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SUMMARY
The primary aim of this paper is to show how graphical models can be used as a

mathematical language for integrating statistical and subject-matter information. In par-
ticular, the paper develops a principled, nonparametric framework for causal inference, in
which diagrams are queried to determine if the assumptions available are sufficient for
identifying causal effects from nonexperimental data. If so the diagrams can be queried
to produce mathematical expressions for causal effects in terms of observed distributions;
otherwise, the diagrams can be queried to suggest additional observations or auxiliary
experiments from which the desired inferences can be obtained.

Some key words: Causal inference; Graph model; Structural equations; Treatment effect.

1. INTRODUCTION
The tools introduced in this paper are aimed at helping researchers communicate quali-

tative assumptions about cause-effect relationships, elucidate the ramifications of such
assumptions, and derive causal inferences from a combination of assumptions, experi-
ments, and data.

The basic philosophy of the proposed method can best be illustrated through the classi-
cal example due to Cochran (Wainer, 1989). Consider an experiment in which soil fumi-
gants, X , are used to increase oat crop yields, Y, by controlling the eelworm population,
Z, but may also have direct effects, both beneficial and adverse, on yields beside the control
of eelworms. We wish to assess the total effect of the fumigants on yields when this study
is complicated by several factors. First, controlled randomised experiments are infeasible:
farmers insist on deciding for themselves which plots are to be fumigated. Secondly,
farmers' choice of treatment depends on last year's eelworm population, Zy, an unknown
quantity strongly correlated with this year's population. Thus we have a classical case of
confounding bias, which interferes with the assessment of treatment effects, regardless
of sample size. Fortunately, through laboratory analysis of soil samples, we can determine
the eelworm populations before and after the treatment and, furthermore, because the
fumigants are known to be active for a short period only, we can safely assume that they
do not affect the growth of eelworms surviving the treatment. Instead, eelworm growth
depends on the population of birds and other predators, which is correlated, in turn, with
last year's eelworm population and hence with the treatment itself.

The method proposed in this paper permits the investigator to translate complex con-
siderations of this sort into a formal language, thus facilitating the following tasks.

(i) Explicate the assumptions underlying the model.
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(ii) Decide whether the assumptions are sufficient for obtaining consistent estimates of

the target quantity: the total effect of the fumigants on yields.
(iii) If the answer to (ii) is affirmative, provide a closed-form expression for the target

quantity, in terms of distributions of observed quantities.
(iv) If the answer to (ii) is negative, suggest a set of observations and experiments which,

if performed, would render a consistent estimate feasible.
The first step in this analysis is to construct a causal diagram such as the one given in

Fig. 1, which represents the investigator's understanding of the major causal influences
among measurable quantities in the domain. The quantities Zi, Zz and Z^ denote, respect-
ively, the eelworm population, both size and type, before treatment, after treatment, and
at the end of the season. Quantity Zy represents last year's eelworm population; because
it is an unknown quantity, it is represented by a hollow circle, as is B, the population of
birds and other predators. Links in the diagram are of two kinds: those that connect
unmeasured quantities are designated by dashed arrows, those connecting measured quan-
tities by solid arrows. The substantive assumptions embodied in the diagram are negative
causal assertions, which are conveyed through the links missing from the diagram. For
example, the missing arrow between Zi and Y signifies the investigator's understanding
that pre-treatment eelworms cannot affect oat plants directly; their entire influence on oat
yields is mediated by post-treatment conditions, namely Zz and Z j . The purpose of the
paper is not to validate or repudiate such domain-specific assumptions but, rather, to test
whether a given set of assumptions is sufficient for quantifying causal effects from non-
experimental data, for example, estimating the total effect of fumigants on yields.

Zo
P

/ ^ 1 ^ B

Y

Fig. 1. A causal diagram representing the effect of
fumigants, X , on yields, Y.

The proposed method allows an investigator to inspect the diagram of Fig. 1 and
conclude immediately the following.

(a) The total effect of X on Y can be estimated consistently from the observed distri-
bution of X , Zi, Zz, Za and Y.

(b) The total effect of X on Y, assuming discrete variables throughout, is given by the
formula

Pr(y\x) = Z E E pr(y\Z2, Z3, x) pr(z2\zi, x) ̂  pr(z^\Zi, z^, x') pr(zi, x'), (1)
2l Z2 23 X

where the symbol x, read 'x check', denotes that the treatment is set to level X = x
by external intervention.
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(c) Consistent estimation of the total effect of X on Y would not be feasible if Y were

confounded with Z^; however, confounding Z^ and Twill not invalidate the formula
forpr(y|x).

These conclusions can be obtained either by analysing the graphical properties of the
diagram, or by performing a sequence of symbolic derivations, governed by the diagram,
which gives rise to causal effect formulae such as (1).

The formal semantics of the causal diagrams used in this paper will be defined in § 2,
following a review of directed acyclic graphs as a language for communicating conditional
independence assumptions. Section 2-2 introduces a causal interpretation of directed
graphs based on nonparametric structural equations and demonstrates their use in pre-
dicting the effect of interventions. Section 3 demonstrates the use of causal diagrams to
control confounding bias in observational studies. We establish two graphical conditions
ensuring that causal effects can be estimated consistently from nonexperimental data. The
first condition, named the back-door criterion, is equivalent to the ignorability condition
of Rosenbaum & Rubin (1983). The second condition, named the front-door criterion,
involves covariates that are affected by the treatment, and thus introduces new opportunit-
ies for causal inference. In § 4, we introduce a symbolic calculus that permits the stepwise
derivation of causal effect formulae of the type shown in (1). Using this calculus, §5
characterises the class of graphs that permit the quantification of causal effects from
nonexperimental data, or from surrogate experimental designs.

2. GRAPHICAL MODELS AND THE MANIPULATIVE ACCOUNT OF CAUSATION

2-1. Graphs and conditional independence
The usefulness of directed acyclic graphs as economical schemes for representing con-

ditional independence assumptions is well evidenced in the literature (Pearl, 1988;
Whittaker, 1990). It stems from the existence of graphical methods for identifying the
conditional independence relationships implied by recursive product decompositions

pr(xi,..., xj == ]~[ Pr(x, | pa,), (2)
i

where pa; stands for the realisation of some subset of the variables that precede X, in the
order (X^, X ^ , . . . , X^). If we construct a directed acyclic graph in which the variables
corresponding to pa, are represented as the parents of-Y,, also called adjacent predecessors
or direct influences of X,, then the independencies implied by the decomposition (2) can
be read off the graph using the following test.

DEFINITION 1 (d-separation). Let X, Y and Z be three disjoint subsets of nodes in a
directed acyclic graph G, and let p be any path between a node in X and a node in Y, where
by 'path' we mean any succession of arcs, regardless of their directions. Then Z is said to
block p if there is a node w on p satisfying one of the following two conditions: (i) w has
converging arrows along p, and neither w nor any of its descendants are in Z, or, («') w does
not have converging arrows along p, and w is in Z. Further, Z is said to d-separate X from
Y, in G, written (XILY\Z)G, if and only if Z blocks every path from a node in X to a node
in Y.

It can be shown that there is a one-to-one correspondence between the set of conditional
independencies -X"1LY|Z (Dawid, 1979) implied by the recursive decomposition (2), and
the set of triples (X, Z, Y) that satisfy the a-separation criterion in G (Geiger, Verma &
Pearl, 1990).
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An alternative test for ^-separation has been given by Lauritzen et al. (1990). To test

for (XALY\Z)a, delete from G all nodes except those in XUYUZ and their ancestors,
connect by an edge every pair of nodes that share a common child, and remove all arrows
from the arcs. Then (XAL Y\Z)(} holds if and only if Z is a cut-set of the resulting undirected
graph, separating nodes of X from those of Y. Additional properties of directed acyclic
graphs and their applications to evidential reasoning in expert systems are discussed by
Pearl (1988), Lauritzen & Spiegelhalter (1988), Spiegelhalter et al. (1993) and Pearl
(1993a).

2-2. Graphs as models a/interventions
The use of directed acyclic graphs as carriers of independence assumptions has also

been instrumental in predicting the effect of interventions when these graphs are given a
causal interpretation (Spirtes, Glymour & Schemes, 1993, p. 78; Pearl, 1993b). Pearl
(1993b), for example, treated interventions as variables in an augmented probability space,
and their effects were obtained by ordinary conditioning.

In this paper we pursue a different, though equivalent, causal interpretation of directed
graphs, based on nonparametric structural equations, which owes its roots to early works
in econometrics (Frisch, 1938; Haaveimo, 1943; Simon, 1953). In this account, assertions
about causal influences, such as those specified by the links in Fig. 1, stand for autonomous
physical mechanisms among the corresponding quantities, and these mechanisms are rep-
resented as functional relationships perturbed by random disturbances. In other words,
each child-parent family in a directed graph G represents a deterministic function

Xi = fi(pa.i, e.) (i = 1,..., n), (3)

where pa, denote the parents of variable -Y, in G, and e, (1 ̂  i ̂  n) are mutually indepen-
dent, arbitrarily distributed random disturbances (Pearl & Verma, 1991). These disturb-
ance terms represent exogenous factors that the investigator chooses not to include in the
analysis. If any of these factors is judged to be influencing two or more variables, thus
violating the independence assumption, then that factor must enter the analysis as an
unmeasured, or latent, variable, to be represented in the graph by a hollow node, such as
Zo or B in Fig. 1. For example, the causal assumptions conveyed by the model in Fig. 1
correspond to the following set of equations:

Zo=/o(£o), Z2=/2(^,Zi,£2), B=f»(Zo,£s), Z3=/3(B,Z2,63),
(4)

Zi=/i(Zo,£i), y==/y(^.Z2,Z3,£y), X=f^Zo,e^).

The equational model (3) is the nonparametric analogue of a structural equations model
(Wright, 1921; Goldberger, 1972), with one exception: the functional form of the equations,
as well as the distribution of the disturbance terms, will remain unspecified. The equality
signs in such equations convey the asymmetrical counterfactual relation 'is determined
by', forming a clear correspondence between causal diagrams and Rubin's model of poten-
tial outcome (Rubin, 1974; Holland, 1988; Pratt & Schlaifer, 1988; Rubin, 1990). For
example, the equation for Y states that, regardless of what we currently observe about Y,
and regardless of any changes that might occur in other equations, if (-X", Z^, Zy, gy) were
to assume the values (x, z ^ , Z y , £y), respectively, Y would take on the value dictated by the
function /y. Thus, the corresponding potential response variable in Rubin's model Y^),
the value that Y would take if X were x, becomes a deterministic function of Za, Z3 and
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fiy, whose distribution is thus determined by those of Z^, Zy and £y. The relation between
graphical and counterfactual models is further analysed by Pearl (1994a).

Characterising each child-parent relationship as a deterministic function, instead of by
the usual conditional probability pr(x,|pa,), imposes equivalent independence constraints
on the resulting distributions, and leads to the same recursive decomposition (2) that
characterises directed acyclic graph models. This occurs because each e, is independent of
all nondescendants of X,. However, the functional characterisation -Y,==/,(pfl,,e,) also
provides a convenient language for specifying how the resulting distribution would change
in response to external interventions. This is accomplished by encoding each intervention
as an alteration to a selected subset of functions, while keeping the others intact. Once
we know the identity of the mechanisms altered by the intervention, and the nature of
the alteration, the overall effect can be predicted by modifying the corresponding equations
in the model, and using the modified model to compute a new probability function.

The simplest type of external intervention is one in which a single variable, say Xi, is
forced to take on some fixed value x,. Such an intervention, which we call atomic, amounts
to lifting X, from the influence of the old functional mechanism X, =./;•( pa,, e,) and placing
it under the influence of a new mechanism that sets its value to x, while keeping all
other mechanisms unperturbed. Formally, this atomic intervention, which we denote by
set(-Y, = Xi), or set(;)c,) for short, amounts to removing the equation -X",==y,-(pa,, e,) from
the model, and substituting x, for -X, in the remaining equations. The model thus created
represents the system's behaviour under the intervention set(X, = x,) and, when solved for
the distribution of X j , yields the causal effect of -X', on X j , denoted by pr(x^-|x,). More
generally, when an intervention forces a subset X of variables to fixed values x, a subset
of equations is to be pruned from the model given in (3), one for each member of X , thus
defining a new distribution over the remaining variables, which completely characterises
the effect of the intervention. We thus introduce the following.

DEFINITION 2 (causal effect). Given two disjoint sets of variables, X and Y, the causal
effect o f X on Y, denoted pr(y \ x), is a function from X to the space of probability distributions
on Y. For each realisation x o f X , pr(y|x) gives the probability o f Y = y induced on deleting
from the model (3) all equations corresponding to variables in X and substituting x for X
in the remainder.

An explicit translation of intervention into 'wiping out' equations from the model was
first proposed by Strotz & Wold (1960), and used by Fisher (1970) and Sobel (1990).
Graphical ramifications were explicated by Spirtes et al. (1993) and Pearl (1993b). A
related mathematical model using event trees has been introduced by Robins (1986,
pp. 1422-5).

Regardless of whether we represent interventions as a modification of an existing model
as in Definition 2, or as a conditionalisation in an augmented model (Pearl, 1993b), the
result is a well-defined transformation between the pre-intervention and the post-inter-
vention distributions. In the case of an atomic intervention set(X, = x;), this transformation
can be expressed in a simple algebraic formula that follows immediately from (3) and
Definition 2:

/ , .,„ f{pr(xi,...,x,,)}/{pr(x,|pa,-)} ifx,=x;,pr(Xi , . . . ,x^\Xi)= i (3)[0 ifx;=|=x,'.
This formula reflects the removal of the terms pr(x,|pa,) from the product in (2), since pa,
no longer influence X,. Graphically, this is equivalent to removing the links between pa,
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and X{ while keeping the rest of the network intact. Equation (5) can also be obtained
from the G-computation formula of Robins (1986, p. 1423) and the Manipulation Theorem
of Spirtes et al. (1993), who state that this formula was 'independently conjectured by
Fienberg in a seminar in 1991'. Clearly, an intervention set(.x:,) can affect only the descend-
ants of X, in G. Additional properties of the transformation defined in (5) are given by
Pearl (1993b).

The immediate implication of (5) is that, given a causal diagram in which all parents
of manipulated variables are observable, one can infer post-intervention distributions from
pre-intervention distributions; hence, under such assumptions we can estimate the effects
of interventions from passive, i.e. nonexperimental observations. The aim of this paper,
however, is to derive causal effects in situations such as Fig. 1, where some members of
pa, may be unobservable, thus preventing estimation of pr(;>c,|pa,). The next two sections
provide simple graphical tests for deciding when pr(x,|x,) is estimable in a given model.

3. CONTROLLING CONFOUNDING BIAS

3-1. The back-door criterion
Assume we are given a causal diagram G together with nonexperimental data on a

subset VQ of observed variables in G, and we wish to estimate what effect the intervention
set(-Y, = x,) would have on some response variable X j . In other words, we seek to estimate
pT(Xj\x,i) from a sample estimate ofpr(Fo).

The variables in Vo\{X,, X j } , are commonly known as concomitants (Cox, 1958, p. 48).
In observational studies, concomitants are used to reduce confounding bias due to spurious
correlations between treatment and response. The condition that renders a set Z of con-
comitants sufficient for identifying causal effect, also known as ignorability, has been given
a variety of formulations, all requiring conditional independence judgments involving
counterfactual variables (Rosenbaum & Rubin, 1983; Pratt & Schlaifer, 1988). Pearl
(1993b) shows that such judgments are equivalent to a simple graphical test, named the
'back-door criterion', which can be applied directly to the causal diagram.

DEFINITION 3 (Back-door criterion). A set of variables Z satisfies the back-door criterion
relative to an ordered pair of variables (X,, X j ) in a directed acyclic graph G i f : (i) no node
in Z is a descendant of Xi, and («') Z blocks every path between X, and X j which contains
an arrow into X,. If X and Y are two disjoint sets of nodes in G, Z is said to satisfy the
back-door criterion relative to (X, Y) if it satisfies it relative to any pair (-Y,, X j ) such that
X, e X and X; e Y.

The name 'back-door' echoes condition (ii), which requires that only paths with arrows
pointing at X, be blocked; these paths can be viewed as entering X, through the back door.
In Fig. 2, for example, the sets Z^={X^,X^} and Z^={X^,X^ meet the back-
door criterion, but Z^={X^} does not, because X^ does not block the path
(X,, Xy, Xi, Xi, X^, Xs, Xj). An equivalent, though more complicated, graphical criterion
is given in Theorem 7.1 of Spirtes et al. (1993). An alternative criterion using a single
d-separation test will be established in § 4-4.

We summarise this finding in a theorem, after formally defining 'identifiability'.

DEFINITION 4 (Identifiability). The causal effect o f X on Y is said to be identifiable if the
quantity pr(y\x) can be computed uniquely from any positive distribution of the observed
variables that is compatible with G. ;-
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Fig. 2. A diagram representing the back-door criterion;
adjusting for variables {X^X^} or {^4,^5} yields a

consistent estimate ofpr(Xj|x,).

Identifiability means that pr(y|;!c) can be estimated consistently from an arbitrarily large
sample randomly drawn from the joint distribution. To prove nonidentifiability, it is
sufficient to present two sets of structural equations, both complying with (3), that induce
identical distributions over observed variables but different causal effects.

THEOREM 1. If a set of variables Z satisfies the back-door criterion relative to (X, Y),
then the causal effect of X on Y is identifiable and is given by the formula

pr(^|x)=^pr(^|x,z)pr(z). (6)
z

Equation (6) represents the standard adjustment for concomitants Z when X is con-
ditionally ignorable given Z (Rosenbaum & Rubin, 1983). Reducing ignorability con-
ditions to the graphical criterion of Definition 3 replaces judgments about counterfactual
dependencies with systematic procedures that can be applied to causal diagrams of any
size and shape. The graphical criterion also enables the analyst to search for an optimal
set of concomitants, to minimise measurement cost or sampling variability.

3-2. The front-door criteria
An alternative criterion, 'the front-door criterion', may be applied in cases where we

cannot find observed covariates Z satisfying the back-door conditions. Consider the dia-
gram in Fig. 3. Although Z does not satisfy any of the back-door conditions, measurements
ofZ nevertheless enable consistent estimation o f p i ( y \ x ) . This can be shown by reducing
the expression for pr(y | x) to formulae computable from the observed distribution function
pr(x, y, z).

„—^ U (Unobserved)

•^————.————^.,
X Z r

Fig. 3. A diagram representing the front-door criterion.
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The joint distribution associated with Fig. 3 can be decomposed into

pr(x, y, z, u) = pr(w) pr(x | M) pr(z | x) pT(y | z, u) (7)
and, from (5), the causal effect of X on Y is given by

pr(y\x)=^pr(y\x,u)pr(u): (8)
u

Using the conditional independence assumptions implied by the decomposition (7), we
can eliminate u from (8) to obtain

prW) = Z Pr(2|x) S pr(^|x', z) pr(x'). (9)
Z, x'

We summarise this result by a theorem.
THEOREM 2. Suppose a set of variables Z satisfies the/allowing conditions relative to an

ordered pair of variables (X, Y): (i) Z intercepts all directed paths from X to Y, (if) there is
no back-door path between X and Z, and (Hi) every back-door path between Z and Y is
blocked by X. Then the causal effect of X on Y is identifiable and is given by (9).

The graphical criterion of Theroem 2 uncovers many new structures that permit the
identification of causal effects from measurements of variables that are affected by treat-
ments: see § 5-2. The relevance of such structures in practical situations can be seen, for
instance, if we identify X with smoking, Y with lung cancer, Z with the amount of tar
deposited in a subject's lungs, and U with an unobserved carcinogenic genotype that,
according to some, also induces an inborn craving for nicotine. In this case, (9) would
provide us with the means to quantify, from nonexperimental data, the causal effect of
smoking on cancer, assuming, of course, that pr(x, y, z) is available and that we believe
that smoking does not have any direct effect on lung cancer except that mediated by tar
deposits.

4. A CALCULUS OF INTERVENTION

4-1. General
This section establishes a set of inference rules by which probabilistic sentences involving

interventions and observations can be transformed into other such sentences, thus provid-
ing a syntactic method of deriving or verifying claims about interventions. We shall assume
that we are given the structure of a causal diagram G in which some of the nodes are
observable while the others remain unobserved. Our main problem will be to facilitate
the syntactic derivation of causal effect expressions of the form pr(3/|x), where X and Y
denote sets of observed variables. By derivation we mean step-wise reduction of the
expression pv(y \ x) to an equivalent expression involving standard probabilities of observed
quantities. Whenever such reduction is feasible, the causal effect of X on 7 is identifiable:
see Definition 4.

4-2. Preliminary notation
Let X , Y and Z be arbitrary disjoint sets of nodes in a directed acyclic graph G. We

denote by Gjr the graph obtained by deleting from G all arrows pointing to nodes in X.
Likewise, we denote by Gy the graph obtained by deleting from G all arrows emerging
from nodes in X. To represent the deletion of both incoming and outgoing arrows, we



Causal diagrams/or empirical research
U (Unobserved) ...o...-0.

677

^——,—^
X Z Y

G

•>-" •————^.
X Z Y

G^= Gv

°\ .,..-0'...... °\
""^ y" '"•». '"<• •————?• •-———-, \ •————-• •

X Z Y X Z Y X Z Y

GXZ Gz G^z

Fig. 4. Subgraphs of G used in the derivation of causal effects.

use the notation Gjcz'- see Fig. 4 for illustration. Finally, pr(y\x,z):=pr(y, z[x)/pr(z|x)
denotes the probability of Y == y given that Z = z is observed and X is held constant at x.

4-3. Inference rules
The following theroem states the three basic inference rules of the proposed calculus.

Proofs are provided in the Appendix.
THEOREM 3. Let G be the directed graph associated with a causal model as defined in

(3), and let pr(.) stand for the probability distribution induced by that model. For any disjoint
subsets of variables X, Y, Z and W we have the following.

Rule 1 (insertion/deletion of observations):
pr(y\x,z,w)=pr(y\x,w) if (YALZ\X,W)^. (10)

Rule 1 (action/observation exchange):
pr(y | x, z, w) = pr(y \ x, z, w) if (Y1LZ | X, W)a^. (11)

Rule 3 (insertion/deletion of actions):
pt(y\x,z,w)=pr(y\x,w) if (YlLZ\X,W)^, (12)

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in Cry.
Each of the inference rules above follows from the basic interpretation of the 'x' operator

as a replacement of the causal mechanism that connects X to its pre-intervention parents
by a new mechanism X = x introduced by intervening force. The result is a submodel
characterised by the subgraph Gjp, called the 'manipulated graph' by Spirtes et al. (1993),
which supports all three rules.

Rule 1 reaffirms d-separation as a valid test for conditional independence in the distri-
bution resulting from the intervention set(X = x), hence the graph Gjr. This rule follows
from the fact that deleting equations from the system does not introduce any dependencies
among the remaining disturbance terms: see (3).

Rule 2 provides a condition for an external intervention set(Z==z) to have the same
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effect on Y as the passive observation Z=z. The condition amounts to XUW blocking
all back-door paths from Z to Y in Gy, since Gjrz retains all, and only, such paths.

Rule 3 provides conditions for introducing or deleting an external intervention
set(Z=z) without affecting the probability of Y=y. The validity of this rule stems,
again, from simulating the intervention set(Z = z) by the deletion of all equations corres-
ponding to the variables in Z.

COROLLARY 1. A causal e f f e c t q == pr(yi,..., y^x^,..., x^) is identifiable in a model
characterised by a graph G if there exists a finite sequence of transformations, each con-
forming to one of the inference rules in Theorem 3, which reduces q into a standard, i.e.
check-free, probability expression involving observed quantities.

Whether the three rules above are sufficient for deriving all identifiable causal effects
remains an open question. However, the task of finding a sequence of transformations, if
such exists, for reducing an arbitrary causal effect expression can be systematised and
executed by efficient algorithms as described by Galles & Pearl (1995). As § 4-4 illustrates,
symbolic derivations using the check notation are much more convenient than algebraic
derivations that aim at eliminating latent variables from standard probability expressions,
as in § 3-2.

4-4. Symbolic derivation of causal effects: An example
We now demonstrate how Rules 1-3 can be used to derive causal effect estimands in

the structure of Fig. 3 above. Figure 4 displays the subgraphs that will be needed for the
derivations that follow.

Task 1: compute pr(z|x). This task can be accomplished in one step, since G satisfies
the applicability condition for Rule 2, namely, X1LZ in Gjc, because the path
X-*- U-> Y<-Z is blocked by the converging arrows at Y, and we can write

pr(z|;x)=pr(z|x). (13)

Task 2: compute pr(y|z). Here we cannot apply Rule 2 to exchange z with z because
Gz contains a back-door path from Zto Y'.Z^-X^-U-f-Y. Naturally, we would like to
block this path by measuring variables, such as X , that reside on that path. This involves
conditioning and summing over all values of -X":

pr(^|z)=^pr(y|x,z)pr(x|z). (14)
x

We now have to deal with two expressions involving z, pr(y\x,z) and pr(x\z). The
latter can be readily computed by applying Rule 3 for action deletion:

pr(x|z)=pr(x) if(ZJL^)^, (15)

since X and Z are d-separated in Gz. Intuitively, manipulating Z should have no effect
on X, because Z is a descendant of X in G. To reduce pr(y\x, z), we consult Rule 2:

pr(y\x,z)=pr(y\x,z) if(Z-U-y|X)^, (16)

noting that X ^-separates Z from Y in Gz. This allows us to write (14) as

pr(y\z) = ̂  pr(y|x, z) pr(x) = £„ pr(j/|x, z), (17)
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which is a special case of the back-door formula (6). The legitimising condition,
(Z-LL Y\ X)a^, offers yet another graphical test for the ignorability condition of Rosenbaum
&Rubin(1983).

Task 3: compute pr(y\x). Writing

pr(y|x)=Spr(^|z,x)pr(z|x), (18)
z

we see that the term pr(z|;x) was reduced in (13) but that no rule can be applied to
eliminate the 'check' symbol from the term pr(y\z,x). However, we can add a 'check'
symbol to this term via Rule 2:

pT(y\z,x)=pr(y\z,x), (19)

since the applicability condition (YALZ\X)(}^, holds true. We can now delete the action
x from pr(y\z, x) using Rule 3, since Y^LX\Z holds in Gjz- Thus, we have

pr(y\z,x)=pr(y\z), (20)

which was calculated in (17). Substituting (17), (20) and (13) back into (18) finally
yields

prW) = ̂  pr(z|x) ̂  pr(y\x', z) pr(x'), (21)
Z X

which is identical to the front-door formula (9).

The reader may verify that all other causal effects, for example, pi(y, z\x) and pr(x, z \ y),
can likewise be derived through the rules of Theorem 3. Note that in all the derivations
the graph G provides both the license for applying the inference rules and the guidance
for choosing the right rule to apply.

4-5. Causal inference by surrogate experiments
Suppose we wish to learn the causal effect of X on Y when pr(y\x) is not identifiable

and, for practical reasons of cost or ethics, we cannot control X by randomised experiment.
The question arises whether pr(y\x) can be identified by randomising a surrogate variable
Z, which is easier to control than X. For example, if we are interested in assessing the
effect of cholesterol levels X on heart disease, Y, a reasonable experiment to conduct
would be to control subjects' diet, Z, rather than exercising direct control over cholesterol
levels in subjects' blood.

Formally, this problem amounts to transforming pr(y\x) into expressions in which only
members of Z carry the check symbol. Using Theorem 3 it can be shown that the following
conditions are sufficient for admitting a surrogate variable Z: (i) X intercepts all directed
paths from Z to Y, and (ii) pr(y\x) is identifiable in Gz. Indeed, if condition (i) holds, we
can write pr(y\x) = pT(y\x, z), because (V-LLZI-Y^. But pr(y\x, z) stands for the causal
effect of-Yon Y in a model governed by Gz which, by condition (ii), is identifiable. Figures
7(e) and 7(h) below illustrate models in which both conditions hold. Translated to our
cholesterol example, these conditions require that there be no direct effect of diet on heart
conditions and no confounding effect between cholesterol levels and heart disease, unless
we can measure an intermediate variable between the two.
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5. GRAPHICAL TESTS OF IDENTIFIABILITY

5-1. General
Figure 5 shows simple diagrams in which pr(y\x) cannot be identified due to the pres-

ence of a bow pattern, i.e. a confounding arc, shown dashed, embracing a causal link
between X and Y. A confounding arc represents the existence in the diagram of a back-
door path that contains only unobserved variables and has no converging arrows. For
example, the path X , Zy, B, Z^ in Fig. 1 can be represented as a confounding arc between
-X" and Zy,. A bow-pattern represents an equation Y = f y ( X , U, Sy), where U is unobserved
and dependent on X. Such an equation does not permit the identification of causal effects
since any portion of the observed dependence between X and Y may always be attributed
to spurious dependencies mediated by U.

The presence of a bow-pattern prevents the identification of pr(y|x) even when it is
found in the context of a larger graph, as in Fig. 5(b). This is in contrast to linear models,
where the addition of an arc to a bow-pattern can render pr(y | x) identifiable. For example,
if Vis related to X via a linear relation Y= bX + U, where U is an unobserved disturbance
possibly correlated with X , then b = 9E(Y\x)/9x is not identifiable. However, adding an
arc Z -> X to the structure, that is, finding a variable Z that is correlated with X but not
with U, would facilitate the computation of E(Y\x) via the instrumental-variable formula
(Bowden & Turkington, 1984, p. 12; Angrist, Imbens & Rubin, 1995):

r,.-9 nrm wz) Ryz (IDb-^E(Y\x)-^^-^. (22)

In nonparametric models, adding an instrumental variable Z to a bow-pattern, see
Fig. 5(b), does not permit the identification of pr(y\x). This is a familiar problem in the
analysis of clinical trials in which treatment assignment, Z, is randomised, hence no link
enters Z, but compliance is imperfect. The confounding arc between X and Y in Fig. 5(b)
represents unmeasurable factors which influence both subjects' choice of treatment, X ,
and response to treatment, Y. In such trials, it is not possible to obtain an unbiased
estimate of the treatment effect pr(.y|x) without making additional assumptions on the
nature of the interactions between compliance and response (Imbens & Angrist, 1994), as
is done, for example, in the approach to instrumental variables developed by Angrist et al.
(1995). While the added arc Z->X permits us to calculate bounds on pr(y\x) (Robins,
1989, § Ig; Manski, 1990), and while the upper and lower bounds may even coincide for

Fig. 5. (a) A bow-pattern: a confounding arc embracing a causal
link X-> Y, thus preventing the identification o!pr(y\x) even in the
presence of an instrumental variable Z, as in (b). (c) A bow-less

graph still prohibiting the identification of pr(y\x).
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certain types of distributions pr(x, y, z) (Baike & Pearl, 1994), there is no way of computing
pr(y\x) for every positive distribution pr(x, y, z), as required by Definition 4.

In general, the addition of arcs to a causal diagram can impede, but never assist, the
identification of causal effects in nonparametric models. This is because such addition
reduces the set of d-separation conditions carried by the diagram and, hence, if a causal
effect derivation fails in the original diagram, it is bound to fail in the augmented diagram
as well. Conversely, any causal effect derivation that succeeds in the augmented diagram,
by a sequence of symbolic transformations, as in Corollary 1, would succeed in the original
diagram.

Our ability to compute pr(y\x) for pairs (x,y) of singleton variables does not ensure
our ability to compute joint distributions, such as pr(j'i, j^l-'O- Figure 5(c), for example,
shows a causal diagram where both pr(zi\x) and pT(z^\£) are computable, but pr(zi, z^\x)
is not. Consequently, we cannot compute pt(y\x). This diagram is the smallest graph that
does not contain a bow-pattern and still presents an uncomputable causal effect.

5-2. Identifying models
Figure 6 shows simple diagrams in which the causal effect of X on Y is identifiable.

Such models are called identifying because their structures communicate a sufficient
number of assumptions to permit the identification of the target quantity pr(y\x). Latent
variables are not shown explicitly in these diagrams; rather, such variables are implicit in
the confounding arcs, shown dashed. Every causal diagram with latent variables can be
converted to an equivalent diagram involving measured variables interconnected by
arrows and confounding arcs. This conversion corresponds to substituting out all latent
variables from the structural equations of (3) and then constructing a new diagram by

(c)
Z

(a) (b)
X X

\ X

(0 (g)
(e)

X -̂--...

\)
Fig. 6. Typical models in which the effect of X on Y is identifiable. Dashed arcs

represent confounding paths, and Z represents observed covariates.
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connecting any two variables Xi and X j by (i) an arrow from X j to -X, whenever Xy appears
in the equation for X,, and (ii) a confounding arc whenever the same e term appears'in
both f i and f j . The result is a diagram in which all unmeasured variables are exogenous
and mutually independent. Several features should be noted froite examining the diagrams
in Fig. 6.

(i) Since the removal of any arc or arrow from a causal diagram can only assist the
identifiability of causal effects, pr(y\x) will still be identified in any edge-subgraph of the
diagrams shown in Fig. 6. Likewise, the introduction of mediating observed variables onto
any edge in a causal graph can assist, but never impede, the identifiability of any causal
effect. Therefore, pr(y\x) will still be identified from any graph obtained by adding
mediating nodes to the diagrams shown in Fig. 6.

(ii) The diagrams in Fig. 6 are maximal, in the sense that the introduction of any
additional arc or arrow onto an existing pair of nodes would render pr(y\x) no longer
identifiable.

(iii) Although most of the diagrams in Fig. 6 contain bow-patterns, none of these pat-
terns emanates from X as is the case in Fig. 7 (a) and (b) below. In general, a necessary
condition for the identifiability ofpr(y\3i) is the absence of a confounding arc between X
and any child of X that is an ancestor of Y.

(iv) Figures 6(a) and (b) contain no back-door paths between X and Y, and thus
represent experimental designs in which there is no confounding bias between the treat-
ment, X , and the response, Y; that is, -X" is strongly ignorable relative to Y (Rosenbaum
& Rubin, 1983); hence, pr(^|x) = pr(y|.x). Likewise, Figs 6(c) and (d) represent designs in
which observed covariates, Z, block every back-door path between X and Y; that is X is
conditionally ignorable given Z (Rosenbaum & Rubin, 1983); hence, pr(y\x) is obtained
by standard adjustment for Z, as in (6):

prW) = E pr(y|x, z) pr(z).
2

(v) For each of the diagrams in Fig. 6, we can readily obtain a formula for pr(y|x),
using symbolic derivations patterned after those in § 4-4. The derivation is often guided
by the graph topology. For example. Fig. 6(f) dictates the following derivation. Writing

pr(y\x)= E pr(y\Zt,Z2,x)pr(Zi,Z2\x),
Z1.Z2

we see that the subgraph containing {-X", Zi, Z;} is identical in structure to that of Fig. 6(e),
with Zi, Z; replacing Z, Y, respectively. Thus, pr(zi, 23 \x) can be obtained from (14) and
(21). Likewise, the term pr(y|zi, 23, x) can be reduced to pr(y\Zi, z^, x) by Rule 2, since
(YALX\Zi, Z^Gx- Thus' we have

PrW)= E P^(y\Zi,Z2,x)pr(zi\x)^pT(z2\Zi,x')pi(x'). (23)
Zl,Z2 •*'

Applying a similar derivation to Fig. 6(g) yields
pr(y|x) = E E E Pi(y\zi, zi, x') pr(x') pr(zi|z2, x) pr^). (24)

Zl Z2 X

Note that the variable Z^ does not appear in the expression above, which means that Z^,
need not be measured if all one wants to learn is the causal effect of X on Y.

(vi) In Figs 6(e), (f) and (g), the identifiability of pi(y\x) is rendered feasible through
observed covariates, Z, that are affected by the treatment X , that is descendants of X.
This stands contrary to the warning, repeated in most of the literature on statistical
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experimentation, to refrain from adjusting for concomitant observations that are affected
by the treatment (Cox, 1958, p. 48; Rosenbaum, 1984; Pratt & Schlaifer, 1988; Wainer,
1989). It is commonly believed that, if a concomitant Z is affected by the treatment, then
it must be excluded from the analysis of the total effect of the treatment (Pratt & Schlaifer,
1988). The reasons given for the exclusion is that the calculation of total effects amounts
to integrating out Z, which is functionally equivalent to omitting Z to begin with.
Figures 6(e), (f) and (g) show cases where one wants to learn the total effects of X and,
still, the measurement of concomitants that are affected by X, for example Z or Zi, is
necessary. However, the adjustment needed for such concomitants is nonstandard, involv-
ing two or more stages of the standard adjustment of (6): see (9), (23) and (24).

(vii) In Figs 6(b), (c) and (f), Y has a parent whose effect on Y is not identifiable, yet
the effect of X on Y is identifiable. This demonstrates that local identifiability is not a
necessary condition for global identifiability. In other words, to identify the effect of X
on Y we need not insist on identifying each and every link along the paths from X to Y.

5-3. Nonidentifying models
Figure 7 presents typical diagrams in which the total effect of X on Y, pi(y\x), is not

identifiable. Noteworthy features of these diagrams are as follows.
(i) All graphs in Fig. 7 contain unblockable back-door paths between X and Y, that is,

paths ending with arrows pointing to X which cannot be blocked by observed nondescend-
ants o f X . The presence of such a path in a graph is, indeed, a necessary test for nonidentifi-
ability. It is not a sufficient test, though, as is demonstrated by Fig. 6(e), in which the
back-door path (dashed) is unblockable, yet pr(y|x) is identifiable.

(ii) A sufficient condition for the nonidentifiability of pr-(y\x) is the existence of a
confounding path between X and any of its children on a path from X to Y, as shown in
Figs 7(b) and (c). A stronger sufficient condition is that the graph contain any of the
patterns shown in Fig. 7 as an edge-subgraph.

y y y

Fig. 7. Typical models in which pT(y\x) is not identifiable.
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(iii) Figure 7(g) demonstrates that local identifiability is not sufficient for global identi-

fiability. For example, we can identify pr(zi|x), pT(z^\x), pr(y|fi) and pr^lf;), but not
pr(3/|x). This is one of the main differences between nonparametric and linear models; in
the latter, all causal effects can be determined from the structural coefficients, each
coefficient representing the causal effect of one variable on its immediate successor.

6. DISCUSSION
The basic limitation of the methods proposed in this paper is that the results must rest

on the causal assumptions shown in the graph, and that these cannot usually be tested in
observational studies. In related papers (Pearl, 1994a, 1995) we show that some of the
assumptions, most notably those associated with instrumental variables, see Fig. 5(b), are
subject to falsification tests. Additionally, considering that any causal inferences from
observational studies must ultimately rely on some kind of causal assumptions, the
methods described in this paper offer an effective language for making those assumptions
precise and explicit, so they can be isolated for deliberation or experimentation and, once
validated, integrated with statistical data.

A second limitation concerns an assumption inherent in identification analysis, namely,
that the sample size is so large that sampling variability may be ignored. The mathematical
derivation of causal-effect estimands should therefore be considered a first step toward
supplementing estimates of these with confidence intervals and significance levels, as in
traditional analysis of controlled experiments. Having nonparametric estimates for causal
effects does not imply that one should refrain from using parametric forms in the estimation
phase of the study. For example, if the assumptions of Gaussian, zero-mean disturbances
and linearity are deemed reasonable, then the estimand in (9) can be replaced by E(Y\ x) =
RxzPzyx^ where f ^ z y . x is the standardised regression coefficient, and the estimation prob-
lem reduces to that of estimating coefficients. More sophisticated estimation techniques
are given by Rubin (1978), Robins (1989, § 17), and Robins et al. (1992, pp. 331-3).

Several extensions of the methods proposed in this paper are possible. First, the analysis
of atomic interventions can be generalised to complex policies in which a set X of treatment
variables is made to respond in a specified way to some set Z of covariates, say through
a functional relationship X = g(Z) or through a stochastic relationship whereby X is set
to x with probability P*(x\z). Pearl (1994b) shows that computing the effect of such
policies is equivalent to computing the expression pr(j/|x, z).

A second extension concerns the use of the intervention calculus of Theorem 3 in
nonrecursive models, that is, in causal diagrams involving directed cycles or feedback
loops. The basic definition of causal effects in terms of 'wiping out' equations from the
model (Definition 2) still carries over to nonrecursive systems (Strotz & Wold, 1960; Sobel,
1990), but then two issues must be addressed. First, the analysis of identification must
ensure the stability of the remaining submodels (Fisher, 1970). Secondly, the ^-separation
criterion for directed acyclic graphs must be extended to cover cyclic graphs as well. The
validity of d-separation has been established for nonrecursive linear models and extended,
using an augmented graph, to any arbitrary set of stable equations (Spirtes, 1995).
However, the computation of causal effect estimands will be harder in cyclic networks,
because symbolic reduction o f p t ( y \ x ) to check-free expressions may require the solution
of nonlinear equations.

Finally, a few comments regarding the notation introduced in this paper. There have
been three approaches to expressing causal assumptions in mathematical form. The most
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common approach in the statistical literature invokes Rubin's model (Rubin, 1974),
in which probability functions are defined over an augmented space of observable and
counterfactual variables. In this model, causal assumptions are expressed as independence
constraints over the augmented probability function, as exemplified by Rosenbaum &
Rubin's (1983) definitions of ignorability conditions. An alternative but related approach,
still using the standard language of probability, is to define augmented probability func-
tions over variables representing hypothetical interventions (Pearl, 1993b).

The language of structural models, which includes path diagrams (Wright, 1921) and
structural equations (Goldberger, 1972) represents a drastic departure from these two
approaches, because it invokes new primitives, such as arrows, disturbance terms, or plain
causal statements, which have no parallels in the language of probability. This language
has been very popular in the social sciences and econometrics, because it closely echoes
statements made in ordinary scientific discourse and thus provides a natural way for
scientists to communicate knowledge and experience, especially in situations involving
many variables.

Statisticians, however, have generally found structural models suspect, because the
empirical content of basic notions in these models appears to escape conventional methods
of explication. For example, analysts have found it hard to conceive of experiments, how-
ever hypothetical, whose outcomes would be constrained by a given structural equation.
Standard probability calculus cannot express the empirical content of the coefficient b in
the structural equation Y= bX + Ey even if one is prepared to assume that gy, an unob-
served quantity, is uncorrelated with X. Nor can any probabilistic meaning be attached
to the analyst's excluding from this equation certain variables that are highly correlated
with X or y. As a consequence, the whole enterprise of structural equation modelling has
become the object of serious controversy and misunderstanding among researchers
(Freedman, 1987; Wermuth, 1992; Whittaker, 1990, p. 302; Cox & Wermuth, 1993).

To a large extent, this history of controversy stems not from faults in the structural
modelling approach but rather from a basic limitation of standard probability theory:
when viewed as a mathematical language, it is too weak to describe the precise experimen-
tal conditions that prevail in a given study. For example, standard probabilistic notation
cannot distinguish between an experiment in which variable X is observed to take on
value x and one in which variable X is set to value x by some external control. The need
for this distinction was recognised by several researchers, most notably Pratt & Schlaifer
(1988) and Cox (1992), but has not led to a more refined and manageable mathematical
notation capable of reflecting this distinction.

The 'check' notation developed in this paper permits one to specify precisely what is
being held constant and what is merely measured in a given study and, using this specifica-
tion, the basic notions of structural models can be given clear empirical interpretation.
For example, the meaning of b in the equation y==&Z+eyis simply 8E(Y\x)/8x, namely,
the rate of change, in x, of the expectation of Y in an experiment where -X" is held at x by
external control. This interpretation holds regardless of whether fiy and X are correlated,
for example, via another equation: X = aY+ ejc. Moreover, the notion of randomisation
need not be invoked. Likewise, the analyst's decision as to which variables should be
included in a given equation is based on a hypothetical controlled experiment: a variable
Z is excluded from the equation for Y if it has no influence on Y when all other variables,
SYZ, are held constant, that is, pt(y\z, Syz) = pr(}'|syz). In other words, variables that are
excluded from the equation Y = bX + Sy are not conditionally independent of Y given
measurements of X , but rather conditionally independent of Y given settings of X. The
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operational meaning of the so-called 'disturbance term', £y, is likewise demystified: £y is
defined as the difference y—£(y|sy); two disturbance terms, Sjc and £y, are correlated if
pr(y\x, Sjry)+ pr(y\x, s;ry); and so on.

The distinctions provided by the 'check' notation clarify the empirical basis of structural
equations and should make causal models more acceptable to empirical researchers.
Moreover, since most scientific knowledge is organised around the operation of 'holding
X fixed', rather than 'conditioning on X\ the notation and calculus developed in this
paper should provide an effective means for scientists to communicate subject-matter
information, and to infer its logical consequences when combined with statistical data.
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APPENDIX
Proof of Theorem 3

(i) Rule 1 follows from the fact that deleting equations from the model in (8) results, again, in
a recursive set of equations in which all s, terms are mutually independent. The d-separation
condition is valid for any recursive model, hence it is valid for the submodel resulting from del-
eting the equations for X. Finally, since the graph characterising this submodel is given by
Gjp, (y-ULZ|X, W)GX implies the conditional independence pr(v|x,z, w)==pr(y|x,w) in the post-
intervention distribution.

(ii) The graph G^i differs from Gs only in lacking the arrows emanating from Z, hence it retains
all the back-door paths from Z to V that can be found in G;?. The condition (YALZ\X, W)o^
ensures that all back-door paths from Z to Y in Gjp are blocked by {X, W}. Under such conditions,
setting Z = z or conditioning on Z = z has the same effect on Y. This can best be seen from the
augmented diagram G's, to which the intervention arcs Fz-*Z were added, where F, stands for
the functions that determine Z in the structural equations (Pearl, 1993b). If all back-door paths
from Fz to y are blocked, the remaining paths from Fz to Y must go through the children of Z,
hence these paths will be blocked by Z. The implication is that Y is independent of Eg given Z,
which means that the observation Z = z cannot be distinguished from the intervention Fz = set(z).

(iii) The following argument was developed by D. Galles. Consider the augmented diagram
G's to which the intervention arcs F,-»Z are added. If (F^ALY\W, X)^, then pr(y|.!c,z, w)=
pr(y\x, w). If (YALZ\X, W)^-^ and (FzX7!w' X)o'x, there must be an unblocked path from a
member Fz- of Fz to Y that passes either through a head-to-tail junction at Z', or a head-to-head
junction at Z'. If there is such a path, let P be the shortest such path. We will show that P will
violate some premise, or there exists a shorter path, either of which leads to a contradiction.

If the junction is head-to-tail, that means that (Y'^Z''\W, X)os but (YlLZ'\W,X)ey^. So,
there must be an unblocked path from Y to Z' that passes through some member Z" of Z(W) in
either a head-to-head or a tail-to-head junction. This is impossible. If the junction is head-to-head,
then some descendant of Z" must be in W for the path to be unblocked, but then Z" would not
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be in Z(W). If the junction is tail-to-head, there are two options: either the path from Z' to Z"
ends in an arrow pointing to Z", or in an arrow pointing away from Z". If it ends in an arrow
pointing away from Z", then there must be a head-to-head junction along the path from Z' to Z".
In that case, for the path to be unblocked, W must be a descendant of Z", but then Z" would not
be in Z(W). If it ends in an arrow pointing to Z", then there must be an unblocked path from Z"
to Y in Gjc that is blocked in G^z^- If this is true, then there is an unblocked path from Fz" to
V that is shorter than P, the shortest path.

If the junction through Z' is head-to-head, then either Z' is in Z[W), in which case that junction
would be blocked, or there is an unblocked path from Z' to Y in Gxzv») ̂ lat ls blocked in Gs.
Above, we proved that this could not occur. So (YJiLZ\X, W)^^, implies (Fz-U-7!w' ^GS' and

thus pt(y\x,£,w)=pi(y\x,w).
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Judea Pearl has provided a general formulation for uncovering, under very explicit assumptions,
what he calls the causal effect on y of'setting' a variable x at a specified level, pr(y\x), as assessed in
a system of dependencies that can be represented by a directed acyclic graph. His Theorem 3 then
provides a powerful computational scheme.

The back-door criterion requires there to be no unobserved 'common cause' for x and y that is
not blocked out by observed variables, that is at least one of the intermediate variables between x
and y or the common cause is to be observed. It is precisely doubt about such assumptions that
makes epidemiologists, for example, wisely in our view, so cautious in distinguishing risk factors
from causal effects. The front-door criterion requires, first, that there be an observed variable z such
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that x affects y only via z. Moreover, an unobserved variable u affecting both x and y must have no
direct effect on z. Situations where this could be assumed with any confidence seem likely to be
exceptional.

We agree with Pearl that in interpreting a regression coefficient, or generalisation thereof, in terms
of the effect on y of an intervention on x, it is crucial to specify what happens to other variables,
observed and unobserved. Which are fixed, which vary essentially as in the data under analysis,
which vary in some other way? If we 'set' diastolic blood pressure, presumably we must, at least for
some purposes, also 'set' systolic blood pressure; and what about a host of biochemical variables
whose causal interrelation with blood pressure is unclear? The difficulties here are related to those
of interpreting structural equations with random terms, difficulties emphasised by Haaveimo many
years ago; we cannot see that Pearl's discussion resolves the matter.

The requirement in the standard discussion of experimental design that concomitant variables be
measured before randomisation applies to their use for improving precision and detecting inter-
action. The use of covariates for detailed exploration of the relation between treatment effects,
intermediate responses and final responses gets less attention than it deserves in the literature on
design of experiments; see, however, the searching discussion in an agronomic context by Fairfield
Smith (1957). Graphical models and their consequences have much to offer here and we welcome
Dr Pearl's contribution on that account.

[Received May 1995]
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The clarity which Pearl's graphical account brings to the problems of describing and manipulat-
ing causal models is greatly to be welcomed. One point which deserves emphasis is the equivalence,
for the purposes Pearl addresses, between the counterfactual functional representation (3), empha-
sised here, and the alternative formulation of Pearl (1993b), involving the incorporation into a
'regular' directed acyclic graph of additional nodes and links directly representing interventions. I
must confess to a strong preference for the latter approach, which in any case is the natural
framework for analysis, as is seen from the Appendix. In particular, although a counterfactual
interpretation is possible, it is inessential: the important point is to represent clearly, by choice of
the appropriate directed acyclic graph, the way in which an intervention set(X = x) disturbs the
system, by specifying which conditional distributions are invariant under such an intervention. As
(5) makes evident, the overall effect of intervention is then entirely determined by the conditional
distributions describing the recursive structure, and in no way depends on the way in which these
might be represented functionally as in (3). This is fortunate, since it is far easier to estimate
conditional distributions than functional relationships.

There are contexts where distributions are not enough, and counterfactual relationships need to
be assessed for valid inference. Perhaps the extension to nonrecursive models mentioned in § 6 is
one. More important is inquiry into the 'causes of effects', rather than the 'effects of causes' con-
sidered here. This arises in questions of legal liability: 'Did Mr A's exposure to radiation in his
workplace cause his child's leukaemia?' Knowing that Mr A was exposed, and the child has
developed leukaemia, the question requires us to assess, counterfactually, what would have hap-
pened to the child had Mr A not been exposed. For this, distributional models are insufficient: a
functional or counterfactual model is essential.
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This raises the question as to how we can use scientific understanding and empirical data to

construct the requisite causal model. By saying little about this specification problem. Pearl is in
danger of being misunderstood to say that it is not important. To build either a distributional or a
counterfactual causal model, we need to assess evidence on how interventions affect the system, and
what remains unchanged. This will typically require a major scientific undertaking. Given this
structure, distributional aspects can, in principle, be estimated from suitable empirical data, if only
these are available, and we can then apply the manipulations described by Pearl to address problems
of the 'effects of causes'. But much more would be needed to address 'causes of effects', since
counterfactual probabilities are, almost by definition, inaccessible to direct empirical study.
Empirical data can be used to place bounds on these (Baike & Pearl, 1994), but these will usually
only be useful when they essentially determine the functions in (3). And, for this, it will be necessary
to conduct studies in which the variables e, are explicitly identified and observed. Thus the whole
mechanism needs to be broken down into essentially deterministic sub-mechanisms, with ran-
domness arising solely from incomplete observation. In most branches of science such a goal is quite
unattainable.

I emphasise the distinction drawn above, between inference about 'effects of causes' and 'causes
of effects', because it might be tempting to try to extend Pearl's analysis, particularly in its formu-
lation (3), to the latter problem. For both problems serious difficulties attend the initial model
specification, but these are many orders of magnitude greater for 'causes of effects', and the
inferences drawn will be very highly sensitive to the specification.

On a different point, I am intrigued by possible connexions between Pearl's clear distinction
between conditioning and intervening, and the prequential framework of Dawid (1984, 1991),
especially as elaborated by Vovk (1993). Suppose A plays a series of games, involving coins, dice,
roulette wheels, etc. At any point, the game chosen may depend on the observed history. We could
model this dependence probabilistically, or leave it unspecified. Now suppose we are informed of
the sequence of games actually played, and want to say something about their outcomes. In a fully
probabilised model, we could condition on the games played, but this would involve unpleasant
analysis, and be sensitive to assumptions. Alternatively, and seemingly very reasonably, we can use
the 'prequential model', which treats the games as having been fixed in advance. This is obtained
from a fully specified model, with its natural temporally defined causal model, by 'setting' the games,
rather than conditioning on them.

[Received May 1995]
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In recent years we have investigated the use of directed graphical models (Spirtes, 1995; Spirtes,
Glymour & Schemes, 1993) in order to analyse predictions about interventions that follow from
causal hypotheses. We therefore welcome Pearl's development and exposition. Our goal here is to
indicate some other virtues of the directed graph approach, and compare it to alternative
formalisations.
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Directed graph models have a dual role, explicitly representing substantive hypotheses about

influence and implicitly representing hypotheses about conditional independence. We can connect
the two dimensions, one causal and the other stochastic, by explicit mathematical axioms. For
example, the causal Markov axiom requires that, in the graph, each variable be independent of its
nondescendants conditional on its set of parents. The formalism allows one to hold causal hypoth-
eses fixed while varying the axiomatic connexions to probabilistic constraints. In this way, one can
prove the correctness of computable conditions for prediction, for the statistical equivalence of
models, and for the possibility or impossibility of asymptotically correct model search, all under
alternative axioms and under a variety of circumstances relevant to causal inference, including the
presence of latent variables, sample selection bias, mixtures of causal structures, feedback, etc. Thus
it is possible to derive Pearl's Theorem 3, and other results in his paper, from the Markov condition
alone, provided one treats a manipulation as conditionalisation on a 'policy' variable appropriately
related to the variable manipulated. Further, two extensions of Theorem 3 follow fairly directly.
First, if the sufficient conditions in Theorem 3 for the equalities of probabilities are violated,
distributions satisfying the Markov condition exist for which the equalities do not hold. Secondly, if
the Markov condition entails all conditional independencies holding in a distribution, an axiom
sometimes called 'faithfulness', the conditions of Theorem 3 are also necessary for the equalities
given there.

The graphical formalism captures many of the essential features common to statistical models
that sometimes accompany causal or constitutive hypotheses, including linear and nonlinear
regression, factor analysis, and both recursive and nonrecursive structural equation models. In
many cases, these models are representable as graphical models with additional distribution
assumptions. In some cases, the graphical formalism provides an alternative parametrisation of
subsets of the distributions associated with a family of models, as, for example, for the graphical
subset of distributions from the log-linear parametrisation of the multinomial family (Bishop,
Fienberg & Holland, 1975; Whittaker, 1990). Directed graphs also offer an explicit representation
of the connexion between causal hypotheses and independence and conditional independence
hypotheses in experimental design, and, under various axioms, permit the mathematical investi-
gation of relations between experimental and nonexperimental designs.

Rubin (1974), Rosenbaum & Rubin (1983), Holland (1988) and Pratt & Schlaifer (1988) have
provided an important alternative treatment of the prediction of the results of interventions from
partial causal knowledge. As Pearl notes, their approach, which involves conditional independence
of measured and 'counterfactual' variables, gives results in agreement with the directed graphical
approach under an assumption they refer to as 'strong ignorability'. For example, a result given
without proof by Pratt & Schlaifer provides a 'sufficient and almost necessary' condition for the
equality of the probability of Y when X is manipulated, and the conditional probability of the coun-
terfactual of Y on X. A direct analogue of their claim of sufficiency is provable from the Markov
condition and necessity follows from the faithfulness condition, which is true with probability 1 for
natural measures on linear and multinomial parameters. This offers a reasonable reconstruction of
what they may have meant by 'almost necessary'. The Rubin approach to prediction has some
advantages over directed graph approaches, for example in the representation of circumstances in
which features of units influence other units. The disadvantages of the framework stem from the
necessity of formulating hypotheses explicitly in terms of the conditional independence of actual
and counterfactual variables rather than in terms of variables directly influencing others. In our
experience, even experts have difficulty reliably judging the conditional independence relations that
do or do not follow from assumptions. For example, we have heard many statistically trained people
deny, before doing the calculation, that the normality and independence o f X , Y and e, coupled with
the linear equation Z = aX +bY+ e, entail that X and Y are dependent conditional on Z. For the
same reason, the Rubin framework may make more difficult mathematical proofs of results about
invariance, equivalence, search, etc.

There are at least two other alternative approaches to the graphical formalism: Robins' (1986)
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G-computation algorithm for calculating the effects of interventions under causal hypotheses
expressed as event trees, an extension of the Rubin approach; and Glenn Shafer's (1996) more recent
and somewhat different tree structure approach. Where both are applicable, they seem to give the
same results as do procedures Pearl describes for computing on directed graphs. An advantage of
the directed graph formalism is the naturalness of the representation of influence. Questions regard-
ing the relative power of these alternative approaches are as follows.

(i) Is the graphical approach applicable to cases where the alternatives are not, particularly
when there are structures in which it is not assumed that every variable either influences or
is influenced by every other?

(ii) Is the graphical approach faster in some instances, because the directed graphs can encode
independencies in their structure while event trees cannot?

(iii) Can the alternatives, like the graphical procedure, be extended to cases in which the distri-
bution forced on the manipulated variable is continuous?

As far as we can tell, none of the approaches to date has been able to cope with causal language
associated with explanatory variables in proportional hazards models, where the nonlinear structure
does not lend itself naturally to conditional independence representations.

^Received April 1995]
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Causal inference with nonexperimental data seems unjustifiable to many statisticians. For others,
the trick can be done almost on a routine basis, with the help of regression and its allied techniques,
like path analysis or simultaneous-equation models. However, typical regression studies are prob-
lematic, because inferences are conditional on unvalidated, even unarticulated, assumptions: for
discussion and reviews of the literature, see Freedman (1991,1995).

Deriving causation from association by regression depends on stochastic assumptions of the
familiar kind, and on less familiar causal assumptions. Building on earlier work by Holland (1988)
and Robins (1989) among others, Pearl develops a graphical language in which the causal assump-
tions are relatively easy to state. His formulation is both natural and interesting. It captures
reasonably well one intuition behind regression analysis: causal inferences can be drawn from
associational data if you are observing the results of a controlled experiment run by Nature, and the
causal ordering of the variables is known. When these assumptions hold, there is identifiability
theory that gives an intriguing description of permissible inferences.

Following Holland (1988), I state the causal assumptions along with statistical assumptions that,
taken together, justify inference in conventional path models. There is an observational study with
n subjects, i = 1,..., n. The data will be analysed by regression. There are three measured variables,
X, Y, Z. The path diagram has arrows from X to Y; then, from X and Y to Z. The diagram is
interpreted as a set of assumptions about causal structure: the data result from coupling together
two thought experiments, as specified below. Statistical analysis proceeds from the assumption that
subjects are independent and identically distributed in certain respects. That is the basis for estimat-
ing regression functions, an issue Pearl does not address; customary tests of significance would
follow too.

Random variables are represented in the usual way on a sample space 0. With notation like
Holland's, Y,^(m) represents the V-value for subject i at co e ft, if you set the X-value to x. The
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thought experiments are governed by the following assumptions (1) and (2):

Y^{(o)=f(x)+o,(a)), (1)
Z^(co)=g(x,y)+e,((o). (2)

The same / and g apply to all subjects. Additive disturbance terms help the regression functions /
and g to be estimable, but more is required. Typically, linearity is assumed:

f(x)=a+bx, g(x, y) = c + dx + ey. (3)
The <5's are taken to be independent and identically distributed with mean 0 and finite variance, as
are the e's; furthermore, the 6's are taken as independent of the e's.

The experiments are coupled together to produce observables, as follows. Nature assigns X-values
to the subjects at random, independently of the 5's and e's. Finally, the data on subject i are
modelled as

X,(<u), W = f{X,(co)} + S,(a), Z,(co) - g{X,(co), Y,(co)} + e,(<u).

Linearity of regression functions and normality of errors would be critical for small data sets; with
more data, less is needed. Conditioning on the {X,} is a popular option.

The critical assumption is: if you intervene to set the value x for X on subject i in the first
'experiment', the Y- value responds according to (1) above: the disturbance i5i((u) is unaffected by
intervention. If you set x and y as the values for X and Y on subject i in the second experiment, the
Z-value responds according to (2) above; again, e,((u) is unaffected. In particular, the assignment by
Nature of subjects to levels of X does not affect the 5's or e's. Given this structure, the parameters
a, b, c, d, e in (1)-(3) above can be estimated from nonexperimental data and used to predict the
results of interventions: for instance, setting X to x and Y to y should make Z around c + dx + ey.

Pearl says in § 6 that he gives a 'clear empirical interpretation' and 'operational meaning' to
causal assumptions, and clarifies their 'empirical basis'. There are two ways to read this:

(i) assumptions that justify causal inference from regression have been stated quite sharply;
(ii) feasible methods have been provided for validating these assumptions, at least in certain

examples.
The first assertion seems right, indeed, that is one of the main contributions of the paper. The second
reading, which is probably not the intended one, would be a considerable over-statement. Invariance
of errors under hypothetical interventions is a tall order. How can we test that Z,(<u) would have
been g(x, y) + £,(<u) if only X,(co) had been set to x and Y,(a)) to y7 What about the stochastic
assumptions on 6 and e? In the typical observational study, there is no manipulation of variables
and precious little sampling. Validation of causal models remains an unresolved problem.

Pearl's framework is more general than equations (!)-(3) above, and the results are more subtle.
Still, the causal laws, i.e. the analogues of the equations, are assumed rather than inferred from the
data. One technical complication should be noted: in Pearl's equation (3), distributions are identifi-
able but the 'link functions' /, are not. The focus is qualitative rather than quantitative, so weaker
invariance assumptions may suffice. More discussion of this point would be welcome.

Concomitants. Concomitant variables pose further difficulties (Dawid, 1979). Thus, in equations
(1)-(3) above, suppose X is a dummy variable for sex, Y is education and Z is income. Some would
consider a counter-factual interpretation: How much would Harriet have made if she had been
Harry and gone to college? Others would view X as not manipulable, even in principle. Setting a
subject's sex to M, even in a thought experiment, is then beside the point. Robins (1986, 1987a)
offers another way to model concomitants.

Conclusions. Pearl has developed mathematical language in which causal assumptions can be
discussed. The gain in clarity is appreciable. The next step must be validation: to make real progress,
those assumptions have to be tested.

^Received April 1995]
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Judea Pearl presents a framework for deriving causal estimands using graphical models rep-
resenting statements of conditional independence in models with independent and identically dis-
tributed random variables, and a 'set' notation with associated rules to reflect causal manipulations.
This is an innovative contribution as it formalises the use of path-analysis diagrams for causal
inference, traditionally popular in many fields including econometrics, e.g. Goldberger (1973).
Because Pearl's technically precise framework separates issues of identification and functional form,
often inextricably linked in the structural equations of literature, this paper should serve to make
this extensive literature more accessible to statisticians and reduce existing confusion between
statisticians and econometricians: see, e.g., the Discussion ofWermuth(1992).

Our discussion, however, focuses on this framework as an alternative to the practice in statistics,
typically based on the potential outcomes framework for causal effects, or Rubin causal model
(Holland, 1986; Rubin, 1974,1978), which itself is an extension ofNeyman's (1923) formulation for
randomised experiments as discussed by Rubin (1990). The success of these frameworks in defining
causal estimands should be measured by their applicability and ease of formulating and assessing
critical assumptions.

Much important subject-matter information is not conveniently represented by conditional inde-
pendence in models with independent and identically distributed random variables. Suppose that,
when a person's health status is 'good', there is no effect of a treatment on a final health outcome,
but, when a person's health status is 'sick', there is an effect of this treatment, so there is dependence
of final health status on treatment received conditional on initial health status. Although the
available information is clearly relevant for the analysis, its incorporation, although immediate
using potential outcomes, is not straightforward using graphical models.

Next, consider a two-treatment randomised experiment with imperfect compliance, so that the
received treatment is, in general, not ignorable despite the ignorability of the assigned treatment.
Assuming that any effect of the assigned treatment on the outcome works through the received
treatment, one has the instrumental variables example in Fig. 5(b), which excludes a direct effect of
Z on V, given X. In other work ('Bayesian inference for causal effects in randomized experiments
with noncompliance'. Working Paper 1976, Harvard Institute of Economic Research, Harvard
University) we have discussed important distinctions between different versions of this exclusion
restriction, which can be stated using potential outcomes but are blurred in graphical models. In
that paper and related work (Imbens & Angrist, 1994; Angrist, Imbens & Rubin, 1995), we also
stress the importance of the 'monotonicity assumption', requiring the absence of units taking the
treatment if assigned to control and not taking it if assigned to treatment. This allows identification
of the average effect of the treatment for the subpopulation of compilers without assuming a
common, additive, treatment effect for all units. Yet the monotonicity assumption is difficult to
represent in a graphical model without expanding it beyond the representation in Fig. 5(b).

Complications also arise in Pearl's framework when attempting to represent standard experimen-
tal designs (Cochran & Cox, 1957) having clustering of units in nests, split-plot randomisations,
carryover treatments, etc.

A related reason for preferring the Rubin causal model is its explicit distinction between assign-
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ment mechanisms, which are often to some extent under the investigator's control even in obser-
vational studies, and scientific models underlying the data, which are not. Consider the discussion
of the equivalence of the Rosenbaum-Rubin condition of strong ignorability of the assignment
mechanism and the back-door criterion. In general, the concept of ignorable assignment (Rubin,
1976, 1978) does not require the conditional independence used in Pearl's analysis. For example, a
sequential assignment mechanism with future treatment assignments dependent on observed out-
comes of previous units is ignorable, but such an assignment mechanism apparently requires a very
large graphical model with all units defined as separate nodes, thereby making Pearl's results, which
require 'an arbitrary large sample randomly drawn from the joint distribution', irrelevant.

Finally, consider the smoking-tar-cancer example in Figs 3, 4 and 6(e). Pearl claims that his
analysis reveals that one can learn the effect of one's smoking on one's lung cancer from obser-
vational data, the only provision being that 'smoking does not have any direct effect on lung cancer
except that mediated by tar deposits', i.e. no direct arrow from X to Y. But this claim is misleading
as there are many other provisions hidden by the lack of an arrow between X and Z. For example,
suppose that smokers are more likely to live in cities, and therefore more likely to be exposed to tar
through pollution, or that smokers are more likely to interact with smokers, and are therefore
exposed to more second-hand smoke than nonsmokers, etc. In this example the role of 'tar deposits'
as an outcome is confounded with its role as a cause whose assignment may partially depend on
previous treatments and outcomes, as can occur in serial experiments (Herzberg & Cox, 1969).

Our overall view of Pearl's framework is summarised by Hill's concluding sentence (1971, p. 296).
'Technical skills, like fire, can be an admirable servant and a dangerous master'. We feel that Pearl's
methods, although formidable tools for manipulating directed acyclical graphs, can easily lull the
researcher into a false sense of confidence in the resulting causal conclusions. Consequently, until
we see convincing applications of Pearl's approach to substantive questions, we remain somewhat
sceptical about its general applicability as a conceptual framework for causal inference in practice.

[Received April 1995]
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1. INTRODUCTION
Pearl has carried out two tasks. In the first, in § 2, using some results of Spirtes, Glymour &

Schemes (1993), he showed that a nonparametric structural equations model depicted as a directed
acyclic graph G implies that the causal effect of any variables -Y = G on Y^G is a functional of
(i) the distribution function PQ of the variables in G, and (ii) the partial ordering of these variables
induced by the directed graph. This functional is the ^-computation algorithm functional, hereafter
g-functional, of Robins (1986, p. 1423). In the second, in §§ 3-5, only a subset of the variables in
G is observed. Given known conditional independence restrictions on PQ encoded as missing arrows
on G, Pearl develops elegant graphical inference rules for determining identifiability of the
^-functional from the law of the observed subset. Task 2 requires no reference to structural models
or to causality. A potential problem with Pearl's formulation is that his structural model implies
that all variables in G, including concomitants such as age or sex, are potentially manipulable.
Below I describe a less restrictive model that avoids this problem but, when true, still implies that
the g-functional equals the effect of the treatments X of interest on Y. This critique of Pearl's
structural model is unconnected with his graphical inference rules, which were his main focus and
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are remarkable and path-breaking, going far beyond my own and others' results (Robins, 1986,
§ 8, Appendix F).

2. TASK 1
2-1. General

Robins (1986,1987b) proposed a set of counterfactual causal models based on event trees, called
causally interpreted structured tree graphs, hereafter causal graphs, that includes Pearl's non-
parametric structural equations model as a special case. These models extended Rubin's (1978)
'time-independent treatment' model to studies with direct and indirect effects and time-varying
treatments, concomitants, and outcomes. In this section, I describe some of these models.

2-2. A causal model
Let V, = {Vt,,..., V^i} denote a set of temporally-ordered discrete random variables observed

on the ith study subject, i = 1,..., n. Let X,--= {-Xi,,..., X^,} £ T^ be temporally-ordered, potentially
manipulable, treatment variables of interest. The effect of X, on outcomes Y, £ ^\-X"i is defined to
be pr {Y,(x) = y}, where the counterfactual random variable Y,(x) denotes a subject's y value had
all n subjects followed the generalised treatment regime g = x--= {x^,..., x^}. Robins (1986) wrote
pr{Y{(x) = y} as pt(y\g = x). Pearl substitutes pt(y\x). We regard the

{Vi, Yi(x); x e support of X,} (i = 1,...,«)
as independent and identically distributed, and henceforth suppress the i subscript.

This formal set-up can accommodate a superpopulation model with deterministic outcomes and
counterfactuals as did that of Rubin (1978). Suppose we regard the n study subjects as randomly
sampled without replacement from a large superpopulation of N subjects, and our interest is in
the causal effect of X onY in the superpopulation. Then, even if for each superpopulation member,
V and Y(x) were deterministic nonrandom quantities, nonetheless, in the limit as N->co and
n/N -»0, we can model the data on the n study subjects as independent and identically distributed
draws from the empirical distribution of the superpopulation.

We now show that pr(y\g=x) is identified from the law of V if each component X^ of X is
assigned at random given the past. Let L^ be the variables occurring between -X^-i and X^, with
Li being the variables preceding Xi. Write L^=(L^,..., L^), L'=L^ and X^--=(Xi,..., X^), and
define -Xo, Lo and Vy to be identically 0. In considering Task 11 have proved the following (Robins,
1987b, Theorem AD.l and its corollary).

THEOREM. I f , in Dawid's (1979) conditional independence notation, for all k,
Y(x)^LX,\L,,X,.,=x,,,, (1)

X=x=s>Y(x)=Y, (2)

pr(Xt=xJXt-i=^_i,LJ+0, (3)

then
pr(y\g=x)=h(y\g=x), (4)

where
_ s. _

"(y\g=x)--^pT(y\ls,Xi) f[ pr(^|;it-i,JCk-i)
IK *=i

is the g-functional for x on y based on covariates L. If X is univariate,
h(y\g=x)=^pr(y\x,l^)pr{l^)

'i
(Rosenbaum & Rubin, 1983).
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Following Robins (1987b, p. 327), I shall refer to V as a R(Y,g=x) causal graph whenever (1)

and (2) above hold, where R(Y, g=x) stands for 'randomised with respect to Y for treatment g =
x given covariates L'. Robins et al. (1992) called (1) the assumption of no unmeasured confounders
given L. Under the aforementioned superpopulation model, (1) will hold in a true sequential
randomised trial with X randomised and ^-specific randomisation probabilities that depend only
on the past (£», -^-1). In observational studies, (1) is untestable; investigators can at best hope to
identify covariates L so that (1) is approximately true. Equation (2) is Rubin's (1978) stable unit
treatment value assumption: it says Y and Y(x) are equal for subjects with X = x, irrespective of
other subjects' X values. Robins (1993) shows that

^\I(X=x)I(Y=y)/ ft pr(x»|x,_i,L,)},
I / k=l )

h(y\g=x)=E\I(X=x)I(Y=y) [I pr(x»|x,_i,ZJ
I / k=l )

whose denominator clarifies the need for (3). See also Rosenbaum & Rubin (1983).

2-3. Relationship with Pearl's work
Suppose we represent our ordered variables V= {V^,..., V^} by a directed acyclic graph G that

has no missing arrows, so that Vm-i'-=(Vi,... ,Vm-i)a.Te V^s parents. Then Pearl's nonparametric
structural equation model becomes

»m=/J^,-i,eJ, (5)
for /„(.,.) unrestricted (m = 1,..., M), and

£„ (Km^M) (6)

are jointly independent.
Pearl's assumption of missing arrows on G is (i) more restrictive than (5), and (ii) only relevant

when faced with unobserved variables, as in Task 2. We now establish the equivalence between
model (5)-(6) above and a particular causal graph, the finest fully randomised causal graph. For
any X (= V, x e support X , let the counterfactual random variable V^(x) denote the value of V^ had
X been manipulated to x.

DEFINITIONS (Robins, 1986, pp. 1421-2). (a) We have that V is a finest causal graph i f ( i ) all one-
step ahead counterfactuals l'm(Um-i) exist, and (ii) V and the counter/actuals V^(x) for any X c. V
are obtained by recursive substitution from the V^(Vm-i), for example

v,=v,{v,, v,(v,)}, v,(v,)= v,{v,, y^i)}.
(b) A finest causal graph V is a finest fully randomised causal graph i f , for all m,

{T-^(7,-i, Dj,..., VM(^-I, "„,. • . , fM-i)}^J ̂ ,-r (7)

For V to be a finest causal graph, all variables V^ e V must be manipulable. Equation (7) above
essentially says that each V^, was assigned at random given the past T^,-i. In particular, (7) would
hold in a sequential randomised trial in which all variables in V, not just the treatments X of
interest, are randomly assigned given the past.

LEMMA 1. (i) Equation (5) above is equivalent to V's being a finest causal graph, and (ii) equations
(5) and (6) above are jointly equivalent to V's being a finest fully randomised causal graph.

Proof of Lemma. I! (5) holds, define T^(^-i) to be /J^-i,eJ. Conversely, given ^(u^-i),
define £„ = {^(Um-i): u^-i € support of Y^_i} and set/Ju,,_i, ej = T^(^-i). Part (ii) follows by
some probability calculations. D

The statement T a finest fully randomised causal graph' implies that V is a R(Y,g= x) causal
graph, and thus, given (3) above, that pt(y\g= x) == h(y\g = x). The converse is false. For example,
'V a R(Y, g=x) causal graph' only requires that the treatments X of interest be manipulable.
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3. TASK 2

Given (1)-(3) above, to obtain pr(y\g=x), we must compute h(y\g=x). However, often data
cannot be collected on a subset of the covariates L<='V believed sufficient to make (1) above
approximately true. Given a set of correct conditional independence restrictions on the law of V,
encoded as missing arrows on a directed acyclic graph G over V, Pearl provides graphical inference
rules for determining whether h(y\g=x) is identified from the observed data. Pearl's graphical
inference rules are correct without reference to counterfactuals or causality when we define
pr(}/|x,z, w) to be

h{y, w\g = (x, z)}/h{w\g = (x, z)}.
Unfortunately, since covariates are missing, an investigator must rely on often shaky subject matter
beliefs to guide link-deletions. Pearl & Verma (1991) appear to argue, although I would not fully
agree, that beliefs about causal associations are generally sharper and more accurate than those
about noncausal associations. If so, it would be advantageous to have all potential links on G
represent direct causal effects, which will be the case only if V is a finest fully randomised causal
graph and would justify Pearl's focus on nonparametric structural equation models.

^Received April 1995]

Discussion of 'Causal diagrams for empirical research' by J. Pearl

BY PAUL R. ROSENBAUM
Department of Statistics, University of Pennsylvania, 3000 Steinberg Hall-Dietrich Hall,

Philadelphia, Pennsylvania 19104-6302, U.S.A.

1. SUCCESSFUL AND UNSUCCESSFUL CAUSAL INFERENCE: SOME EXAMPLES

Example 1. Cameron & Pauling (1976) gave vitamin C to patients with advanced cancers and
compared survival to untreated controls. They wrote: 'Even though no formal process of randomis-
ation was carried out . . . we believe that [treated and control groups] come close to representing
random subpopulations', expressing their belief in the following diagram.

(Treatment) -»• (Survival)
They concluded: '... there is strong evidence that treatment .. . [with vitamin C] ... increases
survival time'. Moertel et al. (1985) repeated this in a randomised trial, but found no evidence that
vitamin C prolongs survival. Today, few believe vitamin C is effective against cancer. The studies
have the same path diagram, but only the randomised trial gave the correct inference.

Example 2. The Coronary Drug Project compared lipid-lowering drugs, including clofibrate, to
placebo in a randomised trial (May et al., 1981). We focus on the comparison of placebo and
clofibrate. A drug can work only if consumed, yielding the following diagram.

(Assigned clofibrate or placebo) -> (Amount of clofibrate consumed) ->( Survival)
In the clofibrate group, the Project found 15% mortality at five years among good compliers who
took their assigned clofibrate as opposed to 25% mortality among poor compliers who did not
take their assigned clofibrate. Theorem 2 suggests clofibrate prolongs survival. Alas, it does not.
In the placebo group, the mortality rates among good compilers who took their placebo was 15%
compared to 28% mortality among poor compliers who did not take their placebo. Total mortality
was similar in the entire clofibrate and placebo groups. Again, the nonrandomised comparison of
level of clofibrate gave the wrong inference while the randomised comparison of entire clofibrate
and placebo groups gave the correct inference.
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Definition 2 is not a definition of causal effect, but rather an enormous web of assumptions. It

asserts that a certain mathematical operation, namely this wiping out of equations and fixing of
variables, predicts a certain physical reality, namely how changes in treatments, programmes and
policies will change outcomes. No basis is given for believing that physical reality behaves this
way. The examples above suggest it does not. See also Box (1966).

2. WARRANTED INFERENCES

We do not say an inference is justified because it depends upon assumptions. We distinguish
warranted and unwarranted inferences. To say, as Fisher (1935) said, that randomisation is the
'reasoned basis for inference' is to say it warrants a particular causal inference; a warrant is a
reasoned basis. An assumption is not a basis for inference unless the assumption is warranted.
Path diagrams allow one to make a large number of complex, interconnected assumptions, but
this is not desirable, because it is much more difficult to ensure that the assumptions are warranted.

Inferences about treatment effects can sometimes be warranted by the following methods.
(i) Care in research design, for instance random assignment of treatments, may provide a

warrant.
(ii) Insensitivity to substantial violations of assumptions may provide a warrant. For instance,

the conclusion that heavy smoking causes lung cancer is highly insensitive to the assumption
that smokers are comparable to nonsmokers (Cornfield et al., 1959; Rosenbaum, 1993,1995).

(iii) Confirmation of numerous, elaborate predictions of a simple causal theory may at times
provide a warrant. Here is Fisher's advice, as discussed by Cochran (1965, § 5):

About 20 years ago, when asked in a meeting what can be done in observational studies
to clarify the step from association to causation. Sir Ronald Fisher replied: 'Make your
theories elaborate.' The reply puzzled me at first, since by Occam's razor, the advice usually
given is to make theories as simple as is consistent with known data. What Sir Ronald
meant, as subsequent discussion showed, was that when constructing a causal hypothesis
one should envisage as many different consequences of its truth as possible, and plan
observational studies to discover whether each of these is found to hold.

This advice is quite the opposite of finding the conditions that just barely identify a path
model. Fisher is calling for a simple theory that makes extensive, elaborate predictions each
of which can be contrasted with observable data to check the theory, that is an extremely
overidentified model. See Rosenbaum (1984a, 1995) for related theory and practical examples.

[Received May 1995]

Discussion of 'Causal diagrams for empirical research' by J. Pearl

BY GLENN SHAFER
Faculty of Management, Rutgers University, Newark, New Jersey 07102, U.S.A.

This is an innovative and useful paper. It establishes a framework in which both probability and
causality have a place, and it uses this framework to unify and extend methods of causal inference
developed in several branches of statistics.

Pearl's framework is the graphical model. He brings probability and causality together by giving
this model two roles: (i) it expresses a joint probability distribution for a set of variables, and (ii) it
tells how interventions can change these probabilities. I find this informative and attractive. When
it fits a problem, it provides a clear understanding of causality. But how often does it fit? People
tend to become uncomfortable as soon as we look at almost any extensive example. Even in Pearl's
own examples, it is hard to agree that each causal connection is equivalent to an opportunity for
intervention, or that the simplest interventions are those that remove a particular variable from the
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mechanism. If we try to do something about the birds, it will surely fall short of fixing their number
at a desired level, and it may have other effects on the yield of the crop.

My inability to overcome objections of these kinds when I defend causal claims made for graphi-
cal models has led me to undertake a more fundamental analysis of causality in terms of probability
trees. This analysis, which will be reported in a forthcoming book (Shafer, 1996), opens the way to
generalising Pearl's ideas beyond their over-reliance on the idea of intervention.

A probability tree is causal if it is nature's tree i.e. if it shows how things happen step by step in
nature. Causes are represented by steps in the tree. These steps determine the overall outcome, i.e.
the path nature takes through the tree, and hence every variable. Some steps identify opportunities
for intervention, but others simply represent how the world works. Variables are not causes, but
they can be causally related. For example, two variables are independent in the probability-tree
sense if they have no common causes: there is no step in the tree where both their probability
distributions change. This implies that the variables are independent in the usual sense at every
point in the tree. Similarly, two numerical variables are uncorrelated in the probability-tree sense if
there is no step where both their expected values change, and this implies that they are uncorrelated
in the usual sense at every point in the tree.

Pearl's graphical-model assumptions, explicit and implicit, correspond to the following state-
ments about nature's probability tree: (i)ifi<7, then X, is settled before X j , and (ii) at any point in
the tree where X,_i is just settled, the probability ofX, eventually coming out equal to x, is p(x,\pa,),
where pa, is the value of X,'s parents. These two conditions imply that Pearl's conditional indepen-
dence relations, that each variable is independent of its nondescendants given its parents, hold at
every point in the tree.

What is Pearl's p(y | x,) in probability-tree terms? It is an average of probabilities: we look at each
point in the tree where X,-i has just been settled, find the point following where X , is settled to have
the value x,, and find the probability at that point that y will come out equal to y. Then we average
these probabilities of y, weighting each by the probability of the point where J^,_i was settled. This
average tells us something about how steps in the direction of x,, after X,_i is settled, tend to
promote y. It has causal meaning, for it describes how the world works, but it does not depend how
well steps between X;_i and x, can be targeted by human intervention.

This idea of using averages to summarise the causal effect of steps in a probability tree does not
depend on Pearl's graphical-model assumptions. What is needed, in general, is some way of describ-
ing a cut across nature's tree, in addition to the event or variable that identifies the following steps
whose effect we want to average. In observational studies, the cut is often specified by choosing
concomitants that are just settled there. In randomised studies, it can be specified by the conditions
of the experiment, without explicit measurement.

Pearl's ideas can also be used in graphical models that make weaker assumptions about nature's
tree. In particular, they can be used in path models, which represent only changes in expected values,
not all changes in probabilities. These models are rather more flexible than Pearl's graphical models,
contrary to the suggestion conveyed by Pearl's use of the term 'nonparametric'.

^Received April 1995]

Discussion of 'Causal diagrams for empirical research9 by J. Pearl

BY MICHAEL E. SOBEL
Department of Sociology, University of Arizona, Tucson, Arizona 85721, U.S.A.

1. INTRODUCTION
Pearl takes the view, widely held in the social and behavioural sciences, that structural equation

models are useful for estimating effects that correspond to those obtained if a randomised or
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conditionally randomised experiment were conducted. Typically, linear models are used, and par-
ameters or functions of these interpreted as unit or average effects, direct or total. A few workers
argue if endogenous variables are viewed as causes, these should be treated as exogenous, and a
new hypothetical system, absent equations for these variables, considered. As the effects are defined
in the new system, assumptions about the relationship between parameters of the old pre-
intervention and new post-intervention systems are needed (Sobel, 1990).

Pearl neatly extends this argument. His equation (5) specifies the post-intervention probabilities
pr(xi,..., x,, | xQ in terms of the model based pre-intervention probabilities. The effects of X, on
X, are comparisons of pr(x^|x,') with pr(jc,|x*), where x[ and x* are distinct values of X,. If
(-YI, ..., X,) is observed, pr(x^|x,') is identified; Pearl considers the nontrivial case, giving sufficient
conditions for identifiability.

Pearl suggests his results are equivalent to those in Rubin's model for causal inference. For
example, he claims that the back-door criterion is 'equivalent to the ignorability condition of
Rosenbaum & Rubin (1983)'; if so, it should follow that

pr(x^|x,',w)=pr(xjw),

the probability if all units in the subpopulation W=w take value x; of the cause. Thus,

pr(x^|x,')=pr(x^).

But strong ignorability, given covariates W, implies

pr(x^.|x,',w)=pr(x^|w);

the back-door criterion implies pr(x^|x,', w) = pr(x^|x,', w). Neither condition implies the other; the
two are only equivalent if

pr(xjw)=pr(x,|x,',w).

The assumption

pr(xjw)=pr(xj.|x;,w),

and others like these, is the basis on which the paper rests, and for the equivalence claims made;
such quantities need not be identical.

Suppose ignorability and the back-door criterion hold above. Then

pr(xjw) = pr(x^.|x;, w);

equality is now a conclusion. If W is observed, ignorability implies

pr(xjw)=pr(x^.|x;,w),

which can be computed directly. The problematic case in observational studies occurs when some
covariates are unobserved. But supplementing ignorability with assumptions like those in this paper
helps to identify effects in Rubin's model in such cases. To simplify, only atomic interventions will
be considered and the outcome treated as a scalar quantity. Only the back-door criterion is con-
sidered, but Theorem 2, for example, could also be handled.

2. IGNORABILITY AND THE BACK-DOOR CRITERION

For an atomic intervention, rule 2, which supports the back-door criterion, is

pr(Xj.|x;,w)=pr(x^|x,',w) (1)

if (Xj^LXi\W]o^ . Assume, following Pearl's discussion of the back-door criterion, that W is
observed. Ostensibly, (1) looks similar to the assumption of strongly ignorable treatment assign-
ment: Xj^ALX,\ W for all values x, of Z,, 0 < pr(X, = x,| W= w) for all (x., w).
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LEMMA 1. Equality in (1) holds if PA, ̂  W,

X^(PA,\W)\(X,, W). (2)

Proof. This follows from

. , .,. v pr(Xj| w, x,', pa,\w) pr(w, x;, pa,\w)
^'"'•^i——————pr^——————• (3)

D

LEMMA 2. JfPA, ̂  W, the independence conditions in ( I ) and (2) are equivalent.

Proof. Suppose (2) holds in G. In G^, any path p from -X", to X j has the form X,<-M ... -*Xj,
where M e PA,. If M e PA\W, the subpath M ... -»Xj in G is blocked by W, hence p is blocked
by W in Gx,. Otherwise, p is a subpath of I -> Z, <- M. . . -* X j in G, I e PA,\ W, which is blocked by
W as it has arrows converging to X,, implying p is blocked by W in G^. Conversely, in G any
path p* from ; to Z, has form (a) 1... -rX,-r... --X,, (b) 1 . . . ->-Z,<-M ... --Z,, or (c) 1... -rXp
where X, does not appear. Here X, blocks type (a) paths. Type (b) paths contain subpaths
X, <- M ... -> X j ; by hypothesis, W blocks these in G^, implying W blocks p* in G. Type (c)
paths are subpaths of -X"; •<-;.. . ->Xj; by hypothesis, W blocks these in G^, implying W blocks
p* in G. D

THEOREM. If treatment assignment is strongly ignorable, given (W, PA,\W), where PA,\W^ 0 is
unobserved, (2) above holds, and no node in W is a descendant of X,, pr(x^,) is identified, and
P^i^^P^x',).

Proof. We have

pr(x^.| x',, w, pa,\w) = pr(x,^ | w, pa,\w), (4)

pt(Xj\x',, w, pa,\w) = pr(xj.|x;, w), (5)

where (4) follows from strong ignorability and (5) from (2); jointly, (4) and (5) imply

Pr(^; I w, pa,\w) == pr(x,^ | w) = pr(x,| x,', w). (6)

Since no node in W is a descendant of X,,

P^].) = £ P^jW'w) Pr(w) = pr(Xj|x,'). D
W

^Received May 1995]

Rejoinder to Discussions of 'Causal diagrams for empirical research9

BY JUDEA PEARL
Cognitive Systems Laboratory, Computer Science Department, University of California,

Los Angeles, California 90024, U.S.A.

1. GENERAL
The subject of causality seems inevitably to provoke controversy among scientists, perhaps

because causality is so essential to our thought and yet so seldom discussed in the technical
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literature. I am pleased, therefore, to have the opportunity to respond to a range of concerns about
the usefulness of the ideas developed in my paper.

2. GRAPHS, STRUCTURAL EQUATIONS AND COUNTERFACTUALS

Underlying many of the discussions are queries about the assumptions, power and limitations
of the three major notational schemes used in causal analysis: structural equations, graphs and the
Neyman-Rubin-Holland model, henceforth called 'counterfactual analysis'. Thus, it seems useful
to begin by explicating the commonalities among the three representational schemes, as noted in
the Discussions of Freedman, following Holland (1988), Robins and Sobel; I will start with a
structural interpretation of counterfactual sentences and then provide a general translation from
graphs back to counterfactuals.

The primitive object of analysis in the counterfactual framework is the unit-based response
variable, denoted r(x, u) or Y^(u), read: 'the value that Y would obtain in unit u, had X been x\
This variable has a natural interpretation in structural equations model. Consider a set T of
equations

X,=f,(PA.,U,) (i =!,...,«), (1)
where the (7, are latent exogenous variables or disturbances and the PA, are the observed explana-
tory variables. Equation (1) above is similar to (3) in my paper, except we no longer insist on the
equations being recursive or on the C7,'s being independent. Let U stand for the vectors (l/i,..., UJ,
let X and Y be two disjoint subsets of observed variables, and let T^ be the submodel created by
replacing the equations corresponding to variables in X with X = x, as in Definition 2. The struc-
tural interpretation of Y(x, u} is given by

Y(X,U):=YT,(U), (2)

namely, Y(x, u) is the unique solution for Y under the realisation U = u in the submodel T^ of T.
While the term unit in the counterfactual literature normally stands for the identity of a specific
individual in a population, a unit may also be thought of as the set of attributes that characterise
that individual, the experimental conditions under study, the time of day, and so on, which are
represented as components of the vector u in structural modelling. Equation (2) above forms a
connection between the opaque English phrase 'the value that Y would obtain in unit », had X
been x' and the physical processes that transfer changes in X into changes in Y. The formation of
the submodel 7^ represents a minimal change in model T needed for making x and u compatible;
such a change could result either from external intervention or from a natural yet unanticipated
eventuality.

Given this interpretation of Y(x, u), it is instructive to contrast the methodologies of causal
inference in the counterfactual and the structural frameworks. If U is treated as a random variable,
then the value of the counterfactual Y(x, u) becomes a random variable as well, denoted by Y(x)
or Y,. The counterfactual analysis proceeds by imagining the observed distribution pr(xi,..., x,)
as the marginal distribution of an augmented probability function pr* defined over both observed
and counterfactual variables. Queries about causal effects, written pt(y\x) in the structural analysis,
are phrased as queries about the marginal distribution of the counterfactual variable of interest,
written pr{Y{x)==y}. The new entities Y(x) are treated as ordinary random variables that are
connected to the observed variables via the logical constraints (Robins, 1987b)

X=x=>Y{x)=Y (3)

and a set of conditional independence assumptions which the investigator must supply to endow
the augmented probability, pr*, with causal knowledge, parallelling the knowledge that a structural
analyst would encode in equations or in graphs.

For example, to communicate the understanding that in a randomised clinical trial, see Fig.5"(b),
the way subjects react, Y, to treatments X is statistically independent of the treatment assignment
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Z, the analyst would write y(x)-LLZ. Likewise, to convey the understanding that the assignment
process is randomised, hence independent of any variation in the treatment selection process,
structurally written as U^ALUz, the analyst would use the independence constraint X(z)lLZ.

A collection of constraints of this type might sometimes be sufficient to permit a unique solution
to the query of interest, for example, pt{Y(x) = y}; in other cases, only bounds on the solution can
be obtained. Section 6 explains why this approach is conceptually appealing to some statisticians,
even though the process of eliciting judgments about counterfactual dependencies has so far not
been systematised. When counterfactual variables are not viewed as by-products of a deeper,
process-based model, it is hard to ascertain whether all relevant judgments have been articulated,
whether the judgments articulated are redundant, or whether those judgments are self-consistent.
The elicitation of such judgments can be systematised using the following translation from graphs.

Graphs provide qualitative information about the structure of both the equations in the model
and the probability function pr(«). Each parent-child family (PA,, X,) in a causal diagram G corre-
sponds to an equation in the model (1) above. Additionally, the absence of dashed arcs between
a node Y and a set of nodes Z^ , . . . ,Z^ implies that the corresponding error variables,
Uy and {Uz^, • • • , U^}, are independent in pr(u). These assumptions can be translated into the
counterfactual notation using two simple rules; the first interprets the missing arrows in the graph,
the second, the missing dashed arcs.

Rule 1: Exclusion restrictions. For every variable Y having parents PAy, and for every set of
variables S disjoint of PAy, we have

Y(par)=Y(pay,s). (4)
Rule 1: Independence restrictions. If Z^,..., Z^ is any set of nodes not connected to Y via dashed

arcs, we have

Y(pay)AL{Z^(pa^),..., Z,(pa^)}. (5)
For example, the graph in Fig. 3, displaying the parent sets

PA^={0}, PAz=W, PAy={Z}
encodes the following assumptions.

Assumption 1: Exclusion restrictions. We require
X(z) = X(y) = X(z, y) = X(0):= X,

Z(y,x)^Z(x), Y(z)=Y(z,x).
Assumption 2: Independence restrictions. We require

Z(x)lL{X,Y(z)}.

While it is not easy to see that these assumptions suffice for computing the causal effect
pT{Y(x)=y} using standard probability calculus together with axiom (3) above, the identifiability
otpr(y\x) in the diagram of Fig. 3 ensures this sufficiency.

In summary, the structural and counterfactual frameworks are complementary to each other.
Structural analysts can interpret counterfactual sentences as constraints over the solution set of a
given system of equations (2) above and, conversely, counterfactual analysts can use the constraints
over pr* given by (4) and (5) above as a definition of the graphs, structural equations and the
physical processes which they represent.

3. THE EQUIVALENCE OF COUNTERFACTUAL AND STRUCTURAL ANALYSES

Robins' discussion provides a concrete demonstration of the equivalence of the counterfactual
and structural definitions of causal effects, pt{Y(x)=y} and pr(y\x), respectively. Whereas (2)
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above explicates counterfactual sentences in terms of operations on structural equations, Robins
has done the converse by explicating the assumptions of a certain structural equations model in
terms of counterfactual specifications. Specifically, starting with a complete directed acyclic graph
with no confounding arcs, Robins translates the assumptions of error-independence in my (3) into
the ignorability-type assumptions of his (1), and shows that causal effects can be expressed in the
form of the ^-functional in his (4), in full conformity with the post-intervention distribution in (5)
in § 2-2. Note that in the structural equations framework the identifiability of causal effects in model
(3) in my paper is almost definitional, because the post-intervention distribution (5) in § 2-2 follows
immediately from the definition of an atomic intervention (Definition 2) and from the fact that
deleting equations does not change the Markovian nature of (3), and hence the product form (2)
applies. What is remarkable is that Robins has derived the same expression using counterfactual
analysis, which, at least on the surface, is oblivious to meta-probabilistic notions such as equation
deletion or error independence.

Robins' approach to dealing with missing links and unmeasured variables is different from mine;
it follows the algebraic reduction method illustrated in § 3-2. After writing the ^-functional using
both observed and unobserved variables as in my (7) and (8), Robins would attempt to use the
independencies embodied in pr(i?) to eliminate the unobservables from the ^-formula. Because the
elimination only requires knowledge of the conditional independencies embodied in pr(v), any
dependency-equivalent graph of G can be used or, for that matter, any nongraphical encoding of
those independencies, for example, pr(i>) itself. The price paid for this generality is complexity: many
latent variables are being summed over unnecessarily, and I am not aware of any systematic way
of eliminating the latent variables from the g-expression; see the transition from my (8) to (9).

The aim of §§ 4 and 5 of my paper is to demonstrate how the derivation can be systematised
and simplified by abandoning this route and resorting instead to syntactic manipulation of formulae
involving observed variables only. The derivation is guided by various subgraphs of G that depend
critically on the causal directionality of the arrows, hence the conditional independencies carried
by G will not suffice. It is quite possible that some of these manipulations could be translated to
equivalent operations on probability distributions but, if we accept the paradigm that the bulk of
scientific knowledge is organised in the form of qualitative causal models rather than probability
distributions, I do not see tremendous benefit in such effort.

Sobel is correct in pointing out that the equivalence of the ignorability and the back-door
conditions hinges upon the equality pr{V(x) = y} = pi(y\£). Robins' results and the translations of
(4) and (5) above provide the basis for this equality. I am puzzled, though, by Rosenbaum's
astonishment at the possibility that 'a certain mathematical operation, namely this wiping out of
equations . . . , predicts a certain physical reality'. While it may seem odd that post-Galilean scien-
tists habitually expect reality to obey the predictions of mathematical operations, the perfect match
between mathematical predictions based on Definition 2 and those obtained by other, less manage-
able approaches reaffirms the wisdom of this expectation; the scientific basis for deleting equations
is given in the paragraph preceding Definition 2.

4. PRACTICAL VERSUS HYPOTHETICAL INTERVENTIONS

Freedman's concern that invariance of errors under interventions may be a 'tall order' is a valid
concern when addressed to practical, not to hypothetical interventions. Given a structural equation
Y = f ( X , U), the hypothetical atomic intervention set(X = x) always leaves / and U invariant, by
definition; see (2) above. The crucial point is that, in order to draw valid inferences about the effect
of physically fixing X at x, we must assume that our means of fixing X possesses the local property
of the operator set(X = x), that is it affects only the mechanism controlling X , and leaves all other
mechanisms, e.g. the function /, unaltered. If current technology is such that every known method
of fixing X produces side effects, then those side effects should be specified and modelled as
conjunctions of several atomic interventions. Naturally, causal theories can say nothing about
interventions that might break down every mechanism in the system in a manner unknown to the
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modeller. Causal theories are about a class of interventions that affect a select set of mechanisms
in a prescribed way.

Note that this locality assumption is tacitly embodied in every counterfactual utterance as well
as in the counterfactual variable Y(x) used in Rubin's model. When we say 'this patient would
have survived had he taken the treatment', we exclude from consideration the eventuality that the
patient takes the treatment but shoots himself. It is only by virtue of this locality assumption that
we can predict the effect of practical interventions, e.g. how a patient would react to the legislated
treatment, from counterfactual inferences about behaviour in a given experimental study.

Freedman's difficulty with unmanipulable concomitants such as age and sex is of a slightly
different nature because, here, it seems that we lack the mental capacity to imagine even hypothetical
interventions that would change these variables. Remarkably, however, people do not consider
common expressions such as 'If you were younger' or 'Died from old age' to be as outrageous as
manipulating one's age might suggest. Why? The answer, I believe, lies in the structural equations
model of (1) and (2) above. If age X is truly nonmanipulable, then the process determining X is
considered exogenous to the system and X is modelled as a component of U, or a root node in
the graph. As such, no manipulation is required for envisioning the event X = x; we can substitute
X = x in U without deleting any equations from the model and obtain pr(y\x) = pi(y\x} for all x
and y. Additionally, in employment discrimination cases, the focus of concern is not the effect of
sex on salaries but rather the effect of the employer's awareness of the plaintiff's sex on salary.
The latter effect is manipulable, both in principle and in practice.

Shafer's uneasiness with the manipulative account of causation also stems from taking the notion
of intervention, too literally, to mean human intervention. In the process of setting up the structural
equations (1) above or their graphical abstraction the analyst is instructed to imagine hypothetical
interventions as defined by the submodel T^ in Definition 2 and equation (2) above, regardless of
their feasibility. Such thought experiments, for example slowing down the moon's velocity and
observing the effect on the tides, are feasible to anyone who possesses a model of the processes
that operate in a given domain.

The analysis in my paper invokes such hypothetical local manipulations, and I mean them to
be as delicate and incisive as theory will permit; it does not insist on technologically feasible
manipulations which, as Shafer and Freedman point out, might cause undesired side effects.
Structural equations models, counterfactual sentences, and Shafer's probability trees all invoke the
same type of hypothetical scenarios, but I find an added clarity in imagining the desired scenario
as triggered by some controlled wilful act, rather than by some uncontrolled natural phenomenon,
e.g. the moon hitting a comet, which might have its own, undesired side effects, e.g. the comet
creating its own effects on the tides.

I agree with Shafer that not every causal thought identifies opportunities for human intervention,
but I would argue strongly that every causal thought is predicated upon some notion of a 'change'.
Therefore, a theory of how mechanisms are changed, assembled, replaced and broken down, be it
by humans or by Nature, is essential for causal thinking.

5. INTERVENTION AS CONDITIONALISATION

I agree with Dawid that my earlier formulation (Pearl, 1993b), which incorporates explicit policy
variables in the graph and treats intervention as conditionalisation on those variables, has several
advantages over the functional representation emphasised here. Fienberg, Glymour & Spirtes
articulate similar sentiments. Nonetheless, I am pursuing the functional representation, partly
because it is a more natural framework for thinking about data-generating processes and partly
because it facilitates the identification of 'causes of effects', especially in nonrecursive systems.

Baike & Pearl (1994), for example, show that sharp informative bounds on 'causes of effects'
can sometimes be obtained without identifying the functions /, or the variables e,. Additionally, if
we can assume the functional form of the equations, though not their parameters, then the standard
econometric conditions of parameter identification are sufficient for consistently inferring 'causes
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of effects'. Baike & Pearl (1995) demonstrate how linear, nonrecursive structural models can be
used to estimate the probability that 'event X=x is the cause for effect £', by computing the
counterfactual probability that, given effect E and observations 0, 'E would not have been realised,
had X not been x\

6. TESTING VERSUS USING ASSUMPTIONS

Freedman's concern that 'finding the mathematical consequences of assumptions matters, but
connecting assumptions to reality matters too' has also been voiced by other discussants, most
notably Dawid and Rosenbaum. Testing hypotheses against data is indeed the basis of scientific
inquiry, and my paper makes no attempt to minimise the importance of such tests. However,
scientific progress also demands that we not re-test or re-validate all assumptions in every study
but, rather, that we facilitate the transference of knowledge from one study to another, so that the
conclusions of one study may be imposed as assumptions in the next. For example, the careful
empirical work of Moertel et al. (1985), which, according to Rosenbaum's discussion, refuted the
hypothesis that vitamin C is effective against cancer, should not be wasted. Instead, their results
should be imposed, e.g. as a missing causal link, in future studies involving vitamin C and cancer
patients, so as to enable the derivation of new causal inferences. The transference of such knowledge
requires a language in which the causal relationship 'vitamin C does not affect survival' receives
symbolic representation. Such a language, to the best of my knowledge, so far has not become
part of standard statistical practice. Moreover, a language for stating assumptions is not very
helpful if it is not accompanied by the mathematical machinery for quickly drawing conclusions
from those assumptions or reasoning backward and isolating assumptions that need be tested,
justified, or reconsidered. Facilitating such reasoning comprises the main advantage of the graphical
framework.

7. CAUSATION VERSUS DEPENDENCE

Cox & Wennuth welcome the development of graphical models but seem reluctant to use graphs
for expressing substantive causal knowledge. For example, they refer to causal diagrams as 'a
system of dependencies that can be represented by a directed acyclic graph'. I must note that my
results do not generally hold in such a system of dependencies; they hold only in systems that
represent causal processes of which statistical dependencies are but a surface phenomenon.
Specifically, the missing links in these systems are defined by asymmetric exclusion restrictions, as
in (4) above, not by conditional independencies. The difficulties that Smith (1957) encounters in
defining admissible concomitants indeed epitomise the long-standing need for precise notational
distinction between causal influences and statistical dependencies.

Another type of problem created by lack of such a distinction is exemplified by Cox & Wermuth's
'difficulties emphasised by Haaveimo many years ago'. These 'difficulties' are, see Discussions
following Wennuth (1992) and Cox & Wennuth (1993): (i) the term ax in the structural equation
y = ax + e normally does not stand for the conditional expectation E(Y\x}, and (ii) variables are
excluded from the equation for reasons other than conditional independence. Haaveimo (1943),
who emphasises these features in the context of nonrecursive equations, is very explicit about
defining structural equations in terms of hypothetical experiments and, hence, does not view the
difference between ax and E(y\x) as a 'difficulty' of interpretation but rather as an important
feature of a well-interpreted model, albeit one which requires a more elaborate estimation technique
than least squares. Cox & Wermuth's difficulty stems from the reality that certain concepts in
science do require both a causal and a probabilistic vocabulary. The many researchers who embrace
this richer vocabulary, e.g. Haaveimo, find no difficulty with the interpretation of structural equa-
tions. I therefore concur with Imbens & Rubin's observation that the advent of causal diagrams
should promote a greater understanding between statisticians and these researchers.
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8. EXEMPLIFYING MODELLING ERRORS

Rosenbaum mistakingly perceives path analysis as a competitor to randomised experiments and,
in attempting to prove the former inferior, he commits precisely those errors that most path analysts
have learned to avoid. After reporting a randomised study (Moertel et al., 1985) that gave different
results from those of a nonrandomised study (Cameron & Pauling, 1976), he concludes that 'the
studies have the same path diagram, but only the randomised trial gave the correct inference'.
However, the two studies have different path diagrams. The diagram corresponding to the random-
ised trial is given in Fig. 6(a), while the diagram corresponding to the nonrandomised trial is shown
in Fig. 7 (a); the former is identifiable, the latter is not. Such modelling errors do not make the
diagrams the same and do not invalidate the method.

In Rosenbaum's second example, with which he attempts to refute Theorem 2, he again introduces
an incorrect diagram. The example involves a clinical trial in which compliance was imperfect, and
the diagram corresponding to such trials is shown in Fig. 5(b). Because a confounding back-door
path exists between X and Y, the conditions of Theorem 2 are not satisfied, and the causal effect
is not identifiable: see the discussion in the second paragraph of § 5, and a full analysis of noncom-
pliance given by Pearl (1995). The chain diagram chosen by Rosenbaum implies a conditional
independence relation that does not hold in the data reported. Thus, Rosenbaum's attempted
refutation of Theorem 2 is based on a convenient, but incorrect, diagram.

9. THE MYTH OF DANGEROUS GRAPHS

Imbens & Rubin perceive two dangers in using the graphical framework: (i) graphs hide assump-
tions; and (ii) graphs lull researchers into a false sense of confidence.

(i) Like all abstractions, graphs make certain features explicit while keeping details implicit, to
be filled in by other means if the need arises. When an independence relationship does not obtain
graphical representation, the information can be filled in from the numerical probabilities, or
structural equations, that annotate the links of the graph. However, a graph never fails to display
a dependency if the graph modeller perceives one; see (2) of my paper. Therefore, a graph analyst
is protected from reaching invalid, unintended conclusions.

Imbens & Rubin's discussion of my smoking-tar-cancer example in Figs 3, 4 and 6(e) illustrate
this point. Contrary to their statement, the provision that tar deposits not be confounded with
smoking is not hidden in the graphical representation. Rather, it stands out as vividly as can be,
in the form of a missing dashed arc between X and Zi I apologise that my terse summary gave
the impression that a missing link between X and Y is the 'only provision' required. From the six
provisions shown in the graph, I have elected to recall this particular one, but the vividness of the
graph, condition (ii) of Theorem 2, equation (13), and the entire analysis, see also (4) and (5)
above, should convince Imbens and Rubin that such provisions have not been neglected. In fact,
graphs provide a powerful deterrent against forgetting assumptions unmatched by any other formal-
ism. Every pair of nodes in the graph waves its own warning flag in front of the modeller's eyes:
'Have you neglected an arrow or a dashed arc?' I consider these warnings to be a strength, not a
weakness, of the graphical framework.

(ii) Imbens & Rubin's distrust of graphs would suggest, by analogy, that it is dangerous to teach
differential calculus to physics students lest they become so enchanted by the convenience of the
mathematics that they overlook the assumptions. Whilst we occasionally meet discontinuous func-
tions that do not admit the machinery of ordinary differential calculus, this does not make the
calculus useless or harmful. Additionally, I do not think over-confidence is currently holding back
progress in statistical causality. On the contrary, I believe that repeated warnings against confidence
are mainly responsible for the neglect of causal analysis in statistical research, and that such
warnings have already done more harm to statistics than graphs could ever do.

Finally, I would like to suggest that people will be careful with their assumptions if given a
language that makes those assumptions and their implications transparent; moreover, when
assumptions are transparent, they are likely to be widely discussed. No matter how powerful, a
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notational system that does not accommodate an explicit representation of familiar processes will
only inhibit people from formulating and assessing assumptions. As a result, instead of being
brought into the light, critical assumptions tend to remain implicit or informal, and important
problems of causal inference go unexplored. Indeed, the theory of causal inference has so far had
only minor impact on rank-and-file researchers, on the methods presented in statistics textbooks,
and on public policy-making. I sincerely hope graphical methods can help change this situation,
both by uncovering tangible new results and by transferring causal analysis from the academic to
the laboratory.

^Received June 1995]
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