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Abstract 

This paper presents an experimental evaluation of two orthogonal schemes for pre- 
processing constraint satisfaction problems (CSPs). The first of these schemes involves a 
class of local consistency techniques that includes directional arc consistency, directional 
path consistency, and adaptive consistency. The other scheme concerns the prearrangement 
of variables in a linear order to facilitate an efficient search. In the first series of 
experiments, we evaluated the effect of each of the local consistency techniques on 
backtracking and backjumping. Surprisingly, although adaptive consistency has the best 
worst-case complexity bounds, we have found that it exhibits the worst performance, 
unless the constraint graph was very sparse. Directional arc consistency (followed by either 
backjumping or backtracking) and backjumping (without any preprocessing) outperformed 
all other techniques: moreover, the former dominated the latter in computationally 
intensive situations. The second series of experiments suggests that maximum cardinality 
and minimum width are the best preordering (i.e., static ordering) strategies, while 
dynamic search rearrangement is superior to all the preorderings studied. 

1. Introduction 

Constraint  satisfaction tasks belong to the class of NP-comple te  problems and, 
as such, normally lack realistic measures  of  performance.  Worst-case analysis, 
because it depends on ext reme cases, may yield an erroneous view of typical 
per formance  of algorithms used in practice. Average-case analysis, on the other  
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hand, is extremely difficult and is highly sensitive to simplifying theoretical 
assumptions. Thus, theoretical analysis must be supplemented by experimental 
studies. 

The most thorough experimental studies reported so far include Gaschnig's 
comparisons of backjumping, backmarking and constraint propagation [12], 
Haralick and Elliot's study of look-ahead strategies [14], Brown and Purdom's 
experiments with dynamic variable orderings [21,22], and, more recently, 
Dechter's experiments with structure-based techniques [3], and Prosser's hybrid 
tests with backjumping and forward-checking strategies [20]. Additional studies 
were reported in [6, 13, 23, 26, 27]. 

Experimental studies are most informative when conducted on a "representa- 
tive" set of problems from one's own domain of application. However, this is very 
difficult to effect. Real-life problems are often too large or too ill-defined to suit a 
laboratory manipulation. A common compromise is to use either randomly 
generated problems or canonical examples (e.g., n-queens, crossword puzzles, 
and graph-coloring problems). Clearly, conclusions drawn from such experiments 
reflect only on problem domains that resemble the experimental conditions and 
caution must be exercised when generalizing to real-life problems. Such experi- 
ments do reveal the crucial parameters of a problem domain, and so help 
establish the relative usefulness of various algorithms. 

Our focus in this paper is on algorithms whose performance, as revealed by 
worst-case analysis, is dependent on the topological structure of the problem. Our 
aim is to uncover whether the same dependency is observed empirically and to 
investigate the extent to which worst-case bounds predict actual performance. 
Our primary concern is with preprocessing algorithms and their effect on 
backtracking's performance. Since our preprocessing algorithms are dependent on 
a static ordering of the variables they invite different heuristics for variable 
ordering. We tested the effect of such orderings on the preprocessing algorithms 
as well as on regular backtracking and backjumping. 

We organized our experimental results into two classes. The first class concerns 
consistency enforcing algorithms, which transform a given constraint network into 
a more explicit representation. On this more explicit representation, any back- 
tracking algorithm is guaranteed to encounter fewer deadends [16]. Since these 
algorithms are polynomial while backtracking is exponential, and since they 
always improve search, one may hastily conclude that they should always be 
exercised. Our aim was to test this hypothesis. The three consistency enforcing 
algorithms tested are directional arc consistency (DAC), directional path consis- 
tency (DPC), and adaptive consistency (ADAPT) [6]. These algorithms represent 
increasing levels of preprocessing effort as well as an increasing improvement in 
subsequent search. Although DAC and DPC, whose complexities are quadratic 
and cubic, respectively, can still be followed by exponential search (in the worst 
case), ADAPT is guaranteed to yield a solution in time bounded by O(exp(W*)), 
where W* is a parameter reflecting the sparseness of the network. 

Our results show, contrary to predictions based on worst-case analysis, that the 
average complexity of backtracking on our randomly generated problems is far 
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from exponential. Indeed the preprocessing performed by the most aggressive 
scheme, ADAPT, did not pay off unless the graph was very sparse, in spite of its 
theoretical superiority to backtracking. On the other hand, the least aggressive 
scheme, DAC, came out as a winner in computationally intensive cases. 
Apparently, DAC performs just the desired amount of preprocessing. Additional- 
ly, while ADAPT showed that its average complexity is exponentially dependent 
on W*, the dependence of all other schemes on W* seems to be quite weak or 
even non-existent. 

In the second class we report the effect of various static ordering strategies on 
backtracking and backjumping without preprocessing. Static orderings, in contrast 
to dynamic orderings, are appealing in that they do not require any overhead 
during search. We tested four static heuristic orderings, minimum width (MIN), 
maximum degree (DEG), maximum cardinality (CARD), and depth-first search 
(DFS). Those orderings are advised when analyzing their effect on the preproces- 
sing algorithms ADAPT and even DPC as they yield a low W*. Although no 
worst-case complexity ties backtracking or backjumping to W*, we nevertheless 
wanted to discover whether a correlation exists, and which of these static 
orderings yields a better average search. Lastly, in order to relate our experiments 
with other experiments reported in the literature, we compared our static 
ordering with one dynamic ordering, dynamic search rearrangement (DSR) [21]. 
We tested two implementation styles of DSR, presenting a tradeoff between space 
and time overhead. 

Our results show that minimum width and maximum cardinality clearly 
dominated the maximum degree and depth-first search orderings. However, the 
exact relationship between the first two is still unclear. While dynamic ordering 
was only second or third best when implemented in a brute-force way it 
outperformed all static orderings when a more careful implementation that 
restricted its time overhead was introduced. 

The remainder of the paper is organized as follows: we review the constraint 
network model and general background in Section 2, present the tested algo- 
rithms in Section 3, describe the experimental design in Section 4, discuss the 
results in Section 5, and provide a summary and concluding remarks in Section 6. 

2. Constraint processing techniques 

A constraint network (CN) consists of a set of variables X =  {X1, . . .  ,Xn}, 
each associated with a domain of discrete values D 1 . . . .  , Dn, and a set of 
constraints (C1 . . . .  , Ct}. Each constraint is a relation defined on a subset of 
variables. The tuples of this relation are all the simultaneous value assignments to 
this variable subset which, as far as this constraint alone is concerned, are legal. 1 

1 This does not mean that the actual representation of any constraint is necessarily in the form of its 
defining relation, rather  the relation can in principle be generated using the constraint 's specification 
without the need to consult o ther  constraints in the network. 
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Formally,  constraint C i has two parts: a subset of variables S i = { X i ~ , . . . ,  Xij , )  } 

on which it is defined, called a constraint-subset,  and a relation reli defined over  
S~: reli C D q  x • • • x D i , . The s c h e m e  of a CN is the set of its constraint subsets, -- j(.) 
namely,  s c h e m e ( C N )  = {S  I, S 2, . . . , S , } ,  S~ C_X. An assignment of a unique 
domain  value to each m em ber  of some subset of variables is an instantiation. An 
instantiation is a solution only if it satisfies all the constraints. The set of all 
solutions is a relation p defined on the set of all variables. Formally,  

p = {(X 1 = x , , . . .  , X ,  = x , )  I VSi e s cheme ,  I I s £  C reli} , (1) 

where  I I x p  is the project ion of relation t9 over  a subset of its variables X, namely 
it is the set of all subtuples over  X that can be extended to a full tuple in p. 

A CN may be associated with a constraint graph in which nodes represent  
variables and arcs connect variables that appear  in the same constraint. For 
example ,  the CN depicted in Fig. l(a) represents a crossword puzzle. The 
variables are E, D, C, A, and B. The scheme is { E D ,  E C ,  C A ,  A D ,  D B } .  For 
instance, the pair D E  is in the scheme since the word associated with D and the 
word associated with E share a letter. The constraint graph is given in Fig. l (b) .  

Typical tasks defined on a CN are determining whether  a solution exists, finding 
one solution or the set of all solutions, and establishing whether  an instantiation 
of a subset of variables is part  of a global solution. Collectively, these tasks are 
known as constraint  satisfaction problems (CSPs). 

UA[ 1 1 l 

D E = {hoses,laser,sheet,snail,steer} 
DA=D D = {hike,aron,keet,earn,same} 

Dc = {run,sun,let,yes,eat,ten} 
D B = {no,be,us,it} 

CAB = { ( h o s e s ,  same) ,  ( l a s e r ,  same),  ( s h e e t ,  earn) ,  
(snail, aron), (steer, earn) } 

E D 

I 1 
C A 

O 

B 
C O  

B 

(b) (c) 
Fig. 1. (a) A crossword puzzle (D denotes domains of variables, CAB is the constraint between 
variables A and B), (b) its CN representation, and (c) a depth-first search preordering. 
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Techniques used in processing constraint networks can be classified into three 
categories: (1) search algorithms, for systematic exploration of the space of all 
solutions, which all have backtracking as their basis; (2) consistency enforcing 
algorithms, that enforce consistency on small parts of the network, and (3) 
structure-driven algorithms, which exploit the topological features of the network 
to guide the search. Hybrids of these techniques are also available. For a detailed 
survey of constraint processing techniques, see [4, 15]. 

Backtracking traverses the search space in a depth-first fashion. The algorithm 
typically considers the variables in some order. It systematically assigns values to 
variables until either a solution is found or the algorithm reaches a deadend, 
where a variable has no value consistent with previous assignments. In this case 
the algorithm backtracks to the most recent instantiation, changes the assigned 
value, and continues. It is well known that the worst-case running time of 
backtracking is exponential. 

Improving the efficiency of backtracking amounts to reducing the size of the 
search space it expands. Two types of procedures were developed: preprocessing 
algorithms that are employed prior to performing the search, and dynamic 
algorithms that are used during the search. 

The preprocessing algorithms include a variety of consistency enforcing algo- 
rithms [9, 16, 18]. These algorithms transform a given CN into an equivalent, yet 
more explicit form, by deducing new constraints to be added to the network. 
Essentially, a consistency enforcing algorithm makes a small subnetwork con- 
sistent relative to its surrounding constraints. For example, the most basic 
consistency algorithm, called arc consistency or 2-consistency (also known as 
constraint propagation or constraint relaxation), ensures that any legal value in 
the domain of a single variable has a legal match in the domain of any other 
variable. Path consistency (or 3-consistency) ensures that any consistent solution 
to a two-variable subnetwork is extensible to any third variable, and, in general, 
/-consistency algorithms guarantee that any locally consistent instantiation of i - 1 
variables is extensible to any ith variable. The algorithms, DAC, DPC, and 
A D A P T  are all restricted (because they take into account the direction in which 
backtracking instantiates the variables) versions of these consistency enforcing 
algorithms. 

The preprocessing algorithms also include algorithms for ordering the variables 
prior to search. Several heuristics for static orderings have been proposed [7, 10]. 
The heuristics used in this paper--minimum width, maximum cardinality, maxi- 
mum degree, and depth-first search--follow the intuition that tightly constrained 
variables should be instantiated first. 

Strategies that dynamically improve the pruning power of backtracking can be 
classified as either look-ahead schemes or look-back schemes. Look-ahead schemes 
are invoked whenever the algorithm is about to assign a value to the next 
variable. Some schemes, such as forward-checking, use constraint propagation 
[14, 28] to predict the way in which the current instantiation restricts future 
assignments of values to variables. An example of a look-ahead scheme is 
dynamic search rearrangement, which decides what variable to instantiate next 
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[10, 21, 26]. Look-back schemes are invoked when the algorithm encounters a 
deadend and prepares to backtrack. An example of such a scheme is backjumping 
[12]. By analyzing the reasons for the deadend it is often possible to go back 
directly to the source of failure instead of to the immediate predecessor in the 
ordering. The algorithm may also record the reasons for the deadend so that the 
same conflicts will not arise again later in the search (terms used to describe this 
idea are constraint recording and no-good constraints). Dependency-directed 
backtracking incorporates both backjumping and no-good recording [3, 25]. 

Structure-based techniques, such as graph-based back-jumping directional 
i-consistency, adaptive consistency, and cycle-cutset scheme can be viewed as 
structure-based improvements of some of the above techniques [4]. 

3. The tested algorithms 

We first present our two search algorithms, backtracking and backjumping, and 
then describe the consistency enforcing algorithms and the ordering heuristics we 
used. 

3.1. Backtracking and backjumping 

A backtracking algorithm for finding one solution is given in Fig. 2. It is defined 
by two recursive procedures, forward and go-back. The first extends a current 
partial assignment if possible, and the second handles deadend situations. The 
procedures maintain lists of candidate values, C i, for each variable, Xi. Their 
initial values are computed by compute-candidates(x1,..., x i, Xi+ l), which selects 
all values in the domain of variable X~+1 that are consistent with previous 
assignments. Backtracking starts by calling forward with i =0,  namely, the 
instantiated list is empty. 

Backjumping improves the go-back phase of backtracking. Whenever a 
deadend occurs at variable X, it backs up to the most recent variable Y connected 
to X in the constraint graph. If variable Y has no more values, then it should back 
up more, to the most recent variable Z connected to both X and Y, and so on. 
This algorithm is a graph-based variant of Gaschnig's backjumping [12] which 
extracts knowledge about dependencies from the constraint graph alone. Graph- 
based backjumping has been shown to outperform backtracking on an instance- 
by-instance basis [3]. For simplicity, backjumping refers to graph-based bac- 
kjumping throughout the remainder of this paper. 

In our implementation of backjumping, both forward and jump-back (the 
go-back variant of backjumping) carry a parameter P, that stores the set of 
variables that need to be consulted upon the next deadend (see Fig. 3). 
Accordingly, lines 6 and 8 of forward are changed to forward(x1,..., x~, x~+ 1, P) 
and jump-back(x 1 . . . . .  x~, X~+ 1, P). Procedure jump-back is shown in Fig. 3. Its 
parameters are the partial instantiation X l , . . .  ,x~, the deadend variable Xi÷l, 
and P. 
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f o r w a r d ( x 1 , . .  • , x i )  

Begin 
1. if i = n, exit with the current assignment 
2. Ci + x ~ - - c o m p u t e - c a n d i d a t e s ( x l  , . • • , x i ,  X i  + l ) 

3. if C~+1 is not empty then 
4. xg+ 1 <--- first element in C i+ 1, and 
5. remove xi+~ from C~+~, and 
6. f o r w a r d ( x  1 , .  • • , x i ,  x i+ 1) 

7. Else 
8. g o - b a c k ( x 1 , .  • • , x i )  

End 

g o - b a c k ( X  l , . . . , x i ) 

Begin 
1. if i = 0, exit (no solution exists) 
2. if C i is not empty then 
3. x i <--first in Ci, and 
4. remove xi from C~, and 
5.  f o r w a r d ( x 1 , . . . ,  x i )  

6. Else 
7.  g o - b a c k ( x 1 , .  • • , x i - 1 )  

End 

Fig. 2. Algorithm backtracking. 

j u m p - b a c k ( x  1 . . . .  , x i ,  X i + 1 ,  P )  

Be~n 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 

End 

if i = 0, exit (no solution exists) 
P A R E N T S  ~ P a r e n t s E  ( X i  + 1 ) 

P ~ -  P U P A R E N T S  

Let  j be the largest indexed variable in P, 
P < - - - P - X j  

if Cj ~ 0 then 
xj - - f i rs t  in Cj ,  and 
remove xj from Cj ,  and 
f o r w a r d ( x  1 . . . . .  x j ,  P )  

Else 
j u m p - b a c k ( x  I . . . . .  x j_  l , X j ,  P )  

Fig. 3. Procedure jump-back.  

2 Parents(X~) are those variables connected to X~ that precede Xi in the ordering. 



218 R. Dechter. 1, Meiri / Artificial Intelligence 68 (1994) 211-241 

Consider, for instance, the ordered constraint graph in Fig. l(a). If the search is 
performed in the order E, D, A, C, B, and a deadend occurs at B, the algorithm 
will jump back to variable D since B is not connected to either C or A. 

In general, the implementation of backjumping requires careful maintenance of 
each variable's parent set. Some orderings, however, facilitate a simple im- 
plementation. If we perform a depth-first search (DFS) on the constraint graph (to 
generate a DFS tree) and apply backjumping along the resulting DFS numbering 
[8], finding the jump-back destination amounts to going back to the parent of X in 
the DFS tree. A DFS tree of the graph in Fig. l(b) is given in Fig. l(c). The 
directed arcs are part of the DFS tree. The rest of the arcs are undirected [8]. The 
DFS ordering (which amounts to an in-order traversal of this tree) is (E, D, B, A, 
C). Again, if a deadend occurs at node A, the algorithm retreats to its parent in 
the DFS tree, D. When backjumping is performed along a DFS ordering of the 
variables, its complexity can be bounded by O(exp(m)) steps, where m is the 
depth of the DFS tree [2]. 

The backjumping procedure we use here is relatively conservative in that 
variables are eliminated from the parent set only when they are jumped back to 
(see step 5 of jump-back). This may result in deterioration of performance 
however. As the size of the parent set gets larger, backjumping will have less 
opportunities to execute big jumps back, and its performance will converge into 
that of naive backtracking. This can be corrected by a more sophisticated "parent 
releasing" method. One approach is to index each variable with the trigger 
variable that introduced it to the parent set, and releasing it upon processing that 
trigger variable by forward. For a discussion of several such improvements of 
backjumping see [11,20]. 

3.2. Local consistency algorithms 

Deciding the consistency level that should be enforced on the network is not a 
clear-cut choice. Generally, backtracking will benefit from representations that 
are as explicit (therefore of a higher consistency level) as possible. However, the 
complexity of enforcing /-consistency is exponential in i (and may also require 
exponential memory). Thus, there is a tradeoff between the effort spent on 
preprocessing and that spent on search. The primary goal of our paper is to 
uncover this tradeoff. 

Algorithms DAC, DPC, and ADAPT, being the directional versions of arc 
consistency, path consistency and n-consistency, respectively, have the advantage 
that they take into account the direction in which backtracking will eventually 
search the problem. Thus, they avoid processing many constraints that are not 
encountered during search. 

We start with ADAPT, then generalize its underlying principle to describe a 
class of preprocessing algorithms that contains both DAC and DPC. Given an 
ordering of the variables, the parent set of a variable X is the set of all variables 
connected to X (in the constraint graph) that precede X in the ordering. The 
width of a node is the size of its parent set. The width of an ordering is the 
maximum width of nodes in that ordering, and the width of a graph is the minimal 
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B B 

A A 

D 

E 

(a) (b) 
Fig. 4. Ordered constraint graphs. 

width of all its orderings. For instance, given the ordering (E, D, C, A, B) in Fig. 
4(a), the width of node B is 1, while the width of this ordering is 2 (since the 
width of A is 2 and there is no node having a larger width). Since there is no 
width-1 ordering, the width of this graph is 2. Algorithm ADAPT,  shown in Fig. 
5, processes the nodes in a reverse order, that is, each node is processed before 
any of its parents. 

The procedure record-constraint(X, SET) generates and records those tuples of 
variables in SET that are consistent with at least one value of X. For instance, in 
our example, if A has only one feasible word, aron, in its domain and C and D 
each have their initial domains, then the call for record-constraint(A, {C, D}) will 
result in recording a constraint on the variables {C, D}, allowing only the pairs 
{(earn, run), (earn, sun), (earn, ten)}. A D A P T  may tighten existing constraints as 
well as impose constraints over new clusters of variables. It has been shown [6] 
that, when the procedure terminates, backtracking can solve the problem, in the 

A D A P T ( X 1 , . . . ,  XN) 
Begin 

1. f o r i = n  to 1 b y - 1  do 
2. compute parents(Xi) 
3. perform record-constraint(X i, parents(X~)) 
4. in the constraint graph, connect all 

parents(Xi) 
End 

unconnected elements in 

Fig. 5. Algorithm ADAPT. 
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order prescribed, without encountering any deadend. The topology of the new 
induced graph can be found prior to executing the procedure by recursively 
connecting in the graph any two parents sharing a common successor . 

Consider Fig. 4(a). Variable B is chosen first, and since it has only one parent, 
D, the algorithm records a unary constraint on D's domain. Variable A is 
processed next, and a binary constraint is enforced on its two parents, D and C, 
eliminating all pairs that have no common consistent match in A. This operation 
may require that an arc be added between C and D. The resulting induced graph 
contains the dashed arc in Fig. 4(b). 

Let W(d) be the width of the ordering d, and W*(d) be the width of the 
induced graph along this ordering. It can be shown that solving the problem along 
the ordering d, using A D A P T  is O(n • exp(W*(d) + 1)) [6]. 

The directional algorithms DAC,  DPC, and directional i-consistency differ from 
A D A P T  only in the amount and size of constraint recording performed in Step 3. 
Namely, instead of recording one constraint among all parents, they record a few 
smaller constraints on subsets of the parents. Let level be a parameter indicating 
the utmost cardinality of the recorded constraints. The class of algorithms 
adaptive(level) is described in Fig. 6. It uses a procedure, new-record(level, vat, 
set), that records only constraints of size level from subsets of set. 

Adpative(level = 1) reduces to DAC,  while for level -- 2 it becomes DPC. The 
graph induced by all these algorithms (excluding the case of level = 1, where the 
graph does not change) has the same structure as the one generated by A D A P T .  
Since adaptive(level = W*(d)) is the same as A D A P T ,  it is guaranteed to generate 
a backtrack-free solution. 

. 

2. 
3. 
4. 

End 

adaptive(level, X 1 . . . . .  X , )  
Begin 

for i = n to 1 by - 1  do 
compute parents(Xi) 
perform new-record(level, Xi , parents(X i ) ) 
for level/> 2, connect in the graph all elements in parents(X~) 

new-record(level, var, set) 
Begin 

1. if level <~ Iset I then 
2. for every subset S in set, subject to IsI = level do 
3. record-constraint(var, S) 
4. end 
5. else do record-constraint(var, set) 

End 

Fig. 6. Procedures adaptive and new-record. 
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The complexity of adaptive(level) is both time- and space-dominated by the 
procedure new-record(level) which is 

o(  (W*(d)'~ . (kmin{level,W.(d)})) 
\ \  level / 

k being the maximal domain size. Clearly, the bound can be tightened if the 
ordering d results in a smaller W*(d). However, finding the ordering that has the 
minimum induced width is an NP-complete problem [1]. 

3.3. Preordering of variables 

It is well known that the ordering of variables, whether static throughout search 
or dynamic, may have a tremendous impact on the size of the search space 
explored by backtracking algorithms. Finding an ordering that minimizes the 
search space is difficult and consequently researchers have concentrated on 
devising heuristics for variable ordering. 

We consider four static orderings. The minimum width (M1N) heuristic [10] 
orders the variables from last to first by selecting, at each stage, a node having a 
minimal degree in the subgraph restricted to all nodes not yet selected. (The 
degree of a node in a graph is the number of its adjacent nodes.) As its name 
indicates, the heuristic results in a minimum width ordering. The maximum 
degree (DEG) heuristic orders the variables in a decreasing order of their degree 
in the constraint graph. This heuristic also aims at (but does not guarantee) 
finding a minimum width ordering. The maximum cardinality (CARD) ordering 
selects the first variable arbitrarily, then, at each stage, selects the variable that is 
connected to the largest set of already selected variables. A depth-first search 
ordering (DFS) is generated by a DFS traversal of the constraint graph. It can be 
combined with any of the previous orderings to create a tie-breaking rule. In our 
experiments, the tie-breaking rule was random. 

The best known dynamic ordering is the dynamic search rearrangement (DSR), 
which was investigated analytically via average-case analysis in [14, 19, 21], and 
experimentally in [23, 24, 26]. This heuristic selects as the next variable to be 
instantiated a variable that has a minimal number of values that are consistent 
with the current partial solution. Heuristically, the choice of such a variable 
minimizes the remaining search. Other, more elaborate estimates of the remain- 
ing search space were also considered [1, 29]. 

4. Experimental design 

Our experiments were performed at two different locations, site-1 and site-2. 
They were conducted completely independently using different implementations 
of algorithms, different test instances, and different algorithm combinations. 
Overall, 42 algorithm combinations were tested. At site-l, we executed backtrack- 
ing (BTK) and backjumping (B J) on each problem instance twice, once directly 
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without any preprocessing and once after preprocessing the network by either 
D A C ,  D P C ,  or A D A P T  (8 combinations). We ran each algorithm combination 
along with each one of the static orderings D E G ,  C A R D ,  and M I N  (24 
combinations). Two more runs, of backtracking and back jumping  using D S R  

ordering, were also performed. At site-2 we studied only the effect of ordering 
strategies, with and without preprocessing by arc consistency. In this case we 
executed backtracking and back jumping  on each problem instance twice, once 
without any preprocessing and once after preprocessing by D A C  (4 combina- 
tions). Each algorithm combination was tested with the static orderings C A R D ,  

M I N ,  DFS ,  and with the D S R  (16 combinations). 
Table 1 summarizes the algorithm combinations tested and their corresponding 

sites. For instance, we see that D P C - B J  (i.e., D P C  followed by backjumping)  

was tested only at site-l, while B J  was tested at both site-1 and site-2. Note that 
an instance-by-instance comparison is feasible only within sites. 

The test problems at each site were generated using the same random model, 
but with different parameters. The generator used four parameters: n, the 
number of variables; k, the number of values; and Pl and P2. The parameter Pl 
denotes the probability that a given pair of variables will not be constrained (and 
thus will not have an arc in the constraint graph), while P2 is the probability that a 
given pair of values won't be allowed by a given constraint. In other words, the 
generator created a random graph uniformly using probability Pl and then 
created a relation for each arc in the graph using probability P2 (P2 is the 
probability of a no-good). This random model has been used by others 
[3, 12, 14]. 3 The problem instances on which we reported were not selected 
uniformly from a given distribution. Our aim was to select a subset of problems 
that appear to be more difficult. We first determined values for Pl and P2 that 
gave rise to relatively difficult instances, while producing sparse graphs. Then, 
from those distributions we hand-picked only the harder instances. Difficulty was 
determined by the number of deadends encountered when running backtracking 

on a D E G  ordering of the instance; if the number of deadends acceded a certain 

Table 1 
Algorithms and test combinations (1--site-I, 2---site-2). 

BTK BJ DAC DPC ADAPT DAC DPC ADAPT 
BJ BJ BJ BTK BTK BTK 

DEG 1 1 1 

CARD 1 1 1 
2 2 2 

MIN 1 1 ! 
2 2 2 

DSR 1 1 
2 2 2 

DFS 2 2 2 

1 1 1 l 1 

1 1 1 1 1 
2 

1 1 1 1 1 
2 

3 Additional, more recently used random models are discussed in the conclusion. 
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Table 2 
Parameters of problem instances at site-1 

223 

W* # Parameters 

10, 1 5 {(80,70) (80,73) (80,73) (80,75) (80,77)} 

consistent 2 17 {(65,65) (68,55) (68,58) (68,65) (70,63) (70,65) (70,67) (75,60) (75,63) 
(75,63) (75,65) (80,60) (80,60) (80,70) (85,70) (85,70) (85,70)} 

3 15 {(63,55) (63,55) (65,55) (65,58) (68,55) (68,58) (68,58) (68,65) (70,60) 
(70,60) (70,60) (70,63) (70,63) (73,58) (73,58)} 

4 5 {(60,50) (63,50) (63,50) (65,58) (68,50)} 

10, 2 5 {(75,65) (80,70) (80,75) (80,75) (80,77)} 
inconsistent 3 14 {(65,65) (68,60) (68,65) (70,65) (70,65) (70,67) (70,67) (73,58) (75,60) 

(75,60) (75,63) (75,65) (80,73) (80,77)} 

4 6 {(65,55) (65,58) (65,55) (65,68) (68,55) (68,60)} 

15, 2 11 (79,61) (81,62) (84,62) (84,61) (85,63) (85,66) (85,70) (87,64) (88,72) 
consistent (88,75) (88,75) 

3 9 (77,56) (78,59) (79,56) (80,59) (80,59) (81,62) (83,61) 
(85,68) (86,63) 

4 9 (77,56) (78,55) (79,54) (79,58) (80,60) (80,60) (82,60) (82,60) (82,62) 

5 6 (71,48) (73,50) (74,52) (75,50) (77,50) (78,56) 

15, 2 3 {(85,63) (85,70) (89,75)} 

inconsistent 3 17 {(79,58) (80,59) (82,61) (82,61) (82,61) (83,62) (85,61) (85,63) (85,66) 
(85,66) (85,66) (85,66) (85,70) (80,63) (87,64) (88,70) (88,75) 

4 16 {(78,57) (78,59) (78,59) (79,55) (79,56) (79,61) (79,61) (82,60) (82,62) 
(82,62) (82,65) (82,65) (82,65) (83,61) (83,62) (88,72) 

5 3 {(76,56) (77,54) (78,55)} 

threshold we retained the problem. Table 2 lists the parameters of all the 
consistent and inconsistent problem instances we reported at site-l, clustered in 
groups of common W* along a D E G  ordering. The induced widths along a M I N  
or C A R D  orderings were highly correlated. Note that most problem instances 
come from a narrow range of parameters. Overall, we experimented with two sets 
of random problems: one containing 66 instances (24 instances were inconsistent), 
each having 10 variables and 5 values, and the other containing 71 instances (39 
instances were inconsistent), each with 15 variables and 5 values. As mentioned, 
these instances represent the more difficult problems among a much larger set of 
problems, from which all the easy problems were omitted. Larger problems that 
have more variables required too much time and space for our machine to handle, 
because of the A D A P T  overhead. 

We restricted the set of test problems to binary CSPs primarily because 
problems with constraints of higher order tend to have denser constraint graphs, 
for which consistency enforcing algorithms have a higher overhead. We should 
point out, however, that A D A P T  adds non-binary constraints to the network, 
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and thus the implementation of backtracking and backjumping had to accommo- 
date general, non-binary cases. 

At  site-2 we experimented with two sets of random problems: one consisting of 
104 instances (40 instances were consistent), each having 10 variables and 5 
values, and the other consisting of 107 instances (23 instances had solutions), each 
with 15 variables and 7 values. The first group was generated with Pl = P2 = 0.5, 
while the second was generated with Pl = 0.64 and P2 = 0.55. This combination of 
parameters  generated relatively difficult instances. 

We recorded the number  of consistency checks and the number of deadends (or 
back-trackings) in each run. The number of consistency checks is considered a 
realistic measure of the overall performance,  while the number of deadends is 
indicative of the size of the search space explored. The implementation of DSR at 
site-2 used an additional data structure in the form of a set of tables. In this case, 
we added the number  of table look-ups to the number of consistency checks. 

Each algorithm was run twice on each problem instance; once to find one 
solution and once to find all solutions. The results were clustered into six groups 
by problem size (10 or 15 variables), and the following three cases: for finding one 
solution (called first), for finding all solutions (called all), and for cases where no 
solution exists (called failure). 

5. Experimental results 

5.1. Evaluation of consistency preprocessing algorithms 

We first report  our results at site-1. Our initial goal was to compare the effects 
of the three preprocessing algorithms, DAC, DPC, and ADAPT, on backtracking 
and backjumping. Figs. 7 and 8 present bar-charts displaying the average number 
of consistency checks, and are classified according to the width of the induced 
graph W* when using the CARD ordering. The first displays results for 10- 
variable instances, while the second focuses on 15-variable instances. The results 
for DEG and MIN were similar, and the ones for MIN are presented in Figs. 9 
and 10. 4 Each horizontal pair of graphs presents the average results from a group 
of instances having the same W*. The left column contrasts the results of all 
algorithms. However ,  because ADAPT's performance for large W* is so out of 
scale when compared to most other algorithms, we used a different scale for the 
backjumping, DAC, and backtracking algorithms in the right column. The results 
repor ted  for DAC, DPC, and ADAPT are for cases where they were com- 
plemented by backjumping. When using backtracking, the same behavior was 
observed,  because following consistency enforcing, most deadends were elimi- 
nated. 

Since the backtracking, backjumping and DAC algorithms do not show a clear 

4 Full detailed results can be requested from the authors. 
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monotonic dependence as a function of W* (right columns in figures), we 
presented in Fig. 11 a bar-chart comparing their overall average performances, in 
the case of CARD ordering. The corresponding results for MIN and DEG were 
similar and are given in Figs. 12 and 13. In Fig. 14, we separately plotted the 
performances of all algorithms for small W* to emphasize the dependence of 
A D A P T  and DPC on this parameter. (Note that, when W*--2,  ADAPT and 
DPC coincide.) 

Now we will consider the main relationship observed between the different 
algorithms as demonstrated by their average performance. In most cases these 
observations can be backed up by statistical guarantees of a 90% confidence level. 
In other cases we relied more on our general impression by looking at the detailed 
data, although we cannot claim that with a high level of confidence. 

By looking at the left-hand columns of the graphs of Figs. 7, 8 and 11, we see 
that simple backtracking generally outperforms ADAPT. We can also see that 
even on the average, ADAPT has an exponential behavior as a function of W*. 
Backtracking on the other hand exhibits a mauch more moderate, almost linear 
behavior. Figs. 7, 8, 14 and 15 suggest that the average performance of ADAPT 
tends to be better than backtracking for small values of W* (for W*= 1 on 
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Fig. 11. Number of consistency checks for algorithms DAC, DPC, ADAPT,  backjumping and 
backtracking with the CARD ordering on 15-variable random problems, disregarding W*. 
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Fig. 12. Number of consistency checks for algorithms DAC, DPC, ADAPT, backjumping and 
backtracking with the MIN ordering, disregarding W*. 

10-variable instances and W* =2  for 15-variable instances). In those cases 
A D A P T  becomes DAC (W*--1) and DPC (W*= 2), respectively. W* values 
become even more significant for the task of finding all solutions• Evidently, the 
amount of preprocessing performed by ADAPT is generally too heavy to be 
justified when generating one solution only, but becomes worthwhile when shared 
by several solutions. When comparing backtracking with DPC we see that DPC's 
overhead is in many cases also too high, but we observe some dominance of DPC 
for the task of finding all solutions when W* is small (Figs• 14 and 15). 

When compared to back]umping, ADAPT seems even worse. It rarely 
outperformed backjumping, and never with more than just a small margin. This 
data suggests that backjumping exploits the structure of the problem more 
efficiently than A D A P T  and should be preferred, especially considering that it 
does not need the additional memory that A D A P T  consumes. What remains to 
be tested is how A D A P T  compares with backjumping for larger problems having 
sparse graphs, when all solutions are required. Algorithm DPC, although 
generally inferior to backjumping, sometimes outperformed backjumping when 
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W* was small (see Fig. 15). Backjumping is always at least as good as 
backtracking as can be guaranteed theoretically. 

The disappointing results of A D A P T  are explained when comparing it with the 
other two, less ambitious, preprocessing algorithms D A C  and DPC. Almost 
always, D A C  is better than DPC which is better than ADAPT.  Indeed, when we 
counted the number of deadends left after preprocessing (Fig. 16), we found that 
in many problem instances even DPC eliminated all future deadends. It becomes 
clear, therefore, that for this class of problem instances A D A P T  is doing 
unnecessary preprocessing. Moreover, the number of deadends left by D A C  
shows that a substantial portion of the work is accomplished even by this 
algorithm, which performs the smallest amount of constraint recording. 

Although A D A P T  generally does not seem to be a sensible choice for finding a 
one time solution, it is still useful for finding a better representation of a network 
of constraints, such as when the network represents some knowledge base on 
which many queries are to be answered over time. In such cases, the work for 
generating the new representation can be ignored [7]. We also observed, as 
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Fig. 14. N u m b e r  of consistency checks for algorithms DAC, DPC, ADAPT,  backjumping and 
backtracking with CARD and MIN orderings for small W*. 

dictated by theory, that the amount of processing required to generate one or all 
solutions is considerably less after using ADAPT. (The results are not displayed.) 

We turn now to the right-hand columns of Figs. 7-11, which compare 
backjumping, DAC, and backtracking. Clearly, the two algorithms that stand out 
in these experiments are backjumping and DAC. Both outperformed backtrack- 
ing (and DPC and ADAPT) in almost all cases, but neither dominated the other. 
When carefully observing their relative performance according to the problem's 
size, the ordering used, and the task at hand, we see that the backjumping 
algorithm was somewhat better than DAC only when finding the first solution and 
for problems of small size (10 variables), irrespective of the ordering. In the more 
demanding cases, when the problems were large (15 variables), and for the task of 
finding all solutions, DAC was better. Thus, the charts suggest that for heavy 
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Fig. 15. Number of consistency checks for algorithms DAC, DPC, ADAPT, backjumping and 
backtracking with the DEG and MIN orderings for small W*. 

tasks, the overhead presented by DAC is outweighed by its gain. This hypothesis 
requires further testing on larger problem instances. 

5.2. Effects of variable ordering 

We now focus on characterizing the effect of variable ordering, be it static or 
dynamic, on the various algorithm combinations, particularly on backtracking and 
backjumping. Here we presented results from both sites. Fig. 17 presents results 
from site-1. It shows the results of running backtracking and backjumping using 
the four orderings: DEG, CARD, MIN, and DSR. Each graph presents the 
average number of consistency checks over all instances, disregarding W*. As 
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Fig. 16. Number of deadends for preprocessing algorithms (DPC, DAC, backjumping and backtrack- 
ing) with the CARD and DEG orderings on 15-variable random problems. 

before, we grouped the results according to the problem size (10 or 15 variables) 
and the three cases (first, all, failure). 

Fig. 17 shows that the DEG ordering almost always comes out a loser (accept 
for 10-variable instances when looking for all solutions), yet there is no clear 
winner. Again we observed some patterns in the role of ordering, relative to the 
task and to the problem size. Specifically, MIN was the best ordering for the task 
of finding the first solution (except for backtracking in large problems), CARD 
was the best ordering for finding all solutions, and DSR was generally best for 
failure instances (with the exception of backjumping in small problems). When we 
compared the number of deadends associated with each ordering it became clear 
that DSR expands the smallest search space (i.e., it has the least number of 
deadends on an instance-by-instance basis). Therefore, if we had better im- 
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plemented this technique, we may have had a better overall performance. Indeed, 
at site-l's implementation of DSR, no data structure was used to reduce 
redundant consistency checks, as is done in other look-ahead schemes such as 
forward-checking [14]. 

This problem was corrected in our experiments at site-2. Here we compared 
three static orderings and one dynamic ordering. We used MIN and CARD, as at 
site-l, but instead of DEG (it had been relatively bad and almost never first at 
site-l) we used a DFS ordering with a random tie-breaking rule. At this site, DSR 
was implemented more efficiently, using data structures similar to those used by 
Haralick and Elliot [14] which take at most quadratic space. Therefore, when 
collecting the data, we added the number of table look-ups to the number of 
consistency checks. 

As can be seen from Figs. 18 and 19, in this implementation, DSR dominated 
all other orderings. Contrary to our observations at site-l, we saw some 
superiority of MIN over CARD in these instances. 

6. Summary and conclusions 

We have evaluated the computational benefits of several techniques for 
preprocessing constraint satisfaction problems. First, we tested the effect of 
various consistency preprocessings on backtracking and backjumping, and then 
we tested the effect of five variable ordering schemes. The conclusions are 
schematized in Figs. 20 and 21. These graphical representations summarize the 
relative merits of the algorithms as reflected by the average number of consistency 
checks. An arrow from A to B indicates that algorithm A is generally superior to 
algorithm B. Superiority in these graph means that with a confidence level of 0.95 
the average performance of the algorithm in the tail of the arrow is less than that 
of the algorithm in its head, with exceptions annotated on the arrow. The 
exceptions mean either reverse superiority or an inconclusive relationship. For 
example, Fig. 20 indicates that backtracking outperforms ADAPT except when 
W* is very small and all solutions are computed. Similarly, DAC outperforms 
backjumping except when finding the first solution. This arrow is wigly to indicate 
that the dominance relationship displayed is relatively weak or inconclusive. 
Likewise, Fig. 21 presents the relative strength of different orderings with respect 
to backtracking (Fig. 21(a)) and backjumping (Fig. 21(b)). The solid arrows show 
results taken at site-1 while the dotted arrows show results taken at site-2. An 
inconclusive relationship is denoted by an undirected arc, labeled "?".  

Our experiments indicate that in most cases DAC followed by backjumping 
outperforms all other schemes, while DSR remains the most promising ordering 
scheme. When static ordering is imposed, the experiments suggest that combining 
DAC with MIN or CARD yields the best results, on average. 

In previous empirical results conducted with the same random model, we 
observed that weak enhancement schemes were the most effective (due to their 
low overhead). Stronger schemes did not pay off. For instance, in testing different 
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Fig. 18. Number of consistency checks for backjumping and backtracking on orderings DEG, CARD, 
M1N, and DSR at site-2 for 10- and 15-variable problems. 

levels of look-ahead schemes, Haralick and Elliot concluded that forward-check-  
ing, the least intensive look-ahead mechanism, performed much better than the 
more intensive partial-look-ahead and full-look-ahead (see [14, Figs. 6, 9, 10, and 
11]). The same conclusions are evident in Gaschnig's experiments with D E E B ,  
which was his way of incorporating full arc consistency into search (see [12, Figs. 
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Fig .  19. T h e  effect of variable ordering on the number of consistency checks parameterized by W *  

(with and without preprocessing by DAC) at site-2. 

4.3-1 and 4.4.2-2]). Similarly, when generating heuristics for value selection 
preferences, only very shallow advice improves the search (see [6, Figs. 15 and 
16]). We witnessed the same phenomenon while assessing various look-back 
schemes. When augmenting backjumping with various levels of constraint record- 
ing (i.e., learning no-goods parameterized by the size of the constraints and the 
depth of reasoning), it becomes evident that only very shallow learning of only 
small constraints is worth undertaking (see [3, Figs. 7 and 8]). 

A disclaimer is in order here. Since these experimental comparisons were 
conducted on small-size problem instances, limited by ADAPT time and space 
complexity, we cannot confidently extrapolate our findings for larger problem 
instances. Another point is that the random generator we used tends to generate 
relatively easy instances. It has been shown that the average complexity for 
solving such problems by backtracking is polynomial [14], and it has also been 
observed recently [11] that a random generator that takes the number of 
constraints as a parameter (rather than the probability of a constraint) tends to 
generate much harder instances. Therefore, the comparisons should be continued 
on additional random models, and larger instances, before a definite conclusion 
can be reached. 
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Fig. 20. Relative performance of consistency enforcing algorithms. An arrow from A to B means that 
algorithm A is generally superior to B with exceptions annotated on the arrows. 

OF5 DEG 

~*~* *2 % % • Ig 

IO,all 

M I N  

CARD . .... : 
"*.. % : ? 

",.,, ... ; 
...... • . ,=  

D S R  

(a)  

DFS. DEG 

DSR 
(b) 

Fig. 21. Relative merits of ordering schemes for (a) backtracking and (b) backjumping. 

I t  is conceivable that on larger, more  difficult instances, intensive preprocessing 
algorithms may actually pay off. Indeed,  we recently observed that for hard 
20-variable, 5-value instances, full path consistency followed by backjumping 
considerably ou tper formed back jumping  [5]. We also observed f rom our as well as 
f rom others '  data that the performance  variance on problems generated with the 
same pa rame te r  is very large. Thus,  per formance  averages may not be the 
adequate  measure  for comparisons.  Relative measures  such as the average 
per formance  ratio might be more  informative.  
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