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" 1. _INTRODUCTION

Natural languages, mathematical equatiopg, computer programs, visual
diagrams, are all various forms devised by man to represent his environment
and the problems it poses. Man's attitudebtoward his environment is so in-
timately connected with the form invented for its representation that these
two, the modeled and the model, the content and its form, have been the sub-
jects of endless misuse and confusion. Thousands of interpretations and
inferences were constructed on the basis of the numerical value of letters
(Gimatria) in the Bible. The axio@fof Euclid were for years regarded as a
gift of the gods, just abogt the only thing we "know" for sure. In our times
stock-market chartists manipulating the geometry of ''resistance levels" and
"consolidation lines'" still command high respect in financial circles.

Modern science has brought about a clear distinction between the emplir-
ical world and its modal representation, a distinction which tends to under-
score the role.played by the latter. An attitude frequently encountered in
scientific circles is that since model-language is only an artificial device
invented to describe the ''real-thing", variations among different representa-
tions are secondary in importance, pertaining merely to such trivial conven-

(omn S tfru.,; 3
iences as gapedepmsse, simplicity, mnemonic economy, ease of communication,
etc.

That such attitude ignores one of the most essenﬁial factors in man's
ability to understand, predict and control his environment is clearly demon-
strated by the historical pattern that both conceptual and technological
advances always follow progress (change) {in notational schemes. Modern
science can hardly be envi;icned without Galileo's discovery that empiri-

cal observations can be'represented in algebraic form, and this recognition



took place only after the advent of positional number system. Einstein's
theory of relativit& came into being only after the development of tensorial
vocabulary, while quantum mechanics owes its impetus to notational develop-
ments in the calculus of linear operators. Tﬁis pattern suggests that the
choice of working representations is not a matter of sheer luxury but is a
prime determinant in configuring our cognitive structure.

Facing todays environmental, sociological, and economical problems . the
question of representation assumes double importance. The complexity of these
problems renders them utterly untractable without substantial abstraction
which in turn is a sensitive function of the cognitive structure of the prob-
lem solver. Any working solution of these problems must employ interdiscip-
linary activities which‘involve individuals with diverse layouts of cognitive
structures. In our rapidly changing world we witness the phenomenon that
classification schemes of yesterday quickly lose their effectiveness when
new problems are created. Thus, the introduction of novelties c¢an no longer
be accomplished by superposition upon established representations.

The advent of fast digital computers brings about an added dimension.
These new creatures are not born with an innate structure_similar to ours, it
staﬁds to reason therefore that representations suitable for us will not find
natural matchings to machine structures. It is also a fact that programmable
machines are potentially more flexible in changing their internal précessing
structure than human beings. This suggests that if new fepresentations of
problem situations are warranted these would be more likely to be accomp-
lished in machine environments rather than in our brain strucgure.

The aim of a Theory of Representations is to establish generic connec-

tions between the formal structure of representations and the functional



attributes of their usage, and thus help guide the process of selection or
generation of representation to match a partﬁcular class of problems.

Several factors may account for the absence of Theory or Representa-
tions. Cognitive psychologists have long beénbexperimenting with the ef-
fect of representation on human problem-solving performance. However, the
absence of adequate means for measuring and controlling the cognitive struc-
ture of the problem-solver, prevented the development of quantitative psy-
chological theories of representations. Computer Science - the science of
symbols - could have mobilized its resources toward the development of rep-
resentation theory. Unfortunately, many computer scientists are preoccupied
with speed-cost improvements of their symbol-manipulating machines with very
little attention to the environment which generates the input symbols and
the external implications of the output symbols.

The present report aims at calling attention to the fascinating prob-
lems of representation, with the hope that common efforts of workers from
various fields would provide the necessary impetus for the development of
the theory. A logiéal first step in the development of any theory is the
compilation of case studies demonstrating the relationships which the theory
attempts to capture. Unfortunately, in the case at hand, we are in posses-
sion of only very few examples where the role of representation and its re-
lation to the structure of the problem environment and the problem-solver
is well understood. Understanding this relation implies that we are able
to fully predict the effect of any change in representation on the perfor-
manée of the problem-solving procedure. That such understanding is lacking
in human problem solving situations i{s not surprising, as we usually lack

adequate descriptidns of many human activities. But even in machine



4
environments we only have very crude means for describing'efficiency'of prob-
lem-solving procedures, as the concept "complexity of computation"‘itself is
not yet well developed [see Ref. 1]7.

The state of affairs of representation theory is best summarized in H.
Simon's [Ref. 21 words:

""An early step toward understanding any set of phenomena
is to learn what kinds of things there are in the set--
to develop a taxonomy. This step has not yet been taken
with respect to representations. We have only a sketchy
and incomplete knowledge of the different ways in which
problems can be represented and much less knowledge of

the significance of the differences."

Given this state of affairs, the addition of any case where the effect of
representation is well understood (not merely recognized) should be welcome.

The program followed in this report is first to present simple examples
where the role of representation is clearly recognized as the dominant fac-
tor leading to a solution. In Section 3 we will discuss some generic proper-
ties of representations as manifested by the examples above; In Section 4 we
will present an exaﬁple where the role of representation is not only recog-
nized, but can be described quantitatively. The example, employing épectral
representations in the field of signal processing, belongs to the rare class
of well understood cases, so badly needed for the development of a general
theory of representation. In Section 5 a brief description will be given of
possible directions to formalize a theory of representation. Section 6 des-
cribes a medical application that could benefit directly from the study of

representations.



2. _REPRESENTATIONS IN PUZZLE SOLVING

Let us make it clear what we mean by "“representation" by citing two
classical puzzles which contain most of the.essential ingredients and at

the same time are free from unnecessary details.

Example 1: EXCHANGE THE KNIGHTS.

Figure la contains a 3x3 section of a checker board with two black and
two white knights. It is required to make the black knights trade positions
with the white ones using minimum number of legal chess moves. In its pre-
sent representation it takes the average individual a good fraction of an
hour to figure out the answer. The solution becomes much more difficult if
no pencil and paper are allowed.

Figure 1b describes another representation of the same problem. Recog-
nizing that a knight can reach any square from exactly two other positions,
the squares can be arranged along a‘closed loop with neighbors corresponding
to positions separated by a single knight move. 1In this repfesentation the
task of exchanging the positions of the knights is trivial; one immediately

realizes that all figures must move four steps clockwise (or counterclockwise).

Example 2: DOMINO COVERING PUZZLE.

Figure 2a shows an Bx8 checkerboard with two corners removed. It is
required to completely cover the board with domino tiles each the size of
two adjacent squares. It is obviously an enormous task to investigate all
possible tile patterns, instead, Figure 2b contains & simplified representa-
tion of the problém. Recognizing that each tile must cover one black and
one white square, one realizes that the number of uncovered black squares as
well as that of the uncovered white squares decreases by one for each tile

added. Starting with 32 white and 30 black squares (32-30) it is obvious
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that complete coverage (0-0) is impossible.

Whilg these examples demonstrate how changes in representations can be
instrumental in attaining a desired solution, they immediately bring to mind
several questions: |

1. Can most problems (especially real-life problems) benefit from a
clever change of representation, or is it merely a curious trick
among few artificially constructed puzzles?

2. 1s the reduction in complexity seen in these two examples a uni-
versal phenomenon, or does it vary from individual to individual
and from one machine to another?

3. 1Is there a systematic way of searching for a "good' representation?
Can it be mechanized? Will it lead to a better overall economy
than solution procedures processed in the original formulation?

Unfortunately, although it is generally recognized that the choice of
representation is a critical step in every problem-solving situation, only
very few steps were taken toward gystematization of the choice procedure.
Amarel [Ref. 3] demonstrated how the classical puzzle of Missionary and Can-
nibals can be solved by successive changes in representation, each change
makes the problem simpler until at last the solution becomes apparent. Sim-
ilar effects were considered in Syntactic Analysis, Theorem Proving and
Question-answering Systems [Ref. 4]. The question of the feasibility and
economy of mechanized procedures, however, remains open. To the questions
stated above, only the second can be given a fairly complete answer, as is

attempted in the next section.



3. _1SOMORPHIC VS. HOMOMORPHIC TRANSFORMATIONS

Without going too deep into the details of the examples cited in Section

2, a very clear distinction can be made between the two. In the Knights Puzzle
every configuratibn in representation la has corresponding to it one and

only one configuration in representation 1b. This is not the case in the
Domino Puzzle; knowing the number of covered black and white squares does
not permit us to go back and identify the exact configuration on the board.
1t is sufficient, though, to prove the impossibility of the covering task.

This observation leads to a distinction between Isomorphic and Homomor-

phic transformations:

Isomorphic Transformations preserves a one-to-one correspondence between con-
figurations (states and operators) as exemplified in the Knights Puzzle.
Other names used for this class are "Resolution Preserving Transformations"
and "Epistemologically Equivalent Representations" indicating the-feet that
both representations contain the same amount of knowledge or information.

An interesting phenomena of the Knights Puzzle is that if programmed for
solution on an electronic computer (say through a flying spot scanner input)
the two representations would assume almost identical program forms, and
therefore would be regarded equally difficult; The simplification affected
by isomorphic transformations is obviously in the eyes of §he beholder--the
problem solver, depending on the particular internal structure of his pro-
cessor. The peculiar structure of our visual system combined with our com-
mon experience of pushing shopping carts in supermarkets or perhaps driving
around single-lane tracks are instrumental in rendering the loop structure

“simpler' than its original square-board representation.
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Homomorphic Transformations as exemplified by the Domino Puzzle involve re-

duction in detail (also called "loss of resolution'" or "abstraction") whereby
groups of configurations (states and operatSrs) sharing common properties are
lumped together to form "super-states' or categories, thus losing their indi-
vidual identity. The categories chosen for such lumping must be those '"rele-
vant" for the solution process in the sense that a solution found for the
super-states representation can be referred back and applied to the original
representation. Problem reduction of this type is usually considered univer-
sally beneficiai (to both man and machine) as it reduces thé dimensionality
of the search space and thus simplifies the search task seemingly regardless
of the structure of the processor doing the search. For this, and similar

%mﬁw tat o
reasons,‘ omomorphic Transformations seems easier to analyze thanﬂlsomorphic
Transformations. '

The independence on processor structure, however, is only apparent, in
fact the merit achieved by any detail-reducing transformation can only be
evaluated in the context of the language available to the problem-solver.
Imagine for instance, that representations 2a and 2b are offered to an indi-
vidual who hasn't yet grasped the concept of '"numbers' and therefore is un-
familiar with arithmetic operations. To such an individual representation
2a would seem infinitely simpler than 2b. To conclude that the uncovered
board corresponds to a state: (32, 30) presupposes that one knows how to
count. Without the rules of counting the correspondence between the two
representations may become as difficult (perhaps more difficult) than the
solution itself. It is similarly obvious that the concept of “parity"

(black or white séuares) must be mastered by the probiem-solver before he

can utilize representation 2b.
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To further stress this point let us cite an extreme example of 'useless
abstraction". Consider the problem of covering an arbitrary collection of
squéres.with domino tiles. To reduce unneCeésary detail let us focus on a
single configurational property, a property we call "coverable”. 1In the ab-
stracted representation each configuration will be represented by a single
number; "1" if it i{s coverable and "0" if it is not coverable. Clearly, to
determine whether a certain collection of squares can be covered by domino
tiles it suffices to glance at the number appearing in its abstracted rep¥
resentation, no additional search is required. Needless to say, in spite of
its substantial reduction in search space such abstraction would be utterly
useless for discovering whether or not the collection can be covered. A
sheer reduction into operationally useful categories is not by itself suffi-
cient to guarantee a simple solution. It must be coupled with a processor
containing 8 classification mechanism to decide whether or not a new config-
uration possesses the categories considered, and a procedural language for
manipulating these categories. |

Homomorphic transformations can be thought of as Isomorphic transforma-
tions followed by omission of "irrelevant® categories. While the omission
itself is a trivial pért of the solution process, it is the separation be-
tween relevant and irrelevant categories which should be credited to isomor-
phic changes in représentation. It is for that reason that this report fo-
cuses on isomorphic transformations to reveal the true significance of shifts

in representation.
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4. _SPECTRAL REPRESENTATIONS !

In 1807 a jury consisting of Legendre, Lagrange, and Laplace rejected
Fourier's memoir on heat conduction because it lacked proof. Today much
work in Mathematics, Physics, and Systems écienée stems from Fourier's un-
proved conviction that his trigonometric series can represent arbitrary func-
tions. It is a tribute to science that it compromised its‘proclaimed policy
of truth and vigor and allowed its hunger for convenient representations to
take 1its course.

On their first exposure to spectral analysis, engineering studeﬁts are
usually convinced that the advantage of using Fourier transforms (and simi-
larky its associated Laplace and z-transforms) is that it reduces linear-
time-invariant differential equations to algebraic equations which can be
readily solved. This motivation quickly loses its main punch as students
begin to solve differential equations on digital computers which renders
savinés in Band calculations - & meager prize indeed for their agonizing
struggle with Fourigr Integral Tables. The practicing communication engineer,
on the other hand, (with his first lesson in Fourier series long forgoﬁten)
would become uttetly incapacitated if forbidden the use of the frequency de-
composition concept. |

Clearly, the question of representing signals in the time domain or in
the frequency domain constitutes a pure example of cholce among isomorphic
representations. Its extensive use in the mature field of communication
could have served as a test vehicle to reveal the generic principles under-
lying tradeoffs among arbitrary isomorphic representations. This, however,
could not be‘accomplished so long as the assessments were made by subjective
judgments of human beings (engineers) whose measure of computational conven-

ience depends on such variables as natural ability, training, motivation,
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aesthetics, etc. Fortunately, the introduction of digital computers into
real-time communication systems has stripped communication gngineers from
their position of sole judges of convenience and has provided us with a more
objective slide-rule for measuring 'goodnes;' of representations and its re-
lation to the structure of the problem solver. Moréover, new spectral rep-
resentations (such as Walsh, Haar, etc.) have become popular contending the
supremacy of the Fourier rgpresentation on the basis of better fitness in
digital environment. The question of choosing a proper representation has
finally assumed practical technological importance.

What do we mean when we say that we process information in the frequency
domain? ';; meaq{ that after a time signal is sampled and quantized the vec-
tor so obtained is multipiied by a unitary matrix F[Fkl = j%‘exp(ikl 2ﬂ/N)]
and additional processing is then performed on the resultant vector called
the frequency spectrum or the Fourier transform. The question immediately
arises: 1if a time-signal and its Fourler transform differ only by a rotation
of the coordinates system but otherwise contain the same information (epis-
temological equivalence), what difference does it make if the additional pro-
cessing takes place in the time or frequency domain? Indeed, looking at a
communication system from the outside there is no way of telling whether
Fourier transform was ever employed.

It turns out that when a communication engineer admits to have been us-
ing Fourier processing he invariably implies some additional restrictions on

the processing. What he abtually implies is that after the frequency spec-

trum vector is obtained, its components are to be handled independently of

each other in the immediate subsequent processing stage (see Figure 3). For

instance, if he 1is doing filtering he would multiply each spectral component
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by a pre-determined scalar in order to amplify the desired frequencies and
attenuate the undesired ones. If he is doing coding then he would assign a
binary code to each spectral component regardless of the magnitude of its
neighbors. If he is attempting to classify patterns he may wish to truncate
his spectral vector, throwing away some irrelevant information, abstracting
only few components (also referred to as features, categories, predicates,
attributes, etc.) which he believes would suffice for suBsequent clasgifying
decisions. The common feature among these operations is that each spectral
component is recalled from memory only once. Thus, if the length of the
spectral vector is N, we mey say that these operations fequire N primitive
computations or & computational complexity of degree N.

The identification of computational complexity with the number of mem-
ory lookups is sowewhat coarse in that some primitive operations (e.g., cod-i
ing) can be more complex than others (e.g., multiplication). However, so
long as we stay within the framework of the same type of tasks, the number
of memory lookups is & realistic measure of complexity. It also has a simple
invariant property, if instead of a serial computer one attempts to use &
parallel processor (for which the most celebrated ideal is the visual sectionm
of the brain) then the requirement of N memory cycles is convefted into a re-
quirement for N single-input processing elements, one for every spectral
component.

. What is the alternative to such restricted, one-to-one, structuref? In
general, the operation we may wish to apply to each spectral component can
depend on the magnitude of all other components, yielding complexity of de-
gree Nz. In the case of linear filters, for example, the unrestricted fil-

tering operation can be performed by multiplying the input vector by an NxN

*This structure was originally given the name "Basis Restricted", see Ref. 5.
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matrix. Indeed, such operation requires on the order of N2 multiplications
and additions. Thus,‘the motivation behind the restricted computational
structure is reducing its computational complexity from degree '2 to N,

This reduction would seem even more impressivg if we consider adaptive sys-
tems in which the N processing operations arebnot fixed but must be learned
from past experience. It is certainly much e@cier to control, train, and
adjust a system with N undetermined elements than it is with N2 undetermined
elements.

Granted that complexity-reducing structures are desired and sometimes
even necessary, what is the role of representations in all this? The reduc-
tion in computational complexity is certainly not being accomplished without
a price. The performance (e.g., signal to noise ratio, classification er-
rors, etc.) achievable by optimizing & restricted structure with N elements
is naturally lower than that achievable with Nz elements. The difference
between the two, howeVer, varies widely with the choice of representations,
and in many casesvit can be shown that a representation (unitary transforma-
tion) exists which makes this difference vanish.

The connection between the representation used and the performance deg-
radation of "basis restricted" processors was treated in Ref. 5-6 for the
tasks of linear filtering and source coding. 1In these two cases (ang¢ many
others of the same generic type) it can be shown that the optimal represen-
tation is achieved by that unitary transformation which renders the spectral
components statistically uncorrelated (also called the Karhunen-Loeve expan-
sion) and that for the whole wide class éf stationary random-inputs, the
Fourier transform approaches the optimal performance like‘Jq7ii The inqui-

sitive engineering student is usually forced to wait until his third college
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year before learning the second desirable property of the Fourier represen-

tation: The Fourier coefficients of stationgry rgndom-signals are "almost"
uncorrelgggg.*

There still remains the question of whether the computational effort
connected with the transformation itself is not larger than the effort saved
in subsequent computations. The answer {8 twofold. First, the Fourier
transform matrix obeys soﬁe very useful group properties which permits its
execution with N log N computaéions [Ref. 8]. Becond, even in the absence
df such luxury, the fact that the Fourier rppresentation is close to optimal
for such a large and_counon class of statistical environments makes it very
attractive for use iﬁ adaptive systems. ﬁere, if only the stationarity of

devad bd

the environment is known but not {ts emsst characteristics, it would be ad-
visable to make a one time investment and implement the Fourier-transform in
hardware form, thus freeing the software system to handle the search for the
;et of N variable elements. The nice thing about such a system is that ﬁhe
fixed and variable properties of the environment are handled by two corres-
ponding but separate sections of the processor. The former by a fast, fixed,
and expensive hardware section, the latter by a slow, variable but 1hgxpen—
sive software. |

At this point it is very hard to resist temptations to draw analogies
with the structure of the brain. Similar hardware-software tradeoff consid-
erations can be argued from an evolutionary'vievpoint. The Eaakq of handling
recurrent environmental tasks such as edge enhancement, corner detection, etc.

are said to be given to innate sections such as the retinal network and Hubel-

Wiesel type cells [Ref. 9]. The handling of the variable parts of our

*A similar theorem was proved by Root [Ref. 7] for the case of continuous-
time signals.
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environment is attributed to higher and trainable wental processes which
are operationally slower but offer better genetic economy.

This brings us back to our original objective of guessing some general
principles governing representations from particular examples we thoroughly
understand. Spectral representations in signal processing applications of-
fer such an example. It exhibits several characteristics:

1. The influence of isomorphic representations on the input-output
performance of a system is significant only when the internal struc-
ture of the system is restricted, (e.g., by considérations of com-
putational simplicity) and thus prohibited from taking full advan-
tage of the input information.

2. Equivalently, for a given input-output performance the choice of
representation may alter the computational complexity of the‘
processor.

3. An important factor influencing computational simplicity is the pos-
sibility of processing each data item (symbol, predicate, etc.) in-‘
dependently of all the others.

4., To what degree can such independent processing be permitted is de-
termined by the statistical nature of the input environment.

5. The purpose of a good representation is to transform the raw input
into a data structure with the least statistical dependence among
its varioﬁs components.

6. In learning situations a good representation is one that minimizes
the number of connections and componente that need to be readjusted

during the learning period.
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To what degree can any of these characteristics be generalized, depends
on the outcome of additional case studies where shiftsyin representation pro-
duce quantifiable differences. Among the most promising directions we should
mentién J. Savage's work on Complexity of Cod;ng [Ref. 10] and S, Winograd's
work on Complexity of Group Multiplication [R;f. 11]. The latter leads to
conclusions similar to those in point 3 above. For instance, the‘nost effi-
cient representation for multiplication is the prime-decomposition number
system, as it permits independent digit-by-digit operatioms.

It is my personal feeling that the most significant characteristics re-
vealed in spectral analysis is number 6 above pertaining to behavior under
learning.

The‘task of finding a good representation for a single isolated problem
would probably always demand at least as great an effort as the solution task
itself. The reason being that the space of possible représentations is much
larger than the search space. It is only when one considers a class of prob-
lems with some common features (e.g., stationarity) that the search for ade-
quate representations may bear economical fruits. In such cases the available
knowledge can be incorporated into an effective form of description language
whereby elementary operations on individual symbols do not disturb the invari-
ant properties of the class. The search in such representations can be easily
confined to the variety of the clase of the situation, avoiding its common-

alities.
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5. STEPS TOWARD A FORMAL THEORY

Having seen that the question of representation is essentially that of
matching between a class of problems and a processor with restricted struc-
ture, the next logical step in our progranyshould be to thoroughly investi-
"gate the behavior df some well defined processors models in the solution of
some well defined problem situations. The narrower the model the more likely
we are to find a description of its behavior, but at the s&me time, the less
likely it is\for such description to become gemeric. Pursuing our convic-
tion that general theories are developed on the basis of sets of particular
cases, we will outline in this section some possible (and by no means exhaus-
tive) approaches.

We begin by & short description of Mineky and Papert's work on Percep-
trons [Ref. 12], and then proceed to outline possible extensions of this
work relevant to ihe problem of representation.

A perceptron (see Figure &) is a model of a pattern recognition system
consisting of three parts: A retina R, a set of predicates ¢, and a linear
threshold funétion ¢¥. The retina R consists of a spatially arrayed collec-
tion of cells whose ocutputs are "1% or "“O% depanding on whether the intensity
of the incoming light exceeds & certain threshold. Each predicate in the set
¢ = {Pl, Ez,--~ } computes a specified Boolgan function of the retinal im-
age (denoted by X). The output v(k) of the perceptron is either 1 or O de-

pending on whether the inequality

Z oP) - P(X) > @
peé

is satisfied. In the context of human problem-solving, the predicaetes may

correspond to previously established concepts, and the o's represent the
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weights of these concepts in the formation of the new concept (x).

The question originally asked about perceptrons [Ref. 13] was whether
such a given network can be 'trained' to recoénize & given set of patterns
by adjusting the weights a(P) in accordance with past performance. The an-
swer is that if a set of weights exists which properly classifies”the given
patterns then it can be reached from any starting weights by a training pro-
cedure which is guaranteed to converge.

Minsky and Papert attack a different kind of question. They ask: '"For
a given pattern classification problem, what kind of predicates must be in-
cluded in the set & in order for a working weighting scheme to exist?" Ob-
viously, 1f one does not limit the content of the predicate set in some way,
all patterns are classifiable by a perceptron-like network. It turns out
that a certain classification problem requires more ‘complex' predicates than
others. The measure of predicate complexity used by Minsky and Papert is the
number of retinal cells upon which the function P(X) depends. The "order" of
a given pattern recognition problem is the minimum number of retinal cells
that at least one predicate must ‘see' if the network is to do its job.

Minsky and Papert derive many interesting relations between common pat-
tern classification problems and the ‘order' they necessitate. For instance,
the parity question of whether the number of illuminated cells in a pattern
is odd or even cannot be answered unless at least one of the predicates {is
connected to all the retinal cells. On the other hand, questions like whe-
ther a pattern X 'is a solid rectangle', 'is coﬁvex', or 'is & hollow square'
can be determined with predicates of order no larger than three. The method
laid down by Minsky and Papert to derive such relations may serve as a cor-

nij;tone for the theory of representation.
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Before applying the perceptron model to the problems of representation

few extensions are required. The 'order' of a classification problem may be
a useful tool for determining whether it is separable by a given family of
predicates. It is not héwever a good measuré of classification complexity
as {t does not account for the number of predicates that must be considered
for a solution. The complexity of training procedures is a direct function
of the number of weights that need to be adjusted. Therefore, we could ben-
efit a lot from investigating the following kind of problems:

1. Given a pattern classification problem which is solvable by a given
family of predicates §. What is the minimum number of predicates
that must be linearly weighted to make the solution feasible? What
properties of & are affecting that number?

2. Given a pattern classification problem whicﬁ is unsolvable by & given
family & of predicates. How many new logical connections must be
made smong the members of &, if the new set &' of predicates {8 to
be sufficient for solution? What properties of & affect that number?

Equipped with answers to such qugstions é:;;;;;;& complexity we can at-

tack the problem of representation qég:; the following way: Given a pattern
classification problem and two {somorphic pattern representations,{X}and{xf.
Which of these representations would result in easier computation given a
perceptron-like processor with a set & of ‘built-in® prediéateu.

The perceptron is a restricted model . Patterns which are fairly easy

to describe in Boolean notation may sometimes require complex perceptron-like
bnetworks for realizastion. The practicality of the perceptron as a pattern
élassifier is also limited. The weights neeniiary for classification often

Mraapmtudes Gwmd
requtrﬁ‘precisions which are practieally unrealizaeble. Why then concentrate
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on the perceptron as a test vehicle for shifts in representations?

The answer is twofold. First, only for perceptron-like models we now
have a calculus connecting complexity of computation to useful geometrical
properties, as developed by Minsky and Papert. Second, the perceptron is

c ’ i(amcm‘ad
about the only computational model for which we have =tHFFe and tractable
learning procedures. Less restrictive models of pattern description are
discussed by Banerji [Ref. 14]. Banerji models contain the retina and the
predicate set but remove the restriction that classification is to be made
by linear threshold functions. Instead, the formation of new concepte is
accomplished by disjunctivé and conjunctive (Boolean 'OR' and 'AND') opera-
tions on the available predicates. Pennypacker [Ref. 15] developed algor-
ithms for finding (and learning) the shortest description of a concept us-
ing the union of conjunctive predicates. The advantage of this model is
that the classification task and the predicate set are expressed in the same
langdage (Boolean expressions). The drawbacks are the lack of recursive
learning algorithms like those available for the single-layer perceptron.

The studies of Banerji and Minsky and Papert focus on models with static
languages (fixed set of predicates and combination rules thereof) quite a
different type of problem arises in studying the dynamics of languages as
they adapt to the pattern environment. The problem of representstion is
then turned inward: Given an environment with fixed representation (corres-
ponding to fixed symbol coding at the input of the processor) what is the
proper selection of a language to describe this environment and handle the
problems it poses. Here we must first find a meta-language for character-

izing the environment independently of the set of languages we investigate.
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This might not perhaps be & problem in artificisgl situations where artificial
environments can be constructed having specific set-theoretical and probabi-
listic properties. Finding a reference descriptic;n for ::aal environments, how-
ever, involves inductive inferences which by.th',z’sfi,if own nature are language

dependent.
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6. A PRACTICAL APPLICATION OF ISOMORPHIC TRANSFORMATIONS

Several laboratories across the country are engaged in research toward
aiding sensory impairments. Variocus schemes haye been proposed for provid-
ing visual aid to the deaf, auditory aid to.the‘%iind and tactual aid to
both, apparently without considerable success.

Let us consider these ideas from the viewpoint gf\problem representa-
tion, and focus for the moment on schemes for eng@lghg the blind to read
printed material using tactual stimuli. Such ﬁc&;uea usually employ & trans-
ducer which convert the optical character pattemms to @atterns of vibrations
on the reader's finger tips. The reader is to move the transducer along the
printed lines and interpret the vibrational pattern he receives on his finger
tips.

The question immediately arises: what should the vibrational pattern
look like to facilitate fast reading? Now, the structure of the retinal net-
works is substantially different from that of the tactual nerve system.
Without insisting on a detailed knowledge of the two structures one can
readily agree that the set of innate predicates used by the retina is dif-
ferent from that of the tactifal sense. Our fingers are very good in con-
firming predicates like 'sharp', 'flat’, ‘'smooth', 'rough' while the eye ex-
hibits its outmost skill i{n detecting 'lines', 'angles', 'loops', etc. (Much
wider differences exist between the visual and auditory systems.) It stands
to reason, therefore, that the English alphabet which has evolved to facili-
tate visual recognition may not be the most suitabie representation for tac-
tual recognition. It is not by chance that the Braille alphabet is not &
replica of the English alphabet.

What then is a suitable tactual code? and why not use the Braille code
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which has already been proven useful? The difficulty is transforming Eng-
lish characters to Braille code is that characters must first be recognized
then coded, and optical character recognition systems are still complex, ex-
pensive, and unrelisble. The co-plexiﬁy of these systems is mainly due to
the enormous abstraction they comprise; a reduétion from the space of all
black and white patterns to the space of only twenty six classes. Now, ab-
straction happened to be the specialty of our brain for millions of years,
it can probably continue to outperform machines in this domain. The kind
of help we should provide the reading finger is a representation that makes
the abstraction simple, taking full advantage of its hnrdﬁare structure-(&he
innate tactual predicate seE;-vhich evolved to handle tasks other than char-
acter reading). The English letter representation may require many levels of
additionﬁl interconnections upon this predicate set while with a more suit-
able isomorphic representation recognition may be achieved mostly by modify-
ing the weights of existing predicates.

The advantage of using isomorphic transformation is that we do not need
to guard against the risk of throwing away useful information, which is the
main motive behind the complexity of recognition machines. 1In case of ambigu-
{ty, it would always be possible for the reader to consider finer and finer
details, until a correct classification is accomplished.

The question still remains, how to go about finding a more effective
representation. The only open avenue at present is to try out several trans-
formations and then select the one proven most efficient. With the help of
a theory of representation though, it is hoped that we would be able to con-
duct systematic experiments to reveal some essential chdracteristics of the
sensory hardware, and translate these findings to a set of specifications on

the desired transformations.
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