
Finally, certain concepts that are ubiquitous in human discourse can be defined only
in the Laplacian framework. We shall see, for example, that such simple concepts as “the
probability that event B occured because of event A” and “the probability that event B
would have been different if it were not for event A” cannot be defined in terms of purely
stochastic models. These so-called counterfactual concepts will require a synthesis of
the deterministic and probabilistic components embodied in the Laplacian model.

1.4.1 Structural Equations
In its general form, a functional causal model consists of a set of equations of the form

(1.40)

where pai (connoting parents) stands for the set of variables that directly determine the
value of Xi and where the Ui represent errors (or “disturbances”) due to omitted fac-
tors. Equation (1.40) is a nonlinear, nonparametric generalization of the linear structural
equation models (SEMs)

(1.41)

which have become a standard tool in economics and social science (see Chapter 5 for a
detailed exposition of this enterprise). In linear models, pai corresponds to those vari-
ables on the r.h.s. of (1.41) that have nonzero coefficients.

The interpretation of the functional relationship in (1.40) is the standard interpreta-
tion that functions carry in physics and the natural sciences; it is a recipe, a strategy, or
a law specifying what value nature would assign to Xi in response to every possible value
combination that (PAi, Ui) might take on. A set of equations in the form of (1.40) and in
which each equation represents an autonomous mechanism is called a structural model;
if each variable has a distinct equation in which it appears on the left-hand side (called
the dependent variable), then the model is called a structural causal model or a causal
model for short.13 Mathematically, the distinction between structural and algebraic
equations is that any subset of structural equations is, in itself, a valid structural model –
one that represents conditions under some set of interventions.

To illustrate, Figure 1.5 depicts a canonical econometric model relating price and de-
mand through the equations

(1.42)

(1.43)

where Q is the quantity of household demand for a product A, P is the unit price of prod-
uct A, I is household income, W is the wage rate for producing product A, and U1 and

p ! b2q " d2w " u2,

q ! b1p " d1i " u1,

xi ! a
k#1

!ik xk " ui,   i ! 1, p , n,

xi ! fi (pai, ui),   i ! 1, p , n,
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cannot be ignored when the meaning of the concept is in question. Indeed, compliance with hu-
man intuition has been the ultimate criterion of adequacy in every philosophical study of causation,
and the proper incorporation of background information into statistical studies likewise relies on
accurate interpretation of causal judgment.

13 Formal treatment of causal models, structural equations, and error terms are given in Chapter 5
(Section 5.4.1) and Chapter 7 (Sections 7.1 and 7.2.5).

the formers change meaning under solution-preserving algebraic operation, such as moving terms 
from one side of an equation to the other. 



with some average of this difference over all departments. This average should measure
the increase in admission rate in a hypothetical experiment in which we instruct all
female candidates to retain their department preferences but change their gender identi-
fication (on the application form) from female to male.

Conceptually, we can define the average direct effect DEx, x!(Y) as the expected
change in Y induced by changing X from x to x! while keeping all mediating factors con-
stant at whatever value they would have obtained under do(x). This hypothetical change,
which Robins and Greenland (1991) called “pure” and Pearl (2001c) called “natural,” is
precisely what lawmakers instruct us to consider in race or sex discrimination cases:
“The central question in any employment-discrimination case is whether the employer
would have taken the same action had the employee been of a different race (age, sex,
religion, national origin etc.) and everything else had been the same.” (In Carson versus
Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir. (1996)).

Using the parenthetical notation of equation 3.51, Pearl (2001c) gave the following
definition for the “natural direct effect”:

(4.11)

Here, Z represents all parents of Y excluding X, and the expression Y(x!, Z(x)) represents
the value that Y would attain under the operation of setting X to x! and, simultaneously,
setting Z to whatever value it would have obtained under the setting X " x. We see that
DEx, x!(Y), the natural direct effect of the transition from x to x!, involves probabilities of
nested counterfactuals and cannot be written in terms of the do(x) operator. Therefore,
the natural direct effect cannot in general be identified, even with the help of ideal, con-
trolled experiments (see Robins and Greenland 1992 and Section 7.1 for intuitive expla-
nation). Pearl (2001c) has nevertheless shown that, if certain assumptions of “no con-
founding” are deemed valid,9 the natural direct effect can be reduced to

(4.12)

The intuition is simple; the natural direct effect is the weighted average of controlled
direct effects, using the causal effect P(z ƒ do(x)) as a weighing function. Under such
assumptions, the sequential back-door criteria developed in Section 4.4 for identifying
control-specific plans, , become applicable.

In particular, expression (4.12) is both valid and identifiable in Markovian models,
where all do-operators can be eliminated using Corollary 3.2.6; for example,

(4.13)P(z ! do(x)) "a
t

 P(z ! x, paX " t) P( paX " t)

P( y ! x̂1, x̂2, p , x̂n)

DEx, x!(Y ) " a
z

 [E(Y ! do(x!, z)) # E(Y ! do(x, z))] P(z ! do(x)).

DEx,x!(Y ) " E[(Y(x!, Z(x))) # E(Y(x)].

P(admission ! male, dept) # P(admission ! female, dept)
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" " ""

9 One sufficient condition is that holds for some set W of measured covariates.
See details and graphical criteria in Pearl (2001c, 2005a) and in Petersen et al. (2006).

Z(x) !! Y(x!, z) ! W

DEx,x' is
through:

where W satisfies the back-door criterion relative to both X Z and (X,Z)    Y. (See Pearl
(2001c) and Shpitser and vanderWeele (2011).)

DEx,x' (Y) = Σ [E(Y | x',z,w) − E(Y | x,z,w)] P(z | x,w) P(w)
zw



This model is as compact as (5.7)–(5.9) and is covariance equivalent to M with respect
to the observed variables X, Y, Z. Upon setting and model 
will yield the same probabilistic predictions as those of the model of (5.7)–(5.9). Still,
when viewed as data-generating mechanisms, the two models are not equivalent. Each
tells a different story about the processes generating X, Y, and Z, so naturally their pre-
dictions differ concerning the changes that would result from subjecting these processes
to external interventions. 

5.3.3 Causal Effects: The Interventional Interpretation of Structural
Equation Models
The differences between models M and illustrate precisely where the structural read-
ing of simultaneous equation models comes into play, and why even causally shy re-
searchers consider structural parameters more “meaningful” than covariances and other
statistical parameters. Model defined by (5.12)–(5.14), regards X as a direct par-
ticipant in the process that determines the value of Y, whereas model M, defined by
(5.7)–(5.9), views X as an indirect factor whose effect on Y is mediated by Z. This dif-
ference is not manifested in the data itself but rather in the way the data would change in
response to outside interventions. For example, suppose we wish to predict the expecta-
tion of Y after we intervene and fix the value of X to some constant x; this is denoted
E(Y ƒ do(X ! x)). After X ! x is substituted into (5.13) and (5.14), model yields

(5.15)

(5.16)

model M yields

(5.17)

(5.18)

Upon setting and (as required for covariance equivalence; see
(5.10) and (5.11)), we see clearly that the two models assign different magnitudes to the
(total) causal effect of X on Y: model M predicts that a unit change in x will change
E(Y) by the amount whereas model puts this amount at 

At this point, it is tempting to ask whether we should substitute for u in (5.9)
prior to taking expectations in (5.17). If we permit the substitution of (5.8) into (5.9), as
we did in deriving (5.17), why not permit the substitution of (5.7) into (5.9) as well? Af-
ter all (the argument runs), there is no harm in upholding a mathematical equality,

that the modeler deems valid. This argument is fallacious, however.15 Structural
equations are not meant to be treated as immutable mathematical equalities. Rather, they
are meant to define a state of equilibrium – one that is violated when the equilibrium is
perturbed by outside interventions. In fact, the power of structural equation models is

x " e1,
u !

x " e1

!" # g.M$!",

d ! g"$ ! ", !$ ! !,

! !"x.

E [Y ! do(X ! x)] ! E [!"x # !e2 # gu # e3]

! (!$"$ # d)x;

E[Y ! do(X ! x)] ! E [!$"$x # !$e2 # dx # e3]

M$

M$,

M$

M$d ! g,"$ ! ", !$ ! !,
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15 Such arguments have led to Newcomb’s paradox in the so-called evidential decision theory (see
Section 4.1.1).

ѝ (lowercase delta)



that they encode not only the initial equilibrium state but also the information necessary
for determining which equations must be violated in order to account for a new state of
equilibrium. For example, if the intervention consists merely of holding X constant at
x, then the equation which represents the preintervention process determin-
ing X, should be overruled and replaced with the equation X ! x. The solution to the
new set of equations then represents the new equilibrium. Thus, the essential character-
istic of structural equations that sets them apart from ordinary mathematical equations is
that the former stand not for one but for many sets of equations, each corresponding to
a subset of equations taken from the original model. Every such subset represents some
hypothetical physical reality that would prevail under a given intervention.

If we take the stand that the value of structural equations lies not in summarizing dis-
tribution functions but in encoding causal information for predicting the effects of policies
(Haavelmo 1943; Marschak 1950; Simon 1953), it is natural to view such predictions as
the proper generalization of structural coefficients. For example, the proper generaliza-
tion of the coefficient in the linear model M would be the answer to the control query,
“What would be the change in the expected value of Y if we were to intervene and change
the value of Z from z to z # 1?”, which is different, of course, from the observational
query, “What would be the difference in the expected value of Y if we were to find Z
at level z # 1 instead of level z?” Observational queries, as we discussed in Chapter 1,
can be answered directly from the joint distribution P(x, y, z), while control queries re-
quire causal information as well. Structural equations encode this causal information in
their syntax by treating the variable on the left-hand side of the equality sign as the effect
and treating those on the right as causes. In Chapter 3 we distinguished between the two
types of queries through the symbol do(.). For example, we wrote

(5.19)

for the controlled expectation and

(5.20)

for the standard conditional or observational expectation. That E(Y ƒ do(x)) does not
equal E(Y ƒ x) can easily be seen in the model of (5.7)–(5.9), where 

but Indeed, the passive observation X ! x should
not violate any of the equations, and this is the justification for substituting both (5.7) and
(5.8) into (5.9) before taking the expectation. 

In linear models, the answers to questions of direct control are encoded in the path
(or structural) coefficients, which can be used to derive the total effect of any variable on
another. For example, the value of E(Y ƒ do(x)) in the model defined by (5.7)–(5.9) is

that is, x times the product of the path coefficients along the path 
Computation of E(Y ƒ do(x)) would be more complicated in the nonparametric case,
even if we knew the functions f1, f2, and f3. Nevertheless, this computation is well
defined; it requires the solution (for the expectation of Y) of a modified set of equations
in which f1 is “wiped out” and X is replaced by the constant x:

(5.21)

(5.22)y ! f3(z, u, e3).

z ! f2(x, e2),

X S  Z S  Y."!x,

E(Y ! x) ! rYX x ! ("! # y) x."!x
E(Y ! do(x)) !

E(Y ! x) ! E(Y ! X ! x)

E(Y ! do(x)) ! E [Y ! do(X ! x)]

!

x ! u # e1,
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