OGiiy Xjstiy X, @) = IL P (0 foralli . ®)

We seek to recover the structure of F 0- 1.e., the set of branches and hopefully their directionality,
by examining the properties of P (x). That the structure of F o may not always be recoverable
uniquely is apparent from examining the dependencies induced by the three possible types of ad-
jacent triplets allowed in polytrees:

1. X ->Y —>2Z
2. XY o727

3. X -5Y «2Z

Since type 1 and type 2 represent the same dependencies among X, ¥ and Z, they are indistin-
guishable. Type 3, however, can be uniquely identified, since X and Z are marginally indepen-



dent and all other pairs are dependent. Thus, while the skelerons (the graphs stripped of arrows)
of these three triplets are identical, the directionality of the arrows is partially identifiable.

Definition: A distribution P (x) is said to be nondegenerate if there exists a connected directed
acyclic graph (DAG) that displays all the dependencies and independencies embedded in P.

Theorem 3: If a nondegenerate P (x) can be represented by a polytree F (as in (5) and (6)),
then the MWST algorithm of Chow and Liu unambiguously recovers the skeleton of F 0-

Definition: A causal basin of a node A in a DAG is a set of nodes consisting of A, the direct
parents of A, all the descendants of A and all of the direct parents of those descendants.

Theorem 4 [Rebane and Pearl 1987]: If a nondegenerate P (x) is representable by a polytree F ,,
then the directionality of a branch can be recovered if and only if it is contained within the
causal basin of some multi-parent node in F 0

Figure 2.

Figure 2 depicts a polytree with two causal basins rooted as nodes X and C. The arrows
in each causal basin can be determined uniquely, while the directions of branches outside the
basins are undetermined.

Under conditions of degeneracy, P (x) can be represented by several polytrees, each hav-
ing a different skeleton or a different branch orientation, or both. In general, while we are not
guaranteed that every skeleton produced by the MWST algorithm will permit a faithful represen-
tation of P, we are guaranteed that at least one of these skeletons will do so. This is because if
P can be represented by a set of £ distinct skeletons T = (T'y,...,Ty), then each of these skeletons



(and perhaps others) must have maximum weight.

4. IDENTIFYING TREES WITH HIDDEN VARIABLES

The identification methods described in sections 2 and 3 assume that the interactions among the
observed variables can be decomposed into the desired structures. It is often the case that
decomposition is hindered when some variables remain unobserved or hidden, in which case the
task is to postulate the existence of such variables and identify their connections to the observ-
ables. The task of learning mixture distributions [Duda and Hart 1973] has this flavor; we postu-
late the existence of a hidden variable W such that observed distribution P (x) can be written as
sums of products

A
P(xl,xz, ...,xn) = Z inl P(xi IWJ) P(WJ) ’
j=1t7
and attempt to find reasonable estimates of A, P (w;) and P (x; lw;). Graphically, such decompo-
sition corresponds to a star network, since the visible variables (the X;’s) are connected star-like
to one central hidden variable W .

Lazarsfeld [1966] considered star-decomposable distributions where the visible vari-
ables are bi-valued and the hidden variable W is permitted to range over A values, A>2. The
identification of P (x; Iw; ) requires the solution of An+A—1 nonlinear equations to find the values
of the An+A~1 independent parameters. Letting A =2" — 1 yields a trivial, unconstrained solu-
tion, where each value of W corresponds to one entry of the joint distribution function.

To maintain uniformity in the tree, we can postulate several hidden binary variables but
insist that they form a treelike structure, i.e., each triplet of leaves forms a star, but the central
variables may differ from triplet to triplet.

Definition: We shall say that a distribution P (x4, x,..., X, ) is tree-decomposable if it is the mar-
ginal probability of a tree-dependent distribution

Py, Xgs Xy Wi Wy W) m<n=2,

such that W ,W,,...,W,, correspond to the internal nodes of a tree T and X 10 X 0n X,
correspond to its leaves. We say that Py is a tree-extension of P, and P is the leaf-marginal of
Pr. Pr is said to be a minimal tree-extension of P if no variable or link can be deleted from the
tree T without Py ceasing to be a tree-extension of P. In the example of Figure 1,
P (x1, X3, X4, X¢) is tree-decomposable, with P (x1, x, X3, X4, X5, Xg) a8 its tree-extension.



Given a tree-decomposable distribution P (x ,..., X,), we ask if it is possible to find any
minimal extension Pr (X ..., X, , W ,..., w,,) of P.

Theorem 5: If all variables are either bi-valued or normal, then (1) the minimal tree-extension
Pr is unique up to renaming of the variables or their values, (2) Py can be recovered from P us-
ing nlogn computations, and (3) the structure of T is uniquely determined by the second-order
probabilities of P .

The method of constructing Pr [Pearl and Tarsi 1986] is based on the observation that

every four leaves in a tree are interconnected in one of four distinct topologies, depending on
which pairs can be connected via non-intersecting paths (see Figure 3). Moreover, each of the
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Figure 3.

four topologies is characterized by a unique equality among the leaves’ correlation coefficients,
which can be determined empirically. For example, the topology

><

l k.

i

is characterized by the equation PijPr = PikPji-

This method of constructing a tree-extension has two major shortcomings: it requires
precise knowledge of the correlation coefficients, and it works only when the underlying model
is tree-decomposable. In practice, we often have only sample estimates of the correlation
coefficients; therefore, it is important to find a tree-structured approximation for a distribution
that is not tree-decomposable. Unfortunately, no method is known which provides a guarantee
on the quality of such an approximation.



5. IDENTIFYING TREE STRUCTURES IN CATEGORICAL RELATIONS

Let p denote an n-ary relation over the set of attributes U = {Xy,...,X,}, ie., a subset of the
Cartesean product Dom (X DX, ..., xDom(X,), where Dom (X;) is the set of values of attri-
bute X;. Let pg denote the projection of p on a subset S of attributes, namely, pg is obtained
from p by striking out columns corresponding to attributes U/~S and removing duplicate tuples
in what remains. Given an attribute A and an element of its domain a , the restriction of p to
A=a, denoted by p"4=2) is the n-ary relation containing all n-tuples in p having value a for A .
Similarly, the restriction of p to a subtuple 7 = (Xi1=%;1, ..., X; =x;), denoted by p" @ is all
the n-tuples of p that match ¢ for the corresponding attributes.

Definition: Let §,,5,,55 be subsets of U. Sy and S, are conditionally independent given S3,
denoted by <S; | S3 | S,>, if for every combination of values for attributes in S 3, denoted by
S3 =153, we have

[r(SB—SB)_. ([ 1 3)’(53—53) X ([ , 3)’(53“‘53)’
where

L =pgss.

Conditional independence parallels the notion of Embedded-Multi-Valued-Dependencies
(EMVDs) [Maier 1983]. That is, if <§; I 'S3 1 85>, holds in a relation p, and S 1=U = 855,,
then p can be decomposed losslessly into the database scheme S 153 and S,S5. A relation is said
to be tree-decomposable if it can be decomposed losslessly into a tree of binary relations (also
known as constraint-tree). For example, the constraint-tree shown in Figure 4 (together with the
binary relations on its arcs) represents a lossless decomposition of the relation given in Figure 5.
This can be verified by enumerating the 5-tuples that satisfy all the binary relations in Figure 4,
and comparing to those listed in the table of Figure 5. The computational advantages of
constraint-tree representations are that they permit queries of enumeration, extension and entail-
ment to be answered in polynomial time.
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Figure 4.
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A constraint graph (or network), representing a relation, explicates some of its condition-
al independencies. In a graph, $ 2 is said to separate S from S, if by removing the nodes in S ,,
nodes in S, are disconnected from nodes in S3. Every separation in the constraint graph
corresponds to a conditional independence, i.e., if a subset S 1 Separates (in the constraint graph)
subset S, from S5 then <S, | S1 | §3>. However, there may be conditional independencies in
the relation which are not manifested in the constraint graph. For a detailed discussion of
conditional-independencies and their graphical representation see [Pearl and Paz 1986; Pearl
1988]. Constraint networks are discussed in [Montanari 1974] and [Dechter and Pearl 1987].

The possibility of extending Chow and Liu’s result from probabilities to categorical rela-
tions rests on the following questions. Suppose that a relation p is associated with a uniform pro-
bability distribution, U p» Which accords equal non-zero probabilities to all tuples in the relation
and only to those tuples. Does the existence of an exact tree-dependent distribution for this uni-
form distribution imply that the relation is tree-decomposable? Moreover, does a tree-
decomposable relation necessarily have a tree-dependent uniform probability distribution? Are
they decomposable by the same tree? And if $0, can we use the MWST method to find an op-
timal tree-decomposable approximation to a given relation? These questions were analyzed in
[Dechter 1987]; the answers were shown to be in the affirmative for exact decompositions but
remain unsettled for approximations.

Theorem 6: If a probability distribution P is tree-dependent along a tree T, then the relation
defined by the possible tuples of P (P > 0) has a lossless decomposition by the same tree.

Theorem 7: For any relation P, if p can be decomposed losslessly into some tree T, then its as-
sociated uniform distribution, U p» IS tree-dependent along T .



Thus, applying the MWST to U p» We obtain the following theorem.

Theorem 8: Let n (x;) be the number of n-tuples in p for which X; =x;, and let n (x;, X;) be the
number of n-tuples in p for which X; =x; and X j =X;. The MWST algorithm using the arc-
weights:

_ 1 n(x; x;)
"I e oy K

is guaranteed to produce a tree-decomposition to p if such a decomposition exists.

The following algorithm takes a relation p and returns a set of tree-structured binary rela-
tions, which are guaranteed to be lossless if the relation is tree-decomposable.

Tree-generation-algorithm

a. Compute the basic quantities: n (x;) and n (x; X ).

b. For every two attributes X; , X ; compute the weights m (X; , X ;) given in Eq. (7).

C. Find a maximum weight spanning tree of the complete graph w.r.t. the above arc-
weights.

d. For each pair of attributes that corresponds to an arc in the selected tree find the associat-

ed relation by projecting the global relation on it.

The complexity of the algorithm is O (I + log n)n?), where n is the number of attributes
and / is the size of the relation. To verify that the generated tree represents the input relation, we
compute (in linear time) the number of n-tuples represented by the tree-decomposition and com-
pare it to the size of the given relation. If the two numbers are equal, the database losslessly
represents the relation. Otherwise, we know that no tree representation exists.

When no tree-decomposition exists, the algorithm produces a decomposition which is not
lossless but can be regarded as an approximation to p. The decomposition algorithm, when ap-
plied to U p> finds T such that the projection of U p on T is the best approximation to U p» With
respect to the proximity measure of Eq. (2). However, it is not clear how this proximity measure
translates into meaningful merit criteria for relations, such as the number of tuples in the approx-
imating relation. Experiments show [Dechter 1987] that the MWST provides a very tight ap-
proximation whenever the relation p is expressible as a network of binary constraints, tighter
than any other known method of tree-decomposition. We also know that the tree produced by
the MWST method is the smallest possible whenever the relation defined by joining all pair-wise
projections of p (so-called the minimal network of p ) is tree-decomposable. However, whether
this tree is the most specific one in the general case (i.e., whether it does not properly contain
another tree-decomposable superset of p), remains an open problem. A non-numeric method of

10



identifying tree-decompositions is developed in [Dechter, Meiri & Pearl 1989].

6. IDENTIFIABILITY VS. LEARNABILITY

The main difference between the problems described in this paper and those addressed by
Valiant’s model of learning is that in the latter we are given the concept class C and our con-
cern is to infer which individual member of C is responsible for the observed instances. By con-
trast, in structure learning we are not given the concept class C. Rather, our main concern is to
decide whether a fully observed concept, taken from some broad class C’ (e.g., all categorical
relations), is also a member of a narrower class C of concepts, one that possesses some desirable
syntactical features (e.g., constraint-trees). Thus, the task is not to identify the semantic exten-
sion of a concept (this is assumed to be directly observed), but to identify its syntactical descrip-
tion.

It turns out that casting a concept in a convenient description requires more than clever
syntactic manipulations. The feasibility of finding such a description rests heavily on the nature
of the dependencies among the components of the concept (e.g., the attributes or the predicates),
and these dependencies must be uncovered from the semantic extension of the concept. More-
over, finding a desirable description to a given concept, even when it is feasible and even when
the concept is of small size, might require insurmountable computation; a problem not normally
addressed in traditional models of learning.

To cast these considerations in a general formal framework, we define the notion of
Identifiability, and contrast it with that of Learnability.

Definition: (Identifiability) A class of concepts C is said to be identifiable relative to a back-
ground class C’, iff:

(1) (Recognition) For every set I of instances, representing a concept in C”, there is an algo-
rithm A, polynomial in |71, that determines if / is a member of C, and

(2) (Isolation) If the answer to (1) is positive, A finds one member of C that matches /.
Definition: (Strong Identifiability) Same as (1) and (2) above, with the addition of:

3) (Specificity) If the answer to (1) is negative, the algorithm finds a minimal concept ¢ in
C that contains I, i.e.,] cc, and there isno ¢ € C such that/ c ¢ Co

By convention, a class in which the recognition or isolation tasks are NP-hard will be defined as

non-identifiable. Moreover, the concept size 171 should measure the overall code length used in
the description of 7, not merely the number of instances in 7.

11



EXAMPLES

1. (Constraint networks) Let C’ be the set of all relations on n attributes. The class
Cn (< C’) of relations expressible by binary networks of constraints is not identifiable.
Although we have algorithms for meeting requirement (3) (and hence (2)) of constructing
the most specific network (so called minimal network) for any given relation 7, we do not
have an effective way of testing whether the minimal network represents the relation /
exactly, or a superset thereof. Even generating a single instance of the minimal network
might be an NP-complete problem, if the attributes are non-binary.

2. If the background class C’ is known in advance to consist of only relations that are ex-
pressible by binary constraint networks (i.e., C’ = Cn ), then it is possible to identify such
a network in time linear in the number of instances. Thus, Cy is strongly identifiable re-
lative to itself. Under this condition it is also learnable, being a variant of k—~CNF .

3. In general, if we set C’ = C, then, if C is learnable it must also be strongly identifiable,
because condition (1) is satisfied automatically, and the learnability requirement of zero
erTor on negative examples is equivalent to (3). (Note that since the learner is entitled to
observe the entire concept, the second learnability requirement of limited generalization
errors plays no role in identifiability tasks.) However, there are concept classes that are
identifiable but not learnable under the condition C’ = C » a trivial example of which is
the set of subsets having size 17! = k. A more significant example is described next.

4, (Constraint Trees) The class Cr (=C) of constraint-trees is identifiable but not learn-
able. The MWST algorithm (discussed in Section 5) correctly identifies a tree that
represents the instances. Yet, Cy is not learnable because it is not closed under intersec-
tion, i.e., there is no unique, most specific tree that captures every subset of instances
drawn from a tree.

5. Section 5 shows that the class of constraint-trees is identifiable also relative to the back-
ground class of all relations. However, it is still an open question whether this class is
strongly identifiable; we were not able to prove (or disprove) that, when the minimal net-
work is not tree-decomposable, the MWST method still returns a minimal tree.

6. (Constraint Chains) The class Cc (=C") of constraint chains is not learnable nor
identifiable. The reason being that, since chains are not matroids, we do not have a
greedy algorithm similar to the MWST for identifying the correct ordering of the vari-
ables.

7. (Partial Orders) Let C (=C’) be the class of all partial orders on n objects. C is
known to be learnable (hence identifiable). However, if C (= C’) is the class of partial
orders representable by a tree then it is not learnable but strongly identifiable (even if we
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let C’ extend to the class of all partial orders). )

8. (Rooted Trees) Let C’ be all subsets of ordered triples (x, y, z) taken from a collection
of n objects, and let each member ¢ of C be the set of triplets (x, Y, z) generated by a
rooted tree with n leaves, such that (x, y, z) is in ¢ iff the deepest common ancestor of x
and y is also the deepest common ancestor of x and z. C is strongly identifiable in
O (n logn) time (see Pearl and Tarsi, 1985).

CONCLUSIONS

This paper summarizes several investigations into the prospects of identifying meaningful struc-
tures in empirical data. The central theme is to identify the topology of a tree of dependencies, in
cases where the observed data possess such dependencies. Starting with an early work of Chow
and Liu [1968] on identifying the best tree-dependent approximation to a given probability dis-
tribution, we extend the method to polytrees (directed trees with arbitrary edge orientation) and
show that, under certain conditions, the skeleton of the polytree as well as the orientation of
some of the arrows, are identifiable. We next address the problem of identifying probabilistic
trees in which some of the nodes are unobservable. It is shown that such trees can be effectively
identified in cases where all variables are either bi-valued or normal, and where all correlation
coefficients are known precisely. Finding the best tree approximation to data that does not lend
itself to precise tree representation (with hidden variables) remains an open problem. Finally,
extending the task from probabilistic to categorical data, it is shown that an effective procedure
exists for determining whether a given relation is decomposable into a tree of binary relations
and, if the answer is positive, identifying the topology of such a tree. The procedure runs in time
proportional to the size of the relation and can be used to provide an approximate, representation
to a set of observed tuples, which is economical in both storage space and query processing time.

The task of finding a desirable description for a concept has been given a formal
definition through the notion of identifiability, which is normally weaker (if C* = C) than that of
learnability. Possibly due to their matroid properties, constraint-trees (as well as probabilistic
trees) were found to be one of the very few useful structures which is identifiable yet not learn-
able.
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