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In this chapter we describe how causal graphs can be used for processing miss­
ing data. In particular, we model the missingness process using causal graphs 
and present graph-based definitions of various missingness mechanisms. Given 

a graph and a target quantity to be estimated, we present various methods for 
determining if and how a consistent estimate of the quantity can be computed. 
We further present techniques for detecting misspecifications in the model. We 

demonstrate all of the above using toy examples and small graphs, thus making 

it easy to understand the various intricacies and nuances of graph-based missing 

data analysis. 

Causal Graphs for 
Missing Data: A Gentle 
Introduction 
Karthika Mohan (University of California) 

34.1 IntroductionConsider the following problems: (i) estimating the average income of a population 

in which the wealthy are reluctant to reveal their income, (ii) estimating the causal 
effect of diet and stress on obesity, given a dataset in which teenagers left several 
questions unanswered, and (iii) making product recommendations using data in 

which customers rated items only when they loved it. The underlying common 

theme in (i), (ii), and (iii) above is the estimation of a desired target quantity given 

missing data, that is, data in which values of one or more variables are missing. 
Problems caused due to missing data are notoriously complex, afflict all 

branches of empirical sciences, and could potentially bias the outcomes of stud­
ies. Much of the research on missing data has focused on identifying conditions 
(such as Missing at Random [MAR] and Missing Completely at Random [MCAR] 
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[Rubin 1976]) under which the causes of missingness can be ignored when estimat­
ing quantities of interest. A widely held belief is that when the underlying cause of 
missingness is not random (Missing Not at Random (MNAR) [Rubin 1976]), it is 
rarely possible to compute estimates with any degree of confidence (example 1.17 

in Little and Rubin [2002]). 
In this chapter we discuss the recent advances in missing data theory that 

facilitate processing of MNAR data (i.e., non-ignorable missingness); in particu­
lar, we focus on recoverability (i.e., computing consistent estimates of quantities 
of interest) and testability (i.e., developing tests to determine the compatibility 
of a model with the available data). The following section describes missingness 
graphs (m-graphs), which are causal graphs that encode the (causal and statistical) 
assumptions about the process that generated missing data. 

34.2 Missingness Graphs 
Let G(V, E) be the causal directed acyclic graph (DAG) where V is the set of nodes 
and E is the set of edges. Nodes in the graph correspond to variables in the dataset 
and are partitioned into five categories, namely, V = Vo ∪ Vm ∪ U ∪ V* ∪ R as 
described in Table 34.1. For example, in Figure 34.1(a), Vo = {G}, Vm = {I}, R = 

{RI }, V* = {I*}, and U = {}. 

Table 34.1 Notations 

VO Set of all fully observed variables 
Vm Set of variables with missing values 
U Set of unobserved (latent) variables 
R Set of missingness mechanisms 
V* Set of all proxy variables 

Gender
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Figure 34.1	 Causal graphs depicting various missingness mechanisms: (a) Missing Completely 
at Random (MCAR), (b) Missing at Random (MAR), and (c) Missing Not at Random 
(MNAR). 
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Remark 34.1 
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Every X ∈ Vm is associated with two variables RX and X*, where X* is the proxy 
variable that is actually observed and RX represents the status of the mechanism 

responsible for the missing values in X*; formally, 
{ 
x if rx = 0* x = f (rx, x) = (34.1)
m if rx = 1 

Unless stated otherwise, it is assumed that no variable in Vo ∪ Vm ∪ U is a child 

of an R variable. U is the set of unobserved nodes, also called latent variables. Two 

nodes X and Y can be connected by a directed edge, that is, X → Y , indicating that 
X is a cause of Y, or by a bi-directed edge, X ↔ Y , denoting the existence of a latent 
variable Ui ∈ U that is a parent of both X and Y. This graphical representation is 
called a missingness graph (or m-graph) [Mohan et al. 2013]. P*(V* , Vo, R) is called 

the observed data distribution, and P(Vm, Vo, R) is called the true distribution. Any 
given true and observed data distribution are said to be compatible if the latter 
can be constructed from the former by repeatedly applying Equation (34.1). Condi­
tional independencies are read off the graph using the d-separation criterion [Pearl 
2009]. For any binary variable X, x ′ and x denote X = 0 and X = 1, respectively. 

Graphical Representation of Missingness Categories 
The graphical model–based definitions of the various missingness mechanisms 
[Rubin 1976, Little and Rubin 2002] that can be used to effortlessly decide the 

missingness categories are as follows: 

1. Data are MCAR if Vm ∪ Vo ∪ U ⊥⊥ R holds in the m-graph. Example: m-graph in 

Figure 34.1(a) in which {G, I} ⊥⊥ RI holds. Essentially, parents of R variables 
can only be other R variables. 

2. Data are MAR if Vm ∪ U ⊥⊥ R|Vo holds in the m-graph. Example: m-graph in 

Figure 34.1(b) in which {I} ⊥⊥ RI |G holds. For MAR to hold, no parent of any R 

variable should belong to Vm ∪ U; put differently, parents of R variables may 
only belong to VO ∪ R. 

3. Data that are not MAR fall under the MNAR category. Example: m-graph in 

Figure 34.1(c) in which {I} ̸ ⊥⊥ RI |G. In this case at least one R variable will have 

a parent that is either a latent variable or a variable with missing values, that 
is, belonging to Vm ∪ U. 

Observe that the graphical condition for MCAR immediately satisfies that for MAR; 
if parents of R variables may only be other R variables, then they clearly cannot be 

in Vm ∪ U. Thus any model that is MCAR is MAR as well; this also follows from the 

weak union graphoid axiom [Pearl 2009]. 
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34.3 Recoverability 
Let Q denote a quantity of interest such as the joint/conditional distribution and 

causal effect. Given an m-graph G, Q is recoverable if there exists an algorithm that 
can (asymptotically) compute the true value of Q as if no data were missing. In the 

remainder of this section, we exemplify various recoverability techniques and their 
intricacies using small graphs as favored and taught by Judea Pearl, and as seen in 

many of his publications. 

34.3.1 Recoverability in MAR and MCAR Problems 
Consider the problem of recovering the joint distribution P(G, I) given the m-graph 

in Figure 34.1(a) and the observed data distribution in Table 34.2. 

′ P(G, I) = P(G, I|rI ) (since {G, I} ⊥⊥ RI in the m-graph) 
′ = P(G, I*|rI ) (using Equation 34.1) (34.2) 

The preceding equations demonstrated how P(G, I), which is a function of the 

partially observed variable I and fully observed variable G, is transformed into 

one over variables in the observed data distribution, I* and G. The final expres­
′ sion derived in Equation (34.2), P(I* , G|rI ), is an estimand for P(G, I), that is, it is an 

expression for P(G, I) in terms of the available data that precisely defines what needs 
to be estimated. Recoverability is established once we derive an estimand. Note that 
the observed data distribution per se played no part in recoverability, which was 
established using assumptions in the m-graph ({G, I} ⊥⊥ RI ) and the missingness 
equation Equation (34.1). Thus, recoverability is a property of the m-graph. 

34.3.1.1 Recoverability of Joint Distribution in MCAR and MAR Models 

We shall now show that the joint distribution, P(Vm, Vo), is recoverable in all MCAR 

and MAR m-graphs. 

Table 34.2 Observed data distribution generated by the m-graph in Figure 34.1(a) 

G I* RI P(G, I* , RI ) 
M H 0 p1 
M L 0 p2 

F H 0 p3 
F L 0 p4 

M M 1 p5 

F M 1 p6 

G and I are binary variables that can take values Male (M) and Female (F), and High (H) and Low (L), 
respectively. Pis denote probabilities such that ∑6 

i=1 pi = 1. 
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Recoverability of joint distribution P(Vo, Vm) in MCAR problems: 

P(Vo, Vm) = P(Vo, Vm|R = 0) (since (Vm, VO) ⊥⊥ R when MCAR holds in an m-graph) 

= P(Vo, V*|R = 0) (using Equation 34.1) (34.3) 

Recoverability of joint distribution P(Vo, Vm) in MAR problems: 

P(Vo, Vm) = P(Vm|VO)P(VO) 

= P(Vm|VO, R = 0)P(VO) (since Vm ⊥⊥ R|VO when MAR holds in an m-graph) 

= P(V*|VO, R = 0)P(VO) (using Equation 34.1) (34.4) 

Equations (34.3) and (34.4) establish recoverability by presenting an estimand 

for the joint distribution. 

34.3.1.2 Recoverability as a Guide for Estimation 

Having established recoverability for all MAR and MCAR problems, we will now 

show how recoverability serves as a guide for estimation. We will exemplify esti­
mation using deletion-based procedures. 

The estimand in Equation 34.2 can be expressed as, 

′ P(I* , G, rI )′ P(I* , G|rI ) = ′ P(rI ) 

It licenses the estimation of P(G, I) exclusively from cases/samples in which 

Vm = {I} is always observed, that is, RI = 0. This procedure is known as listwise 
deletion or complete case analysis. In order to estimate using this method we may 
only use the first four rows in Table 34.2 in which RI = 0. Table 34.3 shows the 

joint distribution estimated in this manner. However, notice that the information 

contained in the last two rows of Table 34.2 in which RI = 1 has been left unused, 
thus resulting in wastage of samples [McKnight et al. 2007, Enders 2010]. Hence 

this procedure, while convenient and fast to implement, is not recommended in 

practice even if it guarantees consistent estimates. We describe below an alternate 

procedure that utilizes samples more efficiently. 
As stated in Remark 34.1, any model that is MCAR is also MAR; hence, any esti­

mation algorithm applicable to MAR is applicable to MCAR as well. Thus, to recover 
P(G, I) given the MCAR graph in Figure 34.1(a), we could apply Equation (34.4) to 

obtain: 

′ P(G, I) = P(I*|G, rI )P(G) 
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Table 34.3 Complete case analysis–based estimation of joint distribution given the m-graph in 
Figure 34.1(a) and the data in Table 34.2 

G I P(G, I) 
p1M H 
p2 

p1+p2+p3+p4 

p1+p2+p3+p4 

M L 
p3F H 
p4 

p1+p2+p3+p4 

p1+p2+p3+p4 

F L 

′ The estimand above dictates that we compute P(I*|G, rI ) exclusively from sam­
ples in which I is observed and P(G) from all samples, including those in which I is 
missing as shown in Table 34.4. Clearly, this utilizes data in a better manner com­
pared to listwise deletion exemplified in Table 34.3. Efficient graph-based deletion 

procedures for MCAR and MAR that exploit available samples to a greater extent, 
thus yielding better quality estimates, are discussed in Van den Broeck et al. [2015]. 

34.3.2 Recoverability in MNAR Problems 
In this subsection, we exemplify various recoverability techniques for MNAR using 

simple models. 

34.3.2.1	 Recovering P(X, Y) Given the m-graph G in Figure 34.2(a) 
G is one of the simplest examples of MNAR in which missingness in RX is caused 

by Y, a variable with missing values. Vm = {X, Y}, Vo = {} and due to the edge from 

Y to RX, MAR does not hold, that is, {X, Y} ̸ ⊥⊥ {Rx, Ry}. Joint distribution P(X, Y) is 
recoverable given G as shown below: 

P(X, Y) = P(X |Y)P(Y) (using chain rule) 
′ ′ ′ = P(X |Y , rx, ry)P(Y |ry) (since X ⊥⊥ Rx, Ry|Y and Y ⊥⊥ Ry hold in G) 

′ ′ ′ = P(X*|Y* , rx, r )P(Y
*|r ) (using Equation 34.1)y y

We call the above technique sequential factorization [Mohan and Pearl 2018]. It 
is sensitive to the order of factorization. Had we factorized P(X, Y) as P(Y |X)P(X) in 

Table 34.4	 A deletion-based method with less sample wastage for estimating joint distribution 
given the m-graph in Figure 34.1(a) and the data in Table 34.2 

G I P(G, I) 
p1(p1+p2+p5)M H 
p2 (p1+p2+p5) 

p1 +p2 

p1+p2 

M L 
p3(p3+p4+p6)F H 
p4(p3+p4+p6) 

p3+p4 

p3+p4 

F L 
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Figure 34.2	 (a)–(e) m-graphs depicting MNAR missingness. Proxy variables have not been explicitly 
portrayed to keep the figures simple and clear. (f) Graph corresponding to m-graph (e) 
in which X is treated as a latent variable. 

the first step, it would have been harder to establish recoverability. We further note 

that the estimand dictates that P(X |Y) be estimated from samples in which both X 

and Y are observed and P(Y) be estimated from samples in which Y is observed, 
regardless of the missingness status of X. 

34.3.2.2 Recovering P(X, Y) Given the m-graph in Figure 34.2(b) 
For exactly the same reasons as those described in Section 34.3.2.1, this m-graph 

also depicts MNAR. However, notice that m-graphs in Figure 34.2(a) and (b) differ 
in the way the R variables are connected. An edge exists between the R variables 
in m-graph (b) whereas in (a) Rx ⊥⊥ Ry. We show below that this seemingly minor 
change results in a substantially different estimand (and estimation process). 

P(X, Y) = P(X |Y)P(Y) 
′ ′ = P(X |Y , rx, ry)P(Y) (since X ⊥⊥ Rx, Ry|Y) 
′ ′ = P(X |Y , rx, r )∑ P(Y |Rx)P(Rx)y

Rx 

′ ′ ′ = P(X |Y , rx, r )∑ P(Y |Rx, r )P(Rx) (since Y ⊥⊥ Ry|Rx)y y
Rx 

′ ′ ′ = P(X*|Y* , rx, ry)∑ P(Y*|Rx, ry)P(Rx) (using Equation 34.1) 
Rx 

This example underscores the importance of modeling the causal relationship 

among R variables. For instance, had the m-graph been X → Y → Rx ↔ Ry, the 

estimand for P(X, Y) would have been identical to the one derived in Section 34.3.2.1. 

34.3.2.3 Recovering P(X, Y) Given the m-graph in Figure 34.2(c) 
The parents of both R variables in this m-graph are variables with missing val­
ues. Hence the m-graph depicts MNAR missingness. Recoverability of P(X, Y) given 



662 Chapter 34 Causal Graphs for Missing Data: A Gentle Introduction 

this m-graph is discussed in Mohan et al. [2013] and the recoverability procedure 

presented therein forms the basis for most recoverability methods for MNAR. 
In this subsection we present an alternate method that requires inspecting all 
missingness patterns one by one. 

P(X, Y) = ∑ P(X, Y , Rx, Ry) 
Rx,Ry 

′ ′ ′ = P(X, Y , rx, ry) + P(X, Y , rx, ry) 

′ + P(X, Y , Rx =, r ) + P(X, Y , rx, ry)y

To prove recoverability of P(X, Y), we will show that each term in the sum is 
′ ′ ′ ′ recoverable. It follows from Equation (34.1) that P(X, Y , rx, r ) = P(X* , Y* , rx, r )y y

′ ′ ′ and hence P(X, Y , rx, r ) is recoverable. We will now show that P(X, Y , rx, r ) isy y

recoverable. 

′ ′ ′ ′ P(X, Y , rx, r ) = P(X |Y , rx, r )P(Y |rx, r )P(rx, r )y y y y

′ ′ ′ ′ = P(X |Y , rx, r )P(Y |rx, r )P(rx, r ) (since X ⊥⊥ Rx|Y , Ry)y y y

′ ′ ′ ′ = P(X*|Y* , rx, ry)P(Y
*|rx, ry)P(rx, ry) (using Equation 34.1) 

′ X* ′ ′ ′ In a similar manner we can show that P(X, Y , rx, ry) = P(Y*| , rx, ry)P(X*|rx, ry) 
′ P(rx, ry) and hence recoverable. What remains to be shown is that P(X, Y , rx, ry) is 

recoverable. 

P(X, Y , rx, ry) = P(X |Y , rx, ry)P(rx|Y , ry)P(Y , ry) 

′ = P(X |Y , rx, ry)P(rx|Y , ry)P(Y , ry) (34.5) 
′ P(X, Y , rx, ry)= P(rx|Y , ry)P(Y , ry)P(Y , rx′ , ry) 
′ ′ P(Y |X, rx, ry)P(X, rx, ry)= P(rx|Y , ry)P(Y , ry)P(r ′ |Y , ry)P(Y , ry)x

′ ′ ′ P(Y*|X* , rx, r )P(X* , rx, ry)y ′ = P(rx|Y* , r ) (34.6)yP(r ′ |Y* , r ′ )x y

′ In Equation (34.5), we replaced rx with r since X ⊥⊥ Rx|Y , Ry holds in the graph.x 

In Equation (34.6), we first cancelled out P(Y , ry) from the numerator and denom­
′ ′ inator, and then replaced ry with r in (i) P(Y |X, rx, ry) by applying Y ⊥⊥ Ry|X, Rx andy

′ in (ii) P(r |Y , ry) and P(rx|Y , ry) by applying Rx ⊥⊥ Ry|Y . Finally, using Equation (34.1)x

we replaced Y with Y* and X with X* . 
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34.3.2.4	 Recovering P(X, Y) Given the m-graph in Figure 34.2(d) 
The m-graph depicts MNAR for exactly the same reasons discussed in Section 

34.3.2.4. Here we are recovering a conditional distribution as opposed to all pre­
vious examples of recoverability that discussed joint distributions. 

′ P(X |Y) = P(X |Y , r ) (since X ⊥⊥ Rx|Y)x
′ P(X, Y , r )x=	 (34.7)

∑X P(X, Y , r ′ )x
′ ′ ′ P(X, Y , r ) = P(Y |X, r )P(X, r )x x x

′ ′ ′ = P(Y |X, rx, r )P(X, r ) (since Y ⊥⊥ Ry|X, Rx)y x

′ ′	 ′ = P(Y*|X* , rx, ry)P(X
* , rx)	 (34.8) 

Substituting the right-hand side (RHS) of Equation (34.8) in the place of 
′ P(X, Y , r ) in Equation (34.7), we getx

′ ′	 ′ P(Y*|X* , rx, ry)P(X* , rx)P(X |Y) = 
∑X P(Y*|X* , rx′ , r ′ )P(X* , r ′ )y x

34.3.2.5	 Recovering P(X) Given the m-graph in Figure 34.2(e) 
The dotted bi-directed edge indicates that there exists a latent variable that is a par­
ent of both Y and RX, and this makes the model MNAR. This graph is different from 

all the other m-graphs that we have examined thus far. Notice that here, although 

X and RX are not connected by an edge, there exists no separating set that can d-
separate them. This is because there are two paths between X and RX; on one path 

Y is a collider and Z, the descendant of a collider, and on the other path Y and Z 

are part of a chain. So, including Y or Z in the separating set will open the collider 
path, while excluding either one of them would leave the chain open. Interestingly, 
P(X) is still recoverable as detailed below: 

P(X) = P(X |do(z)) (using rule 3 of do-calculus [Pearl 2009]) 
′ = P(X |do(z), r ) (using rule 1 of do-calculus [Pearl 2009])x

′ = P(X*|do(z), r ) (using Equation 34.1)x

We have reduced the problem of recovering P(X) to the problem of identifying 

the causal effect such that the causal query is defined over variables in the observed 

data distribution. Since the causal query is not a function of X, it can be identi­
fied using methods available in Shpitser and Pearl [2006] and the graph shown in 

Figure 34.2(f) in which X is treated as a latent variable. 
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Table 34.5 Observed data distribution P(X* , Rx) corresponding to the m-graph X → Rx 

X RX P(X* , RX ) 
0 0 0.3 
1 0 0.5 

m 1 0.2 

(a) (b) (c)

Rx
YXRx

YXRy
YX

Figure 34.3 m-graphs in which P(X, Y) is not recoverable. 

Finally, we note that although in this chapter we focus on discrete variables, 
recoverability techniques exist for continuous variables and have been discussed 

in Pearl [2013] and Mohan et al. [2018]. 

34.3.3 Non-recoverability 
Consider the problem of recovering P(X) given the m-graph G : X → Rx. Rx is 
dependent on X and we have no additional information regarding this depen­
dence. Table 34.5 presents a dataset generated by G. It could be that X is missing 

only when its value is 1 or it could be that X is missing only when its value is 0. In the 

former case P(x ′) = 0.3, whereas in the latter case P(x ′) = 0.5. Using the available 

information in G, it is not possible to find the (true) value of P(X) even if we are given 

infinitely many samples, that is, P(X) is non-recoverable. In fact, non-recoverability 
of P(X) would persist even if G had more variables in it (formally proved in Mohan 

et al. [2013], Mohan and Pearl [2014a, 2014b]). In general, joint distribution is non­
recoverable whenever there exists a variable X with missing values (i.e., X ∈ Vm) 
such that either: 

1. X and RX are neighbors or 

2. X and	 RX are connected by a path in which all intermediate nodes are 

colliders. 

Thus, P(X, Y) is non-recoverable in all the three m-graphs in Figure 34.3. How­
ever, in Figure 34.3(a) P(X |Y) is recoverable, and in Figure 34.3(b) and (c) P(X) is 
recoverable. 

34.4 Testability 
Testability when there is no missingness: When X and Y are fully observed variables, 
the independence statement X ⊥⊥ Y is testable, that is, there exist distributions 
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over X and Y in which X ⊥⊥ Y does not hold. Therefore, given a graph G and a dis­
tribution P(X, Y), if the graph portrays X ⊥⊥ Y and the claim does not hold in the 

distribution, then we can conclude that the graph and distribution are not com­
patible. Thus, under no missingness, d-separations serve as testable implications 
of a graphical model [Pearl 2009]. 

Non-testability under missingness: The simplest missing data distribution is 
P(X* , RX ), which is obtained when the substantive variable of interest is a single 

variable X. Let the query to be recovered be P(X). As shown in the previous sec­
tions, recoverability of P(X) hinges on X ⊥⊥ Rx; if it holds then P(X) is recoverable, 
otherwise not. Given the decisive nature of this independence, can we test it? 

X ⊥⊥ Rx is testable only if it is refutable in all true distributions that are compat­
ible with the observed data distribution. However, for any observed data distribu­
tion P(X* , RX ), there exists a true distribution P ′(X, Rx) in which X ⊥⊥ Rx holds. It can 

be constructed as P ′(X, Rx) = P(X*|Rx = 0)P(Rx). Hence the claim is not refutable. 
Put differently, independence claims between a variable and its mechanism are not 
testable [Mohan and Pearl 2014b]. 

Testable implications of m-graphs: d-separations that abide by the following syn­
tactic rules are testable under missingness (X and Y are singletons) [Mohan and 

Pearl 2014a]. 

X ⊥⊥ Y |Z, Rx, Ry, Rz (34.9) 

X ⊥⊥ Ry|Z, Rx, Rz (34.10) 

Rx ⊥⊥ Ry|Z, Rz (34.11) 

Example of testability: Figure 34.2(a) encodes the conditional independence 

X ⊥⊥ Ry|Rx, which matches the syntactic rule 34.10 above when Z = {}. It follows 
from X ⊥⊥ Ry|Rx that: 

′ ′ ′ P(X |ry, r ) = P(X |ry, r )x x

Using Equation (34.1) we can rewrite the above as, 

′ ′ ′ P(X*|ry, r ) = P(X*|ry, r )x x

The preceding claim, which is defined over X* , Rx and Ry, is testable given the 

observed data distribution. If the claim is violated, we conclude that the model 
and data are not compatible. Note that this test not only detects incompatibility 
but also helps in locating the source of incompatibility. 
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On the indispensability of causal assumptions: Let G1 : X RX and G2 : X → RX . G1 
encodes the assumption X ⊥⊥ Rx, whereas G2 does not. Since X ⊥⊥ RX is not testable, 
G1 and G2 are statistically indistinguishable, that is, any given observed data dis­
tribution P(X* , RX ) compatible with G1 is also compatible with G2. However, they 
encode different causal assumptions. In G1 where X does not cause its own miss­
ingness P(X) is recoverable, whereas in G2 where X causes its own missingness P(X) 
is not recoverable. Thus, there exists no universal algorithm that can determine 

recoverability without examining the model and taking into account the embedded 

causal assumptions. 
In conclusion, missing data is a causal inference problem! 
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