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An important feature of Bayesian networks is that they facilitate explicit encoding of
information about independencies in the domain, information that is indispensable for
efficient inferencing. This article characterizes all independence assertions that logically
follow from the topology of a network and develops a linear time algorithm that identifies
these assertions. The algorithm’s correctness is based on the soundness of a graphical
criterion, called d-separation, and its optimality stems from the completeness of d-
separation. An enhanced version of d-separation, called D-separation, is defined, extend-
ing the algorithm to networks that encode functional dependencies. Finally, the algorithm
is shown to work for a broad class of nonprobabilistic independencies.

1. INTRODUCTION

The practical significance of conditional independence is reflected in three
processes that are supported by expert systems: encoding the experience of an
expert (elicitation), drawing conclusions (inference), and communicating the
system’s recommendations to the user (explanation). In eliciting probabilistic
models from human experts, qualitative dependencies among variables can
often be asserted with confidence, whereas numerical assessments are subject
to a great deal of hesitancy. For example, an expert may willingly state that
cancer is related to both smoking habits and asbestos exposure; however, he/she
would not provide a numeric quantification of these relationships unless he/she
has rich experience with cancer patients or is aware of a reliable statistical
survey that estimates the strength of these relationships. Developing a direct
representation scheme for judgments about dependencies, which is the major
contribution of this article, facilitates a qualitative organization of knowledge
in a manner that is amenable to a human expert and guards the model builder
from assigning numerical values that lead to conceptually unrealistic dependenc-
ies.

Knowledge about independence saves space when storing probability distribu-
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tion functions and saves time when computing and updating the probability of
an event; if we ignore independencies, then representing a discrete distribution
function would require exponential size tables and calculating P (x is true)
would require a lengthy summation over the other variables in the table. Reco-
gnizing the independencies among the variables enables us to encode the table
with fewer parameters and to considerably reduce the computations. Further-
more, if we choose to represent and process random variables by Bayesian
networks, then the topology of such networks as well as the set of transforma-
tions that we are permitted to apply to them are determined by the rules that
govern conditional independence.

Finally, a qualitative characterization of conditional independence in terms
of logical axioms that do not refer to numerical quantities highlights plausible
lines of reasoning that would otherwise be hidden in numerical calculations.
Such axioms could serve as building blocks of systems that provide qualitative
explanations as to why certian facts were or were not taken into account in a
given computation. For example, the axiom (4c) below can be phrased to read:
“If two items together are judged to be unnecessary for a computation, then
learning one of them leaves the other still unnecessary.” By contrast, a numeric
representation of this argument would involve complicated equations that hide
the intuition behind it. Thus, a logical characterization is preferable and is
pursued in this paper.

This work develops a scheme for representing and manipulating dependencies
in the framework of Bayesian networks. This graph-based system records a state
of probabilitic knowledge P, provides means for updating the knowledge as
new information accumulates and facilitates query answering mechanisms for
knowledge retrieval [15,18]. Formally, a Bayesian network (also known as
probabilistic influence diagram) is a parameterized directed acyclic graph (dag)
D constructed from a probability distribution P called the underlying distribu-
tion. Each node « in D corresponds to a variable « in P, a set of nodes X
correspond to a set of variables X, and the symbols a and x denote values
drawn from the domain of « and X, respectively. Each node « in the network
is regarded as a storage cell for the distribution P(a|m(a)), where 7(a) is a set
of variables that correspond to the parent nodes 7(a) of a. The underlying
distribution from which a Bayesian network is drawn decomposes into

Play,...,a,) = Ij1 P(a]|7(a)); (1)

when o; has no parents, then P(a;|m(a;)) = P(a;). A standard query for a
Bayesian network is to find the current belief distribution of a hypothesis «,
given an evidence set Y =y, i.e., to compute P(a|y) for each value of a and
for a given combination of values of Y. The answer to such queries can, in
principle, be computed directly from Eq. (1) because this equation defines a
full probability distribution. This, however, might be very inefficient both in
time and space, unless we exploit the independence relationships embodied in
the product of Eq. (1), as portrayed by the network. The following two prob-
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lems must be examined to take full advantage of such independencies: Given a
variable v, a Bayesian network D, and the task of computing P(a|y), determine,
without resorting to numeric calculations, (1) whether the answer to the query
in sensitive to the value of a variable vy, and (2) whether the answer to the
query is sensitive to the parameters p,, = P(c|m(c)) stored at node y.

The answer to these questions is given in terms of conditional independence:
The value of y would not affect the query P(aly) if P(aly) = P(a|y,c) for all
instances a, y, and c, or, equivalently, if a and y are conditionally independent
given Y, denoted by I(«,Y,7y)p. Similarly, the parameters p,, stored at node y
would not affect this query if « is conditionally independent of p,, given Y. The
main claim made here is that many of these independencies can be detected
directly from the topology of the network, merely by examining the trails along
which «, Y, and vy are connected.

The rest of the article is organized as follows. In Section 2, we define depen-
dency models and graphoids, concepts that abstract the most essential properties
of conditional independence from probability theory and that provide a qualita-
tive formalism to reason about dependencies. In Section 3, we provide a graphi-
cal criterion, d-separation, that identifies the maximum number of independenc-
ies from the network without resorting to numerical calculations. Sections 4
and 5 are the main contribution of this paper. Section 4 extends the analysis of
Section 3 to networks in which deterministic variables are present, namely,
variables a’s whose value is deterministic function of its parents () [22]. A
new graphical criterion is provided, called D-separation, which is shown to be
maximal for these networks. Finally, Section 5 employs the declarative defini-
tion of D-separation as the basis for an efficient linear-time algorithm that
solves the two problems raised in the Introduction.

2. DEPENDENCY MODELS

The notion of dependency models presented below was originated by Pearl
and Paz [20]. The definitions are taken from [21].

Definition. A dependency model M over a finite set of elements U is any subset
of triplets (X,Z,Y) where X, Y, and Z are three disjoint subsets of U. The
triplets in M represent independencies, that is, (X,Z,Y) € M asserts that X and
Y interact only via Z, or “X is independent of Y given Z.” This statement is
called an independence statement and is also written as I(X,Z,Y) with an op-
tional subscript to clarify the type of dependency when necessary. An indepen-
dence statement is often called an independency; the negation of an indepen-
dency is called a dependency.

We will use both set notations and logic notations when speaking about
dependency models. For example, we say that a triplet T belongs to a depen-
dency model M or that an independence statement 7 holds for M. Similarly,
we say that M contains T or that M satisfies the statement 7.
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Definition. A Probabilistic Dependency Model Mp is defined in terms of a
discrete probability distribution over a finite set of variables U. If X, Y, and Z
are three disjoint subsets of U, and x, y, and z, any instances of the variables
in these subsets, then by definition [(X,Z,Y)p iff

P(X=x|Z=2z,Y=y)=P(X=x|Z = z) whenever P(Y =y,Z=7)>0.
()

This definition conveys the idea that, once Z is fixed, knowing Y can no longer
influence the probability of X [2].

The class of all probabilistic dependency models is denoted by /. Similarly,
in all the definitions that follow when My is a specialized type of a dependency
model (e.g., probabilistic), then [l denotes the class of all such models.

Definition. A Relational Dependency Model My is defined in terms of a data
base R over a set of attributes U, i.e., a set of tuples of values for the attributes.
The notation {(aia, - - - a,,) is conventionally used to denote that the tuple is in
the relation R. If X, Y, and Z are three disjoint subsets of U, and x;, x», y1,
y2, 2, any instances of the corresponding attributes in X, Y, and Z, then by
definition I[(X,Z,Y)g iff

(x1y1z) and (x2y»2) = (X1y22). (3)

In other words, the existence of the tuples (x;y;z) and (x,y,z) guarantees the
existence of (x;y,z). When the implication above holds, we say that I(X,Z,Y)g
holds in R. The same definition is used in relational data base theory, and it
conveys the idea that, once Z is fixed, knowing Y cannot further restrict the
range of values permitted for X [5]. A similar definition in another framework
was called qualitative independence [24]. For a review on data base dependen-
cies, consult Fagin and Vardi [6] or Vardi [27].

Definition [20]. A Correlational Dependency Model M is defined in terms of a
finite collection of random variables U with finite means and variances and with
nonzero variances. If X, Y, and Z are three disjoint subsets of U, then by
definiton I(X,Z,Y)c iff pap.z = 0 for every @ € X and B € Y where p,z.~ is the
partial correlation of « and B [1]. Intuitively, this definition captures the idea
that the linear estimation error of the variables in X using measurements on Z
would not be improved if measurements were to be taken also on variables of
Y, thus rendering Y irrelevant to the estimation of X.

These three types of independence—probabilistic, relational, and correla-
tional —provide different formalisms for the notion of irrelevance, each captur-
ing different aspects of the word “irrelevant.” The similarity between these
models is summarized axiomatically by the following definition of graphoids.
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Definition. A graphoid' is any dependency model M that is closed under the
following axioms:

Symmetry  I(X,2.Y)=> IY,Z,X) (4a)
Decomposition  I(X,Z.Y UW)=> I(X,Z,Y) (4b)
Weak union I(X,ZYUW)> (X, ZUW,Y) (4¢)

Contraction ~ 1(X,Z,Y) and (X, ZUY,W) > I(X,Z,Y UW). (4d)

Intuitively, the essence of these axioms lies in Eqs. (4c) and (4d), which assert
that when we learn an irrelevant fact, all relevance relationships among other
variables in the system should remain unaltered; any information that was
relevant remains relevant and that which was irrelevant remains irrelevant.
These axioms, common to all formalization of dependencies presented so far,
are very similar to those assembled by Dawid [2] for probabilistic conditional
independence and those proposed by Smith [25] for Generalized Conditional
Independence. The difference is only that Dawid and Smith lumped Eqgs. (4b)
through (4c¢) into one and added an axiom to handle some cases of overlapping
sets X, Y, Z. We shall henceforth call axioms (4a) through (4d) graphoid
axioms. In view of this generality, these four axioms are selected to represent
the general notion of mediated dependence between items of information [19].
A proof that the graphoid axioms hold for conditional independence for all
distributions can be found in [26].

Definition. An intersectional graphoid is any graphoid M that is also closed
under the following property:

Intersection  I(X,ZUY,W)and I(X,ZUW,Y)=> I(X,ZYUW). (5)

Interestingly, both undirected graphs and directed acyclic graphs (dags) conform
to the graphoid axioms (hence, the name) if we associate the statement
I(X,Z,Y)s with the graphical condition “every path between X and Y is blocked
by the set of nodes corresponding to Z.” In undirected graphs, blocking corre-
sponds to ordinary interception, whereas in dags it is defined by a criteria called
d-separation, discussed below. Axiom (5), which reflects the positiveness of a
distribution is not satisfied by D-separation (defined in Section 4) because this
criterion incorporates functional dependencies and thus inherently represents
distributions that assign zero probability to some configurations.

Definition. An Undirected Graph Dependency Model Mg is defined in terms

In [19,20], dependency models satisfying axioms (4) are called semi-graphoids and those
satisfying (4) and (5) are called graphoids. We have changed terminology to account for
the greater generality of the former.
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of an undirected graph G. If X, Y, and Z are three disjoiht subsets of nodes
in G, then by definition I(X,Z,Y)¢ iff every path between nodes in X and Y
contains at least one node in Z. In other words, Z is a cutset separating X from
Y.

Definition. An I-map of a dependency model M is any model M’ such that
M' C M. For example, if a relation R contains all tuples having nonzero proba-
bility in P, then Mp is an I-map of Mg, because every independency embodied
by P [defined in Eq. (2)] is also an independency in R [as defined in Eq. (3)].
In this case, we also say that P is an /-map of R.

Definition. A perfect map of a dependency model M is any model M’ such
that M' = M. :

An important task for representing an arbitrary probabilistic dependency
model is the construction of an appropriate graph representation whether di-
rected or undirected. Ideally, to graphically represent all independencies of
some distribution P by a graph G, we would like to require that every indepen-
dency of P would belong to My and vice versa and every triplet in Ms would
represent an independency that holds in P. In other words, Mg would be a
perfect map of Mp. This would provide a clear graphical representation of all
variables that are conditionally independent. Unfortunately, this requirement
is often too strong because there are many distributions that have no perfect
map in graphs. The spectrum of probabilistic dependencies is, in fact, so rich
that it cannot be cast into any representation scheme that uses polynomial
amount of storage.? Thus, the topology of a graph alone cannot always represent
all the independencies and dependencies of a given distribution, and we must
compromise this requirement and allow some independencies to escape repre-
sentation. Naturally, we seek a graph that displays only genuine independencies
of P and that maximizes the number of such displayed independencies. In other
words, we require that M be an I-map of Mp and that no edge can be deleted
without destroying the I-mapness of G.

The most important properties of intersectional graphoids are that they pos-
sess unique edge-minimal /-maps in #{ and permit the construction of graphical
I-maps from local dependencies. We obtain a graph that is an edge-minimal /-
map of M by connecting each variable « to the (unique) minimal subset that
renders o conditionally independent of all other variables in U [20]. Such
local construction of an undirected graph model is not guaranteed for non-
intersectional graphoids, but is possible when using the language of dags com-
bined with an appropriate separation criterion, such as d-separation.

2This claim is established by showing that the number of distinct probabilistic dependency
models over U is at least O (exp{2!Y}), thus requiring, on the average, exponential
amount of storage to represent a single dependency model [28].
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3. SOUNDNESS AND COMPLETENESS OF d-SEPARATION

The definition of d-separation is best motivated by regarding dags as a repre-
sentation of causal relationships. Designating a node for every variable and
assigning a link between every cause to each of its direct consequences defines
a graphical representation of a causal hierarchy. For example, the propositions
“It is raining” (@), “the pavement is wet” (B), and “John slipped on the
pavement” (y) are well represented by a three-node chain, from « through S
to v, it indicates that either rain or wet pavement could cause slipping, yet wet
pavement is designated as the direct cause; rain could cause someone to slip if
it wets the pavement, but not if the pavement is covered. Moreover, knowing
the condition of the pavement renders “slipping” and “raining” independent,
and this is represented graphically by a d-separation condition, I(«,7y,8)p, that
shows node « and B separated from each other by node . Furthermore, if we
assume that “broken pipe” (8) is another direct cause for wet pavement, as in
Figure 1, then an induced dependency exists between the two events that may
cause the pavement to get wet: “rain” and ‘“‘broken pipe.” Although they
appear connected in Figure 1, these propositions are marginally independent
and become dependent once we learn that the pavement is wet or that someone
broke his leg. An increase in our belief in either cause would decrease our
belief in the other as it would “explain away’’ the observation. The following
definition of d-separation permits us to graphically identify such induced depen-
dencies from the network (d connoted “directional’).

Definition. A trail in a dag is a sequence of links that form a path in the
underlying undirected graph. A node B is called a head-to-head node with
respect to a trail ¢ if there are two consecutive links o — 3 and B<yont. A
node B is called a tail-to-tail node with respect to a trail ¢ if there are two
consecutive links a < 8 and 8 — 7y on t. A node that starts or ends a trail ¢ is
a tail-to-tail node if it delivers an arrow but is not a head-to-head node if it
receives an arrow.

Definition [19]. A trail ¢ is active by Z if (1) every head-to-head node (wrt )
either is or has a descendant in Z and (2) every other node along ¢ is outside
Z. Otherwise, the trail is said to be blocked by Z.

Definition [19]. If X, Y, and Z are three disjoint subsets of nodes in a dag D,
© ()

¢

@
FIG. 1.
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then Z is said to d-separate X from Y, denoted I(X,Z,Y)p, iff there exists no
active trail by Z between a node in X and a node in Y.

In Figure 2, for example, X = {a,} and Y = {a3} are d-separated by Z = {a,};
the trail as <« a, — a4 is blocked by a, € Z while the trail a3 — as <« oy is
blocked because as and all its descendants are outside Z. Thus, I(ay,05,03)p
holds in D. However, X and Y are not d-separated by Z' = {a,as} because the
trail as — as < a4 is rendered active: Learning the value of the consequence
as, renders its causes a3 and o4 dependent, like opening a pathway along the
converging arrows at as. Consequently, I(a4,{a,a6},03)p does not hold in D.

The task of finding a dag that is a minimal /-map of a given distribution P
was solved in [21,29]. The algorithm consists of the following steps: First, assign
a total ordering d to the variables of P. For each variable «; of P, identify a
minimal set of predecessors 7(«;) that renders «; independent of all its other
predecessors (in the ordering of the first step). Then, assign a direct link from
every variable in 7(a;) to «;. The resulting dag is an I-map of P and is minimal
in the sense that no edge can be deleted without destroying its /-mapness. The
input for this construction consists of a list L of n conditional independence
statements, one for each variable, all of the form I(a;,7(a;),U(®;) — (@),
where U(q;) is the set of predecessors of «; and 7(«;) is a subset of U(e;) that
renders «; conditionally independent in P of all its other predecessors. This set
of conditional independence statements is said to generate a dag and is called
a recursive basis drawn from P.

Definition. Given a probability distribution P on a set of variables U, a
dag D = (U,E) is called a Bayesian network of P iff D is a minimal-edge /-map
of P.

The three theorems below summarize the discussion above and further
characterize the independencies that are displayed in a dag D. A preliminary
definition is needed.
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Definition. An independence statement 7T logically follows (wrt a class of
dependency models ) from a set L of such statements if T holds in every
dependency model M € J that satisfies L. In this case, we also say that T is a
semantic consequence of L (wrt M).

Theorem 1 (soundness) [29]. If M is'a graphoid and L is any recursive basis
drawn from M, then the dag generated by L is an I-map of M.

Theorem 2 (closure) [29]. Let D be a dag generated by a recursive basis L.
Then Mp, the dependency model defined by D, is exactly the closure of L
under the graphoid axioms.

Theorem 3 (completeness) [9]. Let D be a dag generated by a recursive basis
L drawn from a probabilistic model M. Then, every semantic consequence of
L wrt My holds in D.

The first theorem guarantees that d-separation identifies only independencies
that hold in the original graphoid. The second theorem further characterizes
the statements identified by d-separation as being exactly the statements deriv-
able from a recursive basis L via the graphoid axioms. The third theorem
assures that a dag displays all statements that logically follow from L (wrt /),
that is, the graphoid axioms are complete, capable of deriving all semantic
consequences of a recursive basis. Thus, Theorem 3 implies that for any inde-
pendence relationship not displayed by d-separation there exists an underlying
distribution for which this indepenency is violated; hence, we cannot hope to
improve the d-separation criterion to display more independencies. Moreover,
since a statement in a dag can be verified in linear time (Section 5), Theorem
3 provides a complete polynomial inference mechanism for deriving all indepen-
dence statements that logically follow from a recursive basis. A generalized
version of these three theorems is proven in Section 4. Analogous results are
proven in [8] for Markov fields; a representation scheme based on undirected
graphs [13,14].

We conclude this section by showing how these thoerems can be employed
as an inference mechanism. Assume an expert has identified the following
conditional independencies among five variables, denoted «; through as:

L= {I(a2aﬁaa1)’ 1(053,{% ,012},@) s I(CY4,CV2,{011,043})’ [(aS:{a3:a4}v{a1 ,az})}7

in which the second statement in L is trivial. We raise two questions: First,
what is the set of all semantic consequences of L? Second, in particular, is
I(a;,{0n,as,as}),a4) a semantic consequence of L? For general lists of indepen-
dencies, the answer for such questions may be undecidable [6,27], but, since L
is a recursive basis, it defines a dag D that graphically verifies each and every
semantic consequence of L. This dag is shown in Figure 2, ignoring nodes as,
oy, ag and their adjacent links. To answer the second question, we simply
observe that I(«;,{as,as,as5,}a,) holds in D.
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4. NETWORKS WITH DETERMINISTIC NODES

The analysis of Section 3 assumes that the input information L is a recursive
basis, containing only statements of the form I(a,m(a),U(a) — 7(a)). Occasion-
ally, however, we are in possession of strong forms of independence relation-
ships, in which case additonal statements should be read off the dag. A common
example is the case of a variable that is functionally dependent on its corre-
sponding parents in the dag (deterministic variable, [22]). The existence of each
such variable « could be encoded in L by a statement of global independence
I(a,7(a),U — 7(a)) asserting that, conditioned on its parents 7 (), « is inde-
pendent of all other variables, not merely of its predecessors. The independen-
cies implied by these statements can be read from the dag using an enhanced
version of d-separation, named, D-separation.

Definition. A node « is (functionally) determined by Z iff a €EZ or a is a
deterministic node and all its parents are functionally determined by Z. If a is
a deterministic node with no parents, then it is functionally determined by Z.
A set of nodes is determined by Z if each of its members is determined by Z.

Definition. If X, Y, and Z are three disjoint subsets of nodes in a dag D, then
Z is said to D-separate X from Y, iff there exists no trail ¢ between a node in
X and a node-in Y along which (1) every node with converging arrows either
is or has a descendant in Z, (2) every other node is outside Z, and (3) no tail-
to-tail node on ¢ is functionally determined by Z. A trail satisfying the three
conditions above is said to be active; otherwise, it is said to be blocked? (by
Z). '

The new criterion certifies all independencies that are revealed by d-separ-
ation plus additional ones due to condition 3 of the definition. In the dag of
Figure 2, for example, if node as is functionally determined by its parents, then
the independence I(as,{as,a4},a5)p holds in D (by definition of D-separation),
conveying the idea that once a node (as) is functionally determined, its value
becomes independent of the rest of the network, independent even of its
immediate successors. It should be noted that the definition of D-separation
can be condensed without altering its meaning. This is shown by the following
Lemma.

Lemma 4. The following assertions are equivalent:

(a) A trail ¢t is activated by Z, namely, ¢ is a trail along which (al) every
node with converging arrows either is in Z or has a descendant in Z
(a2), every other node is outside Z, and (a3) no tail-to-tail node (wrt ¢)
is functionally determined by Z.

3For the rest of the paper, the terms active and blocked will refer to D-separation (not
to d-separation as defined in Section 3).



IDENTIFYING INDEPENDENCE IN BAYESIAN NETWORKS 517

(b) tis a trail along which (bl) every node with converging arrows either
is in Z or has a descendant in Z and (b2) no other node is functionally
determined by Z.

Proof. Let t be a trail connecting « and B that satisfies the three conditions
in (a). Assume, by contradiction, that condition (b2) is violated, namely, that
there exists a node a; on ¢ that is not a head-to-head node, yet is determined
by Z. By (a3) «; cannot be a tail-to-tail node. Examine a link in ¢ that points
toward ey, say the link a, — ;. Since «; is determined by Z, either o, is in Z,
in which case ¢ violates condition (a2) or « is determined by Z. We repeat the
same argument for a, and obtain the chain a; — a, — a; where either a3 is in
Z or determined by Z. Eventually (since the number of nodes is finite), we
either reach a node that is in Z, thus violating condition (a2) or we reach a
tail-to-tail node that is determined by Z, in which case the trail violates condition
(a3). Thus, both cases contradict our assumption that ¢ satisfies the three con-
ditions stated in (a). The other direction is imediate. Condition (al) follows
from (b1), and (a3) follows from (b2). Condition (a2) follows from (b2) because
a node that is not determined by Z must be outside Z. n

Note that, in principle, to check whether Z D-separates X and Y, the defini-
tion requires us to examine all trails connecting a node in X and a node in Y,
including trails that form loops. For example, in Figure 2, to check whether
X = {a;} and Y = {ag} are D-separated by Z = {as} would require checking trails
such as a;, as, as, a4, @z, @3, ag, and many others. The next lemma states that
such trails need not be examined because whenever there is an active trail with
a loop there is an active simple trail as well, i.e., a trail that forms no cycles in
the underling undirected graph. In the previous example, the trail «;, a3, and
ag is the simple trail (given {as}), guaranteed by Lemma 5. The proof can be
found in [8].

Lemma 5. Let Z be a set of nodes in a dag D, and let «, B & Z be two nodes
of D. Then o and B are connected via an active trail (given Z) only if « and B
are connected via a simple active trail (given Z).

Parallel to the discussion of Section 3, we define a new basis and prove
soundness and completeness of D-separation with respect to this basis.

Definition. An enhanced basis L drawn from a dependency model M in an
ordering ay, . . . ,&, of M's elements is a set of n independence statements (i.e.,
triplets) (o, 7m(a;),W(e;)) EM, i=1..n, where W(e,) is either U(e;) — 7(e;)
or U—- w(e) —{a}, Ulw) ={as, ... o1} and 7(e;) C U(ey). An enhanced
basis is said to generate a dag over n nodes where each node ¢; corresponds to
an element a; and its parents are those nodes corresponding to the elements
in w(a;). When the i-th statement is a global independence (W(a;) = U
—a(a;) — {e;}), then node ¢; is depicted in D with a double circle to denote
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that it is a deterministic node. Other nodes, which are called chance nodes, are
depicted using a single circle.

The next lemma explicates those independencies that are implied from the
deterministic nodes alone; it is needed for establishing the soundness of D-
separation. For clarity, we will omit the union symbol from complicated ex-
pressions and write, as a shorthand notation, XY for X U Y and X« for X U {a}.

Lemma 6. Let M be a graphoid and L be any enhanced basis drawn from
M. If Z functionally determines X in the dag generated by L, then
(X, Z,U-XZ)e M.

Proof. We prove the lemma by induction on the highest index / of an
element in X as determined by the ordering of L. If the highest index is 1, then
X is a singleton that has no parents in the dag. It is therefore determined by
Z only if it is a deterministic node, if which case, (X,8,U — X) is a member of
L (and thus a member in M). By weak union, (X,Z,U — XZ) € M follows.
Otherwise, let X = X’ a, where a has the highest index in X. Since Z determines
X', by the induction hypothesis, the triplet (X',.Z,U - X'Z) € M.

We will show that the triplet («,Z,U — «Z) is also in M and that the last two
triplets together imply that (X,Z,U — XZ) € M. The set Z determines « and
a & Z, therefore, Z determines the parents of «, denoted by V, and « is a
deterministic node. Since all elements of V have a smaller index than «, by the

'indgction hypothesis, (V,Z,U~VZ)e M (é J1). The triplet (a,V,U — Va) €
L(=J,) because « is a deterministic node and therefore this triplet is also a
member of M. Letting W = U — VZa, J, and J, are written as

(V,.Z,Wa) €M and (o, V,WZ) E M,

respectively. The triplets (o,Z,V) € M and («,ZV,W) € M are derived from
the previous ones, respectively, by summetry, decomposition, and weak union.
By using contraction on the latter triplets, it follows that («,Z,VW) € M. Substi-
tuting U — VZa for W, we obtain that («,Z,U — aZ) € M.

It remains to be shown that (X',Z,U—- X'Z)E M and (a,Z,U— aZ)EM
imply that (X,Z,U — XZ) € M. Letting W = U — ZX'«a, we show that

(X',Z,Wa) €M and (,Z,WX) EM > (X'a,Z,W)EM

follows from the graphoid axioms. The two triplets (W,Z,X') €M and
(W,ZX',a) € M are derived from the antecedents by summetry, decomposition,
and weak union. Using contraction on the resulting two triplets and then
symmetry yields that (X' a,Z,W) € M. Substituting U — ZX'« for W and X for
X'a, yields the desired conclusion (X,Z,U — ZX) € M. : |

Theorem 7 (soundness). If M is a graphoid and L is any enhanced basis drawn
from M, then the dag D generated by L is an I-map of M.
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Proof. Induct on the number of elements in the graphoid. For graphoids of
one variable, the single node dag generated is trivially an /-map. Suppose for
graphoids with fewer than k elements that the dag generated is an I-map. Let
M have k elements, let u be the last element in the ordering of L, let M [u] be
the graphoid formed by removing u and all triplets involving u from M, and
let D[u] be the dag formed by removing u and all its incident links from D.
Additionally, let L[u] be the set of triplets formed from L by removing the last
triplet and deleting the element u from the remaining triplets, namely, L[u] is
equal to {(j,B,R — u)|j # u,(j,B,R) € L}. The set L[u] is an enhanced basis of
M [u], and it generates the dag D[u]. Thus, since M [u] has k — 1 elements, by
the induction hypothesis, D[u] is an I-map of it. Let M be the dependency
model corresponding to the dag D and Mp(, correspond to D[u], (i.e., Mp
contains all triplets (X,Z,Y) for which X and Y are D-separated by Z in D).
Each triplet T of M, falls into one of three categories: (1) u does not appear
in T, (2) u appears on the first or third entry of 7, or (3) u appears in the
second entry of 7. These will be treated separately as cases 1, 2, and 3,
respectively. For each case, we will show that T € M, implies that T € M, thus
proving that D is an I-map of M.

Case 1. If u does not appear in 7, then T must be (X,Z,Y) with X, Y, and
Z three disjoint subsets of elements, none of which contain u. Since 7T is in
Mp, it must also be in Mp(,;, for if it were not, then there would be an active
trail (given Z) in D[u] between a node in X and a node in Y. But if this trail
were active in D[u], then it would also be active in any dag containing D[u] as
a subgraph; specifically, this trail would have remained active in D. By the
induction hypothesis, Mpy,; is a subset of M[u]; thus, 7 must be an element of
M u]. Also, M[u ] is a subset of M, so T is in M.

Case 2. If u appears in the first entry of the triplet, then 7' = (Xu,Z,Y) with
X, Y, and Z three disjoint subsets of elements, none of which contain u. Let
(u,B,R) be the last triplet in L, By, By, B, and By be a partitioning of B and
Rx, Ry, Rz and R, be a partitioning of R such that X = Bx U Ry, Y = By U Ry,
and Z = Bz U R as in Figure 3. We first show that (Y,ZXBo,u) € M. Then,
we will show that (Y,Z,XBy) € M. Since M is a graphoid containing these
two statements, it will follow by contraction that (Y,Z,XBou) € M and by

000

FIG. 3.
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decomposition and symmetry that 7= (Xu,Z,Y) € M. This will complete the
proof of case 2 because if u appears in the third entry of T, namely, 7=
(Y,Z,Xu), then (Xu,Z,Y) is a member of Mp, which would imply that
(Xu,Z,Y) is a member of M, and since M is closed under symmetry, 7' would
be a member of M as well.

We now show that (Y, ZXBO,u) € M. Consider the set By; any node in this
set is directly linked to u. Thus, in order for Y to be D-separated from u given
Z, By must be determined by Z in D (or be empty, in which case, by our
definitions, it is determined by Z). By Lemma 6, (By,Z,U — ByZ) & M. Using
weak union and decomposition, it follows that (By,ZXBo,u) is in M. The triplet
(u,B,R) in L implies (by decomposition and weak union) that (u,XZBoBy,
Ry) € M. The last triplet together with (By,ZXBo,u) imply (by symmetry and
contraction) that (Y,ZXBg,u) € M.

It remains to be shown that (Y,Z,XB,) € M. The triplet (Y,Z,Bo) must
belong to M), since otherwise there would have been an active trail between a
node in Y and a node in B, that could have been augmented to form an active
trail (by Z) between Y to u, by using the link that connects any element in Bo
to u (pointing to u). This would contradict the assumption that (u,Z,Y) € Mp,
as implied by decomposition from (Xu,Z,Y) & Mp. Thus, (Y,Z,Bo) € Mp.
(Y,Z,X) € My because it is implied by decomposition from the fact that
(Xu,Z,Y) is in Mp. By the definition of D-separation, two sets are D-separated
iff each of their individual elements is D-separated. Therefore, (Y,Z,X) € M
and (Y,Z,By) € M imply that (Y,Z,XBo) must also be in Mp. The last triplet
does not contain u; thus, by the argument of case 1, (Y,Z,XBo) € M.

Case 3. If u appears in the second entry, then T &€ Mp has the form
(X,Zu,Y). The triplet (X,Z,Y) must be a member of My, as well, for if there
were an active trail (given Z) between a node in X and a node in Y, this trail
would have remained activated by Zu because u is a sink on that trail. This
would contradict our assumption that (X,Zu,Y)€&€ Mp. The triplets
(X,Z,Y)E Mp and (X,Zu,Y) € Mp imply that either (X,Z,u)e Mp or
(u,Z,Y) € Mp.* By definition of D-separation, two sets are D-separated iff
each of their individual elements is D-separated. Therefore, (X,Z,Y) € Mp
and the disjunction above imply that either (X,Z,Yu) € Mp or (Xu,Z,Y) € Mp.
By the argument of case 2, it follows that either (X,Z,Yu)E€M or
(Xu,Z,Y) € M. In both cases, it follows by weak union and symmetry that
(X,Zu,Y) € M. |

Theorem 8 (closure). If L is an enhanced basis drawn from an arbitrary de-
pendency model M, the dag dependency model My generated from L is a
perfect map of the closure c/(L) of L under the graphoid axioms. In other
words, a triplet belongs to M, if and only if it can be derived from the triplets
of L using the four graphoid axioms.

“Pearl [19 (p. 129)] proves this property, called weak-transitivity, for d-separation, but
exactly the same proof applies also to D-separation.
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Proof. By the previous theorem, Mp C cl(L). It remains to be shown that
c(LyCMp. We will show, instead, that L C M. This will imply that
cl(L) C cl(Mp), and since every dag dependency model M, is a graphoid, it
must be the case that c/(Mp) = Mp, which will complete the proof. Let (u,B,R)
be a triplet in L. There are two cases: R does not contain any successor of u
in which case u is a chance node, or R contains all of u’s successors, in which
case u is a deterministic node. If u is a deterministic node, then its parents B
D-separate it from any other node; thus (4,B,R) € Mp. If u is a chance node,
then u is D-separated from R given B in the dag [i.e., (u,B,R) € Mp], for if
not, there would be a trail from a node in R to u that is active given B. But
since every link into u emitted from B, the trail must lead out of u into some
node that was placed after u. Since, in the case of a chance node, every node
in R was placed before u, this trail must contain a head-to-head node that was
placed after u. But this trail cannot be activated by B since B contains no
nodes placed after u, and thus, B would D-separate u from R in the dag. @

The completeness proof for D-separation requires the following lemma.

Lemma 9. For every dag D and a triplet 7 = («,Z,8) € Mp, there exists a
dag D’ with the following properties:

1. D'"=(E')V)is asubgraph of D = (E,V), i.e., E'CE.
2. (CK,Z,B) & MD’
3. The links of D’ consist exclusively of the following three sets:

a. A trail g between « and B.

b. A single directed path p, from every head-to-head node h; on g to a
distinct member z; of Z. The paths p;’s do not share any node with
each other and each p; intersects g only at ;.

c. For each functional tail-to-tail node ¢ on g, D’ contains a directed
path r; from some chance node /; to t; such that /; is the ony chance
node on r; and the entire path includes no nodes of Z. The paths 7/’s
do not share any node with each other or with any p; and each path
r; intersects g only at node #;.

A dag satisfying the three conditions above is called an aB-trail dag.

Proof. We first construct the dag D’ and then prove it satisfies the require-
ments. Let g be an active trail (given Z) between « and B with a minimum
number of head-to-head nodes denoted, from a to B, Ay, k>, ... ,hs. Such a
trail exists because 7 & Mp. Let z; be the closest (wrt path length) descendent
of h; in Z, and let p; be a directed path from A; to z; (if h; € Z then z = h;).
Let #; ...t be all deterministic tail-to-tail nodes on g. Let [; be the closest
chance node, not in Z, that is an ancestor of ¢ such that g;, a shortest directed
path connecting /; and t;, includes no nodes of Z. The paths p;’s exist because
the trail g is active only if every h-h node on it is or has a descendent in Z.
The paths g,’s exist in D because otherwise f; would have been functionally
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determined by Z and the trail ¢ would not have been active. Let D' = (E',V)
where E' consists exclusively of the links contained in g, p;’s and g,’s (e.g., Fig.
4).

By our construction, D' satisfies conditions 1, 2, and 3a. Next we prove that
it satisfies requirement 3b. First we claim that the path p;’s are distinct. Assume,
by contradiction, that there are two paths p, and p; (i <j) with a common node
vy (Fig. 5). Under this assumption, we find an active trail between « and f that
has fewer head-to-head nodes than g, contradicting the minimality of the latter.
If y, the common node, is neither A; nor 4;, then the trail (a,hi,y,h;,B) is an
active trail (given Z); each of its head-to-head nodes is or has a descendant in
Z because it is either y or a head-to-head node of g and every node that has
been added is not determind by z. Every other node 6 lies either on the active
trail ¢ and therefore is not determined by Z (Lemma 4) or it lies on either p;
or p;. In either of the last two cases, since z; or z; are closest descendants of h;
or h;, respectively, & must be outside Z. The resulting active trail contradicts
the minimimality of g since both k; and h; are no longer head-to-head nodes
whereas vy is the only newly introduced head-to-head node. If y = ;, then the
trail (,h;,7,h;,B) shrinks to be («,h;,y,8), which, using similar arguments, has
fewer head-to-head nodes than g and is activated by Z (the case y=h; is
symmetric).

We complete the proof of 3b by showing that each path p; intersects g only
at node h;. Assume, by contradiction, that p; and g have in common a node y
other than k; and assume that it lies between h; and B (the case where vy lies
between h; and « is symmetric) (Fig. 6). It has been shown that p; is distinct
from all other p;’s; therefore, in particular, node vy is not a head-to-head node
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FIG. 6.

on g. Thus, y cannot belong to Z because otherwise g were blocked by y and
thus would not have been active. Hence, the trail ¢’ = (a,k;,y,B) is activated
by Z. The trail ¢’ contradicts the minimality of g because 4, is no longer a
head-to-head node on g’ while no new head-to-head nodes are introduced.

To prove 3c, we use similar arguments. Assume paths r; and r; have a common

node vy (e.g., Fig. 7). Then the trail (a,t,7,4,8), depicted in Figure 7, is an
active trail that contains fewer head-to-head nodes than does g because the
fragment of g between any two tail-to-tail nodes #’s must contain a head-to-
head node while the new bypass does not contain any. The new trail is active
because no node on the bypass is determined by Z. Thus, the new trail is active
and therefore contradicts the minimality of g.

If a node v is shared by r; and p; (Fig. 8), then the trail (a,,7v,k,,8) (e.g.,
Fig. 7) contradicts the minimality of g; it contains fewer head-to-head nodes
than does g because %; is no longer a head-to-head node and no new head-to-
head nodes are added. It is active since neither of the nodes on the bypass is
in Z nor is determined by Z.

If vis shared by ; and ¢, then the new trail (a,t;,7y,8) (e.g., Fig. 9) contradicts
the minimality of g. It contains fewer head-to-head nodes than does g because
no new head-to-head nodes are added while the fragment of g between ¢; and
v must contain a head-to-head node; for otherwise, D would have contained a
circle. The new trail is active since no node on the bypass is in Z or is determined
by Z. Thus, D’ satisfies all the requirements of the lemma. |

Theorem 7 states that every independency in Mp must be a semantic conse-
quence (of L) wrt #, where J is any dependency model that satisfies the

FIG. 7.
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graphoid axioms, e.g., probabilistic, relational, and correlational dependency
models. Theorem 10 below states the converse for probabilistic dependency
models, namely, every semantic consequence wrt Jlp of an enhanced basis
L is an independency in Mp. Similar claims for correlational and relational
dependency models are stated as corollaries and follow from the proof of
Theorem 10.

FIG. 9.

Theorem 10 (completeness). Let D = (E,U) be a dag generated by an enhanced
basis drawn from a probabilistic dependency model Mp. Then, every semantic
consequence of L wrt /g holds in D.

Proof. Let T=(X,Z,Y) be an arbitrary triplet not in Mp, (we assume that
XZY C U and that U is finite). We construct a distribution Pr whose depen-
dency model P73 contains all triplets of L and does not contain T. This distribu-
tion precludes T from being a semantic consequence of L, and, therefore, as
the theorem claims, every semantic consequence of L must be a member in
Mp. ‘

The triplet (X,Z,Y) & Mp. Hence, the definition of D-separation guarantees

5The symbol Pr is overloaded—sometimes it denotes a distribution and sometimes it
denotes the dependency model defined by that distribution. The meaning will be clear
from the context.
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the existence of an active trail between a node « in X and a node $in Y that
is not D-separated by Z. Constructing a distribution P that does not contain
the triplet («,Z,8), denoted 7", guarantees also that (X ,Z,Y) & Prbecause any
distribution that renders X and Y conditionally independent must render each
of their individual variables independent as well [decomposition (4b)]. The
triplet (a,Z,B) & Mp. Hence, by Lemma 9, there exists an af-trail dag D’ (Fig.
4). We will construct a distribution P whose dependency model contains all
triplets of My (i.e., Mp C Pr) and that does not contain 7. This will complete
the proof. By property (i) of Lemma 9, Mp C Mp.. By Theorem 7, L C Mp.
Thus, L C Py, as required by the theorem.

Py is defined as follows: Each chance node with no parents corresponds to
an independent fair binary coin. Every other node corresponds to a variable
that is the sum modulo 2 of the variables corresponding to its parents. A
deterministic node with no parents (a degenerate configuration) corresponds to
a binary variable whose value is known with certainty. It remains to be shown
that P satisfies the requirements. Variables a and B are conditionally depen-
dent given Z in Pr because constraining a and Z to some specific values
determines a value for B8 via the single trail g that connects them in D’. It
remains to be shown that M, C Pr. Let L' be an enhanced basis that generates
D’ in the following ordering of the nodes of D': All nodes that have no parents
appear first in the ordering, followed by the rest of the nodes in any order
compatible with the partial order defined by D’ (e.g., @ must precede B if
a — Bin a link in D"). The basis L' is contained in Pz because all chance nodes
with no parents correspond to mutually independent variables and every other
variable in Py is a function of the variables corresponding to its parents and,
therefore, it must be independent from all its other predecessors and successors
in the ordering of L'. Thus, L' C Pr. Taking the closure under the graphoid
axioms on both sides yields ¢/(L") C cl( P7). However, Py = cl( Pr) because Py
is a graphoid and c/(L') = Mp' (by Theorem 8). Thus, Mp C Pr. |

Note that in the proof of Theorem 10 we used only bivalued variables. The
same construction can be used when the variables are preassigned arbitrary
(finite) domains; we need only replace the sum modulo 2 by sums modulo the
size of the domain of each child node. This renders the completeness of Theo-
rem 10 stronger, since the class of probabilities considered can be narrowed to
those defined over variables having prespecified domains.

Dags have been used also as a representation scheme for structural equations
[3]. Each node represents a variable that is the linear combination of the
variables corresponding to its parents and a term representing noise. The noise
sources are assumed to be independent and normally distributed and have zero
means and nonzero variances. Thus, the variable corresponding to node x is
given by

XxX=ayzy + T apze t 2, (6)

where zi, . ..,z; are the variables corresponding to the parents of x and z is
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the noise term. In this interpretation, two variables are “independent” given a
set of variables Z, denoted by I(a,Z,B). iff p.g.z =0, where p.g z is defined
recursively by

Pop.Z ~ Pay.zPpv.Z

(1= poy.2)"*(1 = PBy.2)""?

paB.Z’y =

and

Pus 2 Py = Elap — E[af]]
" (Ela~ E[a)(E[B - E[BI)"*

where E[x] is the mean of x [1]. Each structural equation corresponds to
one independence statement. For example, Eq. (6) asserts that I(x,{z; . .. zx},
U(x) — {z1, .. . ,2x})e, Where U(x) are the variables preceding x in a given total
ordering. The soundness of D-separation in this representation follows because
I, being identical to conditional independence for normal distributions, must
satisfy the graphoid axioms. Completeness is shown by Corollary 11, follow-
ing the proof of Theorem 10. A similar, but more restricted, completeness
theorem for I(«,Z,B)., where Z is a singleton, is given in [11]. We remark that
no functional dependencies exist in this interpretation of dags, because all noise
terms have nonzero variances; thus, D-separation coincides with d-separation.

Corollary 11 (completeness). Let D be a dag generated by a set of structural
equations, and let L be the corresponding enhanced basis. Then, every semantic
consequence of L wrt /- holds in D.

Proof. In normal distributions, two variables « and S are conditionally
independent given Z iff the partial correlation p,s.z =0 [1]. Therefore, it
suffices to construct a normal distribution Ny with the same properties P had
in the proof of Theorem 10. We define N, as follows: Each chance node with
no parents corresponds to the outcome of an independent normal variable.
Every other node corresponds to a variable that is a (noisy) sum of the variables
corresponding to its parents. Deterministic nodes are not present. Nz is a
multivalued normal distribution. The proof that Ny fulfills the requirements is
the same as in the proof of Theorem 10. |

The following corollary shows that D-separation is also complete when dags
represent the EMVDs and functional dependencies encoded in a data base.

Corollary 12 (completeness). Let D be a dag generated by an arbitrary basis
L. Then, every semantic consequence of L wrt /g holds in D.

Proof. Let Py be the distribution constructed in the proof of Theorem 10,
and let R, be the relation defined to be the set of tuples for which Pr has a
positive probability. Ry (viewed as a dependency model) contains Pz. Pr con-
tains My, where D' is an af-trail dag constructed in the proof of Theorem 10.
Thus, Ry contains Mp.. Variables « and B are conditionally dependent given
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Z in Ry because constraining o and Z to some specific values determines a
value for B via the single trail g that connects them in D'. ]

5. A LINEAR TIME ALGORITHM FOR IDENTIFYING INDEPENDENCE

Conditional independence assertions encoded in Bayesian networks can be
used for identifying what information and which parameters may be needed for
performing a given computation. The analysis of Section 4 guarantees that the
D-separation criterion could identify the maximal set of variables that are
independent of a set of variables X, given another set Z, without resorting to
numerical calculations. However, it does not provide an efficient algorithm to
do so. The algorithm we develop in this section is a variant of the well-known
Breath First Search algorithm; it finds all nodes reachable from X through an
active trail (given Z); hence, the maximal set of nodes Y satisfying I(X,Z,Y)p.
This task can be viewed as an instance of a more general problem of finding a
path in a directed graph for which some specified pairs of links are restricted
not to appear consecutively. In this context, D-separation serves to specify such
restrictions. For example, two links, u — v, v <~ w, cannot appear consecutively
in an active trail unless v € Z or v has a descendent in Z. The following
notations are employed: D = (V,E) is a directed graph, not necessarily acyclic,
where V is a set of nodes, E C V X V' is the set of directed links, and FC E X E
is a list of pairs of adjacent links that cannot appear consecutively (F connotes
fail). We say that an ordered pair of links (e;,e,) is legal iff (e1,e;) €F and that
a path is legal if every pair of adjacent links on it is legal. We emphasize that
by “path” we mean a directed path, not a trail.

First, we devise a simple algorithm for the following problem: Given a finite
directed graph D = (V,E), a subset F C E X E of illegal pairs of links, and a
set of nodes X, find all nodes reachable from X via a legal path in D. The
algorithm and its proof of correctness are a slight modification of those found
in [4].

Algorithm 1

Input: A directed graph D = (V,E), a set of illegal pairs of links F, and a
set of nodes X.

Output: A labeling of the nodes such that a node is labeled with R (connoting
“reachable”) iff it is reachable from X via a legal path.

(i) Add a new node s to V, and for each @ € X, add the link s — «
to E and label them with 1. Label s and all « € X with R. Label
all other nodes with ‘“‘undefined.”

(i) i:=1.

(iii) Find all unlabeled links v — w adjacent to at least one link
u — v labeled i, such that (u — v,y —> w) is a legal pair. If no
such link exists, stop.

(iv) Label each link v —w found in Step (iii) with i+ 1 and the
corresponding node w with R.

(v) i:=i+1, Go to Step (iii).
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The main difference between this algorithm and BFS, a change that has been
proposed by Gafni [7], is the traversal of the graph according to a labeling of
the links and not according to a labeling of nodes. This change is essential as
the example in Figure 10 shows. Let F consist of one pair (a,c). The path from
a to vy through links a, b, and c is legal, whereas the path not traversing b is
not legal because (a,c) € F. BFS with node labeling would not identify the legal
path (a,B,B,y) connecting nodes « and 7y, because it visits every node, in
particular 3, only once. :

Lemma 10. Algorithm 1 labels with R all nodes that are reachable from s (and
thus from X) via a legal path, and only those nodes.

Proof. First, we show that if a node ¢, is labeled with R, then there exists
a legal path from s to o;. Let a;—; — o, be a link through which «; has been
labeled. We induct on the label / of the link a;_; — a;. If [ = 1 then oy € X and
is therefore reachable from s. If /> 1, then by step (iii), there exists a link
a;—» = a;_1 labeled with / — 1 such that (e — —1,04—1 — ) is a legal pair.
Repeatedly applying this argument for i=/...2 yields a legal path
ap— a3 — -+ + oy, where ag— «; is labeled with 1. However, the only links
labeled 1 emanate from s; hence, the above path is the required legal path from
s to oy.

It remains to be shown that each node that is reachable from s via a legal
path is labeled with R. Instead, we show that every link a — a,, that is reachable
from s via a legal path (i.e., it participates in a legal path emanating from s)
will eventually be labeled by the algorithm. The latter claim is stronger than is
the former because for every reachable nodes «,, there exists a reachable link
a — a,, and by step (iv), whenever a — a,, is labeled with some integer, a,, is
labeled with R. We continue by contradiction. Let /,, = ®,,—1 — «,, be the
closest link to s via a legal path that remains unlabeled. Let p =
§——> " Q,_1 — &, be the legal path emanating from s and terminating
with the link 7,. The portion of this path that reaches the link /,_,=
Qm—p —> Q,,—1 18 shorter than p. Thus, by the induction hypothesis, [,_; is
labeled by the algorithm. Hence, the link /,, is labeled as well [by the next

application of step (iv)], contradicting our assumption that it remains unlabeled.
|
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The complexity of Algorithm 1 for a general F is O(|E| - |V]). In the worst
case, each of the |V| nodes might be reached from |V|— 1 entry points and,
for each entry, the remaining links may need to be examined afresh for reach-
ability. (For example, link ¢ in the example of Fig. 10 is examined twice.) Thus,
in the worst case, a link may be examined |V — 2| times before it is labeled,
which leads to an O(|E| - |V|) complexity. However, for the special case where
F is induced by the D-separation criterion, we shall later see that each link is
examined only a constant number of times; therefore, the complexity reduces
to O(|E)).

Next we solve the problem of identifying the set of nodes that are D-separated
from X by Z. For this aim, we will construct a directed graph D' with a set of
legal pairs such that a node v is reachable from X via an active trail (given Z)
in D iff v is reachable from X via a legal path in D'. Algorithm 1 is then applied
to solve the latter problem. The following observations are the basis of our
algorithm. First, any link on a trail can be traversed both ways. Therefore, to
ensure that every active trail in D corresponds to a legal (directed) path, D’
must consist of all links of D in their forward and reverse direction. Second,
constructing a table that for each node indicates whether it is determined by
or has a descendant in Z, would facilitate a constant-time test for legal pairs in
D'.

Algorithm 2

Input: A Bayesian network D = (V,E) and two disjoint sets of nodes
X and Z.

Data structure: A list of incoming links (in-list) for each node v € V.

Output: A set of nodes Y where Y = {8|I(X,Z,8)p}.

(i) Construct the following tables:

determined [v] = {true ifvis dr.etermlned by Z
false otherwise.

(ii)) Construct a directed graph D’ = (V,E’) where
E'=EU{u—-v)|(v—u)EE}.

(iii) Using Algorithm 1, find the set of all nodes Y’ that
have a legal path from X in D', where a pair of links
(u—v,v—>w) is legal iff u# w and either (1) v is a
head-to-head node on the trail u—v—w in D and descen-
dant{v] = true or (2) v is not a head-to-head node on the
trail u—v—w in D and determined [v] = false.

(iv) Y=V-(Y'UXU2Z)

Return (Y).

The correctness of this algorithm is established by the following theorem.
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Theorem 13. The set Y returned by the algorithm is exactly {8|1(X,Z,B8)p}.

Proof. The set Y’ constructed in step (iii) contains all nodes reachable from
X via a legal path in D’. For any two nodes ap € X and BE&E XU Z, if
ap— a;...H3 is an active trail (given Z) in D, then the directed path
ap—> oy — - - - Bis alegal path in D', and vice versa. Thus Y’ contains all nodes
not in X U Z that are reachable from X via an active trail (given Z) in D. By
definition of D-separation, I(X,Z,B)p holds if B & X U Z and 3 is not reachable
from X (by an active trail by Z). Thus, Y=V — (Y U X U Z) is exactly the set

{B|I(X,Z,B)p}. |

Next, we show that the complexity of the algorithm is O(|E|). The construc-
tion of descendant[v] is implemented as follows: Initially mark all nodes of Z
with true. Follow the incoming links of the nodes in Z to their parents and then
to their parents and so on. This way, each link is examined at most once; hence,
this construction requires O(| E|) operations. The construction of determined|v)
is similar and requires the same complexity. Step (ii) of Algorithm 2 requires
the construction of a list for each node that specifies all the links that emanate
from v in D (out-list). The in-list and the out-list completely and explicitly
specify the topology of D'. This step also requires O(] E|) steps. Using the two
lists the task of finding a legal pair in step (iii) of Algorithm 1 requires only
constant time; if ¢; = u — v is labeled i, then depending on the direction of
u — v in D and whether v is determined by or has a descendent in Z, either all
links of the out-list of v, or all links of the in-list of v, or both are selected.
Thus, a constant number of operations per encountered link is performed.
Hence, step (iii) requires no more than the O(| E|) operation, which is therefore
the upper bound (assuming |E| = | V) for the entire algorithm.

The above algorithm can also be employed to verify whether a specific
statement /(X,Z,Y)p holds in a dag D. Simply find the set Y. of all nodes
that are D-separated from X given Z and observe that I(X,Z,Y)p holds in D
iff Y C Ymax. In fact, for this task, Algorithm 2 can slightly be improved by
forcing termination once the condition Y C Yp,ax has been detected. Recently,
another algorithm for the same task (for networks without deterministic nodes)
has been proposed [16]. The algorithm consists of the following steps: First,
form a dag D’ by removing from D all nodes that are not ancestors of any node
in XU YU Z (and removing their incident links). Second, form an undirected
graph G, called the moral graph, by stripping the directionality of the links of
D' and connecting any two nodes that have a common child in D' that is or
has a descendent in Z. I(X,Z,Y)p holds by the definition of d-separation iff all
undirected paths between X and Y in G are intercepted by Z.

The complexity of the moral graph algorithm is O(] V|?) because the moral
graph G may contain up to | V/|? links, and, so, checking separation in G might
require, in the worst case, O(|V|?) steps. Our algorithm requires O(|E|) steps,
which is a significant gain for sparse graphs, namely, graphs having |E|=
O(|V|). If the maximal number of parents of each node is bounded by a
constant, then the two algorithms achieve the same asymptotic behavior, i.e.,
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linear in |E|. However, the moral graph algorithm is conceptually simpler to
communicate, and for small graphs, might offer computational advantages as
well. On the other hand, when the task is to find all nodes d-separated from
X by Z, then a brute force application of the moral graph algorithm requires
O(| V ?) steps, because for each node not in X U Z, the algorithm must construct
a new moral graph. For this task, our algorithm offers a considerable improve-
ment.

An area where Bayesian networks have been used extensively is decision
analysis; an analyst elicits information from an expert about a decision problem,
formulates the appropriate network, and, then, by an automated sequence
of graphical and probabilistic manipulations, an optimal decision is obtained
[12,17,22]. When such a network is constructed it is important to determine
what information is needed to answer a given query P(x|z) (where XU Z is
an arbitrary set of nodes in the network), because eliciting irrelevant parameters
may be a waste of effort [22]. Assuming that each node ¢; stores the conditional
distribution P(a;|m(a;)), the task is to identify the set Q of chance nodes that
must be consulted in the process of computing P(x|z) or, alternatively, the set
of chance nodes that can be assigned arbitrary conditional distributions without
affecting the quantity P(x|z). The required set can also be identified by the D-
separation criterion. We represent the parameters p; of the distribution P(a;|
m(a;)) as value in the domain of a dummy parent m; of node «;. This is clear-
ly a legitimate representation complying with the format of Eq. (1), since for
every node «;, P(a;|m(a;)) can also be written as P(a;| w(a;),p;), sO m; can be
regarded as a parent variable of ;. From Theorem 1, all dummy nodes that
are D-separated from X by Z represent variables that are conditionally indepen-
dent of X given Z, and, so, the information stored in these nodes can be
ignored. Thus, the information required to compute P(x|z) resides in the set
of dummy nodes that are not D-separated from X given Z. Moreover, the
completeness of D-separation further implies that Q is minimal; no node in Q
can be exempted from processing on purely topological grounds (i.e., without
considering the numerical values of the probabilities involved). The algorithm
below summarizes these considerations.

Algorithm 3

Input: A Bayesian network, two sets of nodes X and Z.

Output: A set of nodes Q that contains sufficient information to compute
P(x|z).

(i) Construct a dag D’ by augmenting D with a dummy node v’
for every chance node v in D and adding a link v' — v.

°The average complexity of Algorithm 2 can be reduced by adapting the first step of the
moral graph algorithm, but the worst case complexity would not be improved.
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(ii) Use Algorithm 2 to compute the set Y’ of nodes not D-sepa-
rated from X by Z.
(iii) Q is the set of all dummy nodes v’ that are 1ncluded inY'.

Note that the algorithm adds dummy nodes only to chance nodes. Hence,
the algorithm should not be used to detect those functional relationships that
could be ignored; it identifies, however, the set of probabilistic parameters that
are sufficient for a computation of P(x|z). In order to identify the functional
relationship that could be ignored, a more elaborated algorithm is required.
The subtle point is illustrated in Shachter’s example (8d) and his algorithm
addresses this task [23].

We conclude with an example. Consider the network D of Figure 11(a) and
query P(as).

The computation of P(as) requires only to multiply the matrices P(az|a;) and
P(a;) and to sum over the values of ;. These two matrices are stored at the
dummy nodes B; and B; of Figure 11(b), which are the only dummy nodes not

D-separated from node a3 (given @). Thus Algorithm 3 reveals the fact that the
parameters represented by node B, and B4 (P(az),P(as|a1,a,)) are not needed
for the computation of P(as). Note that the questions of the value of a variable,
or the parameters stored with the variable influencing a given computation,
may result in two different answers. For example, the value of a, might influence
the computation of P(as), because as and a4 could be dependent, whereas the
parameters stored at node a4 never affect this computation. Algorithm 3, by
representing parameters as dummy variables, reveals this fact.

Shachter was the first to present an algorithm that identifies irrelevant par-
ameters using transformations of arc-reversal and node-removal [22]. A revised
algorithm of Shachter [23] also detects irrelevant variables, and it appears that
the outcome of this algorithm is identical to ours. In our approach, we maintain
a clear distinction between the following two tasks: (1) declarative characteriz-
ation of the independencies encoded in the network (i.e., the D-separation
criterion) and (2) procedural implementation of the criterion defined in (1).
Such separation facilitates a formal proof of the algorithm’s soundness, com-
pleteness, and optimality. In Shachter’s treatment, task (1) is inseparable from
(2). The axiomatic basis on which our method is grounded also provides means
for extending the graphical criteria to other notions of independence, such as
data base and correlational dependencies.

(@ ()

D ®
(a)

FIG. 11.
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