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Abstract 
Cause-and-effect relationships play a central role in how we perceive and make 

sense of the world around us, how we act upon it, and ultimately, how we under
stand ourselves. Almost two decades ago, computer scientist Judea Pearl made a 

breakthrough in understanding causality by discovering and systematically study
ing the “Ladder of Causation,” a framework that highlights the distinct roles 
of seeing, doing, and imagining. In honor of this landmark discovery, we name 

this the Pearl Causal Hierarchy (PCH). In this chapter, we develop a novel and 

comprehensive treatment of the PCH through two complementary lenses: one 

logical-probabilistic and another inferential-graphical. Following Pearl’s own pre
sentation of the hierarchy, we begin by showing how the PCH organically emerges 
from a well-specified collection of causal mechanisms (a structural causal model, 
or SCM). We then turn to the logical lens. Our first result, the Causal Hierarchy 
Theorem (CHT), demonstrates that the three layers of the hierarchy almost always 
separate in a measure-theoretic sense. Roughly speaking, the CHT says that data 

at one layer virtually always underdetermines information at higher layers. As in 

most practical settings the scientist does not have access to the precise form of the 

underlying causal mechanisms—only to data generated by them with respect to 

some of the PCH’s layers—this motivates us to study inferences within the PCH 

through the graphical lens. Specifically, we explore a set of methods known as 
causal inference that enable inferences bridging the PCH’s layers given a partial 
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specification of the SCM. For instance, one may want to infer what would happen 

had an intervention been performed in the environment (second-layer statement) 
when only passive observations (first-layer data) are available. We introduce a fam
ily of graphical models that allows the scientist to represent such a partial speci
fication of the SCM in a cognitively meaningful and parsimonious way. Finally, we 

investigate an inferential system known as do-calculus, showing how it can be suf
ficient, and in many cases necessary, to allow inferences across the PCH’s layers. 
We believe that connecting with the essential dimensions of human experience as 
delineated by the PCH is a critical step toward creating the next generation of arti
ficial intelligence (AI) systems that will be safe, robust, human-compatible, and 

aligned with the social good. 

27.1 Introduction 
Causal information is deemed highly valuable and desirable along many dimen
sions of the human endeavor, including science, engineering, business, and law. 
The ability to learn, process, and leverage causal information is arguably a dis
tinctive feature of Homo sapiens when compared to other species, perhaps one of 
the hallmarks of human intelligence [Penn and Povinelli 2007]. Pearl argued for 
the centrality of causal reasoning eloquently in his most recent book [Pearl and 

Mackenzie 2018, p. 1], for instance: “Some tens of thousands of years ago, humans 
began to realize that certain things cause other things and that tinkering with the 

former can change the latter... From this discovery came organized societies, then 

towns and cities, and eventually the science and technology-based civilization we 

enjoy today. All because we asked a simple question: Why?” 
Given the centrality of causation throughout so many aspects of human experi

ence, we would naturally like to have a formal framework for encoding and reason
ing with cause-and-effect relationships. Interestingly, the 20th century saw other 
instances in which an intuitive, ordinary concept underwent mathematical for
malization before entering engineering practice. As an especially notable example, 
it may be surprising to readers outside computer science and related disciplines 
to learn that the notion of computation itself was only semi-formally understood 

up until the 1920s. Following the seminal work of mathematician and philoso
pher Alan Turing, among others, multiple breakthroughs ensued, including the 

very emergence of the modern computer, passing through the theory and founda
tions of computer science, and culminating in the rich and varied technological 
advances we enjoy today. 

We feel it is appropriate in this special edition dedicated to Judea Pearl, a 

Turing awardee himself, to recognize a similar historical development in the dis
cipline of causality. The subject was studied in a semi-formal way for centuries 
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[Hume 1739, 1748, von Wright 1971, Mackie 1980], to cite a few prominent references, 
and Pearl, his collaborators, and many others helped to understand and formalize 

this notion. Following this precise mathematization, we now see a blossoming of 
developments and rapid expansion toward applications. 

What was the crucial development that spawned such dramatic progress on this 
centuries-old problem? One critical insight, tracing back at least to the British 

empiricist philosophers, is that the causal mechanisms behind a system under 
investigation are not generally observable, but they do produce observable traces 
(“data,” in modern terminology).1 That is, “reality” and the data generated by it are 

fundamentally distinct. This dichotomy has been prominent at least since Pearl’s 
seminal Biometrika paper [Pearl 1995], and received central status and comprehen
sive treatment in his longer treatise [Pearl 2000]. This insight naturally leads to two 

practical desiderata for any proper framework for causal inference, namely: 

1. The causal mechanisms underlying the phenomenon under investigation 

should be accounted for—indeed, formalized—in the analysis. 

2. This collection of mechanisms (even if mostly unobservable) should be 

formally tied to its output: the generated phenomena and corresponding 

datasets. 

This intuitive picture is illustrated in Figure 27.1(a). One of the main goals of 
this chapter is to make this distinction crisp and unambiguous, translating these 

two desiderata into a formal framework, and uncovering its consequences for the 

practice of causal inference. 
Regarding the first requirement, the underlying reality (“ground truth”) that is 

our putative target can be naturally represented as a collection of causal mecha
nisms in the form of a mathematical object called a structural causal model (SCM) 
[Pearl 1995, 2000], to be introduced in Section 27.2. In many practical settings, it 
may be challenging, even impossible, to determine the specific form of the under
lying causal mechanisms, especially when high-dimensional, complex phenomena 

are involved and humans are present in the loop.2 Nevertheless, we ordinarily 

1. For instance, Locke famously argued that when we observe data, we cannot “so much as guess, 
much less know, their manner of production” [Locke 1690, Essay IV]. Hume maintained a simi
larly skeptical stance, stating that “nature has kept us at a great distance from all her secrets, and 

has afforded only the knowledge of a few superficial qualities of objects; while she conceals from 

us those powers and principles, on which the influence of these objects entirely depends” [Hume 

1748, section 4.16]. See de Pierris [2015] for a discussion. 

2. At the same time, many of the natural sciences, most prominently physics and chemistry, 
will often purport to determine the underlying causal mechanisms quite precisely, under strict 
experimental conditions. 
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Figure 27.1	 (a) Collection of causal mechanisms (or SCM) generating certain observed phenomena 
(qualitatively different probability distributions). (b) PCH’s containment structure. 

presume that these causal mechanisms are there regardless of our practical ability 
to discover their form, shape, and specific details. 

Regarding the second requirement, Pearl further noted something very basic 
and fundamental, namely, that each collection of causal mechanisms (i.e., SCM) 
induces a causal hierarchy (or “ladder of causation”), which highlights qualita
tively different aspects of the underlying reality. We fondly name this the Pearl 
Causal Hierarchy (PCH, for short), for he was the first to identify and study it sys
tematically [Pearl 1995, 2000, Pearl and Mackenzie 2018]. The hierarchy consists of 
three layers (or “rungs”) encoding different concepts: the associational, the inter
ventional, and the counterfactual, corresponding roughly to the ordinary human 

activities of seeing, doing, and imagining, respectively [Pearl and Mackenzie 2018, 
chapter 27]. Knowledge at each layer allows reasoning about different classes of 
causal concepts, or “queries.” Layer 1 deals with purely “observational,” factual 
information. Layer 2 encodes information about what would happen, hypotheti
cally speaking, were some intervention to be performed, namely, effects of actions. 
Finally, Layer 3 involves queries about what would have happened, counterfactu
ally speaking, had some intervention been performed, given that something else 

in fact occurred (possibly conflicting with the hypothetical intervention). The hier
archy establishes a useful classification of concepts that might be relevant for a 

given task, thereby also classifying formal frameworks in terms of the questions 
that they are able to represent and, ideally, answer. 

27.1.1 Roadmap of the Chapter 
Against this background, we start in Section 27.2 by showing how the PCH naturally 
emerges from an SCM, formally characterizing the layers by means of symbolic 
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logical languages, each of which receives a straightforward interpretation in an 

SCM. Thus, as soon as one admits that a domain of interest can be represented by 
an SCM (whether or not we, as an epistemological matter, know much about it), 
the hierarchy of causal concepts already exists.3 In Section 27.3, we prove that the 

PCH is strict for almost-all SCMs (Theorem 27.1), in a technical sense of “almost
all” (Figure 27.1(b)).4 It follows (Corollary 27.1) that it is generically impossible to 

draw higher-layer inferences using only lower-layer information, a result known 

informally in the field under the familiar adage: “no causes-in, no causes-out” 
[Cartwright 1989]. 

In the second part of the chapter (Section 27.4), we acknowledge that in many 
practical settings our ability to interact with (observe and experiment on) the phe
nomenon of interest is modest at best, and inducing a reasonable, fully specified 

SCM is essentially hopeless.5 Virtually all approaches to causal inference, there
fore, set for themselves a more restricted target, operating under the less-stringent 
condition that only partial knowledge of the underlying SCM is available. The prob
lem of causal inference is thus to perform inferences across layers of the hierarchy 
from a partial understanding of the SCM. Technically speaking, if one has Layer-1 
type of data, for example, collected through random sampling, and aims to infer 
the effect of a new intervention (Layer-2 type of query), we show that the problem 

is not always solvable. 
Departing from these impossibility results, we develop a framework that can 

parsimoniously and efficiently encode knowledge (viz., structural constraints) nec
essary to perform this general class of inferences. In particular, we move beyond 

Layer-1 type constraints (conditional independences) and investigate structural 
constraints that live in Layer 2. We use these constraints to define a new family 

3. This is despite skepticism that has been expressed in the literature about meaningfulness of 
one layer of the hierarchy or another; cf., for example, Maudlin [2019] on Layer 2, and Dawid [2000] 
on Layer 3. 

4. Hierarchies abound in logic and computer science, particularly those pertaining to com
putational resources, with prominent examples being the Chomsky–Schützenberger hierarchy 
[Chomsky 1959] and its probabilistic variant (see Icard [2020]), or the polynomial time complex
ity hierarchy [Stockmeyer 1977]. Such hierarchies delimit what can be computed given various 
bounds on computational resources. Perhaps surprisingly, the Pearl hierarchy is orthogonal to 

these hierarchies. If one’s representation language is only capable of encoding queries at a given 

layer, no amount of time or space for computation—and no amount of data either—will allow 

making inferences at higher layers. 

5. Of course, if we have been able to induce the structural mechanisms themselves—as may be 

feasible in some of the sciences, for example, molecular biology or Newtonian physics—we can 

simply “read off” any causal information we like by computing it directly or, for instance, by 
simulating the corresponding mechanisms. 
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of graphical models called causal Bayesian networks (CBNs), which are composed 

of a pair, a graphical model, and a collection of observational and interventional 
distributions. Against this backdrop, we provide a novel proof of do-calculus [Pearl 
1995] based strictly on Layer 2 semantics. We then show how the graphical struc
ture bridges the layers of the PCH; one may be able to draw inferences at a higher 
layer from a combination of partial knowledge of the underlying structural model, 
in the form of a causal graph, and data at lower layers. We conclude and summarize 

this chapter in Section 27.5. 

27.1.2 Notation 
We now introduce the notation used throughout this chapter. Single random vari
ables are denoted by (non-boldface) uppercase letters X and the range (or pos
sible values) of X is written as Val(X). Lowercase x denotes a particular element 
in this range, x ∈ Val(X). Boldfaced uppercase X denotes a collection of vari
ables, Val(X) their possible joint values, and boldfaced lowercase x a particular 
joint realization x ∈ Val(X). For example, two independent fair coin flips are rep
resented by X = {X1, X2}, Val(X1) = Val(X2) = {0, 1}, Val(X) = {(0, 0), … , (1, 1)}, with 

P(x1) = P(x2) = ∑x2 
P(x1, x2) = ∑x(X1)=x1 P(x) = 1/2. 

27.2 Structural Causal Models and the Causal Hierarchy 
We build on the language of SCMs to describe the collection of mechanisms under
pinning a phenomenon of interest. Essentially, any causal inference can be seen as 
an inquiry about these mechanisms or their properties, in some way or another. We 

will generally dispense with the distinction between the underlying system and its 
SCM. 

Each SCM naturally defines a qualitative hierarchy of concepts, described as 
the “ladder of causation” in Pearl and Mackenzie [2018], which we have been call
ing the PCH (Figure 27.1). Following Pearl’s presentation, we label the layers (or 
rungs, or levels) of the hierarchy associational, interventional, and counterfactual. 
The concepts of each layer can be described in a formal language and correspond 

roughly to distinct notions within human cognition. Each of these allows one to 

articulate, with mathematical precision, qualitatively different types of questions 
regarding the observed variables of the underlying system; for some examples, see 

Table 27.1. 
SCMs provide a flexible formalism for data-generating models, subsuming 

virtually all of the previous frameworks in the literature. In the sequel, we formally 
define SCMs and then show how a fully specified model underpins the concepts in 

the PCH. 
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Table 27.1 Pearl’s Causal Hierarchy 

Layer 
(Symbolic) 

Typical 
Activity 

Typical 
Question 

Example Machine 

Learning 

ℒ1	 Associational 
P(y | x) 

ℒ2	 Interventional 
P(y | do(x), c) 

ℒ3	 Counterfactual 
′ P(yx | x , y ′) 

Seeing What is? 
How would 

seeing X 

change my 
belief in Y? 

What does a 

symptom 

tell us about 
the disease? 

Supervised/ 
Unsupervised 

Learning 

Doing What if? 
What if I do X? 

What if I 
take aspirin, 
will my 
headache be 

Reinforcement 
Learning 

cured? 
Imagining Why? 

What if I had 

acted 

differently? 

Was it the 

aspirin that 
stopped my 
headache? 

Definition 27.1 Structural Causal Model (SCM) 
An SCM ℳ is a 4-tuple ⟨U, V, ℱ , P(U)⟩, where 

∙	 U is a set of background variables, also called exogenous variables, that are 

determined by factors outside the model; 
∙	 V is a set {V1, V2, … , Vn} of variables, called endogenous, that are determined 

by other variables in the model—that is, variables in U ∪ V; 
∙	 ℱ is a set of functions {f1, f2, … , fn} such that each fi is a mapping from (the 

respective domains of) Ui ∪ Pai to Vi, where Ui ⊆ U, Pai ⊆ V⧵Vi, and the entire 

set ℱ forms a mapping from U to V. That is, for i = 1, … , n, each fi ∈ ℱ is 
such that 

vi ← fi(pai, ui),	 (27.1) 

that is, it assigns a value to Vi that depends on (the values of) a select set of 
variables in U ∪ V; and 

∙	 P(U) is a probability function defined over the domain of U. ■ 

Each SCM can be seen as partitioning the variables involved in the phenomenon 

into sets of exogenous (unobserved) and endogenous (observed) variables, respec
tively, U and V. The exogenous ones are determined “outside” of the model 
and their associated probability distribution, P(U), represents a summary of the 
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state of the world outside the phenomenon of interest. In many settings, these 

variables represent the units involved in the phenomenon, which correspond to 

elements of the population under study, for instance, patients, students, and cus
tomers. Naturally, their randomness (encoded in P(U)) induces variations in the 

endogenous set V. 
Inside the model, the value of each endogenous variable Vi is determined by 

a causal process, vi ← fi(pai, ui), that maps the exogenous factors Ui and a set 
of endogenous variables Pai (so-called parents) to Vi. These causal processes— 

or mechanisms—are assumed to be invariant unless explicitly intervened on (as 
defined later in the section).6 Together with the background factors, they repre
sent the data-generating process according to which Nature assigns values to the 

endogenous variables in the study. 
Henceforth, we assume that V and its domain are finite,7 and that the model 

is acyclic (sometimes known as recursive).8 A structural model is Markovian if the 

exogenous parent sets Ui, Uj are independent whenever i ̸= j. Here, we will allow for 
the sharing of exogenous parents and for arbitrary dependences among the exoge
nous variables, which means that, in general, the SCM need not be Markovian. 
This wider class of models is called semi-Markovian. For concreteness, we provide 

a simple SCM next. 

Example 27.1	 Consider a game of chance described through the SCM ℳ1 = ⟨U = {U1, U2}, 
V = {X, Y}, ℱ , P(U1, U2)⟩, where 

{ 
X ← U1 + U2ℱ = ,	 (27.2)
Y ← U1 − U2 

and P(Ui = k) = 1/6, i = 1, 2, k = 1, … , 6. In other words, this structural 
model represents the setting in which two dice are rolled but only the sum (X) 
and the difference (Y) of their values are observed. Here, Val(X) = {2, … , 12} and 

Val(Y) = {−5, … , 0, … , 5}. ■ 

6. It is possible to conceive an SCM as “a high-level abstraction of an underlying system of differen
tial equations” [Schölkopf 2019], which under relatively mild conditions is attainable [Rubenstein 

et al. 2017]. 

7. Much of the theory of SCMs extends straightforwardly to the infinitary setting [Ibeling and 

Icard 2019]. 

8. An SCM ℳ is said to be recursive if there exists a “temporal” order over the functions in ℱ 

such that for every pair fi, fj ∈ ℱ , if fi < fj in the order, we have that fi does not have Vj as an argu
ment. In particular, this implies that choosing a unit u uniquely fixes the values of all variables 
in V. For Y ⊆ V, we write Y(u) to denote the solution of Y given unit u. For a more comprehensive 

discussion, see Galles and Pearl [1998] and Halpern [1998, 2000]. 
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Pearl Hierarchy, Layer 1—Seeing 
Layer 1 of the hierarchy (Table 27.1) captures the notion of “seeing,” that is, 
observing a certain phenomenon unfold, and perhaps making inferences about 
it. For instance, if we observe a certain symptom, how will this change our belief 
in the disease? An SCM gives natural valuations for quantities of this kind (cf. 
equation (7.2) in Pearl [2000]), as shown next. 

Layer 1 Valuation—“Observing” 
An SCM ℳ = ⟨U, V, ℱ , P(U)⟩ defines a joint probability distribution Pℳ(V) such 

that for each Y ⊆ V:9 

Pℳ(y) = ∑ P(u), (27.3) 
{u | Y(u)=y} 

where Y(u) is the solution for Y after evaluating ℱ with U = u. ■ 

This evaluation is graphically depicted in Figure 27.2(i), which represents a 

mapping from the external and unobserved state of the system (distributed as 
P(U)), to an observable state (distributed as P(V)). For concreteness, let us consider 
Example 27.1 again. Let the dice (exogenous variables) be ⟨U1 = 1, U2 = 1⟩, then 

V = {X, Y} attain their values through ℱ as X = 1 + 1 = 2 and Y = 1 − 1 = 0. 
As P(U1 = 1, U2 = 1) = 1/36 and ⟨U1 = 1, U2 = 1⟩ is the only configura
tion capable of producing the observed behavior ⟨X = 2, Y = 0⟩, it follows that 
P(X = 2, Y = 0) = 1/36. More interestingly, consider the different dice (exoge
nous) configurations ⟨U1, U2⟩ = {⟨1, 1⟩, ⟨2, 2⟩, ⟨3, 3⟩, ⟨4, 4⟩, ⟨5, 5⟩, ⟨6, 6⟩}, which are 

all compatible with ⟨Y = 0⟩. As each of the U’s realization happens with prob
ability 1/36, the event of the difference between the first and second dice being 

zero (Y = 0) occurs with probability 1/6. Finally, what is the probability of the 

difference of the two dice being zero (Y = 0) if we know that their sum is two, 
that is, P(Y = 0 | X = 2)? The answer is one as the only event compatible with 

⟨X = 2, Y = 0⟩ is ⟨U1 = 1, U2 = 1⟩. Without any evidence, the event (Y = 0) hap
pens with probability 1/6, yet if we know that X = 2, the event becomes certain 

(probability 1). 
Many tasks throughout data sciences can be seen as evaluating the probability 

of certain events occurring. In the context of modern machine learning, for exam
ple, one could observe a certain collection of pixels, or features, with the goal of 
predicting whether it contains a dog or a cat. Consider a slightly more involved 

example that appears in the context of medical decision-making. 

9. We will typically omit the superscript on Pℳ whenever there is no room for confusion, thus 
using P for both the distribution P(U) on exogenous variables and the distributions P(Y) on 

endogenous variables induced by the SCM. 
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(a) External State

(b) Transformation

(c) Induced Distribution

(i)

Observational

(ii)

Interventional

(iii)

Counterfactual

P(U) P(U) P(U)

F Fx Fx Fw
· · ·

P(Y) P(Yx) P(Yx, . . . ,Zw)

Figure 27.2	 Given an SCM’s initial state (i.e., population) (a), we show the different functional 
transformations (b) and the corresponding induced distribution (c) of each layer of 
the hierarchy. (i) represents the transformation (i.e., ℱ ) from the natural state of the 
system (P(U)) to an observational world, (ii) to an interventional world (i.e., with mod
ified mechanisms ℱx), and (iii) to multiple counterfactual worlds (i.e., with multiple 
modified mechanisms). 

Example 27.2	 The SCM ℳ2 = ⟨V = {X, Y , Z}, U = {Ur, Ux, Uy, Uz}, ℱ = {fx, fy, fz}, P(Ur, Ux, 
Uy, Uz)⟩, where ℱ will be specified below. The endogenous variables V represent, 
respectively, a certain treatment X (e.g., drug), an outcome Y (survival), and the 

presence or not of a symptom Z (hypertension). The exogenous variable Ur rep
resents whether the person has a certain natural resistance to the disease, and 

Ux, Uy, Uz are sources of variations outside the model affecting X, Y , Z, respectively. 
In this population, units with resistance (Ur = 1) are likely to survive (Y = 1) 
regardless of the treatment received. Whenever the symptom is present (Z = 1), 
physicians try to counter it by prescribing this drug (X = 1). While the treatment 
(X = 1) helps resistant patients (with Ur = 1), it worsens the situation for those 

who are not resistant (Ur = 0). The form of the underlying causal mechanisms is: 

⎧
Z ← {Ur =1,Uz =1}⎪⎪⎪

ℱ = ⎨X ← {Z=1,Ux =1} + {Z=0,Ux =0}	 . (27.4)⎪⎪⎪Y ← {X=1,Ur =1} + {X=0,Ur =1,Uy=1} + {X=0,Ur =0,Uy=0}⎩ 

Finally, all the exogenous variables are binary with P(Ur = 1) = 0.25, P(Uz = 1) = 

0.95, P(Ux = 1) = 0.9, and P(Uy = 1) = 0.7. 
Recall that Definition 27.2 (Equation 27.3) induces a mapping between P(U) and 

P(V), such that a query P(Y = 1 | X = 1) can be evaluated from ℳ as: 

P(Y = 1, X = 1) ∑{u | Y(u)=1,X(u)=1} P(u) 0.215
P(Y = 1 | X = 1) = =	 = = 0.7414,

P(X = 1) ∑{u | X(u)=1} P(u) 0.29 
(27.5) 
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which is just the ratio between the sum of the probabilities of the events in the 

space of U consistent with the events ⟨Y = 1, X = 1⟩ and ⟨X = 1⟩. This means that 
the probability of survival given that one took the drug is higher than chance. Sim
ilarly, one could obtain other probabilistic expressions such as P(Y = 1 | X = 0) = 

0.3197 or P(Z = 1) = 0.2375. One may be tempted to believe at this point that the 

drug has a positive effect upon comparing the probabilities P(Y = 1 | X = 0) and 

P(Y = 1 | X = 1). We shall discuss this issue next. ■ 

Pearl Hierarchy, Layer 2—Doing 
Layer 2 of the hierarchy (Table 27.1) allows one to represent the notion of “doing,” 
that is, intervening (acting) in the world to bring about some state of affairs. For 
instance, if a physician gives a drug to her patient, would the headache be cured? 
A modification of an SCM gives natural valuations for quantities of this kind, as 
defined next. 

Submodel—“Interventional SCM”
 
Let ℳ be a causal model, X a set of variables in V, and x a particular realization of
 
X. A submodel ℳx of ℳ is the causal model 

ℳx = ⟨U, V, ℱx, P(U)⟩, where ℱx = {fi : Vi ∉ X} ∪ {X ← x}. (27.6) 

■ 

In other words, performing an external intervention (or action) is modeled 

through the replacement of the original (natural) mechanisms associated with 

some variables X with a constant x, which is represented by the do-operator.10,11 The 

impact of the intervention on an outcome variable Y is called potential response (cf. 
definition (7.1.4) in Pearl [2000]). 

Potential Response 

Let X and Y be two sets of variables in V, and u be a unit. The potential response 

10. The idea of representing intervention through the modification of equations in a struc
tural system appears to have first emerged in the context of Econometrics, see Haavelmo [1943], 
Marschak [1950], and Simon [1953]. It was then made more explicit and called “wiping out” by 
Strotz and Wold [1960]. 

11. Pearl credits his realization on the connection of this operation with graphical models to a 

lecture of Peter Spirtes at the International Congress on Logic, Methodology and Philosophy of 
Science (Uppsala, Sweden, 1991), in his words [Pearl 2000, p. 104]: “In one of his slides, Peter illus
trated how a causal diagram would change when a variable is manipulated. To me, that slide of 
Spirtes’s—when combined with the deterministic structural equations—was the key to unfolding 

the manipulative account of causation (...).” 
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Yx(u) is defined as the solution for Y of the set of equations ℱx with respect to SCM 

ℳ (for short, Yℳx (u)). That is, Yx(u) = Yℳx (u). ■ 

An SCM gives valuation for interventional quantities (equation 7.3 Pearl [2000]) 
as follows: 

Definition 27.5	 Layer 2 Valuation—“Intervening” 
An SCM ℳ = ⟨U, V, ℱ , P(U)⟩ induces a family of joint distributions over V, one for 
each intervention x. For each Y ⊆ V: 

Pℳ(y ) = ∑ P(u).	 (27.7) x
{u | Yx(u)=y} 

■ 

The potential response expresses causal effects, and over a probabilistic setting 

it induces random variables. Specifically, Yx denotes a random variable induced 

by averaging the potential response Yx(u) over all u according to P(U).12 Further, 
note that this procedure disconnects X from any other source of “natural” varia
tion when it follows the original function fx (e.g., the observed (Pax) or unobserved 

(Ux) parents). This means that the variations of Y in this world would be due to 

changes in X (say, from 0 to 1) that occurred externally, from outside the modeled 

system.13 This, in turn, guarantees that they will be causal. To see why, note that 
all variations of X that may have an effect on Y can only be realized through vari
ables of which X is an argument, as X itself is a constant, not affected by other 
variables. Indeed, the notion of an average causal effect can be formally written as 

14E(YX=1) − E(YX=0). 
The distribution P(Yx) defined in Equation (27.7) is often written P(Y | do(x)), and 

we henceforth adopt this notation in the context of PCH’s second layer.15 

12. The notation Yx(u) is borrowed from the potential-outcome framework of Neyman [1923] and 

Rubin [1974]. See Pearl [2000, section 7.4.4] for a more detailed comparison; see also Pearl and 

Bareinboim [2019]. 

13. For a discussion of what it means for these changes to arise “from outside” the system, see, 
for example, Woodward [2003]. Of course, in many settings this simply means the intervention 

is performed deliberately by an agent outside the system, for example, in typical reinforcement 
learning applications [Sutton and Barto 2018]. 

14. This difference and the corresponding expected values are sometimes taken as the definition 

of “causal effect,” see Rosenbaum and Rubin [1983]. In the structural account of causation pur
sued here, this quantity is not a primitive but derivable from the SCM, as all others within the 

PCH. To witness, note YX=1 ← fY (1, 𝜀Y ) when do(X = 1). 

15. This allows researchers to use the syntax to immediately distinguish statements that are 

amenable to some sort of experimentation, at least in principle, from other counterfactuals that 
may be empirically unrealizable. 
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Example 27.3	 Example 27.1 continued 

Let us consider the same dice game but now the observer decides to misreport the 

sum of the two dice as 2, which can be written as submodel ℳX=2: 

{ 
X ← 2 

,	 (27.8)ℱX=2 = 
Y ← U1 − U2, 

while P(U) remains invariant. It can be immediately seen that YX=2(u1, u2) is the 

same as Y(u1, u2); in other words, misreporting the sum of the two dice will of 
course not change their difference. This, in turn, entails the following probabilistic 
invariance, 

P(Y = 0 | do(X = 2)) = P(Y = 0). (27.9) 

In fact, the distribution of Y when X is fixed to two remains the same as before 

(i.e., P(Y = 0 | do(X = 2)) = 1/6). We saw in the first part of the example that know
ing that the sum was two meant that, with probability one, their difference had to 

be zero (i.e., P(Y = 0 |X = 2) = 1). On the other hand, intervening on X will not 
change Y ’s distribution (Equation 27.9); as we say, X does not have a causal effect 
on Y . ■ 

Example 27.4	 Example 27.2 continued 

Consider now that a public health official performs an intervention by giving 

the treatment to all patients regardless of the symptom (Z). This means that 
the function fX would be replaced by the constant 1. In other words, patients 
do not have an option of deciding their own treatment but are compelled to 

take the specific drug.16 This is represented through the new modified set of 
mechanisms, 

ℱX=1 = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

Z ← {Ur =1,Uz =1} 

, (27.10)X ← 

Y ← {X=1,Ur =1} + {X=0,Ur =1,Uy=1} + {X=0,Ur =0,Uy =0} 

and where the distribution of exogenous variables remains the same. Note that 
the potential response YX=1(u) represents the survival of patient u had they been 

treated, while the random variable YX=1 describes the average population survival 

16. This physical procedure is the very basis for the discipline of experimental design [Fisher 1936], 
which is realized through randomization of the treatment assignment in a sample of the popula
tion. In practice, the function of X, fX , is replaced with an alternative source of randomness that 
is uncorrelated with any other variable in the system. 
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had everyone been given the treatment. Notice that for those patients who natu
rally received treatment (X ← fx(U) = 1), the natural outcome Y(u) is equal to 

YX=1(u). For this intervened model, YX=1(u) is equal to 1 in every event where Ur = 1, 
regardless of Uz, Ux, and Uy. Then 

P(Y = 1 | do(X = 1)) = ∑ P(u) = ∑ P(ur) = P(Ur = 1) = 0.25. 
{u | YX=1(u)=1} {ur | YX=1(ur )=1} 

(27.11) 
Similarly, one can evaluate P(Y = 1 | do(X = 0)), which is equal to 0.4. This 
may be surprising as from the perspective of Layer 1, P(Y = 1 | X = 1) − P(Y = 

1 | X = 0) = 0.43 > 0, which appears to suggest that taking the drug is helpful, 
having a positive effect on recovery. On the other hand, interventionally speaking, 
P(Y = 1 | do(X = 1)) − P(Y = 1 | do(X = 0)) = −0.15 < 0, which means that the drug 

has a negative (average) effect in the population. ■ 

The evaluation of an interventional distribution is a function of the modified 

system ℳx that reflects ℱx, which follows from the replacement of X, as illustrated 

in Figure 27.2(ii). Even though computing observational and interventional distri
butions is immediate from a fully specified SCM, the distinction between Layer 1 
(seeing) and Layer 2 (doing) is a central topic in causal inference, as discussed more 

substantively in Section 27.4. 

27.2.3 Pearl Hierarchy, Layer 3—Imagining Counterfactual Worlds 
Layer 3 of the hierarchy (Table 27.1) allows operationalizing the notion of “imagi
nation” (and the closely related activities of retrospection, prospection, and other 
forms of “modal” reasoning), that is, thinking about alternative ways the world 

could be, including ways that might conflict with how the world, in fact, currently 
is. For instance, if the patient took the aspirin and the headache was cured, would 

the headache still be gone had they not taken the drug? Or, if an individual ended 

up getting a great promotion, would this still be the case had they not earned a 

PhD? What if they had a different gender? Obviously, in this world, the person has 
a particular gender, has a PhD, and ended up getting the promotion, so we would 

need a way of conceiving and grounding these alternative possibilities to evalu
ate such scenarios. In fact, no experiment in the world (Layer 2) will be sufficient 
to answer this type of question in general, despite their ubiquity in human dis
course, cognition, and decision-making. Fortunately, the meaning of every term in 

the counterfactual layer (ℒ3) can be directly determined from a fully specified SCM, 
as described in the sequel: 
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Layer 3 Valuation 

An SCM ℳ = ⟨U, V, ℱ , P(U)⟩ induces a family of joint distributions over counter-
factual events Yx, … , Zw, for any Y, Z, … , X, W ⊆ V: 

Pℳ(yx, … , zw) = ∑ P(u). (27.12) 
{u | Yx(u)=y, 
…, Zw(u)=z} 

■ 

Note that the left-hand side (LHS) of Equation (27.12) contains variables with dif
ferent subscripts, which, syntactically, encode different counterfactual “worlds.” 

Example 27.2 continued 

As there is a group of patients who did not receive the treatment and died (X = 0, 
Y = 0), one may wonder whether these patients would have been alive (Y = 1) 
had they been given the treatment (X = 1). In the language of Layer 3, this ques
tion is written as P(YX=1 = 1 | X = 0, Y = 0). This is a non-trivial question as these 

individuals did not take the drug and are already deceased in the actual world (as 
displayed after the conditioning bar, X = 0, Y = 0); the question is about an unreal
ized world and how these patients would have reacted had they been submitted to a 

different course of action (formally written before the conditioning bar, YX=1 = 1). 
In other words, did they die because of the lack of treatment? Or would this fatal 
unfolding of events happen regardless of the treatment? Unfortunately, there is no 

conceivable experiment in which we could draw samples from P(YX=1 = 1 | X = 0, 
Y = 0), as these patients cannot be resuscitated and submitted to the alternative 

condition. This is the very essence of counterfactuals. 
For simplicity, note that P(YX=1 = 1 | X = 0, Y = 0) can be written as the ratio 

P(YX=1 = 1, X = 0, Y = 0)/P(X = 0, Y = 0), where the denominator is trivially 
obtainable as it only involves observational probabilities (about one specific world, 
the factual one). The numerator, P(YX=1 = 1, X = 0, Y = 0), refers to two different 
worlds, which requires us to climb up to the third layer in order to formally specify 
the quantity of interest. Using the procedure dictated in Equation (27.12), we obtain 

P(YX=1 = 1, X = 0, Y = 0)
P(YX=1 = 1 | X = 0, Y = 0) = 

P(X = 0, Y = 0)
∑{u | YX=1(u)=1,X(u)=0,Y(u)=0} P(u)= = 0.0217.

∑{u | X(u)=0,Y(u)=0} P(u) 

This evaluation is shown step by step in Bareinboim et al. [2020, appendix D], 
but we emphasize here that the expression in the numerator involves evaluat
ing multiple worlds simultaneously (in this case, one factual and one related to 
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intervention do(X = 1)), as illustrated in Figure 27.2(iii). The conclusion follow
ing from this counterfactual analysis is clear: even if we had given the treatment 
to everyone who did not survive, only around 2% would have survived. In other 
words, the drug would not have prevented their deaths. Another aspect of this sit
uation worth examining is whether the treatment would have been harmful for 
those who did not get it and still survived, formally written in Layer 3 language as 
P(YX=1 = 1 | X = 0, Y = 1). Following the same procedure, we find that this quan
tity is 0.1079, which means that about 90% of such people would have died had 

they been given the treatment. While a uniform policy over the entire population 

would be catastrophic (as shown in Example 27.4), the physicians knew what they 
were doing in this case and were effective in choosing the treatment for the patients 
who could benefit more from it. ■ 

There are many other counterfactual quantities implied by a structural model, 
for example, the previous two quantities can be combined to form the probability of 

′ necessity and sufficiency (PNS) [Pearl 2000, chapter 9], written as P(yx, yx ′ ). The PNS 

encodes the extent to which a certain treatment to a particular outcome would be 

both necessary and sufficient. This quantity addresses a quintessential “why” ques
tion, where one wants to understand what caused a given event. Still in the purview 

of Layer 3, some critical applications demand that counterfactuals be nested inside 

other counterfactuals. For instance, consider the quantity Yx, M that represents the ′ x 

counterfactual value of Y had X been x, and M had whatever value it would have 

taken had X been x ′ . In other words, for Y the value of X is x, while for M the value 

of X is x ′ . This type of nested counterfactuals allow us to write contrasts such as 
P[Yx, Mx −Yx, M ′ ], the so-called indirect effect on Y when X changes from x ′ to x [Pearl 

x 

2001]. The use of nested counterfactuals led to a very natural and general treat
ment of direct, indirect, and spurious effects, including a precise understanding 

of their relationship in non-linear systems [Pearl 2012, VanderWeele 2015, Zhang 

and Bareinboim 2018]. 

27.3 Pearl Hierarchy—A Logical Perspective 
We have seen that each layer of the PCH corresponds to a different intuitive notion 

in human cognition: seeing, acting, and imagining. Table 27.1 presents character
istic questions associated with each of the layers. Layer 1 concerns questions like, 
“How likely is Y given that I observe X?” Layer 2 asks hypothetical (“conditional”) 
questions such as, “How likely would Y be if one were to make X happen?” Layer 3 
takes us further, allowing questions like, “Given that I observed X and Y , how likely 
would Y have been if X ′ had been true instead of X?” 
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What does the difference among these questions amount to, given that an SCM 

answers all of them? Implicit in our presentation was a series of increasingly com
plex symbolic languages (Definitions 27.2, 27.5, and 27.6). Each type of question 

above can be phrased in one of these languages, the analysis of which reveals a 

logical perspective on PCH. We begin our analysis by isolating the syntax of these 

systems. We define languages ℒ1, ℒ2, ℒ3, each based on polynomials built over 
basic probability terms P(𝛼). The only differences among them are the terms P(𝛼) 
allowed: as we go up in the PCH, increasingly complex expressions 𝛼 are allowed 

in the probability terms. In particular, ℒ1 is just a familiar probabilistic logic (see 

Fagin et al. [1990]). 

Symbolic Languages ℒ1, ℒ2, ℒ3
 

Let variables V be given and X, Y, Z ⊆ V. Each language ℒi, i = 1, 2, 3, consists
 
of (Boolean combinations of) inequalities between polynomials over terms P(𝛼),
 
where P(𝛼) is an ℒi term, defined as follows:
 

ℒ1	 terms are those of the form P(Y = y), encoding the probability that Y take on 

values y; 
ℒ2	 terms additionally include probabilities of conditional expressions, P(Yx = y), 

giving the probability that variables Y would take on values y, were X to have 

values x; 
ℒ3	 terms encode probabilities over conjunctions of conditional (that is, ℒ2) 

expressions, P(Yx = y, … , Zw = z), symbolizing the joint probability that all 
of these conditional statements hold simultaneously. ■ 

For concreteness, a typical ℒ1 sentence might be P(X = 1, Y = 1) = P(X = 

1)P(Y = 1). The ℒ1 conjunction over all such combinations 

P(X = 1, Y = 1) = P(X = 1)P(Y = 1) ∧ P(X = 1, Y = 0) = P(X = 1)P(Y = 0) 

∧ P(X = 0, Y = 1) = P(X = 0)P(Y = 1) ∧ P(X = 0, Y = 0) = P(X = 0)P(Y = 0) 
(27.13) 

would express that X and Y are probabilistically independent if X and Y are binary 
variables. Of course, we would ordinarily write this simply as P(X, Y) = P(X)P(Y). 

In ℒ2 we have sentences like P(YX=1 = 1) = 3/4, which intuitively expresses 
that the probability of Y taking on value 1 were X to take on value 1 is 3/4.17 As 
before, we could also write this as P(Y = 1 | do(X = 1)) = 3/4. Finally, ℒ3 allows 

17. These “conditional” expressions such as YX=1 = 1 are familiar from the literature in condi
tional logic. In David Lewis’s early work on counterfactual conditionals, YX=1 = 1 would have 

been written X = 1 □→ Y = 1 (see Lewis [1973]). More recently, some authors have used notation 

from dynamic logic, [X = 1]Y = 1, with the same interpretation over SCMs (see, e.g., Halpern 

[2000]). For more discussion on the connection between the present SCM-based interpretation 
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statements about joint probabilities over conditional terms with possibly incon
′ sistent subscripts (also known as antecedents in logic). For instance, P(yx, yx ′ ) ≥ 

P(y | x) − P(y | x ′) is a statement expressing a lower bound on the PNS. 18 

Definition 27.7 gives the formal structure (syntax) of ℒ1, ℒ2, ℒ3, but not their 
interpretation or meaning (semantics). In fact, we have already specified their 
meaning in SCMs via Definitions 27.2, 27.5, and 27.6. Specifically, let Ω denote the 

set of all SCMs over endogenous variables V. Then each ℳ ∈ Ω assigns a real 
number to P(𝛼) for all 𝛼 at each layer, namely the value Pℳ(𝛼) ∈ [0, 1]. Given such 

numbers, arithmetic and logic suffice to finish evaluating these languages. Thus, 
in each SCM ℳ, every sentence of our languages, such as Equation (27.13), comes 
out true or false.19 At this stage, we are ready to formally define the PCH: 

Definition 27.8 Pearl Causal Hierarchy (PCH) 
Let ℳ* be a fully specified SCM. The collection of observational, interventional, 
and counterfactual distributions induced by ℳ*, as delineated by languages ℒ1, 
ℒ2, ℒ3 (syntax) and following Definitions 27.2, 27.5, and 27.6 (semantics), is called 

the Pearl Causal Hierarchy. ■ 

In summary, as soon as we have an SCM, the PCH is thereby well defined, in the 

sense that this SCM provides valuations for any conceivable quantity in these lan
guages ℒ1, ℒ2, ℒ3 (of associations, interventions, and counterfactuals, respectively). 
It therefore makes sense to ask about properties of the hierarchy for any given SCM, 
as well as for the class Ω of all SCMs. One substantive question is whether the PCH 

can be shown strict. 
If we take ℒ1 terms to involve a tacit empty intervention, that is, that P(y) means 

P(y∅), then the formal syntax of this series of languages clearly forms a strict hier
archy ℒ1 � ℒ2 � ℒ3: there are patently ℒ2 terms that do not appear in ℒ1 (e.g., 

and Lewis’s “system-of-spheres” interpretation, we refer readers to Pearl [2000, sections 7.4.1– 

7.4.3] and Briggs [2012], Halpern [2013], and Zhang [2013]. A third interpretation is over (prob
abilistic) “simulation” programs, which under suitable conditions are equivalent to SCMs—see 

Ibeling and Icard [2018, 2019, 2020]. 

18. For details of this bound and the assumptions guaranteeing it, see Pearl [2000, theorem 9.2.10]. 
Formally speaking, statements such as this one involving conditional probabilities are short

′ hand for polynomial inequalities; in this case the polynomial inequality is P(yx, yx ′ )P(x)P(x ′) + 
′ P(x , y)P(x) ≥ P(x, y)P(x ′). 

19. Building on the classic axiomatization for (finite) deterministic SCMs [Galles and Pearl 1998, 
Halpern 2000], the probabilistic logical languages ℒ1, ℒ2, ℒ3 were axiomatized over probabilistic 
SCMs in Ibeling and Icard [2020]. The work presented in this chapter—including Definition 27.8 

and Theorem 27.1 (below)—can be cast in axiomatic terms, although these results do not depend 

in any direct way on questions of axiomatization. 
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′ P(yx)), and ℒ3 terms that do not appear in ℒ2 (e.g., P(yx, yx ′ )). One has the impres
sion that each layer of the Pearl hierarchy is somehow richer or more expressive 

than those below it, capable of encoding information about an underlying ground 

truth that surpasses what lower layers can possibly express. Is this an illusion, the 

mere appearance of complexity, or are the concepts expressed by the layers in some 

way fundamentally distinct?20 The sense of strictness that we would like to under
stand concerns the fundamental issue of logical expressiveness. If each language 

did not expressively exceed its predecessors, then in some sense our talk of causa
tion and imagination would be no more than mere figures of speech, being fully 
reducible to lower layers. 

What would it mean for the layers of the hierarchy not to be distinct? Toward 

clarifying this, let us call the set of all layer i (ℒi) statements that come out true 

according to some ℳ ∈ Ω the ℒi-theory of ℳ. We shall write ℳ ∼i ℳ ′ for 
ℳ, ℳ ′ ∈ Ω to mean that their ℒi-theories coincide, that is, that ℳ, ℳ ′ agree on all 
layer i statements. Intuitively, ℳ ∼i ℳ ′ says that ℳ and ℳ ′ are indistinguishable 

given knowledge only of ℒi. 
For the remainder of this section assume that the true data-generating process 

ℳ* is fixed. Suppose we had that ℳ* ∼2 ℳ implies ℳ* ∼3 ℳ for any other SCM 

ℳ ∈ Ω; that is, any SCM ℳ which agrees with ℳ* on all ℒ2 valuations also agrees 
on all of the ℒ3 valuations.21 This would mean that the collection of ℒ2 facts fully 
determines all of the ℒ3 facts. More colloquially, if this happens, it means that we 

can answer any ℒ3 question—including any counterfactual question, for example, 
′ the exact value of P(yx | yx ′ )—merely from ℒ2 information. For instance, simply con

struct any SCM ℳ with the right ℒ2 valuation (i.e., such that ℳ ∼2 ℳ*) and read 

off the ℒ3 facts from ℳ.22 In this case it would not matter that ℳ is not the true 

data-generating process, as any differences would not be visible even at ℒ3. This can 

20. As a rough analogy, consider the ordinary concepts of “cardinality of the integers,” “cardinal
ity of the rational numbers,” and “cardinality of the real numbers.” One’s first intuition may be 

that these are three distinct notions, and moreover that they form a kind of hierarchy: there are 

strictly more rational numbers than integers, and strictly more real numbers than rational num
bers. Of course, in this instance the intuition can be vindicated in the second case but dismissed 

as an illusion in the first. (See, e.g., Cantorian arguments from any basic textbook in logic or CS.) 

21. For readers familiar with causal inference, this can be seen as a generalization of the notion 

of identifiability (e.g., see Pearl [2000, definition 3.2.3]), where P represents all quantities in layer 
i, Q all quantities in layer j, and the set of features FM is left unrestricted (all in the notation of 
Pearl [2000]). This more relaxed notion has a long history in mathematical logic, namely, Padoa’s 
method in the theory of definability [Beth 1956]. 

22. Alternatively, given the completeness results in Ibeling and Icard [2020], one could axiomati
cally derive any ℒ3 statement from appropriate ℒ2 statements. 
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Definition 27.9 

Theorem 27.1 

happen in exceptional circumstances, for instance, if the functional relationship 

is deterministic. 
An additional motivation for understanding when layers of the PCH might col

lapse comes from the observation that, at least in some notable cases, adding 

syntactic complexity does not genuinely increase expressivity. As an example, we 

could extend the language ℒ3 to allow more complex expressions. We discussed 

nested counterfactuals earlier in this chapter (Section 27.2), namely, statements 
such as P(Yx, Z ′ ), which can also be given a natural interpretation in SCMs. Such 

x 

notions are of significant interest, but it can be shown that any such statement 
is systematically reducible to a Layer 3 statement. (See Bareinboim et al. [2020, 
appendix B] for details.) That is, for any statement 𝜙 involving nested counter-
factual expressions, there is an ℒ3 statement 𝜓 such that 𝜙 and 𝜓 hold in exactly 
the same models.23 Such a result shows that adding nested counterfactuals, while 

providing a useful shorthand, would not allow us to say anything about the world 

above and beyond what we can say in ℒ3. Does something similar happen with 

Layers 1, 2, and 3 themselves? How often might an ℒ3-theory completely reduce to 

an ℒ2-theory, or an ℒ2-theory reduce to an ℒ1-theory? 
In light of the foregoing, we can say exactly what it means for the PCH to collapse 

in a given SCM ℳ*. Note that the quantification here is over the class of all SCMs 
in Ω, that is, all SCMs with the same set of endogenous (i.e., observable) variables 
as ℳ*: 

Collapse relative to ℳ* 

Layer j of the causal hierarchy collapses to Layer i, with i < j, relative to ℳ* ∈ Ω if 
ℳ* 24∼i ℳ implies that ℳ* ∼j ℳ for all ℳ ∈ Ω. ■ 

The significance of the possibility of collapse cannot be overstated. To the 

extent that Layer 2 collapses to Layer 1, this would imply that we can draw all 
possible causal conclusions from mere correlations. Likewise, if Layer 3 collapses 
to Layer 2, this means that we could make statements about any counterfactual 
merely by conducting controlled experiments. 

Our main result can then be stated (first, informally) as: 

Causal Hierarchy Theorem (CHT), informal version 

The PCH almost never collapses. That is, for almost any SCM, the layers of the 

hierarchy remain distinct. ■ 

23. In logic, we would say that nested counterfactuals are thus definable in ℒ3 (see, e.g., Beth 

[1956]). 

24. Equivalently, there does not exist ℳ ∈ Ω such that ℳ* ∼i ℳ but ℳ* ≁j ℳ. In other words, 
every layer j query can be answered with suitable layer i data. 
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What does almost-never mean? Here is an analogy. Suppose (fully specified) 
SCMs are drawn at random from Ω. Then, the probability that we draw an SCM 

relative to which PCH collapses is 0. This holds regardless of the distribution on 

SCMs, so long as it is smooth. 
The CHT says that there will typically be causal questions that one cannot 

answer with knowledge and/or data restricted to a lower layer.25 This can be seen 

as the formal grounding for the intuition behind the PCH discussed in Pearl and 

Mackenzie [2018, chapter 27]: 

To answer questions at Layer i, one needs knowledge at Layer i or higher. 

With this intuitive understanding of the CHT, we now state the formal version 

and offer an outline of the main arguments used in the proof. In order to state the 

theorem, note that ∼3 is an equivalence relation on Ω, inducing ℒ3-equivalence 

classes of SCMs. Under a suitable encoding, this space of equivalence classes can 

be seen as a convex subset of [0, 1]K , for K ∈ N. This means we can put a natural 
(uniform) measure on the space of (equivalence classes) of SCMs. The theorem then 

states (for the complete proof and further details, we refer readers to Bareinboim 

et al. [2020, appendix A]): 

CHT, formal version 

With respect to the Lebesgue measure over (a suitable encoding of ℒ3 -equivalence 

classes of) SCMs, the subset in which any PCH collapse occurs is measure zero. ■ 

It bears emphasis that the CHT is a theory-neutral result in the sense that it 
makes only minimal assumptions and only presupposes the existence of a tempo
ral ordering of the structural mechanisms—an assumption made to obtain unique 

valuations via Definitions 27.2, 27.5, and 27.6. 
In the remainder of this section, we would like to discuss the basic idea behind 

the CHT proof. There are essentially two parts to the argument: one showing that 
ℒ2 almost never collapses to ℒ1, and the second showing that ℒ3 almost never col
lapses to ℒ2. In both parts it suffices to identify some simple property of SCMs that 
we can show is typical, and moreover sufficient to ensure non-collapse. 

In fact, Layer 2 never collapses to Layer 1: for any SCM ℳ* there is always 
another SCM ℳ with the same ℒ1-theory but a different ℒ2-theory. In case there 

25. The investigation of the next section will be on conditions that could allow causal infer
ences from lower-level data combined with graphical assumptions of the underlying SCM; see, 
for example, Bareinboim and Pearl [2016]. Another common thread in the literature is structural 
learning: adopting arguably mild assumptions of minimality (e.g., faithfulness) one can often 

discover fragments of the underlying causal diagram (Layer 2) from observational data (Layer 1) 
[Spirtes et al. 2001, Peters et al. 2017]. 
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is any non-trivial dependence in ℳ*, we can construct a second model ℳ with a 

single exogenous variable U and all endogenous variables depending only on U, 
such that ℳ* ∼1 ℳ (cf. Suppes and Zanotti [1981]). On the other hand, if ℳ* has 
no variable depending on any other, it is possible to induce such a dependence 

that, nonetheless, does not show up at Layer 1. (For full details of the argument, 
see Bareinboim et al. [2020, appendix A]). 

The case of Layers 2 and 3 is slightly more subtle. The reason is that adding or 
removing arguments in the underlying functional relationships usually changes 
the corresponding causal effect. Here we need to show that the equations of the 

true ℳ* can be perturbed in a way that it does not affect any ℒ2 facts but does 
change some joint probabilities over combinations of potential responses. It turns 
out there are many ways to accomplish this goal; however, for the CHT we need 

a systematic method. One possibility—again, informally speaking—is to take two 

exogenous variable settings that witness two different values for some potential 
response, and swap these values with some sufficiently small probability (see 

Bareinboim et al. [2020, appendix A]). For this to work, essentially all we need is for 
there to be at least some non-trivial probabilistic relationship between variables. 
This property is quite obviously typical of SCMs. We illustrate this method with our 
running Example 27.2 (Example 27.7 below). 

Turning now to these examples, we start with a variation of a classic construc
tion presented by Pearl himself [Pearl 2000, section 1.4.4]. The example has been 

used to demonstrate the inadequacy of (causal) Bayesian networks (discussed fur
ther in the next section) for encoding counterfactual information. Here we use it to 

illustrate a more abstract lesson, namely, that knowing the values of higher-layer 
expressions generically requires knowing progressively more about the underlying 

SCM (Corollary 27.1). 

Example 27.6 Let ℳ* = ⟨U = {U1, U2}, V = {X, Y}, ℱ* , P(U)⟩, where 

{ 
X ← U1ℱ * = . (27.14)
Y ← U2 

and U1, U2 are binary with P(U1 = 1) = P(U2 = 1) = 1/2. Let the variable X represent 
whether the patient received treatment and Y whether they recovered. Evidently, 
Pℳ* (x, y) = 1/4 for all values of X, Y . In particular X, Y are independent. Now, 
suppose that we just observed samples from Pℳ* and were confident, statistically 
speaking, that X, Y are probabilistically independent. Would we be justified in con
cluding that X has no causal effect on Y? If the actual mechanism happened to be 

ℳ*, then this would certainly be the case. However, this Layer 1 data is equally con
sistent with other SCMs in which Y depends strongly on X. Let ℳ be just like ℳ* , 
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except with mechanisms: 

{ 
X ← U1=U2ℱ = . (27.15)
Y ← U1 + X=1,U1=0,U2=1 

Then Pℳ* (X, Y) = Pℳ(X, Y), yet Pℳ* (Y = 1 | do(X = 1)) = 1/2 as X does not affect 
Y in ℳ*, while Pℳ(Y = 1 | do(X = 1)) = 3/4. If ℳ were the actual mechanisms, 
assigning the treatment would actually improve the chance of survival. Thus, just 
as one cannot infer causation from correlation, one cannot always expect to infer 
correlation from causation. 

Having internalized this lesson that correlation and causation are distinct, one 

might perform a randomized controlled trial and discover that all causal effects 
in this setting trivialize; in particular, P(Y | do(X)) = P(Y)—the treatment does not 
affect the chance of survival at all. Suppose we observe patient S, who took the 

treatment and died. We might well like to know whether S’s death occurred because 
of the treatment, in spite of the treatment, or regardless of the treatment. This is a 

quintessentially counterfactual question: given that S took the treatment and died, 
what is the probability that S would have survived had they not been treated? We 

write this as P(YX=0 = 1 | X = 1, Y = 0), as discussed in Example 27.4. Can we 

infer anything about this expression from Layer 2 information (in this case, that 
all causal effects trivialize)? We cannot, as shown by other variations of ℳ* , say 
ℳ ′ such that 

{ 
X ← U1ℱ ′ = . (27.16)
Y ← XU2 + (1 − X)(1 − U2) 

Like ℳ, this model reveals a dependence of Y on X. However, this is not at all visi
ble at Layer 1 or at Layer 2; all causal effects trivialize in ℳ ′ as well. The dependence 

only becomes visible at Layer 3. In ℳ*, we have Pℳ* (YX=0 = 1 | X = 1, Y = 0) = 0, 
whereas in ℳ ′ we have the exact opposite pattern, Pℳ ′ (YX=0 = 1 | X = 1, Y = 0) = 1. 
These two models thus make diametrically opposed predictions about whether 
S would have survived had they not taken the treatment. In other words, the 

best explanation for S’s death may be completely different depending on whether 
the world is like ℳ* or ℳ ′ . In ℳ* , S would have died anyway, while in ℳ ′ , S 

would actually have survived, if only they had not been given the treatment. Need
less to say, such matters can be of fundamental importance for critical practical 
questions, such as determining who or what is to blame for S’s death. ■ 

The CHT tells us that the failure of collapse witnessed in Example 27.6 is typical. 
However, it is worth seeing further examples to appreciate the many ways we can 
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take an SCM ℳ* and find an alternative SCM ℳ that agrees at all lower layers but 
disagrees at higher layers. 

We discuss two quite different strategies in the next example. To show that 
Layer 2 does not collapse to Layer 1, we actually eliminate the functional depen
dence of one variable on another—all probabilistic dependence patterns are due 

to common causes. More interestingly, we employ a very general method to show 

that Layer 3 does not collapse to Layer 2, whose efficacy is proven systematically in 

Bareinboim et al. [2020, lemma 2]. 

Example 27.7 Example 27.2 continued 

For the SCM ℳ* = ℳ2 of Example 27.2, consider another model ℳ with the equa
tion for Y replaced by a new equation Y ← {Ur =1,Ux =1,Uz =1} + {Ur =1,Ux =0,Uz =0} + 

{Ur =1,Ux =1,Uy =0}, and everything else 

unchanged. It is then easy to check that ℳ* ∼1 ℳ. However, Y now no longer 
shows a functional dependence on X: the probabilistic dependence of Y on X is due 

to the common causes Ux, Uz, Ur. While in Example 27.4 we saw that Pℳ* (Y | ̸

{Ur =1,Ux =0,Uy=1,Uz =1} + {Ur =1,Ux =1,Uy =1,Uz =0} + 

X) = 

Pℳ* (Y | do(X)), here we have Pℳ(Y | X) = Pℳ(Y | do(X)). In other words, even though 

X does exert a causal influence on Y (assuming ℳ* is the true data-generating 

process), we would not be able to infer this from observational data alone. 
To show that Layer 3 does not collapse to Layer 2, consider a third model ℳ ′ , 

in which X, Y , Z all share one exogenous parent U, with Val(U) = {0, 1}4 ∪ {u * 
1 , u * 

2 }. 
The probability of a quadruple ⟨ur, uz, ux, uy⟩ in this model is simply given by the 

product from model ℳ* —P(Ur = ur) ⋅ P(Uz = uz) ⋅ P(Ux = ux) ⋅ P(Uy = uy)—with one 

exception: for the two quadruples, ⟨1, 1, 1, 0⟩ and ⟨1, 1, 0, 0⟩, we subtract 𝜀 = .005 

from these probabilities, and redistribute the remaining mass so that u * and u * 
1 2 

each receive probability 𝜀. This produces a proper distribution P ′(U). We will con
tinue to write, for example, Ur = u simply to mean that U ̸ u1 * , u *= 2 and the first 
coordinate of U is u, and similarly for Uz, Ux, Uy. The mechanisms are now: 

⎧
Z ← U∈{u * 

1 ,u * 
2 }{Ur =1,Uz =1} +⎪⎪⎪

U=u * .ℱ ′ = ⎨X ← {Z=1,Ux =1} + {Z=0,Ux =0} + 
2⎪⎪⎪Y ← {X=1,Ur =1} + {X=0,Ur =1,Uy=1} + {X=0,Ur =0,Uy=0} + {X=1,U∈{u * 

1 ,u * 
2 }}⎩ 

(27.17) 
To check that the joint distributions Pℳ* (X, Y , Z) and Pℳ ′ (X, Y , Z) are the same, 
note that the two models coincide at all exogenous settings with the exception of 
the two quadruples ⟨1, 1, 1, 0⟩ and ⟨1, 1, 0, 0⟩. In the first we have Z = X = Y = 

1, and the 𝜀-loss in probability for this possibility is corrected by the fact that 
X(u * 

2 ) = Y(u * 
2 ) = Z(u * 

2 ) = 1 and P ′(u2 
*) = 𝜀. Similarly for ⟨1, 1, 0, 0⟩ and the state 

Z = 1, X = Y = 0, which results when U = u1 * . To show that ℳ* ∼2 ℳ ′ is also 

straightforward. 
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However, consider the ℒ3 expression YZ=1 = 1, YZ=0 = 1, which says that the 

patient would survive no matter whether hypertension was induced or prevented. 
For both exogenous settings ⟨1, 1, 1, 0⟩ and ⟨1, 1, 0, 0⟩, this expression is false, yet in 

setting u * 
2 the expression is true. Hence, Pℳ ′ (YZ=1 = 1, YZ=0 = 1) = Pℳ* (YZ=1 = 

1, YZ=0 = 1) + 𝜀. ■ 

While collapse of the layers is possible if ℳ* is exceptional, the CHT shows that 
this is the exception indeed. Typical cases are similar to Examples 27.6 and 27.7, 
each showing a different way of perturbing an SCM to obtain a second SCM reveal
ing non-collapse. In fact, a typical data-generating process ℳ* encodes rich infor
mation at all three layers, and even small changes to the mechanisms in ℳ* 

can have substantial impact on quantities across the hierarchy. Critically, such 

differences will often be visible only at higher layers in the PCH. 
The lesson learned from the CHT is clear—as the layers of PCH come apart in 

the generic case and one cannot make inferences at one layer given knowledge at 
lower layers (e.g., using observational data to make interventional claims), some 

additional assumptions are logically necessary if one wants in general to do causal 
inference. 

27.4 Pearl Hierarchy—A Graphical Perspective 
All conceivable quantities from any layer of the PCH—associational, interven
tional, and counterfactual—are immediately computable once the fully specified 

SCM is known. Unfortunately, in most practical settings, it’s usually hard to deter
mine the structural model at this level of precision, and the CHT severely cur
tails the ability to “climb up” the PCH via lower-level data. Learning about cause
and-effect relationships is arguably one of the main goals found throughout the 

sciences. After all, how could causal inferences be performed? 
The recognition that there are mechanisms underlying the phenomena of inter

est, but that we usually cannot determine them precisely, gives rise to the dis
cipline of causal inference [Pearl 2000]. Virtually every approach to causal infer
ence works under the stringent condition that only partial knowledge of the 

underlying SCM is available. One pervasive task is to determine the effect of an 

intervention—what would happen with Y were X to be intervened on and set to x, 
P(Y | do(X = x))—from observational data, P(X, Y). This constitutes a cross-layer 
inference where the goal is to use data from layer ℒ1 to try to make an infer
ence about an ℒ2 quantity, given a partial specification of the underlying SCM (see 

Figure 27.3 [a–d]). 
In this section, we investigate the question of what type of causal knowledge 

could be (1) intuitively meaningful, (2) possibly available, and (3) powerful enough 

to encode constraints that would allow cross-layer inferences, as if the SCM were 
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Figure 27.3	 Example of Prototypical Causal Inference—on top the SCM itself, representing the 
unobserved collection of mechanisms and corresponding uncertainty (a); at the bot
tom, the different probability distributions entailed by the model (b, c); on the right 
side, the graphical model representing the specific constraints of the SCM (d). 

itself available. A key observation useful to answer this question is that each SCM 

imprints specific “marks” on the distributions it generates, depicted generically in 

the schema in Figure 27.3(d) as structural constraints. 
One first attempt to solve this task could be to leverage ℒ1-constraints, those 

imprinted on the observed ℒ1 data by the unknown SCM, to make inferences 
about the target ℒ2-quantity. This is especially appealing considering that ℒ1 data 

is often readily available. The signature type of constraint for ℒ1 distributions is 
known as conditional independence, and Bayesian Networks (BNs) are among the 

most prominent formal models used to encode this type of knowledge. The exam
ple below shows that ℒ1 constraints (and BNs) alone are insufficient to support 
causal reasoning in general. 

Example 27.8	 Let ℳ1 and ℳ2 be two SCMs such that V = {X, Z, Y}, U = {Ux, Uz, Uy}, and the 

structural mechanisms are, respectively, 

ℱ1 = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

, ℱ2 = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

← Ux ← Z ⊕ UxX X 

← X ⊕ Uz ← Y ⊕ Uz , (27.18)Z Z 

← Z ⊕ Uy ← UyY Y 

where ⊕ is the logical xor operator. Further, the distributions of the exogenous 
variables are P1(Ux = 1) = P2(Uy = 1) = 1/2, P1(Uz = 1) = P2(Ux = 1) = a, 
and P1(Uy = 1) = P2(Uz = 1) = b, for some a, b ∈ (0, 1). It can immediately be 

seen (via Definition 27.2 and Equation (27.3)) that both models generate the same 
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observational distribution, 

P1,2(X = 0, Z = 0, Y = 0) = P1,2(X = 1, Z = 1, Y = 1) = (1 − a)(1 − b)/2,
 

P1,2(X = 0, Z = 0, Y = 1) = P1,2(X = 1, Z = 1, Y
 = 0) = (1 − a)b/2,
 

P1,2(X = 0, Z = 1, Y = 1) = P1,2(X = 1, Z = 0, Y
 = 0) = a(1 − b)/2,
 

P1,2(X = 0, Z = 1, Y = 0) = P1,2(X = 1, Z = 0, Y
 = 1) = ab/2. (27.19) 

We further compute the effect of the intervention do(x) (via Definition 27.5 and 

Equation 27.7), 

P1(Y = 1 | do(X = 1)) = ab + (1 − a)(1 − b), P2(Y = 1 | do(X = 1)) = 1/2, (27.20) 

which are different for most values a, b. The models ℳ1 and ℳ2 naturally induce 

BNs 𝒢1 and 𝒢2, respectively; see Figure 27.4(a) and (b).26 In terms of ℒ1-constraints, 
𝒢1 and 𝒢2 both imply that X is independent of Y given Z (for short, X⊥Y | Z) and 

nothing more.27 This means that 𝒢1 and 𝒢2 are equivalent through the lens of ℒ1, 
while the original ℳ1 and ℳ2 generate different answers to ℒ2 queries, as shown 

in Equation (27.20). ■ 

The main takeaway from the example is that from only the distribution P(V) 
and the qualitative (conditional independence) constraints implied by it, it is 
impossible to tell whether the underlying reality corresponds to ℳ1, ℳ2, or any 
other SCM inducing the same P(V), while each such model could entail a differ
ent causal effect. This suggests that, in general, causal inference cannot be carried 

out with mere ℒ1 objects—the observational distribution, its constraints, and cor
responding models (BNs). This result can be seen as a graphical instantiation of 
Corollary 27.1 and is schematically summarized in Figure 27.4. 

Causal Inference via ℒ2-constraints—Markovian Causal Bayesian 
Networks 
Having witnessed the impossibility of performing causal inference from ℒ1 con
straints, we come back to the original question—what kind of structural con
straints (Figure 27.3(d)) imprinted by the underlying SCM could license causal 

26. This construction follows from the order in which the functions are determined in the SCM, 
systematized in Definition 24 [Bareinboim et al. 2020, appendix C]. This procedure is guaranteed 

to produce BNs that are compatible with the independence constraints implied by the SCM in ℒ1 

[Bareinboim et al. 2020, theorem 8, appendix C]. 

27. We refer readers to Bareinboim et al. [2020, appendix C], for more details on a criterion called d-
separation [Pearl 1988], which is the tool used for reading these constraints off from the graphical 
model. 
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X Z Y

(a) G1

X Z Y

(b) G2

Structural Causal Models
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Observational

Distributions

Data

P*(V) = P´(V)

(L2)
Interventional

Distributions

Query

P*(Y|do(x))

P*(Y|do(x))

?

Bayesian Network

G*

G'

(c)

Figure 27.4	 Two causal diagrams encoding knowledge about the causal mechanisms governing 
three observable variables X, Z, and Y. In (a) X is an argument to fZ, and Z an argu
ment to fY . In (b) the opposite is true. In (c), schema representing the impossibility of 
identifying causal queries from ℒ1 data, constraints, and graphical models. 

inferences? To answer this question, it is instructive to compare more closely the 

effect of an intervention X = 1 in the two SCMs from Example 27.8. First, note that 
the function fY does not depend on X in the submodel ℳ2 

X=1 (constructed follow
ing Definition 27.3); so, probabilistically, Y will not depend on X. This implies the 

following relationship between distributions, 

P2(Y = 1 | do(X = 1)) = P(Y = 1),	 (27.21) 

In contrast, note that (i) fY does take into account the value of X in ℳ1 
X=1, and (ii) 

Y responds (or varies) in the same way when X takes a particular value, be it natu
rally (as in ℳ1) or due to an intervention (as in ℳ1 

X=1). These facts can be formally 
written as 

P1(Y = 1 | do(X = 1)) = P(Y = 1 | X = 1). (27.22) 

The exact computation of Equations (27.21) and (27.22) follows immediately from 

Definitions 27.2 and 27.5. Remarkably, the intuition behind these equalities does 
not arise from the particular form of the underlying functions, the exogenous 
variables, or their distribution, but from structural properties of the model. In 

particular, they are determined by qualitative functional dependences among the 

variables: what variable is an argument to the function of the other. 
Technically, these equalities can be seen as constraints (not conditional 

independences) and can be pieced together and given a graphical interpretation. 
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Consider again Equation (27.21) as an example, which says that variable X does not 
have an effect on Y (doing X does not change the marginal distribution of Y), which 

graphically would entail that X is not an ancestor of Y in 𝒢2. While true in ℳ2, it 
certainly does not hold in ℳ1, nor, consequently, in 𝒢1. Even though 𝒢1 and 𝒢2 are 

graphically equivalent with respect to ℒ1, and could be used interchangeably for 
probabilistic reasoning, they are, interventionally speaking, very distinct objects. 

These constraints encode one of the fundamental intuitions we have about 
causality, namely, the asymmetry that a cause may change its effect but not the 

other way around. Our goal henceforth will be to systematically incorporate these 

constraints into a new family of graphical models with arrows carrying causal 
meaning and supporting ℒ2-types of inferences. First, we introduce a procedure 

that returns a new graphical model following the intuition behind the constraints 
discussed so far, and then show how it relates to the collection of interventional 
distributions (ℒ2-valuations) entailed by the SCM. 

Causal Diagram (Markovian Models) 
Consider a Markovian SCM ℳ = ⟨U, V, ℱ , P(U)⟩. Then, 𝒢 is said to be a causal 
diagram (of ℳ) if constructed as follows: 

1. add a vertex for every endogenous variable in the set V, 
2. add an edge (Vj → Vi) for every Vi ∈ V if Vj appears as an argument of fi ∈ ℱ . 

■ 

The procedure encapsulated in Definition 27.10 is central to the elicitation of 
the knowledge necessary to perform causal inference (Figure 27.3(d)). Intuitively, 
𝒢 has an arrow from A to B (A → B) if B “listens” to the value of A; functionally, 
A appears as an argument of the mechanism of B. The importance of this notion 

has been emphasized in the literature by Pearl: “This listening metaphor encapsu
lates the entire knowledge that a causal network conveys; the rest can be derived, 
sometimes by leveraging data” [Pearl and Mackenzie 2018, p. 129]. This construc
tion produces a coarsening of the underlying SCM such that the arguments of the 

functions are preserved while their particular forms are discarded.28 

The assumptions that the causal diagram encodes about the SCM impose con
straints not only over the ℒ1-distribution P but also over all the interventional (ℒ2) 
distributions as encapsulated in the following definition [Bareinboim et al. 2012]. 

Causal Bayesian Network (CBN)-Markovian
 

Let P* be the collection of all interventional distributions P(V | do(x)), X ⊆ V,
 

28. Given the lack of constraints over the form and shape of the underlying functions and distri
bution of the exogenous variables, these models are usually called non-parametric in the causal 
inference literature. 



538 Chapter 27 On Pearl’s Hierarchy and the Foundations of Causal Inference 

x ∈ Val(X), including the null intervention, P(V), where V is the set of observed 

variables. A directed acyclic graph 𝒢 is called a CBN for P* if for all X ⊆ V, the 

following conditions hold: 

(i) [Markovian] P(V | do(x)) is Markov relative to 𝒢. 
(ii) [Missing-link] For every Vi ∈ V, Vi ∉ X such that there is no arrow from X to 

Vi in 𝒢: 

P(vi | do(pai), do(x)) = P(vi | do(pai)). (27.23) 

(iii) [Parents do/see] For every Vi ∈ V, Vi ∉ X: 

P(vi | do(x), do(pai)) = P(vi | do(x), pai). (27.24) 

■ 

The first condition requires the graph to be Markov relative29 to every interven
tional distribution P(V | do(X = x)), which holds if every variable is independent 
of its non-descendants given its parents.30 The second condition, missing-link, 
encapsulates the type of constraint exemplified by Equation (27.21): after fixing the 

parents of a variable by intervention, the corresponding function should be insen
sitive to any other intervention elsewhere in the system. In other words, the parents 
Pai interventionally shield Vi from interventions (do(X)) on other variables. Finally, 
the third condition, parents do/see, encodes the intuition behind Equation (27.22): 
whether the function fi takes the value of its arguments following an intervention 

(do(Pai = pai)) or by observation (conditioned on Pai = pai), the same behavior for 
Vi is observed. 

Some observations follow immediately from these conditions. First, and per
haps not surprisingly, a CBN encodes stronger assumptions about the world than 

a BN. In fact, all the content of a BN is encapsulated in condition (i) of a CBN (Defi
nition 27.11) with respect to the observational (null intervention) distribution P(V) 
(ℒ1). A CBN encodes additional constraints on interventional distributions (ℒ2) 
beyond conditional independence, involving different interventions such as those 

represented in conditions (ii) and (iii). 

29. This notion is also known in the literature as compatibility or i-mapness [Pearl 1988, Koller 
and Friedman 2009], which is usually encoded in the decomposition of P(v) as ∏i P(vi | pai) in the 

Markovian case. 

30. In some accounts of causation, this condition is known as the causal Markov condition (CMC), 
and is usually phrased in terms of “causal” parents. We invite the reader to check that conditions 
(ii) and (iii) are in no way implied by (i). One could in fact see Definition 27.11 as offering a precise 

characterization of what CMC formally means. 
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Second, readers familiar with graphical models will be quick to point out that 
the knowledge encoded in these models is not in the presence but in the absence 

of the arrows; each missing arrow makes a claim about a certain type of invariance. 
In the context of BNs (ℒ1), each missing arrow corresponds to a conditional inde
pendence, a probabilistic type of invariance.31 On the other hand, each missing 

arrow in a CBN represents an ℒ2-type constraint, for example, the lack of a direct 
effect, as encoded in Definition 27.11 through condition (ii). This new family of con
straints closes a long-standing semantic gap, from a graphical model’s perspective, 
rendering the causal interpretation of the graphical model totally unambiguous. 

Before proving that this graphical model encapsulates all the probabilistic and 

causal constraints required for reasoning in ℒ2, we show next that the ℒ2-empirical 
content of an SCM—that is, the collection of observational and interventional dis
tributions (Definition 27.5)—indeed matches the content of the CBN (Definition 

27.10), as defined above. 

ℒ2-Connection—SCM-CBN (Markovian) 
The causal diagram 𝒢 induced by the SCM ℳ (following the constructive proce
dure in Definition 27.10) is a CBN for Pℳ—the collection of observational and* 

experimental distributions induced by ℳ. ■ 

For the complete proof, see Bareinboim et al. [2020, appendix D]. As this result 
demonstrates, CBNs serve as proxies for SCMs in terms of the observed ℒ2 dis
tributions. In practice, whenever the SCM is not fully known and the collection 

of interventional distributions is not available, this duality suggests that a CBN 

can act as a basis for causal reasoning. To ground this point, we go back to our 
task of inferring the interventional distribution, P(Y | do(X = x)), from a combina
tion of the observational distribution, P(V), and the qualitative knowledge of the 

SCM encoded in the causal diagram 𝒢. A remarkable result that holds in Marko
vian models is that causal inference is always possible, that is, any interventional 
distribution is computable from ℒ1-data. 

Truncated Factorization Product (Markovian) 
Let the graphical model 𝒢 be a CBN for the set of interventional distributions 
P*. For any X ⊆ V, the interventional (ℒ2) distribution P(V | do(x)) is identifiable 

through the truncated factorization product, namely, 

P(v | do(x)) = ∏ P(vi | pai) . (27.25) 
{i | Vi∉X} 

||||||X=x 

■ 

31. One can show that there always exists a separator, in the d-separation sense, between non
adjacent nodes. 
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27.4.2 

Example 27.9 

In other words, the interventional distribution in the LHS of Equation (27.25) 
can be expressed as the product given in the right-hand side (RHS) involving only 
ℒ1-quantities, where the factors relative to the intervened variables are removed, 
hence the name truncated factorization product (see Pearl [2000, equation 1.37]).32 

Obviously, any marginal distribution of interest can be obtained by summing out 
the irrelevant factors, including the causal effect of X on Y. 

Causal Inference via ℒ2-constraints—Semi-Markovian Causal Bayes 
Networks 
The treatment provided for the Markovian case turned out to be simple and ele
gant, yet surprisingly powerful. The causal graph is a perfect surrogate for the 

SCM in the sense that all ℒ2 quantities (causal effects) are computable from ℒ1
type of data (observational) and the constraints in 𝒢. A “model-theoretic” way of 
understanding this result is that all the SCMs that induce the same causal diagram 

and generate the same observational distribution will also generate the same set 
of experimental distributions, immediately computable via the truncated product 
(Theorem 27.3). This is a quite remarkable result as we moved from a model based 

on ℒ1-structural constraints (e.g., a Bayes net) such that no causal inference was 
permitted, to a model encoding ℒ2-constraints (a causal Bayes net) such that any 
conceivable cross-layer inference is immediately allowed. 

In light of these results, one may be tempted to surmise that causal inference 

is a solved problem. This could not be farther from the truth, unfortunately. The 

assumption that all the relevant factors about the phenomenon under investi
gation are measured and represented in the causal diagram (i.e., Markovianity 
holds) is often too stringent, and violated in most real-world scenarios. This means 
that the aforementioned results are usually not applicable in practice. Departing 

from this observation, our goal is to understand the principles that allow cross-
layer inferences when the Markov condition does not hold, which entails incor
porating unobserved confounders as a building block of ℒ2-graphical models. We 

start by investigating the reasons the machinery developed so far is insufficient to 

accommodate such cases. 

Example 27.1 revisited 

Recall the two-dice game where the endogenous variables X and Y (the sum and 

difference of two dice, respectively) do not functionally depend on each other, 
despite their strong association. One could attempt to model such a setting with 

32. The truncated formula is also known as the “manipulation theorem” [Spirtes et al. 2001] or 
G-computation formula [Robins 1986, p. 1423]. For further details, we refer readers to Pearl [2000, 
section 3.6.4]. 
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Figure 27.5 The diagram in (a) implies that neither X nor Y is an argument to the function of 
the other. In (b, c) one endogenous variable causes the other. In (d) there is no causal 
relationship yet the functions share exogenous arguments, as encoded through the 
bidirected arrow. In (e) both types of influence are encoded. 

the graphical structure shown in Figure 27.5(a), somewhat naively, trying to avoid a 

directed arrow between X and Y . As previously noted, if the sum of the dice is equal 
to two (X = 2), one could, with probability one, infer that the two dice obtained the 

same value (Y = 0). The hypothesized graphical model, however, forces the two 

variables to be independent, which would rule out the possibility of performing 

such an inference. 
Upon recognition of such impropriety, one could reconsider adding an arrow 

from X to Y (or Y to X) so as to leverage the valuable information shared across the 

observed variables, as shown in Figure 27.5(b). We previously learned, on the other 
hand, that reporting that the sum of the dice is 2 does not change their difference, 
formally, P(Y | do(X = 2)) = P(Y) must hold in this setting (Equation 27.9). Obvi
ously, this would be violated were the world to mirror this graphical structure. To 

witness, consider the alternative SCM ℳ ′ where the function for X is identical and 

Y ← (X − 2U2). We can verify that P(X, Y) is the same as in ℳ1, while the causal 
effect of X on Y is non-zero. ■ 

The recognition that certain dependencies among endogenous variables can
not be explained by other variables inside the model (but also cannot be ignored) 
led Pearl to introduce a new type of arrow to account for these relationships. The 

new arrows are dashed and bidirected. In the example above, variables X and Y 

are correlated due to the existence of two common exogenous variables, {U1, U2}, 
which are arguments of both fX and fY . We will usually refer to these variables 
as Uxy since, a priori, we will neither know, nor want to assume, their particu
lar form, dimensionality, or distribution. This new type of arrow will allow for 
the probabilistic dependence between them, (X ⊥⊥ Y), while being neutral with 

respect to their interventional invariance. That is, it would accept constraints such 

as P(Y | do(X)) = P(Y) and P(X | do(Y)) = P(X). See Figure 27.5(d) for a graphical 
example. 

In practice, some variables may be related through both sources of variations— 

one exogenous, not explained by the variables in the model, and another endoge
nous, causally explained by the relationships between the variables in the model, 
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Example 27.10 

Definition 27.12 

as shown in Figure 27.5(e). Due to the unobserved confounder Uxy, the equality 
P(Y | do(x)) = P(Y | x) will not, in general, hold. In other words, Y ’s distribution will 
be different depending on whether we observe X = x or intervene and do(X = x). 
Fundamentally, this will translate into a violation of the constraint encoded in 

Equation (27.22) and, more generally, in condition (iii) of the definition of CBNs 
(Definition 27.11). 

Our goal, henceforth, will be to cope with the complexity arising due to viola
tions of Markovianity. One particular implication of these violations is the widen
ing of the empirical content carried by the CBN versus its underlying SCM, as 
shown in the next example. 

Consider two SCMs ℳ* and ℳ ′ such that V = {X, Y}, U = {Uxy, Uy}, the structural 
mechanisms are ℱ = {X ← Uxy, Y ← (X ⊕ Uy) if X = Uxy, 𝛿 otherwise}, where 𝛿 = 0 

for ℳ* and 𝛿 = 1 for ℳ ′ . The exogenous distributions of both models, P*(U) and 

P ′(U), are the same and given by P(Uxy = 1) = 1/2, P(Uy = 1) = 3/4, and they both fol
low the diagram shown in Figure 27.5(e). It is easy to verify that both models induce 

the same P(V), while P*(Y = 1 | do(X = 1)) = 1/8 ̸= 5/8 = P ′(Y = 1 | do(X = 1)). 
■ 

Remarkably, this is our first encounter with a situation in which a causal 
diagram—encoding all the ℒ2-structural invariances of the underlying SCM 

ℳ*—is too weak, incapable of answering the intended cross-layer inference— 

computing P(Y | do(x)) from the corresponding ℒ1-distribution, P(X, Y). There 

exists at least one other SCM ℳ ′ that shares the same set of structural features, 
in the form of the constraints encoded in the causal diagram, but generates a dif
ferent answer for the causal effect. In other words, one cannot commit and make 

a claim about the target effect as there are multiple, unobserved SCMs compatible 

with the given diagram and observational data. 
Whenever the causal effect is not uniquely computable from the constraints 

embedded in the graphical model, we say that it is non-identifiable from 𝒢 (to be 

formally defined later on). More generally, we would like to understand under what 
conditions an interventional distribution can be computed from the observational 
one, given the structural constraints encoded in the causal diagram. First, we sup
plement the Markovian construction of CBNs, given in Definition 27.10, to formally 
account for the existence of unobserved confounders. 

Causal Diagram (Semi-Markovian Models) 
Consider an SCM ℳ = ⟨U, V, ℱ , P(U)⟩. Then, 𝒢 is said to be a causal diagram (of 
ℳ) if constructed as follows: 

(1) add a vertex for every endogenous variable in the set V, 
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(b) Graph under intervention do(c).

Figure 27.6 Causal diagram with bidirected arrows and its mutilated counterpart under do(c). 

(2) add an edge (Vj → Vi) for every Vi, Vj ∈ V if Vj appears as an argument of 
fi ∈ ℱ . 

(3) add a bidirected edge (Vj+----+Vi) for every Vi, Vj ∈ V if the corresponding 

Ui, Uj ⊂ U are correlated or the corresponding functions fi, fj share some 

U ∈ U as an argument. ■ 

Following this procedure, each SCM ℳ induces a unique causal diagram. Fur
thermore, each bidirected arrow encodes unobserved confounding in 𝒢. They indi
cate correlation between the unobserved parents of the endogenous variables at 
the endpoints of such edges. 

27.4.2.1 Revisiting Locality in Semi-Markovian Models 

Graphical models provide a transparent and systematic way of encoding struc
tural constraints about the underlying SCM (Figure 27.3(d)). In practice, these con
straints follow from the autonomy of the structural mechanisms [Aldrich 1989, 
Pearl 2000], which materializes as local relationships in the causal diagram. In 

Markovian models, these local constraints appear in the form of family relation
ships, for example, (1) each variable Vi is independent of its non-descendants given 

its parents Pai, or (2) each variable is invariant to interventions in other variables 
once its parents are held constant (following Definition 27.11). The local nature 

of these relations leads to a parsimonious factorization of the joint probability 
distribution, and translates into desirable sample and computational complexity 
properties. 

On the other hand, the family relations in semi-Markovian models are less well-
behaved and the boundaries of influence among the variables are usually less local. 
To witness, consider Figure 27.6(a), and note that, where Pad = {B, C} and the 

remaining NDescd = {A, F}, D ⊥⊥ NDescd | Pad does not hold as D and A are con
nected through the open path D+----+B ← A. We introduce below a construct 
called confounded component [Tian and Pearl 2002b] to restore and help to make 

sense of modularity in these models. 
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Definition 27.13	 Confounded Component 
Let {C1, C2, … Ck} be a partition over the set V. Ci is said to be a confounded com
ponent (C-component) of 𝒢 if there exists a path made of bidirected edges between 

Vi and Vj, for every Vi, Vj ∈ Ci in 𝒢, and Ci is maximal. ■ 

This construct represents clusters of variables that share the same exogenous 
variations regardless of their directed connections. The causal diagram in Fig
ure 27.6(a) has two bidirected edges indicating the presence of unobserved con-
founders affecting the pairs (B, D) and (C, E) and contains four C-components, 
namely, C1 = {A}, C2 = {B, D}, C3 = {C, E}, and C4 = {F}. Similarly, each causal 
diagram in Figure 27.5(a–c) contains two C-components, C1 = {X} and C2 = {Y}, 
while each in Figure 27.5(d, e) contains one C-component, C1 = {X, Y}. 

Our goal is to understand the boundaries of influence among variables in 

semi-Markovian models as the parents of a node no longer shield it from its non-
descendants, and this condition is a basic building block in the construction of 
Markovian models. Consider again the graph in Figure 27.6(a) and the node E 

and its only parent D. If we condition on D, E will not be independent of its non-
descendants in the graph. Obviously, E is automatically connected to its bidirected 

neighbors, so it cannot be separated from C. Further, upon conditioning on the par
ent D, the collider through C is opened up as D is its descendant (i.e., E+----+C ← A 

carries correlation given D). In this case, the ancestors and descendants of C also 

become correlated with E, which is now connected to every other variable in the 

graph (A, F, B). Further, note that by conditioning on C itself, its descendants will 
be independent of E but its ancestors and ancestors’ descendants will still be con
nected. In this graph, E is connected to all other nodes upon conditioning on its 
observed parent D and C-component neighbor C, that is, A, B, F. Then, we also need 

to condition on the parents of C (i.e., A) to render its other ancestors and their 
descendants (i.e., F) independent of E. 

Putting these observations together, for each endogenous variable Vi, we need 

to condition on its parents, the variables in the same C-component that precede 

it, and the parents of the latter so as to shield Vi from the other non-descendants 
in the graph. Such a maximal set is formally defined as Pa+ 

i as follows. Let < be a 

topological order V1, … , Vn of the variables V in 𝒢,33 and let 𝒢(Vi) be the subgraph 

of 𝒢 composed only of variables in V1, … , Vi. Given X ⊆ V, let Pa1(X) = X ∪ {Pa(X) : 
X ∈ X}; further, let C(Vi) be the C-component of Vi in 𝒢(Vi). Then define Pa+ = 

Pa1 ({V ∈ C(Vi) : V ≤ Vi}) ⧵{Vi}. For instance, in Figure 27.6(a), Pa+ 
e = {D, C, A} and 

Pa+ 
d = {B, C, A}. 

33. That is, an order on the nodes (endogenous variables) V such that if Vj → Vi ∈ 𝒢, then Vj < Vi. 

i 
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Akin to the concept of Markov relative, a causal diagram also imposes factoriza
tion constraints over the observational distribution in semi-Markovian CBNs, as 
shown next. 

Semi-Markov Relative 

A distribution P is said to be semi-Markov relative to a graph 𝒢 if for any topological 
order < of 𝒢, P factorizes as 

+P(v) = ∏ P(vi | pa ), (27.26)i 
Vi ∈V 

where Pa+ 
i is defined using <. ■ 

Not only is the joint observational distribution related to a causal graph, but 
so are the ℒ2-distributions P(⋅ | do(x)) under an intervention do(X = x). The cor
responding graph is 𝒢X, where the incoming arrows toward X are cut, and the 

semi-Markovian factorization is 

x+Px(v) = ∏ Px(vi | pa ), (27.27)i 
Vi ∈V 

where Pax+ is constructed as Pax+ but according to 𝒢X.i i 

Factorization implied by the semi-Markov condition 

Let P(A, B, C, D, E, F) be a distribution semi-Markov relative to the diagram 𝒢 in 

Figure 27.6(a). One topological order of 𝒢 is A < B < C < D < E < F, 
which implies that P(a, b, c, d, e, f ) = P(a)P(b | a)P(c | a)P(d | b, c, a)P(e | d, c, a)P(f | a). 
In contrast, an application of the chain rule yields: P(a, b, c, d, e, f ) = 

P(a)P(b | a)P(c | b, a)P(d | b, c, a)P(e | d, c, b, a)P(f | e, d, c, b, a). 
A comparison of the two previous factorizations highlights some of the 

independence constraints implied by the semi-Markov condition, for instance, 
(C ⊥⊥ B | A), (E ⊥⊥ B | D, C, A), and (F ⊥⊥ E, D, C, B | A). The same applies to interven
tional distributions. First, let Pc(A, B, C, D, E, F) be semi-Markov relative to 𝒢C 

(Figure 27.6(b)). Then, note that Pc(A, B, C, D, E, F) factorizes as Pc(a) Pc(b | a)Pc(c) 
Pc(d | b, c, a)Pc(e | d)Pc(f | a). This distribution satisfies the same conditional inde
pendence constraints as P(A, B, C, D, E, F), but also additional ones such as 
(E ⊥⊥ A | D). This constraint holds true as (C+----+E) is absent in 𝒢C. The extended 

parents in both distributions are Pa+ = {A, C, D} and PaC+ = {D}. ■e e 

CBNs with Latent Variables—Putting All the Pieces Together 
The constructive procedure described in Definition 27.12 produces a coarsening 

of the underlying SCM such that (1) the arguments of the functions are preserved 
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while their particular forms are discarded, and (2) the relationships between the 

exogenous variables are preserved while their precise distribution is discarded.34 

The pair (𝒢, P*) consisting of a causal diagram 𝒢, constructed through such a pro
cedure, and the collection of interventional (ℒ2) distributions, P*, will be called a 

CBN if it satisfies the definition below. This substitutes for Definition 27.11 in semi-
Markovian models, and is similar to the way that constraints on a (observational) 
probability distribution (viz., conditional independencies) are captured by graphi
cal constraints in a BN and the additional missing-link and do-see constraints are 

encoded in the Markov-CBNs (Definition 27.11). 

Definition 27.15	 Causal Bayesian Network (CBN)-Semi-Markovian 

Let P* be the collection of all interventional distributions P(V | do(x)), X ⊆ V, 
x ∈ Val(X), including the null intervention, P(V), where V is the set of observed 

variables. A graphical model with directed and bidirected edges 𝒢 is a CBN for P* 

if for every intervention do(X = x), X ⊆ V, the following conditions hold: 

(i) [Semi-Markovian] P(V | do(x)) is semi-Markov relative to 𝒢X. 
(ii) [Missing directed-link] For every Vi ∈ V⧵X, W ⊆ V⧵(Pax+ ∪ X ∪ {Vi}):i 

x+	 x+P(vi | do(x), pa	 , do(w)) = P(vi | do(x), pa ), (27.28)i	 i 

(iii) [Missing bidirected-link] For every Vi ∈ V⧵X, let Pax+ be partitioned into two i 

sets of confounded and unconfounded parents, Paci and Pau in 𝒢X. Then i 

P(vi | do(x), pai
c , do(paui )) = P(vi | do(x), pai

c , paui ). (27.29) 

■ 

The first condition requires each interventional distribution to factorize in a 

semi-Markovian fashion relative to the corresponding interventional graph 𝒢X, 
as discussed in Example 27.11. The remaining conditions give semantics for the 

missing directed and bidirected links in the model, which encode the lack of 
direct effect and of unobserved confounders between the corresponding variables, 
respectively. Specifically, the missing directed-link condition (ii) states that under 
any intervention do(X = x), conditioning on the set of augmented parents Pax+ 

i 

renders Vi invariant to an intervention on other variables W—in other words, W 

has no direct effect on Vi. For instance, note that for Vi = D in Figure 27.6(a), 
P(d | do(f , e), b, c, a) = P(d | b, c, a) as well as P(d | do(b, c), do(a, f , e)) = P(d | do(b, c)). 

34. Given the lack of constraints over the form and shape of the underlying functions and distri
bution of the exogenous variables, it is possible to non-parametrically write one in terms of the 

other. 
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Further, the missing bidirected-link condition relaxes the stringent parents do/see 

condition in Markovian CBNs (Definition 27.11(iii)). Note that the do/see condition 

does not hold due to the unobserved correlation between certain endogenous vari
ables, for instance, both P(d | do(b)) = P(d | b) and P(e | do(d)) = P(e | d) do not hold in 

Figure 27.6(a).35 Still, given the set of extended parents of Vi, observations and inter
ventions on parents not connected via a bidirected path (i.e., Paui ) yield the same 

distribution. For instance, P(e | do(a, d), c) = P(e | a, d, c), where Pau = {A, D}, Pac = e e 

{C}; also, P(d | do(b, a, c)) = P(d | do(b), a, c), where Pau = {A, C}, Pac = {B}. There d d 

exists no unobserved confounding in Markovian models, so Pau = Pai, which i 

means that the condition is enforced for all parents. 
Finally, the causal diagram 𝒢 constructed from the SCM and the set of interven

tional distributions P* can be formally connected through the following result: 

ℒ2-Connection—SCM-CBN (Semi-Markovian) 
The causal diagram 𝒢 induced by the SCM ℳ (following the constructive procedure 

in Definition 27.12) is a CBN for Pℳ . ■* 

One could take an axiomatic view of CBNs and consider alternative construc
tions that satisfy their conditions, detached from the structural semantics (simi
larly to the Markovian case). We provide in Bareinboim et al. [2020, appendix D] 
a procedure called ConstructCBN (see Theorem 10) that constitutes such an 

alternative. It can be seen as the experimental-stochastic counterpart of the SCM-
functional Definition 27.12. We show in the next section that CBNs can act as a basis 
for causal inference regardless of their underlying generating model. 

Cross-layer Inferences through CBNs with Latent Variables 

The causal diagram associated with a CBN will sometimes be a proper surrogate for 
the SCM, and allow one to compute the effect of interventions as if the fully speci
fied SCM were available. Unfortunately, in some other cases, it will be insufficient, 
as evident from the discussion in Example 27.10. We introduce next the notion of 
identifiability [Pearl 2000, p. 77] to more visibly capture each of these instances. 

Effect Identifiability 
The causal effect of an action do(X = x) on a set of variables Y given a set of obser
vations on variables Z = z, P(Y | do(x), z), is said to be identifiable from P and 𝒢 if for 
every two models ℳ(1) and ℳ(2) with causal diagram 𝒢, P(1)(v) = P(2)(v) > 0 implies 
P(1)(Y | do(x), z) = P(2)(Y | do(x), z). ■ 

35. To see why this is the case in the last expression, first let Ud be any exogenous argument to fD. 
Now note that P(e | do(d)) does not depend on Ud, while P(e | d) does due to the path Ud → D ← 

C+----+E. 
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This formalizes the very natural type of cross-layer inference we have discussed 

in Figure 27.3, namely: given qualitative assumptions encoded in the causal dia
gram 𝒢, one would like to establish whether the interventional distribution (ℒ2
quantity) P(Y | do(x), z) is inferable from the observational one (ℒ1-data). We intro
duce next a set of inference rules known as do-calculus [Pearl 1995] developed to 

answer this question.36,37 

Theorem 27.5 Do-Calculus 
Let 𝒢 be a CBN for P*, then P* satisfies the Do-Calculus rules according to 𝒢. 
Namely, for any disjoint sets X, Y, Z, W ⊆ V the following three rules hold: 

Rule 1 P(y | do(x), z, w) = P(y | do(x), w) if (Y ⊥⊥ Z | X, W) in 𝒢X. (27.30) 

Rule 2 P(y | do(x), do(z), w) = P(y | do(x), z, w) if (Y ⊥⊥ Z | X, W) in 𝒢XZ. (27.31) 

Rule 3 P(y | do(x), do(z), w) = P(y | do(x), w) if (Y ⊥⊥ Z | X, W) in 𝒢XZ(W), (27.32) 

where a graph 𝒢XZ is obtained from 𝒢 by removing the arrows incoming to X 

and outgoing from Z, and Z(W) is the set of Z-nodes non-ancestors of W in the 

corresponding graph. ■ 

These rules can be seen as a tool that allows one to navigate in the space of 
interventional distributions, jumping across unrealized worlds, and licensed by 
the invariances encoded in the causal graph. Specifically, rule 1 can be seen as 
an extension of the d-separation criterion for reading conditional independences 
under a fixed intervention do(X = x) from the graph denoted 𝒢X. Furthermore, 
rules 2 and 3 entail constraints among distributions under different interventions. 
Rule 2 permits the exchange of a do(z) operator with an observation of Z = z, cap
turing situations when intervening and observing Z influence the set of variables 
Y indistinguishably. Rule 3 licenses the removal or addition of an intervention from 

36. The do-calculus can be seen as an inference engine that allows the local constraints encoded in 

the CBN, in terms of the family relationships, to be translated and combined to generate (global) 
constraints involving other variables. 

37. The duality between local and global constraints is a central theme in probabilistic reason
ing, where the family factorization dictated by the graphical model is local while d-separation 

is global, allowing one to read off non-trivial constraints implied by the model [Pearl 1988, Lau
ritzen 1996]. The graphical model could be seen as a basis, that is, a parsimonious encoder of 
exponentially many conditional independences. In causal inference, do-calculus can be seen as 
a generalization of d-separation to generate global, interventional-type of constraints. 
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Figure 27.7 (a) Graph representing a model where the query P(y | do(x)) is identifiable. The query 
can be derived using do-calculus rules licensed by graphs (b), (c), and (d). 

a probability expression, recognizing situations where do(z) has no effect whatso
ever on Y. A more detailed discussion of do-calculus can be found in Pearl [2000, 
chapter 3].38 

We have previously shown that in simple settings causal inference is unattain
able with only ℒ1-data, and that knowledge conveniently encoded in the form of a 

causal diagram is required. Next, we show how the knowledge from the diagram 

together with the inference rules of do-calculus allows for the identification of the 

query P(y | do(x)) in the context of the model represented in Figure 27.7(a). First, we 

start with the target query and then apply do-calculus: 

P(y | do(x)) = ∑ P(y | do(x), z)P(z | do(x)) Summing over Z (27.33) 
z 

= ∑ P(y | do(x), z)P(z) Rule 3: (Z ⊥⊥ X)𝒢X 
(27.34) 

z 

= ∑ P(y | x, z)P(z) Rule 2: (Y ⊥⊥ X | Z)𝒢X . (27.35) 
z 

Each step above is accompanied by the corresponding probability axiom or rule, 
supported by the licensing graphs 𝒢X and 𝒢X (Figure 27.7(b) and (c), respectively). 
As desired, the RHS of Equation (27.35) is a function of P(V), hence, estimable from 

ℒ1-data. This means that no matter the functional form of the endogenous vari
ables or the distribution over the exogenous ones, for all SCMs compatible with 

the graph in Figure 27.7(a), the causal effect of X on Y will always be equal to Equa
tion (27.35). This can be seen as an instance of the back-door criterion [Pearl 1993], 
and the particular function in Equation (27.35) is known as adjustment (for Z). 

The importance of the back-door criterion stems from the fact that adjustment 
is a very common technique used to identify causal effects in the sciences. While 

the adjustment expression has been used since much earlier than the discovery of 

38. Interestingly, the do-calculus theorem (Theorem 27.5) as stated here was derived entirely 
within the domain of CBNs and Layer 2 constraints, which contrasts with the traditional propo
sition ([Pearl 1995, theorem 27.3]) based on Layer 3 facts. 
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Figure 27.8 Napkin graph (a) and derived graphs used to identify P(y | do(x)). 

the criterion itself [Pearl 1993], the back-door is the first to provide a transparent 
way one could judge the plausibility of the assumptions required to map ℒ1-data 

to an ℒ2-quantity based on a model of the world.39 

For the effect of Z on X, P(X | do(z)), in the same graph (Figure 27.7(a)), there 

exists no set Z that can be used to identify the effect by adjustment. Note that 
in the graph where the arrows outgoing from Z are cut (Figure 27.7(d)), Z and 

X cannot be separated due to the existence of the latent path, Z+----+X. More 

strongly, P(X | do(z)) is not identifiable from the observational distribution by any 
other means. We leave as an exercise the construction of a counter-example based 

on Example 27.10’s proof. Broadly, the effect of a certain intervention may or may 
not be identifiable, depending on the particular causal diagram and the topological 
relations between treatment, outcome, and latent variables. 

Finally, there are involved scenarios that are somewhat surprising as they go 

beyond some of the intuitions discussed in the examples above; see diagram in 

Figure 27.8(a). The task is to identify the effect of X on Y , P(Y | do(x)), from 

P(W , Z, X, Y). It is obvious that the effect cannot be identified by the back-door 
criterion, and in 𝒢X , conditioning on {Z}, {W}, {Z, W} leaves the back-door path 

X+----+W+----+Y opened. After all, one may be tempted to believe that the effect 
of X on Y is not identifiable in this case. Contrary to this intuition, consider the 

following derivation in do-calculus: 

P(y | do(x)) = P(y | do(x), do(z)) Rule 3: (Y ⊥⊥ Z | X)𝒢XZ 
(27.36) 

= P(y | do(z), x) Rule 2: (Y ⊥⊥ X)𝒢ZX 
(27.37) 

P(y, x | do(z))= Def. of cond. probability. (27.38)
P(x | do(z)) 

The rules used in each step and the licensing graphs are shown in Figure 27.8(b)– 

(c). At this point, the back-door adjustment (similar to Equations (27.33)–(27.35)) 

39. The back-door criterion provides a formal and transparent condition to judge the validity of 
a condition called conditional ignorability [Imbens and Rubin 2015]; see further details in Pearl 
[2000, section 11.3.2]. 
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can be applied to solve for both factors in Equation (27.38). To witness, note 

that in the numerator, P(y, x | do(z)), {W} is back-door admissible with respect to 

(Z, {Y , X}), as (Y , X ⊥⊥ Z | W)𝒢Z , as shown in Figure 27.8(d). The denominator fol
lows by marginalizing Y out. Putting these two results together and replacing it 
back into Equation (27.38) lead to: 

∑w P(y, x | z, w)P(w)
P(y | do(x)) = . (27.39)

∑w P(x | z, w)P(w) 

The RHS of Equation (27.39) is expressible in terms of P(V), which means that for 
any SCM compatible with the graph, the causal effect will always be the same, 
regardless of the details of the underlying mechanisms and distribution over the 

exogenous variables. The expression shown in Equation (27.39) is a ratio following 

from the application of the back-door criterion twice. 
The problem of deciding identifiability, also known as non-parametric iden

tification, has been extensively studied in the literature. There are a number of 
conditions that have been proposed to solve this problem, including Galles and 

Pearl [1995], Pearl and Robins [1995], Kuroki and Miyakawa [1999], and Spirtes 
et al. [2001]. The do-calculus provides a general mathematical treatment for non
parametric identification [Pearl 1995]. It has been made systematic and shown to 

be complete for the task of identification from a combination of observations and 

experiments [Tian and Pearl 2002a, Huang and Valtorta 2006, Shpitser and Pearl 
2006, Bareinboim and Pearl 2012, Lee et al. 2019]. In other words, given a causal 
diagram 𝒢 and a collection of observational and experimental distributions, the 

target effect of X on Y given a set of covariates Z, P(y | do(x), z), is identifiable if and 

only if there exists a sequence of application of the rules of do-calculus that reaches 
an estimand in terms of the available distributions. 

27.5 Conclusions 
We investigated a mathematical structure called the PCH, which was discovered 

by Judea Pearl when studying the conditions under which some types of causal 
explanations can be inferred from data [Pearl 2000, Pearl and Mackenzie 2018]. 
The PCH is certainly one of the most productive conceptual breakthroughs in the 

science of causal inference over the last decades. It highlights and formalizes the 

distinct roles of some basic human capabilities—seeing, doing, and imagining— 

spanning cognition, AI, and scientific discovery. The structure is pervasive in the 

empirical world: as long as a complex system can be described as a collection of 
causal mechanisms—that is, an SCM (Definition 27.1)—the hierarchy relative to 

the modeled phenomena emerges (Definition 27.8). 
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The main contribution of this chapter is a detailed analysis of the PCH through 

different perspectives: one semantical (Section 27.2), another logical-probabilistic 
(Section 27.3), and another inferential-graphical (Section 27.4). These complemen
tary approaches elucidate the PCH from different angles, ranging from when one 

knows everything about a specific SCM (semantical), to talking about classes of 
SCMs in general (probabilistic), and ending with one SCM that is particular to 

the environment of interest but which is not fully observed (graphical). We hope 

these distinct angles provide a powerful tool for studying causation across differ
ent research communities, with far-reaching implications for scientific practice in 

a wide range of data-driven fields. For instance, we expect these results to underpin 

the next generation of AI systems, which should be data-efficient, explainable, and 

aligned with society’s goals. 
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