Probabilistic and Causal Inference
The Works of Judea Pearl
Hector Geffner, Rina Dechter, Joseph Y. Halpern (Editors)

Professor Judea Pearl won the 2011 Turing Award "for fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning." This book contains the original articles that led to the award, as well as other seminal works, divided into four parts: heuristic search, probabilistic reasoning, causality, first period (1988–2001), and causality, recent period (2002–2020). Each of these parts starts with an introduction written by Judea Pearl. The volume also contains original, contributed articles by leading researchers that analyze, extend, or assess the influence of Pearl’s work in different fields: from AI, Machine Learning, and Statistics to Cognitive Science, Philosophy, and the Social Sciences. The first part of the volume includes a biography, a transcript of his Turing Award Lecture, two interviews, and a selected bibliography annotated by him.
Contents

Preface xxv

Credits xxvii

PART I INTRODUCTION 1

Chapter 1 Biography of Judea Pearl by Stuart J. Russell 3

References 9

Chapter 2 Turing Award Lecture 11

References 27

Chapter 3 Interview by Martin Ford 29

References 42

Chapter 4 An Interview with Ron Wassertein on How The Book of Why Transforms Statistics 43

Chapter 5 Selected Annotated Bibliography by Judea Pearl 49

Search and Heuristics 49
Bayesian Networks 50
Causality 51
Causal, Casual, and Curious 53

PART II HEURISTICS 57

Chapter 6 Introduction by Judea Pearl 59

References 60
Chapter 7 Asymptotic Properties of Minimax Trees and Game-Searching Procedures 61
Judea Pearl
Abstract 61
7.1 The Probability of Winning a Standard \(h \)-level Game Tree with Random WIN Positions 62
7.2 Game Trees with an Arbitrary Distribution of Terminal Values 65
7.3 The Mean Complexity of Solving \((h, d, P_0)\)-game 69
7.4 Solving, Testing, and Evaluating Game Trees 75
7.5 Test and, if Necessary, Evaluate—The SCOUT Algorithm 78
7.6 Analysis of SCOUT’s Expected Performance 79
7.7 On the Branching Factor of the ALPHA–BETA \((\alpha–\beta)\) procedure 85
References 88

Chapter 8 The Solution for the Branching Factor of the Alpha–Beta Pruning Algorithm and its Optimality 91
Judea Pearl
8.1 Introduction 92
8.2 Analysis 94
8.3 Conclusions 101
References 102

Chapter 9 On the Discovery and Generation of Certain Heuristics 103
Judea Pearl
Abstract 103
9.1 Introduction: Typical Uses of Heuristics 103
9.2 Mechanical Generation of Admissible Heuristics 114
9.3 Can a Program Tell an Easy Problem When It Sees One? 117
9.4 Conclusions 119
References 121

PART III PROBABILITIES 123

Chapter 10 Introduction by Judea Pearl 125
References 126

Chapter 11 Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach 129
Judea Pearl
Abstract 129
Chapter 12 Fusion, Propagation, and Structuring in Belief Networks 139
 Judea Pearl
 Abstract 139
12.1 Introduction 140
12.2 Fusion and Propagation 148
12.3 Structuring Causal Trees 169
12.A Appendix A. Derivation of the Updating Rules for Singly Connected Networks 181
12.B Appendix B. Conditions for Star-decomposability 183
 Acknowledgments 185
 References 186

Chapter 13 GRAPHOIDS: Graph-Based Logic for Reasoning about Relevance Relations Or When Would x Tell You More about y If You Already Know z? 189
 Judea Pearl and Azaria Paz
 Abstract 189
13.1 Introduction 190
13.2 Probabilistic Dependencies and their Graphical Representation 192
13.3 GRAPHOIDS 195
13.4 Special Graphoids and Open Problems 196
13.5 Conclusions 198
 References 199

Chapter 14 System Z: A Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning 201
 Judea Pearl
 Abstract 201
<table>
<thead>
<tr>
<th>PART IV</th>
<th>CAUSALITY 1988–2001</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 15</td>
<td>Introduction by Judea Pearl</td>
<td>217</td>
</tr>
<tr>
<td>References</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Chapter 16</td>
<td>Equivalence and Synthesis of Causal Models</td>
<td>221</td>
</tr>
<tr>
<td>TS Verma and Judea Pearl</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>222</td>
</tr>
<tr>
<td>16.2</td>
<td>Patterns of Causal Models</td>
<td>224</td>
</tr>
<tr>
<td>16.3</td>
<td>Embedded Causal Models</td>
<td>227</td>
</tr>
<tr>
<td>16.4</td>
<td>Applications to the Synthesis of Causal Models</td>
<td>231</td>
</tr>
<tr>
<td>IC-Algorithm (Inductive Causation)</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Probabilistic Evaluation of Counterfactual Queries</td>
<td>237</td>
</tr>
<tr>
<td>Alexander Balke and Judea Pearl</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>237</td>
</tr>
<tr>
<td>17.2</td>
<td>Notation</td>
<td>240</td>
</tr>
<tr>
<td>17.3</td>
<td>Party Example</td>
<td>241</td>
</tr>
<tr>
<td>17.4</td>
<td>Probabilistic vs. Functional Specification</td>
<td>242</td>
</tr>
<tr>
<td>17.5</td>
<td>Evaluating Counterfactual Queries</td>
<td>245</td>
</tr>
<tr>
<td>17.6</td>
<td>Party Again</td>
<td>248</td>
</tr>
<tr>
<td>17.7</td>
<td>Special Case: Linear-Normal Models</td>
<td>250</td>
</tr>
<tr>
<td>17.8</td>
<td>Conclusion</td>
<td>252</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>253</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 18 Causal Diagrams for Empirical Research (With Discussions) 255

Judea Pearl

Summary 255
Some key words 255
18.1 Introduction 255
18.2 Graphical Models and the Manipulative Account of Causation 258
18.3 Controlling Confounding Bias 262
18.4 A Calculus of Intervention 265
18.5 Graphical Tests of Identifiability 269
18.6 Discussion 275
Acknowledgments 277
18.A Appendix 278
References 279
18.I Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 282
18.II Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 283
18.IV Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 287
18.V Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 290
18.VI Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 292
18.VII Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 296
18.VIII Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 299
18.IX Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 300
18.X Rejoinder to Discussions of ‘Causal Diagrams for Empirical Research’ 303
Additional References 313

Chapter 19 Probabilities of Causation: Three Counterfactual Interpretations and Their Identification 317

Judea Pearl

Abstract 317
19.1 Introduction 318
19.2 Structural Model Semantics (A Review) 321
19.3 Necessary and Sufficient Causes: Conditions of Identification 331
19.4 Examples and Applications 342
19.5 Identification in Non-Monotonic Models 351
19.6 From Necessity and Sufficiency to “Actual Cause” 354
19.7 Conclusion 364
19.A Appendix: The Empirical Content of Counterfactuals 365
References 368
Chapter 20 Direct and Indirect Effects 373

Judea Pearl
Abstract 373
20.1 Introduction 373
20.2 Conceptual Analysis 375
20.3 Formal Analysis 380
20.4 Conclusions 390
Acknowledgments 390
References 391

PART V CAUSALITY 2002–2020 393

Chapter 21 Introduction by Judea Pearl 395
References 396

Chapter 22 Comment: Understanding Simpson’s Paradox 399
Judea Pearl
22.1 The History 399
22.2 A Paradox Resolved 402
22.3 Armistead’s Critique 408
22.4 Conclusions 409
References 410

Chapter 23 Graphical Models for Recovering Probabilistic and Causal Queries from Missing Data 413
Karthika Mohan and Judea Pearl
Abstract 413
23.1 Introduction 413
23.2 Missingness Graph and Recoverability 414
23.3 Recovering Probabilistic Queries by Sequential Factorization 416
23.4 Recoverability in the Absence of an Admissible Sequence 418
23.5 Non-recoverability Criteria for Joint and Conditional Distributions 419
23.6 Recovering Causal Queries 420
23.7 Attrition 422
23.8 Related Work 423
23.9 Conclusion 424
Acknowledgments 424
References 424
23.A Appendix 426
Chapter 24 Recovering from Selection Bias in Causal and Statistical Inference 433

Elias Bareinboim, Jin Tian and Judea Pearl

Abstract 433

24.1 Introduction 433
24.2 Recoverability without External Data 437
24.3 Recoverability with External Data 440
24.4 Recoverability of Causal Effects 444
24.5 Conclusions 447

Acknowledgments 447
References 447

Chapter 25 External Validity: From Do-Calculus to Transportability Across Populations 451

Judea Pearl and Elias Bareinboim

Abstract 451

Key words and phrases 451

25.1 Introduction: Threats vs. Assumptions 452
25.2 Preliminaries: The Logical Foundations of Causal Inference 454
25.3 Inference Across Populations: Motivating Examples 461
25.4 Formalizing Transportability 465
25.5 Transportability of Causal Effects—A Graphical Criterion 471
25.6 Conclusions 475

25.A Appendix 477

Acknowledgments 478
References 478

Chapter 26 Detecting Latent Heterogeneity 483

Judea Pearl

Abstract 483

Keywords 483

26.1 Introduction 483
26.2 Covariate-Induced Heterogeneity 485
26.3 Latent Heterogeneity between the Treated and Untreated 488
26.4 Three Ways of Detecting Heterogeneity 490
26.5 Example: Heterogeneity in Recruitment 495
26.6 Conclusions 497

Acknowledgments 498

Declaration of Conflicting Interests 498
Funding 498
Chapter 30 Causal Models and Cognitive Development 593

Alison Gopnik
References 601

Chapter 31 The Causal Foundations of Applied Probability and Statistics 605

Sander Greenland

Abstract 605
31.1 Introduction: Scientific Inference is a Branch of Causality Theory 606
31.2 Causality is Central Even for Purely Descriptive Goals 608
31.3 The Strength of Probabilistic Independence Demands Physical Independence 609
31.4 The Superconducting Super collider of Selection 610
31.5 Data and Algorithms are Causes of Reported Results 611
31.6 Getting Causality into Statistics by Putting Statistics into Causal Terms from the Start 612
31.7 Causation in 20th-century Statistics 613
31.8 Causal Analysis versus Traditional Statistical Analysis 614
31.9 Relating Causality to Traditional Statistical Philosophies and “Objective” Statistics 616
31.10 Discussion 618
31.11 Conclusion 619
31.A Appendix 619
Acknowledgments 620
References 620

Chapter 32 Pearl on Actual Causation 625

Christopher Hitchcock

Abstract 625
32.1 Introduction 625
32.2 Actual Causation 625
32.3 Causal Models and But-for Causation 626
32.4 Pre-emption and Lewis 631
32.5 Intransitivity and Overdetermination 634
32.6 Pearl's Definitions of Actual Causation 637
32.7 Pearl's Achievement 642
References 643

Chapter 33 Causal Diagram and Social Science Research 647

Kosuke Imai

33.1 Graphical Causal Models and Social Science Research 647
Chapter 34 Causal Graphs for Missing Data: A Gentle Introduction 655
Karthika Mohan
34.1 Introduction 655
34.2 Missingness Graphs 656
34.3 Recoverability 658
34.4 Testability 664
References 666

Chapter 35 A Note of Appreciation 667
Azaria Paz
35.1 A Magic Square 668
35.2 A Magic Shield of David 668

Chapter 36 Causal Models for Dynamical Systems 671
Jonas Peters, Stefan Bauer and Niklas Pfister
Abstract 671
36.1 Introduction 671
36.2 Chemical Reaction Networks and ODEs 675
36.3 Causal Kinetic Models 677
36.4 Challenges in Causal Inference for ODE-based Systems 681
36.5 From Invariance to Causality and Generalizability 682
36.6 Conclusions 683
Acknowledgments 684
References 684

Chapter 37 Probabilistic Programming Languages: Independent Choices and Deterministic Systems 691
David Poole and Frank Wood
37.1 Probabilistic Models and Deterministic Systems 693
37.2 Possible Worlds Semantics 694
37.3 Inference 700
37.4 Learning 703
37.5 Other Issues 704
37.6 Causal Models 705
37.7 Some Pivotal References 705
Chapter 41 Multivariate Counterfactual Systems and Causal Graphical Models 813

Ilya Shpitser, Thomas S. Richardson and James M. Robins

41.1 Introduction 813
41.2 Graphs, Non-parametric Structural Equation Models, and the g-/do Operator 820
41.3 The Potential Outcomes Calculus and Identification 833
41.4 Identification in Hidden Variable Causal Models 835
41.5 Conclusion 844
Acknowledgments 845
41.A Appendix 845
References 848

Chapter 42 Causal Bayes Nets as Psychological Theory 853

Steven A. Sloman

Abstract 853
42.1 The Human Conception of Causality 854
42.2 Core Properties 856
42.3 The Broader Perspective: The Community of Knowledge 859
42.4 Collective Causal Models 861
42.5 Conclusion 863
Acknowledgments 864
References 864

Chapter 43 Causation: Objective or Subjective? 867

Wolfgang Spohn

Abstract 867
43.1 Causation: A Bunch of Attitudes 867
43.2 The Model Relativity of Causation 871
43.3 Laws 874
43.4 Probability 878
Acknowledgments 886
References 886

Editors’ Biographies 889

Index 893