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Abstract 

This paper presents a formalism that combines useful properties of both logic and probabilities. 
Like logic, the formalism admits qualitative sentences and provides symbolic machinery for 
deriving deductively closed beliefs and, like probability, it permits us to express if-then rules 
with different levels of firmness and to retract beliefs in response to changing observations. Rules 
are interpreted as order-of-magnitude approximations of conditional probabilities which impose 
constraints over the rankings of worlds. Inferences are supported by a unique priority ordering 
on rules which is syntactically derived from the knowledge base. This ordering accounts for rule 
interactions, respects specificity considerations and facilitates the construction of coherent states 
of beliefs. Practical algorithms are developed and analyzed for testing consistency, computing 
rule ordering, and answering queries. Imprecise observations are incorporated using qualitative 
versions of Jeffrey’s rule and Bayesian updating, with the result that coherent belief revision 
is embodied naturally and tractably. Finally, causal rules are interpreted as imposing Markovian 
conditions that further constrain world rankings to reflect the modularity of causal organizations. 
These constraints are shown to facilitate reasoning about causal projections, explanations, actions 
and change. 

1. Rankings as an order-of-magnitude abstraction of probabilities 

The uncertainty encountered in common sense reasoning fluctuates over an extremely 
wide range. For example, the probability that the new book on my desk is about 
astrology may be less than one in a million. However, if I open the wrappings and 
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see a Zodiac sign, the probability becomes close to 1, say 0.999. Intelligent agents are 
expected to reason with such rare eventualities and to produce explanations and actions 
whenever these occur. Given this wide range of uncertainty fluctuations and the fact 

that the majority of everyday decisions involve relatively low payoffs, the full precision 
of probability calculus may not be necessary, and an order-of-magnitude approximation 
may be sufficient. Thus, instead of measuring probabilities on a scale from zero to one, 
we can imagine projecting probability measures onto a quantized logarithmic scale and 
then treating beliefs that map onto two different quanta as being of different orders of 

magnitude. 

This method of approximation gives rise to a semi-qualitative calculus of uncertainty, 
one in which degrees of (dis) belief are ranked by nonnegative integers (corresponding 

perhaps to linguistic quantifiers such as “believable”, “unlikely”, “very rare”) still ca- 
pable of accounting for retraction and restoration of beliefs by Bayesian conditioning. 
The origin of this ranked-based approximation can be traced back to Adams [ 11, who 
developed a logic of conditionals based on infinitesimal probabilities, and to the ordinal 
conditional functions (OCFs) of Spohn [ 7 11. Potential applications in nonmonotonic 
reasoning were noted in [ 50,541 and further developed in [ 25,31,34,46,47,57]. 

One way of motivating integer rankings of beliefs is to consider a probability dis- 

tribution P(w) defined over a set fl of possible worlds and to imagine that an agent 

wishes to extract an order-of-magnitude approximate of P(w). The traditional engineer- 

ing method of approximation would be to express each numerical parameter (specifying 
P) in a base-b representation, where b depends on the precision needed, and then omit 
all but the most significant figure from each expression. 2 All arithmetic operations 
would then be performed on these approximate, single digit quantities, in lieu of the 
original parameters. The abstraction we advocate goes one step further. Instead of re- 
taining the numerical value of the most significant figure, we retain only its position. 
The mechanics of this exercise is equivalent to treating the base b as an infinitesimal 

number E, thus mapping every quantity to a polynomial in E. These polynomials are 
added and multiplied precisely, but at the end we calculate the limit of the final results 

as E goes to zero. 

Specifically, if we write the probability P(w) as a polynomial in E; for example, 

P,(w) = 1 - CIE or a* - c2c4, We define a ranking function K(W) as the power of the 
most significant c-term in P, (co), or, 

K(W) = 

II such that hlrP(m)/c’ # 0 , if P,(w) >O, 
> (1) 

=3 if P,(w) = 0. 

Likewise, since the probabilities assigned to any logical formula p, as well as all 
conditional probabilities P, ((clip) , will be rational functions of E, we define the rank- 
ing function ~($lp) as the power of the most significant c-term in the expansion of 

’ Thus, given a basis b, a quantity p will be expressed by the polynomial p = no * (/I)” + (I, * (h) ’ + 
(12 * (h)* + ., and will be approximated by the most significant term of this polynomial, namely, the first 

term where 0, # 0, thus p z (1; * (h)‘. 
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Table 1 
Linguistic quantifiers and E” 

P(l$) =&o 

P(4) = E’ 

P(4) = 82 

P(4) = es 

4 and -4 are possible 

-C#J is believed 

-c$ is strongly believed 

-4 is very strongly believed 

K(d) = 0 

K(4) = 1 

K(d’) = 2 

K(4) = 3 

P,($/lp). In other words, K(@J+J) = n iff P,($lcp) has the same order of magnitude as 
n 3 & . 

Parameterizing a probability measure by E and extracting the lowest exponent of E as 
the measure of (dis)belief was proposed in [ 551 as a model of the process by which 

people abstract qualitative beliefs from numerical probabilities and accept them as tenta- 
tive truths. For example, we can make the correspondence between linguistic quantifiers 
and E” depicted in Table 1. This abstraction yields an integer-addition calculus which 
combines the benefits of logic and probabilities. Like logic, it permits us to reason sym- 
bolically and form deductively closed beliefs and, like probability, it permits us to retract 
beliefs in response to changing observations, using the ranking-equivalent of Bayesian 

conditioning as shown below. The following properties of ranking functions (left-hand 

side below) reflect, on a logarithmic scale, the usual properties of probability functions 
(right-hand side), with min replacing addition, and addition replacing multiplication: 

K(p) = min+=, K(W): P(P) = c P(w), (2) 

+P 

K( $9) = 0 Or K( ~4p) = 0: P(9) + P(T) = 1, (3) 

K(@IV) = K($ A Cp) - K((P): P(+lrP) = P(,c, A Y)/P(cP). (4) 

This correspondence dictates the following principles on the semantics of rankings and 

beliefs. 
( 1) Each world is ranked by a nonnegative integer K representing the degree of 

surprise associated with finding such a world. 
(2) Each wff is given the rank of the world with the lowest K (most normal world) 

that satisfies that wff. 
(3) Given a ranking K and a collection of facts 4, we say that (T is believed given 

cj if K( TT[$) > 0, or, equivalently, if the cr holds in all the lowest K (most 
normal) worlds satisfying 4. 

Principles ( 1) and (2) follow immediately from Eq. (2). Principle (3) associates 

beliefs with extreme conditional probabilities, saying that cr is believed given 4 iff 
P( al+) 2 1 - Ce (for sufficiently small E > 0) , where P is the e-parameterized 
probability associated with that particular ranking K. This abstraction of probabilities 

3 Spobn [ 711 was the first to study such ranking functions, which he named ordinal conditional function 
(OCF) for the representation of plain beliefs. He also noted their equivalence to non-standard probabilities 
but considered this coincidence to be of formal rather than conceptual interest. Rankings are also implicit in 
Adams’ consistency test [ 1 ] 
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matches the notion of plain belief [ 7 I] in that it is deductively closed: If A is believed 
and B is believed, then A A B is believed as well because K( -( A A B)) > 0 whenever 
K( -A) > 0 and K( -B) > 0. This deviates from the probability-threshold conception of 
belief: if both P(A) and P(B) are above a certain threshold, P( A A B) may still be 
below that threshold. The drawback of this abstraction is that many small probabilities 
do not accumulate into a strong argument (as in the lottery paradox [44] ). However, 
in mundane reasoning applications, where reasoning chains are relatively shallow, such 
deviations from numerical probability calculus are usually tolerable-a reasonable price 

for achieving deductive closure [ 551. 
Reasoning using principles ( 1) -( 3) requires complete specification of the K function, 

which is not readily available in practice. We are usually given information in the form 
of statements such as “birds normally fly” which we may interpret as P( fl b) 2 1 - E 
(see also [ 331) or, equivalently, K( -fl b) > 0, and no information whatsoever about the 
flying habits of red birds or non-birds. In this case, we still would like to conclude “red 
birds normally fly”, even though the information given is not sufficient for defining a 
complete ranking function. Drawing plausible conclusions from such fragmentary pieces 

of information requires additional inferential machinery with two features: it should 
enrich the specification of the ranking function with the needed information, and it 

should operate directly on the specification sentences in the knowledge base, rather than 

on the rankings of worlds (which are too numerous to list). Such machinery is provided 
by the formalism we propose in this paper, which accepts knowledge in the form of 
if-then rules (interpreted as constraints on K) and computes the confidence in (i.e., 
ranking of) any given query by syntactic manipulation of these rules. 

To accomplish these functions, we incorporate two principles in addition to those 
given above: 

(4) Each input rule “if yo then @“, written p ---f t+G, is interpreted as a constraint on 

the ranking K, forcing every world in p A -I# to rank at least one rank above the 
most normal world in p, that is, K( -$Ip) > 0. 

(5) Out of all rankings satisfying the constraints above, we adopt only those that are 
minimal, in the sense of assigning each world the lowest possible (most normal) 
rank. Remarkably, unlike most notions based on minimality, this ranking will 

turn out to be unique, denoted K’ 

Principle (4) is a straightforward consequence of the probabilistic reading of the rules, 
P( @,1~) 3 1 --E. Principle (5) reflects an assumption of reasonable cautiousness; unless 
compelled otherwise, assume every situation to be as serious a possibility as permitted 
by the given input information, We remark that although different sets of rules can give 
rise to the same ranking function K’ , such sets are not entirely equivalent; while they 
yield the same answers to queries, and same responses to new observations, they differ 
in the way the knowledge base absorbs new rules. 4 

An inference system based on principles ( 1 )-( 5), called system-Z, is described 

in [ 571 and is reviewed in Section 2 (readers familiar with system-Z may wish to skip 
this section and go directly to Section 3). The distinctive feature of this system is that 
all inferences are conducted by syntactic processing of the rules in the knowledge base 

a See Section 6 for a more detailed discussion 
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A = {& -+ &i}, 1 6 i < n, and not on the rankings of worlds (as in [ 711) or belief sets 
(as in [24] ). To this end, the knowledge base is first processed so as to assign each 
rule ri E A a priority number, Z (ri), which summarizes the interactions of Ti with other 
rules in A. Section 2 shows that the Z priorities can be computed in O(n’) propositional 
satisfiability tests and then, once Z is compiled, queries can be answered using 0( log n) 
such tests, where n is the number of rules in A, and the satisfiability tests are performed 
on the material counterpart’ of the rules in A. Section 2 also includes a test for the 

consistency of A and examples illustrating the use of system-Z for default reasoning. 

The main focus of this paper lies in augmenting system-Z with the capability of 
handling richer types of input information, including variable-strength rules (Section 3)) 

indirect evidence (Section 5) and causal rules (Section 7). 

The realization that some default rules are stated with greater firmness than others has 
occurred in many contexts. For example, action-response defaults of the type “if Fred is 
shot with a loaded gun, Fred is dead” are normally stated with a greater conviction than 

persistence defaults of the type “if Fred is alive at time t, he is alive at t + 1”. Moreover, 
the degree of conviction in this last statement should clearly depend on whether t is 
measured in years or seconds. In diagnosis applications, likewise, the analyst may feel 
strongly that failures are more likely to occur in one type of device (e.g., multipliers) 
than in another (e.g., adders). Although numerical probabilities or degrees of certainty 

have been suggested for expressing this valuable knowledge, if the full precision provided 

by numerical calculi is not necessary, an intermediate qualitative language like the one 

proposed in this paper might be more suitable. For this purpose Section 3 augments 
principles (3) and (4) as follows: 

(3’) Given a ranking K and a collection of facts 4, we say that (+ is believed with 
strength 6, given q& if K( WJ[~) > 6, or, equivalently, if the K-rank of 4 A 1~ 

is at least S + 1 degrees above that of 4. 

(4’) Each input rule “if (p then + (with strength S)“, written (p L +, is interpreted 
as a constraint forcing every world in q A -$ to rank at least S + 1 degrees 
above the most normal world in 40, that is, K( $[p) > 6. 

In probabilistic terms, principle (3’) says that given 4, (T is believed to a degree 8 
iff P(al#) 2 1 - CE”+~, where P is the e-parameterized probability associated with 
that particular ranking K. Principle (4’) encodes the probabilistic reading of the rules, 

P(rcI140) > 1 - E . ‘+I The parameter 6 is an optional feature for the rule encoder that 
augments the expressiveness of the knowledge base. If S is unspecified, it is assumed 
to be equal to zero, and rules are interpreted as in principle (4) above (i.e., P(+lq) > 
1 -&). 

The inference system devised to accommodate variable-strength rules is called system- 
Zf. A knowledge base with all 6 = 0 will be called jut and simply reduces to the 

one analyzed in Section 2. Remarkably, the introduction of variable-strength measures 
does not change the procedure required for consistency checking (Section 3.1), and 
results in only slightly higher complexity of the inference process, when compared with 
that of a flat system (Section 3.2). It is shown in Section 3.2 that the complexity 
of query-answering procedures increases, to account for the 6’s, from O(n2) (for a 

5 The material counterpart of (p 4 I) is the propositional formula (p 3 JI. 
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flat knowledge base) to O(n’ x logn) satisliability tests. Parallel to system-Z, query 
answering is facilitated by computing for each rule a priority number Z+(ri), which 
accounts for both specificity and rule interaction under the constraints imposed by the 
variable-strength rules. 

These procedures are polynomial for Horn expressions, network theories, or acyclic 

databases. Comparisons to related proposals for default reasoning can be found in 
Section 4. 

In Section 5, system-Z + is equipped with the capability to reason with soft evidence 

or imprecise observations. Such a capability is important when we wish to assess the 
plausibility of u (using principle (3) above) but the context 4 is not given with absolute 

certainty; all that can be ascertained is “4 is supported to a degree m”. We propose two 
different strategies for computing a new ranking K’ from such soft evidential reports. 
The first strategy, named J-conditioning (Section 5.1)) is based on Jeffrey’s rule of 

conditioning [56] which interprets the report as taking “all things” into consideration: 
the new degree of disbelief for -4 should be K’( -$) = m. The second strategy, named 

f. -conditioning (Section 5.2), interprets the report as specifying the desired shif in the 

degree of belief in 4, as warranted by that report alone. We show that both J- and 
L-conditioning have roughly the same complexity as ordinary conditioning. 

Section 6 relates system-Z+ to the theory of belief revision in [2] and shows that 

J-conditioning offers a natural realization of rational belief revision, overcoming several 

deficiencies in the AGM formulation. Additionally, the section identifies five belief 
revision operations which cannot be characterized using operators on belief sets alone, 
but require formulation in terms of conditional rules. 

Section 7 deals with default rules that convey causal relationships. Such defaults, 
especially those specifying the effect of actions, require special treatment in most default 
formalisms, but present no special difficulties in probabilistic analysis based on Bayesian 

networks [46]. In Section 7 we borrow from probabilistic analysis the independence 
conditions that are typical to causal organizations and show that by imposing these 
conditions as constraints on ranking functions, we endow default rules with the causal 
character necessary to support reasoning about actions, their indirect consequences and 

their interaction with observations. 

2. Ranking functions and system-Z: a review 

2.1. Consistency 

Consider the basic language to be a tinite set C of atomic propositions augmented 
with two propositional constants T (true) and l_ (‘@se). Let ,Cp be a closed set of 
propositional well-formed formulas (wffs) generated as usual from the atomic proposi- 
tions in C and the connectives V, A, > and 7. We define a world 6.1 as a truth assignment 
for the atomic propositions in ,C. The set of possible worlds is denoted by fin, and if 
there are IZ atomic propositions in C, the size of fi will be 2”. The satisfaction of a wff 
9 E Cp by a world w is defined as usual and denoted by w b cp. If w satisfies (o, we 
say that o is a model for p. Ranking functions are defined as follows: 
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Definition 1 (Ranking functions). A ranking function K is an assignment of non- 
negative integers to the elements in 0, such that K(W) = 0 for at least one w E L?. 

We extend this definition to induce rankings on wffs (in C,) in accordance with the 
probabilistic interpretation given by Eq. (2) : 

K(V) = 

i 

Fk K(W), if 40 is satisfiable, 
(5) 

00, otherwise. 

Similarly, following Eq. (4), we define the conditional ranking K($I~J) for a pair of 
wffs rp and (I, (from Lp ) as 

K(+l‘P) = 
K(IC, A 5p) - K(V), if K(P) SW, 
00, otherwise. 

(6) 

Intuitively, ~($19) stands for the degree of incremental surprise or abnormality as- 
sociated with finding 1,4 to be true, given that we already know q. The inequality 

K( lII/Ip) > 0 means that given 40 it would be surprising (i.e., abnormal) by at least 

one additional rank to find +, which is precisely the interpretation we attribute to the 
conditional sentence (rule) “if 4p then +“. 

A rule (or default) is the formula cp -+ +, where 40 and 1+5 are wffs in Cp and 4 is a 
new binary connective, conveying generic domain knowledge. Such rules express what 
is normally the case in the domain without excluding the possibility of exceptions. 6 The 

generic background information carried by a rule “if v, then r,V’ is to be distinguished 
from the contingent information conveyed by ordinary wffs or the introspective infor- 
mation carried by the conditional sentence “if I presume (/I then 4p would be believed”. 

The distinction amounts to viewing the inequality K( ~t+b[cp) > 0 as a permanent require- 
ment, to be upheld regardless of other rules in the knowledge base, rather than a feature 

specific to a given collection of rules. In other words, the inequality K( +jsp) > 0 is 

to be treated as a specification constraint for forming ranking functions, rather then a 
feature of an existing ranking function. 

Given a knowledge base A = {pi + (cli}, 1 6 i < n, consistency can be defined as 

follows 

Definition 2 (Consistency). A ranking K is said to be admissible relative to a given A 
iff 

K(‘Pi A $‘i> < K(‘Pi A -‘$i) (7) 

(equivalently K( ~$!Jil~~) > 0) for every rule pi -+ c//i E A. A knowledge base A is 
consistent iff there exists an admissible ranking K relative to A. 

6 The use of conditional sentences to represent and reason with default information has been proposed by a 

number of researchers; see for example [ 8,20.25,26,28,34,43]. 
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+ Surprise Ranking R w 
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(I + N0rrrmlit.y 

Fig. I. Admissibility constraint imposed by cp, + $, 

Eq. (7) echoes the preferential interpretation of default rules [ 681, according to which 
$1 holds in all minimal models for 9. In our case, minimality is reflected in having the 

lowest (i.e., most normal) rank. Let us say that a world w verifies a rule p + rj if 
w b 40 A $. A world w falsijies p + I++ if w k p A -@. Admissibility requires that 

each time we find a world w- falsifying 9, --) +;, there exists a world w+ verifying 

cp, ---i 4; such that K( w+) is lower than K(W-) (see Fig. I). In probabilistic terms, 
consistency guarantees that for every F > 0, there exists a probability distribution P 

such that if 9, + I,!?, E d, then P(t,blqi) 3 I - E. A more elaborate definition of 
consistency applies to knowledge bases containing a mixture of defeasible and non- 

defeasible (strict) rules [ 331. For simplicity we skip the treatment of strict rules in this 

paper. ’ 
The notion of tolerance below is a central component in establishing consistency 

(and priorities among rules), and identifies a satisfiability test crucial for most of the 

procedures in this paper. 

Definition 3 (Tolerance). A rule (Y + p is tolerated by a knowledge base A = {yi --+ 

(cll}. I < i < n, iff there exists a w such that 

In other words, LY + j? is tolerated by A iff there exists a w, such that w verifies 
cy + /3 and w does not falsify any rules in 3. 

Theorem 4 (see [ I ] ) . A is consistent ifs in every non-empty subset A’ c A there exists 

a rule tolerated by A’. 

‘To include strict rules Definition 2 should interpret a strict rule 4 + (7 as imposing the constraint: 

K( TV A 4) = oc, and K( 4) < ~8. The procedure in Fig. 2 must also be modified, and its complexity requires 

an extra O(s) satisfiability tests, where s is the number of strict rules in the knowledge base (see [28,33] 

for details). 
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Procedure Consistency-Test 

65 

Input: A knowledge base A = {cpi -+ #i ( 1 < i 6 rr}. 
Output: An ordered partition of A = (4, Al,. . . , Ak) iff A is consistent. 

1. Let i=o. 
2. While A is non-empty 

(a) Find the set of rules Ai = {pj -+ $j} from A, such that each pj -+ $j is 
tolerated by A 

(b) If none can be found then ABORT: A is inconsistent 

(c) Else remove At from A and set i = i + 1. 

3. Return A = (&,Al,. . . ,Ak) 
End Procedure 

Fig. 2. Procedure for testing consistency. 

It turns out that not every subset needs to be checked for toleration: 

Theorem 5 (see [ 571). A is consistent ifSan ordered partition of A = (do, Al,. . . , Ak) 
can be built such that every rule in Ai is tolerated by the set Uli Aj. 

A procedure (Consistency-Test) for building this partition and testing consistency is 
given in Fig. 2. The complexity of Consistency-Test is essentially determined by step 

2(a) which identifies the rules in the set Ai of the partition. Note that in the worst case 
(when no such rule is found) this step requires at most n propositionally satisfiability 
tests like the one described in Eq. (8), where n is the number of rules in A. Also, 
in the worst case, step 2(a) is executed n times. Defining pi > $i to be the material 

counterpart Of ppi + qi, we have the following corollary: 

Corollary 6. The consistency of a knowledge base A containing n conditional rules 
can be tested in 0( n2) propositional satisjiability tests on the material counterpart of A. 

The next subsection shows that the partition A = (do, Al, . . . , Ak) defines a natural 

ordering of the rules in A which in turn defines the minimal ranking among possible 
worlds and a notion of entailment. 

2.2. Entailment: drawing plausible conclusions 

Given a generic knowledge base in the form of a consistent set A of rules, together 
with a wff 4 describing the collection of specific facts known about the domain, we 

wish to characterize the set of conclusions that can plausibly be entailed from 4 in the 
context of A. For any specific ranking function the conclusions entailed by 4 are dictated 
by principle (3) (%&on 1) and form a consequence relation defined as follows. 

Definition 7 ( Consequence relation). A ranking K induces a consequence relation 
among wffs, where 

I-_, 

(9) 
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Since d permits not one but several ranking functions, a straightforward way to define 
entailment would be to take into consideration all the consequence relations induced by 
the set of admissible rankings K with respect to d. 

Definition 8 (p-entailment). Given a consistent A, u is p-entailed by 4, in the context 

of A, written 4 i_,, u, if 4 i_, cr is in every consequence relation k, induced by a 
ranking K admissible with A. 

p-entailment is named after the relation proposed by Adams [ 11, and the equiva- 
lent to c-entailment by Pearl 1541 and r-entailment by Lehmann and Magidor [47]. 
Probabilistically, p-entailment guarantees that conclusions will receive arbitrarily high 
probabilities whenever the premises receive sufficiently high probabilities (i.e., for every 
F > 0 there exists an E’ > 0 such that if P(+ilpi) 3 1 - E’ for every qi + $i E A then 
P(c714) 3 1 - E, see [ 1.33 1 for details). 

p-entailment can be characterized syntactically in terms of the rules of inference 

provided in [ 251 or in [47]. p-entailment can also be characterized by the notion of 
consistency as indicated in Theorem 9. 

Theorem 9. Giver] a corkstent A, 4 bI, CJ iff A U (4 + YT} is inconsistent. * 

It follows immediately from Theorem 9 that entailment can be decided using procedure 
Consistency-Test (Fig. 2), and that the complexity is the same as testing consistency. 

Corollary 10. Given a consistent A = (40; + tiL}, 1 < i < n, the question of whether 

4 b,, cr holds can be determined in 0( r12) propositional satisjiability tests on the 

material counterpart of A. ’ 

Another property of p-entailment is semi-monotonicity, that is, monotonicity relative 
to the addition of rules as distinct from the addition of factual information. 

Corollary 11. ff A’ C A, and 4 i_,, CJ given A’, then 4 b,, CT given A. 

The proof is immediate: if 3’ IJ (4 .-+ Y(J) is inconsistent, then A U (4 + ~a} 

must be inconsistent as well. Semi-monotonicity reflects a strategy of extreme caution; 
no conclusion will ever be issued if it is possible to add rules to A (consistently) in 
such a way as to render the conclusion no longer valid. Thus, p-entailment generates the 
maxima1 set of “safe” conclusions that can be drawn from A, and hence, was proposed 
by Pearl [55] as a conservative core that ought to be common to all nonmonotonic 
formalisms. 

Like other systems based on conditional logic [52], p-entailment does not properly 
handle irrelevant features, e.g., from a + c we cannot conclude a A b b,, c even in cases 

’ Theorem 9 was first proven by Adams I I 1 t’or defeasible rules and was extended to strict (non-defeasible) 

rules in 133 I. 

‘) A similar complexity result is given in [ 47 j 
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where A makes no mention of b. To sanction bolder inferences we now define plausibility 
with respect to a distinguished admissible ranking, K~, assigning to each world the lowest 
possible K permitted by the constraints imposed by A. We will first introduce a syntactic 
definition of K~, define the notion of z-entailment, study its computational properties, 
and then show that ~~ satisfies the desired minimality condition. 

Definition 12 ( The ranking K~ ) . Let A = { ri : rpi --f @i/i) be a consistent set of con- 
ditional rules. Let A = (4, Al,. . . , Ak) be the partition that results from applying 
procedure Consistency-Test on A. We define Z to be an ordering on A, such that 
Z (r;) = j iff ri belongs to the set Aj of the partition. Kz is defined as follows: 

0, if o does not falsify any rule in A, 

K’(W) = T<anx{z(ri) 1 W k PiA”Ji} f 1, (10) \ 
otherwise. 

Definition 13 (z-entailment). Given a consistent A, and the ranking K~, we say that q5 

z-entails (T in the context of A iff 4 k, (T is in the consequence relation induced by K~, 

that is iff K’ (~(~14) > 0. 

Theorem 14. Given u consistent A = {ri : qi 4 $i}, 1 < i < n, then: 

( 1) the function Z can be computed in O(n*) satisjability tests on the material 

counterpart of A; 

(2) given Z and a wff 4, K~ (4) can be computed in O(log n) satis$ability tests on 

the material counterpart of A. 

Clearly, if the rules in A are of Horn form, computing the priority ranking Z and 

deciding consequences of queries (4 k,, (T) can be done in polynomial time [ 211. For 
the first part of Theorem 14, recall that Z can be computed using procedure Consistency- 
Test in Fig. 2 as follows: first, identify all rules ri : pi ----f $i in A for which the formula 

Vi A rcli A Spj 3 *j (11) 

j#i,r,EA 

is satisfiable (this corresponds to step 2(a) in Fig. 2). Next, assign to these defaults 
priority Z = 0, remove them from A, and repeat the process, assigning to the next set of 

defaults the priority Z = 1, then Z = 2, and so on. For the second part, note that once 
Z is known, the rank K~ of any wff 4 is given by 

~‘(4) =min 

( 

i 1 4 A pj > @j is satisfiable . 

1 

(12) 
j:Z(r,)>i 

Thus, ~~ (4) can be computed by running a binary search on A looking to find the 
lowest Z(r) such that there is a model for 4 that does not violate any rule r’ with 
priority Z (r’) 3 Z(r). This is done by dividing A into two roughly equal sections: 
top-half (r& to Ihigh) and bottom-half ( rlaw to red). A satisfiability test on the wff 
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a = @A&,,, pj > (CI, decides whether the search should continue (in a recursive 
fashion) on the bottom-half or top-half. 

Eqs. ( 1 I ) and ( 12) give a method of constructing a propositional theory 7X( 4) that 

characterizes precisely the set of conclusions (T that plausibly follow from 4 (in the 

context of A), that is, $J kI u iff T/z($) > c. Such a theory is given by the formula 

W4) = 4 A CPI 3 *I’ (13) 
1. z(r,)>KZ(Ch) 

This is somewhat reminiscent of Brewka’s [ 121 and Poole’s [63] idea of construct- 
ing preferred subtheories that are maximally consistent with the context 4. Here, the 

construction is more cautious; it stops as soon as all rules of priority 2 3 K’ (4) 

are included in the theory. ‘” Note, however, that in contrast to Brewka’s and Poole’s 

proposals, our priorities are computed automatically from the knowledge base. 
Before discussing an illustrative example, note (Theorem 16) that Eq. ( IO) in Defini- 

tion 12 defines a unique admissible ranking function K’ that is minimal in the following 

sense: 

Definition 15 (Minimal ranking). A ranking function K is said to be minimal if every 

other admissible ranking K’ satisfies K’(W) > K(W) for at least one possible world w. 

Theorem 16 (see [57]). Every consistent A has a unique minimal ranking given by 

K’. 

2.3. Examples 

Example 17. Consider the following collection of rules A,,J,: 

t-1 : “Birds fly” b -+ f. 

r2: “Penguins are birds” p ---t b. 

i-3 : “Penguins do not fly” p + -,f. 
rj: “Birds have wings” h -4 M.. 

4: “Animals that fly are airborne” f’ + LI. 

It can be readily verified that rl, r4, and t-5 are each tolerated by all five rules in A,,b. 

For example, the truth assignment 

I w + ‘p A .f A I> A w A 0 

satisfies both 

b/\ w A (p > b) A (b > J’) A (p > -f) A (J‘> a) 

and 

biz f A (p > 6) A (b > w) A (b > -.f) A (f > a). 

‘I) Different ways of completing the construction were proposed by Boutilier [ 9 I (see discussion in Section 8) 
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Plausible conclusions for Apt,, with respect to the notions of p-entailment and z-entailment. A query such 
as (b,p) means a test for whether b b p holds in the consequence relations defined by p-entailment and 
z-entailment (respectively) 

Queries 

(p A b, f)-“Do penguin-birds fly?” 

(b, p)--“Are birds typically penguins?” 

( r A b, f)-“Do red birds fly?’ 

(b, a) --“Are birds airborne?” 

( p. w ) -“Are penguins winged animals?” 

p-entailment ( kp ) 

NO 

NO 

undecided 

undecided 

undecided 

z-entailment ( b, ) 

NO 

NO 

YES 

YES 

undecided 

Thus, r-5, 14 and rr are each assigned a Z-label 0 indicating that these rules pertain to 
the most normal state of affairs. No other rule can be labeled 0 because, once we assign 

p the truth value T, we must assign T to b and _L to f, which is inconsistent with 
b > f. The remaining two rules can now be Z-labeled 1, because each one of the two 
is tolerated by the other. 

Examples of plausible consequences one would expect to draw from Apb are depicted 
in Table 2. The first column contains the queries, the second contains p-entailed conclu- 
sions, and the last contains z-entailed conclusions. The pair (4, (T) indicates the query: 

“is u-entailed given +?” Where a “NO” indicates C#I kP T(T ( C#J k, ~a), a “YES” 
indicates C$ bP u ( C$ k, (+), and an “undecided” indicates neither. 

We see that z-entailment sanctions plausible inference patterns that are not p-entailed, 
among them rule chaining, contraposition and the discounting of irrelevant features. For 

example, we cannot conclude by p-entailment that birds are airborne, b bp a, because 

neither b -+ a nor b + TZ would render Apb inconsistent. However, a is z-entailed by 
b, because the rule b -+ a is tolerated by all rules in Ayb while b -+ -a is tolerated by 
only those Z-labeled 1. Thus, ~~ (b A a) < ~~ (b A 7 a). Similarly, if r is an irrelevant 

feature (i.e., not appearing in Apb), we obtain b A I f-, f but not b A r kp f. 
The main weakness of z-entailment is its inability to sanction property inheritance 

from classes to exceptional subclasses. For example, it will not conclude that penguins 
have wings (p -+ w) by virtue of being birds (albeit exceptional birds). The reason 
is that the Z-label 1 assigned to all rules emanating from p amounts to proclaiming 

penguins an exceptional type of birds in all respects, barred from inheriting any bird- 
like properties (e.g., laying eggs, having beaks, etc.). This is a drawback that cannot be 

remedied by methods based solely on the Z-ordering of defaults; a more refined ordering 
is required which also takes into account the number of rules tolerating a formula, not 
merely their rank orders. One such refinement is provided by the maximum entropy 
approach [ 3 1 ] where each model is ranked by the sum of weights on the rules falsified 

by that model. Another refinement is provided by Geffner’s conditional entailment [ 251, 
where the rules are partially ordered. These two refinements and other alternatives will 

be discussed in Section 4. 
We now augment the capabilities of system-Z to handle variable-strength rules, thus 

permitting some defaults to be stated with greater firmness than others. 
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Ranking K Js + Surprise 
b 

Fig. 3. S-admissibility constraint imposed by rxamplei 

3. Variable-strength conditionals: system-Z+ 

We extend the specification of the rules p, + @i with a parameter 6i representing 

the degree of strength or$rmness of the rule. Following the previous section, we first 
study a notion of consistency, and then propose a notion of entailment. Remarkably, the 

main properties of flat systems are retained after the 6i are added. Consistency can be 
tested using the same procedure (Fig. 2) and consequences are generated by the same 

general formula (Eq. ( 13) ). The computation of the rule priorities, however, requires 
an additional factor of 0( log n) in complexity. 

3.1. Consistency revisited: S-consistenq 

Consider a set A’ = {r, / r, = p, A $, , 1 < i < n}, where pi and @i are propo- 
sitional formulas, “4” denotes a default connective as before, and Si is a nonnegative 

integer. 

Definition 18 (&consistency). A ranking K is said to be admissible relative to a given 
A+, iff 

K(c;D;Afl;‘i) <&+K(P,A+,) (14) 

(equivalently K( -I,bi /so;) > 6,) for every rule p; 5 $i E A+. A knowledge base A+ is 
consistent iff there exists an admissible ranking K relative to A+. 

As depicted in Fig. 3, &admissibility requires that for each world w- satisfying 
qi A -@; there must be a world W+ satisfying pi A $i such that K( wf) is at least Si + 1 
ranks less surprising than K( w-). 

Let A be the flat version of A+; that is, if A+ = {pi -% It/l}, then A = {(Pi ---t (cll}. 

The next theorem establishes that the S-consistency of A+ can be decided by applying 
procedure Consistency-Test on its flat version A. 

Theorem 19. A+ is &consistent iff A is consistent (in the sense of Definition 2). 
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It is reassuring to know that once a knowledge base is consistent with respect to one set 
of assignments to the 6i, it will be consistent with respect to any such assignment. This 
means that the rule author has the freedom to modify the firmness of the rules without 
fear of introducing an inconsistency. We will therefore use the term “consistency” when 
referring to “&consistency”. 

3.2. Entailment revisited: S-plausible conclusions 

As done in Section 2.2 we will define a consequence relation relative to a unique 
minimal ranking k+, which assigns to each world the lowest possible rank permitted by 

the admissibility constraints of Eq. ( 14). We will first introduce a syntactic definition of 
K+ (an extension of Definition 12) and then show that it satisfies the desired minimality 
condition in Theorem 21, which parallels Theorem 16. ” 

Definition 20 (The ranking K+). Let A+ = {r-i 1 ri = qi A&} be consistent. K+ is 

defined as follows: 

0, if o does not falsify any rule in A+, 

K+(W) = max{Z+(ri) 1 w k Cpi A +i} + 1, (15) 

otherwise, 

where Z+( ri) is a priority ordering on rules, defined by 

Z+(ri) = min{K+(w) ( 0 + vi A tji} + Si. (16) 

Eqs. (15) and (16) can be viewed as two coupled equations; one defines K+ in terms 
of Z+, the second defines Z+ in terms of K +. Fig. 4 presents an effective procedure, 

called Z+_order, for computing Z+ from A +. The significance of Eq. (15) is that the 

priority function Z+ constitutes an economical encoding, linear in the size of A+, from 
which the K+ of any world w can be computed in O(log (A+\) of satisfiability tests 
by searching for the highest Zf rule violated by o. ‘Ihe resulting consequence relation 

b+ and its associated reasoning procedures are called system-Z+. Note that if all L$ 
are equal to zero, the ranking K+ reduces to ~~ (Definition 12). 

Theorem 21 establishes the uniqueness and minimality of K+, while Theorems 22 

and 23 establish the correctness of procedure Z+_order and its complexity. 

Theorem 21. Every consistent A+ has a unique minimal ranking given by K+. 

Theorem 22. The function Z computed by procedure Z+_order satisjes Definition 
20. ‘* 

” We remark that the notions or falsification and verification of a rule, as well as the notion of tolerance 

(Definition 3) remain the same; they are not modified by the introduction of the d-parameters. 

l* Note that Eqs. (17) and ( 18) correspond to Eqs. (16) and (15) in Definition 20. 
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Procedure Z+_order 
Input: A consistent knowledge base A’. 

Output: Z+-ordering on rules. 
1. Let A0 be the set of rules tolerated by A+, and let RZ+ be an empty set. 

2. For each rule rl = p, A @, E &, set Z( T;) = 6i and RZf = RZ+ U {li}. 
3. While RZ+ #A+, do: 

(a) Let A* be the set of rules in A’ = A’ - RZ+ tolerated by A’. 

(b) For each r : 4 fi CT t A’, let 0, denote the set of models for 4 A g that do 
not violate any rule in A’; compute 

Z(r) = w”:,: [dw)I 
r r 

where 

+6 (17) 

(c) Let Y* be a rule in A* having the lowest Z; set RZ+ = RZf U {r*}. 

End Procedure 

Fig. 3 Procedure for computing the Z+-ordering on rules. 

Theorem 23. Givers a consistent A + = (r; / r, = pPr fi, tii}, 1 < i < II, the computation 

of the ranking Z + requires O( n2 x log n) satis$ability tests. 

Two remarks are in order. First, the complexity of the procedure may seem surprising 
given that Eqs. ( 17) and ( 18) are manipulating worlds the number of which grow expo- 

nentially. These equations are written this way in the algorithm to show the connection 
with the equations in Definition 20. Yet, as shown in Lemmas A.5 and A.6, the values 
needed in Eqs. ( 17) and ( 18) are computed by manipulating the rules in RZ+, and 

not worlds. 

The second remark concerns step 3(c) in the procedure. It seems that instead of 
including only one rule in RZ’ all of the rules in A* should be added. The following 
example illustrates why doing this may result in a ranking not satisfying the compactness 
properties of K-+. Consider the knowledge base 

If we use the suggestion above, then the sequence by which rules are added to RZf is 
[ r1 and r2, r3 and r4, r-51, and the priorities Z on rules will be: Z( rl) = 35, Z( r-2) = 0, 

Z(r,) = I, Z(r4) = 36 and Z+(rS) = 2. On the other hand, if procedure Z+_order is 
used, then the sequence by which rules are added to RZ+ is [ rl and r2, t-3, rg, r4], and 

the Zf are: Z+(ri) = 35, Z’(r2) = 0, Z+(r3) = 1, Z’(r5) = 2 and Z+(r4) = 3. By 
virtue of the difference in the priority of rule r4, the ranking induced by Z+ will be 
more compact than the one induced by Z. 
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Once Z+ is known, determining the strength 6 with which an arbitrary query u is 

confirmed, given the information 4, written 4 b”, u requires 0( log n) satisfiability 
tests: first K+(c$ A a) and ~~(4 A T(T) are computed, using a binary search as in 
Lemma AS. Then, these two values are compared and the difference is equated with 
the strength 6. Clearly, as in the case of a flat knowledge base, if the rules in A+ are of 
Horn form, computing the priority ranking Zf and deciding the plausibility of queries 

(4 i_“, (T) can be done in polynomial time [ 211, and moreover, IQ. ( 13) holds. 

3.3. Examples 

Example 24. Consider again the collection of rules of Section 2.3, augmented with 6’s, 
and denoted here by A$: 

t-1 :bAf. 

r2 : p % b. 

t-3 :p37f. 
64 

r4 : b--+w. 

t-5 : .f -%a. 

The Z+-ordering is computed as follows: Since both rl, t-4, and t-5 are tolerated by 
all the rules in the knowledge base, Z+ (rl ) = 61, Zf(r4) = 64, and Z+(rS) = &. Any 
K+-minimal world verifying t-2 and t-3 must violate t-1 ; therefore, following procedure 

Z+_order, Z+(r2) = 61 + 82 + 1 and Z+(r3) = 61 + 83 + 1. 

All the plausible conclusions shown in Table 2 are also in the consequence rela- 
tion k+ induced by A&. As an illustration, consider the conclusion p A b j-+ -f 
(“penguin-birds don’t fly”), which amounts to K+ (p A b A 1 f) < K( p A b A f) . Note 

that any minimally ranked world wt satisfying p A b A -f must violate t-1 : b * f, 
and thus K+(OI) = Z+( t-1) = 61. Similarly, any minimally ranked world w2 satisfying 

p AbA f must violaters :p-%~f, and thus K+(w~) = Z+(q) =6~+& +l. The 
preference for r3 over r-1 is established independently of the initial 6’s assigned to these 
rules. In the knowledge base above, the priority of rg (“typically penguins do not fly”) 

was adjusted to St + 83 -t 1, so as to supersede 61, the priority of the conflicting rule 
“typically birds fly”. As a result of such adjustments, the relative importance of rules 
is maintained throughout the system, and compliance with specificity type constraints 
is automatically preserved. This should comg as no surprise since the S and the Z+ 
reflect different considerations. The Si in Cpi --& & establishes the relative strength with 
which I am committed to accept +i in the context of vi. The Z+(ri) priority, on the 
other hand, refers to the degree of surprise of finding a world that violates ri which 

includes the surprise associated with pi: Z+(ri) 2 Si + K+((P~). Thus, while the 6 rep- 
resent individual properties of externally imposed constraints, the Z+ also represent the 
interactions among these constraints. The independence between Z+ and S in relation 
to specificity considerations is formalized in the following proposition. 
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Theorem 25. Let r-1 : cp 61 fi and r : 4 3 (T be two rules in a consistent A such that 
(1) p b,, qb (i.e., (o is more specie than 4); 

(2) there is no ntodef sutisjying 40 A ~4 A # A u (i.e., r-1 cor@icts with 12). 

Then Z’( r-1 ) > Z’( r-2) independent of the values of 61 and 62. 

In other words, the Z+-ordering guarantees that features of more specific contexts 
override conflicting features of less specific contexts. 

In Section 2.3 was pointed out that p b+ w (“penguins have wings”) is not in the 
consequence relation induced by K;. In the case of A;,,, this conclusion is sanctioned 

whenever 64 is set to be bigger than 61, reflecting perhaps the intuition that anatomic 

features (e.g., wings) are more typical than performance characteristics (e.g., flying). 
This solution to property inheritance however, is not entirely satisfactory. If we add to 
this new set of rules a class of “birds” which are “wingless”, system-Z+ will conclude 
that either “penguins have wings” or “wingless birds fly” but not both. The fact that 
“penguins” are only exceptional with respect to “flying” (and not necessarily with respect 

to “having wings”) is automatically encoded in the Z+ ranking by forcing Z+(q) to 

exceed Z+( rl ) + 63 independently of 84 (and Z+( t-4) ). These independencies among 
the Z+ assigned to the rules may be exploited in future proposals as a basis for the 

formulation of more complex rule interactions, similar to the partial orders among 
priorities proposed in [ 25 1 (see Section 4). 

The next example illustrates the use of S’s to establish preferences among defaults 
when there are no specificity considerations available. 

Example 26. Consider the set A,;,: 

i-1 : “quakers are pacifists (with strength 81)” q 61 p. 

t-2: “republicans are non-pacifists (with strength 82)” r 82 up. 

Since each rule is tolerated by the other, the Z’ of each rule is equal to its associated 

6: Z+(rl) = 61 and Z+(Q) = 62. Given an individual, say Nixon, who is both a 
republican and a quaker, the decision of whether Nixon is a pacifist will depend on 
whether 61 is larger than, less than, or equal to 82. This is because any model wrqP for 

quakers, republicans, and pacifists must violate r-2. and consequently K+( w,.~,,) = 82, 
while any model w,.~~,’ for quakers, republicans, and non-pacifists must violate rl, that 
is, K+(W ry7,,) = 61. In this case the decision to prefer one world over the other does 
not depend on specificity considerations but rather on whether the rule encoder believes 
that religious convictions carry more weight than political affiliations. 

4. Related approaches 

Lehmann [46] introduced a consequence relation called rational closure which ex- 
tends the inferential power of p-entailment. ” Rational closure is defined in terms 

” As mentioned in Section 2.2 and shown in I46 I, r-entailment and p-entailment are equivalent notions 
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of a relation called more exceptional, where a wff (Y is said to be more exceptional 
than j3 if 

ffVvp~pTX. (19) 

Based on this relation, Lehmann then used an inductive definition to assign a degree to 
each wff a in the language: degree(a) = i if degree(a) is not less than i and every p 

that is less exceptional than (Y has degree(P) < i. Finally, cx b p was defined to be in 
the rational closure of A iff 

degree( a> < degree( cy A l/3). (20) 

Goldszmidt and Pearl [32] showed that degree(a) is identical to ~~ (a) and, hence, 
rational closure is semantically equivalent to z-entailment. I4 The difference between 
the two systems is both conceptual and computational, concerning the role of the 

Z-ordering. System-Z begins by computing a priority ordering on rules, from which 
ranking on worlds and formulas can be computed, if needed. Rational closure be- 
gins with an inductive definition of degrees of formulas, from which priorities on 

rule can be computed as a special case, setting degree(4 -+ $> = degree( 4). As 
we remarked earlier, rule ordering constitutes remarkably efficient encoding of both 
worlds and formula rankings, the computation of which can be amortized over many 

queries. This ordering also facilitates a concise characterization of the consequence re- 
lation as shown in Q. (13). It is natural, therefore, to view the Z-ordering as an 
intrinsic compilation of the knowledge base, and the basis from which inferences com- 

mence. l5 
Lehmann and Magidor [47] provide an axiomatic characterization of the rational 

closure and showed that the rational closure can be obtained by closing the relation of 

p-entailment under a rule (suggested by David Makinson) called rational monotony. 
Rational monotony permits us to conclude LY A p b y from LY b y as long as the 

consequence relation does not contain CY b -p. Since rational monotony is induced 
by any admissible ranking, not necessarily the minimal one defined by system-Z, z- 
entailment can be thought of as an enrichment of p-entailment with properties that are 
sound in any individual (admissible) ranking function. 

A related system was developed by Delgrande [20], albeit from a different perspec- 
tive, and using a looser definition of ranking. Delgrande based his system on first-order 

conditional logic [52] and augmented its inferential power using a fixed-point con- 
struction to obtain an extension of A. A conditional is added to the extension if it is 
supported by what is already in the extension. The final extension constitutes a conse- 
quence relation that is similar to that of rational closure. 

From the perspective of defeasible reasoning, system-Z+ extends system-Z and ra- 
tional closure by providing the user with the power to explicitly set priorities among 

I4 Another equivalent system was independently developed by Rott [66], who intended to capture the behavior 

of counterfactual conditionals. 
t5 The origin of the Z-ordering can be traced back to Adams [ l] where it is used to build “nested sequences” 

of confirmable subsets of d. A similar construction was also used in [46,47] to prove the co-NP-completeness 

of the rational closure 
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default rules, while simultaneously maintaining a proper account for specificity relations; 
and, as will be seen in Section 5, system-Z+ also permits reasoning with imprecise ob- 
servations. However, it inherits the main deficiency of these two formalisms, namely, 
the inability to sanction inheritance across exceptional subclasses (see Section 3.3). 

This difficulty can be overcome by reshaping the ranking function so as to conform to 
the following principle: A world w is preferred to w’ if it falsifies a proper subset of 
the rules falsified by w’. Three formalisms which embody this principle will be briefly 

reviewed next, including the maximum entropy approach in [ 3 11, Geffner’s conditional 
entailment [ 25,271, and the proposal by Boutilier in [ 91. 

The maximum entropy (ME) approach initially proposed in [54, Chapter lo] and 
further developed in [4,3 1) is motivated by the convention that, unless mentioned 
explicitly, properties are presumed to be independent of one another; such presumptions 
are normally embedded in probability distributions that attain the maximum entropy 
subject to a set of constraints. Given a set A of rules and a family of probability 
distributions that are admissible relative the constraints conveyed by A (i.e., P(p; --+ 

$, ) 3 1 -E, for all rr E A), we can single out a distinguished distribution P& having the 

greatest entropy CwEfI P(w) log P( w), and define entailment relative to this distribution 
by $ k, (T iff lim,,a PpIll( crl+) = 1. 

An infinitesimal analysis of the ME approach also yields a ranking function K* on 
worlds, where K* can be represented as a set of recursive equations similar to K’ and 

K+ (Definitions 12 and 20) : 

K*(W) = 

i 

0, if w does not falsify any rule in A, 

t: 
[ Z* (r,) ] + I, otherwise. (21) 

+cO,A-*, 

While K+ (w) in Section 3 is defined by the maximum priority rule violated in w, K*(W) 

depends on the summation of these priorities. This difference has implications for both 
the computational complexity and the quality of conclusions that these two proposals 

sanction. Although the procedure for computing the Z’ priorities in the ME approach 
is very similar to the one presented in Fig. 4 the computation of the Z’ priorities (and 

the query-answering procedures) has been proven to be NP-hard even for Horn clauses 
(see [ 71). On the other hand, the ME approach allows the sanctioning of inheritance 
among exceptional subclasses (see [28,311 for further discussion on the advantages 
and disadvantages of this formalism). 

In Geffner’s conditional entailment, rather than letting rule priorities dictate a ranking 
function on models, a partial order on interpretations is induced instead. To determine 

the preference between w and WI, we examine the highest priority rules that distinguish 
between the two, i.e., that are falsified by one and not by the other. If all such rules 
remain unfalsified in one of the two possible worlds, then this model is the preferred 
one. Formally, if F[w] and F[w’] stand for the set of rules falsified by w and w’ 
respectively, then w is preferred to w’ iff 3[w] # 3[w’] and for every rule in 

F[w] - 3[w’] there exists a rule r’ in 3[w’] - 3[w] such that r’ has a higher 
priority than r. Thus, a model w will always be preferred to w’ if it falsifies a proper 
subset of the rules falsified by w’. 
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Another difference in Geffner’s proposal is that the rule priority relation is a partial 
order as well. This partial order is determined by the following interpretation of the rule 
I+J --+ I++: if p is all we know, then, regardless of other rules that A may contain, we are 
authorized to assert $. This means that r : rp -+ I) should get a higher priority than 
any argument (a chain of rules) leading from 4p to -v/ and, more generally, if a set 

A’ c A does not tolerate r, then at least one rule in A’ ought to have a lower priority 
than r. In general, we say that a proposition u is conditionally entailed by 4 (in the 
context of a set A) if (+ holds in all the preferred models for 4 induced by every priority 
ordering admissible for A. Conditional entailment rectifies many of the shortcomings of 
system-Z, as well as some weaknesses of the entailment relation induced by maximum 

entropy. However, having been based on model minimization as well as on enumeration 

of subsets of rules, its computational complexity might be overbearing. A proof theory 
for conditional entailment can be found in [ 251. 

Boutilier [9] proposed a system which combines the priority ordering of the flat 
version of system-Z+ (i.e., system-Z) with Brewka’s [ 121 notion of preferred subthe- 
ories. Thus, whereas system-Z+ assigns equal rank to any two worlds that violate a 

rule r with Z+(r) = z and no rule of higher Z +, the proposal in [9] will make further 
comparisons in terms of rules of lower priority violated in these worlds. In the case of 
the example discussed in Section 3.3, since any minimal world satisfying p A w must 

violate a proper subset of the rules violated by any minimal model for p A TW, the 
desired conclusion is certified. These notions are formalized in terms of the modal logic 
CO* which is semantically related to the probabilistic interpretation proposed in this 
paper [ 81. Nevertheless, counterintuitive examples to this notion of entailment can still 

be found in [ 25,321. While Boutilier’s proposal appears to be simpler than conditional 
entailment (as it does not require partial orders), its computational effectiveness is yet 

to be analyzed. 
In the next section system-Z+ is extended to permit for inferences from imprecise 

observations. 

5. Indirect evidence, and imprecise observations 

So far, a query was defined as a pair of boolean formulas (4, a), where 4 (the 
context) stands for the set of observations at hand and u (the target) stands for the 

conclusion whose belief we wish to confirm, deny, or assess. A query (4,~) would be 
answered in the affirmative if u was found to hold in all minimally ranked models of 
4, and the degree of belief in u would be given by K( l(+ A 4) - ~((7. A 4). 

In many cases, however, the queries we wish to answer cannot be cast in this format, 
because our set of observations is not precise enough to be articulated as a crisp boolean 
formula 4 in the language chosen for analysis. Instead, the observations at hand provide 

merely indirect (or “soft”) evidence in favor of 4. 

Example 27. Assume that we are throwing a formal party and our friends Mary and 
Bill are invited. However, judging from their previous behavior, we believe “if Mary 
goes to the party, Bill will stay home (with strength a)“, written M 5 1B. Now 
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assume that we have some indirect evidence (of strength K) that Mary will go to the 
party (perhaps because she is extremely well dressed and is not consulting the movie 

section in the Times) and we wish to inquire whether Bill will stay home. 

It would be inappropriate to query the system with the pair (M, TB), because the 

context M has not been established beyond doubt. The difference could be critical if we 
also have some indirect evidence against “Bill staying home”, (e.g., he was seen renting 
a tuxedo). A flexible system should allow the user to assign a separate degree of belief 

to each component of 4 and proceed with analyzing its rational consequences. Thus, a 

query should consist of a tuple like (41, KI ; 42, K2;. . ; c$,,, K,,, : a), where each K; 
measures the degree to which the contextual proposition 4~ is supported by evidence. I6 

At first glance it might seem that system-Z+ would automatically provide such a 
facility through the use of variable-strength rules. For example, to express the fact that 
Mary seems to be going to the party, we can perhaps add to A a dummy rule Obsl 5 M 

(stating that if Mary meets the set of observations Obsl, then Mary is believed to be 

going to the party) and then add the proposition Obsl to the context part 4 of the query, 

to indicate that Obsl has taken place. 
This proposal has several shortcomings. First, in many systems it is convenient to 

treat if-then rules as a stable part of our knowledge, unperturbed by observations made 

about a particular individual or in any specific set of circumstances. This permits us 

to compile rules into a structure that allows efficient processing over a long stream of 
queries. Adding query-induced rules to the knowledge base will neutralize this facility. 

Second, rules and observations combine differently: The latter should accumulate, 
the former do not. For example, if we have two rules a 61 c and b Lc and we 

observe a and b, system-Z k would believe c to a degree max(6t ,a*). However, if a 
and b provide two independent reasons for believing c, the two observations together 

should endow c with a belief that is stronger than any one component in isolation. To 

incorporate such cumulative pooling of evidence, we must encode the assumption that 
CI and b are conditionally independent (given c), which is not automatically embodied 
in system-Z+. I7 

To avoid these complications, the method we propose treats imprecise observations 
by invoking specialized conditioning operators, unconstrained by a rule’s semantics. We 
distinguish between two types of evidential reports: 

( 1) Type-J: “All things considered”, our current belief in $ should become J. 
(2) Type-L: “Nothing else considered”, our current belief in C$ should shift by L. 

Example 28. We can illustrate the distinction between the two evidential reports through 
the party example consisting of the single rule r,, : M --% TB (“if Mary goes to the 
party, then Bill will not go”). The resulting ranking is depicted in on the left-hand 

side of Fig. 5, as can be seen by a trivial application of procedure Z+_order, yielding 

“We remark that evidence in this paper is regarded as setting the context of a query and not as a modifier 

of the knowledge in A Statistical methods for accomplishing the latter task are explored by Bacchus [ 31. 
I7 The assumptions of conditional independence among converging rules is embodied in the formalism of 

maximum entropy [ 3 I 1, as well as in the causal interpretation of rules introduced in Section 7. 
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T 
J=2 

Fig. 5. J-conditioning on the Bill and Mary party example, showing the effect of a strong (J = 2) evidence 
in favor of M. 
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Fig. 6. L-conditioning on the Bill and Mary party example, showing the effect of a strong (L = 2) evidence 
in favor of B. 

Z+( r,,) = 4, and Eqs. (5) and (15). We find K(O) = 0 for every world w, except for 
worlds w k B A M, for which K+(W) is at least 3. This means that we have no reason 
to believe that either Mary or Bill will go to the party, but we are pretty sure that both 

of them will not show up. 
Now suppose we see that Mary is very well dressed, and this observation makes our 

belief in M increase to 2, that is, K+’ (44) = 2. I8 To conform to this observation, 
we shift all the (TM) -worlds upward, relative to those of the M-worlds, by as many 
increments as required to satisfy the condition K+’ (44) = 2, and obtain the ranking 
depicted on the right-hand side of Fig. 5. As a consequence, our belief in Bill staying 

home also increases to 2 since K+‘(B) = 2. 

I8 Where IC+’ denotes the revised ranking 
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Next, suppose that someone tells us that he has a strong hunch that Bill plans to show 
up for the party, but fails to tell us why. There are two ways in which this report can 
influence our beliefs. The natural way (Type-L) would be to assume that our informer 
has not seen Mary’s dress and even might not be aware of Bill and Mary’s relationship- 

hence we assess the impact of his report in isolation and say that whatever the value 
of our current belief in Bill going, it should increase by two increments, or L = 2. The 

ranking function K+” resulting from this shift is depicted on the right-hand side of Fig. 

6, showing K+” (B) = 0 and K+” (-M) = 0, and we are back to the initial ranking of 
B and of M, except that our disbelief in both Mary and Bill being at the party has 
decreased to K+” (M A B) = 1. A second way would be to assume that our informer 

is omniscient and having taken into consideration all we know about Bill and Mary, he 
now instructs us to revise our rankings so that the final belief in “Bill going” will be 
of strength 2. With this Type-J interpretation, we shift the -B-worlds upward as many 
increments as required to establish K+“(-B) = 2 and obtain (after four increments) 
K+“(M) = 2, thus concluding that Mary will not show up to the party after all. 

The transformations dictated by these two interpretations of evidential reports parallel 
the probabilistic notions of Jeffrey’s conditioning (for Type-J) [ 561 and virtual condi- 

tioning (for Type-L) [ 54, p. 441. We now give a formal definition of these transforma- 

tions and assess their computational complexity. 

5.1. Tape-J: all things considered 

Let K’(W) be a revision of K(W) representing evidence, of total strength J, directly 

supporting a wff 4. The Type-J reading of such evidence translates to the condition 
K’( -4) = J > 0 (and, consequently, ~‘(4) = 0). In order to compute K’(@) for every 
wff rl/, we make the assumption that when an agent reports of an observation bearing 
directly on 4, such observation does not normally change the conditional degree of 

belief in any propositions conditional on the evidence 4 or on the evidence -4 [40,56]. 
Thus, letting P and P’ denote the agent’s probability distribution before and after the 

observation respectively, we have l9 

P’($l& = P(V+$) and P’($l+) = P($l+), 

which leads to Jeffrey’s rule [ 401, 

(22) 

P’($) = P(tw)P’(4) + p(J+4+)p’(+). (23) 

Translated into the language of rankings (using Eqs. (2)-(4)), Eq. (23) yields 

K’(@) = minlK(fiI4) + K’(4); ~($174) + ~‘(+)l, (24) 

which offers a convenient way of computing K’($) once we specify ~‘(4) = 0 and 

K’( -4) = J. Eq. (24) assumes an especially attractive form when computing the K’ of 
a world w: 

” Eq. (22) is known ils the J-condition 156 I. 
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K’(u) = 
if w I= 4, 

K(01+') + K’(Y$), if w + +. 
(25) 

Eq. (25) corresponds exactly to the a-conditioning proposed in Spohn [ 71, Definition 6, 
p. 1171, with (Y = ./. If ~‘(14) = 00, this process is equivalent to ordinary Bayesian 
conditioning, SinCe K’(W) = ~(014) if w + 4 and K’(W) = co otherwise. Note, 
however, that in general this conditioning is not commutative; if 41 and 42 are mutually 
dependent (i.e., K( &t\c$q ) $ K( c#q)), the order in which we establish K( ~$1) = .I, 

and K( ~$2) = 52 might make a difference in our final belief state. 2o This is not 
surprising since in the “all things considered” interpretation the last report is presumed 
to summarize all previous observations. 

5.2. Type-L reports: nothing else considered 

L-conditioning is appropriate for evidential reports of the type “new evidence was 
obtained which, by its own merit, would support C$ to degree L”. Unlike J-conditioning, 
the degree L now specifies change in the belief of 4, not the absolute value of the 
final belief in 4. As in the case of Type-J reports, we assume that in naming Q, 
as the direct beneficiary of the evidence, the intent is to convey the assumption of 
conditional independence, as formulated in Eq. (23). Next, following the method of 
virtual evidence [ 54, Chapter 21, we assume that the degree of support L quantifies the 
likelihood ratio A( 4) associated with some undisclosed observation Obs: 

A(4) = 
P(Obsl4) 

P( Ob+$) ’ 
(26) 

which governs the updates via the product rule 

x= A(@)P(4) 

P’($) p(+) . 
(27) 

Translated into the language of rankings, this assumption yields 

K’(d) - K’( -4) = K(4) - K( 14) - L (28) 

and, since either K’( 4) or K’( ~4) must be zero, we obtain 

K’(4) = max[B;K(4) - K(+‘) - L], (29) 

K’(-+) =lIUX[o;K(+) - K(4) + L]. (30) 

We see that the effect of L-conditioning is to shift the difference between the ranks of 
4 and -4 by the specified amount L. Once K’( 4) is known, Jeffrey’s rule (Eq. (24) ) 
can be used to compute the K’(U) for an arbitrary wff (+ yielding 

2o Spohn [71, p. 1181 has acknowledged the desirability of commutativity in evidence pooling but has not 
stressed that o-conditioning commutes only in a very narrow set of circumstances (partially specified by his 
Theorem 4). These circumstances require that successive pieces of evidence support only propositions that 
are relatively independent-the truth of one proposition should not imply a belief in another. Shenoy [67] 
has corrected this deficiency by devising a commutative combination rule that behaves like L-conditioning. 
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I 
IninlK(cT/4) + K(4) - K(+) - L; K(cT/+)], 

if K(+) + K(4) < L, 

K’(c) = min[K(cj+);K(v~+) +K(+) +r,-K(4)], 

if K(+) + K(4) > L, 

min[K((Tl~);K((TI1~)], if K(+) +K(+) = L. 

This expression takes the following form for K’(O): 

(31) 

K’(W) = 
K(ml4) + ma[o; K(4) - K( -4) - L], if w I= 6 

K(WIT+) +maxfo;K(+) -K(+) +L], ifw/==#. 
(32) 

As in J-conditioning, if L = CC then K’(W) = ~(~14). For the general case, we can 
see that the effect of L-conditioning is to shift downward the K of all worlds that are 
models of the supported proposition r#~ relative to the K of all worlds that are not models 

for 4. However, unlike J-conditioning, the net relative shift is constant and is equal to 

L, independent of the initial value of ~(4). It is easy to verify that L-conditioning is 
commutative (as is its probabilistic counterpart, see Eq. (27)), and hence it permits 

iterated belief revision in the case of multiple evidence. Note also that J-conditioning 
respects evidence independence; if two pieces of evidence support a given proposition 

4. with strengths Lt and Lz, then the combined effect is equivalent to shifting the rank 

of C#I (relative to -4) by Lt + Lz, as is expected from two independent bodies of 
evidence. 

5.3. Complexity analysis 

From Eq. (24) we see that ~‘(4) can be computed from ~(@Iqb) and K(+[+), 

which, assuming we have Z+, requires a logarithmic number of propositional satisfia- 

bility tests (see Section 3.2). L-conditioning can follow a similar route (see Eq. (31)). 
Special precautions must be taken when simultaneous, multiple pieces of evidence 

become available. First, J-conditioning is not commutative, hence we cannot simply 
compute K’ by J-conditioning on 41 and then J-conditioning K’ on c#+ to get K”. We 

must J-condition simultaneously on $1 and $2 with their respective J-levels, say Jt 

and 52. Worse yet, an auxiliary effort must be expended to compute the J-level of each 
combination of 4’s, in our case $1 A &I, +t A 742, etc. This is no doubt a hopeless 
computation when the number of observations is large. 

L-conditioning, by virtue of its commutativity, can process multiple observation by 
recursive computations. Assume we wish to assess the impact on a sentence I,!I of two 
(undisclosed) pieces of evidence, one supporting #t (with strength Lt ) and the other 
supporting ~$2 (with strength L2). We first L-condition K on 41 and calculate K’( q!q ) 

and K’( ~$2) using Eq. (30) and (3 I), respectively. Applying Eq. (31) this time to 
K’ ( I/I A qb2 ) , we calculate K’ (9 I C#J~ ) . Second, we L-condition K’ on 42, compute K” ($2) 

using Eq. (30), and finally, using K’(I,~/&) and ~“(42) in Eq. (31) obtain K”($).~’ 

Note that, although each of these calculations requires only O(log IAl) satisfiability tests, 

2’ The generalization to more than two pieces of evidence is straightforward. 
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this computation is effective only when we have a well-designated target hypothesis (/I to 
estimate. The computation must be repeated each time we change the target hypothesis, 
even when the context remains unaltered. This is because we no longer have a facility 
for economically encoding a complete description of K’, as we had for K (using the 

Z+-function). Thus, the encoding for K’ may not be as economical as that for K (the 
number of worlds is astronomical), unless we manage to find dummy rules that emulate 
the constraints imposed on +t by the (undisclosed) observation. Such dummy rules 
must enforce the conditional independence constraints embedded in Eq. (23)) without 
violating the admissibility constraints (Eq. (7)) in A. These dummy rules can be 
encoded using the stratification mechanism proposed in [ 35,361 using the causal rule 

-4 3 -0bs. 

6. Belief revision and epistemic states 

Alchourron, Gardenfors and Makinson (AGM) have advanced a set of postulates 

that have become a standard against which proposals for belief revision are tested [ 21. 
The AGM postulates model beliefs as a deductively closed set K of sentences and 
constrain how a rational agent should change its belief set K when new information C#J 
arrives. The guiding principle behind the AGM postulates is that of minimal change, 

that is, the new belief set, K’ = K * 4, should not differ from K by more than the 
evidence 4 requires. The central result of the AGM theory is that the postulates are 
equivalent to the existence of a complete preordering of all propositions according to 
their degree of epistemic entrenchment such that belief revisions always retain more 
entrenched propositions in preference to less entrenched ones. 

From a computational viewpoint, the existence of such an ordering immediately sug- 
gests the existence of an epistemic state, supplementing the belief set K, in which the 
entrenchment ordering is encoded and processed, much like the K(+)-ordering defined 
in Sections 3 and 5. However, from an abstract epistemological viewpoint, one can 

argue that for the purpose of merely characterizing the process of belief revision, we 
need not concern ourselves with properties of epistemic states outside K; any revision 
process satisfying the AGM postulates is guaranteed to behave as though propositions 

were ordered on some scale of entrenchment, thus preserving the principle of minimal 
change. In this section we will show that implementation as well as characterization of 

belief revision requires specific reference to a concrete representation of an epistemic 

state and, moreover, that a system of conditionals (i.e., A) constitutes an adequate rep- 
resentation for both functions. We also explicate those aspects of belief revision that 
would not receive adequate characterization by any AGM-type revision operator. 

6. I. Implementational issues 

The representational requirements of belief revision are fairly clear: we must find 
some efficient code for deciding when a given proposition is believed and which beliefs 
should be given up when new information arrives. In view of the fact that the number 
of propositions in K is unbounded, the relative entrenchment of propositions must be 
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computed from some finite syntactic code, for example, a ranking function. Indeed, once 
we specify a single ranking function K(W), each proposition is assigned the rank of its 
lowest ranked world, and we can associate the set of beliefs K with those propositions 
p for which K( -p) > 0 (see principle (3), Section 1). It follows, then, that K can 

be represented by any theory $ whose models have rank 0, that is, Mods(@) = {w 1 

K(W) = 0). To revise K by a new belief 4, we can raise the K of all models of ~4 
relative to those of 4 until K( -4) becomes CY > 1, at which point the newly shifted 

ranking defines a new set of beliefs K’ = K * $. 
This process of belief revision, which Spohn [ 71, p. 1331 called Lu-conditioning, 

was presented by Gardenfors [24] as an example of how belief revision complying 
with the AGM postulates can be realized. 22 Gardenfors also suggested that K(W) be 
regarded as the epistemic state supporting K. However, since the number of worlds is 
still astronomical, identification of an epistemic state with a ranking function, although 
theoretically feasible, could not serve as a realistic model for human belief revision, nor 

can it be used in practical reasoning systems. Any realistic representation of “epistemic 
state” should contain an economical code from which K(W) can be computed and, 
indeed, the analysis of Sections 3 and 5 identifies such a code. 

In Sections 3 and 5 we saw that Spohn’s process of belief revision can be performed 
by syntactic operations on the rules in A, with Bayes conditioning (hard evidence) 
corresponding to LX = cc, and J-conditioning (soft evidence) corresponding to LY = J. 

This suggests that the conditionals residing in A provide a sufficient characterization of 
an epistemic state; no additional information such as ranking function or entrenchment 
ordering is necessary. In particular, for LY = cx), the belief set K coincides with the set 
of propositions z-entailed by A, given all the available evidence 4, or, using Eq. (13), 

,L?EK iff Th($) k:P (33) 

where 

Th(4) = 4 A q; > @i, r, : pi + fii E A. (34) 
i:Z(r,)>K;(&) 

In general, if 40 stands for some initial evidence supporting K, and 4 is the new 
evidence to be incorporated, then the revision of K by c$, K * C$I, is defined by 

/?E K*4 iff Th(f$oA@) +fl. (35) 

This syntactic characterization is equivalent to the ranked-based definition of beliefs 

PE K iff K#~,,$(-+) > 0 (36) 

where ~4~~4 is the shifted (or conditional) ranking 

if w /= #, 
otherwise. 

(37) 

22 In Section 6.2 (footnote 25), we will see that u-conditioning does not, in fact, comply with the AGM 

postulates, nor with any other postulates of revision operators. 
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Table 3 Table 4 
Initial ranking for the working student example Revised ranking after observing a 

Kf Possible worlds + 
KG Possible worlds 

0 (~s,a,w), (-S,-VI,~), (7s. la,-w) 0 (--r~,a, WI 
1 (xa, yw), (s, a, +v) 1 C-s, a, -v), (s, a, 7~) 

2 (s,a,w), (s,-a,-), (s,-a,w) 2 (s, a, w) 

Table 5 
Revised ranking after observing s 

+ 
KS Possible worlds 

0 

1 

(s, a, -) 

(s,a,w), (s,~a,-w), (s,w,w) 

The equivalence of these computations is illustrated in the following example. 

Example 29. Consider the following collection of rules A,: 23 

i-1 : “Typically students don’t work’ s + 1~. 

r2: “Typically students are adults” s + a. 

r-3: “Typically adults work” a -+ w. 

The Z+-ordering on the rules (computed according to Eq. ( 11)) are: Zf( a -+ w) = 

0 and Z+(s + ~w) = Z+(s -+ a) = 1, from which the initial K+ ranking can be 
computed (Eq. ( 15)), as depicted in Table 3. The rankings in Tables 4 and 23 show 
the revised rankings after observing 4 = a (e.g., “Joe is an adult”) and 4 = s (e.g., 
“Joe is a student”), respectively. The belief sets associated with these rankings can be 

computed from the worlds residing in K+ = 0. Thus, the belief set associated with K: 

is the logical closure of the proposition “Joe is a working adult and is not a student”, 
while that associated with of is the logical closure of “Joe is an adult student and does 
not work”. 

These belief sets can also be computed using the syntactic characterization of Eq. ( 13). 
For example, the theories corresponding to 40 = true, C#JI = a, ~$2 = s, respectively, are 
given by 

Th(true) = {u 3 w, s 3 ~w, s 3 a}, 

Th(u) = {a, a 3 w, s 3 -w, s 3 u} E (1s, a, w}, (38) 

Th( s) = {s, s 3 a, s 3 TW} = {s, u, TW}. 

The two implications in 7%(s) mirror the rules s -+ lw and s -+ a, which are the 

unique set of rules that are maximally consistent with s. 

*’ Note that all Si are 0 for this example. 
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The computational necessity of basing the revision process on a finite set of conditional 
rules, rather than on the belief entrenchment or ranking functions, has been recognized 

by several researchers. For example, Nebel [ 5 I] adapted the AGM theory so that finite 
sets of base propositions mediate revisions. The basic idea in this syntax-based system 
is to define a (total) priority order on the set of base propositions and select revisions 

to be maximally consistent relative to that order, as exemplified in the nonmonotonic 
systems of Brewka [ 121 and Poole [64] (and in the example above). Nebel has shown 
that such a strategy can satisfy almost all the AGM postulates. Boutilier [8] has further 
shown that the priority function Z’ does indeed naturally correspond to the epistemic 
entrenchment ordering of the AGM theory.24 

However, to fully formalize the practice of belief revision, we also need to specify 

how the priority order on the base propositions is to be determined. Although one 
can imagine, in principle, that the knowledge encoder specified this priority order in 
advance, such specification would be impractical because the order might (and, as we 

have seen, should) change whenever new rules are added to the knowledge base. By 
contrast, system-Z+ extracts both beliefs and rankings of beliefs automatically from the 
content of A: no outside specification of belief orderings is required. 

6.2. Characterization issues 

We return now to the issue of characterization, that is, to whether the process of 
belief revision can be characterized adequately without specific reference to properties 

of epistemic states, such as rankings and rules, that are not part of the belief set K. We 

will show that such epistemic properties must be made explicit in any characterization 
of belief revision that aims to capture the following cognitive functions: 

( 1) accommodating variable-weight evidence, 

(2) responding to surprising observations (4 conflicts with K), 
(3) performing iterated belief revisions, 

(4) acquiring new conditionals, 
(5) dealing with actions and change. 

The first three tasks require explicit reference to ranking functions while the last two 
require, in addition, explicit reference to rules. 

The first item has been demonstrated in Section 5. Clearly, any method of handling 
variable-weight evidence requires comparisons between the weight of evidence at hand 
and the degree of entrenchment of beliefs to be given up. Since this information is not 
part of belief sets, it must be supplied by other sources, namely, by ranking functions 
or some encoding thereof. 

Item (2) reflects a major weakness in any operator-based approach to belief revision. 
Since a revision operator *4 defines a function from belief sets to belief sets, the 
resulting belief set K*q6 cannot depend on degrees of disbelief attached to propositions 

I4 The proof in 1 8 1 considers the priorities Z + resulting from a flat set of rules as in system-Z [ 57 1. 
Boutilier [ 91 also shows that an entrenchment ordering obeying the ACM framework obtains from the Z 

priorities of the negation of the material counterparts of rules. 
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outside K. 25 Therefore, two different rankings, say ~1 and ~2, having the same belief 
sets, K1 = K2 (i.e., KI (w) = 0 iff ~2 (w) = 0)) must produce the same revised belief set 
for every 4, namely, 

This carries a disturbing consequence: all background information must be ignored as 
soon as some surprising evidence arrives, that is, evidence that contradicts the current 
set of beliefs. 26 

Item (3)) on iterated revisions, further emphasizes the difficulties associated with the 

restriction that *4 be a function of K only. In the course of responding to a sequence 
of observations, 41, 432,. . . , it is quite likely that we obtain evidence 4,, that discredits 

one or more of the previous observations. Instead of overriding just the discredited items, 
as done in J-conditioning, the operator-based characterization would force us to forget 
all we have seen and start from scratch. The inadequacy of the AGM postulates relative 
to iterated belief revision is further elaborated in [ 10,171, where the difficulties are 

rectified through the introduction of additional postulates. One of these new postulates 

[17]: 

(C?) if 42 + -+I, then (K*&)*& s K*c#Q 

ensures that later evidence ~$2 overrides previous evidence 41 if the two are logically 
incompatible. In this formulation, *4 is not a function but rather a partial function. 

We now address item (4), demonstrating that the encoding of epistemic states as sets 

of conditionals (rather then ranking functions) is necessary for responding not merely 

to empirical observations but also to linguistically transmitted information in the form 
of conditional sentences (i.e., if-then rules). For example, suppose someone tells us 
that, in addition to the story of Example 28, “typically, if a person works, that person 
is compensated” (w -+ c). If our background knowledge is organized as a collection 

of conditionals, we simply add this new rule to our knowledge base (verifying first 
that the addition is admissible), recompute Z+, and are prepared to respond to new 
observations or hearsay. In a rank-based system, where revisions begin with a given 
ranking function K, one cannot properly revise beliefs in response to new conditional 

sentences, because, to maintain consistency and coherence, such revision must depend 
not only on the initial ranking but also on the conditional rules that brought about that 

initial ranking. Two knowledge bases Al and A2 might give rise to the same ranking 
function K+, yet the new conditional may be consistent with Al and inconsistent with 

AT. As an example, consider the sets Al = {a -+ b} and A2 = {lb -+ ~a}. The ranking 
K+ for these knowledge bases is the same (see Table 6). However, the knowledge base 
A; = A2 U {u ---f lb} is consistent, as shown on the right-hand side of Table 6, while 

25 This problem was brought to our attention by Isaac Levi (see [ 481)) and was also addressed by Rott [ 661 

and by Boutilier [ lo]. 

26 Although Spohn [ 71, p. 1331 has shown that belief revision conforming to the AGM postulates can be 

embodied in the context of ranking functions, this requires a major alteration of J-conditioning (Rq. (25) ), 
one that would artificially force K to remain unchanged whenever K( -4) = 0. 
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Ranking K+ for 31 = ((1 - h}, A2 = (71) ---t -cl}, and A; 

Kf AI. 32 A; = A2 U {a --+ +} 

the knowledge base Ai = AI U {u 1 ‘b} is inconsistent. Clearly, these two situations 
require different procedures for absorbing the new conditional (see [ II] ) . 

The AGM postulates, likewise, are inadequate for characterizing the process of incor- 
porating new conditionals, because they are formulated as transformations on belief sets 
and are thus oblivious to the set of conditionals that shaped those belief sets, and into 
which the new conditional is about to join.” 

The ability to acquire new conditionals (as rules) also provides a simple semantics 
for interpreting a class of nested conditionals (e.g., “If you wear a helmet whenever you 
ride a motorcycle, then you won’t get hurt badly if you fall off” *’ ) . Nested conditionals 
cease to be a mystery when viewed as operations of conditional knowledge bases default 

rules. The sentence “if (a y 6) then (c + d)” is interpreted as 

If I add the default u + 0 to my current A, then the conditional c + d will be 

satisfied by the consequence relation i_+ of the resulting knowledge base A’ = 
AU {u + 6). 

Clearly, such assertions can be given unambiguous tests in the language of default-based 

ranking systems. Note the essential distinction between having a conditional sentence 
a -t b explicitly in A and having a conditional sentence a --+ b satis-ed by the 
consequence relation b+ of A. In both cases the conditional a --f b would meet the 
Ramsey test, but only the former case would resist the adoption of the conditional 
a - lb, and would trigger a more drastic restructuring of the knowledge base in the 

spirit of [ 111. This distinction gets lost in systems that do not acknowledge defaults as 

the basis for ranking and beliefs. 29 

The last item on the list, concerning actions and changes, will be discussed more 
fully in Section 7 where, again, it will be shown that an explicit reference to the rules 
is required. In this context, the function of each rule is to identify a group of variables 
that are tied together by a stable mechanism and remain invariant to actions operating 
on neighboring mechanisms. It is only through such grouping that we can localize the 
effect of actions and predict their causal ramifications; the ranking function in itself 
provides no information to support such predictions. 

In summary, belief revision by either indirect evidence, surprising observations, or 

sequences of observations cannot be characterized in terms of a transformation on 

27 GXrdenfors [ 24, pp. 156-1601 has shown that any attempt to characterize the acquisition of conditionals 

using a revision operator would fail by rendering the revision trivial. 

2X Judea Pearl attributes this example to Philip Calabrese (personal communication). 

” Belief revision systems proposed in the database literature [ 13,231 suffer from the same shortcoming. In 

that context, defaults represent integrity constraints with exceptions. 
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belief sets; these operations require knowledge of the ranking function. In addition, 
characterizing the acquisition of new conditionals and the effects of actions requires 
further knowledge of the rules that have shaped the ranking function. This suggests that 
conditional sentences form the basic building blocks of one’s epistemic state, and that 
beliefs and degrees of beliefs in propositional sentences follow as natural byproduct of 
those building blocks. This is to be expected, since conditionals carry generic (hence 
stable) domain knowledge, while unconditional propositions carry transitory factual 
information [ 25,631. 

7. Causal relations and actions 

Problems associated with representing causal relationships plague almost every pro- 
posal for default reasoning [ 371. For example, approaches such as circumscription [ 501 
and default logic [65], which are based on extensions to classical logic, fail to block 
the chaining of the following default expressions [ 531: 

r-1 : “If the grass is wet, then conclude it rains”. 

12: “If this bottle leaks, the grass will get wet”. 

Finding the bottle leaking, we do not wish to conclude from these two rules that it rains, 
nor that it will rain. 

Approaches based on conditional interpretation of causal rules also produce undesir- 
able effects. Consider, for example, the following two rules, both pointing from cause 
to effect and both containing a voluntary act in their antecedents: 

t-3: “If the ignition key is turned on, the car will start” (tk -+ cs). 

r-4: “If the ignition key is turned on and the battery is dead, 

the car will not start” (tk A bd -+ xs). 

From these two rules, all the entailment relationships discussed in Sections 3 and 4 
produce the following pair of inferences: 

tk t_ Ibd, 

Ttk f+ -bd. 

Taken together, these inferences suggest some strange connection between the act of 
turning the ignition key and the state of the battery: the battery is believed to be OK 
when we turn the ignition key on, but becomes suspect of being defective each time 
we turn the ignition key off. Such behavior is counterintuitive, because rules t-3 and r4 
intend merely to describe the response of the car to various combinations of key/battery 
conditions, and were not meant to imply any dependency among those conditions. 

In general, if our understanding of the relationships between the ignition key and 
the battery is encoded in some knowledge base A, we certainly do not expect that 
adding r-3 and r-4 to A would modify those relationships. If the battery state is presumed 
to be independent from the ignition key prior to specifying rules r3 and r4, then it 
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ought to remain independent from the ignition key after specifying those rules. This is 
a prevailing general pattern of causal reasoning: contemplating possible developments 
of future events should not affect our belief in past and present events. We call this 
pattern modularity, and it follows from the Markov property of causal organization, 
simply stated as: the occurrence of each event is independent of all past events, once we 

determine the direct causes of the event [ 54,62,70,72]. The Markov property, which 
will be defined formally in Definition 32, together with the assumption that the rules 

in A specify ull the causal relationships among the events of interest, will next be used 
to induce a new entailment relation, closely rellecting the common interpretation of 

causal knowledge bases. In the example above, the Markov property dictates that the 
relationship between tk and bd be determined solely by antecedents of rules leading to 
bd and tk and, if cs is not mentioned in any of these rules, that relationship will not be 
altered by invoking rules r3 and YJ. 

To incorporate the Markov property into the language of ranking functions, we will 
assume that all rules in A are causal, that is, each antecedent describes an event that 
is understood to have a direct causal influence on the consequent event. (Section 7.2 
provides a definition of causal influence in terms of hypothetical interventions.) Addi- 
tionally, we will assume a finite language /Cc, having II atomic literals just as we did 
in Section 2. Given these assumptions it is convenient to characterize the rules in A in 

terms of a graph f(A): 

Definition 30 (Networks). Let A be a set of causal rules, and let r(A) be a graph 
where each node in r(A) corresponds to atomic symbols XI, x2, . in C, and in which 
an arc is drawn from node x; to node X,j just in case there is a rule in A such that 
x, or lxi appears in the antecedent and x,, or ‘xi appears in the consequent. If the 

resulting graph is a directed acyclic graph (DAG), we will call f(A) a causal network 

(or network for short). j” 

For convenience in this section we restrict the rules to be of the form xi A. Ax,, + 

xn. ” Note that being a truth-value assignment to propositions xi (1 < i 6 n) in L, any 
world w can be represented by a conjunction Ii A . . A I,,, li E {xi, Txi}, of literals. If 

X. I,..., x,, are the parents of x, in I‘( A), then the set {x,, . . . , x,<} is called the parent 

set of xt and will be represented by 7~~. Intuitively, the parent set of xI represents all the 
direct causes for xt. Fig. 7 depicts the DAG r for the network containing rules r3 and 
r4 in the car-starting example, with 7rTT,., = {tk, bd} and %-tk = rbd = {} (the empty set). 

To avoid excessive notation, we will use the symbols xi, x2,. . ,x, both as propo- 

sitional symbols and as variable names. It is understood, though, that whenever these 

s” If all rules in A are causal, it is reasonable to assume that I‘( A) will be indeed a DAG. 

I’ The form xt A. A x,,~ - xn does not restrict the development of this paper but it clarifies the exposition. 

A causal rule may take on the general form (u( XI, , x,,~) --i f?(yl, , yn) where a and p are any boolean 

formulas. Any a(xr , , x,,*) can be simulated by a set of simpler rules, each containing a conjunction of 

atomic antecedents. Moreover, any rule cu( x 1, , x,,,) --t p(y , , .vn) can be represented by the following 

set of rules: a(xt, _. .x,,~) - d’, P(J~,. , vrr) =S tf’, and -p(vt,. ,yn) =+ d’, where d’ is a dummy 
variable and 3 is a sfrict conditionul. as defined in 133 I. 
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Fig. 7. Graph r for the network {tk --t cs, tk A bd - -JCS}. 

symbols appear in an equation, the intent is to assert a set of equations, one for every 
truth-value assignment that the propositional symbols can take. For example, the equality 

k(XilXj) = k(Xi) 

stands for four equalities, 

k(xilxj) = TV k( Txi\Xj) = k( TXi) 3 

k(xillxj) = k(xi), k( yxillxj) = k( lxi). 

To account for the distinct character of causal conditionals, we will impose the 
Markovian property on the admissible ranking functions. The Markov property can best 
be imposed through a process of stratification-the ranking is constructed in layers 

such that the addition of each new layer does not introduce new dependencies among 
variables in existing layers, similar to the construction of Bayesian networks [ 541. 

Definition 31 (Stratijed rankings) 

relative to a DAG r(A) if 

A ranking function K(W) is said to be stratijied 

(39) 

where ri are the parents of xi in r and xi(w) and 7~i (o) are both evaluated according 
to L3.32 

Given a DAG r, it is easy to construct a ranking function stratified relative to f; for 
each parents-son family (Xi, ri) in r, we assign an arbitrary integer-valued function 
fi( xi, ri), such that if minxi fi( xi, vi) = 0 then we sum UP these functions over i. It 
is also straightforward, in principle, to check whether a given ranking function K(W) 

is stratified relative to a given graph r. Using Eqs. (5) and (6), we compute from 

K(W) the terms K(Xi(W)(Ti(W)), i = 1,. . . n, we form the sum in (39) and check for 

equality. 
Any ranking function satisfying the decomposition in Eq. (40) also satisfies a de- 

sirable modularity property: If we arrange the literals along an order that agrees with 
the directionality of, the arrows in r, then the ranking associated with the first j literals 

K(X,,... , Xj) = x{zI K( XilTi) is not constrained by any rule residing outside the sub- 
graph corresponding to those literals. Moreover, in a stratified ranking, each parents-son 

32 For every proposition 4, d(w) is defined by d(w) i 4, if o /= 4, 4(w) A -4 if o + -4. 
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Stratified ranking K’ and minimal ranking K+ for the network {tk + cs, tk A bd 4 7~s) 

K Worlds in stratified rank K.’ Worlds in K+ rank 

0 ( -bd. tk, cs). (Ibd, -tk, TX). (-bd, -tk, cs) (1bd, tk, cs), (1bd, -tk, YS), ( ybd, -tk, cs), 

(bd, Ttk, a), (bd, --tk, -cs) 

I (bd, tk, lcs), (bd, -tk, YCS), (-bd, tk, 7~s). (bd, tk, 7~s). (-bd, tk, -a) 

(bd, -tk, cs) 

2 (bd, tk, cs) (bd, tk, cs) 

relationship is treated as an independent autonomous process, since each variable is 
conditionally independent of all its non-descendants, given its parents 

K(X+_, A”‘A.Xi) =K(X,/T,). (40) 

that is, the degree of surprise of an event xi given all prior events (according to the 
ordering mentioned above) must be equal to the degree of surprise of xi given just those 

events that directly cause xl, namely, its parent set. This ensures that rule violations 
that occur in different families accumulate surprise, in much the same way that the 
simultaneous occurrence of independent errors becomes less likely as the number of 
errors increases. 

The summation in Eq. (39) parallels the product decomposition of Bayesian net- 

works [54] 

P(x I,,..., Xl) =fp(x;,T,J. (41) 
i=I 

which embodies the probabilistic version of the Markov property: the parent set of any 
given proposition xi renders X, probabilistically independent of all its predecessors (in 
the given ordering set by the DAG r). Stratified rankings can in fact be regarded as an 
order-of-magnitude abstraction of Bayesian networks, where numerical probabilities are 
replaced by integer-valued levels of surprise (K), addition is replaced by minimization, 
and multiplication is replaced by addition. j3 

In addition to stratification, given a network A, the rankings of interest should also be 
admissible with respect to A, that is (see Definition 2): K(-$~JP~) > 0 for every rule 
po, -+ t/Qi E A. The following example illustrates the difference between the requirements 
of minimality and stratification. 

Example 32. Table 7 contrasts a stratified ranking K” with the minimal ranking K+ 
for the network A = {tk + cs, tk A bd + -xs} in Fig. 7. Consider the world WI + 
-tk A bd A TX. The stratified ranking K” assigns to wt the ranking K~( +k A bd A xs) = 

1, while the minimal ranking K+ assigns K+( -tk A bd A -xs) = 0. Thus, K$ is not 

minimal. In contrast, it is easy to verify that K + is not stratified: K+ (bd) + K+ (tk) = 0, 

31 An even coarser abstraction of Eq. (41) in the context of relational databases can be found in [ 191. 

where the stratification condition is imposed on relations and then used in finding backtrack-free solutions for 

constraint satisfaction problems. 
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but K+( bd A tk) = 1 in clear violation of Eq. (39), which dictates K( bd A tk) = 
K( bd) + K( tk) (SiIlCe rbd = rtk = {I). We see that the counterintuitive behavior shown 
in the beginning of this section emanates from a spurious dependency that k+ induces 
between bd and tk. This dependency is non-existent in stratified rankings. 

In the next section we introduce a notion of entailment tied to stratified rankings 
and show formally that stratification endows this entailment relation with Markov and 
modularity properties (see Theorems 34 and 35 below). 

7.1. c-entailment: consequences of causal rules 

Definition 33 (c-entailment). Given a knowledge base A of causal rules, u is c-entailed 
by #J in the context of A, written qf~ ]b C (T, if KS(gA+) < K,(~cTA#J) in every ranking 
K, stratified relative to r(A), and admissible with respect to A. 

The expression 4 [kc u is not to be interpreted as stating that t$ is believed to cause 
cr but rather that u is a plausible conclusion of C# under the causal interpretation given 
to the conditionals in A. 

Theorems 34 and 35 illustrate how the Markov property imposed by the stratification 
(Definition 32) shapes the entailment relationship introduced in Definition 33. 

Theorem 34. Let {x,, . . .,n,}beoftheparentsetofxinT(A).LetY={y~,...,y,} 
be a set of atomic propositions such that no yi E Y is a descendant of x in f(A), 
and let q5r be any wfs built only with elements from Y. 34 If xr A . . . A xs \bc x, then 
drr A x, A . . ’ A xs Ike x. 

As a corollary to Theorem 34 it is easy to see that c-entailment is insensitive to irrel- 
evant propositions. In particular, the sets of consequences induced by two disconnected 
networks will be independent of each other. 

Theorem 35. Let r’( A’) be a subgraph of I’( A) such that if x’ is a node in r’( A’) 
then all the rules in A with x’ (or TX’) as their consequent are also in A’. Let cp and 
$ be two wfi built with propositions corresponding to nodes in r’( A’). If 4p lb-C t,4 in 
the context of A’, then sp IkC Ic, in the context of A. 

Theorem 35 reflects the modularity of causal knowledge bases as it permits us to 
add rules to the network while preserving all consequences derivable from the original 
subnetwork. 

Entailment relations are often characterized using a set of axioms, which can also 
be used as inference rules. For example, the following axioms completely characterize 
p-entailment [ 1,25,43] : 

(1) (Defaults) If q -+ tc, E A, then 4p ]bC Q. 
(2) (Deduction) If + cp > $, then cp ]kC $. 

34 We also require that C#I~ A xr A A xs be satisfiable. 
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k bd 

Fig. 8. Network I‘ for the causal conditionals {k - cs, k A hd -+ TX, lo -+ hd} 

(3) (Augmentation) If cp 11~~ ti and cp 11~~ y, then P A y 11~~ $. 

(4) (Cut) If (D 11~~. y and P A Y 11~~ $, then (o ikc $. 
(5) (Disjunction) If P ]I_(. @ and y lkc $, then P V y /kc I,+. 

(6) (And) If P /l-C ICI and P ll-l. Y, then P Ii-C ti A Y. 
Since the set of stratified rankings for a given network r(A) is a subset of the admissible 

rankings for A, these six axioms must also be sound with respect to c-entailment. The 
requirement of stratification allows us to augment this set with an additional rule, which 
we call Markov, that takes advantage of the structure of the graph r, and essentially 

follows Theorem 34. 35 
(7) (Murkov) If X, A A x, //No x, then 4~ A x,. A . . A x, /-+c x whenever 

l {G,..., x,~} is the parent set of x in r(A), and 
l & is a wff built only with elements from {yl, . , y,} such that no yi t y is 

a descendant of x in I’( A). 36 
We conjecture that inference rules ( 1) -( 7) constitute a complete system of inference 

with respect to stratified rankings in the following sense: given a set of rules A (and the 

corresponding graph r(A) ), if 9 11~~ 9 holds in every stratified ranking with respect 

to A, then p /kc @ can be derived by the successive application of rules (l)-(7). 

Example 36. Consider rules r3 and r4, introduced at the beginning of this section, 
augmented with a third causal rule (rs ) (see Fig. 8) : 

rj : “If I turn the ignition key, the car will start” (tk + cs). 

r4: “If I turn the ignition key and the battery is dead, 

the car will not start” (tk A bd --i 1~s). 

5: “If I leave the headlights on for 12 hours the battery is dead” 

(lo -+ bd). 

Intuitively, these three rules should be sufficient to draw the conclusion that, if we left 
the headlights on for 12 hours and then turn the ignition key, the car will not start (i.e., 
lo A tk lbC 7~s). Yet, all the entailment relationships discussed in Sections 3 and 4 will 
allow the unintended scenario in which the car engine actually starts and the battery 

j5 Note that Theorem 34 establishes the soundness of the Markov rule. 
3h As in the case of Theorem 34, we also require that c+5y A xr A A xs be satisfiable. 
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is not dead after all. 37 The stratification required by c-entailment assigns (at least) a 
unit degree of surprise (K = 1) to this scenario (since it violates rule t-5)) and zero 

surprise (K = 0) to the intuitive scenario (which does not violate any rule, as if bd 

is “explained” by lo). A syntactic derivation of lo A k Ibc ~cs using inference rules 

( 1 )-( 7) is given in the Appendix (see Proposition A.7). Rule (7) (Markov) allows the 

inference lo A tk Ike bd since tk is not a descendant of bd in r(A) and lo is its parent 
(see Fig. 8). Similarly, we can use the Markov rule for inferring lo A tk A bd [kc TCS 

from tk A bd \kc TS, since tk and bd are the only direct causes for cs (i.e., its parent 
set) and lo is a non-descendant of cs. 

The next example presents a simple abduction (or backward projection) problem and 

serves to contrast the behavior of c-entailment with that of chronological minimization 

[691. 

Example 37. Consider a sequence of rules {lo ---) II, 1, + Z2, . . . , Z,,_l -+ I,,} standing 
for the various instances of “if a gun is loaded at time ti, then it is expected to remain 
loaded at time ti+l” (0 < i < n). Given that the gun is loaded at to and that it is found 
unloaded at time tn (i.e., lo A 11, is true), the scheme of chronological minimization will 

favor the somewhat counterintuitive inference that the gun remained loaded until t,,_l 
(i.e., Z1 A . . A 1,-l is true). c-entailment, however, only yields the weaker, but intuitive, 
conclusion that the gun must have been unloaded at some time between tl and tn.- 1, 
i.e., -(Zi A 1 . . A I,,), but it is unable to pinpoint the precise time of the unloading (see 
Proposition A.8 in the Appendix). 38 On the one hand, c-entailment and chronological 

minimization are expected to yield the same conclusions in problems of pure prediction, 

since enforcing ignorance of future events is paramount to the principle of modularity, 
which is inherent in c-entailment. On the other hand, they differ in tasks of abduction, 

as demonstrated in this example. 

Computationally, we can take advantage of the relation between stratified rankings 

and probability distributions represented in Bayesian networks, to compute default con- 
clusions from stratified rankings. Hunter [ 391, for example, has shown that the polytree 
algorithm for probabilistic belief update [ 541 can be modified slightly 39 and become 
applicable to a network of belief quantified with a stratified ranking. This result gen- 
eralizes to our formalism in the following way: the polytree algorithm for computing 
probabilistic belief revision on Bayesian networks, including its variants based on joint 

trees and cutset conditioning [54], can be used to compute c-entailment as long as A 

defines a unique stratified ranking. Fortunately, the condition of stratification allows us 
to specify a unique ranking modularly: if each family composed of a node x and its 
parents 7rX specifies a conditional ranking K(x(T~) for all instantiations of x and rTT,, 
their resulting ranking (Eq. (39) ) is guaranteed to be unique and stratified. 

” This problem is reminiscent of the one pointed out by Hanks and McDermott regarding causality in the 

Yale Shooting Problem (YSP) [ 371. In fact, rules rx-r5 are isomorphic to the YSP [25]. 

38 This example is isomorphic to the “stolen car problem” [ 421. 

39 Namely, the replacement of multiplication by addition, and summation by minimization. 
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Two minimal stratified rankings for the network {a + c, b -+ -c) 

Rank I Rank 2 

(-u, h, -c), (yu, 4, C). (YN, 4% 7.) (a, +, c), (-a, ~b, c), (la, -b, TC) 

( -VI, h, c). (0, b, c), (Cl, 4. c) (-G~-c), (a,b,-c), (a,lb,lc) 

(0, b, T), (a, -b, yc) (a,b,c), (Ta,b,c) 

In the case where the specification of A does not constitute a unique ranking, tech- 
niques for rank completion such as the one resulting in the Z+ ranking of Section 3 can 

be adopted. The difference is that stratified rankings allow us to perform the completion 
locally, on a family by family basis. Yet, contrary to the case studied in Section 3 the 

stratified completion of a set A may not result in a unique minimal40 ranking for every 
A. Consider for example the following network A = {u + c, b -+ x}. This set admits 
the two minimal stratified rankings depicted in Table 8. 

In [29] we study a class of networks, which we call stratijiable, that admits unique 

minimal rankings. We also provide an effective procedure to build this ranking. In 
essence, A will be stratifiable if it allows recursive construction of a minimal stratified 
ranking from the minimal stratified rankings that are admissible with respect to (ordered) 
subsets of A. Thus, let {xl,. ,x,} be an ordered set of the variables in A according 

to T(A). 41 Let (Al,. . , A,) be an ordered partition of A, such that Ai contains all the 
rules that have,xi (or TXi) as their consequence. In a stratifiable network, the minimal 

ranking for & Ai, namely K,: (x,, A . . A XI ), is built from the minimal ranking for 

Ufzyl Ai (K,* (x,,- 1 A . A XI ) ), and a minimal conditional (and admissible) ranking for 

Aj following Eq. (39) : 

K;r(X,jA...‘fx~) =K’(+j) +K;(Xj_, A...Ax,). (42) 

As an example, the network A = {tk + cs, tk A bd -+ xs} is not stratifiable. The 
reason is that its minimal (and unique) ranking, depicted in Table 7, is not minimal for 
A,k U dbd. The minimal stratified ranking for & U dbd is K( tk A bd) = K( Ttk A bd) = 

K( tk A Tbd) = K( Ttk A -bd) = 0, 42 whereas the ranking in Table 7 has K( tk A bd) = 

K(Ttk A bd) = 0, and K(tk A -bd) = K( -tk A -bd) = 1. The network A’ = {true -+ 

-bd, tk + cs, tk A bd --+ xs} is, on the other hand, stratifiable. Its minimal (and 
unique ranking) is the one depicted in Table 7. Note that the only difference between 

the networks A and A’ is the rule true + -bd. We remark that networks other than 
the class of stratifiable networks admit minimal (and unique) stratified rankings, yet, 
stratifiable networks allow for the recursive construction of such ranking. Automatic 

procedures for completions of arbitrary networks (including the addition of rules to 
make a network stratifiable) is a subject of current research. 

” Minimal in the same sense as in Definition IS with the additional requirement that the comparison is among 
stratified rankings. 

4’ The order of the variables can be any topological sort of the nodes in I’( A). 

J2 Since there are no rules that have either tk or bd as consequents, the minimal ranking for these two 
propositions is the trivial ranking where K(W) = 0 everywhere. 
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Table 9 
Admissible ranking for { tk -+ cs, tk A bd -) XS, tk -+ X, x -+ bd} 

K Worlds in an admissible, non-stratified ranking 

0 (ltk, x, bd, -ws) 

1 (tk, x, ybd, cs) 

2 (tk, x, bd, XS) 

3 Rest of the w’s 

Finally, parallel to the notion of consistency in Definition 2, it is important to define 
a notion of a c-consistent A by requiring the existence of at least one stratified ranking 
relative to r(A). Knowledge bases that are consistent in the probabilistic sense of 

Definition 2 but yet cannot be given a causal interpretation do exist. For example, 
A = {tk --f cs, tk A bd --f lcs,tk + x,x -+ bd}43 is c-inconsistent because, if we 
accept that tk causes cs, we should expect lbd to hold by default when tk is true. 

On the other hand if there is a causal linkage from tk to bd, we should expect bd to 

hold when tk is true, contrary to our previous expectation. Note that this contradictory 
knowledge base is admissible in the sense of Definition 2, as shown by the ranking 
in Table 44.44 This ranking allows turning the key to protect the battery against the 
damage inflicted by x, but such a flow of events would be contrary to the causal reading 
of A, but shows no direct linkage from tk to db. 

7.2. Actions and observations 

Although c-entailment reflects inferences that are typical of causal knowledge, it is 

still a relation between an observation 4 and a conclusion V. As such, it does not exploit 
the full power of causal models, which reins in the management of actions and other 

external changes. In Fig. 8, for example, c-entailment would not distinguish between 

the context C# = “the battery was found to be dead” and 4’ = “someone deliberately 
drained the battery dead”, although the two sentences should trigger different inferences 
altogether. The first describes a change in our knowledge about an unchanging world, 
and would normally suggest an explanation within the system, for example, that the 
headlights were left on. The second triggers no such inferences, as it describes a change 

in the world due to external intervention, one that occurred regardless of the normal 
processes listed in the system (e.g., the tendency of batteries to remain charged). 

The network r(A) provides a sufficient code for specifying how external actions 

would influence the agent’s belief ranking K(W), including actions that were not an- 
ticipated during the construction of the network and, hence, do not possess explicit 
symbolic representation in A. The causal content of the rules in A provides a license 

to treat actions as modalities over the atomic propositions in L by ascribing meaning 
to new propositions of the type do(q) or do( ~xi) [35]. The key idea is that each 

43 This is the car example augmented with k - x and x 4 bd, introducing an intermediate variable x through 
which turning the key causes the battery to die. 
M This ranking is not stratified for A since K(bd A x A tk) = 2, but K(bdlx) + K(x\tk) + K(tk) = 1 which 
contradicts F$. (39). 
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child-parents family in the network, by virtue of representing a collection of causal 
rules, stands for an autonomous physical mechanism in the domain, one that remains 

invariant to changes, unless specifically altered. An action that imposes a truth value on 
an atomic proposition (e.g., du( db) or do( -db) ) is viewed as an external intervention 

which overrules just one mechanism (e.g., the tendency of batteries to remain charged) 
while leaving all other mechanisms unaltered. The specification of composite actions 
then requires only the identification of the mechanisms that are overruled by those ac- 
tions. Once these mechanisms are identified, the effect of the action (or combinations 

thereof) can be computed from the constraints imposed by the remaining mechanisms. 
Formally, intervention is interpreted as conditioning in a larger probability space which 

includes hypothetical action variables. The effect of an atomic action do( xi) or &I( TXi) 

is represented by adding to r a link DOi + x;, where DOi is a new variable taking 
values in {do( x;) , do( TX;), idle}, which represents the external intervention. Thus, the 

new parent set of X, in the augmented network is .TT( = ri U {DO,} and it is related to 

xi by 

i 

K(X;IT,), if DOi = idle, 

K(#) = m, if DOi = do( Txi), (43) 

0. if DO; = d&x;). 

The effect of performing action do(x;) is to transform K(W) into a new belief ranking, 

K.,, ( w ) , given by 

K_,,(W) = K’CmIdo(x,)) (44) 

where K’ is the ranking dictated by the augmented network r U {DOi - Xi} and 

Eqs. (39) and (43). 
This yields a simple and direct transformation of pre-action and post-action rankings: 

(45) 

where mi(w) stands for the values that w assigns to the parents of xi. This formula 
reflects the removal of the term K(XJri) from the sum of Eq. (39), since g; no 
longer influence xi. Graphically, the removal of this term is equivalent to removing 
the links between ri and X, while keeping the rest of the network intact. We see that, 

unlike Bayesian conditioning K(wIx,) (see Eq. (37)) the effect of action do(xi) is to 

shift the ranking of each world consistent with (x,) by a different amount, K( Xi(‘Ti( 0) ), 

depending on the contribution of X, to the pre-action ranking K(W). Worlds in which the 
occurrence of xi is a serious possibility given the state r(w) of its parents, retain their 
rankings, while those in which the occurrence of xi is surprising, experience a reduction 
in K. This reduction exonerate those latter worlds from the blemish of predicting the 
exceptional event xi, since xi is explained away by an external intervention. 

The transformation in Eq. (45) is the ranking-equivalent of a class of probability oper- 
ators which Lewis named imaging [ 491. Whereas Bayes conditioning P( w/e) uniformly 
transfers probability mass from each world excluded by e to the remaining worlds (in 
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proportion to their current P(w) ), imaging works differently; each world w excluded 
by e transfers its mass individually to a select set worlds deemed “closest” to w. Causal 

knowledge imposes specific preferences as to which worlds should be considered clos- 
est to any given world. A world wt is “closer” to w than w2 is, if the set of atomic 

actions needed for transforming w into WI is a proper subset of those needed for trans- 
forming w into ~2. Considering, for example, the causal chain xt -+ x2 -+ . . . -+ x,, 
among all worlds satisfying xi = true, the one closest to w = 7x1 A 1x2 A . . . A -an is 
wt = 1x1 A . . * A~Xi-1 Ax~Ax~+~ A*..Ax,. 

Imaging is the probabilistic basis for Winslett-Katsuno-Mendelzon [41,73] possible 
semantics of “belief update”, as distinct of “belief revision”, and is tacitly invoked 

whenever actions are specified in terms of transition probabilities, as in stochastic 
control and Markov decision processes (see [ 6 1 ] for more detailed discussion of these 
aspects). Also, in [ 351 it is shown that the shift in Q. (45) conforms to the semantics 
of belief update introduced by Katsuno and Mendelzon [ 411. 

The transformation defined in (45) exhibits the following features [ 601: 
( 1) An action do( xi) can affect only the descendants of xi in r. 

(2) The variables associated with the root nodes of r (often called “exogenous”) 
possess the unique property 

Q(W) = K(W]Xi). 

In other words, acting do(xi) and has the same effect on the agent’s belief as 

passively observing Xi. 
(3) The effect of a compound action A = /jj,_J Aj, where each Aj stands for either 

do( xj) or do( ‘Xi), can be defined as a sequential application of the transforma- 
tions associated with the atomic components. The order is irrelevant, since the 
transformation in Eq. (45) is commutative and associative. 

(4) For every variable Xi there exists a unique minimal set of other variables vi 
(corresponding to the direct causes of Xi) having the following property. For any 
two actions, do(A) and do(B), such that neither A nor B logically entails Xi or 

-xi, we have 

KA(Ti) = KB(7Ti) * KA(Xi) = Kg(Xi). 

In other words, establishing the impact of an action on the direct causes of Xi is 
sufficient for determining its impact on xi as well. 

This last property reflects the invariance (or “autonomy”) of the linkage between xi 

and vi relative to external interventions, and can in fact be taken as the operational 
definition of “direct causes”. The modeler imagines a hypothetical, ideal laboratory 
where every compound action can be realized, and envisions the effects of such actions 
on various variables in the system. The direct causes vi of xi exhibit (minimally) a 
unique behavior in this laboratory: once we fix their values no (indirect) action can ever 

effect our belief in xi. Note that this definition embodies a basic asymmetry between 
causes and effects; fixing the consequences of Xi does not provide Xi any protection 
against further interventions while fixing the causes of Xi does. 

Eq. (45) was derived under the assumption that K(O) is given by the sum of Eq. (39), 
which reflects generic state of knowledge prior to making any specific observations. To 
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define the effect of action do(A) on ranking functions that result from updating K(W) 

by some observations, one must invoke a persistence model to determine which beliefs 

will persist and which will be “clipped” by the influence of action do(A). If we assume 
that only those properties should persist which are not under any causal influence to 
terminate, the following result obtains: 

Theorem 38 (see [ 581). Let A be a conjunction of atomic actions, A = AjcJAj, where 
each Aj stands for either do( xj) or do( TXj), and let K( Wlc) be the pre-action ranking 

after observing C. Then the post-action ranking KAIC(W) is given by the formula 

KAIC(W) = K(W) - c ‘d&t@) h(w)) 

IEJUR 

fmin 
co’ c s;( W, W’) + K( Cd/c) 

i@J 1 (46) 

where R is the set of root nodes of f, w and o’ are the post-action and pre-action 

states, respectively, and Si( u, w’) plays the role of a state transition probability 

S I, if xi(w) f x,(w’) and xi E R, 

Si(W,O’) = Sit if xi(w) # Xi(W’),Xi &1 R and K(~Xi(W)lpa,(OJ)) ~0, (47) 

0, otherwise. 

S( w, w’) represents persistence assumptions: It is surprising (to degree Si 3 1) to 
find xi change from its pre-action value of Xi(w’) to a post-action value of Xi(w) if 

there is no causal reason for the change. 
Eq. (46) implies that belief changes due to long streams of observations and actions 

can be computed as successive updating operations on epistemic states, these states 
being organized by a fixed causal network, in which the only varying element is the 
belief ranking K. 

8. Conclusion 

We have presented a qualitative, order-of-magnitude approximation of probability 
theory, where knowledge is encoded by linguistic expressions which distinguish the 

typical from the surprising, and the answers identify the set of beliefs induced by any 
given evidence. Like system-Z, its predecessor, system-Z+ maintains a clear separation 
between generic knowledge (in the form of rules) and contingent knowledge (in the 
form of boolean sentences summarizing observations) and manages the revision of 
deductively closed beliefs using a qualitative version of probabilistic conditioning. 

System-Z+ augments system-Z with the capability of handling variable-strength rules 
as well as expressions of imprecise observations. These capabilities are useful in ap- 
plications such as diagnosis and class-property hierarchies, where rule firmness can be 
obtained from either statistical information or a general understanding of the domain. 
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Imprecise observations occur where objects are vaguely defined or when definitions are 
only partially satisfied. 

The system presented is semi-tractable in the sense that it is tractable for every sub- 
language in which propositional satisfiability is polynomial (Horn expressions, network 
theories, acyclic expressions, etc.). To the best of our knowledge, this is the first system 
that reasons with approximate probabilities and offers such broad guarantees of tractabil- 
ity. Whereas most tractability results exploit the topological structure of the knowledge 
base [ 1845,541 (e.g., trees or hypertrees), ours are topology independent. These re- 
sults should carry over to possibility theory as formulated by Dubois and Prade [ 221, 
which has similar features to Spohn’s system except that beliefs are measured on the 
real interval [ 0, 1 ] . In addition, as Section 5 shows, the system can also accommo- 
date expressions of imprecise observations without loss of tractability, thus providing a 
good model for weighing the impact of evidence and counterevidence on our beliefs. 
Finally, the enterprise of belief revision, as formulated in [ 2,241, can find a tractable 
and natural embodiment in system-Z+, unhindered by difficulties that plagued earlier 
systems. 

The incorporation of actions into the language of ranking functions, in Section 7.2, 
introduces a natural realization of belief update which, unlike belief revision, invokes 
a theory modification, to mimic the change produced by the action. In this realization, 
revisions and updates are unified through the conditioning operator; revision results from 
conditioning on observations and update from conditioning on actions [ 351. 

However, unlike the general and abstract formulation of belief revision and update in 
the literature [ 3,411, our formulation is tailored specifically to support causal reasoning. 
The topology of the causal networks plays a crucial role in this update process because 
it is only by examining the network that we can identify the mechanism (set of parents) 
which is overruled by any given update and this information, in turn, is necessary for 
the correct prediction of indirect ramifications of the update. It is our contention that 
a device similar to a causal network is a necessary component in any formalism of 
actions and change. Extensions of this representation of actions and their applications 
involving temporal reasoning, conditional actions and counterfactual queries are explored 
in [5,6,15,59]. 

The introduction of a DAG for representing causal relations (Section 7) forms a 
qualitative counterpart to Bayesian networks [54], thus providing a framework for 
transporting capabilities between probabilistic reasoning and nonmonotonic logics. For 
example, Darwiche and Goldszmidt [ 161 and Henrion et al. [ 381 compare the per- 
formance of stratified rankings with respect to probabilistic Bayesian networks in a 
diagnosis application. A principled formalization of causal knowledge in ATMS based, 
again, on a qualitative counterpart of Bayesian networks, is reported by Darwiche [ 141. 
More recently, the connection between stratified rankings and Bayesian networks has 
given rise to faster algorithms for reasoning under uncertainty in both the probabilistic 
and nonmonotonic approaches [ 301. 

Using stratified rankings and their probabilistic origins, a qualitative bridge can be 
established to another stronghold of probability theory-decision analysis. By combining 
order-of-magnitude specifications of probabilities and utilities, we can compare and 
rank the expected utilities of actions and consequences, conditioned on observations. 
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This forms the basis for a qualitative decision theory [58] which, in turn, provides a 
framework for qualitative planning under uncertainty. 
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Appendix A. Proofs of main results 

Theorem 4 was proven in [ I] where rules are interpreted directly in terms of high 
probability conditional statements. A proof in terms of ranking functions runs along the 
lines of the proof of Theorem 19 below. Theorem 5 and Corollary 6 appear in [57] 

and proofs may be found in [ 33 1. A proof for Theorem 9 can be found in [ 28,3 11. 
Theorem 16 is shown in [ 571 and its proof is similar to that of Theorem 21 (below), 
its parallel for the case of non-flat sets of rules. 

Theorem 19. d-‘- is S-consistent i# A is comistent (in the sense of De&&ion 2). 

Proof. If A is consistent (in the sense of Definition 2), we know that there exists a 

tolerated rule in each non-empty subset A’ of A, and furthermore, we can construct an 
ordered partition (do, Al,. . . , A,,) of A where: rules in A0 are tolerated by A, rules in Al 

are tolerated by A - A0 and so on. By Definition 3, for each one of these Aj, there must 
exist a corresponding non-empty subset 0; of R (the set of all possible worlds), such 
that for each rule rj E Aj there exists a w,, E fij, where tij verifies rj and wj satisfies all 

the rules in the set that results from the union lJ:$ A; of members of the partition of A. 

Using these possible worlds, we define a partition (00, f&, . , f2,,, f&,+1 ) of 0, where 
each fi,i contains possible worlds with the characteristics mentioned above, and a,,+, 
contains the possible worlds necessary to complete the partition of 0. Let SiT denote the 
highest S among rules in set A,. We now build, in a recursive fashion, an admissible 
ranking K relative to A’ based on these two partitions in the following manner: if 

wa E @I, set K(WIJ) = 0; else if W.J E oj, set ~(a,) = K(Wj_1) +8,7_, + 1 (where 
w,__I is an arbitrary element of the set 0j_i ). Note that the x-minimal possible world 
falsifying any rule rj E A,, must belong to the set fij+i. Thus, in order to guarantee 
the admissibility of K relative to A+, it is enough to show that for an arbitrary pair of 

possible worlds w, E 0.i and W;+I E fii, 1 the following relation holds: 

K(Wj) + 6, < K(~,,+I) fA.1) 

where Sj can be any 6 among the rules in A,. But this relation is guaranteed by the 
construction of K since K( w;) + 8; + 1 = K(w,~+I ), where 6; is the highest 6 among 
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the rules in Aj. Therefore K is admissible relative to A+, and it follows that A+ is 
S-consistent. 

For the converse, note that if A+ is S-consistent, then by Definition 18, there exists a 
ranking K such that for every rule Spi L $i in A+ 

K(SPi A $‘i) < & + K(F’i A -$‘i). 

Since Si is an integer bigger or equal to zero it follows that 

K(‘Pi A $‘i) < K(q(~i A ‘@ii), 

and thus by Definition 2, A is consistent. 0 

(A.2) 

(A.3) 

Theorem 21. Every consistent Ai has a unique minimal ranking given by K+. 

Proof. We need some intermediate results. First we show that K+ is admissible. We 
then define compactness (Definition A.2)) and show that K+ is compact and unique 
(Lemmas A.3 and A.4). Theorem 21 will follow from these results. 

Proposition A.l. The ranking function K+ is admissible. 

prC&. Given that z+(ri) = minj{K+(Wj) 1 wj k qi A @ii) + 6i, we can rewrite the 
conditions for admissibility (Eq. ( 14) ) as 

Z+t(ri) < m;ln{K+(oj) ( Wj k (Oi A ‘$i}. 

Since K+(W) = max{Z+( ri) 1 w k Spi A ‘$i} + 1, it follows that the right-hand side of 
Eq. (A.4) is at least Z+(ri) + 1 and K+ is admissible. 0 

Having proved that K+ is admissible, we now prove that K+ is compact given a set of 
rules A. A ranking K will be said to be compact with respect to A if lowering the rank 
of any world w in K without modifying the rank of the rest of the worlds would make 

K inadmissible with respect to A. Formally, 

Definition A.2 (Compact rankings). Given A, an admissible ranking K is said to be 
compact with respect to A if for every 0’ any ranking K’ satisfying 

K’(W) = K(W), W #W’. 

K’(W) < K(W), W=GJ’ 

is not admissible with respect to A. 

Lemma A.3. The ranking K+ is compact with respect to a given A. 

Proof. By contradiction. Assume it is possible to lower K+( w’) of some possible world 
w’, where K+ (w’) > 0. From the definition of K+ (Definition 20)) there must be a 
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rule r : (D -% 9 E A such that K+ (w’) = Z’(r) + 1 and moreover w’ k p A + (see 
Eq. ( 15)). This implies that 

K+(J) =min{K+(w) 1 w ~pA$}+S+ 1. 

Lowering the value of K+ (a’) will imply that 

K+(w’) < min{K+(w) 1 w f= p A $} + 6. 

(A.5) 

(‘4.6) 

which, since w’ falsifies rule r, clearly violates the condition of admissibility in Eq. ( 14) 
with respect to rule r. 0 

Lemma A.4 Every consistent A+ has a unique compact ranking given by K+. 

Proof. By Lemma A.3, K+ is compact. We show it is also unique. Suppose there exists 
some other compact ranking K that differs from K+ in at least one possible world. 

We will show that if there exists an w’ such that I < K+(GJ’) then K cannot be 

admissible, where if K( w’) > K+ ( w’) , then K cannot be compact. 
Assume first that K(w’) < K+( w’), and let I be the lowest K-value for which such 

inequality holds. In other words, for every world w such that K(W) < I, K+(W) = K(W) . 
Let K+ (w’) = J, where J > I. Note that J must be strictly greater than zero, and as 
a consequence, by the definition of K’ (Definition 20), we know that there is a rule 

r : p -f-+(I, such that w’ /= p A +. This implies that Eq. (A.5) holds, and as a 

consequence 

min{K+(w) jw +=(pA$}=J-6- 1. (A.7) 

Since K is assumed to be admissible, we have that the following must also hold for rule 
r in K, this implies that 4s 

K(J) amin{h-(w) j w f=pA$} +6+ I. 

Since J > K(w’), 

(A.81 

J>min{K(w) lw+cpA@}+6+1. (A.9) 

If we subtract 6 + 1 from both sides of this inequality and use Eq. (A.7) we get 

min{K+(w) 1 co /= 4p A f)} > min{h-(w) / w + p A I++}. (A.10) 

But this cannot be since I was assumed to be the minimal value of K for which this 
inequality can occur, and if min{K(w) / w /= p A t)} > I, then K would violate 
Eq. (A.8) which in turn would imply that K was not admissible in the first place. 

Now assume that there is a non-empty set of possible worlds for which K(W) > 

K+(W), and let I be the lowest K+ value in which K(o’) > K+(w’) for some possible 
world 6~‘. We will show that K cannot be compact, since it will be possible to reduce 

45 Note that I$ (A.8) implies that I must be bigger than zero, and an inductive proof may be constructed 
on this basis. We find the proof presented here shorter and clearer. 
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K( w’) to K+ (w’) while keeping constant the K of all other possible worlds. From 
u+ ( w’) = I we know that w’ does not falsify any rule r with Z+ rank higher than I - 1. 

Hence, we only need to watch whether the reduction of K can violate rules r for which 
Zf (I) < I. For every such rule there exists a possible world w, such that w verifies 

r and K+(W) < I. Since for all these possible worlds K is assumed to be equal to K+ 

it follows that none of the rules verified by these worlds, can be violated by reducing 
K(d) t0 K+(d). 0 

The proof of Theorem 21 follows immediately from Lemma A.4 and Definition 15. 

Theorem 22. The function Z computed by procedure Z+_order satisfies Dejinition 20 
(i.e., the output of procedure Z+_order is Z+). 

Proof. We first show that the relevant steps in procedure Z+_order are well defined. By 
the assumption that d+ is consistent, AC, cannot be an empty set (steps 1 and 2) : There 
must be at least one rule tolerated by A +. For similar reasons, A* cannot be empty in 
each iteration of the loop in step 3. By consistency we must be able to find a tolerated 
sentence in each non-empty subset of A+. Finally, in the computation of Eq. ( 17)) since 
o only falsifies rules in RZ+, the Z-ranking for each of these rules is available. 

We now show that Z = Z+ for rules ro E AC,. Since each ro is tolerated by A+, there 

must be a possible world wc (for each one of these rules), such that wc verifies ra and 
wa satisfies A+. Thus, each one of these possible worlds does not falsify any rules in 
A+, and K+ (~0) = 0. According to Eq. ( 16) in Definition 20, Z+( ro) = Se for those 

rules and that is precisely what is computed in step 2. 

The proof proceeds by induction on the iterations of loop 3; we show that for every 

rule r E RZ+, Z(r) = Z+(r) holds as an invariant. For the basis of the induction 

consider the first iteration: since RZ+ = Au, then for every ro E 4, Z( ro) = Z+(Q) 
holds as shown above. Our objective is to show that this equality holds for the rules r* 
inserted into RZ+ at step 3 (c) . Note that since all the values K+ (w,) for w, in every JI& 
are computed from Z+-values of rules in RZf (step 3(b), Eqs. ( 17) and ( 18))) they 
must be equal to K+ (to). Let a characteristic possible world for a rule r be the possible 

world w,* with minimal ranking K+ verifying r. Thus, Z+(r) = min+,,~+ K+(W) + 6 = 

K+(W;) + 6. We claim that K+(Wf.) 46 is a characteristic possible world for the rules 
outside RZ+ it verifies. Suppose not: assume that there is a possible world or* such that 
61~~ verifies a rule r* (that is inserted into RZ+ in step 3 (c) ) , and K+ ( wr* ) < K+ ( 0:. ) . 
Note that or* must falsify a rule r’ 6 RZ +. Otherwise the computation in Eq. (17) 
would not have used 0:. but of instead. Let urt be a characteristic possible world for 
r’, then 

K+(+) < K+(W,.). 

Note that o:* cannot verify r’, since otherwise 

K+(W;.) < K+(O,*), 

46 Recall that r* is a rule inserted into RZ+ in step 3(c). 

(A.ll) 

(A.12) 
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a contradiction. If wr/ does not verify the same rule r* that w:. verifies, then Z (r’) > 
Z(r*) by step 3(c), and then by Eq. (18), K( CO,.) > K(w,~,) which is a contradiction. 
Therefore W,J verifies the same r*, and by the minimality of CO:* among the worlds in 
@, wrr must falsify a rule Y” $! RZ+. If w +J is a characteristic possible world for r” 
we have that 

K+(CiJ,ff) < K+(W,,) < K+(W,*). (A.13) 

w,, cannot verify r”; otherwise we get the contradiction 

K+(W,*) < K+(W,-0 < K+(W,*) (A.14) 

and if wF* verifies Y” we get the contradiction of Eq. (A.12). By similar arguments as 
before w,.ff must falsify another rule outside RZ +. However, given that A+ is finite, we 
cannot extend the “chain” of Eq. (A. 13) indefinitely, and therefore we are bound to get 
a contradiction in the form of Eq. (A. 12) or Eq. (A.14). Since our only assumption 
was that w;* is not a characteristic possible world for the rules it verifies, that assump- 

tion must be wrong. It follows then that the value of Z(r*) computed in step 3(b) 
(Eq. (17)) must be equal to Z+. For the induction step assume that the invariant holds 
up till the nth iteration. Then by the same argument used in the basis of the induction, 
the K(w,) for w, E fi, are equal to K+(w,), the minimal K+(w:,) in Eq. (17) must 
be a characteristic possible world for the rules r* outside of RZ’ that it verifies, and 
thus Z(r*) = K+(w:,) +&. = Z+(r*). 0 

The proof of Theorem 23 is made easier by the following pair of intermediate results 

(Lemmas A.5 and A.6). 

Lemma AS. Let A’ = {r; 1 r; = 9; 6, &}, 1 < i < n, be a consistent knowledge 

base in which rules are sorted according a priority function Z (ri). Let K(W) be defined 

as in Eq. (15): 

1 

0, if w does not falsify, any rule in Ai, 
K(W) = max [Z (ri) 1 + 1, othenuise. (A.15) 

wkv,A+* 

Then, for any wff 4, K( 4) can be conzputed in O(logn) propositional satisjiability 
tests. 

Proof. The idea is to perform a binary search on A+ to find the lowest Z(r) such that 
there is a model for 4 that does not violate any rule r’ with priority Z( r’) > Z(r) _ 
We first divide A+ into two roughly equal sections: top-half (rmid to r-high) and bottom- 
half (1-1~~ to r,id). Then we examine the top-half: If the wff (Y = CPA;=,, pj > @j is 
satisfiable, then there exists a model for 4 that does not violate any rule in this top-half. 
It follows that Z( r,,,jd) + I is an upper bound on the value of K( 4), and the binary search 
is continued iteratively in the bottom-half. If, on the other hand, LY is not satisfiable, 
then the maximum Z (r;) for any model for 4 must be in the top-half, and the search is 
continued there. Eventually, the set in which the search is conducted is reduced to one 
rule, and we can determine the value of K(4) with one more satisfiability test. 0 



M. Coldszmidt, J. Pearl/Artijicial Intelligence 84 (1996) 57-112 107 

Lemma A.6. The value of Z( r$ -% o) in Eq. ( 17) can be computed in 0( log IRZ+I) 
satis$ability tests. 

Proof. Let A’ in step 3(a) be equal to {vi A$i}, and let the wff cy be equal to 
(T A 4 Ai pi > $i where i ranges over all the rules in A’. Note that since any world 

or in fir is a model for (+ A 4 and does not violate any rule in A’, it follows that 
w, E or iff w, k (Y. Then, since ~(a) = min,rEo, K( wy), Z( 4 -% g) must be equal 
to ~(a) -t 1 + 8. Thus, once A’ is sorted, by Lemma A.5, ~(a) can be computed in 
0( log (RZ+I ) satisfiability tests which proves Lemma A.6. 0 

Theorem 23. Given a consistent A+ = {ri 1 Ti = pi 6, @ii), 1 < i < n, the computation 

of the ranking Z+ requires O(n* x logn) satisjiability tests. 

Proof. Step 1 requires at most n satisfiability tests and is performed once, while step 2 

takes at most n data assignments. Step 3(a) again requires O(n) satisfiability tests. 
Computing Eq. (17) in Step 3(b) can be done in O(log (RZ+() satisfiability tests 

according to Lemma A.6, 47 and since it will be executed at most O(n) times, it requires 
a total of 0( n x log n) satisfiability tests. Step 3 (c) is a minimum search which can be 
done in conjunction with the computation of Eq. (17), since we only need to keep the 

minimum of such values (this involves 1 A* I data comparisons). Loop 3 is performed at 
most n - /Ao( times, hence the whole computation of the priorities Z+ on rules requires 
a total of 0( n* x log n) satisfiability tests. q 

Theorem 25. Let rl : q 61 JI and r-2 : 4 -% IY be two rules in a consistent 

that 

( 1) (p b,, #J (i.e., q is more specij5c than 4); 

(2) there is no model satisfying sp A Cc, A 4 A o (i.e., r-1 conflicts with r-2). 

Then Z+( r-1) > Z+(Q) independently of the values of S1 and 132. 

A such 

Proof. If p i_ 4 is in every consequence relation of every K admissible with A then the 
following constraint must hold in all these K-rankings (including K+): 

K(PA+) < K(+‘A+‘). (A.16) 

Thus, any characteristic possible world WA for r-1 must render 4 (the antecedent for t-2) 

true, and since there is no possible world such that both rules are verified (condition (2) 
in the theorem above), all w;tl must also falsify r-2. From Definition 8 (I@. (15) 

and (16)): ~+(wfi) 2 Z+(r2) + 1 , and Z+(rl) = K+(w:) + 82. It follows that 
Z+ (rl ) > Z+ (r2). Note that the characteristic possible world for r2 cannot in turn 
falsify t-1 since this will preclude the existence of an admissible ranking K and A was 
assumed to be consistent. 0 

47 Note that we need RZ+ to be sorted, non-decreasingly, with respect to the priorities 2. This requires that 
the initial values inserted to RZ+ in step 2 of procedure P-order be sorted-O( lAu1*) data comparisons- 
and that the new Z-value in step 3(c) be inserted in the right place-O(\RZ+I) data comparisons. We are 
assuming that the cost of each of these operations is much less than that of a satisfiability test. 
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Theorem 34. Let x,A...Ax., be theparents ofx in T(A). Let Y = {yl,...,y,} 
be u set of atomic propositions such that no y; E Y is a descendant of x in T(A), 

and let #v be any wfl built only with elements from y. 48 If xr A . . A xs l/-C x then 

4y A x, A . . . A X,$ ibc x. 

Proof. We show the stronger result that 

K(XI.X, A ‘. A x, A yl A ” A y,,) = K(XIX, A. ” A x,). (A.17) 

The statement in terms of consequence relations in the theorem is implied by I$. (A. 17)) 

since the K(x(x,/\. . .~x,>Aqby) can be computed from the K(X/X,A. .AX,~A~~ A. . .~y~), 
and the semantics of the consequence relation is expressed in terms of the conditional 
K rankings. 

By the conditions of stratification in Definition 32 (Eq. (39) ), we have that 

K(X A x, A A x,~ A yj A A y,, A P) 

=K(X/X,A.~~AX,) + K(X,lT(Xr)) +‘.’ 

+K(x.sldx,s) ) + K(M I~(.YI )) + I (A.18) 

where P represents a conjunction of the parents of the set S = {xr, . . . ,x,,y~, . . . , yR} 
without including any of the elements in S. Once more by the requirements of stratifi- 
cation we can transform the right-hand side of Eq. (A.18) into 

K( X A x, A A x,, A yl A A yn A P) 

=K(XI&A ..‘AX,) + K(X,I%-(&)) + ... 

+K( X,, A x, A )‘I A . A ?‘,, A P). 

We take the minimum on both sides over P and we have 

K( X A xr A . A x, A yl A A yn ) 

=K(XIx,. A...Ax,) + K(X, Ax,, AXI A...A?i,) 

which is equivalent to 

(A.19) 

(A.20) 

K(XAX,A...AX,~A~I A...Ayn) -K(X,~AX,.AY, A...AY,) 

= K(XIX, A . A X,) 

and to Eq. (A.17). 0 

(A.21) 

Theorem 35. Let A’ C A and I”( A’) a subgraph of r(A) such that if x’ is a node 

in r’( A’) then all the rules in A with x’ (or lx’) as their consequent are also in A’. 
Let (D and + be two wffs built with propositions corresponding to nodes in r’( A’). If 

cp l/-c I+& in the context of A’ then P /j--c $ in the context of A. 

48 We also require that C$U A xr A A xr be satisfiable. 
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Proof. Note that any stratified ranking for A must also be a stratified ranking for A’. 
Therefore if K(T&) > 0 in every stratified ranking for A’, K(-~O($) > 0 in every 
stratified ranking for A, and the theorem follows. 0 

The following two propositions prove results in reference to Examples 36 and 37: 

Proposition A.7. Given A = {tk + cs, tk A bd -+ -es, lo --+ bd}, lo A tk ll_c TCS. 

Proof. T(A) is shown in Fig. 8; then: 
( 1) lo IkC bd; by the Defaults rule. 
(2) tk A Eo jk-c bd; by ( 1) and the Markov rule. 49 
(3) tk A bd Ib-c xs; by the Defaults rule. 
(4) tk A bd A lo Ike TX; by (3) and the Murkov rule.5o 
(5) tk A lo Ike -XX; by (2), (4) and the Cut rule. 0 

Proposition A.8 Given the network {lo + Z~,ll + 12,. . . , l,_~ -+ I,,}, lo A 71, I/---C 
-(I, A.. . A 1,) and it is not the case that lo A -1, l/-C li for 1 < i < n. 

Proof. lo A 11, /y ~(II A . . . A 1,) follows trivially from the Deduction rule. The fact 
that we cannot point out the exact moment in which the gun is unloaded follows from 
the ranking built using the following recipe: k(o) = number of rules in A falsified by 
w. It is easy to verify that this ranking is stratified, and that all formulas representing 
situations in which the gun is unloaded at different times have equal ranking. Thus, it 
is not the case that in all stratified and admissible rankings K( -dill0 A 1,) > 0 for any 
particular Zi, 1 < i < n. Cl 
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