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1. INTRODUCTION

1.1  OQverview

One can hardly identify a field in artificial intelligence (AI) that doesn’t
use some sort of uncertain reasoning, namely, processes leading from
evidence or clues to guesses and conclusions under conditions of partial
information. Many powerful programs have been written that embody
practical solutions to various aspects of reasoning with uncertainty. These
include MY CIN (Shortliffe 1976), INTERNIST (Miller et al 1982), PROS-
PECTOR (Duda et al 1976), MEDAS (Ben-Bassat et al 1980), RUM
(Bonissone et al 1987), MUM (Cohen et al 1987a), MDX (Chandrasakaran
& Mittal 1983), and MUNIN (Andreassen et al 1987). This survey focuses
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OUTLINE

1. NEED AND DIFFICULTY OF MANAGING UNCERTAINTY

2. EXTENSIONAL Vs. INTENSIONAL APPROACHES

Computationally attractive Semantically clear

Semantically sloppy Computationally clumsy

3. RIGHTWARD 4. LEFTWARD DEVELOPMENTS
DEVELOPMENTS (Belief networks)

5. MEETING GROUNDS?

Figure 1 Outline of survey and relationships between extensional and intensional
approaches to uncertainty.

on a select set of issues, trends, and principles that have emerged from
these past works. I hope to describe these in a unifying perspective and in
greater depth than a more general survey would permit. For broader
surveys, the reader is referred to Thompson (1985), Prade (1983),
Stephanou & Sage (1987), and the works collected in Kanal & Lemmer
(1986). Expanded technical treatments of the topics discussed in this review
can be found in Pearl (1988a).

A summary of this paper is shown in Figure 1. I first discuss the general
necessities and difficulties of managing uncertainty and then talk about
two diametrically opposed approaches to the problem, one called exten-
sional, the other intensional.' The extensional approach, also known as
production systems, rule-based systems, or procedure-based systems,
treats uncertainty as a generalized truth value attached to formulas and,
following the tradition of classical logic, computes the uncertainty of any
formula from the uncertainties of its subformulas. It is characterized by
computationally attractive features, but is semantically sloppy. In the
intensional approach, also known as the declarative or model-based

! This terminology is that of Perez & Jirousek (1985); the terms syniactic vs semantic are
also adequate.
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approach, uncertainty is attached to “states of affairs” or subsets of “pos-
sible worlds.” It is semantically clear but computationally clumsy. The
trade-off between semantic clarity and computational efficiency has been
the main issue of concern in past research and has transcended notational
boundaries.

Naturally, attempts have been made to rectify the deficiencies of both
approaches. I briefly discuss (Section 2) efforts to improve the semantic
clarity of extensional approaches. I then emphasize attempts to improve
the computational efficiency of intensional approaches (Section 3). In this
vein, I discuss the central role of belief networks representations, both the
Bayesian type and the Dempster-Shafer type.

Finally, I speculate (Section 4) on the middle ground toward which
the two approaches will hopefully converge in the next few years. This
arena, [ believe, will involve the issues of encoding context-dependent
information, the formalization of relevance, and network decomposition
techniques.

1.2 Why Bother With Uncertainty?

Reasoning about any realistic domain always requires that simplifications
be made. By necessity, we leave many facts unknown, unsaid, or crudely
summarized. For example, most rules used to encode knowledge and
behavior have exceptions that one cannot afford to enumerate, and the
situations in which the rules apply are usually ambiguously defined or hard
to satisfy precisely in real life. Reasoning with exceptions is like navigating
through a mine field; most steps are safe but some can be devastating. If
we know its location, each mine can be avoided or diffused; but suppose
that we must start our journey with a map the size of a postcard, lacking
room to mark down the locations of the mines or to note how they are
wired together. An alternative to the extremes of ignoring or enumerating
exceptions is to summarize them-—i.e. to indicate which areas of the
minefield are more dangerous than others. Such summarization is essential
if we wish to find a reasonable compromise between safety and speed of
movement. Thus, the art of reasoning under uncertainty amounts to that
of representing and processing summaries of exceptions.

1.3 Why Is It Hard?

One way of summarizing exceptions is to assign to propositions numerical
measures that combine according to uniform syntactic principles the way
truth values combine in logic. Adopted by first-generation expert systems,
this approach often yielded unpredictable and counterintuitive results (see
below). As a matter of fact, it is remarkable that this combination strategy
went as far as it did, in view of the fact that uncertainty measures stand
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for something totally different from truth values. While truth values in
logic characterize the formulas under discussion, uncertainty measures
characterize exceptions—i.e. the facts not shown in the formulas. Accord-
ingly, while the syntax of the formula is a perfect guide for combining the
visibles, it is close to useless for combining the invisibles. For example, the
machinery of Boolean algebra gives us no clue about how the exceptions
to A — Cinteract with those of B — C to yield the exceptions to (4 A B) — C.
These invisible exceptions may interact in intricate and clandestine
ways, as a result of which we lose most of the computationally attractive
features of classical logic—e.g. modularity and monotonicity.

Although in logic, too, formulas interact in intricate ways, the inter-
actions are visible. This enables us to calculate the impact of each new fact
in stages by a process of derivation that resembles the propagation of a
wave: We first compute the impact of the new fact on a set of syntactically
related sentences, S, store the results, then propagate the impact from S,
to another set of sentences, S, and so on, without having to come back
and redo S,. Unfortunately, this computational scheme, so common to
logical deduction, cannot be justified under uncertainty unless one makes
restrictive assumptions, which, in probabilistic terms, amount to con-
ditional independence.

Another feature we lose in going from logic to shaded uncertainties is
incrementality. We would like to account for the impact of each of several
items of evidence individually: compute the effect of the first item, then
attend to the next, absorb its added impact, and so on. This, too, can only
be done after making restrictive assumptions of independence. Thus it
appears that uncertainty reasoning represents a hopeless case of having to
compute the impact of the entire set of past observations upon the entire
set of sentences in one global step. This, of course, is an impossible task.

1.4 Three Approaches to Uncertainty

Al researchers tackling these problems can be classified into three schools,
which I will call the logicist, neo-calculist, and neo-probabilist. The logicist
school attempts to deal with uncertainty using nonnumerical techniques.
The neo-calculist school uses numerical representations of uncertainty
but, believing that probability calculus is inadequate for the task, invents
entirely new calculi such as the Dempster-Shafer calculus, fuzzy logic,
certainty factors, etc. Finally, the neo-probabilists remain within the
traditional framework of probability theory while attempting to equip the
theory with computational facilities needed to perform AI tasks. This
taxonomy however, is superficial as it captures the notational rather than
the semantical differences among the various approaches. A more funda-
mental taxonomy can be drawn along the dimensions shown in Figure 1,
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namely the extensional vs the intensional approaches. For example, it
is possible to use probabilities either extensionally [e.g. in PROSPECTOR
(Duda et al 1976)] or intensionally [e.g. in MUNIN (Andreassen et al
1987)]. Similarly, one can use the Dempster-Shafer notation either exten-
sionally [as in Ginsberg (1984)] or intensionally [as in Lowrance et al
(1986)].

1.5 Extensional vs Intensional Approaches

1.5.1 THE ROLE OF CONNECTIVES Extensional systems, a typical repre-
sentative of which is the certainty-factors calculus used in MY CIN (Short-
liffe 1976), treat uncertainty as a generalized truth value. The certainty of
a formula is defined as a unique function of the certainties of its sub-
formulas. Thus the connectives in the formula serve to select the appro-
priate weight-combining function. For example, the certainty of the con-
junction A A B is given by some function (e.g. the minimum, or the
product) of the certainty measures assigned to 4 and B individually,
By contrast, in intensional systems, a typical representative of which is
probability theory, certainty measures are assigned to sets of worlds and
the connectives, too, combine sets of worlds by set-theoretical operations.
For example, the probability of P(4 A B) is given by the weight assigned
to the intersection of two sets of worlds, those in which 4 is true and
those in which B is true, but cannot be determined from the individual
probabilities P(A4) and P(B).

1.5.2 WHAT'S IN A RULE? Rules, too, have different roles in these two
systems. The rules in extensional systems provide licenses for certain sym-
bolic activities. For example, the rule 4 — B(m) may mean: If you see A4,
then you have the license to update the certainty of B by a certain amount
that is a function of the rule strength m. The rules are interpreted as a
summary of the past performance of the problem solver, describing the
way an agent normally reacts to problem situations or to items of evidence.
In intensional systems, the rules denote elastic constraints about the world.
For example, in the Dempster-Shafer formalism the rule 4 — B(m) does
not describe how an agent reacts to the finding of 4 but asserts that the
set of worlds in which 4 and —1 B hold simultaneously is rather unlikely
and hence should be excluded with probability m. In the Bayesian for-
malism the rule A — B(m) is interpreted as a conditional probability state-
ment P(B|A) = m, asserting that among all worlds satisfying 4, those that
also satisfy B constitute a proportion of size m. Although there exists a
vast difference between these two interpretations (as is shown below in
Sections 3.2.2 and 4.1.1), they both represent summaries of factual or
empirical information rather than summaries of past decisions.
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2. EXTENSIONAL SYSTEMS: MERITS,
DEFICIENCIES, AND REMEDIES

2.1  Computational Merits

A good way to present the computational merits of extensional systems is
to examine the way rules are handled in the certainty-factors formalism
(Shortliffe 1976) and contrast it with that dictated by probability theory.
Figure 2 depicts the combination functions that apply to series and parallel
rules, from which one can form a rule network. The result is a modular
procedure of determining the certainty factor of a conclusion, given the
credibility of each rule, and the certainty factor of the premises (i.e. the
roots of the network). To complete the calculus we must also define
combining functions for conjunctions and negation. Setting mathematical
details aside, the point to notice is that the same combination function
applies uniformly to all rules in the system, regardless of what other rules
might be in the neighborhood.

Rules:
- A
X
e If A then C (x)
c z
e If B then C (y) a0 D
e If C then D (2) y
B
1. Parallel combination
X+y—xy x,y>0

CF(C)= {(x +y)/ (1 —min{x, y)) ux, y different sign

X+y+xy xy<0

2. Series combination

CF(D) =z -max(0, CF(C))

3. Conjunction, negation ...

Figure 2 Functions combining certainty factors in EMYCIN—an extensional system.
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Computationally speaking, this uniformity mirrors the modularity of
inference rules in classical logic. For example, the logical rule “if 4 then
B has the following procedural interpretation: “If you see A anywhere in
the knowledge base, then, regardless of other things the knowledge base
contains, and regardless of how 4 was derived, you have the license to
assert Band add it to the database.” This combination of locality (*regard-
less of other things™) and detachment (“‘regardless of how it was derived”)
constitutes the principle of modularity. The numerical parameters that
decorate the combination functions in Figure 2 do not alter this basic
principle. The computational license provided by the rule 4 — B(m) reads:
“If you see the certainty of 4 undergoing a change § 4, then, regardless of
other things the knowledge base contains, and regardless of how d, was
triggered, you have an unqualified license to modify the current certainty
of B by some amount, 8, which may depend on m, J,, and on the current
certainty of B.?

To appreciate the power of this interpretation, let us compare it with
that given by an intensional formalism such as probability theory. Inter-
preting rules as conditional probability statements, P(B|A4) = p, does not
provide us with a license to do anything. Even if we are fortunate to find
A true in the database, we still cannot assert a thing about B or P(B),
because the meaning of the statement is: “If 4 is true, and A4 is the only
thing that you know, then you can attach to B a probability p.” As soon
as we have other facts, K, in the database, the license to assert P(B) = p
is automatically revoked, and we need to look up P(B|A4,K) instead.
Therefore, the conditional probability statement leaves one totally impo-
tent, unable to initiate any computational activity, unless one can verify
that all the other things in the knowledge base are irrelevant. It is for this
reason that verification of irrelevancy is so crucial in intensional systems.

In truth, such verifications are also crucial in extensional systems, but
the computational convenience of these systems and their striking resem-
blance to logical derivations tempt people to neglect the importance of
verifying irrelevancy. I next describe the semantic penalties imposed when
relevance considerations are ignored.

2.2 Semantic Deficiencies

The price tag attached to the computational advantages of extensional
systems is that they often yield updating that is incoherent—i.e. subject
to surprises and counterintuitive conclusions. These problems surface in
several ways. The most notable are: 1. improper handling of bidirectional

2The observation that the rules refer to changes rather than absolute values was made by
Horvitz & Heckerman (1986).
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inferences, 2. difficulties in retracting conclusions, and 3. improper treat-
ment of correlated sources of evidence.

2.2.1 THE ROLE OF BIDIRECTIONAL INFERENCES The ability to use both
predictive and diagnostic information is an important component of plaus-
ible reasoning, and improper handling of such information leads to strange
results. A common pattern of normal discourse is that of abductive reason-
ing: If 4 implies B, then finding that B is true makes 4 more credible
(Polya 1954). This pattern involves reasoning both ways, from 4 to B, as
well as from B to 4. Moreover, it appears that people do not require two
separate rules for performing these inferences; the first provides the license
to invoke the second. Extensional systems, on the other hand, require that
the second rule be stated explicitly and, what is more disturbing, that the
first rule be removed. Otherwise, a cycle is created where any slight evidence
in favor of 4 would be amplified via B and fed back to 4, quickly turning
into a stronger confirmation (of 4 and B), with no apparent factual
justification. The prevailing practice in such systems (e.g. MYCIN) is to
cut off cycles of that sort, permitting only diagnostic reasoning and no
predictive inferences.

Cutting off its predictive component prevents the system from exhibiting
another important pattern of plausible reasoning, one that we call
“explaining away™: If A implies B, and C implies B, and B is true, then
finding that C is true makes 4 /less credible. In other words finding a
second explanation to an item of data makes the first explanation less
credible. Such interaction among multiple causes appears in many appli-
cations. For example, when a physician discovers evidence in favor of one
disease, this reduces the credibility of other diseases, although the patient
may well be suffering from two or more disorders simultaneously. A
suspect who provides an alternative explanation for being at the scene of
the crime appears less likely to be guilty, even though the explanation
furnished does not preclude his having committed the crime.

To exhibit this sort of reasoning, a system must use bidirectional infer-
ences; from evidence to hypothesis (or explanation), as well as from
hypothesis to evidence. While it is sometimes possible to use brute force
(e.g. enumerating all exceptions) and restore “explaining away” without
the dangers of circular reasoning, we shall see that any system that succeeds
in doing this must sacrifice the principles of modularity—i.e. locality and
detachment. More precisely, every system that updates beliefs modularly
and uses natural rules is bound to behave in a manner contrary to pre-
vailing patterns of plausible reasoning.

2.2.2 THE LIMITS OF MODULARITY The principle of locality attains its
ultimate realization in the inference rules of classical logic. The rule “If P
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then @ means that if P is found true, we can assert Q with no further
analysis, even if the database contains some other knowledge X. In plaus-
ible reasoning, the luxury of ignoring the rest of the database can no longer
be maintained. For example, suppose we have a rule

R, = “If the ground is wet, then assume it rained (with certainty ¢,).”

Validating the true of “The ground is wet™ does not permit us to raise the
certainty of ‘It rained” because the knowledge base might contain strange
items such as K = “The sprinkler was on last night.”” These strange items,
called defeaters, are sometimes easy to discover (as in the case of K* = “The
neighbor’s grass is dry,” which directly opposes “It rained””) but sometimes
hide cleverly behind syntactical innocence. The neutral fact K = “The
sprinkler was on” neither supports nor opposes the possibility of rain,
yet K manages to undercut the rule R,. This undercutting cannot be
implemented in an extensional system; once R, is invoked, the increase in
the certainty of It rained” will never be retracted, because no rule would
normally connect “The sprinkler was on” to *It rained.” Imposing such
a connection by proclaiming “The sprinkler was on™ as an explicit excep-
tion to R, again defeats the spirit of modularity; it forces the rule-author
to pack together items of information that are only remotely related to
each other, and it burdens the rules with an unmanageably large number
of exceptions.

Violation of detachment can also be demonstrated in this example. In
deductive logic, if K implies P and P implies @, then finding K true,
permits us to deduce Q by simple chaining; a derived proposition (P) can
trigger a rule with the same vigor as a directly observed proposition.
However, chaining does not apply in plausible reasoning. The system may
contain two innocent looking rules: “If wet-ground then rain,” and “If
sprinkler-on then wet-ground”; you find that the sprinkler is on and,
obviously, you do not want to conclude that it rained. On the contrary,
finding that the sprinkler is on only takes away support from “rain.”

As another example, consider the relationships shown in Figure 3.
Normally an alarm sound alerts us to the possibility of a burglary. If
someone calls you at the office and tells you that your burglar alarm is
ringing, you would surely rush home in a hurry, even though its ringing
could have other causes. If you further hear a radio announcement that
an earthquake occurred nearby, and if the last false alarm you recall was
triggered by an earthquake, then your certainty of a burglary would
diminish. Again, this requires going both ways, from effect to cause
(radio — earthquake), cause to effect (earthquake — alarm), and then back
from effect to cause (alarm — burglary). However, notice what pattern
of reasoning results from such a chain: We have a rule “If 4 (alarm)
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B
i w Burglary
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n |
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Earthquake
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announcement

A>B

A more credible

B less credible

Figure 3 Making the antecedent of a rule more credible can cause the consequent to become
less credible.

then B (burglary).” After you've listened to the radio, 4 becomes more
credible and the conclusion B becomes less credible. Overall, we have:
If 4 — Band 4 becomes more credible, then B becomes less credible. This
behavior is clearly contrary to everything we expect from local belief
updating.

In conclusion, the difficulties of summarizing exceptions do not stem
from the nonnumeric, bi-value character of classical lo gic. Equally trouble-
some difficulties emerge when truth and certainty are measured on a grey
scale, whether by a point estimate, by interval bounds, or by linguistic
quantifiers such as “likely” or “credible.” There seems to be a basic struggle
between procedural modularity and semantic coherence, independent of
the notational system used.

2.2.3 CORRELATED EVIDENCE Extensional systems, greedily exploiting
the licenses provided by locality and detachment, respond only to the
magnitudes of the weights and not to their origins. As a result they will
produce the same conclusions regardless of whether the weights originate
from identical or independent sources of information. An example from
Henrion (1986b) about the Chernoby! disaster helps demonstrate the prob-
lems encountered by such a local strategy. Figure 4 shows how multiple,
independent sources of evidence would normally increase the credibility
of a hypothesis (e.g. “Thousands dead”), but the discovery that these
sources have a common origin should reduce the credibility. Extensional
systems are too local to recognize the common origin of the information,
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Figure 4 The Chernobyl disaster example (after Henrion) shows why rules cannot combine
locally.

and they would update the credibility of the hypothesis as if it were
supported by three independent sources.

2.2.4 ATTEMPTED REMEDIES AND THEIR LIMITATIONS The developers of
extensional systems have proposed and implemented powerful techniques
to remedy some of the semantic deficiencies we have discussed. The
remedies, most of which focus on the issue of correlated evidence, take
two approaches.

2.2.4.1 Bounds propagation Since most correlations are unknown, cer-
tainty measures are combined under two extreme assumptions: one, that
the components are highly positively correlated, the other that they are
negatively correlated. This gives rise to upper and lower bounds on the
combined certainty, which are entered as inputs to subsequent compu-
tations, producing new bounds on the certainty of the conclusions. This
approach has been implemented in INFERNO (Quinlan 1983) and rep-
resents a local approximation to Nilsson’s probabilistic logic (Nilsson
1986).

2.2.4.2 User-specified combination functions A system named RUM
(Bonissone et al 1987) permits the rule-author to specify the combination
function that should apply to the rule’s components. For example, if a, b,
¢ stand for the weights assigned to propositions 4, B, C, respectively, in
the rule

AnB->C



48 PEARL

the user can specify which of the following three combination functions
should be used:

T\(a,b) = max (0,a+b—1)
Ts(a,b) = ab
Ts(a, b) = min (4, b).

These functions (called T norms) represent the probabilistic combinations
obtained under three extreme cases of correlation between A and B: highly
negative, zero, and highly positive.

Cohen et al (1987b) have proposed a more refined scheme where, for
any pair of values P(A4) and P(B), the user is permitted to specify the value
of the resulting probability, P(C).

The difficulties with these correlation-handling remedies are several.
First, the bounds produced by systems such as INFERNO are too wide.
For example, if we are given P(4) = p and P(B|A) = ¢ then the bounds
we obtain for P(B) are

pg < P(B) < 1—p(1—q)

which for small p approach the unit interval [0,1]. Second, pair-wise
correlations are generally not sufficient to handle the intricate dependencies
that may occur among rules; higher-order dependencies are often necessary
(Bundy 1985). Finally, even if one succeeds in specifying higher-order
dependencies, a much more fundamental limitation exists: Dependencies
are dynamic relationships that are created and destroyed as new evidence
obtains. For example, the dependence between a child’s shoe size and
reading ability is destroyed once we find out the child’s age. A dependency
between the propositions “It rained last night” and “The sprinkler was
on” is created once we find out that the ground is wet. Thus, correlations
and combination functions specified at the knowledge-building phase may
quickly become obsolete once the program is put into use.

Heckerman (1986a,b) delineated precisely the range of applicability of
extensional systems of the MYCIN type. He proved that any system that
updates certainty weights in a modular and consistent fashion can be given
a probabilistic interpretation in which the certainty update of a proposition
A is some function of the likelihood ratio

_ P(Ea’idencelA)W
© P(Evidence| 1 A)

In MYCIN, for example, the certainty update CF can be interpreted as
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cF=2=1

A+1
Once we have a probabilistic interpretation, it is easy to determine the set
of structures within which the update procedure will be semantically valid.
It turns out that a system of such rules will produce coherent update if
and only if the rules form a directed tree—i.e. no two rules may diverge
from the same premise. This limitation explains why strange results were
obtained in the burglary example of Figure 3. There, the alarm event
points to two possible explanations “burglary” and “earthquake,” which
amounts to two evidential rules diverging from the premise “alarm.”

Hajek (1985) and Hajek & Valdes (1987) have developed an algebraic
theory that characterizes an even wider range of the extensional systems
and combining functions, including those based on Dempster-Shafer inter-
vals. The unifying properties common to all such systems is that they form
an ordered Abelian group. Again, the knowledge base must form a tree in
order that no evidence is counted twice via alternative paths of reasoning.

3. INTENSIONAL SYSTEMS AND NETWORK
REPRESENTATIONS

We have seen that handling uncertainties is not a trivial task but requires
a fine balance between the requirements of modularity and coherence. In
intensional systems, the syntax consists of declarative statements and,
hence, mirrors world knowledge fairly nicely. For example, conditional
probability statements, such as “If it rains the grass is likely to get wet,”
are both empirically testable and conceptually meaningful. Additionally,
intensional systems have no problem handling bidirectional inferences
and correlated evidence; these emerge as built-in features of one globally
coherent model. However, since the syntax does not point to any useful
procedures, we need to construct special mechanisms that convert the
declarative input into query-answering routines.

A solution, or at least part of a solution, is offered by techniques based
on belief networks. The idea is to make intensional systems operational
by making relevance relationships explicit, thus curing the impotence of
declarative statements such as P(B|A) = p. As mentioned earlier, the
reason one cannot act on the basis of such declarations is that one must
first make sure that other things contained in the knowledge base are
irrelevant to B and hence can be ignored. The trick, therefore, is to encode
knowledge in such a way that the ignorable is recognizable, or better yet
that the unignorable is quickly identified and is readily accessible. Belief
networks encode relevancies as neighboring nodes in a graph, thus ensuring



50 PEARL

that by consulting the neighborhood one gains a license to act; what you
don’t see locally doesn’t matter. In effect, what network representations
offer is a dynamically updated list of all currently valid licenses to ignore,
and licenses to ignore constitute permissions to act.

Network representations are not foreign to Al systems. Most reasoning
systems encode relevancies using intricate systems of pointers—i.e. net-
works of indexes that group facts into structures such as frames, scripts,
causal chains, and inheritance hierarchies. These structures, while shunned
by pure logicians, have proven indispensable in practice because they
make the information required to perform an inference task reside ““in the
vicinity” of the propositions involved in the task. Indeed, many patterns
of human reasoning can be explained only by people’s tendency to follow
the pathways laid out by such networks.

The special feature of the networks discussed in this review is that
they have clear semantics. In other words, they are not auxiliary devices
contrived to make reasoning more efficient but are an integral part of the
semantics of the knowledge base, and most of their features can even be
derived from the knowledge base (Pearl 1988a).

I first discuss the nature of these networks in two uncertainty formalisms:
probability theory, where they are called Bayesian networks, causal nets,
or influence diagrams, and the Dempster-Shafer theory, where they are
referred to as galleries (Lowrance et al 1986), gualitative Markov nerworks
(Shafer et al 1987), or constraint networks (Montanari 1974). In Section
4.1 1 briefly discuss the theory of graphoids, which provides an axiomatic
characterization of the notion of relevance and its relation to network
representations.

3.1 Evidential Reasoning with Bayesian Networks

3.1.1 NETWORK CONSTRUCTION AND THE ROLE OF CAUSALITY Formally,
Bayesian networks are directed acyclic graphs in which each node repre-
sents a random variable, or uncertain quantity, that can take on two or
more possible values. The arcs signify the existence of direct influences
between the linked variables, and the strengths of these influences are
quantified by forward conditional probabilities. Informally, the structure
of a Bayesian network can be determined by a simple procedure: We assign
a vertex to each variable in the domain and draw arrows toward each
vertex X; from a select set S; of vertices perceived to be “direct causes” of
X. The strength of these direct influences is then quantified by a link
matrix P(x;|s;), which represents (judgmental estimates of) the conditional
probabilities of the events X, = x;, given any value combination s, of the
parent set S;. The ensemble of these local estimates specifies a complete
and consistent global model (i.e. a joint distribution function), on the
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basis of which all probabilistic queries can be answered. The overall joint
distribution function on the variables X, ..., X, is given by the product:

P15, %) = Y P(xi]s).
i=1

So, for example, the joint distribution corresponding to the network of
Figure 5 is given by:

P(h,e,r,s,d,w,g) = PU)P(e)P(r|e)P(s|e, h) P(d|s) P(w|s)P(g]s)

where lower case symbols stand for any particular value (e.g. true or false)
of their corresponding variables.

Conversely, the structure of the network can be determined by the joint
distribution function, if such is ever available. Once we agree on a total
order (e.g. temporal precedence) for the variables involved, the set of
parents S; of variable X; is chosen from its predecessors by the criterion
that

Plx,|8) = Plx|xps i oo Xi i)

In other words, knowing the parents renders all other predecessors of X;
irrelevant relative to our belief in X; = x,. In principle, any choice S;
satisfying this criterion will define an adequate network but, of course,
choosing minimal sets of parents will be more efficient, and ordering the

BURGLARY?

EARTHQUAKE?

RADIO? ALARM SOUND?

NEIGHBOR'S

WILL CALL? TESTIMONY

PHONE
CALL

Figure 5 The Bayesian network associated with the burglary alarm story.
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variable chronologically would normally result in sparser networks than
otherwise.

Figure 5 depicts the burglary alarm stery of Figure 3, with two added
variables D and G. D describes the event that your daughter, having been
surprised by the alarm, will try to reach you at the office. G stands for the
testimony of another neighbor relative to the alarm sound S, The transition
from Figure 3 to Figure 5 demonstrates the incremental nature of the
process of constructing the knowledge base. Adding the facts about D only
requires that one identifies the possible causes of D (in our case, S) and
estimates two parameters:

P(D|S) = How likely is it that your daughter will try to call, given that
she hears the alarm sound, and

P(D|1S8) = How likely is it for her to call, assuming there is no alarm.

The addition of the link S — G requires similar parameters, except that if
the testimony & is available [even if it is nonpropositional—say, a lengthy
conversation (Pearl 1987b, 1988a)] it can be summarized by a single
parameter; the likelihood ratio

_ P(G]$)
" RG-Sy

The advantage of a network representation is that it allows people
to express directly the fundamental qualitative relationship of *“direct
dependency”’; the network then displays a consistent set of many additional
direct and indirect dependencies and preserves them as a stable part of the
model, independent of the numerical estimates. For example, Figure 5
displays the fact that the radio report (R) would not change the prospects
of the daughter’s phone call (D), once we verify the actual state of the
alarm system (S). This fact is conveyed via the network topology—
showing S intercepting the path between R and D—despite the fact that
it was not considered explicitly during the construction of the network. It
can be inferred visually from the linkages used to put the network together
and, moreover, will remain part of the model regardless of the numerical
estimates that are assigned to the links.

The directionality of the arrows is essential for displaying nontransitive
dependencies—e.g. S depends on both £ and H yet E and H are inde-
pendent; they become dependent only if .S or any of its descendants is
known. Had the arcs been stripped of their arrows, some of these relation-
ships would be misrepresented. This role of identifying what information
is or is not relevant in any given state of knowledge is the central feature
of causal schemata. In this role, causality serves as a lubricant that modu-
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larizes our knowledge as it is cast from experience. By displaying the
irrelevancies in the domain, causal schemata minimize the number of
relationships that need to be considered while a model is constructed and,
in effect, authorize many future local inferences. The prevailing practice
in rule-based expert systems of encoding knowledge by evidential rules
(i.e. if effect then cause) is deficient in this respect. It usually fails to account
for induced dependencies between causes (e.g an earthquake explaining
away the alarm sound); and if one ventures to encode these by direct
rules, the number of rules becomes unmanageable (Shachter & Heckerman
1987).

There is a long and rich tradition in Bayesian belief networks, starting
in 1921 with the work of geneticist Sewal Wright (1921). He developed a
method called path analysis (Wright 1934) that later on became an estab-
lished representation of causal models in economics (Wold 1964), sociology
(Kenny 1979; Blalock 1971), and psychology (Duncan 1975). Influence
diagrams, another component in this tradition (Howard & Matheson 1981;
Shachter 198R), were developed for decision analysis and contain both
event nodes and action nodes. Similar networks were called recursive
models when used by statisticians seeking meaningful and effective decom-
positions of contingency tables (Lauritzen 1982; Wermuth & Lauritzen
1983; Kiiveri et al 1984).

The next subsection illustrates the role of networks as a representation
capable of converting declarative knowledge to answer-producing pro-
cedures. The illustration focuses on Bayesian networks, but similar tech-
niques have been developed for constraint networks in the Dempster-
Shafer formalism (Shafer et al 1987; Kong 1986).

3.1.2 BELIEF\PR\OPAGATION BY MESSAGE PASSING Since a fully specified
Bayesian network sanstitutes a complete probabilistic model of all vari-
ables in the domain, it comtains the information necessary to answer
all probabilistic queries about these variables. Such queries include, for
example, “What are the chances of a burglary, given that the radio
announced an earthquake and the daughter did not call?” or “Whalt is the
most likely explanation for your daughter’s not having called?” Addition-
ally, owing to the relevance information conveyed by their links, belief
networks can be used as inference engines—i.e. the nodes can be regarded
as processors and the links as communication channels that provide the
(storage locations of the) inputs and outputs as well as the timing infor-
mation necessary for sequencing the computational steps. In other words,
many of the computations can be conducted by a local and parallel
message-passing process, with a minimum of external supervision, similar
to the derivational steps taken by extensional systems (Pearl 1988a).
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The advantages of this distributed, message-passing paradigm is that it
provides a natural mechanism for exploiting the independencies embodied
in sparsely constrained systems and translating them, by subtask decompo-
sition, into a substantial reduction in complexity. Additionally, distributed
propagation is inherently “transparent”: The intermediate steps, by virtue
of their reflecting interactions only among semantically related variables,
are conceptually meaningful. This facilitates the use of natural, object-
oriented programming tools and helps establish confidence in the final
result.

Distributed schemes for belief updating and belief revision are described
in Pearl (1986, 1987a). Belief updating aims at assigning each variable a
posterior probability that correctly accounts for the evidence at hand. The
aim of belief revision is to identify a composite set of propositions (one
from each variable) that “best” explains the evidence at hand—i.e. attains
the highest posterior probability. These involve the updating and trans-
mittance of two types of messages: A——the strength of evidential support
that a variable obtains from its descendants; and n— the strength of causal
support that a variable obtains from its nondescendants. This separation
into causal and evidential components permits the execution of bidirec-
tional inferences without the dangers of circular reasoning (see Section
2201).

Figure 6 shows six successive stages of belief propagation through a
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Figure 6 The impact of new data propagates through a tree by a message-passing process.
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simple binary tree, assuming that all activities are triggered by changes in
the parameters of neighboring processors. Initially (Figure 6a), the tree is
in equilibrium, representing the state of belief due to all prior information.
As soon as two nodes are activated by new information (Figure 65), white
tokens (representing 4) are placed on their links, directed towards their
parents. Activated by these tokens, the parents compute their degree of
belief and manufacture the appropriate number of tokens for their neigh-
bors (Figure 6¢): white tokens for their parents and black tokens (repre-
senting ) for the children. (The links through which the absorbed tokens
have entered do not receive new tokens, thus reflecting the feature that a
m-message is not affected by a J-message crossing the same link.) The root
node now receives two white tokens, one from each of its descendants.
That triggers the production of two black tokens for top-down delivery
(Figure 64). The process continues in this fashion until, after six cycles,
all tokens are absorbed, and the network reaches a new equilibrium,
where each variable is assigned a probability measure reflecting the new
information.
The updating scheme possesses the following properties:

1. New information diffuses through the network in a single pass—i.e.
equilibrium is reached in time proportional to the diameter of the
network.

2. The primiitive processors are simple, repetitive, and they require no
working memory except that used in matrix multiplication.

3. The local computations and the final belief distribution are entirely
independent of the control mechanism that activates the individual
operations. They can be activated by either data-driven or goal-driven
(e.g. requests for evidence) control strategies, by a clock, or at random.

As soon as a node posts a token for its parent, it is ready to receive new
data, and when this occurs, a new token is posted on the link, replacing
the old one. In this fashion the network can track a changing environment
and provide coherent interpretation of signals emanating simultaneously
from multiple sources. Having an efficient mechanism of updating and/
or revising beliefs also facilitates various control functions such as, for
example, selecting the next best test in diagnosis. This can be done by the
method of “hypothesizing”; we imagine what impact the outcome of vari-
ous tests would have on some target hypothesis, and select the test with
the highest impact.

The objective of updating beliefs coherently by purely local com-
putations can be fully realized if the network is singly connected—i.e. if
there is only one undirected path between any pair of nodes. These include
trees, where each node has a single parent, as well as networks with multi-
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parent nodes, representing events with several causal factors, as in
Figure 3. .

Here the n message transmitted from EARTHQUAKE to ALARM
SOUND interacts with the A message that ALARM receives from PHONE
CALL to produce a reduction of the evidential support (1) the ALARM
SOUND lends to BURGLARY. This distinction between causal () and
evidential (4) supports identifies the origin of beliefs and permits the system
to treat multiple causes differently from multiple symptoms; the former
compete with each other, the latter support each other. It is due to this
distinction that the system obtains coherent updating via modular com-
putations, dispensing with the need to specify direct inhibitory connections
from one cause to another (Pearl 1988b).

The profile of 7 and 4 messages that load the network at any given time
also provides the information needed for generating explanations, similar
to the justification network in truth-maintenance systems (Doyle 1979).
Tracing the most influential = and 4 messages back to their origins yields
a skeletal subgraph from which verbal explanations can be structured,
clearly reflecting the distinction between causal and evidential supports.

3.1.3  coPING WITH LooPS When loops are present, as in Figure 4, the
network is no longer singly connected, and local propagation schemes
invariably run into trouble. Several methods have been developed that
extend the propagation method to networks containing loops while still
maintaining global coherence relative to probability theory.* The most
notable are conditioning, clustering, and stochastic simulation.

Before describing each of these methods, one should not overlook a
simple but important approximation method called “ignore the loops” —
i.e. propagate the = and 1 messages according to the equations developed
for a singly connected network. If loops are present, this strategy will
cause the messages to circulate indefinitely until their magnitude becomes
insignificantly small (this will always be the case because the conditional
probabilities on the links tend to attenuate the messages). If the loops are
long, ignoring them will not introduce a significant error because the
degree of intermessage correlation, created by multiple paths, diminishes
with the lengths of such paths. The results obtained after relaxation should
be closer to the theoretical results than those obtained by extensional
updating strategies, because the latter totally ignore the distinction between
causal and evidential supports, while the former account for it in an
approximate way.

The method of conditioning involves identifying a set of variables (called

¥In general networks, the task of belief updating is NP-hard (Cooper 1987).
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the cycele cutset) that, if known with certainty, would render the network
singly connected; instantiating these variables to some values; conducting
the propagation on the rest of the network; repeating the process for all
possible instantiations; and then combining the results by taking their
weighted average. In Figure 4, for example, we would run two propagation
exercises, one under the assumption “Thousands dead” = true, the other
under “Thousands dead” = false. The evidential supports obtained under
these two assumptions would then be combined to yield the overall, uncon-
ditioned results.

The effectiveness of conditioning depends heavily on the topoelogical
properties of the network. In general, the number of instantiations required
is 2°, where c is the size of the cycle cutset chosen for conditioning. Since
each propagation phase takes only time linear with the number of variables
in the system (n), the overall complexity is exponential with the size of the
cycle cutset that we can identify. If the network is sparse, topological
considerations can be used to find a small cycle cutset and render the
interpretation task tractable.

A second method of sidestepping the loop problem is that of stochastic
simulation (Henrion 1986a). It amounts to generating a random popu-
lation of scenarios agreeing with the evidence, then answering queries on
the basis of this population. This is accomplished distributedly by having
each processor inspect the current state of its neighbors, compute the belief
distribution of its host variable, then randomly select one value from the
computed distribution, to be inspected by its neighbors in their turn (Pear!
1987¢). Probabilities are calculated by counting the frequency at which a
proposition obtains the value frue. The advantages of this method are
that it is purely distributed and that the rate of convergence does not
depend on the topology of the network. Unfortunately, the rate of con-
vergence deteriorates when the links convey logical constraints—i.e.
extreme probabilities (Chin & Cooper 1987).

The third technique, and currently the most promising, is that of cluster-
ing. It involves forming local groups of variables in such a way that the
topology of the resulting network (treating each group as a single com-
pound variable), is singly connected. For example, grouping the three in-
termediate nodes in Figure 4 into one compound variable will result in a
three-node causal chain. Once a clustered configuration is found, the
propagation methods described in the preceding subsection are applicable,
with a processor assigned to each cluster. The complexity of this scheme is
exponential with the size of the largest cluster found, because the processor
assigned to manage that cluster must handle that many value combinations
(e.g. eight in Figure 4).

A popular method of selecting clusters is to form join trees—i.e. trees
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made up of overlapping clusters in such a way that all links are contained
within the clusters. The network of Figure 4, for example, will be decomposed
into two overlapping clusters: one comprising the top four nodes, the
other the bottom four. The merits of join-tree representations have been
recognized by probabilists for over 25 years (e.g. Vorobev 1962; Goodman
1970; Haberman 1974). Their applications to databases are discussed in
Beeri et al (1983) and Malvestuto (1986), and they have also been suggested
for Bayes inferences (Lemmer 1983) and constraint processing (Dechter &
Pearl 1988). A systematic method of finding such clusters and a thorough
analysis of the updating scheme are described in Lauritzen & Spiegelhalter
(1988). The method involves triangulating the network (Tarjan & Yanna-
kakis 1984), identifying the maximal cliques of the triangulated (or chor-
dal) graph, organizing the cliques in a tree structure, and assigning a
processor to each clique. Beliefs can then propagate by the message-passing
mechanism described in Section 3.1.2 (Pearl 1988a).

The attractive feature of clustering schemes is that, once the clusters are
formed and their tree organization established, the resulting structure
offers an effective database that can be amortized over many evidential
reasoning tasks. A large variety of queries could be answered swiftly by
unsupervised, local, and parallel processes. Therefore, if one takes seriously
the paradigm that unsupervised parallelism is one capability that human
learning aspires to achieve (Pearl 1986), then it is quite reasonable to
speculate that the clusters found for join-tree representations form the
nuclei around which higher cognitive concepts normally evolve.

It is important to note that the difficulties associated with the presence
of loops are not unique to probabilistic formulations but are inherent
to any problem where globally defined solutions are produced by local
computations. Identical computational issues arise in Dempster-Shafer’s
formalism (Kong 1986), constraint-satisfaction problems (Dechter & Pearl
1987a), truth maintenance systems (Doyle 1979), diagnostic reasoning
(Geffner & Pearl 1987a), relational databases (Beeri et al 1983), matrix
inversion (Tarjan 1976), and network reliability (Arnborg et al 1987). The
importance of network representation, though, is that it uncovers the core
of these difficulties and provides a unifying abstraction that encourages
the exchange of solution strategies across domains.

3.2 Dempster-Shafer Theory and Constraint Networks

Pure Bayesian theory requires the specification of a complete probabilistic
model before reasoning can commence—i.e. determining for each variable
X the conditional probabilities that govern the values of X, given the
factors perceived as causes of those values. When a full specification is
not available, Bayes practitioners have devised approximate methods of
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completing the model. For example, if we are given the impact of each
individual cause but not the combined impact of several causes, we assume
that they combine disjunctively, and that all exceptions are independent
(Peng & Reggia 1986; Pearl 1987a).

An alternative method of handling partially specified models is provided
by the Dempster-Shafer (D-S) theory (Shafer 1976). Rather than com-
pleting the model, the D-S theory sidesteps the missing specifications and
resigns instead to less ambitious inference tasks: computing probabilities
of provability (or necessity) rather than probabilities of truths. The partially
specified model is idealized by qualitative relationships of compatibility
constraints, and these qualitative relationships are then used as a logic for
assembling proofs of various propositions. Items of evidence are modeled
as probabilistic modifications of the available constraints, and the support
they lend to a given hypothesis H is defined as the probability that a proof
of H can be assembled.

The current popularity of the D-S theory stems from both its readiness
to admit partial models and its compatibility with the classical, proof-
based style of logical inference. As such, the approach matches the syntax
of deductive databases and logic-programming languages but may inherit
many of the problems associated with monotonic logic, some of which are
discussed in Section 4.1.1.

3.2.1 BELIEF FUNCTIONS AS PROBABILITIES OF PROVABILITY [ introduce
the D-S theory from a rather unconventional perspective, one I hope will
be more meaningful to Al researchers, especially those versed in constraint
processing, truth maintenance systems, and logic programming. Our start-
ing point is a static network of logical constraints that represents generic
knowledge about the world. Each constraint is a declarative statement on
a group of variables specifying what is and what is not permitted to hold
in the domain. For example the rule 4 — B forbids the simultaneous
assignment of true to 4 and false to B. A collection of such constraints
yields a (possibly empty) set of extensions or solutions—i.e. assignments
of values to all variables that simultaneously satisfy all constraints.

In addition to this static network, we also have items of evidence that
provide direct but partial support to a select set of propositions in the
system. Each such item of evidence is modeled as a randomly fluctuating
constraint that, for a certain fraction of the time m, imposes the value true
on the propositions supported by that item. The larger the m the stronger
the support. To compute the overall support that several items of evidence
impart to a given proposition, say 4, we subject the static network to the
corresponding set of externally imposed, randomly fluctuating constraints,
assume that they act independently of each other, and ask for the proba-
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Evidence 1 Network of
categorical

constraints

Evidence 2

[Bel(V =1), PI(V =1)]
Figure 7 Multiple evidence modeled as random switches, imposing additional constraints
on a static network of compatibility relations.

bility (or fraction of the time) that 4 can be proven true. This probability
defines the belief function Bel(A); similarly, a plausibility function PI(4) =
1 — Bel(—1A4) is defined by the probability that 4 is not proven false.

This scheme is illustrated metaphorically in Figure 7, which shows a
static network of variables X, ¥, Z, V. . . (the nodes) interacting via local
constraints (the arcs), subject to the influence of two switches that impose
additional time-varying constraints on various regions of the network. The
switches represent two independent items of evidence, each characterized
by the fraction of time spent in each position.

To illustrate the analysis of belief functions, let us assume that the static
network represents the familiar graph-coloring problem: Each node may
take on one of three possible colors, 1, 2, or 3, but no two adjacent nodes
may take on identical colors. The position of the switches represents
additional constraints—e.g. Cyy: either X or ¥ must contain the color I,
or, Cp: Z cannot be assigned the color 2, etc. The relative time that a
switch spends enforcing each of the constraints is indicated by the weight
measures m,(Cy), m(Cyy), m,(C,), etc. Our objective is to compute Bel(A)
and Pl(A), where A4 stands for the proposition ¥ = 1, namely, variable V
is assigned the color 1.

Figure 8 represents typical sets of solutions to the coloring problem
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Figure 8 (a) Four types of constraints in the graph-coloring problem and () the resulting
belief interval for the proposition 4: F = 1.

under different combinations of the switches (the actual values are fic-
titious). Each row represents one extension (or solution) where the entries
indicate the valuc assigned to the variables (columns). The first set of
solutions is characterized by having the value 1 assigned to ¥ in each and
every row. If the system spends a fraction o of the time in such com-
binations of switches, we say that P(eF 4) = a—i.e. the proposition A:
“V =17 can be proven true with probability a, given the evidence e. A
type-2 position is characterized by the column of ¥ containing 1’s as
well as alternative values—e.g. 2 or 3. Each such position (or position
combination) is compatible with both 4 and — 4. Similarly, a type-3
position permits only extensions that exclude I/ = 1, whilea type-4 position
represents conflict situations; there exists no extension consistent with all
the constraints. Bel(A4) and PI(A) are computed from the time spent in
each type of constraint combination:
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These are illustrated as a belief interval in Figure 85.

The assumption of evidence independence, coupled with the normal-
ization rule above, leads to an evidence-pooling procedure known as
Dempster’s Rule of Combination. For any combination of the evidential
constraints, we need to decide whether the proposition 4 is entailed by
that combination—i.e. if every extension contains 4 and none contain
—A. The total time that a system spends under constraint combinations
that compel 4, divided by the total time spent in non-conflict combinations,
yields Bel(4).

The preceding analysis can be complex. The graph-coloring problem,
even with only three colors, is known to be NP complete. Moreover, if
each item of evidence is modeled by a 2-position switch, and if we have n
such switches, then a brute force analysis of Bel(A) would require solving
2" graph-coloring problems. Analyzing the solutions obtained under every
switch combination and identifying those combinations yiclding ek A4
seems hopeless. Fortunately, these difficulties can be alleviated by decom-
posing the network into a tree of clusters, where solutions can be obtained
in linear time (Dechter & Pearl 1988). In trees, belief functions can be
calculated by local computations because, as with probability calculations,
the belief function associated with each variable can be computed from
partial belief functions associated with its neighbors. The use of tree
decomposition techniques for belief function computations are reported
in Shafer et al (1987) and Kong (1986).

3.2.2 COMPARING BAYES AND DEMPSTER-SHAFER FORMALISMS The D-S
theory differs from probability theory in several aspects. First, it accepts
an incomplete probabilistic model where some parameters (e.g. the prior
or conditional probabilities) are missing. Second, the probabilistic infor-
mation that is available, like the strength of evidence, is not interpreted as
likelihood ratios but rather as random epiphenomena that impose truth
values on various propositions for a certain fraction of the time. This
model permits a proposition and its negation to be simultaneously com-
patible (with the evidence) for a certain portion of the time, and this may
permit the sum of their beliefs to be smaller than unity. Finally, owing to
the incompleteness of the model, the D-S theory does not pretend to
provide full answers to probabilistic queries; rather, it resigns to providing
partial answers. It estimates how close the evidence is to forcing the
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necessity of the hypothesis, instead of estimating how close the hypothesis
is to being true.

Phrased another way, the D-S theory computes the probability that
some set of conditions suggested by the evidence would materialize, from
which the truth of A can be derived out of logical necessity. Thus, instead
of the conditional probability P(4|e), the D-S theory computes the proba-
bility of the logical entailment ek 4. The entailment ek 4 is not a pro-
position in the ordinary sense, but a meta-level relationship between e and
A, requiring a logical, object-level theory by which proofs from e to A4
can be assembled. In the D-S scheme the object-level theory consists of
categorical, compatibility constraints—e.g. that it is incompatible for an
alarm system to turn off unless either a burglary or an earthquake occurred
(see Figure 5). It is remarkable that, while the calculation of P(4|e),
and even the probability of the material conditional P(e > A), requires
complete probabilistic models, P(e k 4) does not.

At this point, it is worthwhile reflecting on the significance of the interval
PI(A)— Bel(4) in the D-S formalism. This interval is often interpreted as
the degree of our ignorance about probabilities—i.e. the range where the
“true” probability should fall if we had a complete probabilistic model.
Such measures would have been a useful supplement to Bayes methods,
which always provide point probabilities and thus can give a false sense
of security in the model.

Unfortunately, the D-S intervals have little to do with ignorance, nor
do they represent bounds on the probabilities that would ensue once
ignorance is removed. For example, the interval Pi(4)— Bel(4) often
vanishes when the model is far from being complete. The equality Be/(A) =
Pi(A) simply means that, based on the categorical abstraction captured
by the compatibility constraints, the available evidence could not simul-
taneously be compatible with 4 and its negation =1 4. It is curious to note
that applying the same interpretation to noncategorical models yields an
interval that never vanishes because, barring extreme probabilities, a body
of evidence is always compatible with both a proposition and its negation.
For example, if in the model of Figure 5 we assume that all rules have
exceptions (e.g. there is a nonzero chance of false alarm, a nonzero chance
of a prank phone call, etc) then all propositions will be assigned zero belief
and unit plausibility, because none can actually be proven true. Thus, the
choice of a categorical abstraction is a crucial one (Pearl 1988a).

3.2.3 RELATIONS TO TRUTH MAINTENANCE SYSTEMS AND INCIDENCE CAL-
cuLus The readiness of the D-S formalism to accept knowledge in the
form of logical constraints, rather than conditional probabilities, renders
it close to uncertainty management techniques developed in the logicist
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camp of AI, most notably truth-maintenance systems (TMS) (Doyle 1979)
and incidence calculus (Bundy 1985). These two approaches can be
regarded as cousins to the Dempster-Shafer theory because, like the latter,
they are based on provability as the basic relationship connecting evidence
with a conclusion.

Truth-maintenance systems also use logical rules as their elementary
units of knowledge, and (see Section 3.2.1) conclusions are drawn by
piecing together rules to form proofs. Likewise, rules may have exceptions
that may cause the expected conclusion of the proof to clash with observed
facts or with other deductions. However, whereas the exceptions and/or
assumptions in the D-S theory were summarized numerically, using the
evidence weight m, the TMS approach maintains an explicit list of the
main assumptions and exceptions involved in each rule.

In the assumption-based TMS approach (ATMS; De Kleer 1986) one
further maintains for each conclusion ¢ a list L(¢) of nonredundant sets
of assumptions called environments, each of which is sufficient to support
a proof of ¢. Thus L(c) is a Boolean expression whose truth signifies the
existence of a proof for ¢. If we are given probabilities on the assumptions
that appear in L{c) and if we further assume that they are independent,
then we can obtain Bel(c) by simply computing the conditional probability
of L(c), given that the assumptions are consistent:

Bel(c) = P[L(c)|consistency].

Moreover, the computation can be done symbolically, which might be
more efficient than the computation method shown in Section 3.2.1. Thus,
the ATMS can be used as a symbolic engine for computing the belief
functions sought by the D-S theory. Steps in this direction have been taken
by D’Ambrosio (1987) and Laskey & Lehner (1988).

Incidence calculus (Bundy 1985) suggests a method of computing belief
functions by logical sampling, a technique similar in spirit to that of
stochastic simulation (Henrion 1986a; Pearl 1987c). A probabilistic model
is used to generate random samples of truth values (bit strings) for a select
set of propositions representing uncertain facts. These values are presented
as assumptions, or axioms, to a theorem prover. Different sets of assump-
tions give rise to different theorems, and Bel(c) is given by that fraction of
the time that ¢ is proven from a consistent set of assumptions. This scheme
is a physical embodiment of the random-switch model described in Figure
7. The random position of each switch is replaced by a random bit string
assigned to the propositions (i.e. assumptions) impacted by the evidence.

The advantage of this scheme is that the theorem prover can be general
purpose (e.g. first-order logic), not limited to propositional constraints.
Moreover, the scheme can simulate dependencies among items of evidence,
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provided the bit strings are generated by a probabilistic model (e.g. a
causal network) that embodies these dependencies.

4. LESSONS AND OPEN ISSUES

4.1 Relations to Nonmonotonic Logic

4.1.1 SOFTENED LOGIC VS HARDENED PROBABILITIES The ills of monotonic
logic have often been attributed to its coarse and sharp, bi-valued charac-
ter. Indeed, when one tries to figure out why logic would not predict the
obvious fact that penguins do not fly even though they are birds, the first
thing one tends to blame is the sharp, uncompromising stance toward
exceptions of the rule “birds fly.” It is natural, therefore, to assume that
once we soften the constraints of Boolean logic and allow truth values to
be measured on a grey scale, these problems will disappear. There have
been several attempts along this line. Rich (1983) has proposed a likeli-
hood-based interpretation of default rules, managed by certainty-factors
calculus. Ginsberg (1984) and Baldwin (1987) have pursued similar aspira-
tions using the Dempster-Shafer notion of belief functions. While these
attempts produce valuable results (revealing, for instance, how sensitive a
conclusion is to the uncertainty of its premises), the fundamental problem
of monotonicity remains unresolved. For example, regardless of the cer-
tainty calculus used, these analyses always yield an increase in the belief
that penguins can fly, if one adds the superfluous information that penguins
are birds and birds normally fly. Identical problems surface in the use of
incidence calculus and softened versions of truth-maintenance systems
(D’Ambrosio 1987; Laskey & Lehner 1988).

Evidently, it is not enough to add a soft probabilistic veneer on top of
a system that is basically structured after hard monotonic logic. The
problem with monotonic logic lies not in the hardness of its truth values,
but rather in its inability to process context-dependent information. Logic
does not have a device equivalent to the conditional probability statement
“P(B|A) is high,” whose main function is to identify the context 4 where
the proposition B can be believed, and to make sure that only legitimate
changes in that context (e.g. going from 4 = penguins to A’ = bird-
penguins or A” = white penguins) will be permitted without significant
changes in the belief of B.

Lacking an appropriate logical device for conditionalization, the natural
tendency is to interpret the English sentence ““if A then B’ as a softened
version of the material implication constraint 4 > B. A useful consequence
of such softening is allaying the fears of outright contradictions. For
example, while the classical interpretation of the three rules: “penguins do
not fly,” “penguins are birds,” and “birds fly,” yields an unforgivable
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contradiction, the uncertainties attached to these rules now render them
manageable. However, they are still managed in the wrong way, because
the material-implication interpretation of if-then type rules is so funda-
mentally wrong that its maladies cannot be rectified by simply allowing
exceptions in the form of shaded truth values. The source of the problem
lies in the property of transitivity,

(a—=b,b—=c)=a—c,

which is inherent in the material-implication interpretation. There are
occasions where rule transitivity must be totally suppressed, not merely
weakened, or else strange results will surface. One such occasion occurs in
property inheritance, where subclass specificity should override superclass
properties. Another occurs in causal reasoning, where predictions should
not trigger explanations (e.g. “‘sprinkler-on” predicts “wet-ground,” “wet-
ground” suggests “rain,” yet “sprinkler-on” should not suggest “rain’).
In such cases, softening the rules only weakens the flow of inference
through the rule chain but does not bring it to a dead halt, as it should.

Apparently, what it needed is a new interpretation of “if-then” state-
ments, one that does not destroy the context-sensitive character of proba-
bilistic conditionalization. McCarthy (1986) remarks that circumscription
indeed provides such an interpretation. In his words:

Since circumscription doesn’t provide numerical probabilities, its probabilistic inter-
pretation involves probabilities that are either infinitesimal, within an infinitesimal
of one, or intermediate—without any discrimination among the intermediate values.
The circumscriptions give conditional probabilities, Thus we may treat the probability
that a bird can’t fly as an infinitesimal, However, if the rare event occurs that the bird
is a penguin, then the conditional probability that it can fly is infinitesimal, but we may
hear of some rare condition that would allow it to fly after all.

Rather than contrive new logics and hope that they match the capabilities
of probability theory, an alternative approach would be to start with
probability theory and, if we can’t get the numbers or find their use
inconvenient, we can extract qualitative approximations as idealized
abstractions of the latter, while preserving its context-dependent proper-
ties. In this way, nonmonotonic logics should crystallize that are guaran-
teed to capture the context-dependent features of natural defaults (Pearl
1988a).

4.1.2 THE LOGIC OF “ALMOST TRUE” This program had in fact been
initiated over 20 years ago by the philosopher Ernest Adams (1966), who
developed a logic of conditionals based on probabilistic semantics. The
sentence “if 4 then B” is interpreted to mean that the conditional prob-
ability of B given A4 is very close to 1, short of actually being 1. An
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adaptation of Adams’s logic to default schema of the form Bird(x) —
Fly(x), where x is a variable, is reported in Geffner & Pearl (1987b).
The resulting logic is nonmonotonic relative to learning new facts, in
accordance with McCarthy’s desiderata. For example, learning that
Tweety is a bird would yield the conclusion that Tweety can fly; sub-
sequently learning that Tweety is also a penguin would yield the opposite
conclusion: Tweety can’t fly. Further, learning that Tweety is white will
not alter this belief, because white is a typical color for penguins. However,
and this is where it falls short of expectations, learning that Tweety is
clever would cause Adams’s logic to retract all previously held beliefs
about Tweety’s flying and answer: “I don’t know.” The logic is so con-
servative that it never jumps to conclusions that some new rule schema
might invalidate (e.g. that clever penguins can fly). In other words, the logic
does not capture the usual convention that, unless we are told otherwise,
properties are presumed to be irrelevant to each other.*

Attempts to enrich Adams’s logic with relevance-based features are
described in Pearl (1987d), Geffner & Pearl (1987b) and Geffner (1988).
The idea is to follow a default strategy similar to that of belief networks
(Section 3.1); dependencies exist only if they are mentioned explicitly or if
they logically follow from other explicit dependencies. However, whereas
the stratified method of constructing belief networks ensures that all rele-
vant dependencies were already encoded in the network, this can no longer
be assumed when knowledge is presented in the form of isolated default
rules and logical constraints. A new logic is needed to tell us when one
relevancy follows from others. This issue is further discussed in Section
4.2.

4.1.3 THEISSUE OF CONSISTENCY Thereis another dimension along which
probabilistic analysis can assist current research in nonmonotonic logics.
The latter do not provide any criterion for testing whether a database
comprising default rules is internally consistent. The prevailing attitude
is that once we tolerate exceptions we might as well tolerate anything
(Brachman 1985). However, there is a sharp qualitative difference between
exceptions and outright contradictions. For example, the statement “‘red
penguins can fly”” can be accepted as a description of a world in which
redness defines an abnormal type of penguin. However, the statements
“typically birds fly” and “typically birds do not fly” stand in outright
contradiction to each other; since there is no world in which the two can
hold simultaneously, they will invariably lead to strange, inconsistent

4 Grosof (1986) discusses this convention in terms of a principle of maximizing conditional
independencies, similar in spirit to the maximum entropy principle (Cheeseman 1983).
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conclusions. While such obvious contradictions can easily be removed
from the database (e.g. Touretzky 1986), more subtle ones might escape
detection—e.g. “birds fly,” “birds are feathered animals,” “feathered
animals are birds,” and “feathered animals do not fly.”

Adams’s logic provides a criterion for detecting such inconsistencies, in
the form of three axioms that should never be violated. In inheritance
hierarchies this criterion yields a simple graphical test (Pearl 1987¢), which
is a generalization of Touretzky’s: A network N is consistent iff for every
pair of conflicting rules p, — ¢ and p, — —1g, p, and p, are distinct and
there is no cycle of rules that embraces both p, and p,. For more intricate
structures of default rules the test becomes more involved.

4.2  Graphoids and the Formalization of Relevance

A central requirement in several topics of this survey has been to articulate
the conditions under which one item of information is considered relevant
to another, given what we already know, and to encode knowledge in
structures that vividly display these conditions as the knowledge undergoes
changes. Different formalisms give rise to different definitions of relevance.
Forexample, in probability theory, relevance is identified with dependence.
In constraint-based formalisms (and in relational databases) relevance is
associated with induced constraints; two variables are said to be relevant
to each other if we can restrict the range of values permitted for one by
constraining the other.

The essence of relevance can be identified with a structure common to
all these formalisms. It consists of four axioms that convey the simple idea
that when we learn an irrelevant fact, the relevance relationships of all
other propositions remain unaltered; any information that was irrelevant
remains irrelevant and that which was relevant remains relevant. Structures
that conform to these axioms are called graphoids (Pearl & Paz 1987).
Interestingly, both undirected graphs and directed acyclic graphs conform
to the graphoids axioms (hence the name) if we associate the sentence
““varjable x is irrelevant to variable y once we know z”” with the graphical
condition “every path from x to y is intercepted by the set of nodes
corresponding to z.”” [A special definition of “intercept” is required for
directed graphs (Pearl 1988a).]

With this perspective in mind, graphs, networks, and diagrams can
be viewed as inference engines devised for efficiently representing and
manipulating relevance relationships: The topology of the network is
assembled from a list of local relevance statements (e.g. direct depen-
dencies), this input list entails (using the graphoid axioms) a host of
additional statements, and the function of the graph is to ensure that a
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substantial portion of the latter can be read off by simple graphical criteria.
Such a mapping will enable one to determine, at any state of knowledge
z, which information is relevant to the task at hand and which can be
ignored. Permissions to ignore, as we saw in Section 3.1, are the fuel that
gives intensional systems the power to act.

An important result from the theory of graphoids states that Bayesian
networks constitute a sound and complete inference mechanism relative
to probabilistic dependencies—i.e. it identifies, in polynomial time, each
and every conditional-independence relationship that logically follows
from those used in the construction of the network (Pearl & Verma 1987,
Geiger & Pear] 1988). Similar results hold for other types of relevance
relationships—e.g. partial correlations and constraint-based depen-
dencies. However, the essential requirement for soundness and com-
pleteness is that the network be constructed causally—Ii.e. that we specify,
recursively, the relationship of each variable to its predecessors in some
total order. (Once the network is constructed, the original order can be
forgotten; only the partial order displayed in the network matters.)

One can speculate whether it is this soundness-completeness feature that
renders causal schemata so important in knowledge organization. More
generally, the precise relationship between causality as a representation of
irrelevancies and causality as a commitment to a particular inference
strategy [e.g. chronological ignorance (Shoham 1986)] is yet to be fully
investigated. A different notion of relevance has been explored by Subra-
manian & Genesereth (1987), based on logical derivability. The latter takes
propositions, rather than variables, as the atomic entities in the relevance
relationships; again, the connection to graphoid structures is not fully
understood.
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