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essential role in children’s everyday knowledge. Even very young children learn 

such models from data in the ways that Pearl suggested. New frontiers in the 

project of understanding children’s causal learning include sampling, active search 

and experimentation, and combining causal models with deep learning and deep 

reinforcement learning techniques. 
In the year 2000, more than 20 years ago, my graduate students and I made a 

weekly trek across the campus and up the hill to the computer science department. 
We were there as part of a reading group discussing a brand-new book, Causality 
by Judea Pearl. Those students went on to become distinguished faculty, and 20 

years later, they and their students, and many other psychologists, are still working 

on problems that were inspired by that book and those conversations. So am I. 
Why would developmental psychologists, usually found sitting in tiny chairs 

opposite toddlers in preschools, immerse themselves in a volume of statistics and 

equations? The book, and Pearl’s work, in general, speaks to a foundational prob­
lem that is at the core of the study of cognitive development. Cognitive develop­
ment and machine learning belong to the same natural category, along with the 

philosophy of science, epistemology, and vision science, even if they live in oppo­
site corners of the campus. (And all these disciplines are in a different natural 
category than sociologically closer ones like adult cognitive psychology, cognitive 

neuroscience, and philosophy of mind.) 
Developmental psychology, machine learning, and philosophy of science 

might seem like strange bedfellows, but they are all trying to solve the same 
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problem—sometimes called the problem of induction. How can we know anything 

about the world around us? After all, the information that reaches us from that 
world is just a stream of photons at our retinas and disturbances of air at our ear 
drums. And yet we come to know about people and poodles, tables and toys, quarks 
and quasars. How is this possible? We seem to have abstract, hierarchical, struc­
tured representations of the world around us, and those representations allow us 
to make wide-ranging generalizations and predictions. And yet, we also seem to 

somehow construct those representations from data that is concrete, messy, and 

particular. 
Going back to Plato and Aristotle, there have been two basic approaches to 

solving this problem. The nativist option is simply to deny that the abstract rep­
resentations are derived from the data. Instead, they are there innately, from a past 
life or in the mind of God, for Plato and Descartes, because of evolution for more 

recent thinkers. The other, empiricist, option is to deny that the abstract represen­
tations exist—simply combine enough statistical data and you can do all the same 

inferential work. This approach goes all the way back to Aristotle and Locke but 
also underpins many of the most recent approaches to machine learning. 

For people who actually study the development of human knowledge, whether 
as developmental psychologists or philosophers of science, these alternatives have 

always seemed unsatisfying. When we actually look in detail at the progress of 
children’s thinking, or the progress of science, we do, in fact, see both abstract rep­
resentations and qualitative changes in those representations in the light of new 

evidence. 
In the past, Jean Piaget, the great founder of cognitive development, argued 

for “constructivism” as an alternative to nativism and empiricism, and philoso­
phers like Carnap and Kuhn, who were actually both influenced by developmen­
tal psychology as well as the history of science, articulated similar ideas. In the 

1980s, a number of psychologists including me, Susan Carey, Henry Wellman, 
and Susan Gelman, articulated the “theory theory”—the idea that children’s con­
ceptual development could be understood by analogy to scientific theory forma­
tion, explicitly connecting conceptual development and scientific theory change 

[Carey 1985, Gopnik 1988, Wellman and Gelman 1992]. “Theory theory” researchers 
could qualitatively describe children’s representations as theories and chart the 

changes in those representations as children learned more. The research program 

made a great deal of empirical progress, describing the development of intuitive 

physics [Smith et al. 1985], biology [Carey 1985] and especially intuitive psychology 
or “theory of mind” [Gopnik and Wellman 1994]. 

The problem, though, was that there was no computational way of charac­
terizing the constructive process that was responsible for theory formation and 
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change either in childhood or in science. The overarching faith of cognitive sci­
ence is that the mind is a computational system instantiated in the brain. In 

some areas of cognitive science, particularly vision science, we really had begun 

to redeem that faith and solve the problem of induction computationally and even 

neurally. Building on 100 years of perception and psychophysics, vision scientists 
could begin to describe how the visual system recovers information about objects 
and space from the light patterns on the retina, and computer vision systems 
could start to instantiate those ideas (e.g., Marr [1982]). There has been remarkable 

progress on this project since; although, of course, there is still much work to be 

done. 
But doing the same thing for theories, whether these were the everyday theories 

of childhood or the theories of formal science, seemed like an impossibly forbid­
ding task. Indeed, in the early 1990s there was a kind of nihilism about solving 

such problems, reflected in both the philosophy of science on the one hand, and 

in statistics, on the other hand. The slogans of the time were “there is a logic of 
confirmation but no logic of discovery” and “no causation from correlation.” 

This was where Pearl’s work came in. Although theories involve many kinds 
of representations, certainly causal representations are crucial, both in everyday 
cognition and in science. And for a long time, going back at least to David Hume, 
causal knowledge was one of the canonical cases of the problem of induction. As 
Hume pointed out, it seemed impossible to see how simply observing the con­
stant conjunction of two events could lead you to a causal conclusion, and yet 
such inferences are ubiquitous in both everyday cognition and in science. The 

pessimism about scientific induction very much extended to causation. Bertrand 

Russell famously said, “The law of causality, I believe, like much that passes muster 
among philosophers, is a relic of a bygone age, surviving, like the monarchy, only 
because it is erroneously supposed to do no harm.” 

In the 1990s, two developments coming from very different directions restored 

the reign of causality and articulated a computational account of causal inference 

in the form of “causal Bayes nets.” One set of developments came from Pearl’s ini­
tial work on expert reasoning [Pearl 1988]. Initially, Pearl’s project was to find a way 
a computer could generate complex judgments and predictions about conditional 
dependencies in the way that experts, like doctors, do (if, but only if, the patient 
has a fever and green phlegm as well as a cough, and tests for viruses are nega­
tive, antibiotics will help). It turned out that the best way to do this was to equip 

the system with causal models, integrating ideas about probability, intervention, 
and counterfactual inference. In parallel, the philosophers of science Peter Spirtes, 
Richard Scheines, and Clark Glymour at Carnegie Mellon University formulated 

very similar mathematical ideas [Spirtes et al. 1993]. Moreover, philosophers like 
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James Woodward, working in a more traditional philosophical framework, used 

these ideas to characterize the very nature of causation [Woodward 2003]. 
The central idea was to use graphical models as a way of representing the 

relations among variables in a causal system, and to systematically relate those rela­
tions to the conditional probability of the variables. Within this system it was pos­
sible to define the effects of interventions (in what Pearl called the “do-calculus”) 
as well as counterfactuals. The distinction between associations and predictions, 
on the one hand, and interventions and counterfactuals on the other hand, is the 

crucial distinction that separates mere correlation from causation. I might notice 

correlations both between having yellow nicotine-stained fingers and getting lung 

cancer, and between smoking and getting lung cancer, and make the appropriate 

prediction that someone who has yellow fingers or who smokes is more likely to 

have cancer. But an intervention to wash the yellow off a patient’s fingers won’t have 

any effect on the probability of cancer, while an intervention to stop smoking will. 
Similarly, the counterfactual that if the patient had washed his hands he wouldn’t 
have gotten cancer is false while the similar counterfactual about smoking is true. 

The entire causal Bayes net system allowed for interwoven inferences about 
probability, intervention, and counterfactuals in a way that captures many of 
the central elements of causation both in everyday life and in science. If you 

knew the causal structure you could make accurate predictions, interventions, and 

counterfactual inferences, and significantly, the formalism naturally distinguished 

between these different kinds of inferences. 
The Bayes net formalism also had important implications for causal learning 

and the problem of causal induction. The formalism made systematic connections 
between the structure of the causal graphs and data about the conditional prob­
ability of events and the outcomes of interventions. This meant that in principle 

the inferences could be reversed—if we knew about the conditional probability of 
variables and the outcomes of interventions on those variables, we could accurately 
infer the causal structure. And this, in turn, suggested a computational solution to 

the classic problem of theory induction. Scientists had always used evidence from 

statistics (i.e., patterns of conditional probability) and experiments (i.e., system­
atic interventions on variables) to infer causal structure. But thanks to the new 

work on causal Bayes nets we could begin to explain mathematically how and why 
this actually worked. 

Initially, nobody thought of these systems as potential models of everyday 
human cognition, let alone children’s cognition. (I have an email exchange with 

Clark Glymour from 1989, where I suggested children might be doing something 

similar to Bayes nets, his initial response was that these systems were precisely 
designed to do things that humans couldn’t). By the late 1990s though, this idea 



Causal Models and Cognitive Development 597 

had come to seem more appealing, and at least worth testing. Even if children 

couldn’t make inferences about complex systems with hundreds of variables, 
would they use the same basic principles to uncover causal structure? 

At the time essentially all of the work of children’s causal reasoning, and adults’, 
for that matter, fell into one of two camps, either researchers who emphasized the 

role of reasoning about physical mechanisms in causal understanding, or those 

who saw causal reasoning as merely an extension of simple association. The com­
bination of graphical models, probability, intervention, and counterfactuals was 
an entirely new way of approaching the subject. 

Glymour and I decided to test whether children might do something like causal 
Bayes net inference with a new method—the blicket detector—a machine that 
lights up and plays music when you put some things on it and not others. The first 
question, which we tested with my student David Sobel, one of the participants in 

the Causality reading group and now at Brown, was whether children could make 

any causal inferences with this method (they could) [Gopnik and Sobel 2000]. By 
2000, we realized that we could use simple methods like this to test more complex 
inferences, of the sort that Pearl described. In particular, could children use condi­
tional probability and intervention to make inferences? (they could) [Gopnik et al. 
2001]. After one of the reading group meetings, my student Laura Schulz, now at the 

Massachusetts Institute of Technology, raced excitedly down the hill from the com­
puter science department to the hardware store, where she constructed a toy with 

two gears and a switch to test whether children could infer different causal struc­
tures (chains vs. common causes, for instance) from the pattern of interventions 
and answer counterfactual questions (they could) [Schulz et al. 2007]. By 2004, we 

had shown that preschoolers could determine the direction of causal arrows, infer 
unobserved variables, and design novel interventions, and that they did so in a 

way that fit much more naturally with Pearl’s and Spirtes, Scheines, and Glymour’s 
ideas than any of the traditional views of causal knowledge [Glymour 2002, Gopnik 

et al. 2004]. In 2005, the McDonnell Foundation funded a large interdisciplinary 
grant combining developmental psychologists, philosophers, and computational­
ists to work more on these ideas [see Gopnik and Schulz 2007, Gopnik 2012, Gopnik 

and Wellman 2012]. 
Over the next 10 years, this work continued and expanded. Although the causal 

Bayes net formalism was particularly elegantly designed and relatively easy to 

implement, it was to begin with, at least, rather limited in scope. The causal graphs 
were limited to describing systems of variables at a single level of description. A 

number of psychologists and cognitive scientists, notably Josh Tenenbaum, Tom 

Griffiths, and Noah Goodman, who were all involved in the McDonnell collabo­
rative, argued for a much more expansive and general version of the project that 
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Pearl started, including a wide range of probabilistic generative models with dif­
ferent kinds of logical structure and including hierarchical as well as single-level 
models [see Griffiths and Tenenbaum 2007, 2009, Griffiths et al. 2010, Goodman 

et al. 2011, review in Tenenbaum et al. 2011]. 
This became an important and pervasive movement within cognitive science. It 

is often described as the “Bayesian” approach but this is something of a misnomer. 
The Bayesian part of the idea is simply this. If you have a probabilistic generative 

model, like a causal Bayes net, and can therefore systematically predict the proba­
bility of a pattern of evidence given that model, then you can invert this inference 

in a Bayesian way to infer the probability of the model given the evidence. But all 
the work is done by the specifics of the generative model, how well it is linked to the 

data, and how feasible it is to perform the Bayesian inversion and solve the search 

problems that result. Causal Bayes nets were and remain one of the best examples 
of how a probabilistic generative model could actually work. 

Fei Xu, another developmental psychologist who pioneered the idea of prob­
abilistic generative models [Xu and Tenenbaum 2007], came up with the term 

“rational constructivism” [Xu and Kushnir 2012], which is perhaps the best way of 
describing the enterprise. I suspect that the popularity of the Bayesian terminology 
partly reflects a principle I call The Tyranny of the Euphonious Monosyllable—if 
Kolmogorov had discovered Bayes’ rule it wouldn’t have taken off as a descrip­
tor. But it certainly could, and perhaps should, be called Pearl-y Cognitive Science 

instead. 
Further work in my lab and others over the next 15 years showed that very young 

children could make Pearl-y causal inferences across a wide range of domains, 
including “theory of mind.” Tamar Kushnir, now at Duke, yet another student 
who had been part of the Pearl reading group, showed that even 18-month­
olds could use Pearl-y methods to infer other people’s preferences and desires 
[Kushnir et al. 2010]. One interesting body of work has argued that children use 

something like an intuitive utility calculus—a representation of the causal relation­
ships between goals and actions—to understand other people [Hamlin et al. 2013, 
Lucas et al. 2014]. Kushnir and I and others showed that children and even infants 
were remarkably skilled at tracking and using conditional probabilities [Saffran 

et al. 1996, Kushnir and Gopnik 2005, Xu and Garcia 2008]. We and others also 

showed that children were not limited to making inferences about specific causal 
relationships. Instead, they could also infer quite abstract features of causal struc­
ture, such as whether causal structures were disjunctive or conjunctive. In fact, 
in some circumstances they could do this better than adults [Dewar and Xu 2010, 
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Lucas et al. 2014, Gopnik et al. 2017]. Moreover, we recently showed that low-income 

children in Peru and in Head Start programs in the USA were just as good at making 

these inferences as the usual middle-class American samples [Wente et al. 2019]. 
In short, across what are now hundreds of studies from dozens of labs with 

thousands of children, it turns out that if you give children a particular pattern 

of data they can infer which causal structure was most likely to have generated 

that data, and can design new interventions and counterfactuals on that basis, in 

precisely the way that Pearl described. 
So far, this is a largely triumphal story. But as always in science, advances lead to 

new problems and much of the most interesting recent work in cognitive science 

focuses on those problems. 
One of the strengths of probabilistic generative models such as Pearl’s is pre­

cisely that they are probabilistic. Earlier attempts to solve the problem of induc­
tion, such as Noam Chomsky’s theory of how children infer grammars from 

linguistic data, were deterministic. Either a grammar was supported by the data 

or it wasn’t. This also meant that induction was radically underdetermined—there 

was almost never a way of definitely ruling a grammar in or out given the data, 
and that led to Chomsky’s nativist conclusions. The Bayesian probabilistic model 
approach in contrast, considers a wide range of hypotheses and tries to determine 

how likely each hypothesis is given the data and your prior knowledge. 
But there’s a catch. The catch is that for the Bayesian inversion trick to work 

you need to have some way of searching among the possible hypotheses and test­
ing them against the data. Even for a relatively restricted set of representations 
like simple causal graphs with a limited number of variables, this problem quickly 
becomes untenable—there are simply too many possibilities to consider. And as 
the range of representations we consider becomes more abstract and complex, as 
with hierarchical Bayes nets, for example, or “language of thought” probabilistic 
logics, the search problem just becomes hairier. 

Much of the exciting recent work in cognitive science, following up on Pearl’s 
work, tries to find solutions to the search problem. Two approaches are especially 
interesting and exciting. First, in the computational literature the search problem 

is often solved by some form of sampling, randomly but systematically testing 

some hypotheses rather than others (e.g., Roberts and Casella [1999]). At least in 

“asymptopia,” as one statistician calls it, these sampling methods can approxi­
mate full Bayesian inference. My collaborator Tom Griffiths and I and a number of 
others have shown that both adults and children show the signatures of this kind 

of sampling [Vul and Pashler 2008, Denison et al. 2012, Ullman et al. 2012, Bonawitz 
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et al. 2014]. How these sampling measures could be extended and how randomness 
and systematicity are combined are fascinating directions for the future. 

Active learning is an even more interesting and underexplored way of solving 

the search problem. The relationship between causal structure and intervention 

means that interventions can be deliberately designed to reveal causal structure, 
as in scientific experiments. In the early work on causal Bayes nets the assumption 

was that systems passively absorbed patterns of data and matched them against 
the potential graphical structures. When we began our first blicket detector experi­
ments, I remember remarking that one of the big advantages of working with com­
puters over kids was that computers weren’t constantly trying to grab the blocks 
and try them on the machine! That observation has turned into a very produc­
tive research program, particularly as pursued by Laura Schulz and her student 
and my post-doc Elizabeth Bonawitz, now at Harvard. Schulz and Bonawitz have 

shown that children’s spontaneous play often involves active interventions that 
are designed to resolve causal ambiguities and recover causal models [Schulz and 

Bonawitz 2007, Schulz et al. 2008, Schulz 2012]. The philosopher of science Freder­
ick Eberhardt, now at the California Institute of Technology, another product of the 

McDonnell collaborative, has pursued a similar project in the context of science— 

systematically using the formalism to describe how experiments can reveal causal 
structure [Eberhardt and Scheines 2007]. 

A final frontier is the integration of causal inference and the more empiricist 
and statistical forms of learning, such as “deep learning” and “deep reinforce­
ment” learning that have led to the very recent renaissance of artificial intelligence 

(AI), and were the subject of the 2018 Turing prize. Although these techniques have 

turned out to be surprisingly effective, they are beginning to come up against sig­
nificant limitations. In particular, they allow only limited kinds of generalizations, 
and they require very large data sets and supervised forms of learning. 

Increasingly, AI researchers are turning back to combine the neural network 

techniques with Pearl’s work on causal models and the empirical work in cogni­
tive development to try to design systems that have the power and flexibility of 
children’s learning. For example, causality and cognitive development both play a 

central role in the recent DARPA machine common sense program, which we are 

part of at Berkeley. 
Perhaps it is symbolic that the Berkeley Artificial Intelligence Research unit, of 

which I am now a member, just moved into the same building as the Developmen­
tal Psychology group. Both geographically and intellectually, the distance between 

the two fields is beginning to disappear. We very much have Judea Pearl to thank 

for that. 
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