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Preface 

In March 2010, we, the editors, (Rina, Hector, and Joe) organized a meeting in 

honor of Judea Pearl at the University of California, Los Angeles (UCLA), and edited 

a book made up of contributions from a number of authors about Judea’s work 

(Heuristics, Probability and Causality: A Tribute to Judea Pearl, College Publications, 
2010). Judea was happily surprised by the meeting and by the book, but after open
ing it he couldn’t avoid being himself and only half jokingly said: “How come there 

are no papers by me?” Thus, this book is different from the previous one, also 

edited in Judea’s honor, as it is focuses on Judea’s works, while also containing 

a number of contributions and commentaries by Judea’s colleagues. The book was 
commissioned by the Association for Computing Machinery (ACM) as part of the 

ACM–Morgan Claypool series dedicated to the ACM Turing Award winners. 
Judea Pearl won the ACM Turing Award prize in 2011 for “fundamental con

tributions to artificial intelligence through the development of a calculus for 
probabilistic and causal reasoning.” Judea is the creator of Bayesian networks, a 

mathematical formalism for defining complex probability models, as well as the 

main algorithms that are used for inference in these models. The work not only 
revolutionized the field of artificial intelligence (AI) but also became an important 
tool for many other branches of engineering and the natural sciences. Judea later 
created a mathematical framework for causal and counterfactual inference that 
also is having a significant impact in the social sciences. 

Judea started his research work in AI in the mid-1970s. AI has changed a great 
deal since then; arguably no one has played a larger role in that change than 

Judea. Judea Pearl’s work made probability the prevailing language of modern 

AI and, perhaps more significantly, it placed the elaboration of crisp and mean
ingful models, and of effective computational mechanisms, at the center of AI 
research. His work is conveyed in hundreds of scientific publications and three 

landmark books Heuristics: Intelligent Search Strategies for Computer Problem Solv
ing (Addison-Wesley Longman Publishing Co, Boston 1984), Probabilistic Reasoning 
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in Intelligent Systems (Morgan Kaufmann, California, 1988), and Causality (Cam
bridge University Press, New York 2000). His “burning questions” were (and still 
are): “How does the human mind ‘do it’?” and “How can a ‘stupid robot’ do it?” 
He set out to answer these questions with an unusual combination of intuition, 
passion, creativity, intellectual honesty, and technical skill. 

For three decades now, Judea’s work has been focused on causality and counter
factuals, notions that are central to human reasoning, machine learning, and AI, 
and which have attracted the attention of philosophers for centuries. Central to 

the Causal Revolution, advocated and facilitated by him with the help of students 
and colleagues, is the language of causal diagrams. Judea finds the plain language 

of probability theory (or data) suitable only for associational reasoning, rung one 

of his three-level hierarchy (seeing), which also includes two other levels: interven
tions (doing) and counterfactuals (imagining). A technical introduction to these 

ideas can be found in his book Causal Inference in Statistics: A Primer, with Made
lyn Glymour and Nicholas P. Jewell (Wiley, London 2016). His most recent book, 
The Book of Why: The New Science of Cause and Effect, with Dana Mackenzie (Basic 
Books, New York 2018), is a more general and delightful introduction written for 
the general public. 

This volume is organized into six parts, starting with an introduction with a 

biography, interviews, and transcript of Judea Pearl’s Turing Award Lecture (deliv
ered at the Association for the Advancement of Artificial Intelligence [AAAI] 2012), 
followed by selected seminal works by Judea and, in some cases, co-authors, orga
nized into three themes: heuristic search, probabilities, and causality, the latter 
divided in two periods, 1998–2001 and 2001–2020. Judea Pearl himself was kind 

enough to write the introductions to the latter four parts. This is followed by arti
cles and commentaries by distinguished colleagues from areas like machine learn
ing and AI, computer science and engineering, statistics and the natural sciences, 
cognitive science, social sciences, and philosophy. The wide variety of areas shows 
the reach of Judea’s ideas and impact. 

Two of the editors of this volume, Rina and Hector, are former students of Judea, 
and the third, Joe, is a close colleague and collaborator. The three of us would like 

to thank all the authors who contributed to the volume, both for their articles and 

their support. We also thank Kaoru Mulvihill, Judea’s assistant for almost 30 years, 
whose help with the book has been invaluable. It has been a privilege to edit this 
second book in Judea’s honor. We are indeed Judea’s fans: we love Judea and we 

admire him as an advisor, as a scientist, and as a great human being. It has been a 

unique privilege to know Judea and to learn from him. 

Hector Geffner, Rina Dechter, and Joe Halpern 
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1Biography of Judea Pearl 
by Stuart J. Russell 

Judea Pearl created the representational and com
putational foundation for the processing of infor
mation under uncertainty. 

He is credited with the invention of Bayesian 

networks, a mathematical formalism for defining 

complex probability models, as well as the prin
cipal algorithms used for inference in these mod
els. This work not only revolutionized the field of 
artificial intelligence but also became an impor
tant tool for many other branches of engineering 

and the natural sciences. He later created a mathematical framework for causal 
inference that has had significant impact in the statistical, health, and social 
sciences. 

Judea Pearl was born on September 4, 1936, in Tel Aviv, which was at that time 

administered under the British Mandate for Palestine. He grew up in Bnei Brak, 
a Biblical town his grandfather came to re-establish in 1924. In 1956, after serving 

in the Israeli army and joining a kibbutz, Judea decided to study engineering. He 

attended the Technion, where he met his wife, Ruth, and received a BS degree in 

electrical engineering in 1960. Recalling the Technion faculty members in a 2012 

interview in the Technion Magazine, he emphasized the thrill of discovery: 

Originally published in ACM Turing Awards page, https://amturing.acm.org/award_winners/ 
pearl_2658896.cfm. 

https://amturing.acm.org/award_winners/pearl_2658896.cfm
https://amturing.acm.org/award_winners/pearl_2658896.cfm
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Professor Franz Olendorf always spoke as if he was personally present in 

Cavendish laboratory, where the electron was discovered, Professor Abra
ham Ginzburg made us feel the winds blowing in our face as we travelled 

along those line integrals in the complex plane. And Professor Amiram Ron 

gave us the feeling that there is still something we can add to Maxwell’s 
theory of electromagnetic waves. 

Judea then went to the United States for graduate study, receiving an MS in elec
tronics from Newark College of Engineering in 1961, an MS in physics from Rutgers 
University in 1965, and a PhD in electrical engineering from the Polytechnic Insti
tute of Brooklyn in the same year. The title of his PhD thesis was Vortex Theory 
of Superconductive Memories; the term “Pearl vortex” has become popular among 

physicists to describe the type of superconducting current he studied. He worked at 
RCA Research Laboratories in Princeton, New Jersey, on superconductive paramet
ric amplifiers and storage devices, and at Electronic Memories, Inc., in Hawthorne, 
California, on advanced memory systems. Despite the apparent focus on physi
cal devices, Pearl reports being motivated even then by potential applications to 

intelligent systems. 
When industrial research on magnetic and superconducting memories was cur

tailed by the advent of large-scale semiconductor memories, Pearl decided to move 

into academia to pursue his long-term interest in perception and reasoning. In 

1969, he joined the faculty of the University of California, Los Angeles, initially in 

Engineering Systems, and in 1970, he received tenure in the newly formed Com
puter Science Department. In 1976, he was promoted to full professor. In 1978, he 

founded the Cognitive Systems Laboratory—a title that emphasized his desire to 

automate human cognition. The laboratory’s research facility was Pearl’s office, on 

the door of which hung a permanent sign reading, “Don’t knock. Experiments in 

progress.” 
Pearl’s reputation in computer science was established initially not in proba

bilistic reasoning—a highly controversial topic at that time—but in combinatorial 
search. A series of journal papers beginning in 1980 culminated in the publication 

of the book Heuristics: Intelligent Search Strategies for Computer Problem Solving 
[Pearl 1984]. This work included many new results on traditional search algo
rithms, such as A*, and on game-playing algorithms, raising artificial intelligence 

(AI) research to a new level of rigor and depth. It also set out new ideas on how 

admissible heuristics might be derived automatically from relaxed problem def
initions, an approach that has led to dramatic advances in planning systems. 
Despite the book’s formal style, it drew its inspiration from, as Pearl said, “the ever-
amazing observation of how much people can accomplish with that simplistic, 
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unreliable information source known as intuition.” Ira Pohl wrote in 2011 that “The 

impact of Pearl’s monograph was transformative … [The book] was a tour de force 

summarizing the work of three decades.” 
Soon after arriving at UCLA, Pearl began teaching courses on probability and 

decision theory, which was a rarity in computer science departments at that time. 
Probabilistic methods had been tried in the 1960s and found wanting; a system for 
estimating the probability of a disease given n possible symptoms was thought to 

require a set of probability parameters whose size is exponential in n. The 1970s, on 

the other hand, saw the rise of knowledge-based systems, based primarily on logical 
rules or on rules augmented with “certainty factors.” 

Pearl believed that sound probabilistic analysis of a problem would give intu
itively correct results, even in those cases where rule-based systems behaved incor
rectly. One such case had to do with the ability to reason both causally (from cause 

to effect) and diagnostically (from effect to cause). “If you used diagnostic rules, 
you could not do prediction, and if you used predictive rules you could not reason 

diagnostically, and if you used both, you ran into positive-feedback instabilities, 
something we never encountered in probability theory.” Another case concerned 

the “explaining-away” phenomenon, whereby the degree of belief in any cause of 
a given effect is increased when the effect is observed, but then decreases when 

some other cause is found to be responsible for the observed effect. Rule-based 

systems could not exhibit the explaining-away phenomenon, whereas it happens 
automatically in probabilistic analysis. 

In addition to these basic qualitative questions, Pearl was inspired by David 

Rumelhart’s 1976 paper on reading comprehension. As he wrote later in his 1988 

book, 

In this paper, Rumelhart presented compelling evidence that text compre
hension must be a distributed process that combines both top–down and 

bottom–up inferences. Strangely, this dual mode of inference, so charac
teristic of Bayesian analysis, did not match the capabilities of either the 

“certainty factors” calculus or the inference networks of PROSPECTOR1— 

the two major contenders for uncertainty management in the 1970s. I thus 
began to explore the possibility of achieving distributed computation in a 

“pure” Bayesian framework. 

Pearl realized that the concept of conditional independence would be the key to 

constructing complex probability models with polynomially many parameters and 

1. An expert system that finds ore deposits from geological information; created in the 1970s by 
Richard Duda, Peter Hart, and others at Stanford Research Institute (SRI). 
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to organizing distributed probability computations. The paper “Reverend Bayes 
on inference engines: A distributed hierarchical approach” [Pearl 1982] introduced 

probability models defined by directed acyclic graphs and derived an exact, dis
tributed, asynchronous, linear-time inference algorithm for trees—an algorithm 

we now call belief propagation, the basis of turbo codes. There followed a period 

of remarkable creative output for Pearl, with more than 50 papers covering exact 
inference for general graphs, approximate inference algorithms using Markov 
chain Monte Carlo, conditional independence properties, learning algorithms, 
and more, leading up to the publication of Probabilistic Reasoning in Intelligent 
Systems [Pearl 1988]. This monumental work combined Pearl’s philosophy, his the
ories of human cognition, and all his technical material into a persuasive whole 

that sparked a revolution in the field of artificial intelligence. Within just a few 

years, leading researchers from both the logical and the neural-network camps 
within AI had adopted a probabilistic—often simply called the modern—approach 

to AI. 
Pearl’s Bayesian networks provided a syntax and a calculus for multivariate 

probability models, in much the same way that George Boole provided a syntax 
and a calculus for logical models. Theoretical and algorithmic questions associ
ated with Bayesian networks form a significant part of the modern research agenda 

for machine learning and statistics. Their use has also permeated other areas, such 

as natural language processing, computer vision, robotics, computational biology, 
and cognitive science. As of 2012, some 50,000 publications have appeared with 

Bayesian networks as a primary focus. 
Even while developing the theory and technology of Bayesian probability net

works, Pearl suspected that a different approach was needed to address the issue 

of causality, which had been one of his concerns for many years. In his 2000 book 

Causality [Pearl 2000], he described his early interest as follows: 

I got my first hint of the dark world of causality during my junior year of 
high school. My science teacher, Dr. Feuchtwanger, introduced us to the 

study of logic by discussing the 19th century finding that more people died 

from smallpox inoculations than from smallpox itself. Some people used 

this information to argue that inoculation was harmful when, in fact, the 

data proved the opposite, that inoculation was saving lives by eradicating 

smallpox. 
“And here is where logic comes in,” concluded Dr. Feuchtwanger, “To pro
tect us from cause–effect fallacies of this sort.” We were all enchanted by the 

marvels of logic, even though Dr. Feuchtwanger never actually showed us 
how logic protects us from such fallacies. 
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It doesn’t, I realized years later as an artificial intelligence researcher. Neither 
logic nor any branch of mathematics had developed adequate tools for 
managing problems, such as the smallpox inoculations, involving cause– 

effect relationships. 

A Bayesian network such as Smoking → Cancer fails to capture causal informa
tion; indeed, it is mathematically equivalent to the network Cancer → Smoking. The 

key characteristic of a causal network is the way in which it captures the potential 
effect of exogenous intervention. In a causal network X → Y, intervening to set the 

value of Y should leave one’s prior belief in X unchanged and simply break the 

link from X to Y ; thus, Smoking → Cancer as a causal network captures our beliefs 
about how the world works (inducing cancer in a subject does not change one’s 
belief in whether the subject is a smoker), whereas Cancer → Smoking does not 
(inducing a subject to smoke does change one’s belief that the subject will develop 

cancer). This simple asymmetry prompted Pearl to develop a new calculus, called 

the do-calculus, which led to a complete mathematical framework for formulat
ing causal models and for analyzing data to determine causal relationships. This 
work has overturned the long-held belief in statistics that causality can be deter
mined only from controlled random trials—which are impossible in areas such as 
the biological and social sciences. Referring to this work, Phil Dawid (Professor 
of Statistics at Cambridge) remarks that Pearl is “the most original and influen
tial thinker in statistics today.” Chris Winship (Professor of Sociology at Harvard) 
writes that, “Social science will be forever in his debt.” 

In 2010, a Symposium was held at UCLA in Pearl’s honor, and a Festschrift 
was published containing papers in all the areas covered by his research [Dechter 
et al. 2010]. The volume also contains reminiscences from former students and 

other researchers in the field. Ed Purcell, Pearl’s first PhD student, wrote, “In class 
I was immediately impressed and enchanted by Judea’s knowledge, intelligence, 
brilliance, warmth and humor. His teaching style was engaging, interactive, infor
mative and fun.” Hector Geffner, a PhD student in the late 1980s, wrote, “He was 
humble, fun, unassuming, respectful, intelligent, enthusiastic, full of life, very easy 
to get along with, and driven by a pure and uncorrupted passion for understanding.” 
Nils Nilsson, former Professor and Chair of the Computer Science Department at 
Stanford and an AI pioneer, described Pearl as “a towering figure in our field.” 

Pearl’s outside interests include music (several early conferences were enter
tained by his impromptu piano renditions and very realistic trumpet imitations), 
philosophy, and early books—particularly the great works of science throughout 
history, of which he possesses several first editions. Judea and Ruth Pearl had three 

children, Tamara, Daniel, and Michelle. Since Daniel’s kidnapping and murder in 
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Pakistan in 2002, Professor Pearl has devoted a significant portion of his time and 

energy to the Daniel Pearl Foundation, which he and his wife founded to promote 

Daniel’s values of “uncompromised objectivity and integrity; insightful and uncon
ventional perspective; tolerance and respect for people of all cultures; unshaken 

belief in the effectiveness of education and communication; and the love of music, 
humor, and friendship.” 

Pearl has donated a major portion of the Turing Prize money to support the 

projects of the Daniel Pearl Foundation and another portion to promote the 

introduction of causal inference in statistics education. 

BIRTH: 
September 4, 1936, Tel Aviv, Israel. 

EDUCATION: 
BS, Electrical Engineering (Technion, 1960); MS, Electronics (Newark College of 
Engineering, 1961); MS, Physics (Rutgers University, 1965); PhD, Electrical Engineer
ing (Polytechnic Institute of Brooklyn, 1965). 

EXPERIENCE: 
Research Engineer, New York University Medical School (1960–1961); Instructor, 
Newark College of Engineering (1961); Member of Technical Staff, RCA Research 

Laboratories, Princeton, New Jersey (1961–1965); Director, Advanced Memory 
Devices, Electronic Memories, Inc., Hawthorne, California (1966–1969); Assis
tant Professor of Engineering Systems, UCLA (1969–1970); Associate Professor 
of Computer Science, UCLA (1970–1976); Director, Cognitive Systems Laboratory, 
UCLA (from 1978); Professor of Computer Science, UCLA (from 1976—Emeritus 
since 1994); Professor of Statistics, UCLA (from 1996—Emeritus since 1994); Pres
ident, Daniel Pearl Foundation (from 2002); International Advisory Board, NGO 

Monitor (from 2011); Chancellor’s Professor of Computer Science Department, 
UCLA (since 2014). 

HONORS AND AWARDS: 
RCA Laboratories Achievement Award (1963); NATO Senior Fellowship in Science 

(1974); Pattern Recognition Society Award for an Outstanding Contribution (1978); 
Fellow, IEEE (1988); Fellow, American Association of Artificial Intelligence (1990); 
Named “The Most Published Scientist in the Artificial Intelligence Journal” (1991); 
Member, National Academy of Engineering (1995); UCLA Faculty Research Lecturer 
of the Year (1996); IJCAI Research Excellence Award (1999); AAAI Classic Paper 
Award (2000); Lakatos Award, London School of Economics and Political Science 
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(2001); Corresponding Member, Spanish Academy of Engineering (2002); Pekeris 
Memorial Lecture (2003); ACM Allen Newell Award (2003); Purpose Prize (2006); 
Honorary Doctorate, University of Toronto (2007); Honorary Doctorate, Chapman 

University (2008); Benjamin Franklin Medal in Computers and Cognitive Science 

(2008); Festschrift and Symposium in honor of Judea Pearl (2010); Rumelhart 
Prize Symposium in honor of Judea Pearl (2011); David E. Rumelhart Prize (2011); 
IEEE Intelligent Systems’ AI Hall of Fame (2011); ACM Turing Award (2011); 
Technion Harvey Prize (2012); Alumni Award NYU-Polytechnic (2013); Member, 
National Academy of Sciences (2014); Honorary Doctorate Degree, Texas A&M 

(2014); Honorary Doctorate, Carnegie Mellon University (2015); John C. Cassel 
Memorial Lecture (2015); CMU Dickson Prize (2015); AIJ Classic Paper Award 

(2015); ACM Fellow (2015); SER Sells Award (2016); Doctor Philosophiae Honoris 
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Kelly Gotlieb. It is my great pleasure to welcome you to the ACM Alan Turing 

Lecture. This annual presentation is delivered by the winner of the ACM Alan 

Turing Award, which is named for the great British mathematician and com
puter scientist Alan M. Turing, the originator of the Turing Test, and whose 100th 

birthday we’ve been celebrating. 
The Turing Award is often referred to as the “Nobel Prize of Computing,” and 

is the most prestigious prize a computer scientist can receive; it carries a $250,000 

prize generously provided by Intel and Google. 
This year’s recipient of the ACM Turing Award, and our lecturer this morning, 

is Judea Pearl, Professor of Computer Science and Statistics at the University of 
California in Los Angeles. He received this honor in recognition of his fundamen
tal contribution to artificial intelligence as a result of the development of a calculus 
for probabilistic and causal reasoning. 

So, you can see it is quite fitting that he addresses this audience at this con
ference, seeing he is one of the true pioneers in advancing both the science and 

the art of artificial intelligence. And I do not give the term “art” loosely because if 
you know any of Professor Pearl’s works or books, you’ll know that he is as much a 

philosopher as a scientist. 
The subject for his talk this morning is “The Mechanization of Causal Inference: 

A ‘Mini’ Turing Test and Beyond.” It is my privilege to introduce Judea Pearl. 

Turing Award Lecture 

Transcript of Judea Pearl’s Turing Award Lecture, The Mechanization of Causal 
Inference: A ‘Mini’ Turing Test and Beyond, presented at the 26th Association for the 

Advancement of Artificial Intelligence (AAAI) Conference, held in Toronto, Canada, 
in July 2012. The transcript has been lightly edited for clarity. The introduction is 
by Professor Kelly Gotlieb. 

Edited transcript of Lecture Video at https : / /amturing.acm.org/award_winners/pearl_ 

2658896.cfm. 

https://amturing.acm.org/award_winners/pearl_2658896.cfm
https://amturing.acm.org/award_winners/pearl_2658896.cfm
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Judea Pearl. Thank you, Kelly, for a wonderful introduction. I’m very glad to be 

here. I did request to deliver the Turing lecture at AAAI because you, AAAI students 
and researchers, were with me at an early stage of this game, and deserve to hear a 

progress report about what happened in this adventure since we last played in the 

sandbox and built those castles together. 
Also, I think it is important that I pay tribute to AAAI for nurturing my work 

when it was not exactly fashionable. I want to thank all of you for being partners 
in the development of the things I’m going to talk about: colleagues, co-authors, 
co-principal investigators, students, and reviewers. I do not know if I should thank 

my reviewers as well [LAUGHTER]. 
Three of my most important works were published in the proceedings of AAAI, 

so I would like to start with those.1 The first, presented at AAAI 1982 in Pittsburgh, 
was my first paper on belief propagation in trees. The second was presented at 
AAAI 1994 and it was a paper with Adnan Darwiche on the do calculus. I’m sure that 
it wouldn’t have been published in any other conference proceedings, in Statistics 
or any other field. The third was presented in the same conference, AAAI 1994, and 

it was the paper with Alexander Balke on “Probabilistic Evaluation of Counterfac
tual Queries.” I chose those three papers because their titles are closely related to 

the names of the three-layer hierarchy of causal reasoning that we have today. They 
established a very solid kind of hierarchy that is rarely mixed, in the sense that you 

can syntactically tell if a sentence is probabilistic, causal, or counterfactual. 
But this is not a lecture about my work; it is a lecture about Turing. So, let me 

start with Turing and his Turing Test in the article in Mind Magazine in 1950: a test 
that I think is an engine behind much of the work that is done in AI. 

Turing’s answer to the question of, “Can computers think?” was very simple. 
“Yes, if it acts like it thinks,” where “acting” means that it provides reasonable 

answers to non-trivial questions about a story, a topic, or a situation. Many of us 
are working on mini-Turing Tests in various fields. I will consider questions that 
involve causal inference. 

Here is how Turing described a hypothetical conversation with the machine. 
First was the question about poetry. And the answer, of course, is evasive, although 

with some human element to it: “I never could write poetry.” 
The second question is about arithmetic: “Can you add that and that,” and the 

answer is also human. You pause for 30 seconds, and then you give the answer. This 
is also a very simple domain. 

1. The three AAAI papers that Judea Pearl is referring to are: “Reverend Bayes on inference engines: 
A distributed hierarchial approach” [Pearl 1982]; “Symbolic causal networks for reasoning about 
action and plans” [Darwiche and Pearl 1994]; and “Probabilistic evaluation of counterfactual 
queries” [Balke and Pearl 1994]. 
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And then Turing said, “Let’s look at chess. Do you play chess?” “Yes.” “I have a 

King on my K1, and no other pieces; you have only King at K6 and Rook at R1. It is 
your move. What do you play?” And of course the machine answers after a pause, 
“Checkmate.” 

So, these were the questions exemplified in Turing’s first paper: questions about 
various domains like arithmetic, poetry, and chess, all of which admit reasonable 

answers. 
But then Turing talks about a “child machine,” which is essentially machine 

learning. “Why don’t we start with a child machine?” It should be easier, he said, 
because the child does not need as much background as we expect adults to have. 
“Our hope is that there is so little mechanism in the child-brain that something 

like it can be easily programmed.” I think that Turing underestimated the role that 
vision and motor action play even in high level intelligence. We know, for example, 
that metaphors taken from the child world play a tremendous role in the child’s 
ability to handle mathematics. 

Turing then made some statements about the connection between machine 

learning and evolution, and said: “The survival of the fittest is a slow method for 
learning. The experimenter [the programmer], by exercise of intelligence, should 

be able to speed it up. How? By creating artificial mutations where they are needed. 
If he can trace the cause of some weakness, he can then probably think of a 

kind of mutation which will improve it.” Turing’s idea was that the program
mer would be able to trace shortcomings of the program to where they matter, 
and fix them. There was a great vision here because it leads to the question: 
Why shouldn’t a machine, having a blue print of itself be able to pinpoint the 

root causes of a weakness, and change priority among competing computational 
resources? 

I will explain to you why I chose causal reasoning to be a domain that deserves 
to be called a “Mini Turing Test.” For this, imagine that you have Turing’s exper
imental setting with an interrogator asking a machine questions. The questions, 
however, are limited mainly to three types or modalities: What is?, What if?, and 

Why? 
The story, that I used many times in my 1988 book Probabilistic Reasoning [Pearl 

1988] and the 2000 book Causality [Pearl 2000], is as follows: You get out of your 
house and you see the pavement. The pavement may be wet or dry, it may also be 

slippery or not, it may have rained or not, the season may be dry or wet, and the 

sprinkler may have been on or off. These are five binary variables that can be used to 

generate many simple stories connected to your everyday experience. The task is to 

tell a story to the machine and the machine has to answer questions corresponding 

to the three modalities. 
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One simple question: if the season is dry and the pavement is slippery, did it 
rain? You expect an answer like: “It is unlikely. It is more likely that the sprinkler 
was on, with a very slight possibility that the pavement is not even wet.” There 

could indeed be other reasons for why the pavement is slippery. This is the kind of 
answer that you expect on the basis of observations alone. 

Then comes a second question: “What if you see that the sprinkler is off?” A 

plausible answer is: “It is more likely then that it rained.” This is reasonable; it is 
an example of what is called “explaining away.” 

Now a question about actions: “Do you mean that if we actually turn the sprin
kler on, then rain will be less likely?” And you want the machine to say, “No, there 

is a difference between seeing and doing; the likelihood of rain would remain the 

same but the pavement will surely get wet.” 
Finally, a question of counterfactual nature: “Suppose that you see that the 

sprinkler is on and the pavement is wet. Would the pavement be wet if the sprinkler 
were off?” I’ll explain why I’m so hung up on counterfactuals, but first I would like 

you to answer the question instead of the machine. What I expect the machine to 

say is, “The pavement would be dry then, because the season is likely dry.” Namely, 
you take the observation here, that the sprinkler is on, and you infer, “Oh, it must 
be a dry season.” Then, if the sprinkler were off, the past remains the same but the 

future changes, so the justification should be: “Because the season is likely dry and 

the pavement is wet.” 
This is the kind of question/answer session that we expect for a toy problem. 

We all remember, however, Searle’s argument of the Chinese room that says that 
answering questions does not mean that a machine thinks or even understands the 

questions. To prove his point, Searle imagines that the machine takes the questions 
in Chinese and answers them using a rule book, where every sentence in Chi
nese has the answer printed there in Chinese or in English. He concludes that the 

machine can’t be said to understand Chinese just because it looks up the answers 
in the book. 

What Searle overlooks is the fact that there are not enough molecules in the 

universe to make up such a book, because of the huge number of questions that 
may be asked. “So what?,” you may ask. “Just because you have combinatorial diffi
culty, you conclude that the machine thinks?” [AUDIENCE LAUGHS] The answer is 
“Yes,” because when you have such a combinatorial problem to overcome, the only 
way to solve it is by taking advantage of the relevant constraints in the domain. And 

understanding and taking advantage of the relevant principles and constraints is 
what we mean by understanding. 

Even for the sprinkler example, if, for the sake of argument, we consider ten 

binary variables and count the number of entries in the table that we would need 
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hungry and

Figure 2.1 Turing Test and a plurality of mini-Turing Tests. 

to use Searle’s Chinese-book method, it turns out that we would need on the order 
of 1,000 entries just for the probability. We need to multiply this number by another 
1,000 to get the probablities for all actions, and by an additional 1,000 to account 
for the counterfactual queries. So, we would need a billion-long table just to answer 
questions about the simple pavement story. 

Yet even children can answer these questions quite intelligibly, and the ques
tion is, “How?” I’ll argue that there are important principles and constraints that 
enable the child to answer questions about observations, interventions, and coun
terfactuals, but before getting there, I’d like to explain why I think that the causal 
conversation is important (Figure 2.1, “The plurality of mini Turing tests”). 

Causal reasoning is important because it is pervasive in human cognition and 

human ethics, and it is deeply entrenched in the cognitive development of chil
dren. In addition, causality is a building block of scientific thinking and crucial in 

robotics. Finally, and that’s the reason I have spent more than 25 years of my life on 

causality, there are many data-intensive applications that can benefit from any new 

insight in causal reasoning. There are thousands of hungry and aimless customers, 
not hungry for money since they are well endowed—all the pharmacutical com
panies are part of this enterprise—but they are hungry for ideas, because causal 
reasoning has not been properly formalized in those fields. Thus, any insight that 
we get by trying to make a robot understand cause-and-effect could translate into 

methods that could save millions of lives and dollars in those fields. 
Let me start with human cognition and ethics (Figure 2.2). I like to start with 

Adam and Eve—where else do you start? And you can see immediately that when 

God asked Adam, “Hey, did you eat from that tree?” Adam does not answer “yes” 
or “no.” He says instead, “She handed me the fruit and I ate.” You see: facts are 

for the gods; excuses are for men. [LAUGHTER] And Eve, of course, is no less 
expert in causal explanations, and says, “Don’t blame me. The serpent deceived 
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Figure 2.2 Causes, counterfactuals, and our sense of justice. 

me and I ate.” Thus causal reasoning plays a key role in our sense of justice, and in 

the need to pass the buck to somebody else. [LAUGHTER] 
You also remember when God told Abraham that he is about to destroy the cities 

of Sodom and Gomorrah, and Abraham said, “Are you about to smite the righteous 
with the wicked? You can’t do that. What if there were 50 righteous men in the 

city?” Here, you have the first counterfactual in the Bible. [AUDIENCE LAUGHS] 
“What if there were 50?” And look what God says: “If I find in the city of Sodom 

50 good men, I will pardon the whole place for their sake.” Do you think that Abra
ham gave up at that point? No. He got down and said, “What about 45?” [AUDIENCE 

LAUGHS] “Are you going to make a big fuss for five people?” And God says, “No, I 
ain’t gonna destroy it,” and then he goes down to 40, and then 30, and 20, and 10, 
and you know what happened. The rest is history, and the question, of course, is 
what kind of game this is. Did Abraham doubt the ability of God to count or to 

distinguish the righteous from the wicked? No. Abraham was the first scientist: he 

tried to find a general rule. “Where is the threshold?” “What is the general rule for 
collective punishment?” [AUDIENCE LAUGHS] In that sense, he was the first sci
entist, because what is science all about? It is about the general rules; not about 
specific events. 

So, here I go to science to prove to you that counterfactuals are indeed the basis 
for science. We all used to do problems in physics, for example, using Hooke’s law, 
which tells you that the length of the string Y is equal to a constant, say 2, times 
the weight X it supports. So if X is one kilogram, we have two equations: Y = 2X 

and X = 1 (Figure 2.3). You may think that finding the length of the string Y is just 
arithmetic: you solve the two equations with the two unknowns, and obtain the 

values Y = 2 and X = 1. The question is: are the equations Y = 2X and X = 1, and 

the equations Y = 2 and X = 1 equivalent? They are of course algebraically equiv
alent, as they have the same solution, but I will argue that they are not equivalent, 
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Figure 2.3 The causal hierarchy and why physics is counterfactual. 

because the equations on the left can answer questions that the ones on the right 
cannot. 

For illustrating this difference, consider actually a system of equations X = Y/2 

and Y = X + 1 which has the same solution Y = 2 and X = 1, along with the fol
lowing question: “If we raise the weight X to 3, what would be the length Y?” In 

the first system of equations Y = 2X and X = 1, which captures Hooke’s law and 

the unit body weight, the counterfactual question “if X had been 3” has the answer 
Y = 6, which can be obtained by wiping out the equation X = 1 and replacing it by 
X = 3. The new system of two equations, modified by the new information, gives 
us the answer Y = 6. 

The system of equations X = Y/2 and Y = X + 1, on the other hand, has the 

same solutions as the equations Y = 2X and X = 1, but if we apply the same 

method for answering the counterfactual query, and replace the equation X = Y/2 

by X = 3, we obtain the answer Y = 4, which is wrong. 
Every child in high school, when he or she solves physics problems, engages in 

counterfactual reasoning of this sort. The child knows which equations to write, 
which equations to wipe out, and which ones to keep. They keep the one that con
veys the generic rule and wipe out the ones that are merely boundary conditions 
and subject to the antecedent of the counterfactual. If this is the case, the equality 
sign that we saw before in the equation Y = 2X for expressing Hooke’s law does 
not really represent an algebraic equality but something closer to an assignment 
statement in a programming language. 

You can imagine that Nature, before determining the length of the spring, looks 
around for all variables that might possibly affect the length. She looks at the 

weight and says, “Ah, that is the one,” then consults the weight on the spring, 
and finally determines the value of the length. So, this is the conception of Nature 

in physics: Nature looks at some variables, goes through some process, and then 
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assigns values to other variables. If that is so, then modeling Nature requires a dif
ferent kind of algebra because the process involves wiping out equations. That is 
the meaning of arrows in the structure of causal graphs; it is a description of the 

strategy used by Nature. 
The role of counterfactuals and causation in human reasoning has not escaped 

philosophers. Already at the time of the Greeks in 430 BC, Democritus said, “I 
would rather discover one causal relationship than be king of Persia.” King of Per
sia at that time was not exactly a dangerous occupation like it is today. [LAUGHTER] 
And Hume, of course, looked at that and said, “What is this idea of causation? I’ve 

got to solve it.” And he came out with the conception that causation is not a gift 
of the gods, but something that we learn from experience. Here is a famous para
graph: “We remember to have seen that species of object called ‘flame,’ and to have 

felt the species of sensations we call ‘heat.’ Without any further ceremony, we call 
the one ‘cause’ and the other ‘effect.’” So, it is a matter of determining regularity in 

nature that makes us come up with the label “cause.” There are obvious difficulties 
to that conception, of course, but the fact that generations of philosophers have 

stumbled on the difficulty of explaining what “cause” is, brings us to ask: “What 
gives us the audacity, here in AI, to think that we can add another iota to this long 

debate?” 
The answer is simply that we do not have the luxury to philosophize. We need 

to build robots that understand what went wrong in the laboratory or the kitchen, 
and if they do not learn it by themselves, we need to teach them, so that they can act 
properly and answer queries about cause/effect relationships. And this is not a triv
ial thing to do because now the puzzles that philosophers have faced translate into 

engineering problems. The question of, “How do we acquire causal information 

from the environment?” is translated into, “How do we people conclude that the 

sprinkler caused the pavement to get wet?” And the question of “How do we peo
ple conclude that the sprinkler caused the pavement to get wet?” translates into, 
“How should a robot use causal information received from its creator-programmer 
to understand or to answer queries properly?” 

The use of causal information may look trivial but it is not, because if you just 
follow the rules you get unexpected results. If the input is “If the grass is wet, then 

it rained” and “If you break this bottle, the grass will get wet,” you do not want an 

output such as “If we break the bottle, then it rained.” So, just rule-chaining is not 
going to do the work for us; we need something more. 

And what is that something more? Before we get there, let me provide an outline 

of what I’m going to talk about (Figure 2.4). I’m going to talk about the three-level 
hierarchy first. The question “What if I see” is about probability and beliefs. The 

question “What if I do?” is about actions and interventions. Finally, the question 
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Figure 2.4 Roadmap: From Bayesian nets to causality and counterfactuals. 

“What if I did things differently?” is about counterfactuals. You can decorate these 

questions with probabilities; namely, how likely are the answers, but that’s not 
essential. 

The following is a field report of the journey that we took from the old days 
of Bayesian networks to causality and counterfactuals. We have to understand 

the distinctions and mental barriers that stood in our way. We have to talk also 

about what makes a model causal as opposed to something else, how a causal 
model can be tested, and how causal models and data are connected. If a model 
has testable implications, then you can hope to discover or learn the model from 

data. A model that does not have any testable implication cannot be discovered 

from data. Then I’ll talk about three themes: the effects of interventions, the evo
lution of the do-calculus, and the algorithmization of counterfactuals. I’ll also talk 

about applications: evaluation of plans and policies, mediation (i.e., distinguishing 

between direct and indirect causes), and generalization. 
I start with the basic statistical problem and the paradigm that rules statisti

cal thinking and most of machine learning. The idea is that someplace behind the 

scenes there is a Santa Claus called the “joint probability distribution” that occa
sionally, when he or she is gracious enough, spits out data. Our job is to infer Santa 

Claus’s properties: some aspect Q(P) of the joint distribution function P from the 

data; for example, we might want to estimate the mean, come up with a classifier, 
or decide whether a customer who bought Product A will also buy Product B. This 
kind of question is neat and well-formulated because it can be neatly encapsulated 

in the language of probability theory. We even have a short sentence to express 
this question: “Find the conditional probability of B given A,” with conditional 
probability coming all the way from Reverend Bayes 250 years ago. The function 

P can be a very complex distribution defined on many variables, some continuous 
and some binary, and so on. Although this is not a simple computational problem, 
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Figure 2.5 Structured causal models and truncated factorization. 

the paradigm is clear enough. Causal reasoning, however, deals with a different 
paradigm. 

You ask a question, for instance, “Infer whether customers who bought Product 
A would buy Product B if we double the price.” So, here we get up in the morning, 
whimsically greedy, and wonder what would happen if we raised the price. And we 

ask the question, “What will the probability of B given A be after we do something 

that perhaps has not been done before, like doubling the price of the product.” This 
is not even an aspect of the probability distribution P; observing that the price has 
doubled (and what has happened as a consequence) is very different from doubling 

the price and seeing the consequence. 
The counterfactual “had we doubled the price” is thus not an aspect or prop

erty of the Santa Claus. So, what is it? It is a property of a data-generating model 
that is behind the joint probability. As before, the joint probability spits out data, 
we get the samples, and we need to infer some property, but of what? Not of P, but 
of the data-generating model. This is the invariant strategy of Nature that I talked 

about before, sometimes called a “mechanism,” “recipe,” “law,” or “protocol”—all 
are counterfactual notions—by which Nature assigns values to variables. 

This simple idea is torture for a statistician because it takes a leap of imagina
tion to think of Nature rather than experiments or measurements. It is a traumatic 
experience for people outside artificial intelligence; I would like you to be aware of 
that if you ever talk to an outsider. [AUDIENCE LAUGHS] 

Once we go there, let’s generalize it. Let’s imagine that the whole world is just a 

collection of springs. So, the model is fueled by a collection of functions that assign 

values to variables. Every variable is assigned a value that is a function of the other 
variables in the system (Figure 2.5). Some of the variables are exogenous; you do not 
care about their causes, but only about their effects. The rest are endogenous. And 
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our job is to encode this on a machine so that the machine can provide reasonable 

and plausible answers to our reasonable questions. 
The equations that we had for the spring example are typical: after Nature 

spends some time, maybe a billionth of a second, looking at X, multiplying it by 
constant, adding to it some noise, and deciding that Y deserves the value y (great 
work, mother Nature!), our job is to decipher the strategy of Nature. If this sounds 
too ambitious, at the very least we should be able to answer counterfactual queries 
if we have enough data. 

Let us illustrate this by considering a familiar digital circuit diagram. The circuit 
is an oracle for counterfactuals because if you look at the circuit you can answer a 

counterfactual question like “What if I were to replace this OR gate with an AND 

gate?” or “What if I were to connect this node Y to a power supply of 5 volts?” Even 

though the circuit designer never anticipated such crazy questions and events, the 

engineer glancing at the circuit has the ability to contemplate the answers and 

compute them correctly. 
Where does this ability come from? It comes from some fundamental proper

ties of the collection of functions and equations in the causal model. The funda
mental one, from which everything else eventually derives, is that, if you happen to 

be lucky and your equations are recursive (no cycles there), and the disturbances 
happen to be independent of each other, then regardless of the functions that 
you have there and regardless of the distributions of disturbances, you can say 
something about the probability distribution of what you observe. So, the struc
ture of that collection of springs determines something very basic in your dis
tribution function, which has the form of a product and represents conditional 
independencies (Figure 2.5). 

And from that comes the next corollary, which is the ability to answer questions 
about interventions. Once you have this product form, if somebody asks you, “And 

what if I take an action?,” the answer comes from the truncated factorized product 
(Figure 2.5). This is the same factorized product as before, but we delete from the 

product those variables that are forced to a constant (by the interventation) because 

those variables no longer listen to their parents. 
Here is our sprinkler example again (Figure 2.6). Before you act, you have the 

diamond structure shown in the figure, which corresponds to the set of equa
tions shown. But once you take an action like turning the sprinkler on, you must 
remove the causal influence of the variable Season on the variable Sprinkler, as 
Mr. Sprinkler no longer listens to its parent, and instead becomes enslaved to your 
muscles, which set the variable to a value. 

This formalism for actions did not germinate in AI, but originated with 

an economist, Haavelmo. In 1943, he considered the problem of modeling 
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Figure 2.6 Structured causal models of two of the examples in the text. 

government interventions in the economy, like fixing a price or imposing taxes, 
and he had the idea to model the effects of the actions by introducing changes in 

the equations. If the government does something like keeping a price constant, 
a term is added to the corresponding equation to balance the other terms, so that 
the price remains constant. Later on, this manipulation was replaced by Strotz and 

Wold, who “wiped out” the relevant equation and replaced it with a constant assign
ment. Then Spirtes, Glymour, and Scheines transformed this manipulation into a 

graphical surgery procedure, where you wipe out the arrows going into the manipu
lated variable, resulting in the truncated factorization. I took this all very seriously 
and said, “We have a new calculus that deserves algebraic support,” translated it 
into the do-calculus, and then applied it to counterfactuals. That has been the evo
lution of these ideas. Now we also have the unification with the Neyman–Rubin 

account in statistics, which also handles causality with counterfactuals. 
How are counterfactuals handled, and what is the general model for counter

factuals? This is all very simple (Figure 2.7). You mutilate your model to take care of 
the antecedent of the counterfactual, and you solve the equation in the mutilated 

model. There’s nothing else to it; it’s embarrassingly simple. In this Definition, 
I simply say symbolically what I said verbally: you are in possession of a calculus 
because you have a semantics for joint counterfactuals. For any set of variables 
X, Y , Z, … , you can find the joint probability of Y taking a value y had X been x, 
and simultaneously, Z taking value z had W been w, and so on. The semantics 
determines the probability of any such sentence. 

Specifically, the sentences can involve actions with the “do” operator and attri
butions, like “What is the likelihood that a patient would be alive today had he 

not taken the drug, given that in fact he is dead and he took the drug?” This is 
a sentence in the language, and the semantics is there. If you have the model, 
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Figure 2.7 Counterfactuals are simple. 

you can compute the answer. Everybody knows how to solve equations, right? The 

semantics is extremely simple. 
And Joe Halpern and David Galles came up with a complete axiomatization 

of that. Why do we need an axiomatization? So that if anybody says, “You can 

do counterfactuals differently,” you can compare the axioms and evaluate if they 
are equivalent or not. The workhorse is a composition axiom that tells you that if 
you do something that would have occurred anyhow, you have not done a thing. 
This sentence says, essentially, that our world is closer to our world than any other 
possible world, if you go to the possible worlds interpretation of it. 

I’ll give you now an example of what you can do with it. You have a collection 

of equations and you think that Nature works like that. The first questions that 
you have to ask yourself are “Is this model testable?” or “Does the model have any 
testable implications?” As I said before, if it does not have testable implications, 
you cannot learn or verify the model. And the idea for the verification is very sim
ple. Everything that we did with Bayesian nets translates now into Causal Bayesian 

nets, and the criterion of d-separation gives you a finite set of testable implications. 
Just look at the missing arrows: every one carries the promise of a test. If the test 
fails, the model is wrong. 

What else can these models do for you? They can handle interventions; they 
are, indeed, an oracle for interventions. So, if you have questions like “What is the 

average causal effect of X on Y, given that you can measure variables W and Z” 
or “Can you do this without manipulation, just by observation?”, you can produce 

answers like “Yes, if you can measure variables like age or ethnicity.” Namely, you 

are guaranteed that you can answer the query without bias by simple adjustment 
(regression). Of course, these results are built on the assumptions encoded in the 

causal graph. Each missing link in the graph is an assumption of a causal nature, 
not of a statistical nature. 
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Figure 2.8 Causal calculus in action. 

Here is another example, one which is highly applicable. You are in the sports 
medicine business, and you wonder whether warm-up is a cause of injury or pre
vents injuries in the game (Figure 2.6). It’s an extremely important question for 
our society, for our culture, right? You can take measurements of previous injuries, 
team aggressiveness, and so on. Which one would you measure? Each one takes a 

lot of dollars to measure. The answer is given to you automatically: “Thou shalt 
measure this, and you’re okay; thou shalt not measure that because you would get 
bias; thou shalt measure that—fine, and here there is another alternative.” Indeed, 
you can pick the measurements according to their cost and their reliability. There 

are three rules that drive this answering mechanism (Figure 2.8). The rules take the 

graph into account, are applied repeatedly, and produce the answer. 
Another example: Does smoking cause cancer? The query given to you contains 

a causal symbol (Figure 2.8): the purple expression do(s) stands for doing the action 

of smoking. We do not have the data for the effect of this action: we cannot conduct 
randomized experiments on smokers. So we have to answer the query analytically. 
We apply the rules one after the other until we get rid of all the purple expressions. 
Once we do this, it means that you can answer the query from data obtained by 
hands-off, passive observations. And you can answer the question quantitatively: 
this is the extent to which smoking causes cancer. 

What else can this calculus do for you? Find equivalent models, identify coun
terfactual queries, mediation, which is about the distinction between direct and 

indirect effects, explanation, which is about finding the causes of observed effects, 
and transportability, which is about generalizing what you learn in one domain 

into another domain in which you cannot conduct any experiments. 
Counterfactuals are very interesting because philosophers have gone through 

a great deal of pain to understand why we are able to agree on their truth value. 
Here is a typical example: “If Oswald didn’t kill Kennedy, someone else did” and 
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“If Oswald hadn’t killed Kennedy, someone else would have.” If I give you this pair 
of sentences, you’ll tell me “Yes” on the first one and “No” on the second. How are 

we able to agree on this? This was a puzzle for philosophers. 
Hume tried to explain causes in terms of counterfactuals, and David Lewis tried 

to explain causes in those terms too. The puzzle that I faced was different. Why 
don’t we try to define counterfactuals in terms of causes, rather than the other way 
around? Are counterfactuals less problematic? Apparently so, because we do form 

consensus on counterfactuals. And these two pillars of philosophy tried indeed to 

define causes in terms of counterfactuals. To me it means that we do count on a 

counterfactual engine in our mind that is swift and reliable, and we form consen
sus because we share the architecture of this engine. So, this is an AI problem, not 
a philosophy problem. 

Indeed, what Lewis came up with in his possible-worlds semantics for coun
terfactuals does not solve the consensus puzzle as it relies on assessing, for exam
ple, how close is a world in which we are all dead after Nixon presses the button, 
relative to a world in which Nixon presses the button but somebody disconnected 

the wires. That is a typical question in philosophy—assessment of how similar 
worlds are. In our structural world, you do not rely on similarity among worlds; you 

rely on equations which are common equations of physics, and mutilating those 

equations. 
I will not have time to talk about the counterfactual triumph, which is the 

ability to distinguish between direct and indirect effects. It is an important distinc
tion because we send people to prison if they are directly responsible for murder, 
and fine them if they are only indirectly responsible. So, it is a key notion in law, 
in ethics, and in understanding how the world works. However, it requires the 

ability to answer questions about different kinds of interventions—interventions 
where you enable and disable certain mechanisms, rather than fixing variables, as 
I mentioned before. 

Direct and indirect effects is a booming field now in statistical epidemiology, 
called “mediation analysis.” And the impetus for that was counterfactuals. We were 

able to express the idea of indirect effects by counterfactuals, as you see here. What 
is the definition of “indirect effect?” It is the expected change in output when we 

keep the input constant but change the mediator. “What would you have gotten had 

the input changed?” is a nested counterfactual that is not about fixing the value of 
variables. It is now the accepted definition when you have indirect effects. That’s 
why I consider this account a triumph. 

I’ll now talk about the next triumph: transportability. And I say it’s a triumph 

because here the do-calculus appeared out of the blue. We didn’t expect it to reveal 
its potency in an area like that, which has very little to do with interventions. 
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Figure 2.9 Logic and experiment for a science of cause and effect. 

Imagine that we want to transfer relationships that we learn from experiments 
in one environment to a different environment in which no experiments can be 

conducted. So, we can think about training a robot in the cockpit and moving 

him or her to another environment where only observations are allowed, but no 

interventions. 
How much of the causal knowledge that the robot acquired in the cockpit is 

transferable? We typically want a crisp logical answer, yes or no, regarding whether 
a certain relationship is or is not transferable given what we know about the two 

environments. And this has surprisingly a complete answer; that is, an answer that 
cannot be improved. When the method says that the information cannot be trans
ferred, we also get an explanation for why, in terms of the assumptions about the 

disparities and commonalities between the two environments. 
I think I’m close to the end of the talk. I have five seconds. [LAUGHTER] 
I didn’t talk about our new game, which is meta-analysis, in which big data 

comes to play. Imagine that you have data coming from 1,000 hospitals in the 

United States or worldwide, each one conducted under different conditions with 

different populations. You want to use all this data to come up with an answer to a 

query in another environment, where no measurements are allowed. All you know 

is the structure. Can you do it or not? We look for a crisp, yes or no answer. And if 
you can, how? So, I go through the “how” over many slides here, which I’ll have to 

skip. Believe me, there is a method here, and there is a lot of work to be done in 

terms of decomposing the relationships into sub-relationships for picking up from 

every study the commonalities, and for putting them together to come up with an 

unbiased estimate. 
It is time to move to the conclusions (Figure 2.9). Counterfactuals are the build

ing blocks of scientific thought, free will, and moral behavior. The algorithmization 

of counterfactuals has benefited several problems in the empirical sciences, and 
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brings us a step closer to achieving cooperative behavior between humans and 

robots. 
Historically—I have to play the sage at this point—Einstein noticed that there 

have been two major advances in Western science. One is the development of logic 
by the Greeks. The other is the recognition by Galileo that you can find cause– 

effect relationships from experiments. I’m following these paths, trying to com
bine the two: the logic of the Greeks with the experiments of Galileo, to come up 

with logically sound theories of causes and counterfactuals. Our mission is largely 
accomplished, but more remains to be done. Thank you. [APPLAUSE] 
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of more than 450 scientific papers and three landmark books: Heuristics (1984) [1]. 
Probabilistic Reasoning (1988) [3], and Causality (2000; 2009) [4]. His 2018 book, The 

Book of Why [6], makes his work on causation accessible to a general audience. In 2011, 
Judea received the Turing Award, which is the highest honor in the field of computer 
science and is often compared to the Nobel Prize. 

MARTIN FORD: You’ve had a long and decorated career. What path led you to get 
started in computer science and artificial intelligence? 

JUDEA PEARL: I was born in Israel in 1936, in a town named Bnei Brak. I attribute 

a lot of my curiosity to my childhood and to my upbringing, both as part of Israeli 
society and as a lucky member of a generation that received a unique and inspiring 

education. My high-school and college teachers were top-notch scientists who had 

come from Germany in the 1930s, and they couldn’t find a job in academia, so they 
taught in high schools. They knew they would never get back to academia, and they 
saw in us the embodiment of their academic and scientific dreams. My generation 

were beneficiaries of this educational experiment—growing up under the mentor-
ship of great scientists who happened to be high-school teachers. I never excelled 

in school, I was not the best, or even second best, I was always third or fourth, but 
I always got very involved in each area taught. And we were taught in a chronolog
ical way, focusing on the inventor or scientist behind the invention or theorem. 

Originally published in M. Ford, Architects of Intelligence: The truth about AI from the people building 
it. Birmingham, UK: Packt Publishing, 357-372, 2018. 
Republished with permission. 

Interview by Martin Ford 

“The current machine learning concentration on deep learning and its 
non-transparent structures is a hang-up. They need to liberate themselves 
from this data-centric philosophy.” 

Judea Pearl is known internationally for his contributions to artificial intelligence, 
human reasoning, and philosophy of science. He is particularly well known in the AI field 

for his work on probabilistic (or Bayesian) techniques and causality. He is the author 
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Because of this, we got the idea that science is not just a collection of facts, but 
a continuous human struggle with the uncertainties of nature. This added to my 
curiosity. 

I didn’t commit myself to science until I was in the army. I was a member of 
a Kibbutz and was about to spend my life there, but smart people told me that 
I would be happier if I utilized my mathematical skills. As such, they advised me 

to go and study electronics in Technion, the Israel Institute of Technology, which 

I did in 1956. I did not favor any particular specialization in college; but I enjoyed 

circuit synthesis and electromagnetic theory. I finished my undergraduate degree 

and got married in 1960. I came to the US with the idea of doing graduate work, 
getting my PhD, and going back. 

MARTIN FORD: You mean you planned to go back to Israel? 

JUDEA PEARL: Yes, my plan was to get a degree and come back to Israel. I first 
registered at the Brooklyn Polytechnic Institute (now part of NYU), which was one 

of the top schools in microwave communication at the time. However, I couldn’t 
afford the tuition, I ended up employed at the David Sarnoff Research Center at the 

RCA laboratory in Princeton, New Jersey. There, I was a member of the computer 
memory group under Dr. Jan Rajchman, which was a hardware-oriented group. We, 
as well as everybody else in the country, were looking for different physical mech
anisms that could serve as computer memory. This was because magnetic core 

memories became too slow, too bulky, and you had to string them manually. 
People understood that the days of core memory were numbered, and 

everybody—IBM, Bell Labs, and RCA Laboratories—was looking for various phe
nomena that could serve as a mechanism to store digital information. Supercon
ductivity was appealing at that time because of the speed and the ease of preparing 

the memory, even though it required cooling to liquid helium temperature. I was 
investigating circulating currents in superconductors, again for use in memory, 
and I discovered a few interesting phenomena there. There’s even a Pearl vortex 
named after me, which is a turbulent current that spins around in superconduct
ing films, and gives rise to a very interesting phenomenon that defies Faraday’s law. 
It was an exciting time, both on the technological side and on the inspirational, 
scientific side. 

Everyone was also inspired by the potential capabilities of computers in 1961 
and 1962. No one had any doubt that eventually, computers would emulate most 
human intellectual tasks. Everyone was looking for tricks to accomplish those 

tasks, even the hardware people. We were constantly looking for ways of making 

associative memories, dealing with perception, object recognition, the encoding of 
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visual scenes; all the tasks that we knew were important for general AI. The man
agement at RCA also encouraged us to come up with inventions. I remember our 
boss Dr. Rajchman visiting us once a week and asking if we had any new patent 
disclosures. 

Of course, all work on superconductivity stopped with the advent of semicon
ductors, which, at the time, we didn’t believe would take off. We didn’t believe that 
miniaturization technology would succeed as it did. We also didn’t believe they 
could overcome the vulnerability problem where the memory would be wiped if 
the battery ran out. Obviously, they did, and semiconductor technology wiped out 
all its competitors. At that point, I was working for a company called Electronic 
Memories, and the rise of semiconductors left me without a job. That was how 

I came to academia, where I pursued my old dreams of doing pattern recognition 

and image encoding. 

MARTIN FORD: Did you go directly to UCLA from Electronic Memories? 

JUDEA PEARL: I tried to go to the University of Southern California, but they 
wouldn’t hire me because I was too sure of myself. I wanted to teach software, even 

though I’d never programmed before, and the Dean threw me out of his office. 
I ended up at UCLA because they gave me a chance of doing the things that I wanted 

to do, and I slowly migrated into AI from pattern recognition, image encoding, and 

decision theory. The early days of AI were dominated by chess and other game-
playing programs, and that enticed me in the beginning, because I saw there a 

metaphor for capturing human intuition. That was and remained my life dream, 
to capture human intuition on a machine. 

In games, the intuition comes about in the way you evaluate the strength of a 

move. There was a big gap between what machines can do and what experts can 

do, and the challenge was to capture experts’ evaluation in the machine. I ended up 

doing some analytical work and came up with a nice explanation of what heuris
tics is all about, and an automatic way of discovering heuristics, it is still in use 

today. I believe I was the first to show that alpha-beta search is optimal, as well 
other mathematical results about what makes one heuristic better than another. 
All of that work was compiled in my book, Heuristics, which came out in 1984 [1]. 
Then expert systems came to the scene, and people were excited about capturing 

different kinds of heuristics—not the heuristic of a chess master, but the intuition 

of highly-paid professionals, like a physician or a mineral explorer. The idea was 
to emulate professional performance on a computer system, either to replace or to 

assist the professional. I looked at expert systems as another challenge of capturing 

intuition. 
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MARTIN FORD: Just to clarify, expert systems are mostly based on rules, correct? 
If this is true, then do that, etc. 

JUDEA PEARL: Correct, it was based on rules, and the goal was to capture the mode 

of operation of an expert, what makes an expert decide one way or the other while 

engaging in professional work. 
What I did, was to replace it with a different paradigm. For example, instead of 

modeling a physician—the expert—we modeled the disease. You don’t have to ask 

the expert what they do. Instead, you ask, what kind of symptoms you expect to see 

if you have malaria or if you have the flu; and what do you know about the disease? 
On the basis of this information, we built a diagnosis system that could examine a 

collection of symptoms and come out with the suspected disease. It also works for 
mineral exploration, for troubleshooting, or for any other expertise. 

MARTIN FORD: Was this based on your work on heuristics, or are you referring 

now to Bayesian networks? 

JUDEA PEARL: No, I left heuristics the moment my book was published in 1984, 
and I started working on Bayesian networks and uncertainty management. There 

were many proposals at the time for managing uncertainties, but they didn’t gel 
with the dictates of probability theory and decision theory, and I wanted to do it 
correctly and efficiently. 

MARTIN FORD: Could you talk about your work on Bayesian networks? I know 

they are used in a lot of important applications today. 

JUDEA PEARL: First, we need to understand the environment at the time. There 

was a tension between the scruffies and the neaties. The scruffies just wanted to 

build a system that works, not caring about guarantees or whether their methods 
comply with any theory or not. The neaties wanted to understand why it worked 

and make sure that they have performance guarantees of some kind. 

MARTIN FORD: Just to clarify, these were nicknames for two groups of people with 

different attitudes. 

JUDEA PEARL: Yes. We see the same tension today in the machine learning com
munity, where some people like to get machines to do important jobs, regardless 
of whether they’re doing it optimally or whether the system can explain itself—as 
long as the job is being done. The neaties would like to have explainability and 

transparency, systems that can explain themselves and systems that have perfor
mance guarantees. 

Well, at that time, the scruffies were in command, and they still are today, 
because they have a good conduit to funders and to industry. Industry, however, 
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is short-sighted and requires short-term success, which creates an imbalance in 

research emphasis. It was the same in the Bayesian network days; the scruffies were 

in command. I was among the few loners who advocated doing things correctly 
by the rules of probability theory. The problem was that probability theory, if you 

adhere to it in the traditional way, would require exponential time and exponential 
memory, and we couldn’t afford these two resources. 

I was looking for a way of doing it efficiently, and I was inspired by the work of 
David Rumelhart, a cognitive psychologist who examined how children read text so 

quickly and reliably. His proposal was to have a multi-layered system going from the 

pixel level to the semantic level, then the sentence level and the grammatical level, 
and they all shake hands and pass messages to each other. One level doesn’t know 

what the other’s doing; it’s simply passing messages. Eventually, these messages 
converge on the correct answer when you read a word like “the car” and distinguish 

it from “the cat,” depending on the context in the narrative. 
I tried to simulate his architecture in probability theory, and I couldn’t do it very 

well until I discovered that if you have a tree as a structure connecting the modules, 
then you do have this convergence property. You can propagate messages asyn
chronously, and eventually, the system relaxes to the correct answer. Then we went 
to a polytree, which is a fancier version of a tree, and eventually, in 1985, I published 

a paper about general Bayesian networks [2]. 
This architecture really caught us by surprise because it was very easy to pro

gram. A programmer didn’t have to use a supervisor to oversee all the elements, all 
they had to do was to program what one variable does when it wakes up and decides 
to update its information. That variable then sends messages to its neighbors. The 

neighbors send messages to their neighbors, and so on. The system eventually 
relaxes to the correct answer. 

The ease of programming was the feature that made Bayesian networks accept
able. It was also made acceptable by the idea that you can program the disease 

and not the physician—the domain, and not the professional that deals with 

the domain—that made the system transparent. The users of the system under
stood why the system provided one result or another, and they understood how 

to modify the system when things changed in the environment. You had the 

advantage of modularity, which you get when you model the way things work in 

nature. 
It’s something that we didn’t realize at the time, mainly because we didn’t real

ize the importance of modularity. When we did, I realized that it is causality that 
gives us this modularity, and when we lose causality, we lose modularity, and we 

enter into no-man’s land. That means that we lose transparency, we lose reconfig
urability, and other nice features that we like. By the time that I published my book 
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on Bayesian networks in 1988, though, I already felt like an apostate because I knew 

already that the next step would be to model causality, and my love was already on 

a different endeavor. 

MARTIN FORD: We always hear people saying that “correlation is not causation,” 
and so you can never get causation from the data. Bayesian networks do not offer 
a way to understand causation, right? 

JUDEA PEARL: No, Bayesian networks could work in either mode. It depends on 

what you think about when you construct them. 

MARTIN FORD: The Bayesian idea is that you update probabilities based on new 

evidence so that your estimate should get more accurate over time. That’s the basic 
concept that you’ve built into these networks, and you figured out a very efficient 
way to do that for a large number of probabilities. It’s clear that this has become 

a really important idea in computer science and AI because it’s used all over the 

place. 

JUDEA PEARL: Using Bayes’ rule is an old idea; doing it efficiently was the hard 

part. That’s one of the things that I thought was necessary for machine learning. 
You can get evidence and use the Bayesian rule to update the system to improve its 
performance and improve the parameters. That’s all part of the Bayesian scheme 

of updating knowledge using evidence, it is probabilistic, not causal knowledge, 
so it has limitations. 

MARTIN FORD: But it’s used quite frequently, for example, in voice recognition 

systems and all the devices that we’re familiar with. Google uses it extensively for 
all kinds of things. 

JUDEA PEARL: People tell me that every cellphone has a Bayesian network doing 

error correction to minimize transmission noise. Every cellphone has a Bayesian 

network and belief propagation, that’s the name we gave to the message passing 

scheme. People also tell me that Siri has a Bayesian network in it, although Apple 

is too secretive about it, so I haven’t been able to verify it. 
Although Bayesian updating is one of the major components in machine learn

ing today, there has been a shift from Bayesian networks to deep learning, which 

is less transparent. You allow the system itself to adjust the parameters without 
knowing the function that connects input and output. It’s less transparent than 

Bayesian networks, which had the feature of modularity, and which we didn’t real
ize was so important. When you model the disease, you actually model the cause 

and effect relationship of the disease, not the expert, and you get modularity. Once 

we realize that, the question begs itself: What is this ingredient that you and I call 
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“cause and effect relationships”? Where does it reside, and how do you handle it? 
That was the next step for me. 

MARTIN FORD: Let’s talk about causation. You published a very famous book on 

Bayesian networks, and it was really that paper that led to Bayesian techniques 
becoming so popular in computer science. But before that book was even pub
lished, you were already starting to think about moving on to focus on causation? 

JUDEA PEARL: Causation was part of the intuition that gave rise to Bayesian 

networks, even though the formal definition of Bayesian networks is purely prob
abilistic. You do diagnostics, you make predictions, and you don’t deal with inter
ventions. If you don’t need interventions, you don’t need causality—theoretically. 
You can do everything that a Bayesian network does with purely probabilistic ter
minology. However, in practice, people noticed that if you structure the network in 

the causal direction, things are much easier. The question was why. 
Now we understand that we were craving for features of causality that we didn’t 

even know come from causality. These were: modularity, reconfigurability, trans
ferability, and more. By the time I looked into causality, I had realized that the 

mantra “correlation does not imply causation” is much more profound than we 

thought. You need to have causal assumptions before you can get causal conclu
sions, which you cannot get from data alone. Worse yet, even if you are willing to 

make causal assumptions, you cannot express them. 
There was no language in science in which you can express a simple sentence 

like “mud does not cause rain,” or “the rooster does not cause the sun to rise.” You 

couldn’t express it in mathematics, which means that even if you wanted to take 

it for granted that the rooster does not cause the sun to rise, you couldn’t write it 
down, you couldn’t combine it with data, and you couldn’t combine it with other 
sentences of this kind. 

In short, even if you agree to enrich the data with causal assumptions, you 

couldn’t write down the assumptions. It required a whole new language. This 
realization was really a shock and a challenge for me because I grew up on statis
tics, and I believed that scientific wisdom lies in statistics. Statistics allows you 

to do induction, deduction, abduction, and model updating. And here I find the 

language of statistics crippled in hopeless helplessness. As a computer scientist, 
I was not scared because computer scientists invent languages to fit their needs. 
But what is the language that should be invented, and how do we marry this 
language with the language of data? 

Statistics speaks a different language—the language of averages, of hypothe
sis testing, summarizing data and visualizing it from different perspectives. All of 
this is the language of data, and here comes another language, the language of 
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cause and effect. How do we marry the two so that they can interact? How do I 
take assumptions about cause and effect, combine them with the data that I have, 
and then get conclusions that tell me how nature works? That was my challenge 

as a computer scientist and as a part-time philosopher. This is essentially the role 

of a philosopher, to capture human intuition and formalize it in a way that it can 

be programmed on a computer. Even though philosophers don’t think about the 

computer, if you look closely at what they are doing, they are trying to formalize 

things as much as they can with the language available to them. The goal is to 

make it more explicable and more meaningful. At this point, computer scientists 
can program a machine to perform cognitive functions that puzzle philosophers. 

MARTIN FORD: Did you invent the technical language or the diagrams used for 
describing causation? 

JUDEA PEARL: No, I didn’t invent that. The basic idea was conceived in 1920 by a 

geneticist named Sewall Wright, who was the first to write down a causal diagram 

with arrows and nodes, like a one-way city map. He fought all his life to justify the 

fact that you can get things out of this diagram that statisticians could not get from 

regression, association, or from correlation. His methods were primitive, but they 
proved the point; he could indeed get things that the statisticians could not get. 

What I did was to take Sewall Wright’s diagrams seriously and invested into 

them all my computer science background, reformalized them, and exploited them 

to their utmost. I came up with a causal diagram as a means of encoding scientific 
knowledge and as a means of guiding machines in the task of figuring out cause-
effect relationships in various sciences, from medicine, to education, to climate 

warming. These were all areas where scientists worry about what causes what, how 

nature transmits the information from cause to effect, what are the mechanisms 
involved, how do you control it, and how do you answer practical questions which 

involve cause-effect relationships. 
This has been my life’s challenge for the past 30 years. I published a book on that 

in 2000, with the second edition in 2009, called Causality [4]. I co-authored a gentler 
introduction in 2016 [5]. And this year, I co-authored The Book of Why [6], which is 
a general audience book explaining the challenge in down-to-earth terms, so that 
people can understand causality even without knowing equations. Equations of 
course help to condense things and to focus on things, but you don’t have to be 

a rocket scientist to read The Book of Why. You just have to follow the conceptual 
development of the basic ideas. In that book, I look at history from a causal lens 
perspective; I asked what conceptual breakthroughs made a difference in the way 
we think about causation, rather than what experiments discovered one drug or 
another. 
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MARTIN FORD: I’ve been reading The Book of Why and I’m enjoying it. I think one 

of the main outcomes of your work is that causal models are now very important in 

the social and natural sciences. In fact, I just saw an article the other day, written 

by a quantum physicist who used causal models to prove something in quantum 

mechanics. So clearly your work has had a big impact in those areas. 

JUDEA PEARL: I read that article. In fact, I put it on my next-to-read list because 

I couldn’t quite understand the phenomena that they were so excited about. 

MARTIN FORD: One of the main points I took away from The Book of Why is that, 
while natural and social scientists have really begun to use the tools of causation, 
you feel that the field of AI is lagging behind. You think AI researchers will have to 

start focusing on causation in order for the field to progress. 

JUDEA PEARL: Correct. Causal modeling is not at the forefront of the current work 

in machine learning. Machine learning today is dominated by statisticians and 

the belief that you can learn everything from data. This data-centric philosophy 
is limited. 

I call it curve fitting. It might sound derogatory, but I don’t mean it in a deroga
tory way. I mean it in a descriptive sense that what people are doing in deep learning 

and neural networks is fitting very sophisticated functions to a bunch of points. 
These functions are very sophisticated, they have thousands of hills and valleys, 
they’re intricate, and you cannot predict them in advance. But they’re still just a 

matter of fitting functions to a cloud of points. 
This philosophy has clear theoretical limitations, and I’m not talking about 

opinion, I’m talking about theoretical limitations. You cannot do counterfactu
als, and you cannot think about actions that you’ve never seen before. I describe 

it in terms of three cognitive levels: seeing, intervening, and imagining. Imagining 

is the top level, and that level requires counterfactual reasoning: how would the 

world look like had I done things differently? For example, what would the world 

look like had Oswald not killed Kennedy, or had Hillary won the election? We think 

about those things and can communicate with those kinds of imaginary scenarios, 
and we are quite comfortable to engage in this “let’s pretend” game. 

The reason why we need this capability is to build new models of the world. 
Imagining a world that does not exist gives us the ability to come up with new 

theories, new inventions, and also to repair our old actions so as to assume respon
sibility, regret, and free will. All of this comes as part of our ability to generate 

worlds that do not exist but could exist, and still generate them widely, not wildly. 
We have rules for generating plausible counterfactuals that are not whimsical. They 
have their own inner structure, and once we understand this logic, we can build 
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machines that imagine things, that assume responsibility for their actions, and 

understand ethics and compassion. 
I’m not a futurist and I try not to talk about things that I don’t understand, 

but I did some thinking, and I believe I understand how important counterfactu
als are in all these cognitive tasks that people dream of, which eventually will be 

implemented on a computer. I have a few basic sketches of how we can program 

free will, ethics, morality, and responsibility into machines, but these are in the 

realm of sketches. The basic thing is that we know today what it takes to interpret 
counterfactuals and understand cause and effect. 

These are the mini-steps toward general AI, but there’s a lot we can learn from 

these steps, and that’s what I’m trying to get the machine learning community to 

understand. I want them to understand that deep learning is a mini-step toward 

general AI. We need to learn what we can from the way theoretical barriers were 

circumvented in causal reasoning, so that we can circumvent them in general AI. 

MARTIN FORD: So, you’re saying that deep learning is limited to analyzing data 

and that causation can never be derived from data alone. Since people are able 

to do causal reasoning, the human mind must have some built-in machinery that 
allows us to create causal models. It’s not just about learning from data. 

JUDEA PEARL: To create is one thing, but even if somebody creates it for us, our 
parents, our peers, our culture, we need to have the machinery to utilize it. 

MARTIN FORD: Right. It sounds like a causal diagram, or a causal model is really 
just a hypothesis. Two people might have different causal models, and somewhere 

in our brain is some kind of machinery that allows us to continuously create these 

causal models internally, and that’s what allows us to reason based on data. 

JUDEA PEARL: We need to create them, to modify them, and to perturb them when 

the need arises. We used to believe that malaria is caused by bad air, now we don’t. 
Now we believe it’s caused by a mosquito called Anopheles. It makes a difference 

because if it is bad air, I will carry a breathing mask the next time I go to the swamp; 
and if it’s an Anopheles mosquito, I’ll carry a mosquito net. These competing the
ories make a big difference in how we act in the world. The way that we get from 

one hypothesis to another was by trial and error; I call it playful manipulation. 
This is how a child learns causal structure, by playful manipulation, and this is 

how a scientist learns causal structure—playful manipulation. But we have to have 

the abilities and the template to store what we learn from this playful manipulation 

so we can use it, test it, and change it. Without the ability to store it in a parsimo
nious encoding, in some template in our mind, we cannot utilize it, nor can we 
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change it or play around with it. That is the first thing that we have to learn; we 

have to program computers to accommodate and manage that template. 

MARTIN FORD: So, you think that some sort of built-in template or structure 

should be built into an AI system so it can create causal models? DeepMind uses 
reinforcement learning, which is based on practice or trial and error. Perhaps that 
would be a way of discovering causal relationships? 

JUDEA PEARL: It comes into it, but reinforcement learning has limitations, too. 
You can only learn actions that have been seen before. You cannot extrapolate to 

actions that you haven’t seen, like raising taxes, increasing the minimum wage, 
or banning cigarettes. Cigarettes have never been banned before, yet we have 

machinery that allows us to stipulate, extrapolate, and imagine what could be the 

consequences of banning cigarettes. 

MARTIN FORD: So, you believe that the capability to think causally is critical to 

achieving what you’d call strong AI or AGI, artificial general intelligence? 

JUDEA PEARL: I have no doubt that it is essential. Whether it is sufficient, I’m 

not sure. However, causal reasoning doesn’t solve every problem of general AI. It 
doesn’t solve the object recognition problem, and it doesn’t solve the language 

understanding problem. We basically solved the cause-effect puzzle, and we can 

learn a lot from these solutions so that we can help the other tasks circumvent 
their obstacles. 

MARTIN FORD: Do you think that strong AI or AGI is feasible? Is that something 

you think will happen someday? 

JUDEA PEARL: I have no doubt that it is feasible. But what does it mean for me 

to say no doubt? It means that I am strongly convinced it can be done because 

I haven’t seen any theoretical impediment to strong AI. 

MARTIN FORD: You said that way back around 1961, when you were at RCA, peo
ple were already thinking about this. What do you think of how things have pro
gressed? Are you disappointed? What’s your assessment of progress in artificial 
intelligence? 

JUDEA PEARL: Things are progressing just fine. There were a few slowdowns, and 

there were a few hang-ups. The current machine learning concentration on deep 

learning and its non-transparent structures is such a hang-up. They need to lib
erate themselves from this data-centric philosophy. In general, the field has been 

progressing immensely, because of technology and because of the people that the 

field attracts. The smartest people in science. 
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MARTIN FORD: Most of the recent progress has been in deep learning. You seem 

somewhat critical of that. You’ve pointed out that it’s like curve fitting and it’s not 
transparent, but actually more of a black-box that just generates answers. 

JUDEA PEARL: It’s curve fitting, correct, it’s harvesting low-hanging fruits. 

MARTIN FORD: It’s still done amazing things. 

JUDEA PEARL: It’s done amazing thing because we didn’t realize there are so many 
low-hanging fruits. 

MARTIN FORD: Looking to the future, do you think that neural networks are going 

to be very important? 

JUDEA PEARL: Neural networks and reinforcement learning will all be essential 
components when properly utilized in causal modeling. 

MARTIN FORD: So, you think it might be a hybrid system that incorporates not 
just neural networks, but other ideas from other areas of AI? 

JUDEA PEARL: Absolutely. Even today, people are building hybrid systems when 

you have sparse data. There’s a limit, however, to how much you can extrapolate 

or interpolate sparse data if you want to get cause-effect relationships. Even if you 

have infinite data, you can’t tell the difference between A causes B and B causes A. 

MARTIN FORD: If someday we have strong AI, do you think that a machine could 

be conscious, and have some kind of inner experience like a human being? 

JUDEA PEARL: Of course, every machine has an inner experience. A machine has 
to have a blueprint of some of its software; it could not have a total mapping of its 
software. That would violate Turing’s halting problem. 

It’s feasible, however, to have a rough blueprint of some of its important connec
tions and important modules. The machine would have to have some encoding of 
its abilities, of its beliefs, and of its goals and desires. That is doable. In some sense, 
a machine already has an inner self, and more so in the future. Having a blueprint 
of your environment, how you act on and react to the environment, and answering 

counterfactual questions amount to having an inner self. Thinking: What if I had 

done things differently? What if I wasn’t in love? All this involves manipulating 

your inner self. 

MARTIN FORD: Do you think machines could have emotional experiences, that a 

future system might feel happy, or might suffer in some way? 

JUDEA PEARL: That reminds me of The Emotion Machine, a book by Marvin 

Minsky. He talks about how easy it is to program emotion. You have chemicals 
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floating in your body, and they have a purpose, of course. The chemical machine 

interferes with, and occasionally overrides the reasoning machine when urgencies 
develop. So, emotions are just a chemical priority-setting machine. 

MARTIN FORD: I want to finish by asking you about some of the things that we 

should worry about as artificial intelligence progresses. Are there things we should 

be concerned about? 

JUDEA PEARL: We have to worry about artificial intelligence. We have to under
stand what we build, and we have to understand that we are breeding a new species 
of intelligent animals. 

At first, they are going to be domesticated, like our chickens and our dogs, but 
eventually, they will assume their own agency, and we have to be very cautious 
about this. I don’t know how to be cautious without suppressing science and sci
entific curiosity. It’s a difficult question, so I wouldn’t want to enter into a debate 

about how we regulate AI research. But we should absolutely be cautious about the 

possibility that we are creating a new species of super-animals, or in the best case, 
a species of useful, but exploitable, human beings that do not demand legal rights 
or minimum wage. 

JUDEA PEARL was born in Tel Aviv and is a graduate of the Technion-Israel Institute of 
Technology. He came to the United States for postgraduate work in 1960, and the follow
ing year he received a master’s degree in electrical engineering from Newark College of 
Engineering, now New Jersey Institute of Technology. In 1965, he simultaneously received 

a master’s degree in physics from Rutgers University and a PhD from the Brooklyn Poly
technic Institute, now Polytechnic Institute of New York University. Until 1969, he held 

research positions at RCA David Sarnoff Research Laboratories in Princeton, New Jersey 
and Electronic Memories, Inc. Hawthorne, California. 

Judea joined the faculty of UCLA in 1969, where he is currently a professor of com
puter science and statistics and director of the Cognitive Systems Laboratory. He is 
known internationally for his contributions to artificial intelligence, human reasoning, 
and philosophy of science. He is the author of more than 450 scientific papers and three 
landmark books: Heuristics (1984), Probabilistic Reasoning (1988), and Causality 
(2000; 2009). 

A member of the National Academy of Sciences, the National Academy of Engineer
ing and a founding Fellow of the American Association for Artificial Intelligence, Judea is 
the recipient of numerous scientific prizes, including three awarded in 2011: the Associa
tion for Computing Machinery A.M. Turing Award for his fundamental contributions 
to artificial intelligence through the development of a calculus for probabilistic and 

causal reasoning, the David E. Rumelhart Prize for Contributions to the Theoretical 
Foundations of Human Cognition, and the Harvey Prize in Science and Technology from 
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Technion—Israel Institute of Technology. Other honors include the 2001 London School 
of Economics Lakatos Award in Philosophy of Science for the best book in the philosophy 
of science, the 2003 ACM Allen Newell Award for “seminal contributions that extend to 

philosophy, psychology, medicine, statistics, econometrics, epidemiology and social sci
ence,” and the 2008 Benjamin Franklin Medal for Computer and Cognitive Science from 

the Franklin Institute. 
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Ron Wassertein on How 
The Book of Why 
Transforms Statistics 

Judea Pearl’s The Book of Why is a nontechnical book for the general public that 
discusses recent advances in causal inference. 

Judea Pearl, a longtime ASA member, was interviewed in November of 2012 (see 
https://bit.ly/2LdNidA) after receiving the Turing Award from the Association of 
Computing Machinery. He has recently published a book, The Book of Why: The New 

Science of Cause and Effect (with Dana Mackenzie), that aims to familiarize the 
general, nontechnical public with recent advances in causal inference. ASA Executive 
Director Ron Wasserstein interviews him again here to find out what message he thinks 
his new book sends to Amstat News readers. 

Originally published in Interview. Amstat News, 8 September, 2018. https://magazine.amstat.org/
 
blog/2018/08/01/judeapearl-interview/.
 
Republished with permission.
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The Book of Why is making a splash in statistics, as well as in machine learn-
ing and other data-intensive sciences. I would like to start with a question 

that you have probably heard many times: What brought you to write the 

book? 

I have official and unofficial answers to this question. 
The official answers: First, I have found it both timely and exciting to lay before 

the public the amazing story of a science that has changed the way we understand 

scientific claims and yet has remained below the radar to the general public. As 
we enter the era of big data and machine learning, it is important to share with 

the public our current understanding of how this new science is likely to affect our 
lives in the 21st century. 

Second, as a part-time philosopher, I have found it intriguing to narrate the his
tory of statistics as viewed from the special lens of its orphaned sister: causation. 
The story of this “forbidden love” was never told before and, believe me, it is full 
of mystery, intrigue, personalities, dogmatic orthodoxy, and heroic champions of 
truth and conviction. 

Finally, my unofficial reason is to incite a rebellious spirit among rank-and-file 

statisticians, so the excitement that currently fuels causality research in academia 

percolates down to education and to practice. In other words, I am impatient with 

the slow pace at which the tools of causal inference are becoming an organic part 
of statistical thinking. 

You expressed a similar impatience in our interview six years ago. And you 

have initiated the ASA Causality in Statistical Education Award to close the 

growing gap between research and education. Hasn’t this initiative met your 
expectations? 

It has. But, with age, my impatience grew stronger and less forgiving. Of course, 
the availability of instructional material made it easier for instructors to introduce 

aspects of causal inference in graduate courses, but it was not sufficient to change 

the curriculum of undergraduate classes. Nor was it sufficient to reshape the minds 
of practicing statisticians or high-profile academics who are too busy to sort out 
what all the causal inference “hype” is about. 

What The Book of Why is doing can be described as “the democratization of 
causal inference.” It awakens the untrained students to the realization that “it’s 
easy and who needs the ‘experts’ and all their quibbles?” As a result, the book 

is accomplishing what I have failed to achieve in the past 30 years through hard 

labor and scholarly discussion with the leading statisticians of our time—a mass 
uprising of common sense. 
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I have read that some statisticians find your claims to be “hard to swallow,” 

especially your characterization of causal inference as “The Causal Revolu-
tion” and your depiction of statisticians as antagonistic to causal thinking. 
Can you comment on these sentiments? 

These are not only sentiments but natural complaints voiced by practicing statis
ticians who are genuinely surprised by how the history of statistics is viewed from 

the causal lens. 
Take for instance the mantra “correlation does not imply causation,” which 

every statistics student has learned to chant, demonstrate, and internalize. The 
Book of Why dissects this mantra to far-reaching conclusions that seem indeed 

“hard to swallow,” even to seasoned statisticians. 
First, it can be strengthened to assert that no causal conclusion can ever be 

obtained without some causal assumptions (or experiments) to support the con
clusion. This is hard to swallow because it sounds circular, and because if you look 

at the statistical literature from 1832 to 1974, you will find many ideas about what 
is needed to substantiate causal conclusions (e.g., Yule, Fisher, Neyman, Hill, Cox, 
Cochran), but not one causal assumption—at least not formally. 

This raises an interesting question: Why couldn’t these giants of statistics come 

up with a simple principle, telling us what assumptions are needed for establishing 

a given conclusion, and let us judge—for any given situation—whether it is plausi
ble to make those assumptions? And here comes the second surprise that is even 

harder for people to swallow: Even if they knew the needed assumptions, statisti
cians could not have articulated them mathematically—they simply did not have 

the language to do so. 
Readers refuse to accept this linguistic deficiency until I ask them to write down 

a mathematical expression for the sentence, “The rooster crow does not cause the 

sun to rise.” Failing this elementary exercise drives people to realize a totally new 

notational system is needed; the beautiful and powerful language of probability 
theory and its many extensions cannot make up for this deficiency. 

The needed notation first came into being in 1920, when the geneticist Sewall 
Wright put down on paper a new mathematical object: A causal diagram. Thus, 
statistics was separated from causality, not by antagonism or disdain, but by a lan
guage barrier—the toughest barrier for humans to acknowledge and to cross. Now 

that the barrier is behind us, it is only natural we should call the crossing a “Causal 
Revolution.” 

These are interesting theoretical points, but I wonder if they are likely to have 

significant impacts on the practice of statistics or on statistical education. 
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The most significant practical impact of the Causal Revolution would probably be 

a continuous erosion of the supremacy of randomized clinical trials (RCT) in the 

development and evaluation of drugs, therapeutical procedures, and social and 

educational policies. Last year, for example, the editors of one of the two leading 

medical journals in America stated that authors should not talk about causation 

unless they have conducted a randomized clinical trial. 
Miguel Hernan of Harvard and several other specialists in public health vig

orously protested this restriction, and Hernan wrote, “The biggest disservice of 
statistics to science has been to make ‘causal’ into a dirty word, the C-word that 
researchers have learned to avoid.” 

Indeed, considering the practical difficulties of conducting an ideal RCT and its 
inherent sensitivity to sample selection bias, observational studies have a definite 

advantage: They interrogate the target populations at their natural habitats, not in 

artificial environments choreographed by experimental protocols. 
The development of a new toolkit that allows scientists to estimate causal 

effects from observational studies now opens a wide variety of applications—from 

medicine to social science to ecology—free from problems of ethics, costs, and 

external validity that plague randomized clinical trials. 
True, observational studies are necessarily sensitive to modeling assumptions 

that must be defended on scientific grounds. However, the transparency with 

which those conceptual assumptions are displayed, coupled with the ability of 
testing them against data, now make observational studies serious contenders to 

RCTs. 

I would like to go back to education and ask what you believe would induce 

a typical statistics instructor to introduce aspects of causal inference in a 

standard statistics class. 

Curious students who read The Book of Why will make it impossible for statistics 
instructors to skip such aspects. 

Take for instance Simpson’s paradox, a phenomenon discussed in every statis
tics class, usually for the purpose of demonstrating that “correlation is not cau
sation.” The discussion usually ends with a song of praise to statistical tables for 
showing us that the reversal can indeed occur in the data, hence the paradox does 
not exist. Done. Some instructors go a bit further and praise the table for protect
ing us from naïve beliefs in miracle drugs that are good for men, good for women, 
and bad for the population. 

Now imagine an inquisitive student raising his/her hand and asking the very 
obvious question: So, what do we do if we find Simpson’s reversal in the data? 
Shall we believe the aggregated data or the disaggregated data? I do not believe 
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any instructor would in good faith be able to evade this question, suspecting the 

student knows the answer; it takes a few lines to describe. In other words, instruc
tors would not be able to skip the causal implications of Simpson’s paradox, as 
their professors did to them. 

The same applies to Lord’s paradox, spurious correlations, instrumental vari
ables, confounders, and other causal concepts that were used to embarrass statis
tics instructors in the past. 

The graphical approach you advocate in the book is but one of several 
approaches currently used in causal inference. Would a reader versed in 

potential outcome analysis feel comfortable with your methodology? 

Not only comfortable, but enlightened and liberated. Researchers entrenched in 

potential outcome analysis will discover, to their amazement, that the following 

three notorious weaknesses of potential outcomes can easily be overcome: 

∙	 Assumptions of “conditional ignorability,” which currently underlie every 
potential outcome study, can be made not because they facilitate available 

statistical routines, but when they are truly believed to hold in the world. 
They are, in fact, vividly displayed in our model of the world (i.e., the causal 
diagram), where they can be scrutinized for plausibility, completeness, and 

consistency. 

∙	 When assumptions of “conditional ignorability” do not hold, it is not the 

end of the world; the analysis can continue, and causal questions answered 

using other types of assumptions the model may license. 

∙	 Modeling assumptions need not remain opaque or data-blind; they can be 

tested for compatibility with the available data, and the model tells us how. 

Making these three bullets available to researchers from the potential out
come camp will break through a wall of cultural isolation and enable them to 

communicate with the rest of the research community in a common, unified 

language. 
To summarize, the democratization of causal inference is bringing about a glob

alization of common sense and a breakdown of cultural barriers. I am gratified to 

see The Book of Why contributing to this process. ■ 
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optimal solution costs) by relaxing formally represented problem definitions; this 
idea led to dramatic advances in automated planning systems. 

6. J. Pearl. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solv
ing. Addison-Wesley. Synthesized essentially everything known up to that point 
about intelligent methods for search and game playing, much of it Pearl’s own 

work; also the first textbook to treat AI topics formally at a technically advanced 

level. 

7. R. Dechter and J. Pearl. 1985. Generalized best-first search strategies and the 

optimality of A∗ . J ACM 32, 505–536. DOI: https://doi.org/10.1145/3828.3830. 
Proved that A∗ is the most efficient member of a very broad class of problem-solving 
algorithms. 

Bayesian Networks 
8. J. Pearl. 1982. Reverend Bayes on inference engines: A distributed hierarchi

cal approach. In Proceedings, AAAI-82. The paper that began the probabilistic 
revolution in AI by showing how several desirable properties of reasoning sys
tems can be obtained through sound probabilistic inference. It introduced tree-
structured networks as concise representations of complex probability models, 
identified conditional independence relationships as the key organizing princi
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models. Artif. Intell. 32, 245–257. DOI: https://doi.org/10.1016/0004-3702(87) 
90012-9. Derived a general approximation algorithm for Bayesian network infer
ence using Markov chain Monte Carlo (MCMC). This was the first significant use 
of MCMC in mainstream AI. 

15. J.	 Pearl. 1988. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf
mann. Explained the philosophical, cognitive, and technical basis for a proba
bilistic view of knowledge, reasoning, and decision-making. One of the most cited 

works in computer science, this book initiated the modern era in AI and estab
lished probabilistic inference as the standard of handling uncertainty in computer 
systems. 

Causality 
16. J. Pearl and T.S. Verma. 1991. A theory of inferred causation. In Proceedings, 

KR-91. Introduces minimal-model semantics as a basis for causal discovery and 

shows that causal directionality can be inferred from patterns of correlations 
without resorting to temporal information. 

17. J.	 Pearl. 1993. Graphical models, causality, and intervention. Stat. Sci. 8, 
266–269. DOI: https://www.jstor.org/stable/2245965. Introduces the back-door 
criterion for covariate selection, the first to guarantee bias-free estimation of 
causal effects. 

18. A.	 Balke and J. Pearl. 1994. Probabilistic Evaluation of Counterfactual 
Queries. In Proceedings, National Conference on Artificial Intelligence, 230–237. 
Introduces the structural semantics of counterfactuals, later deemed “The 

First Law of Causal Inference.” 

19. J.	 Pearl. 1995. Causal diagrams for empirical research. Biometrika. 82, 4, 
669–688. DOI: https://doi.org/10.1093/biomet/82.4.669. Introduces the theory 
of causal diagrams and its associated do-calculus; the first (and still the only) 
mathematical method to enable a systematic removal of confounding bias in 

observations. 
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October 29, 1996, as part of the UCLA 81st Faculty Research Lecture Series. Used 

later as epilogue to the book Causality (2000). Provides a panoramic view of the 
historical development of causal thoughts from antiquity to modern days. 

21. J.	 Pearl. 2000. Causality: Models, Reasoning, and Inference. Cambridge 

University Press (Second Edition, 2009). Building on theoretical results from 

1987 to 2000, it lays out a complete framework for causal discovery, interventional 
analysis, and counterfactual reasoning, bringing mathematical rigor and concep
tual clarity to an area previously considered off-limits. Winner of the 2001 Lakatos 
Prize for the most significant new work in the philosophy of science. 

22. J. Pearl. 2000. The logic of counterfactuals in causal inference (Discussion of 
“Causal inference without counterfactuals” by A.P. Dawid). J. Am. Stat. Assoc. 
95, 428–435. Demonstrates how counterfactual reasoning underlines scientific 
thought and argues against its exclusion from statistical analysis. 

23. J. Tian and J. Pearl. 2000. Probabilities of causation: Bounds and identi
fication. Ann. Math. Artif. Intell. 28, 287–313. DOI: https://doi.org/10.1023/ 
A:1018912507879. Derives tight bounds on the probability that one observed event 
was the cause of another, in the legal sense of “but for,” thus providing a principled 

way of substantiating liability and responsibility from empiricial data. 

24. J. Pearl. 2004. Robustness of causal claims. In Proceedings, UAI-04. Offers a for
mal definition of robustness and develops a method for “sensitivity analysis,” i.e., 
assessing the degree to which causal claims are robust to model misspecification. 

25. J. Pearl. 2001. Direct and indirect effects. In Proceedings, UAI-01. Establishes the 
theoretical basis of modern mediation analysis. Derives the “Mediation Formula” 
and provides graphical conditions for the identification of direct and indirect 
effect. 

26. J. Tian and J. Pearl. 2002. A general identification condition for causal effects. 
In Proceedings, AAAI-02. Uses the do-calculus to derive a general graphical condi
tion for identifying causal effects from a combination of data and assumptions. 

27. J. Halpern and J. Pearl. 2005. Causes and explanations: A structural-model 
approach—Parts I and II. Br J. Phil. Sci. 56, 889–911. DOI: https://www.jstor. 
org/stable/3541871. Establishes counterfactual conditions for one event to be 
perceived as the “actual cause” of another and for one event to provide an 

“explanation” of another. 

28. J.	 Pearl. 2009. Causal inference in statistics: An overview. Stat. Surv. 3, 
96–146. DOI: https://doi.org/10.1214/09-SS057. Describes a unified methodology 
for causal inference based on a symbiosis between graphs and counterfactual 
logic. 

https://doi.org/10.1023/A:1018912507879
https://doi.org/10.1023/A:1018912507879
https://www.jstor.org/stable/3541871
https://www.jstor.org/stable/3541871
https://doi.org/10.1214/09-SS057
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29. J.	 Pearl. 2011. The algorithmization of counterfactuals. Ann. Math. Artif. 
Intell. 61, 29–39. DOI: https://doi.org/10.1007/s10472-011-9247-9. Describes a 

computational model that explains how humans generate, evaluate, and distin
guish counterfactual statements so swiftly and consistently. 

30. J. Pearl and E. Bareinboim. 2011. Transportability of causal and statistical 
relations: A formal approach. In Proceedings, AAAI. Reduces the classical prob
lem of external validity to mathematical transformations in the do-calculus, and 

establishes conditions under which experimental results can be generalized to new 

environments in which only passive observation can be conducted. 

Causal, Casual, and Curious 
The entries below represent adventurous ideas and semi-heretical thoughts that 
emerged when, in 2013, I was given the opportunity to edit a fun section of the 

Journal of Causal Inference called “Causal, Casual, and Curious.” All the articles are 

available in the Internet. 

31. J. Pearl. 2013. Linear models: A useful “microscope” for causal analysis. J. 
Causal Inference. 1, 1 (May 2013), 155–170. DOI: https://doi.org/10.1515/jci-2013
0003. Demonstrates how causal phenomena of a non-trivial character can be 
understood, exemplified, and analyzed using linear structural equations, includ
ing Simpson’s paradox, case-control bias, selection bias, missing data, collider 
bias, reverse regression, bias amplification, near instruments, and measurement 
errors. 

32. J. Pearl. 2013. The curse of free-will and the paradox of inevitable regret. J. 
Causal Inference. 1, 2 (December 2013), 255–257. DOI: https://doi.org/10.1515/ 
jci-2013-0027. Challenges and clarifies the principles by which population data 

can be harnessed to guide personal decision-making, by examining situations in 

which an agent knows he/she will regret whatever action is taken. 

33. J.	 Pearl. 2014. Is scientific knowledge useful for policy analysis? A pecu
liar theorem says: No. J. Causal Inference. 2, 1 (March 2014), 109–112. DOI: 
https://doi.org/10.1515/jci-2014-0017. Presents and resolves a paradox according 
to which the more we know about a problem domain the harder it is to predict the 
effects of policies. 

34. J.	 Pearl. 2014. Graphoids over counterfactuals. J. Causal Inference. 2, 
2 (September 2014), 243–248. DOI: https://doi.org/10.1515/jci-2014-0028. 
Augmenting the graphoid axioms with three additional rules enables us to handle 

https://doi.org/10.1007/s10472-011-9247-9
https://doi.org/10.1515/jci-2013-0003
https://doi.org/10.1515/jci-2013-0003
https://doi.org/10.1515/jci-2013-0027
https://doi.org/10.1515/jci-2013-0027
https://doi.org/10.1515/jci-2014-0017
https://doi.org/10.1515/jci-2014-0028
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independencies among observed as well as counterfactual variables, derive 
testable implications of ignorability assumptions, and test their identification. 

35. J. Pearl. 2015. Conditioning on post-treatment variables. J. Causal Inference. 
3, 1 (March 2015), 131–137. DOI: https://doi.org/10.1515/jci-2015-0005. Includes 
Appendix (appended to published version). Compares ways of extracting infor
mation from post-treatment variables and clarifies the relationships between 

do-calculus conditioning and counterfactual conditioning. 

36. J.	 Pearl. 2015. Generalizing experimental findings. J. Causal Inference. 
3, 2 (September 2015), 259–266. DOI: https://doi.org/10.1515/jci-2015-0025. 
Compares ways in which researchers have attempted to generalize experimental 
finding across domains, and demonstrates that ignorability-based methods need 

to be enriched with structural assumptions in order to capture the full spectrum 

of conditions that permit generalizations. 

37. J.	 Pearl. 2016. The sure-thing principle. J. Causal Inference. 4, 1 (March 

2016), 81–86. DOI: https://doi.org/10.1515/jci-2016-0005. Traces the history of 
Jim Savage’s Sure Thing Principle, discusses its nuances, and evaluates its sig
nificance in the light of modern understanding of causal reasoning. 

38. J. Pearl. 2016. Lord’s paradox revisited—(Oh Lord! Kumbaya!). J. Causal Infer
ence. 4, 2 (September 2016). DOI: https://doi.org/10.1515/jci-2016-0021. Traces 
back Lord’s paradox from its original formulation in 1967, resolves it using mod
ern tools of causal analysis, explains why it has resisted prior attempts at resolu
tion, and addresses the general methodological issue of whether adjustments for 
preexisting conditions is justified in group comparison applications. 

39. J. Pearl. 2017. A linear “microscope” for interventions and counterfactuals. 
J. Causal Inference. 5, 1 (March 2017), 1–15. DOI: https://doi.org/10.1515/jci
2017-0003. Using linear structural equations, the paper derives conditions for 
identifying total and direct effects, including the method of identifying counterfac
tual expressions, robustness to model misspecification, and generalization across 
populations. 

40. J. Pearl. 2017. Physical and metaphysical counterfactuals. J. Causal Inference. 
5, 2 (September 2017). DOI: https://doi.org/10.1515/jci-2017-0018. This paper 
leverages “imaging,” a process of “mass-shifting” among possible worlds, to define 
disjunctive counterfactuals, such as “had the color been either blue or purple.” It 
shows that every imaging operation can be given an interpretation in terms of a 

stochastic policy in which agents choose actions with certain probabilities. 

41. J.	 Pearl. 2018. What is gained from past learning. J. Causal Inference. 6, 
1 (March 2018). DOI: https://doi.org/10.1515/jci-2018-0005. Consider ways of 

https://doi.org/10.1515/jci-2015-0005
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https://doi.org/10.1515/jci-2016-0005
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leveraging previously learned information to novel situations so as to minimize 
the need for retraining, and shows that theoretical limitations exist on the amount 
of information that can be transported from previous learning. Robustness to 

changing environments depends on a delicate balance between the relations to 

be learned and the causal structure of the underlying model. 

42. J.	 Pearl. 2018. Does obesity shorten life? Or is it the soda? On non-
manipulable causes. J. Causal Inference. 6, 2 (September 2018). DOI: https:// 
doi.org/10.1515/jci-2018-2001. Non-manipulable factors, such as gender or race, 
have posed conceptual and practical challenges to causal analysts. The paper 
addresses this challenge in the context of public debates over the health cost of 
obesity, and offers a new perspective, based on the theory of structural causal 
models. 

43. J. Pearl. 2019. On the interpretation of do(x). J. Causal Inference. 7, 1 (March 

2019), 1–6. Provides empirically testable interpretation of the do(x) operator when 

applied to non-manipulable variables such as race, obesity, or cholesterol level, 
and ends with the conclusion that researchers need not distinguish manipulable 
from non-manipulable variables in their analyses. 

44. J. Pearl. 2019. Sufficient causes: On oxygen, matches, and fires. J. Causal Infer
ence. 7, 2 (September 2019). Demonstrates how counterfactuals can be used to 

compute the probability that one event was/is a sufficient cause of another, and 

how counterfactuals emerge organically from basic scientific knowledge. 

https://doi.org/10.1515/jci-2018-2001
https://doi.org/10.1515/jci-2018-2001
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61971, heuristic search was the main topic of the course that, for me, was more 

than just a challenge of saving time and memory; it was a laboratory for combin
ing two modes of human thought: knowledge and reasoning. The static evaluation 

function assigned to game positions represented knowledge, and the look-ahead 

procedure, followed by minimax, represented reasoning. 
Typical questions that occupied researchers were: How is heuristic knowledge 

acquired, stored, and used by people?; how can it be represented and utilized by 
machines?; and what makes one heuristic succeed where others fail? 

One of the main challenges to researchers at that time was the difficulty of pre
dicting the performance of heuristic search methods. The relationship between 

the quality of the heuristic and the number of searches it saved was unclear. The 

alpha–beta pruning algorithm was by far the most efficient game searching algo
rithm then known, but its average performance remained an enigma, and so was 
its optimality. 

The first two papers selected for this volume address these questions. The first 
uncovers an amazing convergence property of deep game trees when WIN–LOSS 

status is assigned randomly to terminal nodes [Pearl 1980, Chapter 7]. The sec
ond uses this property to establish the average performance of alpha–beta and its 
optimality [Pearl 1982, Chapter 8]. 

The third paper concerns the mechanical discovery of heuristics [Pearl 1983, 
Chapter 9]. It follows the paradigm that heuristics are generated by solving simpli

Introduction 
by Judea Pearl 

In the 1970s, heuristic search was considered the holy grail of artificial intelligence 

(AI), perhaps because of its universal applicability, ranging from game playing and 

planning, to natural language processing. Indeed, when I started teaching AI in 
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fied versions of the problems at hand. I am pleased to know that this method is 
still used in automated planning and other search-intensive applications. 

References 
J. Pearl. 1980. Asymptotic properties of minimax tree and game-searching procedures. 
Artificial Intelligence 14, 2, 113–138. DOI: https://doi.org/10.1016/0004-3702(80)90037-5. 

J. Pearl. 1982. The solution for the branching factor of the alpha-beta pruning algorithm 
and its optimality. Communications of the ACM 25, 8, 559–564. DOI: https://doi.org/10. 
1145/358589.358616. 

J. Pearl. 1983. On the discovery and generation of certain heuristics. AI Magazine 4, 1, 23–33. 
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7Asymptotic Properties of 
Minimax Trees and 
Game-Searching 
Procedures* 
Judea Pearl 

Abstract 
The model most frequently used for evaluating the behavior of game-searching methods 
consists of a uniform tree of height h and a branching degree d, where the terminal posi
tions are assigned random, independent and identically distributed values. This paper 
highlights some curious properties of such trees when h is very large and examines their 
implications on the complexity of various game-searching methods. 

If the terminal positions are assigned a WIN–LOSS status with the probabilities P0 

and 1 – P0, respectively, then the root node is almost a sure WIN or a sure LOSS, depend
ing on whether P0 is higher or lower than some fixed-point probability P*(d). When the 
terminal positions are assigned continuous real values, the minimax value of the root 
node converges rapidly to a unique predetermined value v*, which is the (1 − P*)-fractile 
of the terminal distribution. 

Exploiting these properties we show that a game with WIN–LOSS terminals can 

be solved by examining, on the average, O[(d)h/2] terminal positions if P0 ̸= P* and 
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O[(P*/(1 − P*))h] positions if P0 = P*, the former performance being optimal for all 
search algorithms. We further show that a game with continuous terminal values can 

be evaluated by examining an average of O[(P*/(1 − P*))h] positions, and that this is a 

lower bound for all directional algorithms. Games with discrete terminal values can, in 

almost all cases, be evaluated by examining an average of O[(d)h/2] terminal positions. 
This performance is optimal and is also achieved by the ALPHA–BETA procedure. 

7.1 The Probability of Winning a Standard h-level Game Tree with 
Random WIN Positions 
We consider a class of two-person perfect information games represented by the 

tree of Figure 7.1. Two players, called MAX and MIN, take alternate turns. In each 

turn a player may choose one out of d legal moves. The game lasts exactly n move-
cycles or h = 2n moves, at which point a terminal position is reached. Each ter
minal position constitutes either a WIN or a LOSS for the first player. We assume 

that the assignment of labels to the dh terminal positions is done at random, prior 
to the beginning of the game, and that each terminal position may receive a WIN 

with probability P0 (and a LOSS with probability 1 − P0) independently of other 
assignments. We shall refer to such a tree as a (h, d, P0)-tree. 

The first quantity we wish to compute is Pn, the probability that MAX can force 

a WIN given that it is his turn to move and that exactly n move-cycles are left in 

the game. Similarly, we denote by Qn the probability that MAX can force a WIN 

given that it is MIN’s turn to move and there are a total of 2n – 1 individual moves 
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Figure 7.1 A uniform binary game tree with two move-cycles. h = 4, n = 2, d = 2. 
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left in the game. Clearly, Pn and Qn are calculated prior to examining the terminal 
positions. Once the WIN–LOSS assignment is known, each node of the tree can be 

unequivocally labeled either a WIN or a LOSS. 
For a MAX node (h even) to be a WIN, at least one of its d successors must be a 

WIN; therefore: 

1 − Pn = (1 − Qn)d . (7.1) 

Also, for a MIN position (h odd) to be a WIN, all of its d successors must be a 

WIN; thus: 

Qn = Pd 
n−1. (7.2) 

Combining 7.1 and 7.2 we obtain the recursive relationship: 

Pn = 1 − (1 − Pd 
n−1)

d . (7.3) 

The asymptotic behavior of Pn for large n can be inferred from the diagram 

below: 

Pn

Pn = Pn-1

Pn-1P* 1

1 - (1-Pd
n-1)

d

1

0

The curve Pn = 1 − (1 − Pnd 
−1)d intersects the line Pn = Pn−1 in three points: two 

stable points Pn−1 = 0 and Pn−1 = 1, and one unstable point at Pn−1 = P* . P* is the 

unique solution of the equation: (1 − xd)d − (1 − x) = 0 in the range 0 < x < 1 or 
more conveniently, the positive root of the equation xd + x − 1 = 0. It can be easily 
ascertained that every root of the latter equation is also a root of the former. 

The significance of the probability P* lies in the fact that if the terminal posi
tions are assigned a WIN with probability P0 = P*, then, prior to examining any of 
these positions, MAX is assured a probability P* of winning the game from any of 
his moves, regardless of the height of the tree. 
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Most significantly, if P0 is slightly different than P*, we have: 

{
1 if P0 > P* ,

lim Pn(P0) = (7.4)
n→x 0 if P0 < P* . 

This means that when P0 > P*, MAX is almost assured a WIN if n is large enough, 
whereas he faces an almost sure LOSS in the case where P0 < P*. To illustrate 

this phenomenon, consider a binary game (d = 2) with five move-cycles (n = 5).√ 
P* is the solution to x2 + x − 1 = 0, or P* = 1/2( 5 − 1) = 0.6180339. If all we 

know about the terminal positions is that 61.80% of them are WIN’s, then we also 

know that the first player to move has a 61.8% chance of being able to force a WIN. 
However, if only 50% of the terminal positions are winning, his chances to force a 

WIN drop to 1.95%, whereas when P0 = 70%, his chances increase to 98.5%. These 

numbers become much more dramatic in higher trees, as shown in Figure 7.2. 
It is simple to show that the slope at the transition region is increasing expo

nentially with n: 

2nd d(1 − P*) d(1 − P*)
(Pn) = [ 

and > 1 for d > 1. (7.5)
dP0 P* ] P* 

|||||
P0=P* 

Figure 7.2 The probability of winning a n-cycle game (Pn) versus the probability of winning a 
terminal position (P0), for a binary (d = 2) tree. 
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Also, a more detailed analysis shows that for sufficiently large n, Pn converges 
toward its asymptotic values at a super-exponential rate, i.e., for every 0 < 𝛿 < 1 
we can find two integers n1 and n2, such that: 

Pn  (𝛿)d
(n−n1) for all n > n1 and P0 < P* , 

1 − Pn  (𝛿)d
(n−n2) for all n > n2 and P0 > P* (7.6) 

where n1 and n2 are functions of 𝛿 and P* − P0. It is, thus, safe to conclude that for 
sufficiently large n, the function Pn(P0) resembles a step function with an extremely 
narrow transition region around P* . 

7.2 Game Trees with an Arbitrary Distribution of Terminal Values 
Consider a uniform tree (constant d) where the terminal nodes are assigned numer
ical values, V0(S1), V0(S2), … , V0(Sdh ), and assume the latter to be independent iden
tically distributed random variables, drawn from a common distribution function 

FV0 (v) = P(V0  v). We shall refer to a tree drawn from such an ensemble as a (h, d, 
F)-tree and calculate the distribution of the minimax value of the root node. 

Denoting the minimax values of nodes at the nth cycles by Vn(S) for MAX nodes 
and by Un(S) for MIN nodes, we have: 

Vn(S) = max[Un(S1), Un(S2), … , Un(Sd)],
 

Un(S) = min[Vn−1(S1), Vn−1(S2), … , Vn−1(Sd)] (7.7)
 

where S1, S2, …, Sd denote the d successors of S. The distribution of Vn(S) is obtained 

by writing: 

d 

FVn (v) £ P[Vn(S)  v] = ∏ P[Un(Si)  v] = [FUn (v)]
d , (7.8) 

i=1 

d 

1 − FUn (v) £ P[Un(S) > v] = ∏ P[Vn−1(Si) > v] = [1 − FVn−1 (v)]
d (7.9) 

i=1 

yielding the recursive relation: 

{ }d 
FVn (v) = 1 − [1 − FVn−1 (v)]

d . (7.10) 

Note that (7.8), (7.9), and (7.10) are identical to (7.1), (7.2), and (7.3), respectively, if 
one identifies 1−FVn (v) with Pn and 1−FUn (v) with Qn. This is not surprising since for 
any fixed v, the propositions ‘V(Si) > v’ propagate by the same logic as the propo
sitions ‘Si is a WIN’; MAX nodes function as OR gates and MIN nodes perform an 

AND logic. 
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From the fact that Pn converges to a step-function as n → ∞ (see (7.4)), we must 
conclude that FVn (v), likewise, satisfies: 

lim FVn (v) = 
n→∞ 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

0 FV0 (v) < 1 − P* , 
1 − P* FV0 (v) = 1 − P* , (7.11) 
1 FV0 (v) > 1 − P* . 

Assume, for the moment, that the terminal values V0 are continuous random 

variables and that the distribution FV0 (v) is strictly increasing in the range 0 < 

Fv0 < 1. In this case FV0 (v) has a unique inverse and the condition FV0 (v) = 1 − P* is 
satisfied by one unique value of v which we call v *: 

* v = F−1(1 − P*). (7.12)V0 

(7.11) then implies that when the game tree is sufficiently tall, the cumulative dis
tribution of the root-node value approaches a step function in v, and that the 

transition occurs at a unique value v * which is the (1 − P*)-fractile of the termi
nal distribution FV0 (⋅). That implies that the density of Vn(S), fVn (v), becomes highly 
concentrated around v * or, in other words, that the root-node value is almost cer
tain to fall in the very close neighborhood of v *. It appears that the repeated appli
cation of alternating MIN–MAX operations on the terminal values has the effect of 
filtering out their uncertainties until the result emerges at the high levels of the 

tree as an almost certain, predetermined, quantity. 
This is a rather remarkable phenomenon which deserves to be decorated by a 

theorem. 

Theorem 7.1 The root value of a (h, d, F)-tree with continuous strictly increasing terminal distribu
tion F converges, as h → ∞ (in probability) to the (1 − P*)-fractile of F, where P* is the 
solution of xd + x − 1 = 0. 

If the terminal values are discrete: v1 < v2 < ⋯ < vM , then the root value converges 
to a definite limit iff 1 − P* ≠ FV0 (vi) for all i, in which case the limit is the smallest vi 
satisfying: 

FV0 (vi−1) < 1 − P* < FV0 (vi). 

The second part of Theorem 7.1 becomes evident by writing: 

P[Vn(S) = vi] = FVn (vi) − FVn (vi−1). 

If 1 − P* can be ‘sandwiched’ between two successive levels of F in such a way that 
FV0 (vi−1) < 1 − P* < FV0 (vi), then according to (7.11) FVn (vi) → 1, FVn (vi−1) → 0, and 

consequently P[Vn(S) = vi] → 1. 
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The remarkable feature of this phenomenon is that Theorem 7.1 holds for any 
arbitrary distribution of the terminal values. Thus, for example, the root value of 
a binary tree (d = 2) with terminal values uniformly distributed between 0 and 1 √ 
would converge to the value 1 − 1/2( 5 − 1) = 0.382 … . If the terminal values are 

integers, uniformly distributed between 1 and 100, then FV0 (38) < 1 − P* = 0.382 < 

FV0 (39). 

FV
0

 (v)

.39

.38

.382

.37

37 38 39

v

Therefore, the root value will converge to the integer 39. Exceptions to the theorem 

would occur only in rare pathological cases where 1 − P* coincides exactly with 

one of the plateaus of FV0 (v), as shown in the diagram below. 

FV
0

 (v)

v1 v2

1-P*

In such a case, the asymptotic distribution of the root node would go from 0 to 1 
in two steps, one at v1 and the other at v2, as is shown below: 

This implies that Vn(S) does not converge to a single limit but may assume two 

possible values; in a fraction P* of the instances it will be assigned the value v2 and 
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in the remaining instances the value v1. In fact, Section 7.1 dealt with such a case 

where, if P0 = P*, the status of the root-node remains undetermined between WIN 

(Vn = 1) and LOSS (Vn = 0). 
For the reader’s amusement, another manifestation of Theorem 7.1 will be men

tioned, unrelated to game trees. Consider a large collection of unreliable electrical 
components (e.g., light, bulbs) whose times to failure are identically distributed 

random variables. Connect two of them in series: 

T1 T2

The failure time of this series connection is given by min[T1, T2]. Now connect two 

such circuits in parallel: 

T1

T2

'

'

The failure time of the parallel circuit is equal to that of the longest surviving 

branch, i.e., max(T1 ′ , T2′). Continue the process, alternatingly connecting duplicate 

circuits in series and in parallel, for n cycles. What can be said about the limit
ing distribution of the failure time, Tn, of the entire circuit? Clearly, Tn is equal 
to the minimax value of the root-node in an n-cycle binary tree with terminal val
ues determined by the failure times of the individual components. According to 

Theorem 7.1, Tn converges to a definite value given by the (1 − P*)-fractile of the 

terminal distribution. Thus, assuming that n is sufficiently large, the entire circuit 
should fail at a predictable, precise time, which is quite remarkable considering 

the fact that the circuit is assembled from a host of independent, unreliable, and 

unpredictable components. 
At this point a natural question to ask is how fast the density distribution of the 

root value contracts to its final value v *. The answer is that the width of the density 
function decreases exponentially with n. The range of values W𝜖 (around v *) which 

contains all but 2𝜖 of the total area under the density function can be shown (for 
d = 2) to be proportional to (log 1/2𝜖)0.5842−n . 

This finding raises some interesting questions regarding the advisability of 
searching deep uniform game trees. If the final values of these trees can be pre
determined with virtual certainty, why spend the exponentially growing effort 
demanded by an exact evaluation? Instead of insisting on selecting the best first 
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move, we might as well select just any move at random. The expected loss of oppor
tunity induced by such selection is guaranteed not to exceed some predetermined 

limit which diminishes exponentially with the height of the remaining tree. It 
makes more sense to reserve one’s computational powers for the end-game where 

the shallowness of the trees is accompanied by more widely varying node values. 
These arguments touch on the more general question of how the willingness to 

act somewhat suboptimally can be converted into computational savings, a ques
tion which we hope to study more fully in future studies. At this point, it suffices 
to state that the uniform tree model with independent and identically distributed 

terminal values was not devised as a practical game playing tool but rather as a 

test bed for comparing the efficiencies of various exact-search methods. We shall 
pursue this plan in the remaining part of this report. 

7.3 The Mean Complexity of Solving (h, d, P0)-game 
Solving a game tree means deciding whether the root-node is a WIN or a LOSS. 
An absolute lower bound on the number of terminal node examinations needed 

for establishing the status of the root-node is given by the following argument. If 
the root node is a WIN, then there exists a subtree (called a solution tree) consist
ing of one branch emanating from each MAX node and all branches emanating 

from each MIN node, terminating at a set of WIN terminal positions. Similarly, if 
the game is a LOSS, such a solution tree exists for the opponent, terminating at 
all LOSS nodes. In either case, the number of terminal positions in a solution tree 

is dn (representing a branching factor d in each move-cycle) or dh/2 where h is the 

number of individual moves. The number of terminal node examinations required 

to solve the game must exceed dh/2 since, regardless of how the solution tree was 
discovered, one must still ascertain that all its dh/2 terminal nodes are WIN in order 
to defend the proposition ‘root is a WIN’. Thus, dh/2 represents the number of ter
minal nodes inspected by a non-deterministic algorithm which solves the (h, d, 
P0)-game and is, therefore, a lower bound for all deterministic algorithms. 

It is not hard to show that any algorithm solving the (h, d, P0)-game would, in the 

worst case, inspect all dh terminal positions. This can be done by cleverly arrang
ing the terminal assignments in such a way that a decision could not be reached 

until the last node is inspected. Since the difference between dh/2 and dh may be 

quite substantial, it is interesting to evaluate the expected number of terminal 
examinations where the expectation is taken with respect to all possible WIN–LOSS 

assignments to the terminal nodes. 

Definition Let A be a deterministic algorithm which solves the (h, d, P0)-game and let 
IA(h, d, P0) denote the expected number of terminal positions examined by A. 
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The quantity: 

rA(d, P0) = lim [IA(h, d, P0)]1/h 

h→∞

is called the branching factor corresponding to the algorithm A. 

Definition	 Let C be a class of algorithms capable of solving a general (h, d, P0)-tree. An 

algorithm A is said to be asymptotically optimal over C if for some P0 and all d: 

rA(d, P0)<rB(d, P0) ∀B ∈ C. 

Definition	 An algorithm A is said to be directional if for some linear arrangement of the termi
nal nodes it never selects for examination a node situated to the left of a previously 
examined node. 

Simply stated, an algorithm is directional if it always examines nodes from left 
to right, regardless of the content of the nodes examined. 

We now compute the branching factor of a simple directional algorithm, called 

SOLVE, given by the following informal description1: 

Algorithm SOLVE(S): To solve S, start solving its successors from left to right. 
If S is MAX, return a WIN as soon as one successor is found to be a WIN; return 

a LOSS if all successors of S are found to be a LOSS. 
If S is MIN, return a LOSS as soon as one successor is found to be a LOSS; return 

a WIN if all successors of S are found to be a WIN. 

To compute ISOLVE(h, d, P0) we consider the nth cycle preceding the terminal 
positions. Let xn stand for the expected number of terminal nodes inspected in 

solving the root S of an n-cycle tree, and yn the expected number of inspections 
used for solving any of the successors of S. 

xn

ynS1 S2

S

Sd

The probability of issuing a WIN after solving the kth successor is (1 − Qn)k−1Qn. 
Such an event requires an average of (k − 1)y− + y+ terminal inspections, where y− 

n n	 n 

and y+ stand for the mean number of inspections required for establishing a LOSS n 

1. A more formal definition is given by the flow-chart of Figure 7.5, with the few simple modifica
tions discussed at the head of Section 7.4. 



7.3 The Mean Complexity of Solving (h, d, P0)-game 71 

or a WIN, respectively. Also, the event of issuing a LOSS for S carries a probability 
(1 − Qn)d and a mean expenditure of dy− inspections. Therefore: n
 

d
 

∑ Qn(1 − Qn)k−1[(k − 1)y− 
n + y+ 

n ] + d(1 − Qn)dy− 
nxn = 

k=1 

1 − (1 − Qn)d 

)
1 − (1 − Qn)d 

−Qn + y (1 − Qnn Qn 
= y+ 

n Qn 

)]
[1 − (1 − Qn)d] 

Qn 
(using (7.1) and (7.2))= [y+ 

n (1 − Qn−Qn + yn 

Pn= yn . (7.13)
Pnd 

−1 

Now examine the solution of any successor of S, say S1. 

yn

xn-1

d21

S1

The event of issuing a LOSS after solving its kth successor has a probability Pk−1 
n−1(1− 

Pn−1) and carries a mean expenditure of (k − 1)x+ 

of exiting with a WIN involves solving all d successors and, therefore, occurs with 
n−1 + x− inspections. The event n 

+probability Pnd 
−1 and costs an average of dxn−1 inspections. Thus: 

d 

Pk−1 − −yn = ∑ n−1(1 − Pn−1)[(k − 1)xn−1 + xn−1] + dPn
d 
−1x

+ 
n−1 

k=1 

− n−1) 
n−1(1 − Pn−1)]

(1 − Pd 

1 − Pn−1 

+= [xn−1Pn−1 + x

1 − Pnd 
−1= xn−1 . (7.14)

1 − Pn−1 

Combining (7.13) and (7.14) we obtain: 

xn 1 − Qn Pn Pn ⋅ (1 − Pnd 
−1)= ⋅ = 

Pd (7.15)
xn−1 Qn 1 − Pn−1 n−1 ⋅ (1 − Pn−1) 

. 

Since xn is equivalent to ISOLVE(2n, d, P0) and x0 = 1, we can state: 
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Theorem 7.2	 The expected number of terminal position in a (h, d, P0)-tree examined by the SOLVE 

algorithm is given by: 

h/2 Pi(1 − Pd )i−1ISOLVE(h, d, P0) = ∏	 (7.16)
Pd (1 − Pi−1)i=1 i−1

1where Pi, i = 1, …, h, is related to P0 by (7.3).2 

Theorem 7.2 permits an easy calculation of ISOLVE (h, d, P0) for wide ranges of 
d and h, as shown in Figure 7.3. In the special case where P0 = P* all terms in the 

Figure 7.3 The expected number of terminal nodes examined by SOLVE (normalized by (⋅)1/h to 
represent an effective branching factor). 
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product of (7.16) are equal and, using P*d = 1 − P*, (7.16) reduces to: 

hP* 

ISOLVE(h, d, P*) = ( 1 − P* ) 
. (7.17) 

Note that 

xn xnlim = lim = d 
Pn−1→0 xn−1 Pn−1 →1 xn−1 

which implies: 

{
d P0 ≠ P* 

lim 
n→∞ 

xn 

xn−1 
= 

, 
(7.18)

( P* 

1 − P* )
2 

P0 = P* . 

This limit, combined with the very rapid convergence of Pn (see (7.6)), leads directly 
to the asymptotic branching factor of SOLVE: 

Corollary 7.1 The branching factor of the SOLVE algorithm is given by: 

rSOLVE(d, P0) = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

d1/2 P0 ≠ P* , 

P* (7.19)
P0 = P* 

1 − P* 

where P* is the positive solution of xd + x − 1 = 0. 

Recalling that d1/2 is an absolute lower bound for the branching factor of any 
tree solving algorithm, we conclude: 

Corollary 7.2 SOLVE is asymptotically optimal for P0 ≠ P* . 

For finite values of h or for P0 = P* we have no guarantee that SOLVE is optimal. 
Non-directional algorithms, such as that proposed by Stockman [7] may outper
form SOLVE. However, Corollary 7.2 states that for very deep trees the savings could 

not be substantial in all cases where P0≠ P* . 
Any directional algorithm which is governed by a successor-ordering scheme 

identical to that of SOLVE must examine all the nodes examined by SOLVE. This 
is so because if some left-to-right algorithm B skips a node visited by SOLVE, a 

WIN–LOSS assignment can be found which would render the conclusion of SOLVE 

contrary to that of B. Thus B could not be a general algorithm for solving all (h, 
d, P0)-trees. Now, since ISOLVE(h, d, P0) is independent on the particular choice 

of ordering scheme, we may conclude that SOLVE is optimal over the class of 
directional game-solving algorithms. This leads to: 
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Corollary 7.3	 The optimal branching factor of any directional algorithm which solves a general (h, d, 
P0)-tree is given by (7.19). 

The case P0 = P* deserves a special attention. Although it is not very likely to 

occur in practical WIN–LOSS games, it plays an important role in the analysis of 
the 𝛼 − 𝛽 procedure. We conclude this section by examining the behavior of rSOLVE 

(d, P*) = P*/(1 − P*) for large values of d. Writing: 

q(d) = 1 − P*(d)	 (7.20) 

the defining equation for q(d) becomes: 

q(d) = [1 − q(d)]d	 (7.21) 

which can be satisfied only when: 

lim q(d) = 0.	 (7.22)
d→∞ 

Taking log on both sides of (7.21), gives: 

log q(d) = d log[1 − q(d)] = −d[q(d) + O(q2)] (7.23) 

or: 

q(d) = (1/d) log 1/q(d) (7.24) 

By repeated iteration, the solution of (7.24) can be written: 

q(d) = 1/d[log d − log log d + log log log d − ⋯] (7.25) 

from which we see that for large d: 

log d log log d 
q(d) =	 + O ( ) 

. (7.26)
d	 d 

This result was also shown by Baudet [1] using a slightly different method. Substi
tuting (7.26) in (7.19), the asymptotic behavior of rSOLVE(d, P*) becomes: 

d	 log log d 
rSOLVE(d, P*) =	 (7.27)

log d [
1 + O ( log d )] 

. 

< d
It is shown to be in remarkable agreement with the formula (0.925)d0.74741, while 

the log–log graph of Figure 7.4 depicts rSOLVE(d, P*) for the range 2− < 10,000. 
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P*(d)Figure 7.4 Worst case branching-factor for the SOLVE algorithm [rSOLVE(d, P
*) = 1−P*(d)] . 

the asymptotic expression d/log d becomes a better approximation only for 
d > 5000. 

7.4 Solving, Testing, and Evaluating Game Trees 
When the terminal positions are assigned real values, the root-node must be eval
uated rather than solved. The SOLVE algorithm discussed in Section 7.3 is insuffi
cient to fully evaluate a (h, d, FV0 )-game tree because it produces a binary WIN–LOSS 

outcome rather than the (real) minimax value V(S) of the rootnode. It can, however, 
be used to test the proposition ‘V(S) > v’, where v is any fixed reference value cho
sen for the test. We simply interpret any terminal node t for which V0(t) > v as a 

WIN position (otherwise it is a LOSS), and apply SOLVE directly. If it issues a WIN, 
the proposition ‘V(S) > v’ is proven, otherwise we deduce ‘V(S) −< v’. This proce
dure, which we call TEST(S, v , >), is described in algorithmic details in Figure 7.5. 
An almost identical algorithm, TEST(S, v , �), could be used to test whether V(S) � 

v by simply permitting equality in all the comparison tests of Figure 7.5. 
From the structural identity of SOLVE and TEST, it is clear that the 

expected number of nodes inspected by TEST, ITEST(h, d, FV0 , v) is equal to that 
inspected by SOLVE if the terminal WIN labels are assigned with probability 
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Figure 7.5 A flow-chart of the TEST(S, v, >) procedure which tests whether the minimax value of 
position S exceeds a reference v. 

P0 = P[V0(t) > v] = 1 − FV0 (v). Therefore: 

ITEST(h, d, FV0 , v) = ISOLVE(h, d, 1 − FV0 (v)). (7.28) 

(7.28), combined with (7.19), yields: 
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Theorem 7.3	 The expected number of terminal positions examined by the TEST algorithm in testing 
the proposition ‘V(S) > v’ for the root of a (h, d, FV0 )-tree, has a branching-factor: 

rTEST(d, FV0 , v) = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

d1/2 if v ≠ v * , 

P* (7.29)
if v = v * 

1 − P* 

where v* satisfies FV0 (v *) = 1 − P* 

From the fact that TEST is directional and SOLVE is optimal we can also 

conclude: 

Corollary 7.4	 The optimal branching factor of any directional algorithm which tests whether the root 
node of a (h, d, FV0 )-tree exceeds a specified reference v is given by rTEST(d, FV0 , v) in 

(7.29). 

Note that when the terminal values are continuous (and FV0 (v) strictly increas
ing) Theorem 7.1 states that V(S) converges to v * for very large h. Thus, although 

testing the proposition ‘V(S) > v’ is easier for v ≠ v *, the outcomes of such tests are 

almost trivial. The most informative test is that which verifies whether V(S) > v * , 
and such a test, according to (7.29) is indeed the hardest. 

When the terminal positions are assigned discrete values then unless 1 − P* 

coincides with one of the plateaus of FV0 , the equation FV0 (v *) = 1 − P* would not 
have a solution, and the limiting root value would converge to the smallest v’ sat
isfying FV0 (v ′) > 1 − P*. Thus all inequality propositions could be tested with a 

branching factor d1/2. 
Consider now the minimum number of terminal node examinations required 

to evaluate a game tree. At the best possible case, even if someone hands us for free 

the true value of S, any evaluation algorithm should be able to defend the propo
sition ‘V(S) = v’ i.e., to defend the pair of propositions ‘V(S) � v’ and ‘V(S) −< v’. 
Since the solution tree required for the verification of an inequality proposition 

contains dh/2 terminal positions and since the sets of terminal positions partici
pating in the defense of each of these inequalities are mutually exclusive, save for 
the one position satisfying V0(t) = V(S), we have: 

Corollary 7.5	 Any procedure which evaluates a (h, d, FV0 )-tree must examine at least 2dh/2 − 1 
terminal nodes. 

We assumed, of course, that the probability of two or more terminal nodes sat
isfying V0(t) = V(S) is zero, and that h is even. This result (in a slightly different 
form) was also proven by Knuth and Moore [3]. Earlier, Slagle and Dixon [6] proved 

that the 𝛼 – 𝛽 procedure achieves this optimistic bound if the successor positions 
are perfectly ordered. 
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Let us consider now the more interesting question of estimating I(h, d, FV0 ), the 

expected number of terminal examinations required for evaluating (h, d, FV0 )-game 

trees. Let ID(h, d) be the minimal value of I(h, d, FV0 ) achieved by any directional 
algorithm under the worst-case FV0 . 

ID(h, d) £ min max IA(h, d, F).	 (7.30)
A F 

directional 

Every algorithm which evaluates a game tree must examine at least as many nodes 
as that required for testing whether the root value is greater than some reference v. 
This is so because an evaluation procedure produces a more informative outcome 

than any inequality test, and moreover, one can always use the value V(S) to deduce 

all inequality propositions regarding V(S). This fact combined with the optimality 
of TEST over the class of directional algorithms (see Corollary 7.4) leads to: 

hP* 

ID(h, d) � ( 
. (7.31)

1 − P* ) 

The right-hand side of (7.31) is obtained when the terminal positions are assigned 

continuous values and TEST is given the task of verifying ‘V(S) > v *’. This leads 
directly to: 

Theorem 7.4	 The expected number of terminal positions examined by any directional algorithm which 

evaluates a (h, d)-game tree with continuous terminal values must have a branching 
factor greater or equal to P*/(1 − P*). 

The quantity P*/(1 − P*) was shown by Baudet [1] to be a lower bound for the 

branching factor of the 𝛼 – 𝛽 procedure. Theorem 7.4 extends the bound to all 
directional game-evaluating algorithms. 

In the next section we will present a straightforward evaluation algorithm called 

SCOUT which actually achieves the branching factor P*/(1 − P*), thus establish
ing the asymptotic optimality of SCOUT over the class of directional algorithms, 
including the 𝛼 – 𝛽 procedure. 

7.5 Test and, if Necessary, Evaluate—The SCOUT Algorithm 
SCOUT evaluates a MAX position S by first evaluating its left most successor S1, 
then ‘scouting’ the remaining successors, from left to right, to determine if any 
meets the condition V(Sk) > V(S1). If the inequality is found to hold for Sk, this 
node is then evaluated exactly and its value V(Sk) is used for subsequent ‘scout
ings’ tests. Otherwise Sk is exempted from evaluation and Sk + 1 selected for a test. 
When all successors have been either evaluated or tested and found unworthy of 
evaluation, the last value obtained is issued as V(S). An identical procedure is used 
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for evaluating a MIN position S, save for the fact that the event V(Sk) � V(S1) now 

constitutes grounds for exempting Sk from evaluation. The flow-chart of Figure 7.6 

describes SCOUT in algorithmic details, calling on the TEST algorithm of Figure 7.5 

to perform the inequality checks. 
At first glance it appears that SCOUT is very wasteful; any node Sk which is 

found to fail a test criterion is submitted back for evaluation. The terminal nodes 
inspected during such a test may (and in fact will) be revisited during the evalua
tion phase. An exact mathematical analysis, however, reveals that the amount of 
waste is not substantial and that SCOUT, in spite of some duplicated effort, still 
achieves the optimal branching factor P*/(1 − P*). 

Two factors work in favor of SCOUT: (1) Most tests would result in exempting 

the tested node (and all its descendents) from any further evaluation, and (2) test
ing for inequality using the TEST(S, v) procedure is relatively speedy. In the worst 
possible case TEST only consumes an average of (P*/(1 − P*))h inspections which 

according to (7.31) is below the average consumption of the best directional evalu
ation procedure. The superiority of TEST stems from the fact that it induces many 
cutoffs not necessarily permitted by EVAL or any other evaluation scheme. As soon 

as one successor of a MAX node meets the criterion V(Sk) > v, all other successors 
can be ignored. EVAL, by contrast, would necessitate a further examination of the 

remaining successors to determine if any would possess a value higher than V(Sk). 

7.6 Analysis of SCOUT’s Expected Performance 
Let S be a MAX node rooting an n-cycle tree (h = 2n) with a uniform branching 

degree d. Let zn denote the expected number of terminal examinations undertaken 

by SCOUT. These examinations consist of those performed during the EVAL(Sk) 
phases (k = 1, … , d) plus those performed during the TEST(Sk, v , >) phases (k = 2, 
… , d). Since the subtrees emanating from the successors of S all have identically 
distributed terminal values, the number of positions examined in each EVAL(Sk), 

′ phase have identical expectations, called z . Let vk be the test criterion during the n

TEST(Sk, v, >) phase, and let y+(k) and y−(k) have the same interpretations as in n n 

zn

znS1 S2

S

Sd
yn'

Section 7.3. The event that Sk is found to satisfy the criterion V(Sk) > vk would con
′ sume a mean expenditure of y+(k)+z inspections while a successor found to refute n n 
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Figure 7.6 A flow-chart of the SCOUT algorithm which evaluates the minimax value of position S 
by invoking the TEST (S, v, >) procedure of Figure 7.5. 
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this test would consume, on the average, only y−(k) inspections. Thus, if qk stands n 

for the probability that successor Sk would require an evaluation, we have: 

d d 
′ ∑ qk(z ′ + y+(k)) +n n ∑ −(1 − qk)y (k)n+= zzn n 

k=2 k=2 

d d 
′ [1 +n ∑ qk] + ∑ yn(k). (7.32)= z 

k=2 k=2 

Since Sk would require an evaluation iff V(Sk) > max[V(Si), V(S2), ⋯ , V(Sk−1)] and 

all the node-values at any given level are independent, identically distributed and 

continuous random variables, we have: 

1 
qk = , k = 2, … , d. (7.33)

k 

Moreover, since we are interested in a worst case analysis, each yn(k) can be replaced 

by its highest possible value. This occurs when the probability that any given ter
minal position t satisfies V(t) > vk is equal to the fixed point probability P*. From 

(7.13) and (7.14) yn(k), in such a case, would be given by (P*/(1 − P*))2n−1 and we can 

write: 

zn = z ′ n𝜁(d) + ( 
P* 

1 − P* ) 

2n−1 

(d − 1) (7.34) 

where 

d 1 
𝜁(d) = ∑ . (7.35)

kk=1 

Note that this approximation is not too pessimistic in light of the fact that for 
large n the values of all nodes converge rapidly toward the limiting value v * and, 
therefore, most tests would employ a threshold level vk from the neighborhood 

of v * 

zn

zn-1 xn-1

d21

S1

'

To compute the solution of (7.34) we now examine the expected number of 
′ inspections z employed while evaluating any of the successors of S, say S1. Since n 

S1 is a MIN position a successor would be submitted for evaluation iff its value is 
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proven to be below the threshold level propagating from the left. Each evaluation 

would require an average of zn-1 inspections and each test would consume at most 
an average of [xn−1 ≈ (P*/(1 − P*))2n−2] terminal inspections. Consequently, using 

an argument similar to the one above, we obtain: 

P* 2n−2 
′ z = zn−1𝜁(d) + ( (d − 1) (7.36)n 1 − P* ) 

which, combining (7.34) and (7.36), yields: 

P* 2n−2 P* 

zn = zn−1𝜁
2(d) + (d − 1)( [𝜁(d) + ( 

(7.37)
1 − P* ) 1 − P* )] 

. 

(7.37) is a linear difference equation of the form: 

zn = 𝛼zn−1 + K𝛽n (7.38) 

with 

z0 = 1, 

1 − P* 2 P* 

K = (d − 1)( [𝜁(d) + (P* ) 1 − P* )] 
, 

P* 2 

𝛽 = ,( 1 − P* ) 

𝛼 = 𝜁2(d). (7.39) 

Its solution is given by: 

𝛽n − 𝛼n 

zn = 𝛼n + K𝛽 . (7.40)
𝛽 − 𝛼 

Clearly, it is the relative size of 𝛼 and 𝛽 which governs the asymptotic behavior of 
zn for large values of n. However, since for all d we have: 

P*(d) 
1 − P*(d) 

> 𝜁(d) 

(e.g., for d → ∞, P*/(1 − P*) = O(d/ log d) while 𝜁(d) = O(log d)) 𝛽 would become the 

dominant factor, and we can write: 

zn ∼ 
K 

𝛽n+1 (7.41)
𝛽 − 𝛼 
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or equivalently (with h = 2n): 

h(d − 1) P* 

ISCOUT(h, d, F) ∼ P* . (7.42)
− 𝜁(d) ( 1 − P* )

1−P* 

The expected number of terminal examinations performed by SCOUT in the evaluation 

of (h, d)-game trees with continuous terminal values has a branching factor: 

P* 

rSCOUT = . (7.43)
1 − P* 

So far, our analysis was based on the assumption that the terminal nodes may be 

assigned continuous values. We will now demonstrate that ISCOUT is substantially 
reduced if the terminal nodes are assigned only discrete values. 

Let’s ignore the rare case where 1 − P* coincides exactly with one of the plateaus 
of F. When coincidence does not occur, we showed in Section 7.2 that the values of 
all nodes at sufficiently high levels converge to the same limit, given by the lowest 

′ terminal value v satisfying FV0 (v ′) > 1 − P*. This convergence has two effects on 

the complexity of SCOUT as analyzed in (7.32): first, qk is no longer equal to 1/k but 
rather, converges to zero at high n for all k > 1. The reason for this is that in order 
for V(Sk) to be greater than V(S1) (which is most probably equal to v ′ ) it must exceed 

V(S1) by a finite positive quantity and, at a very high h, finite differences between 

any two nodes are extremely rare. Second, the threshold levels vk against which the 

TEST(Sk, v, >) procedures are performed are no longer close to v * but differ from it 
by finite amounts. Under such conditions the proposition ‘V(Sk) > vk’ can be tested 

more efficiently since rTEST = d1/2 (see (7.29)). 
Applying these considerations to the analysis of zn in (7.32) gives: 

r SCOUT∼d1/2 (7.44) 

and we obtain: 

The expected number of terminal positions examined by the SCOUT procedures in 

evaluating a (h, d, FV0 )-game with discrete terminal values has a branching factor: 

rSCOUT = d1/2 (7.45) 

with exceptions only when one of the discrete values, v * , satisfies FV0 (v *) = 1 − P* . 

For games with discrete terminal values satisfying the conditions of Theorem 7.6, the 
SCOUT procedure is asymptotically optimal over all evaluation algorithms. 
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Of course, the transition from rSOLVE = P*/(1 − P*) in the continuous case to 

rSOLVE = d1/2 in the discrete case does not occur abruptly. When the quantiza
tion levels are very close to each other it takes many more levels before SCOUT 

begins to acquire the lower branching factor of d1/2. In fact, using the discussion 

of Section 7.1, it is possible to compute at what height SCOUT begins to act more 

efficiently. For example, if the terminal values are integers, uniformly distributed 

from 1 to M, we know that at very high levels of the tree the values of all nodes 
will converge to I*, where I* is the lowest integer satisfying FV0 (I*) > 1 − P*. The 

probability that a node n cycles away from the bottom would acquire this value is: 

P[Vn(S) = I*] = FVn (I
*) − FVn (I

* − 1). (7.46) 

If FVn (I*) and FVn (I* − 1) are very close to each other, P[Vn(S) = I*] will be governed 

by the linear regions of the curves in Figure 7.2. Therefore, we can write: 

dFVn (v)P[Vn(S) = I*] ≈ || [FV0 (I
*) − FV0 (I

* − 1)]
dFV0 (v) FV0 =1−P* 

and, using (7.5) and (7.10): 

2nd(1 − P*)
(S) = I*] ∼P[Vn = [ 

1/M. (7.47)
P* ] 

In order for the TEST procedures nested in SCOUT to achieve a branching factor 
of d1/2 the parameter Pn–1 appearing in (7.15) must be sufficiently close to zero. But 
this is achieved when P[Vn(S) = I*] approaches unity, i.e., when h satisfies: 

log M
h ≥ £ h0(M, d). (7.48)

log d(1−P*) 
P* 

Thus, above the critical level h0(M, d) it becomes fairly sure that every node has a 

minimax value I* and, consequently, the SCOUT procedure would have to expand 

only d1/2 nodes per level. Note that the critical height increases logarithmically with 

the number of quantization levels M. 
Several improvements could be applied to the SCOUT algorithm to render it 

more efficient. For example, when a TEST procedure issues a non-exempt ver
dict, it could also return a new reference value and some information regarding 

how the decision was obtained in order to minimize the number of nodes to be 

inspected by EVAL. The main reasons for introducing SCOUT have been its con
ceptual and analytic simplicity and the fact that it possesses the lowest branching 
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factor of any algorithm known to date. However, the potential of SCOUT as a prac
tical game-searching procedure should not be dismissed altogether. Recent simu
lation studies using he game of Kalah show2 that the efficiency of SCOUT, even in 

its unpolished version, compares favorably with that of the 𝛼–𝛽 procedure. 

7.7 On the Branching Factor of the ALPHA–BETA (𝛼–𝛽) Procedure 
The reader is assumed to be familiar with the basic features of the ALPHA–BETA 

(𝛼–𝛽) pruning method. Descriptions of the method can be found in the text
books by Nilsson [4, Section 4] and Slagle [5, pp. 16–24]. A historical survey of the 

development of the concept is given by Knuth and Moore [3, Section 5]. 
The fact that the number of terminal nodes examined by 𝛼–𝛽 may vary from 

(d⌊h/2⌋ + d⌈h/2⌉ − 1) to dh was shown by Slagle and Dixon [6] and elaborated by Knuth 

and Moore [3]. 
The analysis of expected performance using uniform trees with random termi

nal values has begun with Fuller et al. [2] who obtained formulas by which the 

average number of terminal examinations can be computed. Unfortunately, the 

formulas are very complicated and would not facilitate an asymptotic analysis. 
Simulation studies conducted by FulIer et al. led to the estimate: 

r𝛼−𝛽 ≈ d0.72 . 

Knuth and Moore [3] have analyzed a less powerful but simpler version of the 

𝛼–𝛽 procedure by ignoring deep cutoffs. They have shown that the branching fac
tor of this simplified model is O(d/(log d)) and speculated that the inclusion of deep 

cutoffs would not alter this behavior substantially. However, the gap between the 

upper and lower bounds for the branching factor remained appreciable, even for 
the simplified model. 

A more recent paper by Baudet [1] contains several improvements. Starting by 
considering possible equalities between terminal values, Baudet derived a general 
formula for I𝛼-𝛽 (deep cutoffs included) from which the branching factor can be 

estimated. In particular, Baudet shows that for bivalued terminal positions r𝛼-𝛽 

could be as high as P*/(1 – P*) (a special case of (7.19)); and for the continuous case 

that r𝛼-𝛽 lower bounded by r𝛼−𝛽 � P*/(1 − P*) (a special case of (7.31)). A tighter 
upper bound for r𝛼-𝛽 was then computed which significantly narrowed the gap left 

< dby Knuth and Moore to less than 20% in the range 2 −
In view of the fact that the SCOUT algorithm was found to achieve the lower 

< 32. 

bound P*/(1 – P*), we were first led to believe that 𝛼–𝛽, which appears to be much 

more economical than SCOUT, also achieves this bound and that the uncertainty 

2. Peter Homeiert, personal communication. 
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concerning the actual branching factor of 𝛼–𝛽 has finally been eliminated. How
ever, after several futile attempts to prove the superiority of 𝛼–𝛽 over SCOUT, we 

found counter-examples demonstrating that SCOUT’s extra caution in testing prior 
to evaluation may sometimes pay off, causing it to skip nodes which would be vis
ited by 𝛼 − 𝛽. In the diagram below, the node marked t1 would be examined by the 

𝛼 − 𝛽 procedure but ignored by SCOUT. 

J

K

5 15 10 0

t1 t2

When J is submitted to the test TEST(J, 5, >), the zero value assigned to node t2 

causes the test to fail, whereas during the TEST(K, 5, >) phase, t1 is skipped by 
virtue of its elder sibling having the value 10. 𝛼–𝛽, on the other hand, has no way 
of finding out the low value of t2 before t1 is examined. 

0

t1 t2

20010 25 5

The converse situation can, of course, also be demonstrated. The diagram above 

shows how a node (t1) which is visited by SCOUT is cut off by 𝛼–𝛽. However, the 

asymptotic performance of SCOUT is at least as good as that of 𝛼–𝛽 by virtue of 
Theorem 7.4 and the fact that 𝛼–𝛽 is directional. 

Our inability to demonstrate the asymptotic equivalence of SCOUT and 𝛼–𝛽 on 

a node by node basis leaves the branching factor of the 𝛼–𝛽 procedure enigmatic 
and renders its asymptotic optimality unsettled. We wish to conjecture, though, 
that 𝛼–𝛽 probably does reach the branching factor P*/(1 – P*) and that it is, there
fore, asymptotically optimal over all directional algorithms. It would simply be 
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too amusing to find a wasteful procedure such as SCOUT outperforming the 𝛼–𝛽 

procedure.3 

However, the uncertainty regarding the branching factor of the 𝛼–𝛽 procedure 

only pertains to continuous valued trees. We shall next demonstrate that when 

the terminal positions are assigned discrete values, the 𝛼–𝛽 procedure attains the 

absolute minimal branching factor of d1/2. 
The fact that at high levels almost all nodes attain the same minimax value, v * , 

makes it increasingly probable that the 𝛼–𝛽 cutoff conditions4 are met successfully 
at all nodes where they are applicable and this, in turn, gives rise to a branching 

factor of d1/2. For, consider the top m cycles of a (n + m)-cycle tree, if all cutoff con
ditions are met at this portion of the tree, only 2dm − 1 nth level nodes need be 

expanded. Therefore, denoting by xn the expected number of terminal positions 
examined by 𝛼–𝛽 evaluating any nth level node, and by P𝛼–𝛽 (n, m) the probability 
that all cutoff conditions are satisfied whenever applicable, we can write: 

xn+m −< (2dm − 1)P𝛼−𝛽 (n, m) + d2m[1 − P𝛼−𝛽 (n, m)]. (7.49)
xn 

On the other hand, the event of meeting all cutoff conditions is subsumed by 
the event that all the 2dm − 1 nodes expanded attain the limit value v *, and 

consequently: 

*](2d
m−1)P𝛼−𝛽 (n, m) ≥ P[Vn−1(S) = v . 

Now, letting m = n2 and recalling (7.6) that P[Vn−1(S) = v *] approaches unity at a 

super exponential rate: 

1 − P[Vn−1(s) = v *]< (𝛿)d
n−n0 for n > n0 

a function of 𝛿, FV0 (vi) andwhere 𝛿 is a fraction strictly smaller than 1, and n0 

FV0 (vi−1) (see Theorem 7.1), we obtain: 

lim d2m[1 − P𝛼−𝛽 (n, m)] = 0 
n→x 

and from (7.49): 

xn−n2 = O(2dn
2 
). 

xn 

3. This conjecture has recently been confirmed (see Pearl, J., “The Solution for the Branching 

Factor of the Alpha–Beta Pruning Algorithm,” UCLA-ENG-CSL-8019, School of Engineering and 

Applied Science. University of California, Los Angeles. May 1980). 

4. [2] contains an elaborate description of the 𝛼–𝛽 cutoff conditions, using a notation similar to 

ours. 



88 Chapter 7 Asymptotic Properties of Minimax Trees and Game-Searching Procedures 

Theorem 7.7 

Corollary 7.7 

The effective branching factor for the entire (n + n2)-cycle tree, even assuming that 
every node expanded at the nth cycle requires the examination of all d2n terminal 
nodes under it, becomes: 

r𝛼−𝛽 = lim[2dn
2 
⋅ d2n]1/2(n+n2) = d1/2. 

n→x

We summarize this result by stating: 

The expected number of terminal positions examined by the ALPHA–BETA proce
dure in evaluating a (h, d, F)-game with discrete terminal values has a branching 
factor r𝛼–𝛽 = d1/2 with exceptions only when one of the discrete values, v* , satisfies 
F(v *) = 1 − P* . 

For games with discrete terminal values satisfying the conditions of Theorem 7.7, the 
𝛼–𝛽 procedure is asymptotically optimal over all evaluation algorithms. 

Paralleling our discussion of the SCOUT algorithm, 𝛼–𝛽 too does not acquire 

the more efficient branching factor of d1/2 by an abrupt transition from the con
tinuous to the discrete case. If the terminal values are drawn from M equally likely 
integers, (7.48) provides an estimate for the height h0(M, d) at which the search 

would become more efficient. Note, however, that it is not the total number of 
quantization levels v1,v2, … , vM which affects the search efficiency but rather the 

distances of FV0 (vi) and FV0 (vi−1) from 1 − P*. Thus, coarser quantizations in the 

neighborhood of v * have a more significant role in speeding up the 𝛼–𝛽 procedure. 
Recently, Stockman [7] has introduced a non-directional algorithm which exam

ines fewer nodes than 𝛼–𝛽. The magnitude of this improvement has not been 

evaluated yet, but the superiority of Stockman’s algorithm could be one of the fol
lowing two types. It may either possess a reduced branching factor, or it may exhibit 
a marginal improvement at low h’s which disappears on taller trees. If the superi
ority is of the former type, it must be singular to the continuous case because in 

the discrete case, Corollary 7.7 states that 𝛼–𝛽 it asymptotically optimal over all 
algorithms, directional as well as non-directional. 

It would still be interesting, though, to find out if any non-directional algorithm 

can solve a (h, d, P*)-game with branching factor lower than P*/(1 − P*). If such an 

algorithm exists it could be incorporated into SCOUT (replacing TEST) and thus 
enabling it to evaluate continuous valued game trees with a branching factor lower 
than P*/(1 − P*). 
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a factor (called the branching factor) 𝛼−𝛽 (n) = 𝜉n/1 − 𝜉n ≈ n3/4 where 𝜉n is the 

positive root of xn + x − 1 = 0. This implies that for a given search time allotment, 
the 𝛼–𝛽 pruning allows the search depth to be increased by a factor ≈ 4/3 over 
that of an exhaustive minimax search. Moreover, since the quantity (𝜉n/1 − 𝜉n)d 

has been identified as an absolute lower bound for the average complexity of all 
game searching algorithms, the equality 𝛼−𝛽 (n) = 𝜉n/1 − 𝜉n now renders 𝛼–𝛽 

asymptotically optimal. 
CR Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem 

Solving, Control Methods and Search—graph and tree search strategies, heuristic 
methods; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical 
Algorithms and Problems—complexity of proof procedures, sorting and searching; 
G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms, trees 

General Term: Algorithms 
Additional Key Words and Phrases: alpha-beta search, game searching, games, 

minimax algorithms, branch and bound search, average case analysis 

8.1 Introduction 

8.1.1 Informal Description of the 𝛼-𝛽 Procedure 
The 𝛼–𝛽 pruning algorithm is the most commonly used procedure in game playing 

applications, where it serves to speed up game searching without loss of infor
mation. The algorithm determines the minimax value of the root of a game tree 

by traversing the tree in a predetermined order, for example, from left to right, 
skipping all those nodes that can no longer influence the minimax value of the 

root. 
The method is demonstrated in Figure 8.1 which shows a binary game tree of 

depth d = 4 with nodes at maximizing levels (called MAX nodes) and at minimizing 

levels (called MIN nodes) represented by squares and circles, respectively. The 

numbers inside the terminal squares represent evaluations of the game positions 
at the frontier of the search tree, while those at higher levels are the minimax val
ues computed by the 𝛼–𝛽 procedure. The heavy branches represent the search tree 

actually generated by the 𝛼–𝛽 procedure as it traverses the game tree from left to 

right. Nodes not on that search tree are skipped (or “cutoff”) by 𝛼–𝛽, as they cannot 
provide useful information. 

The rationale for node skipping can be explained by examining the nodes 
labeled A, B, and C, in Figure 8.1. The purpose of exploring node B has been to 

find out if the value of A can be reduced below 10, which is the value established 
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MAXIMIZING LEVEL10

MINIMIZING LEVEL

MAXIMIZING LEVEL

MINIMIZING LEVEL
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10 11 9 12 14 15 13 14 5 6 4 7 3 22 20 21

14

Figure 8.1	 A Binary Game Tree of Depth 4 Traversed from Left-to-Right by the Alpha–Beta 
Procedure. 

for A’s leftmost son. However, the fact that one of B’s sons has already attained the 

value 14 and that B is a MAX node imply that the value of B must be greater than 14, 
regardless of any information that C may provide. Therefore, any exploration of C 

cannot alter the fact that the value of A is exactly 10, so C can be cut off from the 

search. A precise formulation of the 𝛼–𝛽 algorithm and its cutoff conditions can 

be found in [3]. 
Clearly, the efficiency of this search method depends on the order of the termi

nal values. For the values shown in Figure 8.1, only 7 terminal nodes are examined 

by a left-to-right search, whereas all 16 terminal nodes would have to be examined 

by a right-to-left search. In complex games, the difference between the best case 

and the worst case can be quite substantial, amounting to a factor of 2 in the depth 

of the look-ahead tree that a given computer system can afford to explore. This dis
parity warrants analysis of the average performance of 𝛼–𝛽 under the assumption 

that the terminal values are randomly ordered. 

8.1.2 Previous Analytical Results 
Although experiments show that the exponential growth of game tree searching 

is slowed significantly by the 𝛼–𝛽 pruning algorithm, quantitative analyses of its 
effectiveness have been frustrated for over a decade. One reason for this concern 

has been to determine whether the average performance of the 𝛼–𝛽 algorithm is 
optimal over that of other game searching procedures. 

The model most frequently used for evaluating the performance of game search
ing methods consists of a uniform tree of depth d and degree n, where the terminal 
positions are assigned random, independent, and identically distributed values. 
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Nn,d, the average number of terminal nodes examined during the search, has 
become a standard yardstick for the complexity of the search method. Additionally, 
the significant parameter for very deep trees is the branching factor 

𝛼−𝛽 = lim (Nn,d)1/d 

d→∞ 

which measures the effective number of branches actually explored by 𝛼–𝛽 from a 

typical node of the search tree. 
Slagle and Dixon [8] showed that the number of terminal nodes examined by 

𝛼–𝛽 must be at least n⌊d/2⌋ + n⌈d/2⌉ − 1 but may, in the worst case, reach the entire set 
of nd terminal nodes. The analysis of expected performance using uniform trees 
with random terminal values began with Fuller, Gaschnig, and Gillogly [2] who 

obtained formulas by which the average number of terminal examinations Nn,d can 

be computed. Unfortunately, the formula would not facilitate asymptotic analysis; 
𝛼−𝛽 ≈ (n)0.72simulation studies led to the estimate . 

Knuth and Moore [3] analyzed a less powerful but simpler version of the 

𝛼–𝛽 procedure by ignoring deep cutoffs. They showed that the branching factor 
of this simplified model is O(n/log n) and speculated that the inclusion of deep 

cutoffs would not alter this behavior substantially. A more recent study by Baudet 
[1] confirmed this conjecture by deriving an integral formula for Nn,d (deep cut
offs included), from which the branching factor can be estimated. In particular, 
Baudet shows that 𝛼−𝛽 is bounded by 𝜉n/1 − 𝜉n ≤ 𝛼−𝛽 ≤ M1/2, where 𝜉n is the n 

positive root of xn + x − 1 = 0 and Mn is the maximal value of the polynomial 
P(x) = (1− xn/1− x) [1 − (1−xn)n/xn] in the range 0 ≤ x ≤ 1. Pearl [5] has shown both 

that 𝜉n/1 − 𝜉n lower bounds the branching factor of every directional game search
ing algorithm and that an algorithm exists (called SCOUT) that actually achieves 
this bound. Tarsi [10] has very recently shown that 𝜉n/1 − 𝜉n also lower bounds the 

branching factor of nondirectional algorithms. Thus, the enigma of whether 𝛼–𝛽 

is optimal remains contingent upon determining the exact magnitude of 𝛼−𝛽 

within the range delineated by Baudet. 
This paper now shows that the branching factor of 𝛼–𝛽 indeed coincides with 

the lower bound 𝜉n/1 − 𝜉n, thus establishing the asymptotic optimality of 𝛼–𝛽 over 
the class of all game searching algorithms. 

8.2 Analysis 

8.2.1 An Integral Formula for Nn,d 

Our starting point will be an examination of the conditions under which an arbi
trary node J is generated by the 𝛼–𝛽 algorithm. If all terminal values to the left of 
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J are given, one can perform a simple test to determine whether or not J will be 

generated. For a MAX node J, form the path leading from the root to J, and define 

the following quantities: 

A( J) = the highest minimax value among all left-siblings of odd ancestors of J 

B( J) = the lowest minimax value among all left-siblings of even ancestors of J 

J will be generated by 𝛼–𝛽 if and only if 

A( J) < B( J). 

The same criterion holds when J is a MIN node, except that A( J) is computed 

over even ancestors and B( J) over odd ancestors of J. A special definition is required 

to include so-called critical nodes for which the corresponding sets of left-siblings 
are empty [7]. 

The reader can easily verify that in Figure 8.1 all nodes generated satisfy the 

criterion above while all those satisfying A( J) ≥ B( J) can provide no information 

beyond that which has already been gathered by the search and will be cut off. For 
example, for the rightmost leaf node we have: 

A( J) = max[min(3, 22), 10] = 10 

B( J) = min{20, max[min(5, 6), min(4, 7)]} = 5 

and since A( J) > B( J), it is not generated by the 𝛼–𝛽 search. 
The criterion above was first derived by Fuller et al. [2] and is a useful tool 

for computing Nn,d, the average number of terminal nodes examined by 𝛼–𝛽. One 

need only compute the probability P[A( J) < B( J)] for every node J, then sum these 

probabilities over all terminal nodes. 

Nn,d = ∑ P[A( J) < B( J)] 
J terminal 

This procedure may seem like a major undertaking. Fortunately, when the 

terminal values are drawn independently from a common distribution function 

f0(x) = P[V0 ≤ x], very simple propagation rules govern the distributions of the 

minimax values at higher levels of the tree. For example, if Vk stands for the mini
max value of a MIN node at level k of the tree, then its distribution fk is related to 

that of its direct descendents by 

fk(x) = 1 − [1 − fk−1(x)]n 
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and to that of its grandsons by 

fk(x) = 1 − {1 − [ fk−2(x)]n}n 

From these recursions one can compute the distributions FA( J)(x) and FB( J)(x) of 
the random variables A( J) and B( J) for any terminal node J. Moreover, since A( J) 
and B( J) are independent and continuous (for noncritical nodes) we have 

∞
 

P[A( J) < B( J)] = ∫ FA( J)(x)FB
′
( J)(x) dx
 

x=−∞
 

and Nn,d becomes 

∞ 

Nn,d = ∫ ∑ FA( J)(x)FB
′
( J)(x)] 

dx 
x=−∞ [J terminal 

⌊d/2⌋ + n⌈d/2⌉ − 1+ n

where the terms added to the integral represent the number of critical nodes, all of 
which are examined. The summation inside the integral can be performed using 

the recursion relations above (see Roizen [7]) and lead to the following theorem 

Theorem 8.1 Let f0(x) = x, and, for i = 1, 2, … , define 

fi(x) = 1 − {1 − [ fi−1(x)]n}n 

1 − [ fi−1(x)]n 

ri(x) = 
1 − fi−1(x) 

fi(x)si(x) = 
[ fi−1(x)]n 

Ri(x) = r1(x) × ⋯ × r⌊i/2⌋(x) 

Si(x) = s1(x) × ⋯ × s⌈i/2⌉(x) 

The average number Nn,d of terminal nodes examined by the 𝛼–𝛽 pruning algo
rithm in a uniform game tree of degree n and depth d for which the bottom values 
are drawn from a continuous distribution is given by 

1 
Nn,d = n⌊d/2⌋ + ∫ Rd

′ (t)Sd(t) dt (8.1) ■ 
0 

An identical expression for Nn,d was first derived by Baudet ([1], Theorem 4.2) 
starting with discrete terminal values and progressively refining their quantization 

levels. 
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8.2.2 Evaluation of 𝛼−𝛽 

The difficulty in estimating the integral in Equation (8.1) stems from the recursive 

nature of fi(x) which tends to obscure the behavior of the integrand. We circum
vent this difficulty by substituting for f0(x) another function 𝜑(x) which makes the 

regularity associated with each successive iteration more transparent. 
The value of the integral in Equation (8.1) does not depend on the exact nature 

of f0(x) as long as it is monotone from some interval [a, b] onto the range [0, 1]. This 
is evident by noting that by substituting f0(x) = 𝜑(x) the integral becomes 

b 1dRd[𝜑(x)] dRd(𝜑)
∫ Sd[𝜑(x)] dx = ∫ Sd(𝜑) d𝜑 
x=a dx 𝜑=0 d𝜑 

which is identical to that in Equation (8.1). This invariance reflects the fact that the 

search procedure depends only on the relative order of the dn terminal values, not 
on their magnitudes, and since any continuous distribution of the terminal val
ues generates all ranking permutations with equal probabilities, Nn,d will not be 

affected by the shape of that distribution. Consequently, f0(x) which represents the 

terminal values’ distribution, may assume an arbitrary form, subject to the usual 
constraints imposed on continuous distributions. 

A convenient choice for the distribution f0(x) would be a characteristic func
tion 𝜑(x) that would render the distributions of the minimax value of every node in 

the tree identical in shape. Such a characteristic distribution indeed exists [6] and 

satisfies the functional equation 

𝜑(x) = g[𝜑(ax)] (8.2) 

where 

g(𝜑) = 1 − (1 − 𝜑n)n (8.3) 

and a is a real-valued parameter to be determined by the requirement that Equa
tion (8.2) possess a nontrivial solution for 𝜑(x). This choice of 𝜑(x) renders the func
tions { fi(x)} in Theorem 8.1 identical in shape, save for a scale factor. Accordingly, 
we can write 

fi(x) = 𝜑 (x/ai) (8.4) 

ri(x) = r (x/ai−1) (8.5) 

si(x) = s (x/ai−1) (8.6) 
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where 

1 − [𝜑 (x)]n 

r(x) = (8.7)
1 − 𝜑 (x) 

and 

1 − {1 − [𝜑 (x)]n}n 

s(x) = (8.8)
[𝜑 (x)]n 

Equation (8.2), known as the Poincaré Equation [4], has a nontrivial solution 

𝜑(x) with the following properties [6]: 

(i) 𝜑(0) = 𝜉n where 𝜉n is the root of 

xn + x − 1 = 0 (8.9) 

1 𝜉n 
2 

(ii) a = = [ 
< 1 (8.10)

g ′(𝜉n) n(1 − 𝜉n)] 

(iii) 𝜑 ′(0) can be chosen arbitrarily, for example, 𝜑 ′(0) = 1 

(iv) x(𝜑) = lim ak[g−k(𝜑) − 𝜉n]
k→∞ 

1 − (n)−n/n−1 exp[−(x)− ln(n)/ ln(a)]𝜑(x) ≈ 
x→∞ 

𝜑(x) 
x→

≈ 
−∞

(n)−1/n−1 exp[−(x)− ln(n)/ ln(a)] 

However, only properties (8.9) and (8.10) will play a role in our analysis. Most 
significantly, parameter a, which is an implicit function of n, remains lower than 1 
for all n. 

Substituting Equations (8.4), (8.5), and (8.6) into Equation (8.1) and considering, 
without loss of generality, the case where d is an even integer, d = 2h, we obtain 

h∞ r ′(x)iNn,d = nh + ∫ 𝜋h(x) ∑ 
ri(x)) 

dx (8.11) 
x=−∞ ( i=1 

where 

h−1 

𝜋h(x) = ∏ p(x/ai), (8.12) 
i=0 

p(x) = r(x)s(x) = P[𝜑(x)], (8.13) 
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and 

1 − 𝜑n 1 − (1 − 𝜑n)n 

P(𝜑) =	 (8.14)
1 − 𝜑	 𝜑n 

′ Using Equations (8.5) and (8.7), it can be easily shown that r (x)/ri(x) satisfiesi 

′ r (x)i	 i−1 
ri(x) 

≤ n 𝜑 ′(x/ai−1)l/a	 (8.15) 

and consequently, Equation (8.11) becomes 

∞ 

Nn,d ≤ nh + n ∫ 𝜋h(x) 
−∞ 

(8.16)
h 

i−1⋅ ∑ 𝜑 ′(x/ai−1)1/a
] 
dx

[ i=1 

We now wish to bound the term 𝜋h(x) from above. 
An examination of p(x) = P[𝜑(x)] [Equations (8.13) and (8.14)] reveals that p(x) 

is unimodal in x, p(0) = [𝜉n/1 − 𝜉n]2, and that p(x) lies above the asymptotes 
p(−∞) = p(+∞) = n. Moreover, the maximum of P(𝜑) occurs below 𝜑 = 𝜉n and, 
consequently, p(x) attains its maximum Mn below x = 0. 

At this point, were we to use the bound 𝜋h(x) ≤ Mh in (8.16), it would result in n 

Nn,d < nh + nhMh and lead to Baudet’s bound 𝛼−𝛽 ≤ M1/2. Instead, a tighter n n 

bound can be established by exploiting the unique relationships between the 

factors of 𝜋h(x). 

Lemma 8.1	 Let x0 < 0 be the unique negative solution of p(x0) = p(0). 𝜋h(x) attains its maximal 
value in the range ah−1x0 ≤ x ≤ 0. 

Proof. Since p(x) is unimodal we have p(x) < p(0) and p ′(x) > 0 for all x < x0. 
Consequently, for all x < x0, any decrease in the magnitude of |x| would result in 

increasing p(x), that is, p(cx) > p(x) for all 0 ≤ c < 1. Now consider 𝜋h(ax). 

𝜋h(ax) = p(x/ah−2)p(x/ah−3) ⋯ p(x)p(ax) 

= 𝜋h(x)p(ax)/p(x/ah−1); 

h−1	 hfor all x ′ satisfying x ′/a < x0 we must have p(ax ′) > p(x ′/ah−1) (using c = a < 1) 
and 𝜋h(ax ′) > 𝜋h(x ′), implying that 𝜋h(x ′) could not be maximal. Consequently, for 

′ 𝜋h(x ′) to be maximal, x ′ must be in the range x0ah−1 ≤ x ≤ 0.	 ■ 

http:x/ai�1)l/a(8.15
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Lemma 8.2 𝜋h(x) can be bounded by 

𝜋h(x) ≤ A(n)[p(0)]h (8.17) 

where A(n) is a constant multiplier independent on h. 

Proof. Since p(x) is continuous, there exists a positive constant 𝛼 such that p(x) ≤ 

p(0) − 𝛼x for all x ≤ 0. Consequently, using Lemma 8.1, we can write 

max 𝜋h(x) = max 𝜋h(x)
x ah−1x0 ≤x≤0 

h−1 

≤ max ∏(p(0) − 𝛼x/ai) 
ah−1x0 ≤x≤0 i=0 

h−1 𝛼x ≤ [p(0)]h max exp ∑ − 
ah−1x0≤x≤0 ( aip(0))i=0 

h−1−𝛼x0 h−1 i= [p(0)]h exp ∑ 1/a
[ p(0) 

a
]i=0 

−𝛼x0≤ [p(0)]h exp [ p(0)(1 − a)] 

Selecting A(n) = exp[−𝛼x0/p(0)(1 − a)] proves the Lemma. ■ 

Theorem 8.2 The branching factor of the 𝛼–𝛽 procedure for a uniform tree of degree n is given 

by 

𝜉n 
𝛼−𝛽 = (8.18)

1 − 𝜉n 

where 𝜉n is the positive root of the equation xn + x − 1 = 0. 

Proof. Substituting (8.17) in (8.16) yields 

Nn,d ≤ nh + n A(n)[p(0)]h 

∞ h−1 

⋅ ∫ ∑(1/ai)𝜑 ′(x/ai) dx 
−∞ i=0
 

≃ nh + n A(n)[p(0)]hh
 

Finally, using p(0) = (𝜉n/1 − 𝜉n)2 > n, we obtain
 

𝛼−𝛽 = lim (Nn,d)1/2h ≤ 𝜉n/1 − 𝜉n (8.19)
h→∞ 
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This, together with Baudet’s lower bound 𝛼−𝛽 ≥ 𝜉n/1−𝜉n, completes the proof 
of Theorem 8.2. ■ 

8.3 Conclusions 
The asymptotic behavior of 𝛼−𝛽 is O(n/log n), as predicted by Knuth’s analysis 
[3]. However, for moderate values of n (n ≤ 1000), 𝜉n/1 − 𝜉n is fitted much better 
by the formula (0.925)n0.747 (see Figure 4 of [5]), which vindicates the simulation 

results of Fuller et al. [2]. This approximation offers a more meaningful appreci
ation of the pruning power of the 𝛼–𝛽 algorithm. Roughly speaking, a fraction of 
only (0.925)n0.747/n ≈ n−1/4 of the legal moves will be explored by 𝛼–𝛽. Alterna
tively, for a given search time allotment, the 𝛼–𝛽 pruning allows the search depth 

to be increased by a factor log n/log 𝛼−𝛽 ≈ 4/3 over that of an exhaustive minimax 
search. 

The establishment of the precise value of 𝛼−𝛽 for continuous-valued trees, 
together with a previous result that 𝛼−𝛽 = n1/2 for almost all discrete-valued 

trees [5], completes the characterization of the asymptotic behavior of 𝛼–𝛽 and 

settles the question of its optimality. The fact that 𝛼–𝛽 is asymptotically optimal 
(that is, achieves the lowest possible branching factor) over the class of direc
tional algorithms follows directly from Equation (8.18) and a previous result [5] that 
𝜉n/1 − 𝜉n lower bounds the branching factor of any directional algorithm. However, 
the possible existence of some nondirectional algorithm outperforming 𝛼–𝛽 and 

exhibiting a branching factor lower than 𝜉n/1−𝜉n has remained unsettled until very 
recently. Indeed, Stockman [9] introduced a nondirectional algorithm called SSS* 
which consistently examines fewer nodes than 𝛼–𝛽. Hopes were then raised that 
the superiority of Stockman’s algorithms reflected an improved branching factor 
over that of 𝛼–𝛽. 

These possibilities have all been eliminated by a more recent result by Tarsi 
[10]. Considering a standard bi-valued game tree in which the terminal nodes are 

assigned the values 1 and 0 with the probabilities 𝜉n and 1 − 𝜉n, respectively, Tarsi’s 
result states that any algorithm which solves such a game tree must, on the average, 
examine at least (𝜉n/1− 𝜉n)d terminal positions. At the same time the task of solving 

any bi-valued game tree is equivalent to the task of verifying an inequality proposi
tion regarding the minimax value of a continuous-valued game tree [5] of identical 
structure, and, consequently, the former cannot be more complex than the latter. 
Thus, the quantity (𝜉n/1 − 𝜉n)d should also lower bound the expected number of 
nodes examined by any algorithm searching a continuous-valued game tree. This, 
together with Equation (8.18), establishes the asymptotic optimality of 𝛼–𝛽. 
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Abstract 
This paper explores the paradigm that heuristics are discovered by consulting sim
plified models of the problem domain. After describing the features of typical 
heuristics on some popular problems, we demonstrate that these heuristics can 

be obtained by the process of deleting constraints from the original problem and 

solving the relaxed problem which ensues. We then outline a scheme for generating 

such heuristics mechanically, which involves systematic refinement and deletion 

of constraints from the original problem specification until a semi-decomposable 

model is identified. The solution to the latter constitutes a heuristic for the former. 

On the Discovery and 
Generation of Certain 
Heuristics 
Judea Pearl 

9.1 Introduction: Typical Uses of Heuristics 
Heuristics are methods and criteria for judging the relative merits of alternative 

courses of planning or action. There is hardly any intellectual activity which does 
not rely on heuristics of some kind. The decision to begin reading this paper, for 
example, reflects a tacit use of heuristics which has lured the reader to invest 
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time and effort in anticipation of certain benefits. Although such anticipations 
may occasionally be disappointed, on the whole they are essential to planning our 
everyday activities. 

Complex combinatorial problems require the use of heuristics if a reasonably 
“good” solution is to be produced within practical time constraints. We shall 
demonstrate this point using three simple problems (readers familiar with the 

properties of A* may skip to section [9.1.3]. Where do these heuristics come from?): 

2 3

1 8 4

7 6 5

2 3

1

8

4

7 6 5

2 3

1 8 4

7 6

(A) (B)

or or

(S)

(C)

5

2 3

1 8 4

7 6 5

Figure 9.1 A goal tree in the 8-puzzle 

The 8-puzzle. This simple puzzle is a one-person game, the objective of which is 
to rearrange a given configuration of eight uniquely numbered tiles on a 3×3 board 

into another given configuration by iteratively sliding one of the tiles into empty 
location, as in Figure 9.1 above: 

Assume that in this example the objective is to reach the goal state: 

1 2 3 

8 ■ 4 

7 6 5 

Which of the three alternatives, (A), (B), or (C) appears most promising? 
The answer can, of course, be obtained by searching the graph associated with 

the puzzle and finding which of the three states leads to the shortest path to 

the goal. The notorious combinatorial explosion, however, makes this method 

utterly impractical when the distance to the goal is large and/or when larger boards 
(e.g., 4×4) are involved. The very search for a solution path requires the use of 
judgments to decide at any point which search avenue is the most promising. 
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To assist a computer in solving path-finding problems of this type, the program
mer is usually required to provide a rule for computing an estimate of the proximity 
between two given configurations. The most popular rules for the 8-puzzle are: h1 = 

the number of tiles by which the two configurations differ, and h2 = the sum of the 

distances of the mismatched tiles from their proper destinations. (The black posi
tion is not counted.) The appropriate distance measure, in this case, is the sum of 
the coordinate differences, also known as the Manhattan or city-block distance. 
For instance, in the example above we can compute: 

h1(A) = 2 h1(B) = 3 h1(C) = 4 

h2(A) = 2 h2(B) = 4 h2(C) = 4 

These heuristic functions are intuitively appealing and readily computable, and 

may be used to prune the space of possibilities in such a way that only configura
tions lying close to the solutin path will actually be explored. An algorithm which 

exhibits such pruning will be discussed later. 
Finding the shortest path in a road map. Given a road map such as the one 

shown in Figure 9.2, it is desired to find the shortest path between city A and city 
B. If the intercity distances are presented in the form of a distance-matrix d(i, j), 
there is no way for the search program to judge a priori that city C, unlike city D, 
lies way out of the natural direction from A to B and, consequently, that city D is 
better candidate from which to pursue the search. At the same time, the preference 

of D over C is obvious to anyone who glances at the map. What extra information 

does the map provide which is not made explicit in the distance table? 
One possible answer is that the human observer exploits vision machinery to 

estimate the Euclidean distances in the map and, since the air distance from D to B 

is shorter than that between C and B, city D appears as a more promising candidate 

from which to launch the search. That same information can also be used by the 

machine if each city is assigned a heuristic function h(*) equal to the air distance 

between that city and the goal B. A tentative choice between pursuing the search 

from city C or city D should depend, then, on the magnitude of the cost estimate 

d(A, C) + h(C) relative to the estimate d(A, D) + h(D). 

A

C

D

B

Figure 9.2 A graph expressing the shortest path problem of going from A to B. 
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A

E

C

B

F

D

Figure 9.3 

9.1.1 

Search for cheapest path in graph. 

The Traveling Salesman Problem (TSP) 
Here we must find the cheapest tour, that is, the cheapest path which visits every 
node once and only once, and returns to the initial node, in a complete graph of N 

nodes with each edge assigned a non-negative cost. 
It is well known that the TSP is NP-hard and that all known algorithms require 

an exponential time in the worst case. However, the use of good bounding func
tions often enables us (using the branch-and-bound algorithm) to find the optimal 
tour in much less time. What is a bounding function? Consider the graph below 

where the two marked paths ABC and AED represent two partial tours currently 
being considered by the search procedure. Which of the two, if properly completed 

to form a circuit, is more likely to be part of the optimal solution? Clearly, the over
all solution cost is given by the cost of completing the tour added to the cost of 
the initial subtour, and so the answer lies in how cheaply we can complete the tour 
through the remaining nodes. However, since the computational effort required 

to find the optimal completion cost is almost as hard as that of finding the entire 

optrima tour, we must settle for an estimate of the completion cost. Given such esti
mates, the decision of which subtour to extend first would depend on which one, by 
combining the cost of the explored part with the estimate of its completion, offers 
a lower overall cost estmate. It can be shown that if at every stage of the search we 

select for exploration that partial tour with the lowest estimated cost, and if the esti
mates of the completion costs are consistently optimistic (underestimates), then 

the first tour to be completed by the search is also the optimal one. 
What easily computable function would yield an optimistic, yet not too unreal

istic, estimate of the subtour completion cost? People, when first asked to “invent” 
such a function, usually provide easily computable, but too simplistic answers. 
For example, the cheapest edge or two-edge path connecting the end of the initial 
subtour, bypassing all unvisited cities or going through one other city, respec
tively. These functions, while being optimistic, grossly underestimate the comple
tion cost. Upon deeper thought, more realistic estimates are formed, and the two 

which have received the greatest attention in the literature are: (1) The cheapest 
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2nd degree graph going through the remaining nodes (Lawler and Wood, 1966), 
and (2) the cost of the minimum spanning tree (MST) through all remaining 

nodes (Held and Karp, 1971). The first is obtained by solving the so-called optimal 
assignment problem using O(N3) steps, while the second requires O(N2) steps. 

That these two functions provide optimistic estimates of the completion cost is 
apparent when we conside that completing the tour requires the choice of a path 

going through all unvisited cities. A path is both a special case of a graph with 

degree 2 and also a special case of a spanning tree. Hence, the set of all completion 

paths is included in the sets of objects overwhich the optimization takes place, and 

so, the solution found must have a lower cost than that obtained by optimizing over 
the set of path only. 

Figure 9.4a below shows the shape of a graph that may be found by solving the 

assignment problem instead of completing subtour AED. The completion part is 
not a single path but a collection of loops. Figure 9.4b shows a minimum-spanning
tree completion of subtour AED. In this case the object found is a tree containing 

a node with a degree higher than 2. 

9.1.2	 Some Properties of Heuristics 
The three examples in the preceding section are typical of a problem-solving 

method called “state-approach” (Nilsson, 1971), where the search for a solution to 

a posed problem is formulated as the search for a path in a statespace graph. A 

path to a given node in such a graph represents a code for a subset of potential 
solutions: the arcs represent transformations of those codes, which correspond 

to finer partitions of the parent subsets. In the 8-puzzle the transformations cor
responded to the actual legal moves of the game. In the road map and the TSP 

the transformations consisted of concatenating a partially explored path with one 

more edge. Tasks such as theorem proving, robot planning, and speech recogni
tion can naturally be represented as path-finding problems using the state-space 

A

E

D A

E

D

(a) (b)

Figures 9.4a and 9.4b Graphs showing use of assignment problem heuristic for finding a cheapest tour in 
Traveling Salesman Problem. 
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approach. Even constraint-satisfaction problems, such as the 8-queens problem, 
which at first glance bear no mention of graphs or paths, can be formulated in state-
space if we regard the computations which allow us to scan the space of possible 

objects systematically as arcs in a graph. 
An algorithm known as A* (Hart et al., 1968) has become popular in the Artificial 

Intelligence literature as an efficient way of using heuristics to solve path-finding 

problems. Unlike conventional shortest-path algorithms, the state-space graph is 
not available explicitly but rather is generated incrementally during the search 

itself using the transforamtion rules. A* uses heuristic information to search the 

state-space graph in a directed fashion, making explicit only that portion of the 

graph which is absolutely necessary for finding an optimal solution. 
We shall say that a node n is expanded when all possible transformation rules 

are applied to it and the resultant nodes, called successors of n, are generated. Any 
node which is expanded is called CLOSED, and any node generated but not yet 
expanded is called OPEN. At each step of the search, A* selects for expansion that 
OPEN node which has the lowest cost estimate f (n). The estimate f (n) consists of 
two components: 

f (n) = g(n) + h(n), 

where g(n) is the minimal cost so far encountered from the root to n, and h(n) is an 

estimate of the cost required to complete the path from n to a goal state. A* halts 
when it attempts to expand a node which satisfies the goal condition. 

The most significant theoretical result regarding the behavior of A* is its admis
sibility property: if for every node n, h(n) does not exceed the actual optimal comple
tion cost h*(n), then A* terminates with the minimal cost path to a goal. An estimate 

h(n) satisfying the inequality h(n) ≤ h*(n) for every node in the graph is called an 

admissibility heuristic. 
The second important property of A* is called consistency. A heuristic function 

h (∙) is said to be consistent if it satisfies the triangle inequality: 

′ h(n) ≥ c(n, n ′) + h(n ′) ≤ (n) ≤ n 

and: 

h(ng ) = 0 

′ ′ where n is any successor of n, c(n, n ′) is the cost of the edge from n to n and ng 
is any node satisfying the goal conditions. The importance of consistency lies in 

guaranteeing that A* will never reopen a CLOSED node. The reason is that A*, when 

it selects a node for expansion, has already traced the optimal path to that node 
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and so it need not test whether shorter paths may be found in the future. It can be 

shown that consistency implies admissibility but not vice versa. 
The power of the heuristic estimate h is measured by the amount of pruning 

induced by h and depends, of course, on the accuracy of the estimate. If h(∙) esti
mates the completion cost precisely, then A* will only explore nodes lying along an 

optimal path. Otherwise A* will expand any open node satisfying the inequality: 

g(n) + h(n) < h*(s) 

where h* is the cost of the optimal path from the intial node. Clearly, the higher the 

value of h the fewer nodes will be expanded by A*, as long as h remains admissible. 
In the 8-puzzle example, for instance, since h2 is generally larger and never lower 
than h1, it is a more powerful heuristic and will give rise to a more efficient search. 

Where do these Heuristics Come from? 
We have seen a few examples of heuristic functions which were devised by clever 
individuals to assist in the solution of combinatorial problems. We now focus our 
attention on the mental process by which these heuristics are “discovered,” with a 

view toward emulating the process mechanically. 
The word “discovery” carries with it an aura of mystery, since it is normally 

attached to mental processes which leave no memory trace of their intermedi
ate steps. It is an appropriate term for the process of generating heuristics, since 

tracing back the intermediate steps evoked in this process is usually a difficult 
task. For example, although we can argue convincingly that h2, the sum of the dis
tances in the 8-puzzle, is an optimistic estimate of the number of moves required 

to achieve the goal, it is hard to articulate the mechanism by which this function 

was discovered or to invent additonal heuristics of similar merit. 
Articulating the rationale for one’s conviction in certain properties of human-

devised heuristics may, however, provide clues as to the nature of the discovery 
process itself. Examining again the h2 heuristic for the 8-puzzle, note how sur
prisingly easy it is to convince people that h2 is admissible. After all, the formal 
definition of admissibility contains a universal qualifier (≤n) which, at least in 

principle, requires that the inequality h(n) ̸ h*(n) be verified for every node in = 

the graph. Such exhaustive verification is, of course, not only impractical but also 

inconceivable. Evidently the mental process we employ in verifying such proposi
tions is similar to that of symbolic proofs in mathematics, where the truth of unver
sally quantified statements (say, that there are infinitely many prime numbers) is 
established by a sequence of inference rules applied to other statements (axioms) 
without exhaustive enumaration. 
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An even more suprising aspect of our conviction in the truth of h2(n) ≤ h*(n) is 
the fact that h*(n), by its very nature, is an unknown quantity for almost every node 

in the graph; not knowing h*(n) was the very reason for seeking its estimate h(n). 
How can we, then, become so absolutely convinced in the validity of the assertion 

h2(n) ≤ h*(n)? Clearly, the verification of this assertion performed in a code where 

h*(n) does not possess an explicit representation. 
In the case of the road map problem our conviction the admissibility of the air 

distance heuristic is explainable. Here, based on our deeply entrenched knowledge 

of the properties of Euclidean spaces, we may argue that a straight line between any 
two points is shorter than any alternative connection between these points and, 
hence, that the air distance to the goal constitutes an admissible heuristic for the 

problem. In the 8-puzzle and the Traveling Salesman Problem, however, such a uni
versal assertion cannot be drawn directly from our culture or experience, and must 
be defended, therefore, by more elaborate arguments based on more fundamental 
principles. 

If we try to articulate the rationale for our confidence in the admissibility of h2 

for the 8-puzzle, we may encounter arguments such as the following: 

1. Consider any solution to the goal, not necessarily an optimal one. In order 
to satisfy the goal conditions, each tile must trace some trajectory from its 
original location to its destination, and the overall cost (number of steps) of 
the solution is the sum of the costs of the individual trajectories. Every tra
jectory must consist of at least as many steps as that given by the Manhattan-
distance between the tile’s origin and its destination, and, hence, the sum of 
the distances cannot exceed the overall cost of the solutions. 

2. If I were able to move each tile independently of the others, I would pick up 

tile #1 and move it, in steps, along the shortest path to its destination, do the 

same with tile #2, and so on until all tiles reach their goal locations. On the 

whole, I will have to spend at least as many steps as that given by the sum 

of the distances. The fact that in the actual game tiles tend to interfere with 

each other can only make things worse. Hence, … 

The first argument is analytical. It selects one property which must be satisfied 

by every solution, such as in providing a homeward-trajectory for every tile, and 

asks for the minimum cost required for maintaining just that property. The second 

argument is operational. It describes a procedure for solving a similar, auxiliary 
problem where the rules of the game have been relaxed. Instead of the conventional 
8-puzzle whose tiles are kept confined in a 2-dimensional plane, we now imagine 

a relaxed puzzle whose tiles are permitted to climb on top of each other. Instead 
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of seeking heuristic function h(n) to approximate h*(n), we can actually compute 

the solution using the relaxed version of the puzzle, count the number of steps 
required, and use this count as an estimate of h*(n). 

The last scheme leads to the general paradigm expounded in this paper: Heuris
tics are discovered by consulting simplified models of the problem domain. We shall 
later explicate what is meant by a simplified model and how to go about finding such 

a one. The preceding example, however, specifically demonstrates the use of one 

important class of simplified models: that generated by removing constraints which 

forbid or penalize certain moves in the original problem. We shall call models 
obtained by such constraint-deletion processes relaxed models. 

Let us examine first how the constraint-deletion scheme may work in the Trav
eling Salesman Problem. We are required to find as estimate for the cheapest com
pletion path which starts at city D, ends at City A, and goes through every city in the 

set S of the unvisited cities. A path is a connected graph of degree 2, except for the 

end-points, which are of degree 1, a definition which we can express as a conjunc
tion of three conditions: (1) being a graph, (2) being connected, (3) being of degree 

2. If we delete the requirement that the completion graph be connected, we get the 

assignment heuristic of Figure 9.4a. Similarly, if we delete the constraint that the 

graph be of degree 2, we get the minimum-spanning-tree (MST heuristic depiced 

in Figure 9.4b). An even richer set of heuristics evolves by relaxing the condition 

that the task completed by a graph. 
An alternative way of leading toward the MST heuristic is to imagine a sales

man employed under the following cost arrangement: he has to pay from his own 

pocket for any trip in which he visits a city for the first time, but can get a free 

ride back to any city which he visited before. It is not hard to see that under such 

relaxed cost conditions the salesman would benefit from visiting some cities more 

than once and that the optimal tour strategy is to pay only for those trips which are 

part of the minimum-spanning-tree. If instead of this cost arrangement the sales
man gets one free ride from any city visited twice, the optimal tour may be made up 

of smaller loops, and the assignment problem ensues. Thus, by adding free rides 
to the original cost structure we create relaxed problems whose solutions can be 

taken as heuristics for the original problem. 
It is interesting to note that heuristics generated by optimizations over relaxed 

models are guaranteed to be consistent. This is easily verified by inspecting 

Figure 9.5, where h(n) and h(n ′) are the heuristics assigned to nodes n and n ′ , respec
tively. These heuristics stand for the minimum cost of completing the solution 

from the corresponding nodes in some relaxed model common to both nodes. h(n), 
representing an optimal solution (geodesic), must satisfy h(n) ≤ c ′(n, n ′) + h(n ′), 
where c ′(n, n ′) is the relaxed cost of the edge (n, n ′), or else c ′(n, n ′) + h(n ′), instead 
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Figure 9.5 For consistent heuristic h, h(n) ≤ c(n, n ′) + h(n). 

of h(n), would constitute the optimal cost from n. The relaxed edge-cost c ′(n, n ′) 
cannot, by definition, exceed the original cost c(n, n ′), thus: 

h(n) ≤ c(n, n ′) + h(n ′) 

which, together with the technical condition h(ng ) = 0, completes the require
ments for consistency. 

This feature has both computational and psychological implications. Computa
tionally, it guarantees that a search algorithm, A*, guided by any heuristic evolving 

from a relaxed model, would be spared the effort of reopening CLOSED nodes or 
even testing whether a newly generated node has been expanded before. The point
ers assigned to any node expanded by such algorithms are already directed along 

the optimal path to that node. 
Psychologically, if we assume that people discover heuristics by consulting 

relaxed models, we can explain now why most man-made heuristics are both 

admissible and consistent. The reader may wish to test this point by attempting to 

generate heuristics for the 8-puzzle or the TSP that are admissible but not consis
tent. The difficulties encountered in such attempts should strengthen the reader’s 
conviction that the most natural process for generating heuristics is by relaxation, 
where consistency surfaces as an automatic bonus. 

Before proceeding to outline how systematic relaxations can be used to gener
ate heuristics mechanically, it is important to note that not every relaxed model is 
automatically simpler than the original. Assume, for example, that in the 8-puzzle, 
in addition to the conventional moves, we also allow a checker-like jumping of 
tiles across the main diagonals. The puzzle thus created is obviously more relaxed 

than the original, but it is not at all clear that the complexity of searching for an 

optimal solution in the relaxed puzzle is lower than that associated with the origi
nal problem. True, adding shortcuts makes the search graph of the relaxed model 
somewhat shallower, yet it also becomes bushier: A* must now examine the extra 

moves available at every decision junction, even if they lead nowhere. 
Moreover, relaxation is not the only scheme which may simplify problems. 

In fact, simplified models can easily be obtained by a process opposite to that 
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of relaxation, such as loading the original model with additional constraints. Of 
course, the solutions to over-constrained models would no longer be admissible. 
However, in problems where one settles for finding any path to the goal, not nec
essarily the optimal, simplified over-constrained models may be very helpful. The 

most popular way of constraining models is to assume that a certain portion of the 

solution is given a-priori. This assumption cuts down on the number of remaining 

variables which of course, results in a speedy search for the completion portion. 
For example, if one arbitrarily selects an initial subtour through M cities in the TSP, 
an overconstrained problem ensues which is simpler than the original because it 
involves only N – M cities. The cost associated with the solution to such a problem 

constitutes an upper bound to h* and can be used to cut down the storage require
ment of A*. Every node is OPEN whose admissible evaluation f (n) = g(n) + h(n) 
exceeds that upper bound can be permanently removed from memory without 
endangering the optimality of the resulting solution. 

A third important class of simplified models can be obtained by probabilistic 
considerations. In certain cases we may possess sufficient knowledge about the 

problem domain to permit an estimate of the most probable cost of the completion 

path. Consider, for example, the problem of finding the cheapest cost path in a tree 

where all arc costs are known to be drawn independently from a common distribu
tion function, with mean 𝜇. If N stands for the number of arcs remaining between a 

node n and the goal, then for large N the cost of any path to the goal is known to be 

highly peaked about 𝜇N. Therefore, if we are sure that only one path leads from n to 

the goal, we can take the value 𝜇N as an estimate of h* and use f −g +𝜇N as a node-
rating function in A*. If several paths lead from n to the goal set and if the structure 

of these paths is fairly regular, probability calculus can be invoked to estimate the 

most likely cost of the cheapest one among them, and that estimate can be used as 
h in A*. Alternatively, probabilistic models often predict that reasonable solution 

paths are likely to exhibit certain distinctive properties in their behavior, e.g, that 
the cost along the path will increase gradually at a predetermined rate. Hence, an 

irrevocable search strategy can be employed which prunes away any path found to 

behave at variance with such expectations (Karp and Pearl, 1983). 
By their very nature, probability-based models cannot guarantee the optimality 

of the solution. Although, in most cases, they produce accurate estimates of the 

completion cost, occasionally these turn out to be grossly overestimated, which 

may cause A* to terminate prematurely with a suboptimal solution. On the other 
hand, if one does not insist on finding an exact optimal solution all the time but 
settles instead for finding a “good” solution most of the time, probability-based 

heuristics can, in many cases, reduce the complexity of combinatorial problems 
from exponential to polynomial. 
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Another class of simplified models used in heuristic reasoning is analogical or 
metaphorical models. Here the auxilary model draws its power not from a struc
tural simplicity inherent in the problem, but rather from matching the machinery 
and expertise accumulated by the problem solver. For example, the game of tic-
tac-toe appears simpler to us than its isomorphic number-scrabble game (Newell 
and Simon, 1972) because the former evokes an expertise gathered by our visual 
machinery which has not yet been acquired by our arithmetic reasoner. Like
wise, the use of visual imagery in solving complex mathematical or programming 

problems takes advantage of the special purpose machinery which evolution has 
bestowed upon us for processing visual information and manipulating physical 
objects. The use of analogical models by computers would only be beneficial 
when we learn how to build an efficient data-driven expert system for at least one 

problem domain of sufficient richness, e.g., physical objects. 

9.2 Mechanical Generation of Admissible Heuristics 
We return now to the relaxation scheme and to show how the deletion of con
straints can be systematic to the point that natural heuristics, such as those 

demonstrated in the Introduction Section, can be generated by mechanical means. 
The constraint-relaxation scheme is particularly suitable for this purpose because 

many problem domains are conveniently formalizable by the explicit representa
tion of the constraints which govern the applicability and impact of the various 
transformations in that domain. Take, for instance, the 8-puzzle problem. It is 
utterly impractical to specify the set of legal moves by an exhaustive list of pairs, 
describing the states before and after the application of each move. A much more 

natural representation of the puzzle would specify the available moves by two sets 
of conditions, one which must hold true before a given move is applicable and 

one which must prevail after the move is applied. In the robot-planning program 

STRIPS (Fikes and Nilsson, 1971), for example, actions are represented by three 

lists: (1) a precondition-list, a conjunction of predicates which must hold true before 

the action can be applied; (2) an add-list, a list of predicates which are to be added to 

the description of the world-state as a result of applying the action; and (3) a delete-
list, a list of predicates that are no longer true once the action is applied and should, 
therefore, be deleted from the state description. We shall use this representation 

in formalizing the relaxation scheme for the 8-puzzle. 
We start with a set of three primitive predicates: 

ON(x, y) : tile x is on cell y 
CLEAR(y) : cell y is clear of tiles 
ADJ(y, z) : cell y is adjacent to cell z, 
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where the variable x is understood to stand for the tiles X1, X2, … , X8 and where the 

variables y and z range over the set of cells C1, C2, … , C9. Although the predicate 

CLEAR can be defined in terms of ON: 

CLEAR(y) ⇔ ∀(x) ∼ ON(x, y), 

it is convenient to carry CLEAR explicitly as if it were an independent predicate. 
Using these primitives, each state will be described by a list of 9 predicates, such 

as: 

ON(X1, C1), ON(X2, C2), … , ON(X8C8), CLEAR (C9), 

together with the board configuration: 

ADJ(C1, C2), ADJ(C1, C4), … , 

The move corresponding to transferring tile x from location y to location z will 
be described by the three lists: 

MOVE (x, y, z) : 

precondition list : ON(x, y), CLEAR(z), ADJ(y, z) 

add list : ON(x, y), CLEAR(y) 

delete list : ON(x, y), CLEAR(z) 

The problem is defined as finding a sequence of applicable instantiations for 
the basic operator MOVE(x, y, z) that will transform the initial state into a state 

satisfying the goal criteria. 
Let us now examine the effcct of relaxing the problem by deleting the two con

ditions, CLEAR(z) and ADJ(y, z), from the precondition list. The resultant puzzle 

permits each tile to be taken from its current position and be placed on any desired 

cell with one move. The problem can be readily solved using a straightforward con
trol scheme: at any state find any tile which is not located on the required cell. 
Let this tile be X1, its current location Y1, and its required location Z1. Apply the 

operator MOVE(X1, Y1, Z1), and repeat the procedure on the prevailing state until 
all tiles are properly located. 

Clearly, the number of moves required to solve any such problem is exactly 
the number of tiles which are misplaced in the initial state. If one submits this 
relaxed problem to a mechanical problem-solver and counts the number of moves 
required, the heuristic h1(∙) ensues. 
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Imagine now that instead of deleting the two conditions, only CLEAR(z) is 
deleted while ADJ(y, z) remains. The resultant model permits each tile to be moved 

into an adjacent location regardless of its being occupied by another tile. This 
obviously leads to the h2(∙) heuristic: the sum of the Manhattan-distances. 

The next deletion follows naturally; let us retain the condition CLEAR(z) and 

delete ADJ(y, z). The resultant model permits transferring any tile to the empty 
spot, even when the two cells are not adjacent. The problem of reconfiguring the 

initial state with such operators is equivalent to that of sorting a list of elements by 
swapping the locations of two elements at a time, where every swap must exchange 

one marked element (the blank) with some other element. The optimal solution to 

this swap-sort problem can be obtained using the following “greedy” algorithm: 

If the current empty cell y is to be covered by tile x, move x into y. Otherwise 

(if y is to remain empty in the goal state), move into y any arbitrary misplaced 

tile. Repeat. 

The resulting cost of this model, h3, is mentioned neither in the Introductory 
Section 1 nor in textbooks on heuristic search. It is not the kind of heuristic that is 
likely to be discovered by the novice, and it was first introduced by Gaschnig (1979) 
eleven years after A* was exemplified using h1 and h2. Although h3 turns out to be 

only slightly better than h1, its late discovery, coupled with the fact that it evolves 
so naturally from the constraint-deletion scheme, illustrates that the method of 
systematic deletions is capable of generating non-trivial heuristics. 

The reader may presume that the space of deletions is now exhausted; deleting 

ON(x, y) leads again to h1, while retaining all three conditions brings us back to 

the original problem. Fortunately, the space of deletions can be further refined by 
enriching the set of elementary predicates. There is no reason, for instance, why 
the relation ADJ(y, z) need be taken as elementary – one may wish to express this 
relation as a conjunction of two other relations: 

ADJ(y, z) ⇔ NEIGHBOR(y, z) ∧ SAME-LINE(y, z) 

Deleting any one of these new relations will result in a new model, closer to the 

original than that created by deleting the entire ADJ predicate. 
Thus, if we equip our program with a large set of predicates or with facilities 

to generate additional predicates, the space of deletions can be refined progres
sively, each refinement creating new problems closer and closer to the original. 
The resulting problems, however, may not lend themselves to easy solutions and 

may turn out to be even harder than the original problem. Therefore, the search 

for a model in the space of deletions cannot proceed blindly but must be directed 

toward finding a model which is both easy to solve and not too far from the original. 
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This begs the following question: Can the program tell an easy problem from a 

hard one without actually trying to solve them? This will be discussed in the next 
section. 

9.3 Can a Program Tell an Easy Problem When It Sees One? 
We now come to the key issue in our heuristic-generation scheme. We have seen 

how problem models can be relaxed with various degrees of refinements. We have 

also seen that relaxation without simplification is a futile excursion. Ideally, then, 
we would like to have a program that evaluates the degree of simplification pro
vided by any candidate relaxation and uses this evaluation to direct the search in 

modelspace toward a model which is both simple and close to the original. This, 
however, may be asking for too much. The most we may be able to obtain is a pro
gram that recognizes a simple model when such a one happens to be generated 

by some relaxation. Of course, we do not expect to be able to prove mechanically 
propositions such as “This class of problems cannot be solved in polynomial-
time”. Instead, we should be able to recognize a subclass of easy problems, those 

possessing salient feature advertising their simplicity. 
Most of the examples discussed above possess such features. They can be solved 

by “greedy,” hill-climbing methods without backtracking, and the feature that 
makes them amenable to such methods is their decomposability. Take, for instance, 
the most relaxed model for the 8-puzzle, where each tile can be lifted and placed on 

any cell with no restrictions. We know that this problem is simple, without actually 
solving it, by virtue of the fact that all the goal conditions, ON(X1, C1), ON(X2, C2), … , 
can be satisfied independently of each other. Each element in this list of subgoals 
can be satisfied by one operator without undoing the effect of previous operators 
and without affecting the applicability of future operators. 

Similar conditions prevail in the model corresponding to h2, except where 

a sequence of operators is required to satisfy each of the goal conditions. The 

sequences, however, are again independent in both applicability and effects, a fact 
which is discernible mechanically from the formal specification of the model, since 

the subgoals themselves define the desired partition of the operators. Any oper
ator whose add-list contains the predicate ON(Xi, y) will be directed only toward 

satisfying the subgoal ON(Xi, Ci) and can be proven to be non-interfering with any 
operator containing the predicate ON(Xj, y) in its add-list. 

Most automatic problem-solvers are driven by mechanisms which attempt to 

break down a given problem into its constituent subproblems as dictated by the 

goal description. For example, the General-Problem-Solver (Ernst and Newell, 1969) 
is controlled by “differences,” a set of features which make the goal different from 

the current state. The programmer has to specify, though, along what dimensions 
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these differences are measured, which difference are easier to remove, what oper
ators have the potential of reducing each of the differences, and under what condi
tions each reduction operator is applicable. In STRIPS, most of these decisions are 

made mechanically on the basis of the 3-list description of operators. Actions are 

brought up for consideration by virtue of their add-list containing predicates which 

can bridge the gap between the desired goal and the current state. If the current 
state does not possess the conditions necessary for enacting a useful difference-
reducing transformation, a new subgoal must be created to satisfy the missing 

conditions. Thus the complexity of this “end-means” strategy increases sharply 
when subgoals begin to interact with each other. 

The simplicity of decomposable problems, on the other hand, stems from the 

fact that each of the subgoals can be satisfied independently of each other; thus 
the overall goal can be achieved in a time equal to the number of conjuncts in the 

goal description multiplied by the time required for satisfying a single conjunct 
in isolation. It is a version of the celebrated ‘divide-and-conquer’ principle, where 

the division is dictated by the primitive conjuncts defining the goal conditions. For 
example, in an N×N-puzzle we have N2 conjuncts defining the goal state configura
tion, and the solution of each subproblem, namely finding the shortest path for one 

tile using a relaxed model with single-cell moves, can be obtained in O(N2) steps 
even by an uninformed, breadthfirst, algorithm. Thus the optimal solution for the 

overall relaxed N × N-puzzle can be obtained in O(N4) steps, which is substantially 
better than the exponential complexity normally encountered in the non-relaxed 

version of the N × N-puzzle. 
The relaxed N × N-puzzle is an example of a complete independence between 

the subgoals, where an operator leading toward a given subgoal is neither hin
dered nor assisted by any operator leading toward another subgoal. Such complete 

independence is a rare case in practice and can only be achieved after deleting a 

large fraction of the applicability constraints. It turns out, however, that simplicity 
can also be achieved in much weaker forms of independence which we shall call 
semi-decomposable models. 

Take, for example, the minimum-spanning-tree problem. If the goal is defined 

as a conjunction of N-l conditions: 

CONNECTED (city i, city 1) i = 2, 3, … , N 

and each elementary operator consists of adding an edge between a connected 

and an unconnected city, we have a semi-decomposable structure. Even though 

no operator may undo the labor of previous operators or hinder the applicability 
of future operators, some degree of coupling remains since each operator enables a 
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different set of applicable operators. This form of coupling, which was not present 
in the relaxed 8-puzzle, may make the cost of the solution depend on the order in 

which the operators are applied. Fortunately, the MST problem possesses another 
feature, commutativity, which renders the greedy algorithm “cheapest-subgoal
first” optimal. Commutativity implies that the internal order at which a given set of 
operators is applied does not alter the set of operators applicable in the future. This 
property, too, should be discernible from the formal specification of the domain 

model and, once verified, would identify the “greedy” strategy which yields an 

optimal solution. 
Another type of semi-decomposable problem is exemplified by the swap-sort 

model of the 8-puzzle where the subgoals interact with respect to both applicability 
and effects. Moving a given tile into the empty cell clearly disqualifies the applica
bility of all operators which move other tiles into that particular cell. Additionally, 
if at a certain stage the predicate specifying the correct position of the empty cell 
is already satisfied, it would be impossible to satisfy additional subgoals without 
first falsifying this predicate, hopefully on a temporary basis only. 

In spite of these couplings, the feature which renders this puzzle simple, admit
ting a greedy algorithm, is the existence of a partial order on the subgoals and 

their associated operators such that the operators designated for any subgoal g may 
influence only subgoals of lower order than g, leaving all other subgoals unaffected. 
In our simple example, establishing the correct position of the blank is a subgoal 
of a higher order than all the other subgoals and should, therefore, be attempted 

last. To find such a partial order of subgoals from the problem specification is sim
ilar to finding a triangular connection matrix in GPS; programs for computing this 
task have been reported in the literature (Ernst and Goldstein, 1982). 

9.4 Conclusions 
This paper outlined a natural scheme for devising heuristics for combinato
rial problems. First, the problem domain is formulated in terms of the 3-list 
operators which transform the states in the domain and the conditions which 

define the goal states. Next, the preconditions which limit the applicability of the 

operators are refined and partially deleted, and a relaxed model submitted to an 

evaluator which determines whether it is semi-decomposable. The space of all such 

deletions constitutes a meta-search-space of relaxed models from which the most 
restrictive semi-decomposable element is to be selected. The search starts either at 
the original model from which precondition conjuncts are deleted one at a time, 
or at the trivial model containing no preconditions to which restrictions are added 

sequentially until decomposability is destroyed. The model selected, together with 
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the “greedy” strategy which exploits its decomposability, constitutes the heuristic 
for the original domain. 

Although the effort invested in searching for an appropriate relaxed model may 
seem heavy, the payoffs expected are rather rewarding. Once a simplified model is 
found, it can be used to generate heuristics for all instances of the original prob
lem domain. For example, if our scheme is applied successfully to the TSP model, it 
may discover a O(N2) heuristic superior to (more constrained than) the MST. Such a 

heuristic will be applicable to every instance of the TSP problem and, when incor
porated into A*, will yield optimal TSP solutions in shorter times than the MST 

heuristic. We currently do not know if such heuristics exist. Equally challenging 

are routing problems encountered in communication networks and VLSI designs 
which, unlike the TSP, have not been the focus of a long theoretical research, but 
where the problem of devising effective heuristics remains, nonetheless, a practical 
necessity. 

Future progress in this area hinges on developing techniques for recogniz
ing simple, decomposable problems when such are present, and on manipulat
ing the space of deletions systematically in order that such problem be, in fact, 
synthesized. 

9.4.1 Bibliographical and Historical Remarks 
The ideas expressed in the preceding sections have been developed independently 
by several people, including: J Gaschnig, M Somalvico, M. Valtorta, D. Kibler and 

myself. 
The notion of viewing heuristics as information provided by simplified models 

was first communicated to me by Stan Rosenschein in 1979. Aside from its popular 
use in operations research (Lawler and Wood, 1966), (Held and Karp, 1971), the aux
iliary problem approach was formally introduced to AI-type problems by Gaschnig 

(1979), Guida and Somalvico (1979) and Banerji (1980). Gaschnig described the 

spaces of auxiliary problems as “subgraphs” and “supergraphs” obtained by delet
ing or adding edges to the originial problem graph. Guida and Somalvico use 

propositional representation of constraints similar to that of the “Mechanical 
Generation of Admissible Heuristics” section and propose the use of relaxed mod
els for generating admissible heuristics. A slightly different formulation is also 

given in Kibler (1982). 
Sacerdoti’s planning system ABSTRIPS (Sacerdoti, 1974) also uses constraints 

relaxation for creating simplified problem spaces. ABSTRIPS first synthesizes a 

global abstract plan, then searches for a detailed mode of its implementation. 
The abstract planning phase differs from the fully detailed one in that the oper
ators invoked by the former lack some of the preconditions spelled out in the 
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latter. Although the program does not make explicit use of a numerical evaluation 

function, the search schedule is determined by progress achieved in the abstract 
planning phase and so, in effect, it can be thought of as being guided by the advice 

of a relaxed model. 
Valtorta (1981) presents a proof of the consistency of relaxation-based heuris

tics, and an analysis of the overall complexity of searching both the original and 

the auxiliary problems. He shows that if the auxiliary problems are solved by the 

blind search, then the overall complexity will be worse than simply executing a 

breadth-first search on the original problem. This result emphasizes the impor
tance of searching for decomposable structures where optimal solutions can be 

found by “greedy” algorithms without resorting to breadth-first search. The use of 
systematic deletions in search for decomposable problems was proposed by Pearl 
(1982) and is currently pursued at UCLA. Other approaches to automatic generation 

of heuristics are reported by Banerji (1980) and Ernst and Goldstein (1982). 
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10
of probabilistic methods in artificial intelligence (AI) systems, primarily for using 

Bayesian conditioning as a normative way of updating knowledge in light of new 

evidence. 
The origin of these ideas and my struggle to gain acceptance in mainstream AI 

are narrated in the paper “A personal journey into Bayesian networks” [Pearl 2018], 
which also summarizes the main contenders to probability theory in the 1970s, and 

what gave me the “nerve” to argue against them. 
The advantage of message passing architecture was key to its final acceptance, 

but was not appreciated at the time. When I presented it at Stanford in 1982, the 

audience could not understand why I emphasized computational issues instead of 
the accuracy of probability judgments (from experts). Little did we imagine that 
Bayesian networks would eventually be constructed with thousands of variables 
and operate coherently and effectively in many complex applications. 

The article “Fusion propagation and structuring in belief networks” [Pearl 
1986, Chapter 12] (hereafter Fusion) was the culmination of a series of papers1 in 

which I explored the possibility of representing and manipulating probabilistic 
knowledge in graphical forms, later called belief networks (also known as Bayesian 

networks). 

Introduction 
by Judea Pearl 

“Reverend Bayes on inference engines” [Pearl 1982, Chapter 11] was my first paper 
on belief propagation using a Bayesian network. The title was chosen because I 
needed every bit of reverence I could muster to argue, in 1982, for the restoration 

1. “Reverend Bayes on inference engines: A distributed hierarchical approach” [Pearl 1982]; “A 

computational model for causal and diagnostic reasoning in inference system” [Kim and Pearl 
1983]; “How to do with probabilities what people say you can’t” [Pearl 1985a]; and “Bayesian 

networks: A model of self-activated memory for evidential reasoning” [Pearl 1985b]. 
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I coined the name Bayesian networks in 1985 only when I was satisfied that an 

algorithm exists (called loop-cut conditioning in Fusion) that correctly updates 
probabilities in a network of arbitrary topology. The name Bayesian networks was 
chosen to emphasize three of their most important characteristics. (1) Allowing and 

even inviting subjective knowledge; (2) Employing Bayes conditionalization as a 

means for updating beliefs; and (3) Listening attentively to the asymmetry between 

cause and effect. All three of these ingredients shine like a beacon in Bayes’original 
paper of 1763. 

On the anecdotal side, many readers were intrigued by the lengthy review pro
cess for Fusion (received January 1982; revised version received February 1986): It 
indeed took four years to get the article accepted, but the reviewers were not at 
fault. The article simply got lost (literally!) twice, which was not entirely without 
virtue; each time the editor (Patrick Hayes) asked me to replace a lost copy, I would 

seize the opportunity and send an improved version. 
Readers now say it was worth the wait. Fusion turned out to be my most cited 

paper and has recently won the “Classic Paper Award” from the Artificial Intelligence 
Journal (2015). It is arguably the article that introduced probabilistic reasoning and 

graphical methods to AI, as well as to computer science in general. 
The theory of “graphoids,” described in the third paper, [Pearl and Paz 1987, 

Chapter 13] was conceived in the summer of 1985, when Azaria Paz visited UCLA 

and he and I began to explore what graphs and probabilities have in common. It 
led to a theory of dependence, that is, a set of axioms capturing the relation: “X is 
independent of Y given that we know Z,” which also capture graph separation: “Ver
tex X is separated from vertex Y if we remove the set of vertices Z.” These axioms 
connect graph with probabilities and with other systems of information depen
dency and, as such, confer legitimacy on Bayesian networks and other graphical 
representations. 

“System Z,” the fourth article in this section, [Pearl 1990, Chapter 14] represents 
my brief excursion into non-monotonic reasoning, which occupied a large circle of 
AI researchers in the 1980s. How can we represent the dual character of “beliefs” 
that, like logical propositions, have definitive truth values and, like probabilities, 
undergo changes when new evidence arrive? Anecdotally, I named it “System-Z” 
because the first sound I made after seeing the result was “Gee! It’s easy!” 
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Reverend Bayes on 
Inference Engines: A 
Distributed Hierarchical 
Approach 
Judea Pearl 

Abstract 
This paper presents generalizations of Bayes likelihood-ratio updating rule which 

facilitate an asynchronous propagation of the impacts of new beliefs and/or new 

evidence in hierarchically organized inference structures with multi-hypotheses 
variables. The computational scheme proposed specifies a set of belief parameters, 
communication messages and updating rules which guarantee that the diffusion 

of updated beliefs is accomplished in a single pass and complies with the tenets of 
Bayes calculus. 

11.1 Introduction 
This paper addresses the issue of efficiently propagating the impact of new evi
dence and beliefs through a complex network of hierarchically organized inference 

The paper “An Essay Towards Solving a Problem in the Doctrine of Chances by the late Rev. Mr.
 
Bayes”, Phil. Trans. of Royal Soc., 1763, marks the beginning of the science of inductive reasoning.
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rules. Such networks find wide applications in expert-systems [1], [2], [3], speech 

recognition [4], situation assessment [5], the modelling of reading comprehension 

[6] and judicial reasoning [7]. 
Many AI researchers have accepted the myth that a respectable computational 

model of inexact reasoning must distort, modify or ignore at least some principles 
of probability calculus. Consequently, most AI systems currently employ ad-hoc 
belief propagation rules which may hinder both the inferential power of these sys
tems and their acceptance by their intended users. The primary purpose of this 
paper is to examine what computational procedures are dictated by traditional 
probabilistic doctrines and whether modern requirements of local asynchronous 
processing render these doctrines obsolete. 

We shall assume that beliefs are expressed in probabilistic terms and that the 

propagation of beliefs is governed by the traditional Bayes transformations on 

the relation P(D|H), which stands for the judgmental probability of data D (e.g., a 

combination of symptoms) given the hypothesis H (e.g., the existence of a certain 

disease). The unique feature of hierarchical inference systems is that the relation 

P(D|H) is computable as a cascade of local, more elementary probability relations 
involving intervening variables. Intervening variables, (e.g., organisms causing a 

disease) may or may not be directly observable. Their computational role, however, 
is to provide a conceptual summarization for loosely coupled subsets of observa
tional data so that the computation of P(H|D) can be performed by local processes, 
each employing a relatively small number of data sources. 

The belief maintenance architecture proposed in this paper is based on a dis
tributed asynchronous interaction between cooperating knowledge sources with
out central supervision similar to that used in the HEARSAY system [4]. We assume 

that each variable (i.e., a set of hypotheses) is represented by a separate processor 
which both maintains the parameters of belief for the host variable and manages 
the communication links to and from the set of neighboring, logically related vari
ables. The communication lines are assumed to be open at all times, i.e., each 

processor may at any time interrogate its message-board for revisions made by 
its neighbors, update its own belief parameters and post new messages on its 
neighbors’ boards. In this fashion the impact of new evidence may propagate up 

and down the network until equilibrium is reached. 
The asynchronous nature of this model requires a solution to an instability 

problem. If a stronger belief in a given hypothesis means a greater expectation 

for the occurrence of a certain supporting evidence and if, in turn, a greater cer
tainty in the occurrence of that evidence adds further credence to the hypothesis, 
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how can one avoid an infinite updating loop when the two processors begin to 

communicate with one another? Thus, a second objective of this paper is to present 
an appropriate set of belief parameters, communication messages and updating 

rules which guarantee that the diffusion of updated beliefs is accomplished in a 

single pass and complies with the tenets of Bayes calculus. 
A third objective is to demonstrate that proper Bayes inference can be accom

plished among multi-valued variables and that, contrary to the claims made by 
Pednault, Zucker and Muresan [8], this does not render conditional independence 

incompatible with the assumption of mutual exclusivity and exhaustivity. 

11.2 Definitions and Nomenclature 
A node in an inference net represents a variable name. Each variable represents a 

finite partition of the world given by the variable values or states. It may be a name 

for a collection of hypotheses (e.g., identity of organism: ORG1, ORG2, .....) or for 
a collection of possible observations (e.g., patient’s temperature: high, medium, 
low). Let a variable be labeled by a capital letter, e.g., A, B, C, … , and its various 
states subscripted, e.g., A1, A2, …. 

An inference net is a directed acyclical graph where each branch → A B

represents a family of rules of the form: if Ai then Bi. The uncertainties in these 

rules are quantified by a conditional probability matrix, M(B | A), with entries: 
M(B|A)ij = P(Bj|Ai). The presence of a branch between A and B signifies the exis
tence of a direct communication line between the two variables. The directionality 
of the arrow designates A as the set of hypotheses and B as the set of indicators or 
manifestations for these hypotheses. We shall say that B is a son of A and confine 

our attention to trees, where every node has only one multi-hypotheses father and 

where the leaf nodes represent observable variables. 
In principle, the model can also be generalized to include some graphs (mul

tiple parents), keeping in mind that the states of each variable in the tree may 
represent the power set of multi-parent groups in the corresponding graph. 

11.3 Structural Assumptions 
Consider the following segment of the tree (Figure 11.1): The likelihood of the 

various states of B would, in general, depend on the entire data observed so far, 
i.e., data from the tree rooted at B, the tree rooted at C and the tree above A. 
However, the fact that B can communicate directly only with its father (A) and 

its sons (F and E) means that the influence of the entire network above B on B 



132 Chapter 11 Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach 
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Figure 11.1 A Bayesian tree. 

is completely summarized by the likelihood it induces on the states of A. More for
mally, let Dd(B) stand for the data obtained from the tree rooted at B, and Du(B) 
for the data obtained from the network above B. The presence of only one link 

connecting Du(B) and (B) implies: 

P(Bj | Ai, Du(B)) = P(Bj |Ai) (11.1) 

This structural assumption of local communication immediately dictates what is 
normally called “Conditional Independence”; if C and B are siblings and A is their 
parent, then 

P(Bj, Ck |Ai) = P(Bj | Ai) ⋅ P(Ck | Ai) (11.2) 

because the data C = Ck is part of Du(B) and hence (11.1) implies P(Bj|Ck, Ai) = 

P(Bj|Ai), from which (11.2) follows. 
Note the difference between the weak form of conditional independence in 

(11.2) and the over-restrictive form adapted by Pednault et al. [8], who also asserted 

independence with respect to the complements Āi. 

11.4 Combining Top and Bottom Evidences 
Our structural assumption (11.1) also dictates how evidences above and below some 

variable B should be combined. Assume we wish to find the likelihood of the states 
of B induced by some data D, part of which, Du(B), comes from above B and part, 
Dd(B), from below. Bayes theorem, together with (11.1), yields the product rule: 

P(Bi | Du(B), Dd(B)) = αP[Dd(B) | Bi] ⋅ P[Bi|Du(B)], (11.3) 

where α is a normalization constant. This is a generalization of the celebrated 

Bayes formula for binary variables: 

O(H | E) = λ(E)O(H) (11.4) 
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where λ(E) = P(E | H)/P(E | H) is known as the likelihood ratio, and O(H) = 

P(H)/P(H) as the prior odds [2]. 
Equation (11.3) generalizes (11.4) in two ways. First, it permits the treatment of 

non-binary variables where the mental task of estimating P(E | H) is often unnat
ural, and where conditional independence with respect to the negations of the 

hypotheses is normally violated (i.e., P(E1, E2 | H) ̸ P(E1 | H)P(E2 |H)). Second, it = 

identifies a surrogate to the prior probability term for any intermediate node in 

the tree, even after obtaining some evidential data. According to (11.3), the multi
plicative role of the prior probability in Equation (11.4) is taken over by the condi
tional probability of a variable based only on the evidence gathered by the network 

above it, excluding the data collected from below. Thus, the product rule (11.3) 
can be applied to any node in the network, without requiring prior probability 
assessments. 

The root is the only node which requires a prior probability estimation. Since 

it has no network above, Du(B) should be interpreted as the available background 

knowledge which remains unexplicated by the network below. This interpretation 

renders P(Bi | Du(B)) identical to the classical notion of subjective prior probabil
ity. The probabilities of all other nodes in the tree are uniquely determined by the 

arc-matrices, the data observed and the prior probability of the root. 
Equation (11.3) suggests that the probability distribution of every variable in the 

network can be computed if the node corresponding to that variable contains the 

parameters 

λ(Bi) £ P(Dd(B) | Bi) (11.5) 

and 

q(Bi) £ P(Bi | Du(B)). (11.6) 

q(Bi) represents the anticipatory support attributed to Bi by its ancestors and λ(Bi) 
represents the evidential support received by Bi from its diagnostic descendants. 
The total strength of belief in Bi would be given by the product 

P(Bi) = αλ(Bi) q(Bi). (11.7) 

Whereas only two parameters, λ(E) and O(H), were sufficient for binary vari
ables, an n-state variable needs to be characterized by two n-tuples: 

λ(B) = λ(B1), λ(B2), … , 𝜆(Bn) 

q(B) = q(B1), q(B2), … , q(Bn). 



134 Chapter 11 Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach 

11.5 Propagation of Information Through the Network 
Assuming that the vectors λ and q are stored with each node of the network, our 
task is now to prescribe how the influence of new information spreads through the 

network. Traditional probability theory, together with some efficiency considera
tions [9], dictate the following propagation scheme which we first report without 
proofs. 

1. Each processor (Figure 11.2) computes two message vectors: P and r. P is sent 
to every son while r is delivered to the father. The message P is identical to the 

probability distribution of the sender and is computed from λ and q using 

Equation (11.7). r is computed from λ using the matrix multiplication: 

r = M ⋅ λ (11.8) 

where M is the matrix quantifying the link to the father. Thus, the dimension
ality of r is equal to the number of hypotheses managed by the father. Each 

component of r represents the diagnostic contribution of the data below the 

host processor to the belief in one of the father’s hypotheses. 

2. When processor B is called to update its parameters, it simultaneously 
inspects the P(A) message communicated by the father A and the messages 
r1, r2, … , communicated by each of its sons and acknowledges receiving the 

latter. Using these inputs, it then updates λ and q as follows: 

Figure 11.2 Node Processors. 
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3. Bottom-up propagation: λ is computed using a term-by-term multiplication 

of the vectors r1, r2, …: 

λ(Bi) = (r1)i × (r2)i × ... = Π 
k 
(rk)i (11.9) 

4. Top-down propagation: q is computed using: 

q(Bi) = β ∑ P(Bi | Aj)P(Aj)/(r ′)j̇ (11.10) 
j 

where β is a normalization constant and r ′ is the last message from B to 

A acknowledged by the father A. (The division by r ′ amounts to removing 

from P(A) the contribution due to Dd(B) as dictated by the definition of q in 

Equation (11.6)). 

5. Using the updated values of λ and q, the messages P and r are then recom
puted as in step 1 and are posted on the message-boards dedicated for the 

sons and the father, respectively. This updating scheme is shown schemat
ically in the diagram below, where multiplications and divisions of any two 

vectors stand for term-by-term operations.
The terminal nodes in the tree require special boundary conditions. Here we 

have to distinguish between the two cases: 

1. Anticipatory node: an observable variable whose state is still unknown. For 
such variables, P should be equal to q and, therefore, we should set λ = 

(1, 1, … , 1) (also implying r = (1, 1, … , 1)). 

2. Data-node: an observable variable with a known state. Following Equation 

(11.5), if the jth state of B was observed to be true, set λ = (0, 0 … 0, 1, 0...) with 

1 at the jth position. 

Similarly, the boundary conditions for the root node is obtained by substituting 

the prior probability instead of the message P(A) expected from the father. 

11.6 A Token Game Illustration 
Figure 11.3 shows six successive stages of belief propagation through a simple 

binary tree, assuming that updating is activated by changes in the belief param
eters of neighboring processes. Initially (Figure 11.3a), the tree is in equilibrium 

and all terminal nodes are anticipatory. As soon as two data nodes are activated 

(Figure 11.3b), white tokens are placed on their links, directed towards their fathers. 
In the next phase, the fathers, activated by these tokens, absorb the latter and man
ufacture the appropriate number of tokens for their neighbors (Figure 11.3c), white 

tokens for their fathers and black ones for the children (the links through which 
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DATA
DATA

Figure 11.3 The message passing scheme in action. 

the absorbed tokens have entered do not receive new tokens, thus reflecting the 

division of P by r ′ ). The root node now receives two white tokens, one from each 

of its descendants. That triggers the production of two black tokens for top-down 

delivery (Figure 11.3d). The process continues in this fashion until, after six cycles, 
all tokens are absorbed and the network reaches a new equilibrium. 

11.7 Properties of the Updating Scheme 
1. The local computations required by the proposed scheme are efficient in 

both storage and time. For an m-ary tree with n states per node, each pro
cessor should store n2 + mn + 2n real numbers, and perform 2n2 + mn + 

2n multiplications per update. These expressions are on the order of the 

number of rules which each variable invokes. 

2. The local computations are entirely independent of the control mechanism 

which activates the updating sequence. They can be activated by either data-
driven or goal driven (e.g., requests for evidence) control strategies, by a clock 

or at random. 

3. New information diffuses through the network in a single pass. Infinite relax
ations have been eliminated by maintaining a two-parameter system (q and 

r) to decouple top and bottom evidences. The time required for completing 

the diffusion (in parallel) is equal to the diameter of the network. 

11.8 A Summary of Proofs 
From the fact that λ is only influenced by changes propagating from the bottom 

and q only by changes from the top, it is clear that the tree will reach equilibrium 

after a finite number of updating steps. It remains to show that, at equilibrium, 
the updated parameters P(Vi), in every node V, correspond to the correct probabil
ities P(Vi | Du(V), Dd(V)) or (see Equation (11.3)), that the equilibrium values of λ(Vi) 
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and q(Vi) actually equal the probabilities P(Dd(V) | Vi) and P(Vi | Du(V)). This can be 

shown by induction bottom-up for λ and then top-down for q. 

Validity of λ: λ is certainly valid for leaf nodes, as was explained above in setting 

the boundary conditions. Assumming that the λ’s are valid at all children of node 

B, the validity of λ(B) computed through steps (11.8) and (11.9) follows directly from 

the conditional independence of the data beneath B’s children (Equation (11.2)). 

Validity of q: if all the λ’s are valid, then P is valid for the root node. Assuming 

now that P(A) is valid, let us examine the validity of q(B), where B is any child of A. 
By definition (Equation (11.6)), q(B) should satisfy: 

q(Bi) = P(Bi | Du(B)) = ∑ P(Bi | Aj)P(Aj | Du(A), Dd(S)) 
j 

where S denotes the set of B’s siblings. The second factor in the summation differs 
from P(Aj) = P(Aj | Du(A), Dd(A)) in that the latter has also incorporated B’s mes
sage (r ′)j in the formation of λ(Aj) (Equation (11.9)). When we divide P(Aj) by (r ′)j, as 
prescribed in (11.10), the correct probability ensues. 

11.9 Conclusions 
The paper demonstrates that the centuries-old Bayes formula still retains its 
potency for serving as the basic belief revising rule in large, multi-hypotheses, 
inference systems. It is proposed, therefore, as a standard point of departure for 
more sophisticated models of belief maintenance and inexact reasoning. 
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Abstract 
Belief networks are directed acyclic graphs in which the nodes represent propositions (or 
variables), the arcs signify direct dependencies between the linked propositions, and the 
strengths of these dependencies are quantified by conditional probabilities. A network 

of this sort can be used to represent the generic knowledge of a domain expert, and it 
turns into a computational architecture if the links are used not merely for storing fac
tual knowledge but also for directing and activating the data flow in the computations 
which manipulate this knowledge. 

The first part of the paper deals with the task of fusing and propagating the impacts of 
new information through the networks in such a way that, when equilibrium is reached, 
each proposition will be assigned a measure of belief consistent with the axioms of proba
bility theory. It is shown that if the network is singly connected (e.g. tree-structured), then 

probabilities can be updated by local propagation in an isomorphic network of parallel 
and autonomous processors and that the impact of new information can be imparted to 

all propositions in time proportional to the longest path in the network. 
The second part of the paper deals with the problem of finding a tree-structured 

representation for a collection of probabilistically coupled propositions using auxiliary 
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(dummy) variables, colloquially called “hidden causes.” It is shown that if such a tree-
structured representation exists, then it is possible to uniquely uncover the topology of 
the tree by observing pairwise dependencies among the available propositions (i.e., the 
leaves of the tree). The entire tree structure, including the strengths of all internal rela
tionships, can be reconstructed in time proportional to n log n, where n is the number 
of leaves. 

12.1 Introduction 
This study was motivated by attempts to devise a computational model for 
humans’ inferential reasoning, namely, the mechanism by which people integrate 

data from multiple sources and generate a coherent interpretation of that data. 
Since the knowledge from which inferences are drawn is mostly judgmental— 

subjective, uncertain and incomplete—a natural place to start would be to cast 
the reasoning process in the framework of probability theory. However, the math
ematician who approaches this task from the vantage point of probability the
ory may dismiss it as a rather prosaic exercise. For, if one assumes that human 

knowledge is represented by a joint probability distribution, P(x1, … , xn), on a set 
of propositional variables, x1, … , xn, the task of drawing inferences from observa
tions amounts to simply computing the probabilities of a small subset, H1, … , Hk, 
of variables called hypotheses, conditioned upon a group of instantiated vari
ables, e1, … , em, called evidence. Indeed, computing P(H1, … , Hk|e1, … , em) from a 

given joint distribution on all propositions is merely arithmetic tedium, void of 
theoretical or conceptual interest. 

It is not hard to see that this textbook view of probability theory presents 
a rather distorted picture of human reasoning and misses its most interesting 

aspects. Consider, for example, the problem of encoding an arbitrary joint distri
bution, P(x1, … , xn), on a computer. If we need to deal with n propositions, then to 

store P(x1, … , xn) explicitly would require a table with 2n entries—an unthinkably 
large number, by any standard. Moreover, even if we found some economical way 
of storing P(x1, … , xn) (or rules for generating it), there would still remain the prob
lem of manipulating it to compute the probabilities of propositions which people 

consider interesting. For example, computing the marginal probability P(xi) would 

require summing P(x1, … , xn) over all 2n−1 combinations of the remaining n−1 vari
ables. Similarly, computing the conditional probability P(x1|xj) from its textbook 

definition P(x1|xj) = P(x1, xj)/P(xj) would involve dividing two marginal probabili
ties, each resulting from summation over an exponentially large number of variable 

combinations. Human performance, by contrast, exhibits a different complexity 
ordering: probabilistic judgments on a small number of propositions (especially 
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two-place conditional statements such as the likelihood that a patient suffering 

from a given disease will develop a certain type of complication) are issued swiftly 
and reliably, while judging the likelihood of a conjunction of many propositions 
entails a great degree of difficulty and hesitancy. This suggests that the elementary 
building blocks which make up human knowledge are not the entries of a joint-
distribution table but, rather, the low-order marginal and conditional probabilities 
defined over small clusters of propositions. 

Further light on the structure of probabilistic knowledge can be shed by observ
ing how people handle the notion of independence. Whereas a person may show 

reluctance to giving a numerical estimate for a conditional probability P(xi|xj), that 
person can usually state with ease whether xi and xj are dependent or independent, 
namely, whether or not knowing the truth of xj will alter the belief in xi. Likewise, 
people tend to judge the three-place relationships of conditional dependency (i.e., 
xi influences xj given xk) with clarity, conviction, and consistency. 

This suggests that the notions of dependence and conditional dependence are 

more basic to human reasoning than are the numerical values attached to prob
ability judgments. (This is contrary to the picture painted in most textbooks on 

probability theory, where the latter is presumed to provide the criterion for testing 

the former.) Moreover, the nature of probabilistic dependency between proposi
tions is similar in many respects to that of connectivity in graphs. For instance, 
we find it plausible to say that a proposition q affects proposition r directly, while s 
influences r indirectly, via q. Similarly, we find it natural to identify a set of direct jus
tifications for q to sufficiently shield it (q) from all other influences and to describe 

them as the direct neighbors of q [5]. These graphical metaphors suggest that the 

fundamental structure of human knowledge can be represented by dependency 
graphs and that mental tracing of links in these graphs are the basic steps in 

querying and updating that knowledge. 

Belief Networks 
Assume that we decide to represent our perception of a certain problem domain 

by sketching a graph in which the nodes represent propositions and the links 
connect those propositions that we judge to be directly related. We now wish to 

quantify the links with weights that signify the strength and type of dependen
cies between the connected propositions. If these weights are to reflect sum
maries of actual experiences, we must first attend to two problems: consistency 
and completeness. Consistency guarantees that we do not overload the graph with 

an excessive number of parameters; overspecification may lead to contradictory 
conclusions, depending on which parameter is consulted first. Completeness 



142 Chapter 12 Fusion, Propagation, and Structuring in Belief Networks 

protects us from underspecifying the graph dependencies and guarantees that our 
conclusion-generating routine will not get deadlocked for lack of information. 

One of the attractive features of the traditional joint-distribution representa
tion of probabilities is the transparency by which one can synthesize consistent 
probability models or detect inconsistencies therein. In this representation, all 
we need to do to create a complete model, free of inconsistencies, is to assign 

nonnegative weights to the atomic compartments in the space (i.e., conjunc
tions of propositions), just making sure the sum of the weights equals one. By 
contrast, the synthesis process in the graph representation is more hazardous. 
For example, assume you have three propositional variables, x1, x2, x3, and you 

want to express their dependencies by specifying the three pairwise probabili
ties P(x1, x2), P(x2, x3), P(x3, x1). It turns out that this will normally lead to inconsis
tencies; unless the parameters given satisfy some nonobvious relationship, there 

exists no probability model that will support all three inputs. By contrast, if we 

specify the probabilities on only two pairs, incompleteness results; many models 
exist which conform to the input specification, and we will not be able to provide 

answers to all probabilistic queries. 
Fortunately, the consistency-completeness issue has a simple solution stem

ming from the chain-rule representation of joint distributions. Choosing an arbi
trary order d on the variables x1, … , xn, we can write1: 

P(x1, x2, … , xn) 

= P(xn|xn−1, … , x1)⋯ P(x3|x2, x1)P(x2|x1)P(x1) . 

In this formula, each factor contains only one variable on the left side of the condi
tioning bar and, in this way, the formula can be used as a prescription for con
sistently quantifying the dependencies among the nodes of an arbitrary graph. 
Suppose we are given a directed acyclic graph G in which the arrows pointing at 
each node xi emanate from a set Si of parent nodes judged to be directly influ
encing xi, and we wish to quantify the strengths of these influences in a complete 

and consistent way. If, by direct parents we mean a set of variables which, once we 

fix their values, would shield xi from the influence of all other predecessors of xi 
(i.e., P(xi|Si) = P(xi|x1, … , xi−1)), then the chain-rule formula states that a separate 

assessment of each child-parents relationship should suffice. We need only assess 

1. Probabilistic formulae of this kind are shorthand notation for the statement that for any instan
tiation i of the variables x1, x2, … , xn, the probability of the joint event (x1 = i1) & (x2 = i2) & … & 

(xn = in) is equal to the product of the probabilities of the corresponding conditional events 
(x1 = i1), (x2 = i2 if x1 = i1), (x3 = i3 if (x2 = i2 & x1 = i1)), …. For this expansion to be valid, we 

must require that P(E) > 0 for all conditioning events E. 
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the conditional probabilities, P(xi|Si), by some functions, Fi(xi, Si), and make sure 

these assessments satisfy 

∑ Fi(xi, Si) = 1 , 0−< Fi(xi, Si)< 1, 
xi 

where the summation ranges over all values of xi. This specification is complete 

and consistent because the product form 

P(x1, … , xn) = ∏ Fi(xi, Si) 
i 

constitutes a joint probability distribution that supports the assessed quantities. 
In other words, if we compute the conditional probabilities P(xi|Si) dictated by 
P(x1, … , xn), the original assessments Fi(xi , Si) will be recovered: 

∑ P(x1, … , xn) 
P(xi, Si) xj ̸∈ (xi∪Si)

P(xi|Si) = = = Fi(xi, Si).P(Si) ∑ P(x1, … , xn) 
xj ̸∈ Si 

So, for example, the distribution corresponding to the graph of Figure 12.1 can be 

written by inspection: 

P(x1, x2, x3, x4, x5, x6) 

= P(x6|x5)P(x5|x2, x3)P(x4|x1 , x2)P(x3|x1)P(x2|x1)P(x1) . 

This also leads to a simple method of constructing a dependency-graph repre
sentation for any given joint distribution P(x1, … , xn). We start by imposing an arbi
trary order d on the set of variables, x1, … , xn, then choose x1 as a root of the graph 

and assign to it the marginal probability P(x1) dictated by P(x1, … , xn). Next, we form 

x
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Figure 12.1 A typical Bayesian network representing the distribution P(x1, … , x6) = 
P(x6|x5)P(x5|x2, x3)P(x4|x1, x2)P(x3|x1)P(x2|x1)P(x1). 
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a node to represent x2; if x2 is dependent on x1, a link from x1 to x2 is established 

and quantified by P(x2|x1). Otherwise, we leave x1 and x2 unconnected and assign 

the prior P(x2) to node x2. At the ith stage, we form the node xi and establish a group 

of directed links to xi from the smallest subset of nodes Si ⊆ {x1, … , xi−1} satisfying 

the condition 

P(xi|Si) = P(xi|xi−1, … , x1). 

It can be shown that the set of subsets satisfying this condition is closed under 
intersection; therefore, the minimal subset Si is unique. Thus, the distribution, 
P(x1, … , xn), together with the order d uniquely identify a set of parent nodes for 
each variable xi, and that constitutes a full specification of a directed acyclic graph 

which represents many of the independencies imbedded in P(x1, … , xn). 
In expert-systems applications where, instead of a numerical representation 

for P(xi, … , xn), we have only intuitive understanding of the major constraints in 

the domain, the graph can still be configured by the same modular method as 
before, except that the parent set Si must be selected judgmentally. The addition 

of any new node xi to the network requires only that the expert identify a set Si of 
variables which “directly influence” xi, locally assess the strength of this relation 

and make no commitment regarding the effect of xi on other variables, outside Si. 
Even though each judgment is performed locally, their sum total is guaranteed to 

be consistent. This model-building process permits people to express qualitative 

relationships perceived to be essential, and the network preserves these qualities, 
despite sloppy assignments of numerical estimates. In Figure 12.1, for example, the 

fact that x6 can tell us nothing new about x3 once we know x5, will remain part of 
the model, no matter how carelessly the numbers are assigned. 

Graphs constructed by this method will be called belief networks, Bayesian net
works, or influence networks interchangeably, the former two to emphasize the 

judgmental origin and the probabilistic nature of the quantifiers, the latter to 

reflect the directionality of the links. When the nature of the interactions is per
ceived to be causal, then the term, causal network, may also be appropriate. In 

general, however, an influence network may also represent associative or inferen
tial dependencies, in which case the directionality of the arrows mainly provides 
computational convenience [10]. An alternative graphical representation, using 

undirected graphs, is provided by the so-called Markov fields approach [12] and 

will not be discussed here. For comparison of properties and applications, see 

[15, 24, 32]. 
In the strictest sense, these networks are not graphs but hypergraphs because 

to describe the dependency of a given node on its k parents requires a function of 
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k + 1 arguments which, in general, could not be specified by k two-place functions 
on the individual links. This, however, does not diminish the advantages of the 

network representation because the essential interactions between the variables 
are still displayed by the connecting links. If the number of parents k is large, 
estimating P(xi|Si) may be troublesome because, in principle, it requires a table 

of size 2k. In practice, however, people conceptualize causal relationships by form
ing hierarchies of small clusters of variables (see Section 12.3.1) and, moreover, the 

interactions among the factors in each cluster are normally perceived to fall into 

one of a few prestored, prototypical structures, each requiring about k parame
ters. Common examples of such prototypical structures are: noisy OR gates (i.e., 
any one of the factors is likely to trigger the effect), noisy AND gates and various 
enabling mechanisms (i.e., factors identified as having no influence of their own 

except enabling other influences to become effective). 
Note that the topology of a Bayes network can be extremely sensitive to the node 

ordering d; a network with a tree structure in one ordering may turn into a complete 

graph if that ordering is reversed. For example, if x1, … , xn stands for the outcomes 
of n independent coins, and xn+1 represents the output of a detector triggered if 
any of the coins comes up head, then the influence network will be an inverted 

tree of n arrows pointing from each of the variables x1, … , xn toward xn+1. On the 

other hand, if the detector’s outcome is chosen to be the first variable, say x0, then 

the underlying influence network will be a complete graph. 
This order sensitivity may at first seem paradoxical; d can be chosen arbitrar

ily, whereas people have fairly uniform conceptual structures, e.g., they agree on 

whether a pair of propositions are directly or indirectly related. The answer to this 
apparent paradox lies in the fact that the consensus about the structure of influ
ence networks stems from the dominant role causality plays in the formation of 
these networks. In other words, the standard ordering imposed by the direction 

of causation indirectly induces identical topologies on the networks that people 

adopt for encoding experiential knowledge. It is tempting to speculate that, were 

it not for the social convention of adopting a standard ordering of events conform
ing to the flow of time and causation, human communication (as we now know it) 
would be impossible. 

Conditional Independence and Graph Separability 
To facilitate the verification of dependencies among the variables in a Bayes net
work, we need to establish a clear correspondence between the topology of the 

network and various types of independence. Normally, independence between 

variables connotes lack of connectivity between their corresponding nodes. Thus, 
it would be ideal to require that, should the removal of some subset S of nodes from 
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Definition 12.1.1 

the network render nodes xi and xj disconnected, then such separation indicates 
genuine independence between xi and xj, conditioned on S: 

P(xi|xj, S) = P(xi|S). 

This would provide a clear graphical representation for the notion that xj does not 
affect xi directly but, rather, its influence is mediated by the variables in S. Unfor
tunately, a network constructed to satisfy this correspondence for any arbitrary S 

would normally fail to display an important class of independencies [24]. For exam
ple, in such a network, two variables which are marginally independent will appear 
directly connected, merely because there exists some other variable that depends 
on both. 

Bayes’ networks, on the other hand, allow representation of this class of inde
pendencies, but only at the cost of a slightly more complex criterion of separability, 
one which takes into consideration the directionality of the arrows in the graph. 
Consider a triplet of variables, x1, x2, x3, where x1 is connected to x3 via x2. The two 

links, connecting the pairs (x1, x2) and (x2, x3), can join at the midpoint, x2, in one 

of three possible ways: 

(1) tail-to-tail, x1 ← x2 → x3, 

(2) head-to-tail, x1 → x2 → x3 or x1 ← x2 ← x3, 

(3) head-to-head, x1 → x2 ← x3. 

If we assume that x1, x2, x3 are the only variables involved, it is clear from the 

method of constructing the network that, in cases (1) and (2), x1 and x3 are con
ditionally independent, given x2, while in case (3), x1 and x3 are marginally inde
pendent (i.e., P(x3|x1) = P(x3)) but may become dependent, given the value of x2. 
Moreover, if x2 in case (3) has descendants x4, x5, …, then x1 and x3 may also become 

dependent if any one of those descendant variables is instantiated. These consider
ations motivate the definition of a qualified version of path connectivity, applicable 

to paths with directed links and sensitive to all the variables for which values are 

known at a given time. 

(a) A subset of variables Se is said to separate xi from xj if all paths between xi and 

xj are separated by Se. 
(b) A path P is separated by a subset Se of variables if at least one pair of successive 

links along P is blocked by Se. 

We next introduce a nonconventional criterion under which a pair of converging 

arrows is said to be blocked by Se. 
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(a) Two links meeting head-to-tail or tail-to-tail at node X are blocked by Se if X is in 

Se. 
(b) Two links meeting head-to-head at node X are blocked by Se if neither X nor any 
of its descendants is in Se. 

This modified definition of separation provides a graphical criterion for testing 

conditional independence: if Se separates xi from xj, then xi is conditionally inde
pendent of xj, given Se. The procedure involved in testing this modified criterion 

is slightly more complicated than the conventional test for deciding whether Se 
is a separating cutset and can be handled by visual inspection. In Figure 12.1, for 
example, one can easily verify that variables x2 and x3 are separated by Se = {x1} or 
Se = {x1, x4} because the two paths between x2 and x3 are blocked by either one of 
these subsets. However, x2 and x3 are not separated by Se = {x1, x6} because x6, as 
a descendant of x5, “unblocks” the head-to-head connection at x5, thus opening a 

pathway between x2 and x3. 
Although the structure of Bayes’ networks, together with the directionality of 

its links, depends strongly on the node ordering used in the network construction, 
conditional independence is a property of the underlying distribution and is, there
fore, order-invariant. Thus, if we succeed in finding an ordering d in which a given 

conditional independence relationship becomes graphically transparent, that rela
tionship remains valid even though it may not induce a graph-separation pattern 

in networks corresponding to other orderings. This permits the use of Bayes’ net
works for identifying by inspection a screening neighborhood for any given node, 
namely, a set S of variables that renders a given variable independent of every vari
able not in S. The separation criterion for Bayes’ networks guarantees that the 

union of the following three types of neighbors is sufficient for forming a screening 

neighborhood: direct parents, direct successors and all direct parents of the latter. 
Thus, in a Markov chain, the screening neighborhood of any nonterminal node 

consists of its two immediate neighbors while, in trees, the screening neighbor
hood consists of the (unique) father and the immediate successors. In Figure 12.1, 
however, the screening neighborhood of x3 is {x1, x5, x2}. 

An Outline and Summary of Results 
The first part of this paper (Section 12.2) deals with the task of fusing and propagat
ing the impacts of new evidence and beliefs through Bayesian networks in such a 

way that, when equilibrium is reached, each proposition will be assigned a cer
tainty measure consistent with the axioms of probability theory. We first argue 

(Section 12.2.1) that any viable model of human reasoning should be able to per
form this task by a self-activated propagation mechanism, i.e., by an array of simple 
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and autonomous processors, communicating locally via the links provided by the 

belief network itself. In Section 12.2.2 we then show that these objectives can be 

fully realized in tree-structured networks, where each node has only one father. 
In Section 12.2.3 we extend the result to networks with multiple parents that are 

singly connected, i.e., there exists only one (undirected) path between any pair of 
nodes. In both cases, we identify belief parameters, communication messages and 

updating rules which guarantee that equilibrium is reached in time proportional to 

the longest path in the network and that, at equilibrium, each proposition will be 

accorded a belief measure consistent with probability theory. Several approaches 
toward achieving autonomous propagation in multiply connected networks are 

discussed in Section 12.2.4. 
The second part of the paper (Section 12.3) expands on one of these approaches 

by examining the feasibility of preprocessing a belief network and turning it per
manently into a tree by introducing dummy variables. In Section 12.3.1 we argue 

that such a technique mimics the way people develop causal models, that dummy 
variables correspond to the mental constructs known as “hidden causes” and that 
humans’ relentless search for causal models is motivated by their desire to achieve 

computational advantages similar to those offered by tree-structured belief net
works. After defining (in Section 12.3.2) the notions of star-decomposability and 

tree-decomposability, Section 12.3.3 treats triplets of propositional variables and 

asks under what conditions one is justified in attributing the observed dependen
cies to one central cause represented by a fourth variable. We show that these 

conditions are readily testable and that, when the conditions are satisfied, the 

parameters specifying the relations between the visible variables and the central 
cause can be uniquely determined. In Section 12.3.4 we extend these results to the 

case of a tree with n leaves. We show that, if there exists a set of dummy variables 
which decompose a given Bayes network into a tree, then the uniqueness of the 

triplets’ decomposition enables us to configure that tree from pairwise dependen
cies among the variables. Moreover, the configuration procedure involves only O(n 

log n) steps. In Section 12.3.5 we evaluate the merits of this method and address 
the difficult issues of estimation and approximation. 

12.2 Fusion and Propagation 

12.2.1 Autonomous Propagation as a Computational Paradigm 
Once a belief network is constructed, it can be used to represent the generic knowl
edge of a given domain and can be consulted to reason about the interpretation 

of specific input data. The interpretation process involves instantiating a set of 
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variables corresponding to the input data, calculating its impact on the probabil
ities of a set of variables designated as hypotheses and, finally, selecting the most 
likely combinations of these hypotheses. In general, this process can be carried out 
by an external interpreter which may have access to all parts of the network, may 
use its own computational facilities and may schedule its computational steps so 

as to take full advantage of the network topology with respect to the incoming data. 
However, the use of such an interpreter appears foreign to the reasoning process 
normally exhibited by humans [30]. Our limited short-term memory and narrow 

focus of attention, combined with our inability to shift rapidly between alternative 

lines of reasoning, suggests that our reasoning process is fairly local, progress
ing incrementally along pre-established pathways. Moreover, the speed and ease 

with which we perform some of the low-level interpretive functions, such as recog
nizing scenes, reading text and even understanding stories, strongly suggest that 
these processes involve a significant amount of parallelism, and that most of the 

processing is done at the knowledge level itself, not external to it. 
A paradigm for modeling such phenomena would be to view an influence net

work not merely as a passive parsimonious code for storing factual knowledge but 
also as a computational architecture for reasoning about that knowledge. That 
means that the links in the network should be treated as the only pathways and 

activation centers that direct and propel the flow of data in the process of querying 

and updating beliefs. Accordingly, we assume that each node in the network is des
ignated a separate processor, which both maintains the parameters of belief for the 

host variable and manages the communication links to and from the set of neigh
boring, conceptually related, variables. The communication lines are assumed to 

be open at all times, i.e., each processor may, at any time, interrogate the belief 
parameters associated with its neighbors and compare them to its own parameters. 
If the compared quantities satisfy some local constraints, no activity takes place. 
However, if any of these constraints are violated, the responsible node is activated 

to set its violating parameter straight. This, of course, will activate similar revisions 
at the neighboring nodes and will set up a multidirectional propagation process, 
until equilibrium is reached. 

The main reason for this distributed message-passing paradigm is that it leads 
to a “transparent” revision process, in which the intermediate steps can be given 

an intuitively meaningful interpretation. Since a distributed process restricts each 

computational step to obtain inputs only from neighboring, semantically related 

variables, and since the activation of these steps proceeds along semantically famil
iar pathways, people find it easy to give meaningful interpretation to the indi
vidual steps, thus establishing confidence in the final result. Additionally, it is 
possible to generate qualitative justifications mechanically by tracing the sequence 
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of operations along the activated pathways and giving them causal or diagnostic 
interpretations using appropriate verbal expressions. 

The ability to update beliefs by an autonomous propagation mechanism also 

has a profound effect on sequential implementations of evidential reasoning. Of 
course, when this architecture is simulated on sequential machines, the notion of 
autonomous processors working simultaneously in time is only a metaphor; how
ever, it signifies the complete separation of the stored knowledge from the control 
mechanism—the proclaimed, yet rarely achieved, goal of rule-based architectures. 
This separation guarantees the ultimate flexibility for a sequential controller; the 

computations can be performed in any order, without the need to remember or 
verify which parts of the network have or have not already been updated. Thus, for 
example, belief updating may be activated by changes occurring in logically related 

propositions, by requests for evidence arriving from a central supervisor, by a pre
determined schedule or entirely at random. The communication and interaction 

among individual processors can be simulated using a blackboard architecture 

[17], where each proposition is designated specific areas of memory to access and 

modify. Additionally, the uniformity of this propagation scheme renders it nat
ural for formulation in object-oriented languages: each node is an object of the 

same generic type, and the belief parameters are the messages by which interacting 

objects communicate. 
In AI, constraint-propagation mechanisms have been found essential in several 

applications, e.g., vision [27, 35] and truth maintenance [20]. However, their use in 

evidential reasoning has been limited to non-Bayesian formalisms (e.g. [19, 30]). 
There have been several reasons for this. 

First, the conditional probabilities characterizing the links in the network do 

not seem to impose definitive constraints on the probabilities that can be assigned 

to the nodes. The quantifier P(A|B) only restricts the belief accorded to A in a very 
special set of circumstances, namely, when B is known to be true with absolute cer
tainty and when no other evidential data is available. Under normal circumstances, 
all internal nodes in the network will be subject to some uncertainty and, more seri
ously, after the arrival of evidence e, the posterior beliefs in A and B are no longer 
related by P(A|B) but by P(A|B, e), which may be totally different. The result is that 
any arbitrary assignment of beliefs to propositions A and B can be consistent with 

the value of P(A|B) initially assigned to the link connecting them; in other words, 
among these parameters, no violation of constraint can be detected locally. 

Next, the difference between P(A|B, e) and P(A|B) suggests that the weights on 

the links should not remain fixed but should undergo constant adjustment as new 

evidence arrives. Not only would this entail enormous computational overhead, 
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but it would also obliterate the advantages normally associated with propagation 

through fixed networks of constraints. 
Finally, the fact that evidential reasoning involves both top-down (predictive) 

and bottom-up (diagnostic) inferences has caused apprehensions that, once we 

allow the propagation process to run its course unsupervised, pathological cases of 
instability, deadlock, and circular reasoning will develop [19]. Indeed, if a stronger 
belief in a given hypothesis means greater expectation for the occurrence of 
its various manifestations and if, in turn, a greater certainty in the occurrence 

of these manifestations adds further credence to the hypothesis, how can one 

avoid infinite updating loops when the processors responsible for these propo
sitions begin to communicate with one another? Such apprehensions are not 
unique to probabilistic reasoning but should be considered in any hierarchical 
model of cognition where mutual reinforcement takes place between lower and 

higher levels of processing, e.g., connectionist models of reading [29] and language 

production [4]. 
This paper demonstrates that coherent and stable probabilistic reasoning can 

be accomplished by local propagation mechanisms while keeping the weights on 

the links constant throughout the process. This is made possible by characterizing 

the belief in each proposition by a list of parameters, each representing the degree 

of support the host proposition obtains from one of its neighbors. In the next two 

subsections we show that maintaining such a breakdown record of the sources of 
belief facilitates local updating of beliefs and that the network relaxes to a stable 

equilibrium, consistent with the axioms of probability theory, in time proportional 
to the network diameter. This record of parameters is also postulated as the mech
anism which permits people to retrace reasoned assumptions for the purposes of 
modifying the model and generating explanatory arguments. 

Belief Propagation in Trees 
We shall first consider tree-structured influence networks, i.e., one in which every 
node, except one called “root,” has only one incoming link. We allow each node 

to represent a multivalued variable which may represent a collection of mutually 
exclusive hypotheses (e.g., identity of organism: ORG1, ORG2, …) or a collection 

of possible observations (e.g. patient’s temperature: high, medium, low). Let a 

variable be labeled by a capital letter, e.g., A, B, C, … , and its possible values sub
scripted, e.g., A1, A2, … , An. Each directed link A → B is quantified by a fixed con
ditional probability matrix, M(B|A), with entries: M(B|A)ij = P(Bj |Ai). Normally, the 

directionality of the arrow designates A as the set of causal hypotheses and B as the 

set of consequences or manifestations for these hypotheses. 
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Example 12.2.1	 Assume that in a certain trial there are three suspects, one of whom has definitely 
committed a murder, and that the murder weapon, showing some fingerprints, was 
later found by the police. Let A stand for the identity of the last user of the weapon, 
namely, the killer. Let B stand for the identity of the last holder of the weapon, i.e., 
the person whose fingerprints were left on the weapon, and let C represent the 

possible readings that may be obtained in a fingerprint-testing laboratory. 

The relations between these three variables would normally be conceptualized 

by the chain A → B → C; A generates expectations about B, and B generates 
expectations about C, but A has no influence on C once we know the value of B. 

To represent the common-sense knowledge that, under normal circumstances, 
the killer is expected to be the last to hold the weapon, we may use the 3 × 3 
conditional probability matrix: 

{ 
0.80, if Ai = Bj, i, j = 1 , 2, 3, 

P(Bj |Ai) = 
0.10, if Ai ≠ Bj, i, j = 1 , 2, 3. 

To represent the reliability of the laboratory test, we use a matrix P(Ck|Bj), satisfying 

∑ P(Ck|Bj) = 1 for all j. 
k 

Each entry in this matrix represents an if-then rule of the type: 

If the fingerprint is of suspect Bj then expect reading of the type Ck, with 

certainty P(Ck|Bj) 

Note that this rule convention is at variance with that used in many expert sys
tems (e.g., mycin), where rules point from evidence to hypothesis (e.g., if symptom, 
then disease), thus denoting a flow of mental inference. By contrast, the arrows in 

Bayes’ networks point from causes to effects or from conditions to consequence, 
thus denoting a flow of constraints in the physical world. The reason for this choice 

is that people often prefer to encode experiential knowledge in causal schemata 

[34] and, as a consequence, rules expressed in causal format are assessed more 

reliably.2 

2. It appears that, by and large, frames used to index human memory are organized to evoke 

expectations rather than explanations. The reason could, perhaps, be attributed to the fact that 
expectation-evoking frames normally consist of more stable relationships. For example, P(Bj |Ck) 
in Example 12.2.1 would vary drastically with the proportion of people who have type Bj finger
prints. P(Ck |Bj), on the other hand, depends merely on the similarity between the type of finger
print that suspect Bj has and the readings observed in the lab; it is perceived to be a stable local 
property of the laboratory procedure, independent of other information regarding suspect Bj. 
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Incoming information may be of two types: specific evidence and virtual evi
dence. Specific evidence corresponds to direct observations which validate, with 

certainty, the values of some variables in the network. Virtual evidence corresponds 
to judgments based on undisclosed observations which affect the belief in some 

variables in the network. Such evidence is modeled by dummy nodes, represent
ing the undisclosed observations, connected by unquantified (dummy) links to the 

variables affected by the observations. These links will carry only one-way infor
mation, from the evidence to the variables affected by it, but not vice versa. For 
example, if it is impractical for the fingerprint laboratory to disclose all possible 

readings (in variable C) or if the laboratory chose to base its finding on human 

judgment, C will be represented by a dummy node, and the link B → C will specify 
the relative degree to which each suspect is believed to be the owner of the finger
print pattern examined. For example, the laboratory examiner may issue a report 
in the form of a list, 

P(Cobserved|B) = (0.80, 0.60, 0.50) , 

stating that he/she is 80% sure that the fingerprint belongs to suspect B1, 60% sure 

that it belongs to B2 and 50% sure that it belongs to B3. Note that these numbers 
need not sum up to unity, thus permitting each judgment to be formed indepen
dently of the other, separately matching each suspect’s finger-prints to those found 

on the weapon. 
All incoming evidence, both specific and virtual, will be denoted by D to con

note data, and will be treated by instantiating the variables corresponding to the 

evidence. For the sake of clarity, we will distinguish between the fixed conditional 
probabilities that label the links, e.g., P(A|B), and the dynamic values of the updated 

node probabilities. The latter will be denoted by BEL(Ai), which reflects the overall 
belief accorded to proposition A = Ai by all data so far received. Thus, 

BEL(Ai) £ P(Ai|D) 

where D is the value combination of all instantiated variables. 
Consider the fragment of a tree, as depicted in Figure 12.2. The belief in the 

various values of B depends on three distinct sets of data: i.e., data from the tree 

rooted at B, from the tree rooted at C and from the tree above A. However, since A 

separates B from all variables except B’s descendants (see Section 12.1.2), the influ
ence of the latter two sources of information on B are completely summarized by 
their combined effect on A. More formally: let D− stand for the data contained B 

in the tree rooted at B and D+ 
B for the data contained in the rest of the network. 
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H

A

C B

F E

Figure 12.2 A segment of a tree illustrating data partitioning. 

We have 

P(Bj | +Ai, DB ) = P(Bj |Ai) (12.1) 

which also leads to the usual “intersiblings” conditional independence: 

P(Bj, Ck|Ai) = P(Bj |Ai) ⋅ P(Ck|Ai), (12.2) 

since the proposition C = Ck is part of D+ 
B . 

12.2.2.1 Data Fusion 

Assume we wish to find the belief induced on B by some data D = D− 
B 

+∪ DB . Bayes’ 
theorem, together with (12.1), yields the product rule 

BEL(Bi) = P(Bi| −+DB , DB ) = 𝛼P[D− 
B |Bi] ⋅ P[Bi|

+DB ], (12.3) 

where 𝛼 is a normalizing constant. This is a generalization of the celebrated Bayes 
formula for binary variables 

O(H|E) = 𝜆(E)O(H), (12.4) 

where 𝜆(E) = P(E|H)/P(E|H) is known as the likelihood ratio and O(H) = P(H) /P(H) 
as the prior odds [6]. 

As an example, let D− 
B represent the experience of examining the fingerprints 

left on the murder weapon, and let D+ 
B stand for all other testimonies heard in 
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the trial. P(Bi| B ) would then stand for our prior (before examining the finger
prints) belief that the ith suspect was the last to hold the weapon, and P(D−|Bi)B 

would represent the report issued by the fingerprint laboratory. Taking, as before, 

+D

P(D−|B) = (0.80, 0.60, 0.50), and assuming we have P(B|B DB ) = (0.60, 0.30, 0.10), our + 

total belief in the assertions B = Bi is given by 

B ) 

= 𝛼(0.80, 0.60, 0.50)(0.60, 0.30, 0.10) 

+ 

= 𝛼(0.48, 0.18, 0.05) 

and, to properly normalize BEL(B), we set 𝛼 = (0.48 + 0.18 + 0.05)−1 and obtain 

BEL(B) = (0.676, 0.254, 0.07). 
Equation (12.3) generalizes (12.4) in two ways. First, it permits the treatment of 

nonbinary variables where the mental task of estimating P(E|H) is often unnatural 
and where conditional independence with respect to the negations of the hypothe
ses is normally violated (i.e., P(E1, E2|H) ≠ P(E1|H)P(E2|H)). Second, it identifies a 

surrogate to the prior probability term for every intermediate node in the tree, even 

after obtaining some evidential data. 
In ordinary Bayesian updating of sequential data, it is often possible to recur

sively use the posterior odd as a new prior for computing the impact of the next 
item of evidence. However, this method works only when the items of evidence are 

mutually independent conditioned on the updated hypothesis, H, and will not be 

applicable to network updating because only variables which are separated from 

each other by H are guaranteed to be conditionally independent, given H. In gen
eral, therefore, it is not permissible to use the total posterior belief, updated by 
(12.3), as a new multiplicative prior for the calculation. Thus, the significance of 
(12.3) lies in showing that a product rule analogous to (12.4) can be applied to any 
node in the network without requiring a separate prior probability assessment. 
However, the multiplicative role of the prior probability has been taken over by that 
portion of belief contributed by evidence from the subtree above the updated vari
able, i.e., excluding the data collected from its descendants. The root is the only 
node which requires a prior probability estimation, and since it has no network 

above, D+ 
root should be interpreted as the background knowledge which remains 

unexplicated. 
Equation (12.3) suggests that the probability distribution of every variable in the 

network can be computed if the node corresponding to that variable contains the 

parameters 

BEL(B) = 𝛼P(D−|B)P(B|B D

𝜆(Bi) = P(D−|Bi) (12.5)B 

http:0.50)(0.60
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and 

𝜋(Bi) = P(Bi|D+ 
B ). (12.6) 

𝜋(Bi) represents the causal or anticipatory support attributed to Bi by the ancestors 
of B, and 𝜆(Bi) represents the diagnostic or retrospective support Bi receives from B’s 
descendants. The total strength of belief in Bi would be obtained by fusing these two 

supports via the product 

BEL(Bi) = 𝛼𝜆(Bi)𝜋(Bi). (12.7) 

While two parameters, 𝜆(E) and O(H), were sufficient for binary variables, an 

n-valued variable needs to be characterized by two n-tuples: 

𝜆(B) = 𝜆(B1), 𝜆(B2), … , 𝜆(Bn), (12.8) 

𝜋(B) = 𝜋(B1), 𝜋(B2), … , 𝜋(Bn). (12.9) 

To see how information from several descendants fuse at node B, note that the 

data D− 
B in (12.5) can be partitioned into disjoint subsets, D1− , D2− , … , Dm−, one 

for each subtree emanating from (the m children of) B. Since B “separates” these 

subtrees, conditional independence holds: 

𝜆(Bi) = P(D−|Bi) = ∏ P(Dk−|Bi), (12.10)B 
k 

so 𝜆(Bi) can be formed as a product of the terms P(Dk−|Bi) if these are delivered 

to processor B as messages from its children. For instance if in our fingerprint 
example P(D1−|B) = (0.80, 0.60, 0.50) and P(D2−|B) = (0.30, 0.50, 0.90) represent 
two reports issued by two independent laboratories, then the overall diagnostic 
support 𝜆(B) attributable to the three possible states of B is 

𝜆(B) = (0.80, 0.60, 0.50) ⋅ (0.30, 0.50, 0.90) = (0.24, 0.30, 0.45). 

This, combined with the previous causal support 𝜋(B) = (0.60, 0.30, 0.10), yields an 

overall belief of 

BEL(B) = 𝛼(0.24, 0.30, 0.45)(0.60, 0.30, 0.10) 

= (0.516, 0.322, 0.161). 

Thus, we see that, at each node of a Bayes tree, the fusion of all incoming data 

is purely multiplicative. 

http:0.45)(0.60
http:0.50)�(0.30
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Propagation Mechanism 

Assuming that the vectors 𝜆 and 𝜋 are stored with each node of the network, our 
task is now to determine how the influence of new information will spread through 

the network, namely, how the parameters 𝜋 and 𝜆 of a given node can be deter
mined from the 𝜋’s and 𝜆’s of its neighbors. This is done easily by conditioning 

(12.5) and (12.6) on all the values that the neighbors can assume. For example, sup
pose E is the kth son of B. To compute the kth multiplicand in the product of (12.10) 
from the value of 𝜆(E), we write 

P(Dk−|Bi) = ∑ P(D−|Bi , Ej)P(Ej |Bi)E 
j 

and obtain (using (12.1) and (12.5)) 

P(Dk−|Bi) = ∑ 𝜆(Ej)P(Ej |Bi). 
j 

Thus, P(Dk−|Bi) is obtained by taking the 𝜆-vector stored at the kth son of B and 

multiplying it by the fixed conditional-probability matrix that quantifies the link 

between B and E. Thus, the 𝜆-vector of each node can be computed from the 𝜆’s 
of its children by multiplying the latter by their respective link matrices and then 

multiplying the resultant vectors together, term-by-term, as shown in (12.10). Each 

multiplicand P(Dk−|B) would be treated as a message sent by the kth son of B and, 
if the sending variable is named E, the message will be denoted by 𝜆E(B), 

𝜆E(Bi) = ∑ P(Ej |Bi)𝜆(Ej). 
j 

A similar analysis, applied to the vector 𝜋, shows that the 𝜋 of any node can 

be computed from the 𝜋 of its father and the 𝜆’s of its siblings, again after multi
plication by the corresponding link matrices. No direct communication with the 

siblings is necessary since the information required of them already resides at the 

father’s site (for the purpose of calculating its 𝜆, as in (12.10)) and can be sent down 

to the requesting son. This can be shown by conditioning 𝜋(B) over the values of 
the parent A: 

𝜋(Bi) = P(Bi|D+(B)) 

= ∑ P(Bi|Aj, D+(B))P(Aj |D+(B)) 
j 

= ∑ P(Bi|Aj), P(Aj |all data excluding D−(B)) 
j 

= ∑ P(Bi|Aj) [
𝛼𝜋(Aj)∏ 𝜆m(Aj)

j m ] 
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with m ranging over the siblings of B. The expression in the brackets contains 
parameters available to processor A, and it can be chosen, therefore, as the message 

𝜋B(A) that A transmits to B. 
Thus, 

𝜋(Bi) = ∑ P(Bi|Aj)𝜋B(Aj), (12.11) 
j 

where 

𝜋B(Aj) = 𝛼𝜋(Aj) ∏ 𝜆m(Aj), (12.12) 
m: sibling of B 

or, alternatively, 

′ BEL(Aj)𝜋B(Aj) = 𝛼 . (12.13)
𝜆B(Aj) 

The division by 𝜆B(A) amounts to removing from BEL(A) the contribution of D− asB 

dictated by the definition of 𝜋 in (12.6). 
These results lead to the following propagation scheme: 
Step 1. When processor B is activated to update its parameters, it simultaneously 

inspects the 𝜋B(A) message communicated by the father A and the messages 𝜆1(B) 
𝜆2(B), …, communicated by each of its sons. Using these inputs, it then updates its 
𝜆 and 𝜋 as follows: 

Step 2. 𝜆 is computed using a term-by-term multiplication of the vectors 
𝜆1, 𝜆2, …, (as in (12.10)): 

𝜆(Bi) = 𝜆1(Bi) × 𝜆2(Bi) × ⋯ = ∏ 𝜆k(Bi). 
k 

Step 3. 𝜋 is computed using: 

𝜋(Bi) = 𝛽 ∑ P(Bi|Aj)𝜋B(Aj), 
j 

where 𝛽 is a normalizing constant and 𝜋B(A) is the last message sent to B from the 

father A. 
Step 4. Using the messages received, together with the updated values of 𝜆 and 

𝜋, each processor then computes new 𝜋- and 𝜆-messages to be posted on the mes
sage boards reserved for its sons and its father, respectively. These are computed 

as follows: 
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Step 5. Bottom-up propagation. The new message 𝜆B(A) that B sends to its father 
(A) is computed by 

𝜆B(Aj) = ∑ P(Bi|Aj)𝜆(Bi). 
i 

Step 6. Top-down propagation. The new message 𝜋E(B) that B sends to its kth child 

E is computed by 

𝜋E(Bi) = 𝛼𝜋(Bi)∏ 𝜆m(Bi), 
m̸=k 

or, alternatively, 

′ BEL(Bi)𝜋E(Bi) = 𝛼 . 
𝜆E(Bi) 

This updating scheme is shown schematically in Figure 12.3, where multipli
cations of any two vectors stand for term-by-term operations. There is no need, 

Figure 12.3 The internal structure of a single processor performing belief updating for variable B. 
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of course, to normalize the 𝜋-messages prior to transmission (only the BEL(⋅) 
expressions actually require normalization). This is done solely for the purpose of 
retaining the probabilistic meaning of these messages. Additional economy can be 

achieved by having each node B transmit a single message BEL(B) to all its children 

and letting each child use (12.13) to uncover its appropriated 𝜋-message. 
Terminal and data nodes in the tree require special treatments. Here we have 

to distinguish several cases: 

(1)	 Anticipatory node, a leaf node that has not been instantiated yet: For such 

variables, BEL should be equal to 𝜋 and, therefore, we should set 𝜆 = 

(1, 1, … , 1). 

(2)	 Data node, a variable with instantiated value: Following (12.5) and (12.6), if 
the jth state of B were observed to be true, we set 𝜆 = 𝜋 = (0, … , 0, 1, 0, … , 0) 
with 1 at the jth position. 

(3)	 Dummy node, a node B representing virtual or judgmental evidence bearing 

on A: We do not specify 𝜆(B) or 𝜋(B) but, instead, post a 𝜆B(A) message to A, 
where 𝜆B(Ai) = K ⋅ P(observation|Ai), and K is any convenient constant. 

(4)	 Root node: The boundary condition for the root node is established by setting 

𝜋(root) = prior probability of the root variable. 

Example 12.2.2	 To illustrate these computations let us return to Example 12.2.1, and let us assume 

that based on all testimonies heard so far, our belief in the identity of the killer 
amounts to 𝜋(A) = (0.8, 0.1, 0.1). Before obtaining any fingerprint information, B is 
an anticipatory node with 𝜆(B) = (1, 1, 1), which also yields 𝜆B(A) = 𝜆(A) = (1, 1, 1) 
and BEL(A) = 𝜋(A). 𝜋(B) can be calculated from (12.13) (using 𝜋B(A) = 𝜋(A) and 

P(Bi|Aj) = 0.8 if i = j), yielding 

𝜋(B) = 

⎡
⎢
⎢
⎢
⎢
⎣ 

0.8 0.1 0.1 

0.1 0.8 0.1 

0.1 0.1 0.8 

⎡
⎢
⎢
⎢
⎢
⎣ 

⎤
⎥
⎥
⎥
⎥
⎦ 

0.8 

0.1 

0.1 

⎤
⎥
⎥
⎥
⎥
⎦ 

= (0.66, 0.17, 0.17) = BEL(B). 

Now assume that a laboratory report arrives, summarizing the test results (a vir
tual evidence C) by the message 𝜆C(B) = 𝜆(B) = (0.80, 0.60, 0.50). Node B updates 
its belief to read: 

BEL(B) = 𝛼𝜆(B)𝜋(B) = 𝛼(0.80, 0.60, 0.50)(0.66, 0.17, 0.17) 

= (0.738, 0.142, 0.119) 

http:0.50)(0.66
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and computes a new message, 𝜆B(A), for A: 

𝜆B(A) = M ⋅ 𝜆 = 

⎡
⎢
⎢
⎢
⎣ 

0.8 0.1 0.1 

0.1 0.8 0.1 

0.1 0.1 0.8 

⎡
⎢
⎢
⎢
⎣ 

⎤
⎥
⎥
⎥
⎦ 

0.8 

0.6 

0.5 

⎤
⎥
⎥
⎥
⎦ 

= (0.75, 0.61 , 0.54) . 

Upon receiving this message, node A sets 𝜆(A) = 𝜆B(A) and recomputes its belief 
to 

BEL(A) = 𝛼𝜆(A)𝜋(A) = 𝛼(0.75, 0.61, 0.54) (0.8, 0.1, 0.1) 

= (0.84, 0.085, 0.076). 

Now assume that suspect A1 produces a very strong alibi in his favor, suggesting 

that there are only 1 : 10 odds that he could have committed the crime. To fuse 

this information with all previous evidence, we link a new virtual-evidence node E 

directly to A and post the message 𝜆E(A) = (0.10, 1.0, 1.0) on the link. 𝜆E(A) combines 
with 𝜆B(A) to yield 

𝜆(A) = 𝜆E(A)𝜆B(A) = (0.075, 0.61, 0.54), 

BEL(A) = 𝛼(A)𝜋(A) 

= 𝛼(0.075, 0.061, 0.54)(0.84, 0.85, 0.076) 

= (0.404, 0.333, 0.263) 

and generates the message 𝜋B(A) = 𝛼𝜆E(A)𝜋(A) = 𝛼(0.08, 0.1, 0.1) to B. Upon receiv
ing 𝜋B(A), processor B updates its causal support 𝜋(B) to read: 

′ 𝜋(B) = 𝛼 

⎡
⎢
⎢
⎢
⎣ 

0.8 0.1 0.1 

0.1 0.8 0.1 

0.1 0.1 0.8 

⎡
⎢
⎢
⎢
⎣ 

⎤
⎥
⎥
⎥
⎦ 

0.08 

0.10 

0.10 

⎤
⎥
⎥
⎥
⎦ 

= (0.30, 0.35, 0.35) 

and BEL(B) becomes 

BEL(B) = 𝛼𝜆(B)𝜋(B) 

= 𝛼(0.8, 0.6, 0.5)(0.334, 0.343, 0.317) 

= (0.423, 0.326, 0.251). 

The purpose of propagating beliefs top-down to sensory nodes such as B is two
fold—to guide data-acquisition strategies toward the most informative sensory 
nodes and to facilitate explanations which justify the system’s inference steps. 
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Note that BEL(A) cannot be taken as an updated prior of A for the purpose of 
calculating BEL(B). In other words, it is wrong to update BEL(B) via the textbook 

formula 

BEL(Bi) = ∑ P(Bi|Aj)BEL(Aj), 
j 

also known as Jeffrey’s rule [11], because BEL(A) itself was affected by information 

transmitted from B, and reflecting this information back to B would amount to 

counting the same evidence twice. 

12.2.2.3	 Illustrating the Flow of Belief 
Figure 12.4 shows six successive stages of belief propagation through a simple 

binary tree, assuming that updating is triggered by changes in the belief parame
ters of neighboring processors. Initially (Figure 12.4(a)), the tree is in equilibrium, 
and all terminal nodes are anticipatory. As soon as two data nodes are activated 

(Figure 12.4(b)), white tokens are placed on their links, directed towards their 
fathers. In the next phase, the fathers, activated by these tokens, absorb them and 

manufacture the appropriate number of tokens for their neighbors (Figure 12.4(c)): 
white tokens for their fathers and black ones for the children. (The links through 

which the absorbed tokens have entered do not receive new tokens, thus reflecting 

the feature that a 𝜋-message is not affected by a 𝜆-message crossing the same link.) 

DATA

(a) (b) (c)

(f) (e) (d)

DATA

Figure 12.4 The impact of new data propagates through a tree by a message-passing process. 
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The root node now receives two white tokens, one from each of its descendants. 
That triggers the production of two black tokens for top-down delivery 
(Figure 12.4(d)). The process continues in this fashion until after six cycles, all 
tokens are absorbed, and the network reaches a new equilibrium. 

As soon as a leaf node posts a token for its parent, it is ready to receive new data 

and, when this occurs, a new token is posted on the link, replacing the old one. In 

this fashion the inference network can also track a changing environment and pro
vide coherent interpretation of signals emanating simultaneously from multiple 

sources. 

Properties of the Updating Scheme 

(1) The local computations required by the updating scheme are efficient in 

both storage and time. For an m-ary tree with n values per node, each processor 
should store n2 + mn + 2n real numbers and perform 2n2 + mn + 2n multiplications 
per update. 

(2) The local computations and the final belief distribution are entirely inde
pendent of the control mechanism that activates the individual operations. They 
can be activated by either data-driven or goal-driven (e.g., requests for evidence) 
control strategies, by a clock or at random. 

(3) New information diffuses through the network in a single pass. Instabilities 
and indefinite relaxations have been eliminated by maintaining a two-parameter 
system (𝜋 and 𝜆) to decouple causal support from diagnostic support. The time 

required for completing the diffusion (in parallel) is proportional to the diameter 
of the network. 

Propagation in Singly Connected Networks 
The tree structures treated in the preceding section require that exactly one variable 

be considered a cause of any other variable. This restriction simplifies computa
tions, but its representational power is rather limited since it forces us to group 

together all causal factors sharing a common consequence into a single node. By 
contrast, when people associate a given observation with multiple potential causes, 
they weigh one causal factor against another as independent variables, each point
ing to a specialized area of knowledge. As an illustration, consider the following 

situation: 

Mr. Holmes received a phone call at work from his neighbor notifying him 

that she heard a burglar alarm sound from the direction of his home. As he 

is preparing to rush home, Mr. Holmes recalls that recently the alarm had 
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been triggered by an earthquake. Driving home, he hears a radio newscast 
reporting an earthquake 200 miles away. [14] 

Mr. Holmes perceives two episodes which may be potential causes for the 

alarm sound, an attempted burglary and an earthquake. Even though burglaries 
can safely be assumed independent of earthquakes, the radio announcement still 
reduces the likelihood of a burglary, as it “explains away” the alarm sound. More
over, the causal events are perceived as individual variables each pointing to a 

separate frame of knowledge. 
This nonmonotonic interaction among multiple causes is a prevailing pattern 

of human reasoning. When a physician discovers evidence in favor of one disease, 
it reduces the likelihood of other diseases, although the patient might well be suf
fering from two or more disorders simultaneously. The same maxim also governs 
the interplay of other frame-like explanations (not necessarily causal). For example, 
it is essential for comprehending sentences such as “John could not walk straight, 
and I thought he got drunk again. However, seeing the blood on his shirt, I knew 

it was a different matter.” 
This section extends the propagation scheme to graph structures which permit 

a node to have multiple parents and thus capture “sideways” interactions via com
mon successors. However, the graphs are required to be singly connected, namely, 
one (undirected) path, at most, exists between any two nodes. 

12.2.3.1 Fusion Equations 

Consider a fragment of a singly connected network, depicted in Figure 12.5. The 

link B → A partitions the graph into two parts: an upper subgraph, G+ 
BA, and a 

lower subgraph G− 
BA. These two graphs contain two sets of data, which we shall call 

D+ 
BA, respectively. Likewise, the links C → A, A → X, and A → Y define the BA and D− 

subgraphs G+ 
AX , and G− 

AX and D− 
AY , which contain the data sets D+ 

AY , respec-CA, G
− 

CA, D
− 

tively. Since A is a common child of B and C, it does not separate G+ 
BA from G+ 

CA. 
However, it does separate the following three subgraphs: G+ 

AX and G− 
AY,BA ∪ G+ 

CA, G
− 

and we can write 

P(D− |Ai, D+ |Ai)P(D− |Ai). (12.14)AX , D
− 
AY BA, D

+ 
AXCA) = P(D− 

AY 

Thus, using Bayes’ rule, the overall strength of belief in Ai can be written: 

BEL(Ai) = P(Ai|D+ 
CA, D

− 
AY)BA, D

+ 
AX , D

− 

(12.15)
D+= 𝛼P(Ai| BA, D

+ 
AX |Ai)P(D

− |Ai),CA)P(D
− 

AY 
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Figure 12.5	 Fragment of a singly connected network with multiple parents, illustrating data 
partitioning and belief parameters. 

where 𝛼 is a normalizing constant. By further conditioning over the values of B and 

C (see Appendix 12.A), we get: 

BEL(Ai) = 𝛼P(D− |Ai)P(D− |Ai)AX AY 

⋅ ∑ P(Ai|Bj, Ck)P(Bj |D+ |D+ (12.16)BA)P(Ck CA)] 
.

[ jk 

Equation (12.16) shows that the probability distribution of each variable A in the 

network can be computed if three types of parameters are made available: (1) the 

current strength of the causal support, 𝜋, contributed by each incoming link to A: 

D+𝜋A(Bj) = P(Bj | BA),	 (12.17) 

(2) the current strength of the diagnostic support, 𝜆, contributed by each outgoing 

link from A: 

𝜆X (Ai) = P(D− |Ai),	 (12.18)AX 

and (3) the fixed conditional-probability matrix, P(A|B, C), which relates the vari
able A to its immediate causes. Accordingly, we let each link carry two dynamic 
parameters, 𝜋 and 𝜆, and let each node store an encoding of P(A|B, C). 
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With these parameters at hand, the fusion equation (12.16) becomes 

BEL(Ai) = 𝛼𝜆X (Ai)𝜆Y (Ai)∑ P(Ai|Bj, Ck)𝜋A(Bj)𝜋A(Ck). (12.19) 
jk 

Alternatively, from two parameters, 𝜋 and 𝜆, residing on the same link, we can 

compute the belief distribution of the parent node by the product 

BEL(Bj) = 𝛼𝜋A(Bj)𝜆A(Bj). (12.20) 

12.2.3.2 Propagation Equation 

Assuming that the vectors 𝜋 and 𝜆 are stored with each link, our task is now 

to prescribe how the influence of new information should spread through the 

network. 

Updating 𝜆 

Starting from the definition of 𝜆A(Bi) = |Bi), we partition the data D−P(D− 
BA into BA

its components: A, D− 
AY , and D+ 

AX , D
− 

CA, and summing over all values of A and C (see 

Appendix 12.A), we get: 

𝜆A(Bi) = 𝛼 ∑
[
𝜋A(Cj)∑ 𝜆X (Ak)𝜆Y (Ak)P(Ak|Bi, Cj)] 

. (12.21) 
j k 

Equation (12.21) shows that only three parameters (in addition to the conditional 
probabilities P(A|B, C)) are needed for updating the diagnostic parameter vector 
𝜆A(B): 𝜋A(C), 𝜆X (A), and 𝜆Y (A). This is expected since D− 

BA is completely summarized 

by X, Y, and C. 

Updating 𝜋 

Similar manipulation on (12.17) (see Appendix 12.A) yields the following rule for 
updating the causal parameter 𝜋X (A): 

𝜋X (Ai) = 𝛼𝜆Y (Ai) ∑ P(Ai|Bj, Ck)𝜋A(Bj)𝜋A(Ck) (12.22) 
] 
.

[ jk 

Thus, 𝜋X (A), like 𝜆A(B), is also determined by three neighboring parameters: 𝜆Y (A), 
𝜋A(B), and 𝜋A(C). 

Equations (12.21) and (12.22) demonstrate that a perturbation of the causal 
parameter 𝜋 will not affect the diagnostic parameter 𝜆 on the same link, and vice 

versa. The two are orthogonal to each other since they depend on two disjoint sets 
of data. Therefore, any perturbation of beliefs due to new evidence propagates 
through the network and is absorbed at the boundary without reflection. A new 

state of equilibrium will be reached after a finite number of updates which, in the 

worst case, would be equal to the diameter of the network. 
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Equation (12.21) also reveals that if no data are observed below A (i.e., all 𝜆’s 
pointing to A are unit vectors), then all 𝜆’s emanating from A are unit vectors. This 
means that evidence gathered at a particular node does not influence its spouses 
until their common son gathers diagnostic support. This reflects the special con
nectivity conditions established in Section 12.1.2 and matches our intuition regard
ing multiple causes. In Mr. Holmes’ case, for example, prior to the neighbor’s 
telephone call, seismic data indicating an earthquake would not have influenced 

the likelihood of a burglary. 
Although the treatment in this paper is restricted to discrete variables, (12.21) 

and (12.22) can be readily extended to handle continuous variables as well. The case 

of additive Gaussian variables is particularly attractive because all belief distribu
tions and all the 𝜋- and 𝜆-messages can be characterized by only two parameters 
each, the mean and the variance. Thus, the computations required are simpler, 
and matrix manipulations are avoided [23]. Distributed updating of noncausal, 
object-class hierarchies is described in [25]. 

Summary and Extensions for Multiply Connected Networks 
The preceding two sections show that the architectural objectives of propagat
ing beliefs coherently through an active network of primitive, identical, and 

autonomous processors can be fully realized in singly connected graphs. Insta
bilities due to bidirectional inferences are avoided by using multiple, source-
identified belief parameters, and equilibrium is guaranteed to be reached in time 

proportional to the network diameter. 
The primitive processors are simple and repetitive, and they require no work

ing memory except that used in matrix multiplications. Thus, this architecture 

lends itself naturally to hardware implementation, capable of real-time interpre
tation of rapidly changing data. It also provides a reasonable model of neural nets 
involved in such cognitive tasks as visual recognition, reading comprehension [28] 
and associative retrieval [1], where unsupervised parallelism is an uncontested 

mechanism. 
It is also interesting to note that the marginal conditional probabilities on the 

links of the network remain constant and retain their viability throughout the 

updating process. This is important because having to adjust the weights each time 

new data arrives would be computationally prohibitive. The stable viability of the 

marginal conditional probabilities may explain why people can assess the magni
tude of these relationships better than those of any other probabilistic quantity. 
Apparently, these relationships have been chosen as the standard primitives for 
organizing and quantifying probabilistic knowledge in our long-term memory. 

The efficacy of singly connected networks in supporting autonomous propaga
tion raises the question of whether similar propagation mechanisms can operate 
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in less restrictive networks (like the one in Figure 12.1), where multiple parents 
of common children may possess common ancestors, thus forming loops in the 

underlying network. If we ignore the existence of loops and permit the nodes to 

continue communicating with each other as if the network were singly connected, 
messages may circulate indefinitely around these loops, and the process will not 
converge to the correct state of equilibrium. 

A straightforward way of handling the network of Figure 12.1 would be to 

appoint a local interpreter for the loop x1, x2, x3, x5 that will account for the inter
actions between x2 and x3. This amounts, basically, to collapsing nodes x2 and x3 
into a single node representing the compound variable (x2, x3). This method works 
well on small loops [32], but as soon as the number of variables exceeds 3 or 4, 
compounding requires handling huge matrices and masks the natural conceptual 
structure embedded in the original network. 

A second method of propagation is based on “stochastic relaxation” [8] sim
ilar to that used by Boltzman machines [9]. Each processor examines the states 
of the variables within its screening neighborhood, computes a belief distribu
tion for the values of its host variable, then randomly selects one of these values 
with probability given by the computed distribution. The value chosen will subse
quently be interrogated by the neighbors upon computing their beliefs, and so on. 
This scheme is guaranteed convergence, but it usually requires very long relaxation 

times before reaching a steady state. 
A third method called conditioning [22] is based on our ability to change the 

connectivity of a network and render it singly connected by instantiating a selected 

group of variables. In Figure 12.1, for example, instantiating x1 to some value would 

block the pathway x2, x1, x3, and would render the rest of the network singly con
nected, so that the propagation techniques of the preceding section would be appli
cable. Thus, if we wish to propagate the impact of an observed datum, say at x6, to 

the entire network, we first assume x1 = 0, propagate the impact of x6 to the vari
ables x2, … , x5, repeat the propagation under the assumption x1 = 1 and, finally, 
sum the two results weighted by the posterior probability P(x1|x6). It can also be 

executed in parallel by letting each node receive, compute, and transmit several 
sets of parameters, one for each value of the conditioning variable(s). Condition
ing provides a working solution in most practical cases, but it occasionally suffers 
from the inevitable combinatorial explosion—the number of messages may grow 

exponentially with the number of nodes required for breaking up all loops in the 

network. 
The use of conditioning to facilitate propagation is not foreign to human rea

soning. When we find it hard to estimate the likelihood of a given outcome, we 

often make hypothetical assumptions that render the estimation simpler and then 
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negate the assumptions to see if the results do not vary substantially. One of the 

most pervasive patterns of plausible reasoning is the maxim that, if two diamet
rically opposed assumptions impart two different degrees of confidence onto a 

proposition Q, then the unconditional degree of confidence merited by Q should 

be somewhere between the two. The terms “hypothetical” or “assumption-based” 
reasoning, “reasoning by cases,” and “envisioning” all refer to the same basic 
mechanism of selecting a key variable, binding it to some of its values, deriving 

the consequences of each binding separately, and integrating those consequences 
together. 

Finally, a preprocessing approach, which is discussed more fully in Section 12.3, 
introduces auxiliary variables and permanently turns the network into a tree. To 

understand the basis of this method, consider, for example, the tree of Figure 12.2. 
The variables C, H, E, F are tightly coupled in the sense that no two of them can 

be separated by the others; therefore, if we were to construct a Bayesian network 

based on these variables alone, a complete graph would ensue. Yet, together with 

the intermediate variables A and B the interactions among the leaf variables are 

tree-structured, clearly demonstrating that some multiply connected networks can 

inherit all the advantages of tree representations by the introduction of a few 

dummy variables. In some respects, this method is similar to that of appointing 

external interpreters to handle nonseparable components of the graph, because 

the processors assigned to the dummy variables, like the external interpreters, 
serve no other function but that of mediation among the real variables. However, 
the dummy-variables scheme enjoys the added advantage of uniformity: the pro
cessors representing the dummy variables can be idential to those representing the 

real variables, in full compliance with our architectural objectives. Moreover, there 

are strong reasons to believe that the process of reorganizing data structures by 
adding fictitious variables mimics an important component of conceptual devel
opment in human beings—the evolution of causal models. These considerations 
are discussed in the section that follows. 

12.3 Structuring Causal Trees 

12.3.1 Causality, Conditional Independence, and Tree Architecture 
Human beings exhibit an almost obsessive urge to conceptually mold empirical 
phenomena into structures of cause-and-effect relationships. This tendency is, in 

fact, so compulsive that it sometimes comes at the expense of precision and often 

requires the invention of hypothetical, unobservable entities such as “ego,” “ele
mentary particles,” and “supreme beings” to make theories fit the mold of causal 
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schema. When we try to explain the actions of another person, for example, we 

invariably invoke abstract notions of mental states, social attitudes, beliefs, goals, 
plans, and intentions. Medical knowledge, likewise, is organized into causal hier
archies of invading organisms, physical disorders, complications, clinical states 
and, only finally, the visible symptoms. 

We take the position that human obsession with causation, like many other psy
chological compulsions, is computationally motivated. Causal models are attrac
tive only because they provide effective data structures for representing empirical 
knowledge—they can be queried and updated at high speed with minimal external 
supervision; so, it behooves us to take a closer look at the structure of causal models 
and determine what it is that makes them so effective. In other words, what are the 

computational assets of those fictitious variables called “causes” that make them 

worthy of such relentless human pursuit, and what renders causal explanations so 

pleasing and comforting, once they are found? 
The paradigm expounded in this paper is that the main ingredient responsi

ble for the pervasive role of causal models is their centrally organized architecture, 
i.e., an architecture in which dependencies among variables are mediated by one 

central mechanism. 
If you ask n persons in the street what time it is, the answers will undoubtedly 

be very similar. Yet, instead of suggesting that, somehow, the answers evoked or 
the persons surveyed influence each other, we postulate the existence of a cen
tral cause, the standard time, and the commitment of each person to adhere to 

that standard. Thus, instead of dealing with a complex n-ary relation, the causal 
model in this example consists of a network of n binary relations, all connected 

star-like to one central node which serves to dispatch information to and from 

the connecting variables. Psychologically, this architecture is much more pleas
ing than one which entails intervariable communication. Since the activity of each 

variable is constrained by only one source of information (i.e., the central cause), 
no conflict in activity arises: any assignment of values consistent with the central 
constraints will also be globally consistent, and a change in any of the variables 
can communicate its impact to all other variables in only two steps. 

Computationally speaking, such causes are merely names given to auxiliary 
variables which facilitate the efficient manipulation of the activities of the origi
nal variables in the system. They encode a summary of the interactions among the 

visible variables and, once calculated, permit us to treat the visible variables as if 
they were mutually independent. 

The dual summarizing/decomposing role of a causal variable is analogous to 

that of an orchestra conductor: it achieves coordinated behavior through central 
communication and thereby relieves the players from having to communicate 
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directly with one another. In the physical sciences, a classical example of such 

coordination is exhibited by the construct of a field (e.g., gravitational, electric, or 
magnetic). Although there is a one-to-one mathematical correspondence between 

the electric field and the electric charges in terms of which it is defined, nearly 
every physicist takes the next step and ascribes physical reality to the electric field, 
imagining that in every point of space there is some real physical phenomenon tak
ing place which determines both the magnitude and direction which tag the point. 
This psychological construct offers an advantage vital to understanding the devel
opment of electrical sciences: It decomposes the complex phenomena associated 

with interacting electric charges into two independent processes: (1) the creation 

of the field at a given point by the surrounding charges, and (2) the conversion of 
the field into a physical force once another charge passes near that point. 

The advantages of centrally coordinated architectures are not unique to star-
structured networks but are also present in tree structures since every internal 
node in the tree centrally coordinates the activities of its neighbors. In a man
agement hierarchy, for example, where employees can communicate with each 

other only through their immediate superiors, the passage of information is swift, 
economical, conflict-free, and highly parallel. Likewise, we know that, if the inter
actions among a set of variables can be represented by a tree of binary constraints, 
then a globally consistent solution can be found in linear time, using backtrack-
free search [3, 7]. These computational advantages of trees also retain their power 
when the relationships constraining the variables are probabilistic in nature. 

In probabilistic formalisms, the topological concept of central coordination is 
embodied in the notion of conditional independence. In our preceding example, the 

answers to the question “What time is it?” would be viewed as random variables 
that are bound together by a spurious correlation [31, 33]; they become independent 
of each other once we know the state of the mechanism causing the correlation, 
i.e., the standard time. Thus, conditional independence captures both functions 
of our orchestra conductor: coordination and decomposition. 

The most familiar connection between causality and conditional independence 

is reflected in the scientific notion of a state. It was devised to nullify the influence 

that the past exerts on the future by providing a sufficiently detailed description 

of the present. In probabilistic terms this came to be known as a Markov property; 
future events are conditionally independent of past events, given the current state 

of affairs. This is precisely the role played by the set of parents Si in the construction 

of Bayesian networks (Section 12.1.1); they screen the variable xi from the influence 

of all its other ancestors. 
But conditional independence is not limited to separating the past from the 

future; it often applies to events occurring at the same time. Knowing the values 
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of the parent set Si not only decouples xi from its other ancestors but renders xi 
independent of all other variables except its descendants. In fact, this sort of inde
pendence constitutes the most universal and distinctive characteristic featured by 
the notion of causality. In medical diagnosis, for example, a group of cooccurring 

symptoms often become independent of each other once we know the disease that 
caused them. When some of the symptoms directly influenced each other, the med
ical profession invents a name for that interaction (e.g., complication, clinical state, 
etc.) and treats it as a new auxiliary variable, which again assumes the decomposi
tional role characteristic of causal agents; knowing the exact state of the auxiliary 
variable renders the interacting symptoms independent of each other. In other 
words, the auxiliary variables constitute a sufficient summary for determining 

the likely development of each individual symptom in the group; thus, additional 
knowledge regarding the states of the other symptoms becomes superfluous. 

The continuous influx of such auxiliary concepts into our languages cast new 

light on the status of conditional independence in probabilistic modelling. Con
trary to positions often found in the literature, conditional independence is not a 

“restrictive assumption” made for mathematical elegance; neither is it an occa
sional grace of nature for which we must passively wait. Rather, it is a mental 
construct that we actively create and a psychological necessity which our culture 

labors to satisfy. 
The decompositional role of causal variables attains its ultimate realization in 

tree-structured networks, where every pair of nonadjacent variables becomes inde
pendent given a third variable on the path connecting the pair. Indeed, the speed, 
stability and autonomy of the updating scheme described in Section 12.2.2 draws 
its power from the high degree of decomposition provided by the tree structure. 
These computational advantages, we postulate, give rise to the satisfying sensa
tion called “in-depth understanding,” which people experience when they discover 
causal models consistent with observations. 

Given that tree dependence captures the main feature of causation and that it 
provides a convenient computational medium for performing interpretations and 

predictions, we now ask whether it is possible to reconfigure every belief network 

as a tree and, if so, how. First we assume that there exist dummy variables which 

decompose the network into a tree, and then ask whether the internal structure 

of such a tree can be determined from observations made solely on the leaves. If 
it can, then the structure found will constitute an operational definition for the 

hidden causes often found in causal models. Additionally, if we take the view that 
“learning” entails the acquisition of computationally effective representations of 
nature’s regularities, then procedures for configuring such trees may reflect an 

important component of human learning. 
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A related structuring task was treated by Chow and Liu [2], who also used 

tree-dependent random variables to approximate an arbitrary joint distribution. 
However, in Chow’s trees all nodes denote observed variables; so, the conditional 
probability for any pair of variables is assumed to be given. By contrast, the inter
nal nodes in our trees denote dummy variables, artificially concocted to make the 

representation tree-like. Since only the leaves are accessible to empirical observa
tions, we know neither the conditional probabilities that link the internal nodes 
to the leaves nor the structure of the tree—these we would have to learn. A similar 
problem of configuring probabilistic models with hidden variables is mentioned 

by Hinton et al. [9] as one of the tasks that a Boltzman machine should be able to 

solve. However, it is not clear whether the relaxation techniques employed by the 

Boltzman machine can easily escape local minima and whether they can readily 
accept the constraint that the resulting structure be a tree. The method described 

in the following sections offers a solution to this problem, but it assumes some 

restrictive conditions: all variables are bivalued, a solution tree is assumed to exist, 
and the value of each interleaf correlation is precisely known. 

Problem Definition and Nomenclature 
Consider a set of n binary-valued random variables x1, … , xn with a given probability 
mass function P(x1, … , xn). We address the problem of representing P as a marginal 
of an (n+1)-variable distribution Ps(x1, … , xn, w) that renders x1, … , xn conditionally 
independent given w, i.e., 

n 

Ps(x1, … , xn, w) = ∏ Ps(xi|w)Ps(w), (12.23) 
i=1 

n n 

P(x1, … , xn) = 𝛼 ∏ Ps(xi|w = 1) + (1 − 𝛼)∏ Ps(xi|w = 0). (12.24) 
i=1 i = 1 

The functions Ps(xi|w), w = 0, 1, i = 1, … , n, can be viewed as 2 × 2 stochastic matri
ces relating each xi to the central hidden variable w (see Figure 12.6(a)); hence, we 

name Ps a star distribution and call P star-decomposable. Each matrix contains two 

independent parameters, fi and gi, where 

fi = Ps(xi = 1|w = 1), gi = Ps(xi = 1|w = 0) (12.25) 

and the central variable w is characterized by its prior probability Ps(w−1) = 𝛼 (see 

Figure 12.6(b)). 
The advantages of having star-decomposable distributions are several. First, 

the product form of Ps in (12.23) makes it very easy to compute the probability of 
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Figure 12.6 (a) Three random variables, x1, x2, x3 connected to a central variable w by a star network. 
(b) Illustration of the three parameters, 𝛼, fi, gi, associated with each link. 

any combination of variables. More importantly, the product form is also conve
nient for calculating the conditional probabilities, P(xi|xj), describing the impact 
of an observation xj on the probabilities of unobserved variables. The computation 

requires only two vector multiplications. 
Unfortunately, when the number of variables exceeds 3, the conditions for star-

decomposability become very stringent and are not likely to be met in practice. 
Indeed, a star-decomposable distribution for n variables has 2n + 1 independent 
parameters, while the specification of a general distribution requires 2n − 1 param
eters. Lazarfeld [16] considered star-decomposable distributions where the hidden 

variable w is permitted to range over 𝜆 values, 𝜆 > 2. Such an extension requires 
the solution of 𝜆n + 𝜆 − 1 nonlinear equations to find the values of its 𝜆n + 𝜆 − 1 
independent parameters. In this paper, we pursue a different approach, allowing 

a larger number of binary hidden variables but insisting that they form a tree
like structure (see Figure 12.7), i.e., each triplet forms a star, but the central vari
ables may differ from triplet to triplet. Trees often portray meaningful conceptual 
hierarchies and are, computationally, almost as convenient as stars. 

We shall say that a distribution P(x1, x2, … , xn) is tree-decomposable if it is the 

marginal of a distribution 

PT (x1, x2, … , xn, w1, w2, … , wm), m ≤ n − 2 

x1

x2

x3

w1 w2

w4

w3 x6

x7

x5x4

Figure 12.7 A tree containing four dummy variables and seven visible variables. 
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that supports a tree-structured network, such that w1, w2, … , wm correspond to the 

internal nodes of a tree T and x1, x2, … , xn to its leaves. 
Note that if PT supports a rooted tree T, then any two leaves are conditionally 

independent, given the value of any internal node on the path connecting them. 
These relationships between leaves and internal nodes are a property of the undi
rected tree, independent of the choice of root. Now, since a choice of a new root 
for T will create a tree T ′ which is also supported by PT , we are permitted to treat 
T as an unrooted tree. Conversely, given an unrooted tree T and an assignment of 
variables to its nodes, the form of the corresponding distribution can be written 

by the following procedure: We first choose an arbitrary node as a root. This, in 

turn, defines a unique father F(yi) for each node yi ∈ {x1, … , xn, w1, … , wm} in T, 
except the chosen root, y1. The joint distribution is simply given by the product 
form: 

m+n 

PT (x1, … , xn, w1, … , wm) = P(y1)∏ P[yi|F(yi)]. (12.26) 
i=2 

For example, if in Figure 12.7 we choose w2 as the root, we obtain: 

PT (x1, … , x7, w1, … , w4) 

= P(x7|w4)P(x6|w4)P(x5|w3)P(x4|w3) 

⋅ P(x3|w1)P(x2|w1)P(x1|w1)P(w1|w2) ⋅ P(w3|w2)P(w4|w2)P(w2) . 

Throughout this discussion we shall assume that each w has at least three 

neighbors; otherwise, it is superfluous. In other words, an internal node with 

two neighbors can simply be replaced by an equivalent direct link between the 

two. Similarly, we shall assume that all link matrices are nonsingular, conveying 

genuine dependencies between the linked variables; otherwise, the tree can be 

decomposed into disconnected components, i.e., a forest. 
If we are given PT (x1, … , xn, w1, … , wm), then, clearly, we can obtain P(x1, … , xn) by 

summing over w’s. We now ask whether the inverse transformation is possible, i.e., 
given a tree-decomposable distribution P(x1, … , xn), can we recover its underlying 

extension PT (x1, … , xn, w1, … , wm)? We shall show that: (1) the tree distribution PT 

is unique, (2) it can be recovered from P using n log n computations, and (3) the 

structure of T is uniquely determined by the second-order probabilities of P. The 

construction method depends on the analysis of star-decomposability for triplets, 
which is presented next. (Impatient readers may skip this analysis and go directly 
to Theorem 12.3.1.) 
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12.3.3 Star-Decomposable Triplets 
In order to test whether a given three-variable distribution P(x1, x2, x3) is star-
decomposable, we first solve (12.24) and express the parameters 𝛼, fi, gi as a func
tion of the parameters specifying P. This task was carried out by Lazarfeld [16] in 

terms of the seven joint-occurrence probabilities. 

pi = P(xi = 1),
 

pij = P(xi = 1, xj = 1), (12.27)
 

pijk = P(xi = 1, xj = 1, xk = 1), 

and led to the following solution:
 
Define the quantities,
 

[ij] = pij − pipj, (12.28) 
1/2[ij][ik]

Si = [ 
, (12.29)

[jk] ] 

(pipijk − pijpik)
𝜇i = , (12.30)

[jk] 
Si pi 𝜇iK = − + , (12.31)
pi si Sipi 

and let t be the solution of 

t2 + Kt − 1 = 0. (12.32) 

The parameters 𝛼, fi, gi are given by: 

𝛼 = t2/(1 + t2), (12.33) 

fi = pi + Si[(1 − 𝛼)/𝛼]1/2, (12.34) 

gi = pi − Si[𝛼/(1 − 𝛼)]1/2. (12.35) 

Moreover, the differences fi − gi are independent of pijk: 

fi − gi = Si = [[ij][ik]/[jk]]
1/2. (12.36) 

The conditions for star-decomposability are obtained by requiring that preced
ing solutions satisfy: 

(a) Si should be real, 

(b) 0 ≤ fi ≤ 1, 

(c) 0 ≤ gi ≤ 1. 
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Using the variances 

𝜎i = [pi(1 − pi)]1/2	 (12.37) 

and the correlation coefficients 

𝜌ij = (pij − pipj)/𝜎i𝜎j,	 (12.38) 

requirement (a) is equivalent to the condition that all three correlation coefficients 
are nonnegative. (If two of them are negative, we can rename two variables by their 
complements; the newly defined triplet will have all its pairs positively correlated.) 
We shall call triplets with this property positively correlated. 

This, together with requirements (b) and (c), yields (see Appendix 12.B): 

Theorem 12.3.1	 A necessary and sufficient condition for three dichotomous random variables to be 
star-decomposable is that they are positively correlated, and that the inequality, 

pikpij pikpij≤ pijk ≤ + 𝜎j𝜎k(𝜌jk − 𝜌ij𝜌ik), (12.39)
pi pi 

is satisfied for all i ∈ {1, 2, 3}. When this condition is satisfied, the parameters of the 
star-decomposed distribution can be determined uniquely, up to a complementation of 
the hidden variable w, i.e., w → (1 − w), fi → gi, 𝛼 → (1 − 𝛼). 

Obviously, in order to satisfy (12.39), the term (𝜌jk − 𝜌ij𝜌ik) must be nonnegative. 
This introduces a simple necessary condition for star-decomposability that may be 

used to quickly rule out many likely candidates. 

Corollary 12.3.2	 A necessary condition for a distribution P(x1, x2, x3) to be star-decomposable is that all 
correlation coefficients obey the triangle inequality: 

𝜌jk ≥ 𝜌jk𝜌ik.	 (12.40) 

Inequality (12.40) is satisfied with equality if w coincides with xi, i.e., when xj 
and xk are independent, given xi. Thus, an intuitive interpretation of this corol
lary is that the correlation between any two variables must be stronger than that 
induced by their dependencies on the third variable; a mechanism accounting for 
direct dependencies must be present. 

Having established the criterion for star-decomposability, we may address a 

related problem. Suppose P is not star-decomposable. Can it be approximated by 
a star-decomposable distribution P̂ that has the same second-order probabilities? 

The preceding analysis contains the answer to this question. Note that the third-
order statistics are represented only by the term pijk, and this term is confined by 
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(12.39) to a region whose boundaries are determined by second-order parameters. 
Thus, if we insist on keeping all second-order dependencies of P intact and are will
ing to choose pijk so as to yield a star-decomposable distribution, we can only do so 

if the region circumscribed by (12.39) is nonempty. This leads to the statement: 

Theorem 12.3.3	 A necessary and sufficient condition for the second-order dependencies among the triplet 
x1, x2, x3 to support a star-decomposable extension is that the six inequalities, 

pijpik pijpik≤ x ≤ + 𝜎j𝜎k(𝜌jk − 𝜌ij𝜌ik), i = 1, 2, 3, (12.41)
pi pi 

possess a solution for x. 

12.3.4 A Tree-Reconstruction Procedure 
We are now ready to confront the central problem of this section—given a tree-
decomposable distribution P(x1, … , xn), can we uncover its underlying topology 
and the underlying tree-distribution PT (x1, … , xn, w1, … , wm)? 

The construction method is based on the observation that any three leaves in a 

tree have one, and only one, internal node that can be considered their center, i.e., 
it lies on all the paths connecting the leaves to each other. If one removes the cen
ter, the three leaves become disconnected from each other. This means that, if P 

is tree-decomposable, then the joint distribution of any triplet of variables xi, xj, xk 

is star-decomposable, i.e., P(xi, xj, xk) uniquely determines the parameters 𝛼, fi, gi 
as in (12.33), (12.34), and (12.35), where 𝛼 is the marginal probability of the central 
variable. Moreover, if we compute the star decompositions of two triplets of leaves, 
both having the same central node w, the two distributions should have the same 

value for 𝛼 = PT (w = 1). This provides us with a basic test for verifying whether two 

arbitrary triplets of leaves share a common center, and a successive application of 
this test is sufficient for determining the structure of the entire tree. 

Consider a 4-tuple x1, x2, x3, x4 of leaves in T. These leaves are interconnected 

through one of the four possible topologies shown in Figure 12.8. The topologies 
differ in the identity of the triplets which share a common center. For example, in 

the topology of Figure 12.8(a) the pair [(1, 2, 3), (1, 2, 4)] share a common center, and 

so does the pair [(1, 3, 4), (2, 3, 4)]. In Figure 12.8(b), on the other hand, the sharing 

1

(a) (b) (c) (d)

4 1 2 1 2 1 2

3 3 4 34
34

2

Figure 12.8 The four possible topologies by which four leaves can be related. 
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pairs are [(1, 2, 4), (2, 4, 3)] and [(1, 3, 4), (2, 1, 3)], and in Figure 12.8(d) all triplets 
share the same center. Thus, the basic test for center-sharing triplets enables us to 

decide the topology of any 4-tuple and, eventually, to configure the entire tree. 
We start with any three variables x1, x2, and x3, form their star decomposition, 

choose a fourth variable, x4, and ask to which leg of the star should x4 be joined. 
We can answer this question easily by testing which pairs of triplets share centers, 
deciding on the appropriate topology and connecting x4 accordingly. Similarly, if 
we already have a tree structure Ti, with i leaves, and we wish to know where to join 

the (i + 1)th leaf, we can choose any triplet of leaves from Ti with central variable w 

and test to which leg of w should xi+1 be joined. This, in turn, identifies a subtree T ′ i 
of Ti that should receive xi+1 and permits us to remove from further consideration 

the subtrees emanating from the unselected legs of w. Repeating this operation on 

the selected subtree Ti 
′ will eventually reduce it to a single branch, to which xi+1 is 

joined. 
It is possible to show [26] that, if we choose, in each state, a central variable that 

splits the available tree into subtrees of roughly equal size, the joining branch of 
xi+1 can be identified in, at most, logk/(k−1)(i) tests, where k is the maximal degree 

of the Ti. This amounts to O(n log n) test for constructing an entire tree of n leaves. 
So far, we have shown that the structure of the tree T can be uncovered uniquely. 

Next we show that the distribution PT is, likewise, uniquely determined from P, i.e., 
that we can determine all the functions P(xi|wj) and P(wj |wk) in (12.26), for i = 1, … , n 

and j, k = 1, 2, … , m. The functions P(xi|wj) assigned to the peripheral branches of 
the tree are determined directly from the star decomposition of triplets involving 

adjacent leaves. In Figure 12.7, for example, the star decomposition of P(x1, x2, x5) 
yields P(x1|w1) and P(x2|w1). The conditional probabilities P(wj |wk) assigned to inte
rior branches are determined by solving matrix equations. For example, P(x1|w2) 
can be obtained from the star decomposition of (x1, x5, x7), and it is related to 

P(x1|w1) via 

P(x1|w2) = ∑ P(x1|w1)P(w1|w2). 
w1 

This matrix equation has a solution for P(w1|w2) because P(x1|w1) must be nonsingu
lar. It is only singular when f1 = g1, i.e., when x1 is independent of w1 and is therefore 

independent of all other variables. Hence, we can determine the parameters of the 

branches next to the periphery, use them to determine more interior branches, and 

so on, until all the interior conditional probabilities P(wi|wj) are determined. 
Next, we shall show that the tree structure can be recovered without resort

ing to third order probabilities; correlations among pairs of leaves suffice. This 
feature stems from the observation that, when two triplets of a 4-tuple are 
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star-decomposable with respect to the same central variable w (e.g, (1, 2, 3) and 

(1, 2, 4) in Figure 12.8(a)), then not only are the values of 𝛼 the same, but the 

f - and g-parameters associated with the two common variables (e.g., 1 and 2 in 

Figure 12.8(a)) must also be the same. While the value of 𝛼 depends on a third-
order probability, the difference fi − gi depends only on second-order terms via 

(12.36). Thus, requiring that f1 − g1 in Figure 12.8(a) obtain the same value in the 

star decomposition of (1, 2, 3) as in that of (1, 2, 4) leads to the equation: 

[12][13]/[23] = [12][14]/[24]	 (12.42) 

which, using (12.28), yields 

𝜌13𝜌42 = 𝜌14𝜌32.	 (12.43) 

An identical equality will be obtained for each fi − gi, i = 1, 2, 3, 4, relative to the 

topology of Figure 12.8(a). Similarly, the topology of Figure 12.8(b) dictates 

𝜌12𝜌43 = 𝜌14𝜌23	 (12.44) 

and that of Figure 12.8(c) dictates: 

𝜌12𝜌34 = 𝜌13𝜌24.	 (12.45) 

Thus, we see that each of these three topologies is characterized by its own distinct 
equality, while the topology of Figure 12.8(d) is distinguished by all three equal
ities holding simultaneously. This provides the necessary second-order criterion 

for deciding the topology of any 4-tuple tested: if the equality 𝜌ij𝜌kl = 𝜌ik𝜌jl holds 
for some permutation of the indices, we decide on the topology 
i

l

j

k

If it holds for two permutations with distinct topologies, the entire 4-tuple is star-
decomposable. Note that the equality 𝜌ij𝜌kl = 𝜌ik𝜌jl must hold for at least one 

permutation of the variables or else the 4-tuple would not be tree-decomposable. 

12.3.5	 Conclusions and Open Questions 
This section provides an operational definition for entities called “hidden causes,” 
which are not directly observable but facilitate the acquisition of effective causal 
models from empirical data. Hidden causes are viewed as dummy variables 
which, if held constant, induce probabilistic independence among sets of visi
ble variables. It is shown that if all variables are bivalued and if the activities of 
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the visible variables are governed by a tree-decomposable probability distribution, 
then the topology of the tree can be uncovered uniquely from the observed correla
tions between pairs of variables. Moreover, the structuring algorithm requires only 
n log n steps. 

The method introduced in this paper has two major shortcomings: It requires 
precise knowledge of the correlation coefficients, and it works only when there 

exists an underlying model that is tree-structured. In practice, we often have only 
sample estimates of the correlation coefficients; therefore, it is unlikely that cri
teria based on equalities (as in (12.43)) will ever be satisfied exactly. It is possible, 
of course, to relax these criteria and make topological decisions by seeking prox
imities rather than equalities. For example, instead of searching for an equality 
𝜌ij𝜌kl = 𝜌ik𝜌jl, we can decide the 4-tuple topology on the basis of the permutation 

of indices that minimizes the difference 𝜌ij𝜌kl − 𝜌ik𝜌jl. Experiments show, however, 
that the structure which evolves from such a method is very sensitive to inaccura
cies in the estimates 𝜌ij, because no mechanism is provided to retract erroneous 
decisions made in the early stages of the structuring process. Ideally, the topologi
cal membership of the (i + 1)th leaf should be decided not merely by its relations to 

a single triplet of leaves chosen to represent an internal node w but also by its rela
tions to all previously structured triplets which share w as a center. This, of course, 
will substantially increase the complexity of the algorithm. 

Similar difficulties plague the task of finding the best tree-structured approxi
mation for a distribution which is not tree-decomposable. Even though we argued 

that natural data which lend themselves to causal modeling should be repre
sentable as tree-decomposable distributions, these distributions may contain 

internal nodes with more than two values. The task of determining the parame
ters associated with such nodes is much more complicated and, in addition, rarely 
yields unique solutions. Unique solutions, as shown in Section 12.3.4, are essen
tial for building large structures from smaller ones. We leave open the question of 
explaining how approximate causal modeling, an activity which humans seem to 

perform with relative ease, can be embodied in computational procedures that are 

both sound and efficient. 

12.A Appendix A. Derivation of the Updating Rules for Singly 
Connected Networks 

12.A.1 Updating BEL 
Starting with 

BEL(Ai) £ P(Ai|D+ 
CA, D

− 
AY ),BA, D

+ 
AX , D

− 



182 Chapter 12 Fusion, Propagation, and Structuring in Belief Networks 

we apply Bayes’ rule, and obtain 

BEL(Ai) = 𝛼P(D− |Ai, D+ 
CA)P(Ai|D

+ 
CA).AX , D

− 
AY BA, D

+ 
BA, D

+ 

The conditional independence of (12.14) now yields (12.15): 

BEL(Ai) = 𝛼P(D− |Ai)P(D− |Ai)P(Ai|D+ 
AX , Ai)P(D

− 
AY CA).AY BA, D

+ 

Conditioning and summing over the values of B and C, we get 

BEL(Ai) = 𝛼P(D− |Ai)P(D− |Ai)AX AY 

D+ D+⋅∑ P(Ai| BA, D
+ 
CA, B, C)P(B, C| BA, D

+ 
CA) 

B,C 

= 𝛼P(D− |Ai)P(D− |Ai)AX AY 

⋅∑ P(Ai|B, C)P(B|D+ |D+ 
BA)P(C CA) 

B,C 

making use of the fact that B and C are independent, given data from nondescen
dants of A. This confirms (12.16): 

BEL(Ai) = 𝛼P(D− |Ai)P(D− |Ai)AX AY 

D+ D+⋅ ∑ P(Ai|Bj, Ck)P(Bj | BA)P(Ck| CA)[ j,k ] 

and, using the 𝜆-𝜋 notation 

𝜆X (Ai) = P(D− |Ai), 𝜋A(Bj) = P(Bj |D+ 
AX BA), 

we obtain (12.19) 

BEL(Ai) = 𝛼𝜆X (Ai)𝜆Y (Ai) ∑ P(Ai|Bj, Ck)𝜋A(Bj)𝜋A(Ck)] 
.

[ j,k 

12.A.2 Updating 𝜋 

𝜋X (Ai) = P(Ai|D+ |D − D− 
AX ) = P(Ai AX ) 

= BEL(Ai|𝜆X (A) = (1, 1, … , 1)) 

= 𝛼𝜆Y (Ai) ∑ P(Ai|Bj, Ck)𝜋A(Bj)𝜋A(Ck)] 
,

[ j,k 

thus confirming (12.22). 
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12.A.3 Updating 𝜆 

𝜆A(Bi) = P(D− |Bi) = P(A, D− 
AY , D

+ |Bi)AB AX , D
− 

CA

= ∑ P(D− 
AY , D

+ |Bi, Cj, Ak)P(Cj, Ak|Bi)AX , D
− 

CA
j,k 

= ∑ P(D− |Ak)P(D− |Ak)P(D+ |Cj)AX AY CA
j,k 

⋅ P(Ak|Bi, Cj, )P(Cj |Bi). 

But P(Cj |Bi) = P(Cj) because B and C are marginally independent, and 

P(D+ D+ 
CA|Cj)P(Cj) = 𝛼P(Cj | CA) 

by Bayes’ rule. Therefore, 

𝜆A(Bi) = 𝛼 ∑ P(D− |Ak)P(D− | |D+ |AX AY Ak)P(Cj CA)P(Ak Cj, Bi) 
j,k 

= 𝛼 ∑ 𝜆X (Ak)𝜆Y (Ak)𝜋A(Cj)P(Ak|Bi, Cj) 
j,k 

= 𝛼 ∑
[
𝜋A(Cj)∑ 𝜆X (Ak)𝜆Y (Ak)P(Ak|Bi, Cj)] 

, 
j k 

which confirms (12.21). 

12.B Appendix B. Conditions for Star-decomposability 
Let 

pi = P(xi = 1),
 

pij = P(xi = 1, xj = 1),
 

pijk = P(xi = 1, xj = 1, xk = 1). (12.B.1)
 

The seven joint-occurrence probabilities, p1, p2, p3, p12, p13, p23, p123, uniquely define 

the seven parameters necessary for specifying P(x1, x2, x3). For example: 

P(x1 = 1, x2 = 1, x3 = 0) = p12 − p123, 

P(x1 = 1, x2 = 0) = p1 − p2, etc. 

These probabilities will be used in the following analysis. 
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Assuming P is star-decomposable (equations (12.23) and (12.24)), we can express 
the joint-occurrence probabilities in terms of 𝛼, fi, gi and obtain seven equations 
for these seven parameters. 

pi = 𝛼fi + (1 − 𝛼)gi, (12.B.2) 

pij = 𝛼fifj + (1 − 𝛼)gigj, (12.B.3) 

pijk = 𝛼fifjfk + (1 − 𝛼)gigjgk. (12.B.4) 

These equations can be manipulated to yield product forms on the right-hand 

sides: 

pij − pipj = 𝛼(1 − 𝛼)(fi − gj)(fj − gj), (12.B.5) 

pipijk − pijpik = 𝛼(1 − 𝛼)figi(fj − gj)(fk − gk). (12.B.6) 

Equation (12.B.5) comprises three equations which can be solved for the differences 
fi − gi, i = 1, 2, 3, giving 

fi − gi = Si = ±[[ij][ik]/[jk]]
1/2, (12.B.7) 

where the bracket [ij] stands for the determinant 

[ij] = pij − pipj. (12.B.8) 

These, together with (12.B.2), determine fi and gi in terms of Si and 𝛼 (still 
unknown): 

fi = pi + Si[(1 − 𝛼)/𝛼]1/2, (12.B.9) 

gi = pi − Si[𝛼/(1 − 𝛼)]1/2. (12.B.10) 

To determine 𝛼, we invoke (12.B.6) and obtain 

[𝛼/(1 − 𝛼)]1/2 = t or 𝛼 = t2/(1 − t2), (12.B.11) 

where t is a solution to 

t2 + Kt − 1 = 0, (12.B.12) 

and K is defined by: 

Si pi 𝜇iK = − + , (12.B.13) 
pi Si Sipi 

𝜇i = [jk, i]/[jk] = (pipijk − pijpik)/[jk]. (12.B.14) 
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It can be easily verified that K (and, therefore, 𝛼) obtains the same value regardless 
of which index i provides the parameters in (12.B.13). 

From (12.B.13) we see that the parameters Si and 𝜇i of P govern the solutions of 
(12.B.12) which, in turn, determine whether P is star-decomposable via the resulting 

values of 𝛼, fi, gi. These conditions are obtained by requiring that: 
(a) Si be real, 

(b) 0 ≤ fi ≤ 1, 

(c) 0 ≤ gi ≤ 1. 

Requirement (a) implies that, of the three brackets in (12.B.7), either all three are 

nonnegative, or exactly two are negative. These brackets are directly related to the 

correlation coefficient via: 

𝜌ij = [ij][pi(1 − pi)]−1/2[pj(1 − pj)]−1/2 = [ij]/𝜎i𝜎j (12.B.15) 

and so, requirement (a) is equivalent to the condition that all three correlation coef
ficients are nonnegative. If two of them are negative, we can rename two variables 
by their complements; the newly defined triplet will have all its pairs positively 
correlated. 

Now attend to requirement (b). Equation (12.B.9) shows that fi can be negative 

only if Si is negative, i.e., if Si is identified with the negative square root in (12.B.7). 
′ However, the choice of negative Si yields a solution (fi 

′ , gi , 𝛼 ′) which is symmetrical 
′ to (fi, gi, 𝛼) stemming from a positive Si, with f ′ = gi, g = fi, 𝛼 ′ = 1−𝛼. Thus, Si andi i 

fi can be assumed to be nonnegative, and it remains to examine the condition fi ≤ 1 
or, equivalently, t ≥ Si/(1 − pi) (see (12.B.9) and (12.B.11)). Imposing this condition 

in (12.B.12) translates to: 

pijk ≤ pijpik/pi + 𝜎k𝜎j[𝜌jk − 𝜌ij𝜌ik]. (12.B.16) 

Similarly, inserting requirement (c), gi ≥ 0, in (12.B.12) yields the inequality: 

pikpij/pi ≤ pijk (12.B.17) 

which, together with (12.B.16), lead to Theorem 12.3.1. 
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of a (minimal) graph G such that I(x, z, y) can be validated by testing whether 
z separates x from y in G. These conditions define a GRAPHOID. The theory of 
graphoids uncovers the axiomatic basis of information relevance (e.g., probabilis
tic dependencies) and ties it to vertex-separation conditions in graphs. The defin
ing axioms can also be viewed as inference rules for deducing which propositions 
are relevant to each other, given a certain state of knowledge. 

13.1 Introduction 
Any system that reasons about knowledge and beliefs must make use of informa
tion about relevancies. If we have acquired a body of knowledge z and now wish 

to assess the truth of proposition x, it is important to know whether it would be 

worthwhile to consult another proposition y, which is not in z. In other words, 
before we consult y we need to know if its truth value can potentially generate new 

information relative to x, information not available from z. For example, in trying 

to predict whether I am going to be late for a meeting, it is normally a good idea to 

ask somebody on the street for the time. However, once I establish the precise time 

by listening to the radio, asking people for the time becomes superfluous and their 
responses would be irrelevant. Similarly, knowing the color of X’s car normally tells 
me nothing about the color of Y ’s. However, if X were to tell me that he almost mis
took Y ’s car for his own, the two pieces of information become relevant to each 

other. What logic would facilitate this type of reasoning? 
In probability theory, the notion of relevance is given precise quantitative 

underpinning using the device of conditional independence. A variable x is said 

to be independent of y given the information z if 

P(x, y | z) = P(x | z) P(y | z). 

However, it is rather unreasonable to expect people or machines to resort to numer
ical verification of equalities in order to extract relevance information. The ease 

and conviction with which people detect relevance relationships strongly suggest 
that such information is readily available from the organizational structure of 
human memory, not from numerical values assigned to its components. Accord
ingly, it would be interesting to explore how assertions about relevance can be 

tested in various models of memory and, in particular, whether such assertions 
can be derived by simple manipulations on graphs. 

Graphs offer useful representations for a variety of phenomena. They give vivid 

visual display for the essential relations in the phenomenon and provide a con
venient medium for people to communicate and reason about it. Graph-related 

concepts are so entrenched in our language that one wonders whether people can 
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in fact reason any other way, except by tracing links and arrows and paths in some 

mental representation of concepts and relations. Therefore, if we aspire to use 

non-numeric logic to mimic human reasoning about knowledge and beliefs, we 

should make sure that most derivational steps in that logic correspond to simple 

operations on some graphs. 
When we deal with a phenomenon where the notion of neighborhood or con

nectedness is explicit (e.g., family relations, electronic circuits, communication 

networks, etc.) we have no problem configuring a graph which represents the main 

features of the phenomenon. However, in modelling conceptual relations such as 
causation, association and relevance, it is often hard to distinguish direct neigh
bors from indirect neighbors; so, the task of constructing a graph representation 

then becomes more delicate. 
This paper studies the feasibility of devising graphoid representations for rela

tional structures in which the notion of neighborhood is not specified in advance. 
Rather, what is given explicitly is the relation of “in betweenness.” In other words, 
we are given the means to test whether any given subset S of elements intervenes 
in a relation between elements x and y, but it remains up to us to decide how to 

connect the elements together in a graph that accounts for these interventions. 
The notion of conditional independence in probability theory is a perfect exam

ple of such a relational structure. For a given probability distribution P and any 
three variables x, y, z, while it is fairly easy to verify whether knowing z renders x 

independent of y, P does not dictate which variables should be regarded as direct 
neighbors. Thus, many topologies might be used to display the dependencies 
embodied in P. 

The theory of graphoids establishes a clear correspondence between probabilis
tic dependencies and graph representation. It tells us how to construct a unique 

edge-minimum graph G such that each time we observe a vertex x separated from 

y by a subset S of vertices, we can be guaranteed that variables x and y are indepen
dent given the values of the variables in S. Moreover, the set of neighbors assigned 

by G to each x coincides exactly with the boundary of x, i.e., the smallest set of vari
ables needed to shield x from the influence of all other variables in the system. 
This construction is further extended by the theory of graphoids to cases where 

the notion of independence is not given probabilistically or numerically. We now 

ask what logical conditions should constrain the relationship: I(x, z, y) = “knowing 

z renders x irrelevant to y” so that we can validate it by testing whether z sepa
rates x from y in some graph G. We show that two main conditions (together with 
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symmetry and subset closure) are sufficient: 

weak closure for intersection: I(x, z ∪ w, y) & I(x, z ∪ y, w) ⟹ I(x, z, y ∪ w) 

(13.1) 

weak closure for union: I(x, z, y ∪ w) ⟹ I(x, z ∪ w, y). (13.2) 

Loosely speaking, (13.1) states that if y does not affect x when w is held constant 
and if, simultaneously, w does not affect x when y is held constant, then neither 
w nor y can affect x. (13.2) states that learning an irrelevant fact (w) cannot help 

another irrelevant fact (y) become relevant. Condition (13.1) is sufficient to guaran
tee a unique construction of an edge-minimum graph G that validates I(x, z, y) by 
vertex separation. Condition (13.2) guarantees that the neighborhoods defined by 
the edges of G coincide with the relevance boundaries defined by I. These two con
ditions are chosen as the defining axioms of graphoids, and are shown to account 
for the graphical properties of probabilistic dependencies. 

This paper is organized as follows: In Section 13.2 we exemplify a graphoid 

system using probabilistic dependencies and their graphical representations. 
Section 13.3 introduces an axiomatic definition of graphoids, and states (without 
proofs) their graph-representation properties; the proofs can be found in [Pearl 
and Paz 1985]. Section 13.4 discusses a few extensions and outlines open problems. 

13.2 Probabilistic Dependencies and their Graphical Representation 
Let U = {α, β, … } be a finite set of discrete-valued random variables characterized 

by a joint probability function P(⋅), and let x, y, and z stand for any three subsets of 
variables in U. We say that x and y are conditionally independent given z if 

P(x, y | z) = P(x | z) P(y | z) when P(z) > 0. (13.3) 

Eq. (13.3) is a terse notation for the assertion that for any instantiation zk of the 

variables in z and for any instantiation xi and yj of x and y, we have 

P(x = xi and y = yj | z = zk) = P(x = xi | z = zk) P(y = yj | z = zk). (13.4) 

The requirement P(z) > 0 guarantees that all the conditional probabilities are 

well defined, and we shall henceforth assume that P > 0 for any instantiation of 
the variables in U. This rules out logical and functional dependencies among the 

variables, a case which would require special treatment. 
We shall use (x ⊥ z ⊥ y)P or simply (x ⊥ z ⊥ y) to denote the independence of x 

and y given z. Thus, 

(x ⊥ z ⊥ y)P ⟺ P(x, y | z) = P(x | z) P(y | z) ⟺ P(x | y, z) = P(x | z). (13.5) 
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Note that (x ⊥ z ⊥ y) implies the conditional independence of all pairs of variables 
α ε x and β ε y, but the converse is not necessarily true. 

The relation (x ⊥ z ⊥ y) satisfies the following logical independent properties: 

Symmetry: (x ⊥ z ⊥ y) ⟺ (y ⊥ z ⊥ x) (13.6a) 

Closure for Subsets: (x ⊥ z ⊥ y, w) ⟹ P(x ⊥ z ⊥ y) & (x ⊥ z ⊥ w) 
(13.6b) 

Weak Closure for Intersection: (x ⊥ y, z ⊥ w) & (x ⊥ y, w ⊥ z) ⟹ (x ⊥ y ⊥ z, w) 
(13.6c) 

Weak Closure for Union: (x ⊥ y ⊥ z, w) ⟹ (x ⊥ y, z ⊥ w) (13.6d) 

Contraction: (x ⊥ y, z ⊥ w) & (x ⊥ y ⊥ z) ⟹ (x ⊥ y ⊥ z, w) 
(13.6e) 

While the properties in (13.5) characterize the numeric representation of P, those 

in (13.6) are purely logical, void of any association with numerical forms and can 

be viewed, therefore, as an axiomatic definition of conditional independence. 
A graphical interpretation for properties (13.6c) through (13.6e) can be obtained 

by envisioning the chain x—y—z—w and associating the triplet (x ⊥ z ⊥ y) with the 

statement “z separates x from y” or “z intervenes between x and y.” 
Ideally, dependent variables should be displayed as connected nodes in some 

graph G and independent variables as unconnected nodes. We would also like to 

require that if the removal of some subset S of nodes from the graph renders nodes 
x and y disconnected, written <x | S | y>G, then this separation should correspond 

to conditional independence between x and y given S, namely, <x | S | y>G ⟹ 

(x ⊥ S ⊥ y)P and conversely, (x ⊥ S ⊥ y)P ⟹ <x | S | y>G. 
This would provide a clear graphical representation for the notion that x does 

not affect y directly, that its influence is mediated by the variables in S. Unfortu
nately, we shall next see that these two requirements might be incompatible; there 

might exist no way to display all the dependencies and independencies embodied 

in P by vertex separation in a graph. 

An undirected graph G is a dependency map (D-map) of P if there is a one-to-one 

correspondence between the variables in P and the nodes of G, such that for all 
non-intersecting subsets, x, y, S of variables we have: 

(x ⊥ S ⊥ y)P ⟹ <x | S | y>G. (13.7) 

Similarly, G is an Independency map (I-map) of P if: (x ⊥ S ⊥ y)P ⟸ <x | S | y>G 

(13.8) 
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Lemma 

Definition 

Theorem 13.1 

A D-map guarantees that vertices found to be connected are indeed dependent; 
however, it may occasionally display dependent variables as separated vertices. An 

I-map works the opposite way: it guarantees that vertices found to be separated 

always correspond to genuinely independent variables but does not guarantee that 
all those shown to be connected are in fact dependent. Empty graphs are trivial 
D-maps, while complete graphs are trivial I-maps. 

Given an arbitrary graph G, the theory of Markov Fields [Lauritzen 1982] tells us 
how to construct a probabilistic model P for which G is both a D-map and an I-map. 
We now ask whether the converse construction is possible. 

There are probability distributions for which no graph can be both a D-map and 

an I-map. 

Proof. Graph separation always satisfies <x | S1 | y>G ⟹ <x | S1 ∪ S2 | y>G for any 
two subsets S1 and S2 of vertices. Some P’s, however, may induce both (x ⊥ S1 ⊥ y)P 

and NOT (x | S1 ∪ S2 ⊥ y)P. Such P’s cannot have a graph representation which is 
both an I-map and a D-map because D-mapness forces G to display S1 as a cutset 
separating x and y, while I-mapness prevents S1 ∪ S2 from separating x and y. No 

graph can satisfy these two requirements simultaneously. Q.E.D. 

An example illustrating the conditions of the proof is an experiment with two coins 
and a bell that rings whenever the outcomes of the two coins are the same. If we 

ignore the bell, the coin outcomes are mutually independent, i.e., S1 = ∅. However, 
if we notice the bell (S2), then learning the outcome of one coin should change our 
opinion about the other coin. 

Being unable to provide a graphical description for all independencies, we set
tle for the following compromise: we will consider only I-maps but will insist that 
the graphs in those maps capture as many of P’s independencies as possible, i.e., 
they should contain no superfluous edges. 

A graph G is a minimal I-map of P if no edge of G can be deleted without destroying 

its I-mapness. 

Every P has a (unique) minimal I-map G0 (called the MARKOV-NET of P) constructed 

by connecting only pairs (α, β) for which 

(α ⊥ U−α−β ⊥ β)P is FALSE (13.9) 

(i.e., deleting from the complete graph all edges (α, β) for which (α ⊥ 

U−α−β ⊥ β)P). 
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Definition	 A Markov boundary BP(α) of variable α is a minimal subset S that renders α 

independent of all other variables, i.e., 

(α ⊥ S ⊥ U−S−α)P, α ∉ S	 (13.10) 

and simultaneously, no proper subset S ′ of S satisfies (α ⊥ S ′ | U−S ′ −α)P. If no S 

satisfies (13.10), define BP(α) = U − α. 

Theorem 13.2	 Each variable α has a unique Markov boundary BP(α) that coincides with the set of 
vertices BG0 (α) adjacent to α in the Markov net G0. 

The usefulness of Theorem 13.2 lies in the fact that in many cases it is the Markov 
boundaries BP(α) that define the organizational structure of human memory. Peo
ple find it natural to identify the immediate consequences and/or justifications of 
each action or event, and these relationships constitute the neighborhood seman
tics for inference nets used in expert systems [Duda et al. 1976]. The fact that BP(α) 
coincides with BG0 (α) guarantees that many independencies can be validated by 
tests for graph separation at the knowledge level itself [Pearl 1985]. 

13.3 GRAPHOIDS 

Definition	 A graphoid is a set I of triplets (x, z, y) where x, z, y are three non-intersecting sub
sets of elements drawn from a finite collection U = {α, β, ⋯}, having the following 

four properties. (We shall write I(x, y, z) to state that the triplet (x, y, z) belongs to 

graphoid I.) 

Symmetry I(x, z, y) ⟺ I(y, z, x) (13.11a) 

Subset Closure I(x, z, y ∪ w) ⟹ I(x, z, y) & (x, z, w) (13.11b) 

Intersection I(x, z ∪ w, y) & I(x, z ∪ y, w) ⟹ I(x, z, y ∪ w) (13.11c) 

Union I(x, z, y ∪ w) ⟺ I(x, z ∪ w, y) (13.11d) 

For technical convenience we shall adopt the convention that I contains all triplets 
in which either x or y are empty, i.e., I(x, z, ∅). 

If U stands for the set of vertices in some graph G, and if we equate I(x, z, y) with 

the statement: “z separates between x and y,” written <x | z | y>G, then the condi
tions in (13.11) are clearly satisfied. However, not all properties of graph separation 

are required for graphoids. For example, in graphs we always have [<α | z | β>G & 

<α | z | γ>G] iff <α | z | β ∪ γ>G while property (13.11b) requires only the “if” part. 
Similarly, graph separation dictates <x | z | y>G ⟹ <x | z ∪ w | y>G, ∀ w, while 

(13.11d) severely restricts the conditions under which a separating set z can be 

enlarged by w. 
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Definition	 A graph G is said to be an I-map of I if there is a one-to-one correspondence between 

the elements in U and the vertices of G, such that, for all non-intersecting subsets 
x, y, S we have: 

<x | S | y>G ⟹ I(x, S, y). (13.12) 

Theorem 13.3 Every graphoid I has a unique edge-minimum I-map G0. G0 = (U, E0) is constructed 

by connecting only pairs (α, β) for which the triplet (α, U−α−β, β) is not in I, i.e., 

(α, β) ∉ E0 iff I(α, U−α−β, β). (13.13) 

Definition A relevance sphere RI (α) of an element α ∈ U is any subset S of elements for which 

I(α, S, U−S−α) and α ∉ S. (13.14) 

Let R
* 

I (α) stand for the set of all relevance spheres of α. A set is called a relevance 
boundary of α, denoted BI (α), if it is in RI (α) and if, in addition, none of its proper 

* 

subsets is in RI (α). 

BI (α) is to be interpreted as the smallest set that “shields” α from the influence 

* 

of all other elements. Note that R* 
I (α) is non-empty because I(x, z, ∅) guarantees 

that the set S = U−α satisfies (13.14). 

Theorem 13.4	 Every element α ∈ U in a graphoid I has a unique relevance boundary BI (α). BI (α) 
coincides with the set of vertices BG0 (α) adjacent to α in the minimal graph G0. 

Corollary 13.1	 The set of relevance boundaries BI (α) forms a neighbor system, i.e., a collection 

B* 
I = {BI (α) : α ∈ U} of subsets of U such that (i) α ∉ BI (α), and (ii) α ∈ BI (β) 
iff β ∈ BI (α), α, β ∈ U. 

Corollary 13.2	 The edge-minimum I-map G0 can be constructed by connecting each α to all 
members of its relevance boundary BI (α). 

Thus we see that the major graphical properties of probabilistic dependencies are 

consequences of the intersection and union properties, (13.11c) and (13.11d), and 

will therefore be shared by all graphoids. 

13.4 Special Graphoids and Open Problems 

13.4.1 Graph-induced Graphoids 
The most restricted type of graphoid is that which is isomorphic to some under
lying graph, i.e., all triplets (x, z, y) in I reflect vertex-separation conditions in an 

actual graph. 
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Definition	 A graphoid I is said to be graph-induced if there exists a graph G such that 

I(x, z, y) ⟺ <x | z | y>G.	 (13.15) 

Theorem 13.5	 A necessary and sufficient condition for a graphoid I to be graph induced is that it 
satisfies the following five independent axioms: 

I(x, z, y) ⟺ I(y, z, x) (symmetry) (13.16a) 

I(x, z, y ∪ w) ⟹ I(x, z, y) & I(x, z, w) (subset closure) (13.16b) 

I(x, z ∪ w, y) & I(x, z ∪ y, w) ⟹ I(x, z, y ∪ w) (intersection) (13.16c) 

I(x, z, y) ⟹ I(x, z ∪ w, z) ∀ w ⊂ U (strong union) (13.16d) 

I(x, z, y) ⟹ I(x, z, γ) or I(γ, z, y) ∀ γ ∉ x ∪ z ∪ y (transitivity) (13.16e) 

Remarks	 (13.16c) and (13.16d) imply the converse of (13.16b), The union axiom (13.16d) is 
unconditional and therefore stronger than the one required for general graphoids 
(13.11d). It allows us to construct G0 by simply deleting from a complete graph every 
edge (α, β) for which a triplet of the form (α, S, β) appears in I. 

13.4.2	 Probabilistic Graphoids 

Definition	 A graphoid is called probabilistic if there exists a probability distribution P on the 

variables in U such that I(x, z, y) iff x is independent of y given z, i.e., 

I(x, z, y) ⟺ (x ⊥ z ⊥ y)P.	 (13.17) 

In other words, probabilistic graphoids capture the notion of conditional indepen
dence in Probability Theory (see Section 13.2). 

Theorem 13.6	 Every graph-induced graphoid is probabilistic. 

Since every probabilistic-independence relation satisfies (13.6a)-(13.6e), a necessary 
condition for a graphoid to be probabilistic is that, in addition to (13.11), it also 

satisfies the contraction property (13.6e), i.e., 

I(x, y ∪ z, w)	 & I(x, y, z) ⟹ I(x, y, z ∪ w). (13.18) 

(13.18) can be interpreted to state that if we judge w to be irrelevant (to x) after 
learning some irrelevant facts z, then w must have been irrelevant before learning 

z. Together with the union property (13.11d) it means that learning irrelevant facts 
should not alter the relevance status of other propositions in the system; whatever 
was relevant remains relevant and what was irrelevant remains irrelevant. 
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Conjecture The contraction property (13.18) is sufficient for a graphoid to be probabilistic. 

Unlike the sufficiency condition for graph-induced graphoids, we found no way of 
constructing a distribution P that yields I(x, z, y) ⟹ (x ⊥ z ⊥ y)P for every I that 
satisfies (13.18). 

13.4.3	 Correlational Graphoids 
Let U consist of n random variables u1, u2, … , un, and let z be a subset of U such that 
| z | ≤ n − 2. The partial correlation coefficient of ui and uj with respect to z, denoted 

ρij⋅z, measures the correlation between ui and uj after subtracting from them the 

best linear estimates using the variables in z (Cramér 1946). In other words, ρij⋅z 
measures the correlation that remains after removal of any part of the variation 

due to the influence of the variables in z. 

Definition	 Let x, y, z be three nonintersecting subsets of U. A relation Ic(x, y, z) is said to be 

correlation-based if for every ui ∈ x and uj ∈ y we have: 

Ic(x, z, y) ⟺ ρij⋅z = 0.	 (13.19) 

In other words, x is considered irrelevant to y relative to z if every variable in x is 
uncorrelated with every variable in y, after removing the (linear) influence of the 

variables in z. 

Theorem 13.7	 Every correlation-based relation is a graphoid which, in addition to axioms (13.11), 
also satisfies the contraction property (13.18) and the converse of (13.11b), i.e., 

I(x, z, y) and I(x, z, w) ⟹ I(x, z, y ∪ w). (13.20) 

Conjecture	 Every graphoid satisfying (13.18) and (13.20) is isomorphic to some correlation-
based relation. 

13.5 Conclusions 
We have shown that the essential qualities characterizing the probabilistic notion 

of conditional independence are captured by two logical axioms: weak closure for 
intersection (13.6c), and weak closure for union (13.6d). These two axioms enable us 
to construct an edge-minimum graph in which every cutset corresponds to a gen
uine independence condition, and these two axioms were chosen therefore as the 

logical basis for graphoid systems — a more general, nonprobabilistic formalism 

of relevance. Vertex separation in graphs, probabilistic independence and partial 
uncorrelatedness are special cases of graphoid systems where the two defining 

axioms are augmented with additional requirements. 
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The graphical properties associated with graphoid systems offer an effective 

inference mechanism for deducing, in any given state of knowledge, which propo
sitional variables are relevant to each other. If we identify the relevance boundaries 
associated with each proposition in the system, and treat them as neighborhood 

relations defining a graph G0, then we can correctly deduce irrelevance relation
ships by testing whether the set of currently known propositions constitutes a 

cutset in G0. 
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Abstract 
Recent progress towards unifying the probabilistic and model preference seman
tics for nonmonotonic reasoning has led to a remarkable observation: Any con
sistent system of default rules imposes an unambiguous and natural ordering 

on these rules which, to emphasize its simple and basic character, we term “Z
ordering.” This ordering can be used with various levels of refinement, to prioritize 

conflicting arguments, to rank the degree of abnormality of states of the world, and 

to define plausible consequence relationships. This paper defines the Z-ordering, 
briefly mentions its semantical origins, and illustrates two simple entailment rela
tionships induced by the ordering. Two extensions are then described, maximum-
entropy and conditional entailment, which trade in computational simplicity for 
semantic refinements. 

System Z: A Natural 
Ordering of Defaults with 
Tractable Applications to 
Nonmonotonic Reasoning 
Judea Pearl 

14.1 Description 
We begin with a set of rules R = {r: αr → βr} where αr and βr are propositional 
formulas over a finite alphabet of literals, and → denotes a new connective to be 
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Definition 14.1 

Definition 14.2 

given default interpretations later on. A truth valuation of the literals in the lan
guage will be called a model. A model M is said to verify a rule α → β if M |= α ∧ β 

(i.e., α and β are both true in M), and to falsify α → β if M |= α ∧ ¬ β. 
Given a set R of such rules, we first define the relation of toleration. 

A set of rules R ′ ⊆ R is said to tolerate an individual rule r, denoted T(r | R ′), if the 

set of formulas (αr ∧βr) ∪ (αr ′ ⊃ βr ′ ) is satisfiable, i.e., if there exists a model that 
r ′ ∈ R ′

verifies r and does not falsify any of the rules in R ′ . 

To facilitate the construction of the desired ordering, we now define the notion 

of consistency. 

A set R of rules is said to be consistent if for every non-empty subset R ′ ⊆ R there is 
at least one rule that is tolerated by all the others, i.e., 

′ ′∀R ′ ⊆ R, ∃ r ∈ R ′ , such that T(r | R ′ − r ′) (14.1) 

This definition, named p-consistent in [Adams 1975] and ε-consistent in [Pearl 
1988], assures the existence of an admissible probability assignment when rules 
are given a probabilistic interpretation. In other words, if each rule α → β is inter
preted as a statement of high conditional probability, P(β | α) ≥ 1 − ε, consistency 
assures that for every ε > 0 there will be a probability assignment P (to models 
of the language) that satisfies all these statements simultaneously. An identical 
criterion of consistency also assures the existence of an admissible preference rank
ing on models, when each rule α → β is given a model-preference interpretation, 
namely, β is true in all the most preferred models of α [Lehmann and Magidor 
1988]. 

A slightly more elaborate definition of consistency applies to databases con
taining mixtures of defeasible and nondefeasible rules [Goldszmidt and Pearl 
1989a]. Note that the condition of consistency is stronger than that of mere sat
isfiability. For example, the two rules a → b and a → ¬ b are satisfiable (if a is 
false) but not consistent. Intuitively, consistency requires that in addition to sat
isfying the constraint associated with the rule a → b, the truth of a should not 
be ruled out as an impossibility. This reflects the common understanding that 
a conditional sentence “if a then b” is not fully satisfied by merely making a 

false; it requires that both a and b be true in at least one possible world, however 
unlikely. 

The condition of consistency, Equation (14.1), leads to a natural ordering of the 

rules in R. Given a consistent R, we first identify every rule that is tolerated by all 
the other rules of R, assign to each such rule the label 0, and remove it from R. Next, 
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we attach a label 1 to every rule that is tolerated by all the remaining ones, and so 

on. Continuing in this way, we form an ordered partition of R = (R0, R1, R2, ⋯ RK ), 
where 

Ri = {r: T(r | R − R0 − R1 − ⋯ Ri−1)}	 (14.2) 

The label attached to each rule in the partition defines the Z-ranking or 
Z-ordering. The process of constructing this partition also amounts to testing the 

consistency of R, because it terminates with a full partition iff R is consistent 
[Goldszmidt and Pearl 1989a]. 

Theorem 14.1	 The complexity of testing the consistency of a set of rules is O[PS(n)N2], where N is 
the number of rules, n the number of literals in R and PS(n) the complexity of propo
sitional satisfiability in the sublanguage characterizing the rules (e.g., PS(n) = O(n) 
for Horn expressions). 

Proof. Identifying R0 takes N ⋅ PS(n) steps, identifying R1 takes (N − | R0 | )PS(n) 
steps, and so on. Thus, the total time it takes to complete the labeling is 

PS(n)[N + (N − | R0 | ) + (N − | R0 | − | R1 | ) + ⋯] ≤ PS(n)[N + (N − 1) + ⋯] 

= PS(n) 
N2	 

(14.3)
2 

In order to define the notions of entailment and consequence it is useful to 

translate the ranking among rules into preferences among models. The reason is 
that we wish to proclaim a formula g to be a plausible consequence of f, written 

f ⊢ g, only if the constraints imposed by R would force the models of f ∧ g to stand 

in some preference relation over those of f ∧ ¬ g. For example, the traditional pref
erential criterion for g to be a rational consequence of f requires that all the most 
preferred models of f satisfy g, i.e., that all the most preferred models of f reside 

in f ∧ g and none resides in f ∧ ¬ g [Shoham 1987]. We shall initially limit ourselves 
to such preference criteria that do not require substantial enumeration of models, 
i.e., that the preference between f ∧ g and f ∧ ¬ g be readily tested using the parti
tion defined in Equation (14.2). To that purpose, we propose the following ranking 

on models. Using Z(r) to denote the label assigned to rule r, 

Z(r) = i iff	 r ∈ Ri, (14.4) 

we define the rank associated with a particular model M as the lowest integer n 

such that all rules having Z(r) ≥ n are satisfied by M, 

Z(M) = min{n: M | ) Z(r) ≥ n} (14.5)= (αr ⊃ βr
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In other words, the rank of a model is equal to 1 plus the rank of the highest-
ranked rule falsified by the model. The rank associated with a given formula f is 
now defined as the lowest Z of all models satisfying f, 

Z(f ) = min{Z(M): M | f }= (14.6) 

Note that, once we establish the ranking of the rules, the complexity of determim
ing the Z value of any given M is O (N); we simply identify the highest Z rule that is 
falsified by M and add 1 to its Z. More significantly, determining the Z value of an 

arbitrary formula f requires at most N satisfiability tests; we search for the lowest 
i such that all rules having Z(r) ≥ i tolerate f → true, i.e., 

Z(f ) = min{i: T(f → true | Ri, Ri+1, …)} (14.7) 

Equation (14.5) defines a total order on models, with those receiving a lower Z 

interpreted as being more normal or more preferred. This ordering satisfies the 

constraints that for each rule αr → βr, βr holds true in all the most-preferred mod
els of αr, namely, the usual preferential model interpretation of default rules. It 
can be shown (see Appendix 14.I) that the rankings defined by Equations (14.4) and 

(14.5) correspond to a special kind of a preferential structure; out of all rankings sat
isfying the rule constraints, the assignment defined in Equation (14.5) is the only 
one that is minimal, in the sense of assigning to each model the lowest possible 

ranking (or highest normality) permitted by the rules in R. 

14.2 Consequence Relations 
We are now ready to define two notions of nonmonotonic entailment. Given a 

knowledge base in the form of a consistent set R of rules, and some factual infor
mation f, we wish to define the conditions under which f can be said to entail a 

conclusion g, in the context of R. 

Definition 14.3 0-entailment 
g is said to be 0-entailed by f in the context R, written f ⊢0 g, if the augmented set 
of rules R ∪ f → ¬ g is inconsistent. 

Theorem 14.2 0-entailment is semi-monotonic, i.e., if R ′ ⊆ R then
 

f ⊢0 g under R whenever f ⊢0 g under R ′ .
 

The proof is immediate, from the fact that if R ′ ∪ f → ¬ g is inconsistent, then 

R ∪ f → ¬ g must be inconsistent as well. Semi-monotonicity reflects a strategy of 
extreme caution; no consequence will ever be issued if it is possible to add rules 
to R (consistently) in such a way as to render the conclusion no longer valid. Thus, 
0-entailment generates the maximal set of “safe” conclusions that can be drawn 
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from R, and hence, was proposed in [Pearl 1989] as a conservative core that ought to 

be common to all non-monotonic formalisms. 
0-entailment was named p-entailment by Adams [1975], ε-entailment by 

Pearl [1988] and r-entailment by Lehmann and Magidor [1988]. Probabilistically, 
0-entailment guarantees that conclusions will receive arbitrarily high probabili
ties (i.e., P(g | f )→ 1) whenever the premises receive arbitrarily high probabilities 
(i.e., P(βr | αr)→ 1 ∀ r ∈ R). In the preferential model interpretation, 0-entailment 
guarantees that κ(f ∧ g) < κ(f ∧ ¬ g) holds in all admissible ranking functions κ, 
namely, in all ranking functions κ(M) that satisfy the rule constraints 

κ(αr ∧ βr) < κ(αr ∧ ¬ βr) ∀ r ∈ R (14.8) 

where, for every formula α, 

κ(α) = min{κ(M) : M | (14.9)= α}. 

Due to its extremely conservative nature, 0-entailment does not properly han
dle irrelevant features, e.g., from a → c we cannot conclude a ∧ b → c even in cases 
where R makes no mention of b. To sanction such inferences we now define a more 

adventurous type of entailment. 

1-entailment 
A formula g is said to 1-entailed by f, in the context R, (written f ⊢1 g), if 

Z(f ∧ g) < Z(f ∧ ¬ g). (14.10) 

Namely, there exists an integer k such that the set of rules ranked higher or equal to 

k tolerates f → g but does not tolerate f → ¬ g. Note that, once we have the Z-rank of 
all rules, deciding 1-entailment for a given query requires at most 2(1 + log | R | ) sat
isfiability tests (using a binary-search strategy). 1-entailment can be given a clear 
motivation in preferential model semantics. Instead of insisting that κ(f ∧ g) < 

κ(f ∧ ¬ g) hold in all admissible ranking functions κ, as was done in 0-entailment, 
we only require that it holds in the unique admissible ranking that is minimal, 
namely, the Z-ranking (see Appendix 14.I). 

Lehmann [1989] has extended 0-entailment in a slightly different way, introduc
ing a consequence relation called rational closure. Rational closure is defined in 

terms of a relation called more exceptional, where a formula α is said to be more 

exceptional than β if 

α ∨ β ⊢0 ¬ α. 

Based on this relation, Lehmann then used an inductive definition to assign a 

degree to each formula α in the language: degree (α) = i if degree (α) is not less than 
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i and every β that is less exceptional than α has degree (β) < i. Finally, a sentence 

α → β was defined to be in the rational closure of R iff degree (α) < degree (α ∧¬ β). 
Goldszmidt and Pearl [1989b] have recently shown that degree (α) is identical 

to Z(α) and, hence, rational closure is equivalent to 1-entailment. This endows the 

Z-ranking with an additional motivation in terms of exceptionality; Z(α) > Z(β) if α 

is more exceptional than β. Additionally, the computational procedure developed 

for 1-entailment renders membership in the rational closure decidable in at most 
2(1 + log | R | ) satisfiability tests. 

Lehmann [1989] has also shown that the rational closure can be obtained by 
syntactically closing the relation of 0-entailment under a rule suggested by Makin
son called rational monotony. Rational monotony permits us to conclude a ∧ b ⊢ c 
from a ⊢ c as long as the consequence relation does not contain a ⊢ ¬ b. Ratio
nal monotony is induced by any admissible ranking function, not necessarily the 

minimal one defined by system-Z (see Appendix 14.II). Thus, 1-entailment can be 

thought of as an extension of 0-entailment to acquire properties that are sound in 

any individual (admissible) ranking function. 
1-entailment, though more adventurous than 0-entailment, still does not go far 

enough, as is illustrated in the next section. 

14.3 Illustrations 
Consider the following collection of rules R: 

r1: “Penguins are birds” p → b 

r2: “Birds fly” b → f 
r3: “Penguins do not fly” p → ¬ f 
r4: “Penguins live in the antarctic” p → a 

r5: “Birds have wings” b → w 

r6: “Animals that fly are mobile” f → m 

It can be readily verified that r6, r5, and r2 are each tolerated by all the other five 

rules in R. For example, the truth assignment (p = 0, a = 0, f = 1, b = 1, w = 1, 
m = 1) satisfies both 

b ∧ w ∧ (p ⊃ b) ∧ (b ⊃ f ) ∧ (p ⊃ ¬ f ) ∧ (p ⊃ a) ∧ (f ⊃ m) 

and 

b ∧ f ∧ (p ⊃ b) ∧ (b ⊃ w) ∧ (b ⊃ ¬ f ) ∧ (p ⊃ a) ∧ (f ⊃ m). 

Thus, r6, r5 and r2 are each assigned a label 0 indicating that these rules pertain to 

the most normal state of affairs. No other rule can be labeled 0 because, once we 
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Figure 14.1 Collection of six rules for the example discussed in the text. 

assign p the truth value 1, we must assign 1 to b and 0 to f, which is inconsistent with 

b ⊃ f . The remaining three rules can now be labeled 1, because each of the three 

is tolerated by the other two. A network describing the six rules and their Z-labels 
is shown in Figure 14.1. 

The following are examples of plausible consequences one would expect to draw 

from R: 

0-entailed 

b ∧ p ⊢ ¬ f 

f ⊢ ¬ p 

b ⊢ ¬ p 

p ∧ a ⊢ b 

1-entailed 

¬ b ⊢ ¬ p 

¬ f ⊢ ¬ b 

b ⊢ m 

¬ m ⊢ ¬ b 

p ∧ ¬ w ⊢ b 

not-entailed 

p ⊢ w 

p ∧ ¬ a ⊢ ¬ f 

p ∧ ¬ a ⊢ w 

For example, to test the validity of b ∧ p ⊢0 ¬ f we add the rule r6: b ∧ p → f to 

R, and realize that the augmented set becomes inconsistent; no rule in the set 
{b ∧ p → f , p → b, p → ¬ f } can be tolerated by the other two. 

1-entailment sanctions plausible inference patterns that are not 0-entailed, 
among them rule chaining, contraposition and the discounting of irrelevant fea
tures. For example, we cannot conclude by 0-entailment that birds are mobile, 
b ⊢ m, because neither b → m nor b → ¬ m would render R inconsistent. How
ever, m is 1-entailed by b, because the rule b → m is tolerated by all rules in R while 

b → ¬ m is tolerated by only those labeled 1. Thus, 

Z(b ∧ m) < Z(b ∧ ¬ m), 

confirming Equation (14.10). Similarly, if c is an irrelevant feature (i.e., not 
appearing in R), we obtain b ∧ c ⊢1 f but not b ∧ c ⊢0 f . 
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On the other hand, 1-entailment does not permit us to conclude that flying 

objects are birds (f ⊢ b) or that penguins who do not live in the antarctic are still 
birds (p ∧ ¬ a ⊢ b). This is because negating these consequences will not change 

their Z-ratings — in testing f ⊢1b we have Z(f ∧ b) = Z(f ∧ ¬ b) = 0, while in testing 

p ∧ ¬ a ⊢1 b we have Z(p ∧ ¬ a ∧ b) = Z(p ∧ ¬ a ∧ ¬ b) = 2. 
There are cases, however, where 1-entailment produces conclusions whose plau

sibility may be subject to dispute. For example,1 if we add to Figure 14.1 the rule 

c → f we obtain Z(c → f ) = 0, which yields c ⊢1 ¬ p and c ∧ p ⊢1 ¬ f . In other words, 
1-entailment ranks the new class c to be as normal as birds, and penguins, by virtue 

of being exceptional kind of birds (relative to flying) are also treated as exceptional 
c’s. Were the database to contain no information relative to birds, penguins and 

c’s would be treated as equal status classes and the conclusion p ∧ c ⊢ ¬ f would 

not be inferred. Thus, merely mentioning a property (f ) by which a class (p) differs 
from its superclass (b) automatically brands that class (p) exceptional relative to 

any neutral class (c). 
The main weakness of the system described so far is its inability to sanction 

property inheritance from classes to exceptional sub-classes. For example, neither 
of the two types of entailments can sanction the conclusion that penguins have 

wings (p → w) by virtue of being birds (albeit exceptional birds). The reason is that 
the label 1 assigned to all rules emanating from p amounts to proclaiming penguins 
an exceptional type of birds in all respects, barred from inheriting any bird-like 

properties (e.g., laying eggs, having beaks, etc.). This is a drawback that cannot 
be remedied by methods based solely on the Z-ordering of defaults. The fact that 
p → w is tolerated by two extra rules (p → b, and b → w) on top of those tolerating 

p → ¬ w, remains undetected. 
To sanction property inheritance, a more refined ordering is required which 

also takes into account the number of rules tolerating a formula, not merely their 
rank orders. One such refinement is provided by the maximum-entropy approach 

[Goldszmidt and Pearl 1989c] where each model is ranked by the sum of weights 
on the rules falsified by that model. Another refinement is provided by Geffner’s 
conditional entailment [Geffner 1989], where the priority of rules induces a partial 
order on models. These two refinements will be summarized next. 

14.4 The Maximum Entropy Approach 
The maximum-entropy (ME) approach [Pearl 1988] is motivated by the conven
tion that, unless mentioned explicitly, properties are presumed to be indepen
dent of one another; such presumptions are normally embedded in probability 

1. This observation is due to Hector Geffner. 
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distributions that attain the maximum entropy subject to a set of constraints. Given 

a set R of rules and a family of probability distributions that are admissible relative 

to the constraints conveyed by R (i.e., P(βr → αr) ≥ 1 − ε ∀ r ∈ R), we can single out 
a distinguished distribution Pε

* 
,R having the greatest entropy −∑P(M) log P(M), and 

M 
define entailment relative to this distribution by 

f ⊢ME g iff Pε
* 
,R(g | f ) → 1. (14.11)

ε → 0 

An infinitessimal analysis of the ME approach also yields a ranking function κ 

on models, where κ(M) now corresponds to the lowest exponent of ε in the expan
sion of Pε

* 
R(M) into a power series in ε. Moreover, this ranking function can be 

encoded parsimoniously by assigning an integer weight wr to each rule r ∈ R and 

letting κ(M) be the sum of the weights associated with the rules falsified by M. The 

weight wr, in turn, reflects the “cost” we must add to each model M that falsifies 
rule r, so that the resulting ranking function would satisfy the constraint conveyed 

by R, namely, 

min{κ(M): M | } < min{κ(M): M = αr ∧ ¬ βr}, r ∈ R= αr ∧ βr |

These considerations lead to a set of |R| non-linear equations for the weights wr 
which, under certain conditions, can be solved by iterative methods. Once the 

rule weights are established, ME-entailment is determined by the criterion of 
Equation (14.11), translated to 

f ⊢ME g iff | |min{κ(M): M = f ∧ g} < min{κ(M): M = f ∧ ¬ g}. 

where 

κ(M) = ∑ wr 
r:M | ∧¬ βr =αr 

We see that ME-entailment requires minimization over models, a task that may 
take exponential time. In practice, however, this minimization is accomplished 

quite effectively in databases of Horn expressions, yielding a reasonable set of 
inference patterns. For example, in the database of Figure 14.1, ME-entailment 
will sanction the desired consequences p ⊢ w, p ∧ ¬ a ⊢¬ f and p ∧ ¬ a ⊢ w and, 
moreover, it will avoid the undesirable pattern of concluding c ∧ p ⊢ ¬ f from 

R ∪ {c → f }. 
The weaknesses of the ME approach are two-fold. First, it does not properly han

dle causal relationships and, second, it is sensitive to the format in which the rules 
are expressed. This latter sensitivity is illustrated in the following example. From 

R = {Swedes are blond, Swedes are well-mannered}, ME will conclude that dark-
haired Swedes are still well-mannered, while no such conclusion will be drawn 
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from R = {Swedes are blond and well-mannered}. This sensitivity might some
times be useful for distinguishing fine nuances in natural discourse, concluding, 
for example, that mannerisms and hair color are two independent qualities. How
ever, it stands at variance with one of the basic conventions of formal logic, which 

treats a → b ∧ c as a shorthand notation of a → b and a → c and, moreover, unlike 

1-entailment it will conclude c ∧ p ⊢ME ¬ f from Δ ∪ {c → f }, where c is an irrelevant 
property. 

The failure to respond to causal information (see Pearl [1988, pp. 463, 519] and 

Hunter [1989]) prevents the ME approach from properly handling tasks such as the 

Yale shooting problem [Hanks and McDermott 1986], where rules of causal char
acter are given priority over other rules. This weakness may perhaps be overcome 

by introducing causal operators into the ME formulation, similar to the way causal 
operators are incorporated within other formalisms of nonmonotonic reasoning 

(e.g., Shoham [1986], Geffner [1989]). 

14.5 Conditional Entailment Geffner [1989] has overcome the weaknesses of 1-entailment by introducing two 

new refinements. First, rather than letting rule priorities dictate a ranking func
tion on models, a partial order on models is induced instead. To determine the 

preference between two models, M and M ′ , we examine the highest priority rules 
that distinguish between the two, i.e., that are falsified by one and not by the other. 
If all such rules remain unfalsified in one of the two models, then this model is the 

preferred one. Formally, if Δ[M] and Δ[M ′] stand for the set of rules falsified by M 

and M ′ , respectively, then M is preferred to M ′ (written M < M’) iff Δ[M] ≠ Δ[M ′] 
and for every rule r in Δ[M] − Δ[M ′] there exists a rule r ′ in Δ[M ′] − Δ[M] such that 
′ r has a higher priority than r (written r ≺ r ′ ). Using this criterion, a model M will 
always be preferred to M ′ if it falsifies a proper subset of the rules falsified by M ′ . 
Lacking this feature in the Z-ordering has prevented 1-entailment from concluding 

p ⊢ w in the example of Section 14.3. 
The second refinement introduced by Geffner is allowing the rule-priority rela

tion, ≺, to become a partial order as well. This partial order is determined by the 

following interpretation of the rule α → β; if α is all that we know, then, regardless 
of other rules that R may contain, we are authorized to assert β. This means that 
r: α → β should get a higher priority than any argument (a chain of rules) leading 

from α to ¬ β and, more generally, if a set of rules R ′ ⊂ R does not tolerate r, then at 
least one rule in R ′ ought to have a lower priority than r. In Figure 14.1, for example, 
the rule r3: p → ¬ f is not tolerated by the set {r1: p → b, r2: b → f }, hence, we must 
have r1 ≺ r3 or r2 ≺ r3. Similarly, the rule r1: p → b is not tolerated by {r2, r3}, hence, 
we also have r2 ≺ r1 or r3 ≺ r1. From the asymmetry and transitivity of ≺, these two 
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conditions yield r2 ≺ r3 and r2 ≺ r1. It is clear, then, that this priority on rules will 
induce the preference M < M ′ , whenever M validates p ∧ b ∧ ¬ f and M ′ validates 
p ∧ b ∧ f ; the former falsifies r2, while the latter falsifies the higher priority rule r3. 
In general, we say that a proposition g is conditionally entailed by f (in the context 
of R) if g holds in all the preferred models of f induced by every priority ordering 

admissible with R. 
Conditional entailment rectifies many of the shortcomings of 1-entailment as 

well as some weaknesses of ME-entailment. However, having been based on model 
minimization as well as on enumeration of subsets of rules, its computational 
complexity might be overbearing. A proof theory for conditional entailment can 

be found in Geffner [1989]. 

14.6 Conclusions 
The central theme in this paper has been the realization that underlying any consis
tent system of default rules there is a natural ranking of these defaults and that this 
ranking can be used to induce preferences on models and plausible consequence 

relationships. We have seen that the Z-ranking emerges from both the probabilistic 
interpretation of defaults and their preferential model interpretation, and that two 

of its immediate entailment relations are decidable in O (N2) satisfiability tests. The 

major weakness of these entailment relationships has been the blockage of prop
erty inheritance across exceptional subclasses. Two refinements were described, 
maximum-entropy and conditional entailment, which properly overcome this 
weakness at the cost of a higher complexity. An open problem remains whether 
there exists a tractable approximation to the maximum entropy or the conditional 
entailment schemes which permits inheritance across exceptional subclasses and, 
at the same time, retains a proper handling of specificity-based priority. 
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14.I Appendix I: Uniqueness of The Minimal Ranking Function 

Definition	 A ranking function is an assignment of non-negative integers to the models of the 

language. A ranking function κ is said to be admissible relative to database R, if it 
satisfies 

min{κ(M): M | } < min{κ(M): M = αr ∧ ¬ βr} (14I-1)= αr ∧ βr	 |
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for every rule r: αr → βr in R. 

Let W stand for the set of models considered. 

“

Definition	 A ranking function κ is said to be minimal if every other admissible ranking κ ′ 

satisfies κ ′(M) > κ(M ′) for at least one model M ′ ∈ W . 

Clearly, every minimal ranking has the property of “local compactness,” namely, 
it is not possible to lower the rank of one model while keeping the ranks of all other 
models constant. Every such attempt will result in violating the constraint imposed 

by at least one rule in R. We will now show that local compactness is also a suffi
cient property for minimality, because there is in fact only one unique ranking that 
is locally compact. 

Definition	 An admissible ranking function κ is said to be compact if, for every M ′ ∈ W , any 
ranking κ ′ satisfying 

κ ′(M) =κ(M)M ≠ M ′ 

κ ′(M) <κ(M)M = M ′ 

is inadmissible. 

Theorem	 (uniqueness): 
Every consistent R has a unique compact ranking Z (M) given by Equation (14.5). 

Corollary	 Every consistent R has a unique minimal ranking given by the compact ranking Z 

(M) of Equation (14.5). 

Proof. We will prove that the ranking function Z given in Equation (14.5) is the 

unique compact ranking. First we show, by contradiction, that Z is indeed compact. 
Suppose it is possible to lower the rank Z (M ′ ) of some model M ′ . Let Z (M ′) = I. 
From Equation (14.5) we know that M ′ falsifies some rule r: α → β of rank Z(r) = 

M) = I − 1. Low-I − 1, namely, M ′ |= α ∧ ¬ β, and there exists “M 

ering the rank of M ′ below I, while keeping Z (
|= α ∧ β having Z (“M) = I − 1 would clearly violate the 

constraint imposed by the rule α → β (see Equation (14I-1)). Thus, Z is compact. 
We now prove that Z is unique. Suppose there exists some other compact rank

ing function κ that differs from Z on at least one model. We shall show that if 
there exits an M ′ such that κ(M ′) < Z(M ′) then κ could not be admissible. while if 
there exists an M ′ such that κ(M ′) > Z(M ′), then κ could not be compact. Assume 

κ(M ′) < Z(M ′), let I be the lowest κ value for which such inequality holds, and let 
Z(M ′) = J > I. From Equation (14.5), M ′ falsifies some rule α → β of rank J − 1, 
namely, M ′ | ¬ β and every model M validating α∧β must obtain Z(M) ≥ J −1.= α∧
By our assumption, κ(M) must also assign to each such M a value not lower than 
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J − 1 ≥ I. But this is incompatible with the constraint α → β (see Equation (14I-1)). 
Thus, κ is inadmissible. 

Now assume there is a non-empty set of models for which κ(M) > Z(M), and let 
I be the lowest Z value in which κ(M ′) > Z(M ′) holds for some model M ′ . We will 
show that κ could not be compact, because it should be possible to reduce κ(M ′) 
to Z(M ′) while keeping constant the κ of all other models. From Z(M ′) = I we 

know that M ′ does not falsify any rule α ′ → β ′ whose Z rank is higher than I − 1. 
Hence, we only need to watch whether the reduction of κ can violate rules r for 
which Z(r) < |I. However, every such rule r: α → β has a model M = α ∧ β hav
ing Z(M) < I, and every such model was assumed to obtain a κ rank equal to that 
assigned by Z. Hence, none of these rules will be violated by lowering κ(M ′) to Z(M), 
QED. 

14.II Appendix II: Rational Monotony of Admissible Rankings 

Theorem The consequence relation ⊢ defined by the criterion 

f ⊢ g iff κ(f ∧ g) < κ(f ∧ ¬ g) 

is closed under rational monotony, for every admissible ranking function κ. 

Proof. We need to show that for every three formulas a, b and c, if a ⊢ c, then either 
a ⊢ ¬ b or a ∧ b ⊢ c. Assume a ⊢ c and a ̸⊢ ¬ b, namely, 

(i) κ(a ∧ c) < κ(a ∧ ¬ c) 
(ii) κ(a ∧ ¬ b) ≥ κ(a ∧ b), 

we must prove 

(iii) κ(a ∧ b ∧ c) < κ(a ∧ b ∧ ¬ c). 

Rewriting (i) as 

κ(a∧c) = min{κ(a∧c∧b, κ(a∧c∧¬ b)} < min{κ(a∧b¬ c), κ(a∧¬ b∧¬ c)} = κ(a∧¬ c) 

we need to show only that the min on the left hand side is obtained at the second 

term, i.e., that 

min{κ(a ∧ c ∧ b), κ(a ∧ c ∧ ¬ b)} = κ(a ∧ c ∧ ¬ b). 

But this is guaranteed by (ii), because the alternative possibility: 

κ(a ∧ c ∧ b) < κ(a ∧ c ∧ ¬ b) 

together with (ii), would violate (i). QED 
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15
abilities, and this led to Bayesian networks, which I took to be the most plausible 

model of human cognition and decision-making. The message passing architec
ture that has evolved has given Bayesian networks a computational advantage over 
its rule-based rivals, primarily through its transparent semantics and program
ming simplicity. Given that we see certain facts, the network can swiftly compute 

the likelihood that certain other facts are true or false. Not surprisingly, Bayesian 

networks caught on in the AI community and even today are considered a leading 

paradigm in artificial intelligence for reasoning under uncertainty. 
Although I am delighted with the ongoing success of Bayesian networks, they 

failed to bridge the gap between artificial and human intelligence. The miss
ing ingredient was causality. True, causal ghosts were all over the place. The 

arrows invariably pointed from causes to effects, and practitioners often noted that 
diagnostic systems became unmanageable when the direction of the arrows was 
reversed. But for the most part we thought that this was a cultural habit, or an 

artifact of old thought patterns, not a central aspect of intelligent behavior. 
At the time, I was so intoxicated with the power of probabilities that I considered 

causality a subservient concept, merely a convenience or a mental shorthand for 
expressing probabilistic dependencies and distinguishing relevant variables from 

irrelevant ones. 
In my 1988 book Probabilistic Reasoning in Intelligent Systems, I wrote, “Causa

tion is a language with which one can talk efficiently about certain structures of 
relevance relationships.” [Pearl 1988]. The words embarrass me today because “rel
evance” is so obviously an associational (rung-one) notion. Even by the time the 

Introduction 
by Judea Pearl 

When I started working on probabilistic reasoning, in the early 1980s, I thought 
that reasoning with uncertainty was the most important thing missing from artifi
cial intelligence (AI). Moreover, I insisted that uncertainty be represented by prob
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book was published, I knew in my heart that I was wrong. To my fellow computer 
scientists, the book became the bible of reasoning under uncertainty, but I was 
already feeling like an apostate. 

Bayesian networks inhabit a world where all questions are reducible to prob
abilities, or degrees of association between variables. Using the ladder metaphor 
of the causal hierarchy, they could not ascend to the second or third rungs of the 

Ladder of Causation. Fortunately, they required only two slight twists to climb to 

the top. First, in 1991, the graph-surgery idea (that I learned from Peter Spirtes) 
empowered them to handle both observations and interventions. Another twist, 
in 1994, brought them to the third level and made them capable of handling coun
terfactuals. These two developments, described in the next section, made prob
abilities subservient to causality. While probabilities encode our beliefs about a 

static world, causality tells us whether and how probabilities change when the 

world changes, be it by intervention or by act of imagination. I am glad these early 
developments are given a stage in this volume. 

The paper “Equivalence and synthesis of causal models” (Chapter 16) was a 

milestone in our transition from probabilistic to causal models [Verma and Pearl 
1991]. Written barely a year after Thomas Verma proved the correctness of d-
separation, this paper introduces several innovations that later became corner
stones of causal analysis. These include functional semantics for causal mod
els, tests for Markov equivalence, inducing paths, Verma constraints, and the IC-
algorithm, one of the first to discover causal structures from data. It was a true 

milestone. 
The paper “Probabilistic evaluation of counterfactual queries” (Chapter 17) by 

Alex Balke and myself, was the first to demonstrate how structural models can be 

used to compute an arbitrary counterfactual expression [Balke and Pearl 1994]. 
Starting with the functional semantics of structural models, it introduced the 

3-step procedure later dubbed “abduction, action, and prediction,” and invoked 

“response function variables” as nodes in the graph. These were later labeled “map
ping variables” by Heckerman and Shachter [1995] and “principal stratification” by 
Frangakis and Rubin [2002]. 

“Causal diagrams for empirical research” (Chapter 18) was the culmination of a 

five-year effort to develop a comprehensive theory of identification of causal effects 
[Pearl 1995]. This includes: the back-door and front-door criteria, the do-calculus, 
surrogate experiments, and more. Semantically, the paper owes its inception to 

Peter Spirtes’ encoding of interventions as removal of arrows in the diagram. Pro
fessionally, I will always be indebted to Phil Dawid for his courage and leadership 
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in publishing this paper in Biometrika, thus introducing causal diagrams to empir
ical researchers. As expected, the discussions that followed were far from com
plementary. Paul Rosenbaum went as far as arguing that “no basis is given for 
believing that ... wiping out of equations predicts a certain physical reality.” Rubin 

and Imbens warned readers that “graphs lull researchers into a false sense of con
fidence.” Overall, this paper made causal diagrams the native language of causal 
inference. 

In 1999, while writing chapter 9 of Causality [Pearl 2000], I stumbled upon 

a remarkable discovery. Although counterfactual descriptions of an individual 
behavior cannot in general be inferred from population data, they can neverthe
less be bounded by combining data from both experimental and observational 
studies. Moreover, these bounds may sometimes collapse to point estimates. The 

paper “Probabilities of causation: Three counterfactual interpretations and their 
identification” (Chapter 19) describes these findings which have later inspired a 

fertile area of research, including personalized medicine, legal decisions, identify
ing causes of effects, and precision marketing [Tian and Pearl 2000; Pearl 2015; Li 
and Pearl 2019; Mueller et al. 2021]. 

“Direct and indirect effects” (Chapter 20) was my first paper on mediation anal
ysis. It appeared a year after the publication of Causality [Pearl 2000], where I 
made the unfortunate suggestion that “the notion of indirect effect has no intrin
sic operational meaning apart from providing a comparison between the direct 
and the total effects.” The full story of what made me change my mind is narrated 

in The Book of Why [Pearl and Mackenzie 2018] together with the enormous impact 
that “Direct and indirect effects” has had on mediation analysis. Recent concerns 
about “algorithmic fairness” and its societal implications have stimulated renewed 

interest in mediation analysis, especially the mediation formula derived in this 
paper. 
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Abstract 
Scientists often use directed acyclic graphs (dags) to model the qualitative struc
ture of causal theories, allowing the parameters to be estimated from observational 
data. Two causal models are equivalent if there is no experiment which could dis
tinguish one from the other. A canonical representation for causal models is pre
sented which yields an efficient graphical criterion for deciding equivalence, and 

provides a theoretical basis for extracting causal structures from empirical data. 
This representation is then extended to the more general case of an embedded 

causal model, that is, a dag in which only a subset of the variables are observ
able. The canonical representation presented here yields an efficient algorithm 

for determining when two embedded causal models reflect the same dependency 
information. This algorithm leads to a model theoretic definition of causation in 

terms of statistical dependencies. 
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16.1 Introduction 
The use of dags as a language for describing causal models has been popular in 

the behavioral sciences [Blalock 71], [Duncan 75] and [Wright 34], decision analysis 
[Howard and Matheson 81] [Olmsted 84] and [Shachter 85] and evidential reasoning 

[Pearl 88], and has also received extensive theoretical studies [Geiger and Pearl 90], 
[Geiger et al 90], [Glymour et al 1987], [Pearl and Verma 87], [Shachter 85], [Smith 

89], [Spirtes et al 90] and [Verma and Pearl 90]. One problem that has arisen in 

the course of these studies is that of non-uniqueness; it is quite common for two 

different causal models to be empirically indistinguishable, hence, equally predic
tive. This occurs when each of the two models can mimic the behavior of the other. 
Formally: 

Definition 16.1	 A causal theory is a pair T = <D, ΘD> consisting of a causal model D and a set of 
parameters ΘD compatible with D. ΘD assigns a function xi = fi[pa(xi), 𝜖i] and a proba
bility measure gi, to each xi ∈ U, where pa(xi) are the parents of xi in D and each 𝜖i is 
a random disturbance distributed according to gi, independently of the other 𝜖 ′ s and of 
any preceding variable xj : 0 < j < i. 

Definition 16.2	 Two causal models D1 and D2 are equivalent if for every theory T1 = <D1, Θ1> there is 
a theory T2 = <D2, Θ2> such that T1 and T2 define the same probability distribution, 
and vice versa. 

For example, consider the four causal models of Figure 16.1. The parameters 
required for the first model are P(a), P(b|a) and P(c|b). The second requires estima
tions for P(b), P(a|b) and P(c|b). It is easy to see that these two models are equivalent 
by the definition of conditional probability, i.e. P(a)P(b|a) = P(ab) = P(b)P(b|a). 
Thus the values obtained for the first set of parameters completely determine the 

values of the second, and vice versa. Similarly, the third model is equivalent to the 

first two since its parameters, P(c), P(b|c) and P(a|b) can be determined from either 

a

a

b

c

a

b

c

a c

b

b

c

(a) (b) (c) (d)

Figure 16.1 Three of the four models are equivalent. 
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of the first two sets. However, the fourth model is quite different; its parameters are 

P(a), P(c) and P(b|ac) which cannot be determined from any of the previous sets. 
The fact that the first three models are equivalent to each other but not the 

fourth is easily seen in terms of the independence information conveyed by the cor
responding dags. The first three all represent the independence statement I(a, b, c) 
which is read “a is independent of c given b” whereas the fourth represents the 

statement I(a, ∅, c), which is read “a is marginally independent of c”. The statisti
cal meaning of any causal model can be described completely and economically 
by its stratified protocol, which is a list of independence statements, each assert
ing that a variable is independent of its non-descendants, given its parents [Geiger 
and Pearl 90], [Pearl and Verma 87] and [Verma and Pearl 90]. Furthermore, any 
independence statement that logically follows from the stratified protocol can be 

graphically determined in linear time via the d-separation criterion [Geiger et al 89] 
and [Geiger et al 90]. Thus, the question of equivalence of causal models reduces 
to the question of equivalence of protocols: two dags are equivalent if and only if 
each dag’s protocol holds in the other [Pearl et al 89]. This solution is both intuitive 

and efficient. However, it has two drawbacks; it is difficult to process visually and 

it does not generalize to embedded causal models. 
Embedded causal models are useful for modeling theories that cannot be mod

eled via simple dags. For example, if there are unobserved variables which cause 

spurious correlations between the observable variables it may be necessary to 

embed the observables in a larger dag containing “hidden” variables in order to 

build an accurate model. Even when there exists a simple causal model that fits a 

theory, it might be desirable to embed the model in a larger dag to satisfy some 

higher level constraints. For example, suppose that every causal model that fits 
a given set of data contains the link a → b, but b is known to precede a. Under 
these circumstances, the simple causal models are inconsistent with our common 

notion of the temporal direction of causality; one way of avoiding this conflict is 
to hypothesize the existence of an unknown common cause, i.e. a ← 𝛼 → b. 
See Figure 16.2 as well as Figures 16.4 and 16.5 for examples of the use of hidden 

variables, (denoted by greek letters). 
Figure 16.2 illustrates a special problem that embedded causal models pose. 

Unlike simple causal models, the statistical meaning of an embedded causal model 
cannot be completely characterized by dependency information alone; two depen
dency equivalent causal models need not be equivalent in the general sense. For 
example both embedded causal models of Figure 16.2 represent the dependency 
statement I(a, b, c), but the first model (a) imposes an additional constraint upon 
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Figure 16.2	 Two dependency equivalent embedded causal models which are not equivalent in 
general. 

the set of distributions it can describe: 

∑ P(b|a)P(d|abc) = f (c, d) 
b 

Fortunately, dependency equivalence is a tight enough necessary condition for 
equivalence that it permits many sound conclusions to be derived by graphical 
means. 

This paper is organized as follows. Section 16.2 provides an efficient criterion 

for deciding the equivalence of two models, and a canonical representation called 

a pattern for describing the class of all models equivalent to a given dag. Section 

16.3 extends this construction to the case of embedded causal models. Theorems 
will be stated without proofs, a full detail of which can be found in [Verma 91]. In 

Section 16.4, the Theorems of the previous two sections are applied to the problem 

of recovery of a causal model from statistical data. 

16.2 Patterns of Causal Models 
It is not difficult to observe that equivalent dags have common features. For exam
ple, two dags that represent equivalent causal models must have the same adja
cency structure. Two nodes of a dag are adjacent, written ab if either a → b or 
a ← b. That adjacency is invariant among equivalent dags follows from Lemma 16.1 
which describes the principal relationship between adjacency and unseparability 1 

(parts 1 and 2) as well as the relationships between separability and d-separation 2 

given two particular special sets of nodes in the dags (parts 3 and 4). Let the ances
tor set Aab of a pair of variables a and b be defined as the union of the sets of 

1. Two variables are unseparable just in case there is no set that d-separates them. 

2. The predicate ID(⋅) denotes d-separation in the dag D. 
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ancestors of a and b (less ab), and similarly, the parent set Pab of the pair be defined 

as the union of the sets of parents of a and b (less ab). 

Let a and b be two nodes of a dag D; the following four conditions are equivalent: 

(1) a and b are adjacent in D 

(2) a and b are unseparable in D 

(3) a and b are not d-separated by Aab in D 

(4) a and b are not d-separated by Pab in D 

Proof. (Sketch) That (1) implies (2) follows from the fact that a link is a path which 

cannot be deactivated; and (2) trivially implies (3) since unseparability means the 

lack of d-separation in any context, including Aab. Since every path activated by Pab 

is also activated by Aab, it follows that (3) implies (4). The final implication, that (4) 
implies (1) follows from the observation that if a and b are not d-separated given 

Pab, then there must be active path between them. If this path contains a node, 
other than a or b, it would have to contain at least one head-to-head node since the 

path is active given Pab. The head-to-head node nearest to a on the path would be 

a descendant of a, similarly the one nearest b would be a descendant of b, again 

because the path is active given Pab. Any such of these head-to-head nodes would 

have to be in or be an ancestor of a node in Pab for the path to be active, but the one 

nearest a could not be an ancestor of a, hence both it and a would be ancestors of 
b. Similarly, both b and the head to head node nearest it would have to be ancestors 
of a, but this would imply the existence of a directed loop, hence the path cannot 
contain any nodes other than a and b. Therefore the nodes are adjacent. ■ 

The major consequence of this lemma is that adjacency is a property deter
mined solely by d-separation, hence remains invariant among equivalent dags. 

A set of equivalent dags possesses another important invariant property, namely 
the directionality of the uncoupled head-to-head links (i.e. a → b ← c are uncou
pled if a and c are not adjacent). There are other links whose directionality remains 
invariant, but these can easily be determined from the uncoupled head-to-head 

links. The following lemma summarizes this important class of links with invariant 
directionality. 

In any dag D, if the nodes a, c, b from a chain acb while a and b are d-separated by some 
set S but not Sc then a → c ← b. 

Furthermore if a → c ← b then a and b are unseparable by any set containing c. 

The proof of this lemma relies upon the inherent differences between a head-to
head junction and the other types of junctions (tail-to-tail and head-to-tail). The 

major ramification of Lemma 16.2 is that the directionality of a certain class of 
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links can be determined from d-separation alone. The implications this may have 

on the prospects of inferring causal relationships from independence statements 
are briefly discussed in Section 16.4 and in detail in [Verma 91]. 

Together, these lemmas form a necessary and sufficient condition for equiva
lence, previously stated in [Pearl et al 89]: 

Theorem 16.1	 Two dags are equivalent if and only if they have the same links and same uncoupled 

head-to-head nodes. 

The proof of this theorem is based on the lemmas along with an inductive step 

showing that every active path in one dag has a corresponding active path in the 

other. The importance of Theorem 16.1 is that the equivalence of two causal models 
can be determined by a simple graphical criterion. 

Since the two invariant properties of a dag identified in the lemmas are a suf
ficient condition for equivalence, they lead to a natural canonical representation 

of its equivalent class. Simply construct a partially directed graph by removing the 

arrowheads from any link of the dag that is not identified by Lemma 16.2. This 
partially-directed graph will be called the rudimentary pattern of the causal model. 
Since the rudimentary pattern can be defined solely in terms of d-separation, it 
follows that each equivalence class of causal models has a unique pattern; hence, 
two causal models are equivalent if and only if they have the same pattern. This is 
a useful view of the problem since the patterns can be constructed efficiently3. 

Lemma 16.2 only identifies some of the invariant arrowheads of a causal model, 
but since identification of this class is sufficient for deciding equivalence, it fol
lows that the remainder of the invariant arrowheads are completely determined by 
this class. It is not difficult to identify the remainder of the invariant arrowheads 
as some of the undirected links of a rudimentary pattern cannot be arbitrarily 
directed without either (1) creating a new uncoupled head-to-head node or (2) cre
ating a directed loop. Since these undirected links are essentially constrained to 

a certain direction, it is desirable to define a completed pattern in which they are 

directed as constrained. The completed pattern reflects each and every invariant 
arrow head. Furthermore, both rudimentary patterns and completed patterns offer 
a compact summary of each and every dag in an equivalence class. 

For example, in Figure 16.3, the rudimentary pattern (d) and the completed pat
tern (e) each summarizes the dags in the equivalence class { (a), (b), (c) }. Any 
extension of either pattern into a full dag that does not create new uncoupled 

head-to-head nodes will be a dag in the equivalence class. There are three such 

extensions in the example of Figure 16.3. 

3. Note that comparison of patterns is polynomial since the nodes are labeled. 
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(a) (b) (c) (d)

= =

(e)

Figure 16.3 Equivalence class of models. 

16.3 Embedded Causal Models 
Partially-directed graphs offer an excellent tool for describing the equivalence 

classes of causal models; it would be desirable to find a similar structure for 
embedded causal models. Such a structure requires the ability to represent a direct 
non-causal correlation between two variables. In a simple dag, whenever two vari
ables are unseparable, there must be a directed link between them, dictating that 
either the first causes the second or the second causes the first. There is no way 
to represent the existence of an unknown common cause, as illustrated in the 

following embedded causal model (Figure 16.4 (a)). Assume a, b, c and d are the 

observables and 𝛼 is unobservable. There is no dag that can represent the depen
dencies between a, b, c and d using these variables only. However, the hybrid graph 

(Figure 16.4 (b)) which contains a bi-directional link does represent these depen
dencies. (Under a natural extension of d-separation [Verma 91].)

−→
For hybrid graphs, the notation ab denotes the existence of a link with at least 

an arrow head pointing at b, namely either a → b or a ↔ b, while ab denotes the 

existence of a link without any constraints on its orientation. Thus, for example, 
when applied to a dag, ab means a → b or a ← b; while in hybrid graphs ab denotes 
the existence of any of the four possible types of links, (namely, a−b, a → b, a ← b 

and a ↔ b). Hybrid graphs can be used to represent patterns of embedded causal 
models according to the following definition. 

Figure 16.4 The representation of a hidden common cause. 
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Definition 16.3 

Definition 16.4 

Lemma 16.3 

Embedded Pattern 

Given a dag D over the variables UD, of which UO ⊆ UD are observable, the rudimentary 
pattern P of D restricted to UO is defined as the hybrid graph with fewest arrowheads 
that satisfies the following conditions: 

(1)	 ab ∈ P ⇔ ¬ID(a, S, b) ∀S ⊆ UO − ab
 
−
→

(2)	 ab if ∃c ∈ U0 such that: abc ∈ P, ac ̸∈ P and ¬ID(a, Sb, c) ∀S ⊆ UO − abc 

Rudimentary embedded patterns can be extended into completed embedded pat
terns (or simply, embedded patterns) in much the same way that simple patterns 
are completed. The same constraints can be used for the completion, namely, no 

arrow head can be added to the pattern that would (1) create a new uncoupled 

head-to-head node or (2) create a strictly directed cycle. However, note that a strictly 
directed cycle contains only singly directed arrows. 

While this defines a unique pattern for every embedded dag, it does so in terms 
of d-separation conditions over subsets all of UO, which, in principle, might require 

an exponential number of tests. The next two lemmas show that patterns can be 

formed in polynomial time. Lemma 16.3 delineates the relationship between adja
cency in the pattern and unseparability in the causal model (parts 1 and 2) and 

provides a practical criterion for determining separability in terms of a simple 

d-separation test (part 3) and a graphical test (part 4). The graphical test is defined 

in terms of an inducing path: 

Inducing Path 

An inducing path between the variables a and b of an embedded causal model is any 
path 𝜌 satisfying the following two conditions: 

(1) Every observable node on 𝜌 is head-to-head on 𝜌. 
(2) Every head-to-head node on 𝜌 is in Aab. 

Let P be the pattern of a dag D with respect to the observables UO ⊂ UD and a, b ∈ UO 

be two observables; the following statements are equivalent: 

(1)	 a and b are adjacent in P 

(2)	 a and b are unseparable in D (over UO) 
(3)	 a and b are not d-separated by Aab ∩ UO in D 

(4)	 a and b are connected by an inducing path in D 

Proof. (Sketch) By definition, (1) is equivalent to (2) and (2) implies (3). To show 

that ¬ID(a, Aab ∩ UO, b) implies the existence of an inducing path, consider that this 
dependency implies the existence of a path 𝜌, between a and b which is active given 

Aab ∩ UO. Since Aab ∩ UO only contains ancestors of a and b it follows that every 
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head-to-head node on 𝜌 must be in Aab. Thus any observable node on 𝜌 that is not 
head-to-head would be in Aab ∩ UO and would serve to deactivate the path, so every 
observable node on 𝜌 must be head-to-head. Therefore 𝜌 is an inducing path. 

To show that the existence of an inducing path implies unseparability relative 

to UO hence finish the proof, consider any two nodes a and b which are connected 

by an inducing path 𝜌. To show a and b are not d-separated in any context of UO, 
consider any context S which deactivates 𝜌 (if 𝜌 is active for every context, then the 

two nodes are unseparable). Since the only observable nodes of 𝜌 are head-to-head, 
only head-to-head nodes could serve to deactivate 𝜌. Each head-to-head node on 𝜌 

must be in Aab and at least one must be inactive, given S (otherwise the path would 

be active given S). If all inactive head-to-head nodes are ancestors of a then con
sider the one closest to b, call it y. The portion of 𝜌 between y and b is active, and 

the ancestry path from y to a can be added to form an active path between a and 

b given S. On the other hand, if any of the inactive head-to-head nodes is ancestor 
of b then pick the head-to-head ancestor of b which is closest to a on 𝜌 and call 
it x. Every inactive head-to-head node between a and x must be an ancestor of a (if 
any exist), hence there must be an active path between a and x (either the portion 

of 𝜌 between a and x, or the ancestry path from the head-to-head node between a 

and x which is closest to x concatenated with the portion of 𝜌 from that node to x). 
Since x is an ancestor of b, the ancestry path from x to b can be concatenated to the 

path from a to x to form an active path between a and b given S. Thus a and b are 

unseparable. ■ 

Lemma 16.3 describes how links are induced in P by paths of D. The next lemma will 
describe how to determine the directionality of these links in terms of the inducing 

paths. 
−→

For any rudimentary pattern P, ab if and only if there is a node c adjacent to b but not 
to a (in P) such that both edges ab and bc were induced by paths (of D) which ended 

pointing at b. 

Lemmas 16.3 and 16.4 provide a polynomial time algorithm for constructing the 

characteristic pattern of any embedded causal model. The final theorem completes 
the original task of deciding dependency equivalence. 

Two embedded causal models are dependency equivalent if and only if they have 
identical completed patterns. 

Thus, Theorem 16.2 gives validity to the notion of a pattern as a characteristic 
representation of an embedded causal model. An interesting consequence of this 
theorem is given by the following corollary: 
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Corollary 16.1 |UO |There are fewer than 5 2 
distinct embedded causal models containing |UO| variables; 

moreover, every embedded causal model is equivalent to a simple dag with fewer than 

|UO|2 variables. 

Part 1 follows from the fact that every embedded causal model is equivalent to its 
pattern, and every pattern contains fewer than |UO| edges (there are four types of 
edges). The second part stems from the fact that a bi-directional link a ↔ b in a 

pattern can be represented by a single hidden common cause 𝛼 of the observable 

variables, namely, a ← 𝛼 → b. 
Figure 16.5 contains three embedded causal models (a), (b) and (c) over the 

observable variables {a, b, c, d, e} as well as their completed patterns (a ′ ), (b ′ ) and 

(c ′ ) respectively. The patterns indicate that the first two causal models are equiva
lent to each other but not to the third; while d and e are marginally independent in 

Figure 16.5 The patterns reveal which two models are dependency equivalent. 
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(c) they are dependent in both (a) and (b). Figure 16.5 (b) demonstrates that a hid
den common cause is not equivalent to a bi-directional link since it is important 
to recognize the paths they may induce. 

16.4 Applications to the Synthesis of Causal Models 
The problem of deciding the equivalence of (embedded) causal models is funda
mental to causal reasoning and theory building, as it allows us to determine which 

structural properties of the model (e.g. connectivity or directionality) can be sub
stantiated by data and which serve merely for representational convenience. The 

canonical representations presented in this paper offer an efficient solution to this 
problem since they can be constructed (from the causal models) in polynomial 
time. They can also be used to solve the broader problem of model subsumption 

[Verma 91]. 
The construction of these canonical representations is based on (conditional) 

independence relationships, thus suggesting the possibility of extracting causal 
models directly from statistical information. Such application meets with the dif
ficulty that, in general, probability distributions do not define unique graphical 
models. In other words, given that the data is generated by some causal theory 
T = <D, Θ>, it is always possible to contrive the parameters Θ to yield spurious 
independencies, not shown in D, that fit another theory T ′ = <D ′ , Θ′ >, with D ′ not 
equivalent to D. [Spirtes et al 90] show that, under some reasonable assumptions, 
the occurrence of such spurious independencies is a rare event of measure zero, 
and therefore argue that it is natural in causal modeling to assume that the underly
ing distribution is dag-isomorphic,4 albeit allowing for the inclusion of unobserved 

variables. 
Under the assumption that the observed distribution is dag-isomorphic, 

Theorem 16.1 permits the recovery of the underlying structure uniquely, mod
ulo the equivalence class defined by its pattern. One such recovery algorithm is 
proposed in [Spirtes et al 90] and several alternatives are discussed in the sequel. 

Our basic algorithm has four parts; the first part is an application of Lemma 16.1 
that identifies the links of the pattern. The second part of the algorithm is an appli
cation of Lemma 16.2 which adds directionality to some of the links, thus forming 

the rudimentary pattern. The third part of the algorithm consists of completing 

the rudimentary pattern into a full pattern; and the final part marks those links 
that are invariant over all dependency equivalent embedded causal models. 

4. A probabilistic distribution is dag-isomorphic permitting all its dependencies and indepen
dencies to be displayed in some dag. 
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IC-Algorithm (Inductive Causation) 
Input: P a sampled distribution. 
Output: core(P) a marked hybrid acyclic graph. ^

^

1. For each pair of variables a and b, search for a set Sab such that (a, Sab, b) is 
in I(P), namely a and b are independent in P, conditioned on Sab. If there is no 

such Sab, place an undirected link between the variables. 
^

2. For each pair of non-adjacent variables a and b with a common neighbor c, 
check if c ∈ Sab. 

If it is, then continue.
 

If it is not, then add arrowheads pointing at c, (i.e. a → c ← b).
 

^

3. Form core(P) by recursively adding arrowheads according to the following 

two rules: 

If ab and there is a strictly directed path from a to b then add an arrowhead 

at b. 
→If a and b are not adjacent but −ac and c − b, then direct the link c → b. 

^

−→
4. If ab then mark every uni-directed link b → c in which c is not adjacent to a. 

The complexity of this algorithm is bounded by the first step, which by brute 

force would require an exponential search for the set Sab. It can be greatly reduced 

by the generation of a Markov network. A Markov network is the undirected graph 

formed by linking every pair of variables a and b that are dependent given the rest 
of the variables (i.e. ¬I(a, U − ab, b)). The Markov network of a dag-isomorphic 
distribution has the property that the parents of any variable in the dag form a 

clique in the network. Since Lemma 16.1 states that any two variables a and b are 

separable if and only if they are separated by their parent set Pab, the search for a 

separating set can be confined to the cliques that contain either a or b. Thus, the 

complexity is bounded, exponentially, by the size of the largest clique in the Markov 
network, and this coincides with the theoretical lower bound for recovery of a dag 

from independence information [Verma 91]. 
One drawback of the Markov network reduction is that it is not applicable to 

embedded causal models because it rests on part (4) of Lemma 16.1; no parallel 
lemma exists for embedded models. However, the basic algorithm stated above, by 
virtue of resting on Theorem 16.2 can be used to recover embedded causal model 
as well. The only difference is in the output; when the algorithm is applied to a 

dag-isomorphic distribution, every link is guaranteed to be assigned at most one 

arrowhead (a particular arrowhead may actually be assigned multiple times, but no 
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link will receive an arrowhead on both ends). However, when the distribution is iso
morphic to an embedded dag it is possible for a link to be assigned an arrowhead 

on both ends, hence the recovery of a bi-directional link. 
The invariant nature of the arrows in a pattern can form the basis for a gen

eral non-temporal definition of causation; one that determines the direction of 
causal influences from statistical data without resorting to chronological informa
tion, and one that applies to general distributions, including those that are not 
isomorphic to embedded dags. The essence of this definition can be articulated by 
taking as models of our theory the set 𝒫 of all patterns that are consistent with an 

observed distribution, namely, patterns that represent the minimal causal models 
of the distribution (see [Pearl and Verma 1991] for the definition of minimality). 

Genuine and Potential Cause 

c is a genuine cause of e if c causes e in every consistent model (i.e. every pattern of 
𝒫 contains the directed arrow c → e). c is a potential cause of e if c causes e in some 
consistent model (i.e. some pattern of 𝒫 contains c → e) and e never causes c in any 
consistent model (i.e. no pattern of 𝒫 contains c → e). 

The IC-algorithm identifies every potential cause by assignment of a uni
directional link, and it marks those which are infact genuine. The vertical arrow 

in Figure 16.3 (e) is an example of a genuine cause, since this arrow cannot be 

emulated by a hidden common cause of the two end points (in any consistent 
embedded model). The other arrows in Figure 16.3 (e) represent potential causes 
when viewed in the context of embedded models, because each can be represented 

by a common hidden cause in some equivalent causal model. 
Since the number of patterns over |U | variables is finite, Definition 16.5 is oper

ational. However, the existence of an effective algorithm which can determine 

causation by means other than enumerating the patterns of 𝒫 is an open ques
tion. If the observed distribution is isomorphic to an embedded dag, then 𝒫 con
tains only one unique pattern; that which is generated by the recovery algorithm. 
This pattern contains all the information required for identifying the genuine and 

potential causes [Verma 91]. However, when applied to general distributions the 

arrows assigned in the generated pattern may or may not coincide with the model-
theoretic definition of genuine and potential causes. A more detailed treatment 
of the model-theoretic definition of causation, including a set of sound causal 
relationships sanctioned by this definition can be found in [Pearl and Verma 91]. 

[Spirtes et al 90] have proposed an algorithm for identifying causal relation
ships which accepts many, but not all, of the genuine and potential causes in 

distributions that are isomorphic to embedded dags. The relationships identified 
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by [Spirtes et al 90] correspond to the singly directed arrows of the rudimentary 
pattern. 

In practice, every recovery algorithm must face the problem of inferring inde
pendence relations from sampled data. The number of samples required to reliably 
test the assertion I(a, Sab, b) grows exponentially with the size of Sab. A reasonable 

approximating algorithm for recovering a dag (or embedded dag) could be devised 

based upon the following redefinition of the independence relation: 

Definition 16.6 Reliable Independence 

I(a, S, b) holds reliably whenever the set of hypotheses {P(a|S) = P(a|Sb)} is confirmed 

for each instantiation of S for which a sufficient number of samples are available to 

reliably test the hypothesis. 

This notion of reliable independence is captured by taking as a measure of depen
dency the (conditional) sample cross entrophy [Pearl 88, page 392]: 

Ĥ(a, b S) def =| ∑ 
a,b,S 

P̂(a, b, S) log 
P̂(a, b

P̂(a P̂(b
|S) 

|S) |S) 

P̂ stands for the sample frequency and the summation ranges over all instan
tiations of a, b and S. We see that terms involving small samples (i.e., low values of 
where

P(a, b, S)) are automatically discounted relative to those of larger samples. 
One issue that has not been addressed is that of deterministic nodes, such as 

those representing functional dependencies among variables. These nodes cannot 

^

be completely represented by the causal models considered in this paper, as they 
require a refinement of d-separation studied in [Geiger et al 89] and [Pearl et al 89]. 
The issues introduced by deterministic nodes are discussed in [Verma 91]. 
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true?”) is important to fault diagnosis, planning, and determination of liability. We 

present a formalism that uses probabilistic causal networks to evaluate one’s belief 
that the counterfactual consequent, C, would have been true if the antecedent, A, 
were true. The antecedent of the query is interpreted as an external action that 
forces the proposition A to be true, which is consistent with Lewis’ Miraculous Anal
ysis. This formalism offers a concrete embodiment of the “closest world” approach 

which (1) properly reflects common understanding of causal influences, (2) deals 
with the uncertainties inherent in the world, and (3) is amenable to machine 

representation. 

Probabilistic Evaluation 
of Counterfactual Queries 
Alexander Balke* and Judea Pearl 

Abstract 
Evaluation of counterfactual queries (e.g., “If A were true, would C have been 

17.1 Introduction 
A counterfactual sentence has the form 

If A were true, then C would have been true 

where A, the counterfactual antecedent, specifies an event that is contrary to one’s 
real-world observations, and C, the counterfactual consequent, specifies a result 
that is expected to hold in the alternative world where the antecedent is true. A typi
cal instance is “If Oswald were not to have shot Kennedy, then Kennedy would still 
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be alive” which presumes the factual knowledge of Oswald’s shooting Kennedy, 
contrary to the antecedent of the sentence. 

The majority of the philosophers who have examined the semantics of coun
terfactual sentences (Goodman 1983; Harper, Stalnaker, & Pearce 1981; Nute 1980; 
Meyer & van der Hoek 1993) have resorted to some form of logic based on 

worlds that are “closest” to the real world yet consistent with the counterfactual’s 
antecedent. Ginsberg (1986), following a similar strategy, suggested that the logic 
of counterfactuals could be applied to problems in planning and diagnosis in Arti
ficial Intelligence. The few other papers in AI that have focussed on counterfactual 
sentences (e.g., (Jackson 1989; Pereira, Aparicio, & Alferes 1991; Boutilier 1992)) have 

mostly adhered to logics based on the “closest world” approach. 
In the real world, we seldom have adequate information for verifying the truth 

of an indicative sentence, much less the truth of a counterfactual sentence. Except 
for the small set of relationships between variables which can be modeled by physi
cal laws, most of the relationships in one’s knowledge base are non-deterministic. 
Therefore, it is more practical to ask not for the truth or falsity of a counterfac
tual, but for one’s degree of belief in the counterfactual consequent given the 

antecedent. To account for such uncertainties, (Lewis 1976) has generalized the 

notion of “closest world” using the device of “imaging”; namely, the closest worlds 
are assigned probability scores, and these scores are combined to compute the 

probability of the consequent. 
The drawback of the “closest world” approach is that it leaves the precise speci

fication of the closeness measure almost unconstrained. More specifically, it does 
not tell us how to encode distances in a way that would (1) conform to our percep
tion of causal influences and (2) lend itself to economical machine representation. 
This paper can be viewed as a concrete explication of the closest world approach, 
one that satisfies the two requirements above. 

The target of our investigation are counterfactual queries of the form: 

If A were true, then what is the probability that C would have been true, given 

that we know B? 

The proposition B stands for the actual observations made in the real world (e.g., 
that Oswald did shoot Kennedy and that Kennedy is dead) which we make explicit 
to facilitate the analysis. 

Counterfactuals are intertwined with notions of causality: We do not typically 
express counterfactual sentences without assuming a causal relationship between 

the counterfactual antecedent and the counterfactual consequent. For example, 
we can safely state “If the sprinkler were on, the grass would be wet”, but the con
trapositive form of the same sentence in counterfactual form, “If the grass were 
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dry, then the sprinkler would not be on”, strikes us as strange, because we do not 
think the state of the grass has causal influence on the state of the sprinkler. Like
wise, we do not state “All blocks on this table are green, hence, had this white block 

been on the table, it would have been green”. In fact, we could say that people’s use 

of counterfactual statements is aimed precisely at conveying generic causal infor
mation, uncontaminated by specific, transitory observations, about the real world. 
Observed facts often do reflect strange combinations of rare eventualities (e.g., all 
blocks being green) that have nothing to do with general traits of influence and 

behavior. The counterfactual sentence, however, emphasizes the law-like, neces
sary component of the relation considered. It is for this reason, we speculate, that 
we find such frequent use of counterfactuals in ordinary discourse. 

The importance of equipping machines with the capability to answer coun
terfactual queries lies precisely in this causal reading. By making a counterfac
tual query, the user intends to extract the generic, necessary connection between 

the antecedent and consequent, regardless of the contingent factual information 

available at that moment. 
Because of the tight connection between counterfactuals and causal influences, 

any algorithm for computing counterfactual queries must rely heavily on causal 
knowledge of the domain. This leads naturally to the use of probabilistic causal 
networks, since these networks combine causal and probabilistic knowledge and 

permit reasoning from causes to effects as well as, conversely, from effects to 

causes. 
To emphasize the causal character of counterfactuals, we will adopt the inter

pretation in (Pearl 1993b), according to which a counterfactual sentence “If it were 

A, then B would have been” states that B would prevail if A were forced to be true by 
some unspecified action that is exogenous to the other relationships considered 

in the analysis. This action-based interpretation does not permit inferences from 

the counterfactual antecedent towards events that lie in its past. For example, the 

action-based interpretation would ratify the counterfactual 

If Kennedy were alive today, then the country would have been in a better 
shape 

but not the counterfactual, 

If Kennedy were alive today, then Oswald would have been alive as well. 

The former is admitted because the causal influence of Kennedy on the country 
is presumed to remain valid even if Kennedy became alive by an act of God. The 

second sentence is disallowed because Kennedy being alive is not perceived as 
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having causal influence on Oswald being alive. The information intended in the 

second sentence is better expressed in an indicative mood: 

If Kennedy was alive today then he could not have been killed in Dallas, 
hence, Jack Ruby would not have had a reason to kill Oswald and Oswald 

would have been alive today. 

Our interpretation of counterfactual antecedents, which is similar to Lewis’ 
(1979) Miraculous Analysis, contrasts with interpretations that require that the coun
terfactual antecedent be consistent with the world in which the analysis occurs. 
The set of closest worlds delineated by the action-based interpretation contains all 
those which coincide with the factual world except on possible consequences of 
the action taken. The probabilities assigned to these worlds will be determined by 
the relative likelihood of those consequences as encoded by the causal network. 

We will show that causal theories specified in functional form (as in (Pearl 
& Verma 1991; Druzdzel & Simon 1993; Poole 1993)) are sufficient for evaluating 

counterfactual queries, whereas the causal information embedded in Bayesian net
works is not sufficient for the task. Every Bayes network can be represented by 
several functional specifications, each yielding different evaluations of a counter-
factual. The problem is that, deciding what factual information deserves undoing 

(by the antecedent of the query) requires a model of temporal persistence, and, 
as noted in (Pearl 1993c), such a model is not part of static Bayesian networks. 
Functional specification, however, implicitly contains the temporal persistence 

information needed. 
The next section introduces some useful notation for concisely expressing 

counterfactual sentences/queries. We then present an example demonstrating 

the plausibility of the external action interpretation adopted in this paper. We 

then demonstrate that Bayesian networks are insufficient for uniquely evaluating 

counterfactual queries whereas the functional model is sufficient. A counterfac
tual query algorithm is then presented, followed by a re-examination of the ear
lier example with a quantitative analysis using this algorithm. The final section 

contains concluding remarks. 

17.2 Notation 
Let the set of variables describing the world be designated by X = {X1, X2, … , Xn}. 
As part of the complete specification of a counterfactual query, there are real-world 

observations that make up the background context. These observed values will be 

represented in the standard form x1, x2, … , xn. In addition, we must represent the 

value of the variables in the counterfactual world. To distinguish between xi and 

the value of Xi in the counterfactual world, we will denote the latter with an asterisk; 
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thus, the value of Xi in the counterfactual world will be represented by x * 
i . We will 

also need a notation to distinguish between events that might be true in the coun
terfactual world and those referenced explicitly in the counterfactual antecedent. 
The latter are interpreted as being forced to the counterfactual value by an external 
action, which will be denoted by a hat (e.g., �x). 

Thus, a typical counterfactual query will have the form “What is P(c * | �a * , a, b)?” 
to be read as “Given that we have observed A = a and B = b in the real world, if A 

were �a *, then what is the probability that C would have been c *?” 

17.3 Party Example 
To illustrate the external-force interpretations of counterfactuals, consider the 

following interpersonal behaviors of Ann, Bob, and Carl: 

∙	 Ann sometimes goes to parties. 

∙	 Bob likes Ann very much but is not into the party scene. Hence, save for rare 

circumstances, Bob is at the party if and only if Ann is there. 

∙	 Carl tries to avoid contact with Ann since they broke up last month, but he 

really likes parties. Thus, save for rare occasions, Carl is at the party if and 

only if Ann is not at the party. 

∙	 Bob and Carl truly hate each other and almost always scuffle when they meet. 

This situation may be represented by the diamond structure in Figure 17.1. The 

four variables A, B, C, and S have the following domains: 

{	 } 
a0 ≡ Ann is not at the party. 

a ∈ 
a1 ≡ Ann is at the party. 

{	 } 
b0 ≡ Bob is not at the party. 

b ∈ 
b1 ≡ Bob is at the party. 

{	 } 
c0	 ≡ Carl is not at the party. 

c ∈ 
c1 ≡ Carl is at the party. 

{	 } 
s0	 ≡ No scuffle between Bob and Carl. 

s ∈ 
s1	 ≡ Scuffle between Bob and Carl. 

Now consider the following discussion between two friends (Laura and Scott) 
who did not go to the party but were called by Bob from his home (b = b0): 

Laura: Ann must not be at the party, or Bob would be there instead of at home. 

Scott: That must mean that Carl is at the party! 
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Ann at partyA

C

S

B Carl at Party

Scuffle

Bob at party

Figure 17.1	 Causal structure reflecting the influence that Ann’s attendance has on Bob and Carl’s 
attendance, and the influence that Bob and Carl’s attendance has on their scuffling. 

Laura: If Bob were at the party, then Bob and Carl would surely scuffle. 

Scott: No. If Bob was there, then Carl would not be there, because Ann would have 

been at the party. 

Laura: True. But if Bob were at the party even though Ann was not, then Bob and 

Carl would be scuffling. 

Scott: I agree. It’s good that Ann would not have been there to see it. 

In the fourth sentence, Scott tries to explain away Laura’s conclusion by claim
ing that Bob’s presence would be evidence that Ann was at the party which would 

imply that Carl was not at the party. Scott, though, analyzes Laura’s counterfactual 
statement as an indicative sentence by imagining that she had observed Bob’s pres
ence at the party; this allows her to use the observation for abductive reasoning. 
But Laura’s subjunctive (counterfactual) statement should be interpreted as leav
ing everything in the past as it was (including conclusions obtained from abductive 

reasoning from real observations) while forcing variables to their counterfactual 
values. This is the gist of her last statement. 

This example demonstrates the plausibility of interpreting the counterfactual 
statement in terms of an external force causing Bob to be at the party, regard
less of all other prior circumstances. The only variables that we would expect to 

be impacted by the counterfactual assumption would be the descendants of the 

counterfactual variable; in other words, the counterfactual value of Bob’s atten
dance does not change the belief in Ann’s attendance from the belief prompted by 
the real-world observation. 

17.4 Probabilistic vs. Functional Specification 
In this section we will demonstrate that functionally modeled causal theories 
(Pearl & Verma 1991) are necessary for uniquely evaluating counterfactual queries, 
while the conditional probabilities used in the standard specification of Bayesian 

networks are insufficient for obtaining unique solutions. 
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Reconsider the party example limited to the two variables A and B, represent
ing Ann and Bob’s attendance, respectively. Assume that previous behavior shows 
P(b1 | a1) = 0.9 and P(b0 | a0) = 0.9. We observe that Bob and Ann are absent 
from the party and we wonder whether Bob would be there if Ann were there 

P(b* | �a1 * , a0, b0). The answer depends on the mechanism that accounts for the 10%1 

exception in Bob’s behavior. If the reason Bob occasionally misses parties (when 

Ann goes) is that he is unable to attend (e.g., being sick or having to finish a paper 
for AAAI), then the answer to our query would be 90%. However, if the only reason 

for Bob’s occasional absence (when Ann goes) is that he becomes angry with Ann 

(in which case he does exactly the opposite of what she does), then the answer to 

our query is 100%, because Ann and Bob’s current absence from the party proves 
that Bob is not angry. Thus, we see that the information contained in the condi
tional probabilities on the observed variables is insufficient for answering coun
terfactual queries uniquely; some information about the mechanisms responsible 

for these probabilities is needed as well. 
The functional specification, which provides this information, models the 

influence of A on B by a deterministic function 

b = Fb(a, 𝜖b) 

where 𝜖b stands for all unknown factors that may influence B and the prior prob
ability distribution P(𝜖b) quantifies the likelihood of such factors. For example, 
whether Bob has been grounded by his parents and whether Bob is angry at Ann 

could make up two possible components of 𝜖b. Given a specific value for 𝜖b, B 

becomes a deterministic function of A; hence, each value in 𝜖b’s domain specifies a 

response function that maps each value of A to some value in B’s domain. In general, 
the domain for 𝜖b could contain many components, but it can always be replaced by 
an equivalent variable that is minimal, by partitioning the domain into equivalence 

regions, each corresponding to a single response function (Pearl 1993a). Formally, 
these equivalence classes can be characterized as a function rb : dom(𝜖b) → N, as 
follows: 

⎧ 0 if Fb(a0, 𝜖b) = 0 & Fb(a1, 𝜖b) = 0⎪⎪⎪⎪ 1 if Fb(a0, 𝜖b) = 0 & Fb(a1, 𝜖b) = 1 
rb(𝜖b) = ⎨ 2 if Fb(a0, 𝜖b) = 1 & Fb(a1, 𝜖b) = 0⎪⎪⎪⎪ 3 if Fb(a0, 𝜖b) = 1 & Fb(a1, 𝜖b) = 1⎩ 

Obviously, rb can be regarded as a random variable that takes on as many values as 
there are functions between A and B. We will refer to this domain-minimal variable 
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as a response-function variable. rb is closely related to the potential response vari
ables in Rubin’s model of counterfactuals (Rubin 1974), which was introduced to 

facilitate causal inference in statistical analysis (Balke & Pearl 1993). 
For this example, the response-function variable for B has a four-valued domain 

rb ∈ {0, 1, 2, 3} with the following functional specification: 

b = fb(a, rb) = hb,rb (a) (17.1) 

where 

hb,0(a) = b0 (17.2)
{ 
b0 if a = a0hb,1(a) = (17.3)
b1 if a = a1

{ 
b1 if a = a0hb,2(a) = (17.4)
b0 if a = a1 

hb,3(a) = b1 (17.5) 

specify the mappings of the individual response functions. The prior probability 
on these response functions P(rb) in conjunction with fb(a, rb) fully parameterizes 
the model. 

Given P(rb), we can uniquely evaluate the counterfactual query “What is 
P(b1 * | �a * 

1 , a0, b0)?” (i.e., “Given A = a0 and B = b0, if A were a1, then what is the 

probability that B would have been b1?”). The action-based interpretation of coun
terfactual antecedents implies that the disturbance 𝜖b, and hence the response-
function rb, is unaffected by the actions that force the counterfactual values1; 
therefore, what we learn about the response-function from the observed evidence 

is applicable to the evaluation of belief in the counterfactual consequent. If we 

observe (a0, b0), then we are certain that rb ∈ {0, 1}, an event having prior prob
ability P(rb = 0) + P(rb = 1). Hence, this evidence leads to an updated posterior 
probability for rb (let ⃗P(rb) = ⟨P(rb =0) , P(rb =1), P(rb =2), P(rb =3)⟩) 

P⃗ ′(rb) = P⃗(rb | a0, b0) = 

P(rb =0) P(rb =1)⟨ 
P(rb =0) + P(rb =1) 

, 0, 0⟩.
P(rb =0) + P(rb =1) 

, 

According to Equations (17.1)-(17.5), if A were forced to a1, then B would have 

been b1 if and only if rb ∈ {1, 3}, which has probability P ′(rb =1) + P ′(rb =3) = 

1. An observation by D. Heckerman (personal communication). 
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P ′(rb =1). This is exactly the solution to the counterfactual query, 

P(rb =1)*P(b* | �a1 , a0, b0) = P ′(rb =1) = 1 P(rb =0) + P(rb =1)
. 

This analysis is consistent with the prior propensity account of (Skyrms 1980). 
What if we are provided only with the conditional probability (P(b | a)) instead 

of a functional model ( fb(a, rb) and P(rb))? These two specifications are related by: 

P(b1 | a0) = P(rb =2) + P(rb =3) 

P(b1 | a1) = P(rb =1) + P(rb =3). 

which show that P(rb) is not, in general, uniquely determined by the conditional 
distribution P(b | a). 

Hence, given a counterfactual query, a functional model always leads to a 

unique solution, while a Bayesian network seldom leads to a unique solution, 
depending on whether the conditional distributions of the Bayesian network suf
ficiently constrain the prior distributions of the response-function variables in the 

corresponding functional model. 
In practice, specifying a functional model is not as daunting as one might think 

from the example above. In fact, it could be argued that the subjective judgments 
needed for specifying Bayesian networks (i.e., judgments about conditional prob
abilities) are generated mentally on the basis of a stored model of functional rela
tionships. For example, in the noisy-OR mechanism, which is often used to model 
causal interactions, the conditional probabilities are derivatives of a functional 
model involving AND/OR gates, corrupted by independent binary disturbances. 
This model is used, in fact, to simplify the specification of conditional probabilities 
in Bayesian networks (Pearl 1988). 

17.5 Evaluating Counterfactual Queries 
From the last section, we see that the algorithm for evaluating counterfactual 
queries should consist of: (1) compute the posterior probabilities for the distur
bance variables, given the observed evidence; (2) remove the observed evidence 

and enforce the value for the counterfactual antecedent; finally, (3) evaluate the 

probability of the counterfactual consequent, given the conditions set in the first 
two steps. 

An important point to remember is that it is not enough to compute the pos
terior distribution of each disturbance variable (𝜖) separately and treat those vari
ables as independent quantities. Although the disturbance variables are initially 
independent, the evidence observed tends to create dependencies among the par
ents of the observed variables, and these dependencies need to be represented 
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in the posterior distribution. An efficient way to maintain these dependencies is 
through the structure of the causal network itself. 

Thus, we will represent the variables in the counterfactual world as distinct 
from the corresponding variables in the real world, by using a separate network 

for each world. Evidence can then be instantiated on the real-world network, and 

the solution to the counterfactual query can be determined as the probability of the 

counterfactual consequent, as computed in the counterfactual network where the 

counterfactual antecedent is enforced. But, the reader may ask, and this is key, 
how are the networks for the real and counterfactual worlds linked? Because any 
exogenous variable, 𝜖a, is not influenced by forcing the value of any endogenous 
variables in the model, the value of that disturbance will be identical in both the 

real and counterfactual worlds; therefore, a single variable can represent the distur
bance in both worlds. 𝜖a thus becomes a common causal influence of the variables 
representing A in the real and counterfactual networks, respectively, which allows 
evidence in the real-world network to propagate to the counterfactual network. 

Assume that we are given a causal theory T = ⟨D, ΘD⟩ as defined in (Pearl & 

Verma 1991). D is a directed acyclic graph (DAG) that specifies the structure of 
causal influences over a set of variables X = {X1, X2, … , Xn}. ΘD specifies a func
tional mapping xi = fi(pa(xi), 𝜖i) (pa(xi) represents the value of Xi’s parents) and 

a prior probability distribution P(𝜖i) for each disturbance 𝜖i (we assume that 𝜖i’s 
domain is discrete; if not, we can always transform it to a discrete domain such 

as a response-function variable). A counterfactual query “What is P(c * | �a * , obs)?” is 
then posed, where c * specifies counterfactual values for a set of variables C ⊂ X, �a * specifies forced values for the set of variables in the counterfactual antecedent, 
and obs specifies observed evidence. The solution can be evaluated by the following 

algorithm: 

1. From the known causal theory T create a Bayesian network <G, 𝒫> that 
explicitly models the disturbances as variables and distinguishes the real 
world variables from their counterparts in the counterfactual world. G is a 

DAG defined over the set of variables V = X ∪X* ∪𝜖, where X = {X1, X2, … , Xn} 

is the original set of variables modeled by T, X* = {X1 * , X2 
* , … , X*} is their n 

counterfactual world representation, and 𝜖 = {𝜖1, 𝜖2, … , 𝜖n} represents the 

set of disturbance variables that summarize the common external causal 
influences acting on the members of X and X* . 𝒫 is the set of conditional 
probability distributions P(Vi | pa(Vi)) that parameterizes the causal structure 

G.
 

If Xj ∈ pa(Xi) in D, then Xj ∈ pa(Xi) and Xj 
* ∈ pa(X*) in G (pa(Xi) is the set of
 i 

Xi’s parents). In addition, 𝜖i ∈ pa(Xi) and 𝜖i ∈ pa(X*) in G. The conditional i 
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probability distributions for the Bayesian network are generated from the 

causal theory: 

{ 
1	 if xi = fi(paX (xi), 𝜖i)P(xi | paX (xi), 𝜖i) = 
0	 otherwise 

where paX (xi) is the set of values of the variables in X ∩ pa(xi). 

* *P(x | paX* (xi ), 𝜖i) = P(xi | paX (xi), 𝜖i)i 

whenever xi = x * and paX* (x *) = paX (xi). P(𝜖i) is the same as specified by the i i 

functional causal theory T. 

2. Observed evidence. The observed evidence obs is instantiated on the real 
world variables X corresponding to obs. 

3. Counterfactual antecedent.	 For every forced value in the counterfactual 
antecedent specification �x * ∈ �a *, apply the action-based semantics of i 

set(X* = �x *) (see (Pearl 1993a; Spirtes, Glymour, & Scheines 1993)), which i i 

amounts to severing all the causal edges from pa(X*) to X* for all x * ∈ �a * 
i i i 

and instantiating X* to the value specified in �a * .i 

4. Belief propagation. After instantiating the observations and actions in the 

network, evaluate the belief in c * using the standard belief update meth
ods for Bayesian networks (Pearl 1988). The result is the solution to the 

counterfactual query. 

In the last section, we noted that the conditional distribution P(xk | pa(Xk)) for 
each variable Xk ∈ X constrains, but does not uniquely determine, the prior distri
bution P(𝜖k) of each disturbance variable. Although the composition of the exter
nal causal influences are often not precisely known, a subjective distribution over 
response functions may be assessable. If a reasonable distribution can be selected 

for each relevant disturbance variable, the implementation of the above algorithm 

is straightforward and the solution is unique; otherwise, bounds on the solution 

can be obtained using convex optimization techniques. (Balke & Pearl 1993) demon
strates this optimization task in deriving bounds on causal effects from partially 
controlled experiments. 

A network generated by the above algorithm may often be simplified. If a vari
able X* in the counterfactual world is not a causal descendant of any of the varij 

ables mentioned in the counterfactual antecedent �a *, then Xj and Xj 
* will always 

have identical distributions, because the causal influences that functionally deter
mine Xj and X* are identical. Xj and X* may therefore be treated as the same j	 j 
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variable. In this case, the conditional distribution P(xj | pa(xj)) is sufficient, and the 

disturbance variable 𝜖j and its prior distribution need not be specified. 

17.6 Party Again 
Let us revisit the party example. Assuming we have observed that Bob is not at the 

party (b = b0), we want to know whether Bob and Carl would have scuffled if Bob 

were at the party (i.e., “What is P(s * | �b* 
1 , b0)?”).1 

Suppose that we are supplied with the following causal theory for the model in 

Figure 17.1: 

a = fa(ra) = ha,ra () 

b = fb(a, rb) = hb,rb (a) 

c = fc(a, rc) = hc,rc (a) 

s = fs(b, c, rs) = hs,rs (b, c) 

where 
{ 
0.40 if ra = 0 

P(ra) = 
0.60 if ra = 1 

⎧ 0.07 if rb = 0⎪⎪⎪⎪⎪ 0.90 if rb = 1 
P(rb) = ⎨ 

0.03 if rb = 2⎪⎪⎪⎪⎪⎩ 0 if rb = 3 

⎧ 0.05 if rc = 0⎪⎪⎪⎪⎪ 0 if rc = 1 
P(rc) = ⎨ 

0.85 if rc = 2⎪⎪⎪⎪⎪⎩ 0.10 if rc = 3 

⎧ 0.05 if rs = 0⎪⎪⎪⎪⎪ 0.90 if rs = 8 
P(rs) = ⎨ 

0.05 if rs = 9⎪⎪⎪⎪⎪⎩ 0 otherwise 

and 

ha,0() = a0 

ha,1() = a1 
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hs,0(b, c) = s0 

{ 
s0 if (b, c) ≠ (b1, c1)

hs,8(b, c) = 
s1 if (b, c) = (b1, c1)

{ 
s0 if (b, c) ∈ {(b1, c0), (b0, c1)}

hs,9(b, c) = 
s1 if (b, c) ∈ {(b0, c0), (b1, c1)} 

The response functions for B and C (hb,rb and hc,rc ) both take the same form as that 
given in Equation (17.5). 

These numbers reflect the authors’ understanding of the characters involved. 
For example, the choice for P(rb) represents our belief that Bob usually is at the 

party if and only if Ann is there (rb = 1). However, we believe that Bob is some
times (∼ 7% of the time) unable to go to the party (e.g., sick or grounded by his 
parents); this exception is represented by rb = 0. In addition, Bob would some
times (∼ 3% of the time) go to the party if and only if Ann is not there (e.g., Bob is 
in a spiteful mood); this exception is represented by rb = 2. Finally, P(rs) represents 
our understanding that there is a slight chance (5%) that Bob and Carl would not 
scuffle regardless of attendance (rs = 0), and the same chance (P(rs = 9) = 5%) 
that a scuffle would take place either outside or inside the party (but not if only 
one of then shows up). 

Figure 17.2 shows the Bayesian network generated from step 1 of the algorithm. 
After instantiating the real world observations (b0) and the actions (�b* 

1 ) specified by 
the counterfactual antecedent in accordance with steps 2 and 3, the network takes 
on the configuration shown in Figure 17.3. 

r
a

A A*

r
b

r
s

S*S

B C*

r
c

C B*

Figure 17.2	 Bayesian model for evaluating counterfactual queries in the party example. The 
variables marked with * make up the counterfactual world, while those without *, 
the factual world. The r variables index the response functions. 
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r
a

A A*

r
b

r
s

S*S

b
0

C*

r
c

C b*
1

Figure 17.3 To evaluate the query P(s * | �b* 
1 , b0), the network of Figure 17.2 is instantiated with 1 

observation b0 and action �b* 
1 (links pointing to b1 * are severed). 

If we propagate the evidence through this Bayesian network, we will arrive at 
the solution 

P(s | b1 
* , b0) = 0.79.1 

which is consistent with Laura’s assertion that Bob and Carl would have scuffled if 
Bob were at the party, given that Bob actually was not at the party. Compare this to 

the solution to the indicative query that Scott was thinking of: 

P(s1 | b1) = 0.11. 

that is, if we had observed that Bob was at the party, then Bob and Carl would prob
ably not have scuffled. This emphasizes the difference between counterfactual and 

indicative queries and their solutions. 

17.7 Special Case: Linear-Normal Models 
Assume that knowledge is specified by the structural equation model 

x⃗ = Bx⃗ + ⃗𝜖 

where B is a triangular matrix (corresponding to a causal model that is a DAG), and 

we are given the mean �⃗�𝜖 and covariance Σ𝜖, 𝜖 of the disturbances ⃗𝜖 (assumed to be 

normal). The mean and covariance of the observable variables ⃗x are then given by: 

⃗ = S⃗ (17.6)𝜇x 𝜇𝜖 

Σx,x = SΣ𝜖,𝜖St (17.7) 

where S = (I − B)−1. 
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Under such a model, there are well-known formulas (Whittaker 1990, p. 163) for 
evaluating the conditional mean and covariance of ⃗x under some observations ⃗o: 

�⃗�x | o = �⃗�x + Σx,oΣo
−
,o
1 (⃗o − �⃗�o) (17.8) 

Σx,x | o = Σx,x − Σx,oΣ−
o,o
1Σo,y (17.9) 

where, for every pair of sub-vectors, z⃗ and w⃗, of ⃗x, Σz,w is the sub-matrix of Σx,x with 

entries corresponding to the components of ⃗z and w⃗. Singularities of Σ terms are 

handled by appropriate means. 
Similar formulas apply for the mean and covariance of ⃗x under an action ⃗a. B is 

replaced by the action-pruned matrix B� = [�bij] defined by: 
{ 
0 if Xi ∈ �⃗a�bij = (17.10)
bij otherwise 

The mean and covariance of x⃗ under B� is evaluated using Equations (17.6) and (17.7), 
where B is replaced by �B: 

�⃗��x = �S�⃗�𝜖 (17.11) 

Σ�x,x = �SΣ𝜖,𝜖�St (17.12) 

where �S = (I − B�)−1. We can then evaluate the distribution of ⃗x under the action �⃗a by conditioning on the value of the action �⃗a according to Equations (17.8) and 

(17.9): 

£ ⃗ = ⃗ Σ�−1 (⃗�⃗�x | �a 𝜇�x | a 𝜇�x + Σ�x,a a,a �a − ⃗𝜇�a) (17.13) 

£ � � Σ�−1 �Σx,x | �a Σx,x | a = Σx,x − Σ�x,a a,aΣa,x (17.14) 

To evaluate the counterfactual query P(x * | �a * o) we first update the prior distri
bution of the disturbances by the observations ⃗o: 

�⃗�𝜖 
o £ �⃗�𝜖 | o = �⃗�𝜖 + Σ𝜖,𝜖St(SΣ𝜖,𝜖St)−1 (⃗o − �⃗�o) 

Σo 
𝜖,𝜖 £ Σ𝜖,𝜖 | o = Σ𝜖,𝜖 − Σ𝜖,𝜖St(SΣ𝜖,𝜖St)−1SΣ𝜖,𝜖 

We then evaluate the means �⃗�x * | a�* o and variances Σx * ,x * | �a * o of the variables 
in the counterfactual world (x *) under the action �a * using Equations (17.13) and 

(17.14), with Σo and 𝜇o replacing Σ and 𝜇. 

⃗ | �a * o £ ⃗x | �a = ⃗x + �x,a(�a,a)
−1 (⃗� �a)𝜇x * 𝜇o 𝜇o Σo Σo a − ⃗𝜇o 

Σx * ,x * | �a * o £ Σx
o 
,x | �a = Σ̂x

o 
,x − Σ�x

o 
,a(Σ�a

o 
,a)

−1Σ�a
o 
,x 

where, from Equations (17.11) and (17.12), �⃗�o = �S�⃗�o and Σ�o = �SΣo �St .x 𝜖 x,x 𝜖,𝜖 
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It is clear that this procedure can be applied to non-triangular matrices, as long 

as S is non-singular. In fact, the response-function formulation opens the way to 

incorporate feedback loops within the Bayesian network framework. 

17.8 Conclusion 
The evaluation of counterfactual queries is applicable to many tasks. For exam
ple, determining liability of actions (e.g., “If you had not pushed the table, the 

glass would not have broken; therefore, you are liable”). In diagnostic tasks, coun
terfactual queries can be used to determine which tests to perform in order to 

increase the probability that faulty components are identified. In planning, coun
terfactuals can be used for goal regression or for determining which actions, if 
performed, could have avoided an observed, unexpected failure. Thus, counterfac
tual reasoning is an essential component in plan repairing, plan compilation and 

explanation-based learning. 
In this paper we have presented formal notation, semantics, representation 

scheme, and inference algorithms that facilitate the probabilistic evaluation of 
counterfactual queries. World knowledge is represented in the language of mod
ified causal networks, whose root nodes are unobserved, and correspond to pos
sible functional mechanisms operating among families of observables. The prior 
probabilities of these root nodes are updated by the factual information transmit
ted with the query, and remain fixed thereafter. The antecedent of the query is inter
preted as a proposition that is established by an external action, thus pruning the 

corresponding links from the network and facilitating standard Bayesian-network 

computation to determine the probability of the consequent. 
At this time the algorithm has not been implemented but, given a subjective 

prior distribution over the response variables, there are no new computational 
tasks introduced by this formalism, and the inference process follows the stan
dard techniques for computing beliefs in Bayesian networks (Pearl 1988). If prior 
distributions over the relevant response-function variables cannot be assessed, we 

have developed methods of using the standard conditional-probability specifica
tion of Bayesian networks to compute upper and lower bounds on counterfactual 
probabilities (Balke & Pearl 1994). 

The semantics and methodology introduced in this paper can be adopted 

to nonprobabilistic formalisms as well, as long as they support two essen
tial components: abduction (to abduce plausible functional mechanisms from 

the factual observations) and causal projection (to infer the consequences 
of the action-like antecedent). We should note, though, that the license to 

keep the response-function variables constant stems from a unique feature of 
counterfactual queries, where the factual observations are presumed to occur not 
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earlier than the counterfactual action. In general, when an observation takes place 

before an action, constancy of response functions would be justified if the envi
ronment remains relatively static between the observation and the action (e.g., if 
the disturbance terms 𝜖i) represent unknown pre-action conditions). However, in 

a dynamic environment subject to stochastic shocks a full temporal analysis using 

temporally-indexed networks may be warranted or, alternatively, a canonical model 
of persistence should be invoked (Pearl 1993c). 
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18
Summary 
The primary aim of this paper is to show how graphical models can be used as 
a mathematical language for integrating statistical and subject-matter informa
tion. In particular, the paper develops a principled, nonparametric framework for 
causal inference, in which diagrams are queried to determine if the assumptions 
available are sufficient for identifying causal effects from nonexperimental data. 
If so the diagrams can be queried to produce mathematical expressions for causal 
effects in terms of observed distributions; otherwise, the diagrams can be queried 

to suggest additional observations or auxiliary experiments from which the desired 

inferences can be obtained. 

Some key words 
Causal inference; Graph model; Structural equations; Treatment effect. 

Causal Diagrams for 
Empirical Research 
(With Discussions) 
Judea Pearl 

18.1 Introduction 
The tools introduced in this paper are aimed at helping researchers commu
nicate qualitative assumptions about cause-effect relationships, elucidate the 

ramifications of such assumptions, and derive causal inferences from a combina
tion of assumptions, experiments, and data. 
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The basic philosophy of the proposed method can best be illustrated through 

the classical example due to Cochran (Wainer, 1989). Consider an experiment in 

which soil fumigants, X, are used to increase oat crop yields, Y, by controlling 

the eelworm population, Z, but may also have direct effects, both beneficial and 

adverse, on yields beside the control of eelworms. We wish to assess the total effect 
of the fumigants on yields when this study is complicated by several factors. First, 
controlled randomised experiments are infeasible: farmers insist on deciding for 
themselves which plots are to be fumigated. Secondly, farmers’ choice of treat
ment depends on last year’s eelworm population, Z0, an unknown quantity strongly 
correlated with this year’s population. Thus we have a classical case of confound
ing bias, which interferes with the assessment of treatment effects, regardless of 
sample size. Fortunately, through laboratory analysis of soil samples, we can deter
mine the eelworm populations before and after the treatment and, furthermore, 
because the fumigants are known to be active for a short period only, we can safely 
assume that they do not affect the growth of eelworms surviving the treatment. 
Instead, eelworm growth depends on the population of birds and other predators, 
which is correlated, in turn, with last year’s eelworm population and hence with 

the treatment itself. 
The method proposed in this paper permits the investigator to translate com

plex considerations of this sort into a formal language, thus facilitating the follow
ing tasks. 

(i) Explicate the assumptions underlying the model. 

(ii) Decide whether the assumptions are sufficient for obtaining consistent 
estimates of the target quantity: the total effect of the fumigants on yields. 

(iii) If the answer to (ii) is affirmative, provide a closed-form expression for the 

target quantity, in terms of distributions of observed quantities. 

(iv) If the answer to (ii) is negative, suggest a set of observations and experiments 
which, if performed, would render a consistent estimate feasible. 

The first step in this analysis is to construct a causal diagram such as the one 

given in Figure 18.1, which represents the investigator’s understanding of the major 
causal influences among measurable quantities in the domain. The quantities Z1, 
Z2 and Z3 denote, respectively, the eelworm population, both size and type, before 

treatment, after treatment, and at the end of the season. Quantity Z0 represents last 
year’s eelworm population; because it is an unknown quantity, it is represented by 
a hollow circle, as is B, the population of birds and other predators. Links in the 

diagram are of two kinds: those that connect unmeasured quantities are desig
nated by dashed arrows, those connecting measured quantities by solid arrows. 
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X

Y
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Z
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1

Z
2

Z
3

Figure 18.1 A causal diagram representing the effect of fumigants, X, on yields, Y. 

The substantive assumptions embodied in the diagram are negative causal asser
tions, which are conveyed through the links missing from the diagram. For exam
ple, the missing arrow between Z1 and Y signifies the investigator’s understanding 

that pre-treatment eelworms cannot affect oat plants directly; their entire influence 

on oat yields is mediated by post-treatment conditions, namely Z2 and Z3. The pur
pose of the paper is not to validate or repudiate such domain-specific assumptions 
but, rather, to test whether a given set of assumptions is sufficient for quantifying 

causal effects from nonexperimental data, for example, estimating the total effect 
of fumigants on yields. 

The proposed method allows an investigator to inspect the diagram of 
Figure 18.1 and conclude immediately the following. 

(a) The total effect of X on Y can be estimated consistently from the observed 

distribution of X, Z1, Z2, Z3 and Y. 

(b) The total effect of X on Y, assuming discrete variables throughout, is given 

by the formula 

pr(y | x̌) = ∑∑∑ pr(y | z2, z3, x) pr(z2 | z1, x)∑ pr(z3 | z1, z2, x ′) pr(z1, x ′), 
z1 z2 z3 x ′ 

(18.1) 
where the symbol x̌, read ‘x check’, denotes that the treatment is set to level 
X = x by external intervention. 
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(c) Consistent estimation of the total effect of X on Y would not be feasible if Y 

were confounded with Z3; however, confounding Z2 and Y will not invalidate 

the formula for pr(y | x̌). 

These conclusions can be obtained either by analysing the graphical properties of 
the diagram, or by performing a sequence of symbolic derivations, governed by the 

diagram, which gives rise to causal effect formulae such as (18.1). 
The formal semantics of the causal diagrams used in this paper will be defined 

in § 18.2, following a review of directed acyclic graphs as a language for com
municating conditional independence assumptions. Section 18.2.2 introduces 
a causal interpretation of directed graphs based on nonparametric structural 
equations and demonstrates their use in predicting the effect of interventions. 
Section 18.3 demonstrates the use of causal diagrams to control confounding bias 
in observational studies. We establish two graphical conditions ensuring that 
causal effects can be estimated consistently from nonexperimental data. The first 
condition, named the back-door criterion, is equivalent to the ignorability condi
tion of Rosenbaum & Rubin (1983). The second condition, named the front-door 
criterion, involves covariates that are affected by the treatment, and thus intro
duces new opportunities for causal inference. In § 18.4, we introduce a symbolic 
calculus that permits the stepwise derivation of causal effect formulae of the type 

shown in (18.1). Using this calculus, § 18.5 characterises the class of graphs that 
permit the quantification of causal effects from nonexperimental data, or from 

surrogate experimental designs. 

18.2 Graphical Models and the Manipulative Account of Causation 

18.2.1 Graphs and Conditional Independence 
The usefulness of directed acyclic graphs as economical schemes for representing 

conditional independence assumptions is well evidenced in the literature (Pearl, 
1988; Whittaker, 1990). It stems from the existence of graphical methods for iden
tifying the conditional independence relationships implied by recursive product 
decompositions 

pr(x1, … , xn) = ∏ pr(xi | pai), (18.2) 
i 

where pai stands for the realisation of some subset of the variables that precede Xi 
in the order (X1, X2, … , Xn). If we construct a directed acyclic graph in which the vari
ables corresponding to pai are represented as the parents of Xi, also called adjacent 
predecessors or direct influences of Xi, then the independencies implied by the 

decomposition (18.2) can be read off the graph using the following test. 
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d-separation 

Let X, Y and Z be three disjoint subsets of nodes in a directed acyclic graph G, and let 
p be any path between a node in X and a node in Y, where by ‘path’ we mean any suc
cession of arcs, regardless of their directions. Then Z is said to block p if there is a node 
w on p satisfying one of the following two conditions: (i) w has converging arrows along 
p, and neither w nor any of its descendants are in Z, or, (ii) w does not have converging 
arrows along p, and w is in Z. Further, Z is said to d-separate X from Y, in G, written 

(X ⊥⊥ Y | Z)G, if and only if Z blocks every path from a node in X to a node in Y. 

It can be shown that there is a one-to-one correspondence between the set 
of conditional independencies X ⊥⊥ Y | Z (Dawid, 1979) implied by the recursive 

decomposition (18.2), and the set of triples (X, Z, Y) that satisfy the d-separation 

criterion in G (Geiger, Verma & Pearl, 1990). 
An alternative test for d-separation has been given by Lauritzen et al. (1990). To 

test for (X ⊥⊥ Y | Z)G, delete from G all nodes except those in X ∪ Y ∪ Z and their 
ancestors, connect by an edge every pair of nodes that share a common child, and 

remove all arrows from the arcs. Then (X ⊥⊥ Y | Z)G holds if and only if Z is a cut-set 
of the resulting undirected graph, separating nodes of X from those of Y. Additional 
properties of directed acyclic graphs and their applications to evidential reasoning 

in expert systems are discussed by Pearl (1988), Lauritzen & Spiegelhalter (1988), 
Spiegelhalter et al. (1993) and Pearl (1993a). 

Graphs as Models of Interventions 
The use of directed acyclic graphs as carriers of independence assumptions 
has also been instrumental in predicting the effect of interventions when these 

graphs are given a causal interpretation (Spirtes, Glymour & Scheines, 1993, p. 78; 
Pearl, 1993b). Pearl (1993b), for example, treated interventions as variables in 

an augmented probability space, and their effects were obtained by ordinary 
conditioning. 

In this paper we pursue a different, though equivalent, causal interpretation 

of directed graphs, based on nonparametric structural equations, which owes its 
roots to early works in econometrics (Frisch, 1938; Haavelmo, 1943; Simon, 1953). 
In this account, assertions about causal influences, such as those specified by the 

links in Figure 18.1, stand for autonomous physical mechanisms among the cor
responding quantities, and these mechanisms are represented as functional rela
tionships perturbed by random disturbances. In other words, each child-parent 
family in a directed graph G represents a deterministic function 

Xi = fi(pai, 𝜀i) (i = 1, … , n), (18.3) 
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where pai denote the parents of variable Xi in G, and 𝜀i (1 ≤ i ≤ n) are mutually inde
pendent, arbitrarily distributed random disturbances (Pearl & Verma, 1991). These 

disturbance terms represent exogenous factors that the investigator chooses not 
to include in the analysis. If any of these factors is judged to be influencing two 

or more variables, thus violating the independence assumption, then that factor 
must enter the analysis as an unmeasured, or latent, variable, to be represented in 

the graph by a hollow node, such as Z0 or B in Figure 18.1. For example, the causal 
assumptions conveyed by the model in Figure 18.1 correspond to the following set 
of equations: 

Z0 = f0(𝜀0), Z2 = f2(X, Z1, 𝜀2), B = fB(Z0, 𝜀B), Z3 = f3(B, Z2, 𝜀3), (18.4)
Z1 = f1(Z0, 𝜀1), Y = fY (X, Z2, Z3, 𝜀Y ), X = fX (Z0, 𝜀X ). 

The equational model (18.3) is the nonparametric analogue of a structural equa
tions model (Wright, 1921; Goldberger, 1972), with one exception: the functional 
form of the equations, as well as the distribution of the disturbance terms, will 
remain unspecified. The equality signs in such equations convey the asymmet
rical counterfactual relation ‘is determined by’, forming a clear correspondence 

between causal diagrams and Rubin’s model of potential outcome (Rubin, 1974; 
Holland, 1988; Pratt & Schlaifer, 1988; Rubin, 1990). For example, the equation for Y 

states that, regardless of what we currently observe about Y, and regardless of any 
changes that might occur in other equations, if (X, Z2, Z3, 𝜀Y ) were to assume the 

values (x, z2, z3, 𝜀Y ), respectively, Y would take on the value dictated by the function 

fY . Thus, the corresponding potential response variable in Rubin’s model Y(x), the 

value that Y would take if X were x, becomes a deterministic function of Z2, Z3 and 

𝜀Y , whose distribution is thus determined by those of Z2, Z3 and 𝜀Y . The relation 

between graphical and counterfactual models is further analysed by Pearl (1994a). 
Characterising each child-parent relationship as a deterministic function, 

instead of by the usual conditional probability pr(xi | pi), imposes equivalent inde
pendence constraints on the resulting distributions, and leads to the same recur
sive decomposition (18.2) that characterises directed acyclic graph models. This 
occurs because each 𝜀i is independent of all nondescendants of Xi. However, the 

functional characterisation Xi = fi(pai, 𝜀i) also provides a convenient language for 
specifying how the resulting distribution would change in response to external 
interventions. This is accomplished by encoding each intervention as an alteration 

to a selected subset of functions, while keeping the others intact. Once we know 

the identity of the mechanisms altered by the intervention, and the nature of the 

alteration, the overall effect can be predicted by modifying the corresponding equa
tions in the model, and using the modified model to compute a new probability 
function. 
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The simplest type of external intervention is one in which a single variable, 
say Xi, is forced to take on some fixed value xi. Such an intervention, which we 

call atomic, amounts to lifting Xi from the influence of the old functional mech
anism Xi = fi(pai, 𝜀i) and placing it under the influence of a new mechanism that 
sets its value to xi while keeping all other mechanisms unperturbed. Formally, this 
atomic intervention, which we denote by set(Xi = xi), or set(xi) for short, amounts 
to removing the equation Xi = fi(pai, 𝜀i) from the model, and substituting xi for 
Xi in the remaining equations. The model thus created represents the system’s 
behaviour under the intervention set(Xi = xi) and, when solved for the distribu
tion of Xj, yields the causal effect of Xi on Xj, denoted by pr(xj | ̌xi). More generally, 
when an intervention forces a subset X of variables to fixed values x, a subset of 
equations is to be pruned from the model given in (18.3), one for each member of 
X, thus defining a new distribution over the remaining variables, which completely 
characterises the effect of the intervention. We thus introduce the following. 

causal effect 
Given two disjoint sets of variables, X and Y, the causal effect of X on Y, denoted pr(y | x̌), 
is a function from X to the space of probability distributions on Y. For each realisation x 

of X, pr(y | x̌) gives the probability of Y = y induced on deleting from the model (18.3) all 
equations corresponding to variables in X and substituting x for X in the remainder. 

An explicit translation of intervention into ‘wiping out’ equations from the 

model was first proposed by Strotz & Wold (1960), and used by Fisher (1970) and 

Sobel (1990). Graphical ramifications were explicated by Spirtes et al. (1993) and 

Pearl (1993b). A related mathematical model using event trees has been introduced 

by Robins (1986, pp. 1422–5). 
Regardless of whether we represent interventions as a modification of an 

existing model as in Definition 18.2, or as a conditionalisation in an augmented 

model (Pearl, 1993b), the result is a well-defined transformation between the pre
intervention and the post-intervention distributions. In the case of an atomic inter

′ vention set(Xi = x ), this transformation can be expressed in a simple algebraic i 

formula that follows immediately from (18.3) and Definition 18.2: 
{

′ 
′ {pr(x1, … , xn)}/{pr(xi | pai)} if xi = xi ,pr(x1, … , xn | ̌xi ) = (18.5)′ 0 if xi ≠ xi . 

This formula reflects the removal of the terms pr(xi | pai) from the product in 

(18.2), since pai no longer influence Xi. Graphically, this is equivalent to remov
ing the links between pai and Xi while keeping the rest of the network intact. 
Equation (18.5) can also be obtained from the G-computation formula of Robins 
(1986, p. 1423) and the Manipulation Theorem of Spirtes et al. (1993), who state 
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that this formula was ‘independently conjectured by Fienberg in a seminar in 1991’. 
Clearly, an intervention set(xi) can affect only the descendants of Xi in G. Additional 
properties of the transformation defined in (18.5) are given by Pearl (1993b). 

The immediate implication of (18.5) is that, given a causal diagram in which all 
parents of manipulated variables are observable, one can infer post-intervention 

distributions from pre-intervention distributions; hence, under such assumptions 
we can estimate the effects of interventions from passive, i.e. nonexperimental 
observations. The aim of this paper, however, is to derive causal effects in situa
tions such as Figure 18.1, where some members of pai may be unobservable, thus 
preventing estimation of pr(xi | pai). The next two sections provide simple graphical 
tests for deciding when pr(xj | x̌i) is estimable in a given model. 

18.3 Controlling Confounding Bias 

18.3.1 The Back-Door Criterion 
Assume we are given a causal diagram G together with nonexperimental data on a 

subset V0 of observed variables in G, and we wish to estimate what effect the inter
vention set(Xi = xi) would have on some response variable Xj. In other words, we 

seek to estimate pr(xj | x̌i) from a sample estimate of pr(V0). 
The variables in V0⧵{Xi, Xj}, are commonly known as concomitants (Cox, 1958, 

p. 48). In observational studies, concomitants are used to reduce confounding bias 
due to spurious correlations between treatment and response. The condition that 
renders a set Z of concomitants sufficient for identifying causal effect, also known 

as ignorability, has been given a variety of formulations, all requiring conditional 
independence judgments involving counterfactual variables (Rosenbaum & Rubin, 
1983; Pratt & Schlaifer, 1988). Pearl (1993b) shows that such judgments are equiv
alent to a simple graphical test, named the ‘back-door criterion’, which can be 

applied directly to the causal diagram. 

Definition 18.3 Back-door criterion 

A set of variables Z satisfies the back-door criterion relative to an ordered pair of vari
ables (Xi, Xj) in a directed acyclic graph G if : (i) no node in Z is a descendant of Xi, and 

(ii) Z blocks every path between Xi and Xj which contains an arrow into Xi. If X and Y 

are two disjoint sets of nodes in G, Z is said to satisfy the back-door criterion relative to 

(X, Y) if it satisfies it relative to any pair (Xi, Xj) such that Xi ∈ X and Xj ∈ Y . 

The name ‘back-door’ echoes condition (ii), which requires that only paths with 

arrows pointing at Xi be blocked; these paths can be viewed as entering Xi through 

the back-door. In Figure 18.2, for example, the sets Z1 = {X3, X4} and Z2 = {X4, X5} 
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Figure 18.2	 A diagram representing the back-door criterion; adjusting for variables {X3, X4} or 
{X4, X5} yields a consistent estimate of pr(xj | x̌i). 

meet the back-door criterion, but Z3 = {X4} does not, because X4 does not block 

the path (Xi, X3, X1, X4, X2, X5, Xj). An equivalent, though more complicated, graphi
cal criterion is given in Theorem 7.1 of Spirtes et al. (1993). An alternative criterion 

using a single d-separation test will be established in § 18.4.4. 
We summarise this finding in a theorem, after formally defining ‘identifiability’. 

Definition 18.4	 Identifiability 
The causal effect of X on Y is said to be identifiable if the quantity pr(y | ̌x) can be 
computed uniquely from any positive distribution of the observed variables that is 
compatible with G. 

Identifiability means that pr(y | x̌) can be estimated consistently from an arbitrarily 
large sample randomly drawn from the joint distribution. To prove nonidentifi
ability, it is sufficient to present two sets of structural equations, both complying 

with (18.3), that induce identical distributions over observed variables but different 
causal effects. 

Theorem 18.1	 If a set of variables Z satisfies the back-door criterion relative to (X, Y), then the causal 
effect of X on Y is identifiable and is given by the formula 

pr(y | x̌) = ∑ pr(y | x, z) pr(z).	 (18.6) 
z 

Equation (18.6) represents the standard adjustment for concomitants Z when 

X is conditionally ignorable given Z (Rosenbaum & Rubin, 1983). Reducing ignor
ability conditions to the graphical criterion of Definition 18.3 replaces judgments 
about counterfactual dependencies with systematic procedures that can be applied 
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to causal diagrams of any size and shape. The graphical criterion also enables the 

analyst to search for an optimal set of concomitants, to minimise measurement 
cost or sampling variability. 

18.3.2 The Front-Door Criteria 
An alternative criterion, ‘the front-door criterion’, may be applied in cases where 

we cannot find observed covariates Z satisfying the back-door conditions. Consider 
the diagram in Figure 18.3. Although Z does not satisfy any of the back-door con
ditions, measurements of Z nevertheless enable consistent estimation of pr(y | x̌). 
This can be shown by reducing the expression for pr(y | x̌) to formulae computable 

from the observed distribution function pr(x, y, z). 
The joint distribution associated with Figure 18.3 can be decomposed into 

pr(x, y, z, u) = pr(u) pr(x | u) pr(z | x) pr(y | z, u) (18.7) 

and, from (18.5), the causal effect of X on Y is given by 

pr(y | x̌) = ∑ pr(y | x, u) pr(u).	 (18.8) 
u 

Using the conditional independence assumptions implied by the decomposition 

(18.7), we can eliminate u from (18.8) to obtain 

′ pr(y | ̌x) = ∑ pr(z | x)∑ pr(y | x , z) pr(x ′). (18.9) 
z x ′ 

We summarise this result by a theorem. 

Theorem 18.2	 Suppose a set of variables Z satisfies the following conditions relative to an ordered pair 
of variables (X, Y): (i) Z intercepts all directed paths from X to Y, (ii) there is no back-door 
path between X and Z, and (iii) every back-door path between Z and Y is blocked by X. 
Then the causal effect of X on Y is identifiable and is given by (18.9). 

U   (Unobserved)

X Z Y

Figure 18.3 A diagram representing the front-door criterion. 
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The graphical criterion of Theroem 18.2 uncovers many new structures that per
mit the identification of causal effects from measurements of variables that are 

affected by treatments: see § 18.5.2. The relevance of such structures in practical 
situations can be seen, for instance, if we identify X with smoking, Y with lung 

cancer, Z with the amount of tar deposited in a subject’s lungs, and U with an 

unobserved carcinogenic genotype that, according to some, also induces an inborn 

craving for nicotine. In this case, (18.9) would provide us with the means to quan
tify, from nonexperimental data, the causal effect of smoking on cancer, assuming, 
of course, that pr(x, y, z) is available and that we believe that smoking does not have 

any direct effect on lung cancer except that mediated by tar deposits. 

18.4 A Calculus of Intervention 

18.4.1 General 
This section establishes a set of inference rules by which probabilistic sentences 
involving interventions and observations can be transformed into other such sen
tences, thus providing a syntactic method of deriving or verifying claims about 
interventions. We shall assume that we are given the structure of a causal diagram 

G in which some of the nodes are observable while the others remain unobserved. 
Our main problem will be to facilitate the syntactic derivation of causal effect 
expressions of the form pr(y | x̌), where X and Y denote sets of observed variables. By 
derivation we mean step-wise reduction of the expression pr(y | x̌) to an equivalent 
expression involving standard probabilities of observed quantities. Whenever such 

reduction is feasible, the causal effect of X on Y is identifiable: see Definition 18.4. 

18.4.2 Preliminary Notation 
Let X, Y and Z be arbitrary disjoint sets of nodes in a directed acyclic graph G. 
We denote by GX the graph obtained by deleting from G all arrows pointing to 

nodes in X. Likewise, we denote by GX the graph obtained by deleting from G all 
arrows emerging from nodes in X. To represent the deletion of both incoming and 

outgoing arrows, we use the notation GXZ: see Figure 18.4 for illustration. Finally, 
pr(y | ̌x, z) := pr(y, z | x̌)/pr(z | ̌x) denotes the probability of Y = y given that Z = z is 
observed and X is held constant at x. 

18.4.3 Inference Rules 
The following theorem states the three basic inference rules of the proposed 

calculus. Proofs are provided in the 18.A. 
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Figure 18.4 Subgraphs of G used in the derivation of causal effects. 

Theorem 18.3 Let G be the directed graph associated with a causal model as defined in (18.3), and 

let pr(⋅) stand for the probability distribution induced by that model. For any disjoint 
subsets of variables X, Y, Z and W we have the following. 

Rule 1 (insertion/deletion of observations): 

pr(y | ̌x, z, w) = pr(y | ̌x, w) if (Y ⊥⊥ Z | X, W)GX 
. (18.10) 

Rule 2 (action/observation exchange): 

pr(y | ̌x, ž, w) = pr(y | ̌x, z, w) if (Y ⊥⊥ Z | . (18.11)X, W)GXZ 

Rule 3 (insertion/deletion of actions): 

pr(y | x̌, ž, w) = pr(y | ̌x, w) if (Y ⊥⊥ Z | X, W)GX, Z(W) 
, (18.12) 

where Z(W) is the set of Z-nodes that are not ancestors of any W -node in GX . 

Each of the inference rules above follows from the basic interpretation of the 

‘x̌’ operator as a replacement of the causal mechanism that connects X to its pre
intervention parents by a new mechanism X = x introduced by intervening force. 
The result is a submodel characterised by the subgraph GX , called the ‘manipulated 

graph’ by Spirtes et al. (1993), which supports all three rules. 
Rule 1 reaffirms d-separation as a valid test for conditional independence in 

the distribution resulting from the intervention set(X = x), hence the graph GX . 
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This rule follows from the fact that deleting equations from the system does not 
introduce any dependencies among the remaining disturbance terms: see (18.3). 

Rule 2 provides a condition for an external intervention set(Z = z) to have the 

same effect on Y as the passive observation Z = z. The condition amounts to X ∪ W 

blocking all back-door paths from Z to Y in GX , since GXZ retains all, and only, such 

paths. 
Rule 3 provides conditions for introducing or deleting an external intervention 

set(Z = z) without affecting the probability of Y = y. The validity of this rule stems, 
again, from simulating the intervention set(Z = z) by the deletion of all equations 
corresponding to the variables in Z. 

A causal effect q = pr(y1, … , yk | ̌x1, … , x̌m) is identifiable in a model characterised by 
a graph G if there exists a finite sequence of transformations, each conforming to one 
of the inference rules in Theorem 18.3, which reduces q into a standard, i.e. check-free, 
probability expression involving observed quantities. 

Whether the three rules above are sufficient for deriving all identifiable causal 
effects remains an open question. However, the task of finding a sequence of trans
formations, if such exists, for reducing an arbitrary causal effect expression can be 

systematised and executed by efficient algorithms as described by Galles & Pearl 
(1995). As § 18.4.4 illustrates, symbolic derivations using the check notation are 

much more convenient than algebraic derivations that aim at eliminating latent 
variables from standard probability expressions, as in § 3.2. 

Symbolic Derivation of Causal Effects: An Example 
We now demonstrate how Rules 1–3 can be used to derive causal effect estimands 
in the structure of Figure 18.3 above. Figure 18.4 displays the subgraphs that will 
be needed for the derivations that follow. 

Task 1: compute pr(z | ̌x). This task can be accomplished in one step, since G sat
isfies the applicability condition for Rule 2, namely, X ⊥⊥ Z in GX , because the path 

X ← U → Y ← Z is blocked by the converging arrows at Y, and we can write 

pr(z | ̌x) = pr(z | x). (18.13) 

Task 2: compute pr(y | ̌z). Here we cannot apply Rule 2 to exchange ̌z with z because 

GZ contains a back-door path from Z to Y : Z ← X ← U → Y . Naturally, we would 

like to block this path by measuring variables, such as X, that reside on that path. 
This involves conditioning and summing over all values of X: 

pr(y | ̌z) = ∑ pr(y | x, ž) pr(x | ̌z). (18.14) 
x 
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We now have to deal with two expressions involving ž, pr(y | x, ž) and pr(x | ̌z). 
The latter can be readily computed by applying Rule 3 for action deletion: 

pr(x | ̌z) = pr(x) if (Z ⊥⊥ X)GZ 
, (18.15) 

since X and Z are d-separated in GZ. Intuitively, manipulating Z should have no 

effect on X, because Z is a descendant of X in G. To reduce pr(y | x, ž), we consult 
Rule 2: 

pr(y | x, ž) = pr(y | x, z) if (Z ⊥⊥ Y | X)GZ , (18.16) 

noting that X d-separates Z from Y in GZ. This allows us to write (18.14) as 

pr(y | ̌z) = ∑ pr(y | x, z) pr(x) = Ex pr(y | x, z), (18.17) 
x 

which is a special case of the back-door formula (18.6). The legitimising condi
tion, (Z ⊥⊥ Y | X)GZ , offers yet another graphical test for the ignorability condition 

of Rosenbaum & Rubin (1983). 
Task 3: compute pr(y | x̌). Writing 

pr(y | x̌) = ∑ pr(y | z, x̌) pr(z | x̌), (18.18) 
z 

we see that the term pr(z | x̌) was reduced in (18.13) but that no rule can be applied 

to eliminate the ‘check’ symbol from the term pr(y | z, x̌). However, we can add a 

‘check’ symbol to this term via Rule 2: 

pr(y | z, x̌) = pr(y | ̌z, x̌), (18.19) 

since the applicability condition (Y ⊥⊥ Z | , holds true. We can now delete theX)GXZ 

action x̌ from pr(y | ̌z, x̌) using Rule 3, Y ⊥⊥ X | Z holds in GXZ. Thus, we have 

pr(y | z, x̌) = pr(y | ̌z), (18.20) 

which was calculated in (18.17). Substituting (18.17), (18.20) and (18.13) back into 

(18.18) finally yields 

′ pr(y | ̌x) = ∑ pr(z | x)∑ pr(y | x , z) pr(x ′), (18.21) 
z x ′ 

which is identical to the front-door formula (18.9). 

The reader may verify that all other causal effects, for example, pr(y, z | x̌) and 

pr(x, z | ̌y), can likewise be derived through the rules of Theorem 18.3. Note that in 

all the derivations the graph G provides both the license for applying the inference 

rules and the guidance for choosing the right rule to apply. 
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18.4.5 Causal Inference by Surrogate Experiments 
Suppose we wish to learn the causal effect of X on Y when pr(y | x̌) is not identifi
able and, for practical reasons of cost or ethics, we cannot control X by randomised 

experiment. The question arises whether pr(y | x̌) can be identified by randomising 

a surrogate variable Z, which is easier to control than X. For example, if we are inter
ested in assessing the effect of cholesterol levels X on heart disease, Y, a reasonable 

experiment to conduct would be to control subjects’ diet, Z, rather than exercising 

direct control over cholesterol levels in subjects’ blood. 
Formally, this problem amounts to transforming pr(y | x̌) into expressions in 

which only members of Z carry the check symbol. Using Theorem 3 it can be 

shown that the following conditions are sufficient for admitting a surrogate vari
able Z: (i) X intercepts all directed paths from Z to Y, and (ii) pr(y | x̌) is identifiable 

in GZ . Indeed, if condition (i) holds, we can write pr(y | ̌x) = pr(y | ̌x, ž), because 

(Y ⊥⊥ Z | . But pr(y | x, ž) stands for the causal effect of X on Y in a model gov-X)GXZ 
ˇ

erned by GZ which, by condition (ii), is identifiable. Figures 18.7(e) and 18.7(h) 
below illustrate models in which both conditions hold. Translated to our choles
terol example, these conditions require that there be no direct effect of diet on 

heart conditions and no confounding effect between cholesterol levels and heart 
disease, unless we can measure an intermediate variable between the two. 

18.5 Graphical Tests of Identifiability 

18.5.1 General 
Figure 18.5 shows simple diagrams in which pr(y | x̌) cannot be identified due to 

the presence of a bow pattern, i.e. a confounding arc, shown dashed, embracing 

a causal link between X and Y. A confounding arc represents the existence in the 

diagram of a back-door path that contains only unobserved variables and has no 

converging arrows. For example, the path X, Z0, B, Z3 in Figure 18.1 can be rep
resented as a confounding arc between X and Z3. A bow-pattern represents an 

equation Y = fY (X, U, 𝜀Y ), where U is unobserved and dependent on X. Such an 

equation does not permit the identification of causal effects since any portion of 
the observed dependence between X and Y may always be attributed to spurious 
dependencies mediated by U. 

The presence of a bow-pattern prevents the identification of pr(y | x̌) even when 

it is found in the context of a larger graph, as in Figure 18.5(b). This is in contrast 
to linear models, where the addition of an arc to a bow-pattern can render pr(y | x̌) 
identifiable. For example, if Y is related to X via a linear relation Y = bX + U, where 

U is an unobserved disturbance possibly correlated with X, then b = 𝜕E(Y | x̌)/𝜕x is 
not identifiable. However, adding an arc Z → X to the structure, that is, finding a 
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Figure 18.5	 (a) A bow-pattern: a confounding arc embracing a causal link X → Y, thus preventing 
the identification of pr(y | ̌x) even in the presence of an instrumental variable Z, as in 
(b). (c) A bow-less graph still prohibiting the identification of pr(y | x̌). 

variable Z that is correlated with X but not with U, would facilitate the computation 

of E(Y | x̌) via the instrumental-variable formula (Bowden & Turkington, 1984, p. 12; 
Angrist, Imbens & Rubin, 1995): 

𝜕	 E(Y | z) Ryzb := E(Y | ̌x) = = .	 (18.22)
𝜕x	 E(X | z) Rxz 

In nonparametric models, adding an instrumental variable Z to a bow-pattern, 
see Figure 18.5(b), does not permit the identification of pr(y | x̌). This is a famil
iar problem in the analysis of clinical trials in which treatment assignment, Z, is 
randomised, hence no link enters Z, but compliance is imperfect. The confound
ing arc between X and Y in Figure 18.5(b) represents unmeasurable factors which 

influence both subjects’ choice of treatment, X, and response to treatment, Y. In 

such trials, it is not possible to obtain an unbiased estimate of the treatment effect 
pr(y | ̌x) without making additional assumptions on the nature of the interactions 
between compliance and response (Imbens & Angrist, 1994), as is done, for exam
ple, in the approach to instrumental variables developed by Angrist et al. (1995). 
While the added arc Z → X permits us to calculate bounds on pr(y | x̌) (Robins, 
1989, § 1g; Manski, 1990), and while the upper and lower bounds may even coin
cide for certain types of distributions pr(x, y, z) (Balke & Pearl, 1994), there is no 

way of computing pr(y | x̌) for every positive distribution pr(x, y, z), as required by 
Definition 18.4. 

In general, the addition of arcs to a causal diagram can impede, but never assist, 
the identification of causal effects in nonparametric models. This is because such 

addition reduces the set of d-separation conditions carried by the diagram and, 
hence, if a causal effect derivation fails in the original diagram, it is bound to fail 
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in the augmented diagram as well. Conversely, any causal effect derivation that suc
ceeds in the augmented diagram, by a sequence of symbolic transformations, as 
in Corollary 18.1, would succeed in the original diagram. 

Our ability to compute pr(y | x̌) for pairs (x, y) of singleton variables does 
not ensure our ability to compute joint distributions, such as pr(y1, y2 | ̌x). 
Figure 18.5(c), for example, shows a causal diagram where both pr(z1 | ̌x) and 

pr(z2 | ̌x) are computable, but pr(z1, z2 | x̌) is not. Consequently, we cannot compute 

pr(y | ̌x). This diagram is the smallest graph that does not contain a bow-pattern 

and still presents an uncomputable causal effect. 

Identifying Models 
Figure 18.6 shows simple diagrams in which the causal effect of X on Y is identifi
able. Such models are called identifying because their structures communicate a 

sufficient number of assumptions to permit the identification of the target quan
tity pr(y | ̌x). Latent variables are not shown explicitly in these diagrams; rather, such 

variables are implicit in the confounding arcs, shown dashed. Every causal diagram 

with latent variables can be converted to an equivalent diagram involving mea
sured variables interconnected by arrows and confounding arcs. This conversion 

corresponds to substituting out all latent variables from the structural equations 
of (18.3) and then constructing a new diagram by connecting any two variables Xi 
and Xj by (i) an arrow from Xj to Xi whenever Xj appears in the equation for Xi, 
and (ii) a confounding arc whenever the same 𝜀 term appears in both fi and fj. The 

result is a diagram in which all unmeasured variables aré exogenous and mutually 
independent. Several features should be noted from examining the diagrams in 

Figure 18.6. 
(i) Since the removal of any arc or arrow from a causal diagram can only 

assist the identifiability of causal effects, pr(y | x̌) will still be identified in any 
edge-subgraph of the diagrams shown in Figure 18.6. Likewise, the introduction 

of mediating observed variables onto any edge in a causal graph can assist, but 
never impede, the identifiability of any causal effect. Therefore, pr(y | ̌x) will still 
be identified from any graph obtained by adding mediating nodes to the diagrams 
shown in Figure 18.6. 

(ii) The diagrams in Figure 18.6 are maximal, in the sense that the introduction 

of any additional arc or arrow onto an existing pair of nodes would render pr(y | x̌) 
no longer identifiable. 

(iii) Although most of the diagrams in Figure 18.6 contain bow-patterns, none 

of these patterns emanates from X as is the case in Figure 18.7(a) and (b) below. 
In general, a necessary condition for the identifiability of pr(y | ̌x) is the absence of 
a confounding arc between X and any child of X that is an ancestor of Y. 
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Figure 18.6	 Typical models in which the effect of X on Y is identifiable. Dashed arcs represent 
confounding paths, and Z represents observed covariates. 

(iv) Figures 18.6(a) and (b) contain no back-door paths between X and Y, 
and thus represent experimental designs in which there is no confounding bias 
between the treatment, X, and the response, Y ; that is, X is strongly ignorable 

relative to Y (Rosenbaum & Rubin, 1983); hence, pr(y | ̌x) = pr(y | x). Likewise, 
Figures 18.6(c) and (d) represent designs in which observed covariates, Z, block 

every back-door path between X and Y ; that is X is conditionally ignorable given Z 

(Rosenbaum & Rubin, 1983); hence, pr(y | ̌x) is obtained by standard adjustment for 
Z, as in (18.6): 

pr(y | x̌) = ∑ pr(y | x, z) pr(z). 
z 

(v) For each of the diagrams in Figure 18.6, we can readily obtain a formula for 
pr(y | ̌x), using symbolic derivations patterned after those in § 18.4.4. The deriva
tion is often guided by the graph topology. For example, Figure 18.6(f) dictates the 
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following derivation. Writing 

pr(y | ̌x) = ∑ pr(y | z1, z2, x̌) pr(z1, z2 | x̌), 
z1,z2 

we see that the subgraph containing {X, Z1, Z2} is identical in structure to that 
of Figure 18.6(e), with Z1, Z2 replacing Z, Y, respectively. Thus, pr(z1, z2 | x̌) can be 

obtained from (18.14) and (18.21). Likewise, the term pr(y | z1, z2, x̌) can be reduced 

to pr(y | z1, z2, x) by Rule 2, since (Y ⊥⊥ X | Z1, Z2)GX . Thus, we have 

pr(y | ̌x) = ∑ pr(y | z1, z2, x) pr(z1 | x)∑ pr(z2 | z1, x ′) pr(x ′). (18.23) 
z1, z2 x ′ 

Applying a similar derivation to Figure 18.6(g) yields 

pr(y | x̌) = ∑∑∑ pr(y | z1, z2, x ′) pr(x ′) pr(z1 | z2, x) pr(z2). (18.24) 
z1 z2 x ′ 

Note that the variable Z3 does not appear in the expression above, which means 
that Z3 need not be measured if all one wants to learn is the causal effect of X on Y. 

(vi) In Figures 18.6(e), (f) and (g), the identifiability of pr(y | x̌) is rendered feasible 

through observed covariates, Z, that are affected by the treatment X, that is descen
dants of X. This stands contrary to the warning, repeated in most of the literature 

on statistical experimentation, to refrain from adjusting for concomitant observa
tions that are affected by the treatment (Cox, 1958, p. 48; Rosenbaum, 1984; Pratt & 

Schlaifer, 1988; Wainer, 1989). It is commonly believed that, if a concomitant Z is 
affected by the treatment, then it must be excluded from the analysis of the total 
effect of the treatment (Pratt & Schlaifer, 1988). The reasons given for the exclu
sion is that the calculation of total effects amounts to integrating out Z, which is 
functionally equivalent to omitting Z to begin with. Figures 18.6(e), (f) and (g) show 

cases where one wants to learn the total effects of X and, still, the measurement of 
concomitants that are affected by X, for example Z or Z1, is necessary. However, the 

adjustment needed for such concomitants is nonstandard, involving two or more 

stages of the standard adjustment of (18.6): see (18.9), (18.23) and (18.24). 
(vii) In Figures 18.6(b), (c) and (f), Y has a parent whose effect on Y is not iden

tifiable, yet the effect of X on Y is identifiable. This demonstrates that local iden
tifiability is not a necessary condition for global identifiability. In other words, to 

identify the effect of X on Y we need not insist on identifying each and every link 

along the paths from X to Y. 

Nonidentifying Models 
Figure 18.7 presents typical diagrams in which the total effect of X on Y, pr(y | x̌), is 
not identifiable. Noteworthy features of these diagrams are as follows. 
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Figure 18.7 Typical models in which pr(y | ̌x) is not identifiable. 

(i) All graphs in Figure 18.7 contain unblockable back-door paths between X 

and Y, that is, paths ending with arrows pointing to X which cannot be blocked by 
observed nondescendants of X. The presence of such a path in a graph is, indeed, a 

necessary test for nonidentifiability. It is not a sufficient test, though, as is demon
strated by Figure 18.6(e), in which the back-door path (dashed) is unblockable, yet 
pr(y | ̌x) is identifiable. 

(ii) A sufficient condition for the nonidentifiability of pr(y | ̌x) is the existence of 
a confounding path between X and any of its children on a path from X to Y, as 
shown in Figures 18.7(b) and (c). A stronger sufficient condition is that the graph 

contain any of the patterns shown in Figure 18.7 as an edge-subgraph. 
(iii) Figure 18.7(g) demonstrates that local identifiability is not sufficient for 

global identifiability. For example, we can identify pr(z1 | ̌x), pr(z2 | x̌), pr(y | ̌z1) and 

pr(y | ̌z2), but not pr(y | ̌x). This is one of the main differences between nonpara
metric and linear models; in the latter, all causal effects can be determined from 
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the structural coefficients, each coefficient representing the causal effect of one 

variable on its immediate successor. 

18.6 Discussion 
The basic limitation of the methods proposed in this paper is that the results must 
rest on the causal assumptions shown in the graph, and that these cannot usually 
be tested in observational studies. In related papers (Pearl, 1994a, 1995) we show 

that some of the assumptions, most notably those associated with instrumental 
variables, see Figure 18.5(b), are subject to falsification tests. Additionally, consid
ering that any causal inferences from observational studies must ultimately rely 
on some kind of causal assumptions, the methods described in this paper offer 
an effective language for making those assumptions precise and explicit, so they 
can be isolated for deliberation or experimentation and, once validated, integrated 

with statistical data. 
A second limitation concerns an assumption inherent in identification anal

ysis, namely, that the sample size is so large that sampling variability may be 

ignored. The mathematical derivation of causal-effect estimands should therefore 

be considered a first step toward supplementing estimates of these with confi
dence intervals and significance levels, as in traditional analysis of controlled 

experiments. Having nonparametric estimates for causal effects does not imply 
that one should refrain from using parametric forms in the estimation phase of 
the study. For example, if the assumptions of Gaussian, zero-mean disturbances 
and linearity are deemed reasonable, then the estimand in (18.9) can be replaced 

by E(Y | ̌x) = Rxz𝛽zy ⋅ xx, where 𝛽zy ⋅ x is the standardised regression coefficient, and 

the estimation problem reduces to that of estimating coefficients. More sophis
ticated estimation techniques are given by Rubin (1978), Robins (1989, § 17), and 

Robins et al. (1992, pp. 331–3). 
Several extensions of the methods proposed in this paper are possible. First, the 

analysis of atomic interventions can be generalised to complex policies in which a 

set X of treatment variables is made to respond in a specified way to some set Z of 
covariates, say through a functional relationship X = g(Z) or through a stochastic 
relationship whereby X is set to x with probability P*(x | z). Pearl (1994b) shows that 
computing the effect of such policies is equivalent to computing the expression 

pr(y | ̌x, z). 
A second extension concerns the use of the intervention calculus of 

Theorem 18.3 in nonrecursive models, that is, in causal diagrams involving directed 

cycles or feedback loops. The basic definition of causal effects in terms of ‘wiping 

out’ equations from the model (Definition 18.2) still carries over to nonrecursive 

systems (Strotz & Wold, 1960; Sobel, 1990), but then two issues must be addressed. 
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First, the analysis of identification must ensure the stability of the remaining 

submodels (Fisher, 1970). Secondly, the d-separation criterion for directed acyclic 
graphs must be extended to cover cyclic graphs as well. The validity of d-separation 

has been established for nonrecursive linear models and extended, using an aug
mented graph, to any arbitrary set of stable equations (Spirtes, 1995). However, the 

computation of causal effect estimands will be harder in cyclic networks, because 

symbolic reduction of pr(y | ̌x) to check-free expressions may require the solution 

of nonlinear equations. 
Finally, a few comments regarding the notation introduced in this paper. There 

have been three approaches to expressing causal assumptions in mathematical 
form. The most common approach in the statistical literature invokes Rubin’s 
model (Rubin, 1974), in which probability functions are defined over an augmented 

space of observable and counterfactual variables. In this model, causal assump
tions are expressed as independence constraints over the augmented probability 
function, as exemplified by Rosenbaum & Rubin’s (1983) definitions of ignorability 
conditions. An alternative but related approach, still using the standard language 

of probability, is to define augmented probability functions over variables repre
senting hypothetical interventions (Pearl, 1993b). 

The language of structural models, which includes path diagrams (Wright, 1921) 
and structural equations (Goldberger, 1972) represents a drastic departure from 

these two approaches, because it invokes new primitives, such as arrows, distur
bance terms, or plain causal statements, which have no parallels in the language of 
probability. This language has been very popular in the social sciences and econo
metrics, because it closely echoes statements made in ordinary scientific discourse 

and thus provides a natural way for scientists to communicate knowledge and 

experience, especially in situations involving many variables. 
Statisticians, however, have generally found structural models suspect, because 

the empirical content of basic notions in these models appears to escape conven
tional methods of explication. For example, analysts have found it hard to conceive 

of experiments, however hypothetical, whose outcomes would be constrained by a 

given structural equation. Standard probability calculus cannot express the empir
ical content of the coefficient b in the structural equation Y = bX + 𝜀Y even if 
one is prepared to assume that 𝜀Y , an unobserved quantity, is uncorrelated with X. 
Nor can any probabilistic meaning be attached to the analyst’s excluding from this 
equation certain variables that are highly correlated with X or Y. As a consequence, 
the whole enterprise of structural equation modelling has become the object of 
serious controversy and misunderstanding among researchers (Freedman, 1987; 
Wermuth, 1992; Whittaker, 1990, p. 302; Cox & Wermuth, 1993). 
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To a large extent, this history of controversy stems not from faults in the struc
tural modelling approach but rather from a basic limitation of standard probability 
theory: when viewed as a mathematical language, it is too weak to describe the pre
cise experimental conditions that prevail in a given study. For example, standard 

probabilistic notation cannot distinguish between an experiment in which vari
able X is observed to take on value x and one in which variable X is set to value x 

by some external control. The need for this distinction was recognised by several 
researchers, most notably Pratt & Schlaifer (1988) and Cox (1992), but has not led to 

a more refined and manageable mathematical notation capable of reflecting this 
distinction. 

The ‘check’ notation developed in this paper permits one to specify precisely 
what is being held constant and what is merely measured in a given study and, 
using this specification, the basic notions of structural models can be given clear 
empirical interpretation. For example, the meaning of b in the equation Y = bX+𝜀Y 

is simply 𝜕E(Y | x̌)/𝜕x, namely, the rate of change, in x, of the expectation of Y in 

an experiment where X is held at x by external control. This interpretation holds 
regardless of whether 𝜀Y and X are correlated, for example, via another equation: 
X = aY +𝜀X . Moreover, the notion of randomisation need not be invoked. Likewise, 
the analyst’s decision as to which variables should be included in a given equation 

is based on a hypothetical controlled experiment: a variable Z is excluded from the 

equation for Y if it has no influence on Y when all other variables, SYZ, are held con
stant, that is, pr(y | ̌z, šYZ ) = pr(y | ̌sYZ). In other words, variables that are excluded 

from the equation Y = bX + 𝜀Y are not conditionally independent of Y given mea
surements of X, but rather conditionally independent of Y given settings of X. The 

operational meaning of the so-called ‘disturbance term’, 𝜀Y , is likewise demysti
fied: 𝜀Y is defined as the difference Y − E(Y | ̌sY ); two disturbance terms, 𝜀X and 𝜀Y , 
are correlated if pr(y | ̌x, šXY ) ̸= pr(y | x, šXY ); and so on. 

The distinctions provided by the ‘check’ notation clarify the empirical basis of 
structural equations and should make causal models more acceptable to empiri
cal researchers. Moreover, since most scientific knowledge is organised around the 

operation of ‘holding X fixed’, rather than ‘conditioning on X’, the notation and 

calculus developed in this paper should provide an effective means for scientists 
to communicate subject-matter information, and to infer its logical consequences 
when combined with statistical data. 
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18.A Appendix 
Proof of Theorem 18.3 
(i) Rule 1 follows from the fact that deleting equations from the model in (18.8) 
results, again, in a recursive set of equations in which all 𝜀 terms are mutually inde
pendent. The d-separation condition is valid for any recursive model, hence it is 
valid for the submodel resulting from deleting the equations for X. Finally, since 

the graph characterising this submodel is given by GX , (Y ⊥⊥ Z | X, W)GX 
implies 

the conditional independence pr(y | ̌x, z, w) = pr(y | x̌, w) in the post-intervention 

distribution. 
(ii) The graph GXZ differs from GX only in lacking the arrows emanating from Z, 

hence it retains all the back-door paths from Z to Y that can be found in GX . The 

condition (Y ⊥⊥ Z | ensures that all back-door paths from Z to Y in GX areX, W)GXZ 

blocked by {X, W}. Under such conditions, setting Z = z or conditioning on Z = z 
has the same effect on Y. This can best be seen from the augmented diagram G ′ X , 
to which the intervention arcs FZ → Z were added, where Fz stands for the func
tions that determine Z in the structural equations (Pearl, 1993b). If all back-door 
paths from Fz to Y are blocked, the remaining paths from Fz to Y must go through 

the children of Z, hence these paths will be blocked by Z. The implication is that 
Y is independent of Fz given Z, which means that the observation Z = z cannot be 

distinguished from the intervention Fz = set(z). 
(iii) The following argument was developed by D. Galles. Consider the aug

mented diagram G ′ to which the intervention arcs FZ → Z are added. IfX 

(FZ ⊥⊥ Y | W , X)G ′ , then pr(y | ̌x, ž, w) = pr(y | ̌x, w). If (Y ⊥⊥ Z | X, W)GX Z(W) 
and 

(FZ ⊥̸⊥ Y | W , X)G
X 

′ , there must be an unblocked path from a member FZ ′ of FZ to 
X 

Y that passes either through a head-to-tail junction at Z ′ , or a head-to-head junc
tion at Z ′ . If there is such a path, let P be the shortest such path. We will show that 
P will violate some premise, or there exists a shorter path, either of which leads to 

a contradiction. 
If the junction is head-to-tail, that means that (Y ⊥̸⊥ Z ′ | W , X)G ′ but 

(Y ⊥⊥ Z ′ | W , X)G ′ . So, there must be an unblocked path from Y to Z’ that passes 
X Z(W) 

X 
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through some member Z ′′ of Z(W) in either a head-to-head or a tail-to-head junc
tion. This is impossible. If the junction is head-to-head, then some descendant of 
Z ′′ must be in W for the path to be unblocked, but then Z ′′ would not be in Z(W). 
If the junction is tail-to-head, there are two options: either the path from Z ′ to Z ′′ 

ends in an arrow pointing to Z ′′ , or in an arrow pointing away from Z ′′ . If it ends in 

an arrow pointing away from Z ′′ , then there must be a head-to-head junction along 

the path from Z ′ to Z ′′ . In that case, for the path to be unblocked, W must be a 

descendant of Z ′′ , but then Z ′′ would not be in Z(W). If it ends in an arrow pointing 

to Z ′′ , then there must be an unblocked path from Z ′′ to Y in GX that is blocked in 

GX Z(W). If this is true, then there is an unblocked path from FZ ′′ to Y that is shorter 
than P, the shortest path. 

If the junction through Z ′ is head-to-head, then either Z ′ is in Z(W), in which 

case that junction would be blocked, or there is an unblocked path from Z ′ to Y 

in GX Z(W) that is blocked in GX . Above, we proved that this could not occur. So 

(Y ⊥⊥ Z | X, W)GX Z(W) 
implies (FZ ⊥⊥ Y | W , X)G ′ , and thus pr(y | x̌, ž, w) = pr(y | x̌, w). 

X 
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18.I Discussion of ‘Causal Diagrams for Empirical Research’ 
by J. Pearl 

D. R. Cox* and Nanny Wermuth† 

Judea Pearl has provided a general formulation for uncovering, under very explicit 
assumptions, what he calls the causal effect on y of ‘setting’ a variable x at a 

specified level, pr(y | x̌), as assessed in a system of dependencies that can be rep
resented by a directed acyclic graph. His Theorem 18.3 then provides a powerful 
computational scheme. 

The back-door criterion requires there to be no unobserved ‘common cause’ 
for x and y that is not blocked out by observed variables, that is at least one of the 

intermediate variables between x and y or the common cause is to be observed. It is 
precisely doubt about such assumptions that makes epidemiologists, for example, 
wisely in our view, so cautious in distinguishing risk factors from causal effects. 
The front-door criterion requires, first, that there be an observed variable z such 

that x affects y only via z. Moreover, an unobserved variable u affecting both x and 

y must have no direct effect on z. Situations where this could be assumed with any 
confidence seem likely to be exceptional. 

We agree with Pearl that in interpreting a regression coefficient, or generalisa
tion thereof, in terms of the effect on y of an intervention on x, it is crucial to specify 
what happens to other variables, observed and unobserved. Which are fixed, which 

vary essentially as in the data under analysis, which vary in some other way? If 
we ‘set’ diastolic blood pressure, presumably we must, at least for some purposes, 
also ‘set’ systolic blood pressure; and what about a host of biochemical variables 
whose causal interrelation with blood pressure is unclear? The difficulties here are 

related to those of interpreting structural equations with random terms, difficul
ties emphasised by Haavelmo many years ago; we cannot see that Pearl’s discussion 

resolves the matter. 
The requirement in the standard discussion of experimental design that con

comitant variables be measured before randomisation applies to their use for 
improving precision and detecting interaction. The use of covariates for detailed 

exploration of the relation between treatment effects, intermediate responses and 

final responses gets less attention than it deserves in the literature on design of 
experiments; see, however, the searching discussion in an agronomic context by 

*Nuffield College 
†Johannes Gutenberg-Universität Mainz 
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Fairfield Smith (1957). Graphical models and their consequences have much to 

offer here and we welcome Dr Pearl’s contribution on that account. 

[Received May 1995] 

18.II Discussion of ‘Causal Diagrams for Empirical Research’ 
by J. Pearl 

A. P. Dawid* 

The clarity which Pearl’s graphical account brings to the problems of describ
ing and manipulating causal models is greatly to be welcomed. One point which 

deserves emphasis is the equivalence, for the purposes Pearl addresses, between 

the counterfactual functional representation (18.3), emphasised here, and the 

alternative formulation of Pearl (1993b), involving the incorporation into a ‘regular’ 
directed acyclic graph of additional nodes and links directly representing interven
tions. I must confess to a strong preference for the latter approach, which in any 
case is the natural framework for analysis, as is seen from the 18.A. In particular, 
although a counterfactual interpretation is possible, it is inessential: the important 
point is to represent clearly, by choice of the appropriate directed acyclic graph, the 

way in which an intervention set(X = x) disturbs the system, by specifying which 

conditional distributions are invariant under such an intervention. As (18.5) makes 
evident, the overall effect of intervention is then entirely determined by the condi
tional distributions describing the recursive structure, and in no way depends on 

the way in which these might be represented functionally as in (18.3). This is for
tunate, since it is far easier to estimate conditional distributions than functional 
relationships. 

There are contexts where distributions are not enough, and counterfactual rela
tionships need to be assessed for valid inference. Perhaps the extension to non-
recursive models mentioned in § 18.6 is one. More important is inquiry into the 

‘causes of effects’, rather than the ‘effects of causes’ considered here. This arises in 

questions of legal liability: ‘Did Mr A’s exposure to radiation in his workplace cause 

his child’s leukaemia?’ Knowing that Mr A was exposed, and the child has devel
oped leukaemia, the question requires us to assess, counterfactually, what would 

have happened to the child had Mr A not been exposed. For this, distributional 
models are insufficient: a functional or counterfactual model is essential. 

*University College London 



284 Chapter 18 Causal Diagrams for Empirical Research (With Discussions) 

This raises the question as to how we can use scientific understanding and 

empirical data to construct the requisite causal model. By saying little about this 
specification problem, Pearl is in danger of being misunderstood to say that it is 
not important. To build either a distributional or a counterfactual causal model, 
we need to assess evidence on how interventions affect the system, and what 
remains unchanged. This will typically require a major scientific undertaking. 
Given this structure, distributional aspects can, in principle, be estimated from 

suitable empirical data, if only these are available, and we can then apply the 

manipulations described by Pearl to address problems of the ‘effects of causes’. 
But much more would be needed to address ‘causes of effects’, since counterfac
tual probabilities are, almost by definition, inaccessible to direct empirical study. 
Empirical data can be used to place bounds on these (Balke & Pearl, 1994), but 
these will usually only be useful when they essentially determine the functions 
in (18.3). And, for this, it will be necessary to conduct studies in which the vari
ables 𝜀i are explicitly identified and observed. Thus the whole mechanism needs 
to be broken down into essentially deterministic sub-mechanisms, with random
ness arising solely from incomplete observation. In most branches of science such 

a goal is quite unattainable. 
I emphasise the distinction drawn above, between inference about ‘effects of 

causes’ and ‘causes of effects’, because it might be tempting to try to extend Pearl’s 
analysis, particularly in its formulation (18.3), to the latter problem. For both prob
lems serious difficulties attend the initial model specification, but these are many 
orders of magnitude greater for ‘causes of effects’, and the inferences drawn will 
be very highly sensitive to the specification. 

On a different point, I am intrigued by possible connexions between Pearl’s 
clear distinction between conditioning and intervening, and the prequential 
framework of Dawid (1984, 1991), especially as elaborated by Vovk (1993). Suppose A 

plays a series of games, involving coins, dice, roulette wheels, etc. At any point, the 

game chosen may depend on the observed history. We could model this depen
dence probabilistically, or leave it unspecified. Now suppose we are informed of 
the sequence of games actually played, and want to say something about their out
comes. In a fully probabilised model, we could condition on the games played, but 
this would involve unpleasant analysis, and be sensitive to assumptions. Alterna
tively, and seemingly very reasonably, we can use the ‘prequential model’, which 

treats the games as having been fixed in advance. This is obtained from a fully 
specified model, with its natural temporally defined causal model, by ‘setting’ the 

games, rather than conditioning on them. 

[Received May 1995] 
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18.III Discussion of ‘Causal Diagrams for Empirical Research’ 
by J. Pearl 

Stephen E. Fienberg* , Clark Glymour, and Peter Spirtes† 

In recent years we have investigated the use of directed graphical models (Spirtes, 
1995; Spirtes, Glymour & Scheines, 1993) in order to analyse predictions about 
interventions that follow from causal hypotheses. We therefore welcome Pearl’s 
development and exposition. Our goal here is to indicate some other virtues of the 

directed graph approach, and compare it to alternative formalisations. 
Directed graph models have a dual role, explicitly representing substantive 

hypotheses about influence and implicitly representing hypotheses about condi
tional independence. We can connect the two dimensions, one causal and the 

other stochastic, by explicit mathematical axioms. For example, the causal Markov 
axiom requires that, in the graph, each variable be independent of its nonde
scendants conditional on its set of parents. The formalism allows one to hold 

causal hypotheses fixed while varying the axiomatic connexions to probabilistic 
constraints. In this way, one can prove the correctness of computable conditions 
for prediction, for the statistical equivalence of models, and for the possibility or 
impossibility of asymptotically correct model search, all under alternative axioms 
and under a variety of circumstances relevant to causal inference, including the 

presence of latent variables, sample selection bias, mixtures of causal structures, 
feedback, etc. Thus it is possible to derive Pearl’s Theorem 18.3, and other results 
in his paper, from the Markov condition alone, provided one treats a manipula
tion as conditionalisation on a ‘policy’ variable appropriately related to the variable 

manipulated. Further, two extensions of Theorem 18.3 follow fairly directly. First, if 
the sufficient conditions in Theorem 18.3 for the equalities of probabilities are vio
lated, distributions satisfying the Markov condition exist for which the equalities 
do not hold. Secondly, if the Markov condition entails all conditional indepen
dencies holding in a distribution, an axiom sometimes called ‘faithfulness’, the 

conditions of Theorem 18.3 are also necessary for the equalities given there. 
The graphical formalism captures many of the essential features common to 

statistical models that sometimes accompany causal or constitutive hypotheses, 
including linear and nonlinear regression, factor analysis, and both recursive and 

nonrecursive structural equation models. In many cases, these models are repre
sentable as graphical models with additional distribution assumptions. In some 

*Carnegie Mellon University, Department of Statistics 
†Carnegie Mellon University, Department of Philosophy 
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cases, the graphical formalism provides an alternative parametrisation of subsets 
of the distributions associated with a family of models, as, for example, for the 

graphical subset of distributions from the log-linear parametrisation of the multi
nomial family (Bishop, Fienberg & Holland, 1975; Whittaker, 1990). Directed graphs 
also offer an explicit representation of the connexion between causal hypothe
ses and independence and conditional independence hypotheses in experimen
tal design, and, under various axioms, permit the mathematical investigation of 
relations between experimental and nonexperimental designs. 

Rubin (1974), Rosenbaum & Rubin (1983), Holland (1988) and Pratt & Schlaifer 
(1988) have provided an important alternative treatment of the prediction of 
the results of interventions from partial causal knowledge. As Pearl notes, their 
approach, which involves conditional independence of measured and ‘counterfac
tual’ variables, gives results in agreement with the directed graphical approach 

under an assumption they refer to as ‘strong ignorability’. For example, a result 
given without proof by Pratt & Schlaifer provides a ‘sufficient and almost neces
sary’ condition for the equality of the probability of Y when X is manipulated, and 

the conditional probability of the counterfactual of Y on X. A direct analogue of 
their claim of sufficiency is provable from the Markov condition and necessity 
follows from the faithfulness condition, which is true with probability 1 for nat
ural measures on linear and multinomial parameters. This offers a reasonable 

reconstruction of what they may have meant by ‘almost necessary’. The Rubin 

approach to prediction has some advantages over directed graph approaches, for 
example in the representation of circumstances in which features of units influ
ence other units. The disadvantages of the framework stem from the necessity 
of formulating hypotheses explicitly in terms of the conditional independence of 
actual and counterfactual variables rather than in terms of variables directly influ
encing others. In our experience, even experts have difficulty reliably judging the 

conditional independence relations that do or do not follow from assumptions. 
For example, we have heard many statistically trained people deny, before doing 

the calculation, that the normality and independence of X, Y and e, coupled with 

the linear equation Z = aX + bY + e, entail that X and Y are dependent condi
tional on Z. For the same reason, the Rubin framework may make more difficult 
mathematical proofs of results about invariance, equivalence, search, etc. 

There are at least two other alternative approaches to the graphical formalism: 
Robins’ (1986) G-computation algorithm for calculating the effects of interven
tions under causal hypotheses expressed as event trees, an extension of the Rubin 

approach; and Glenn Shafer’s (1996) more recent and somewhat different tree 

structure approach. Where both are applicable, they seem to give the same results 
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as do procedures Pearl describes for computing on directed graphs. An advantage 

of the directed graph formalism is the naturalness of the representation of influ
ence. Questions regarding the relative power of these alternative approaches are as 
follows. 

(i) Is the graphical approach applicable to cases where the alternatives are not, 
particularly when there are structures in which it is not assumed that every 
variable either influences or is influenced by every other? 

(ii) Is the graphical approach faster in some instances, because the directed 

graphs can encode independencies in their structure while event trees 
cannot? 

(iii) Can the alternatives, like the graphical procedure, be extended to cases in 

which the distribution forced on the manipulated variable is continuous? 

As far as we can tell, none of the approaches to date has been able to cope 

with causal language associated with explanatory variables in proportional hazards 
models, where the nonlinear structure does not lend itself naturally to conditional 
independence representations. 

[Received April 1995] 

18.IV Discussion of ‘Causal Diagrams for Empirical Research’ 
by J. Pearl 

David Freedman* 

Causal inference with nonexperimental data seems unjustifiable to many statisti
cians. For others, the trick can be done almost on a routine basis, with the help of 
regression and its allied techniques, like path analysis or simultaneous-equation 

models. However, typical regression studies are problematic, because inferences 
are conditional on unvalidated, even unarticulated, assumptions: for discussion 

and reviews of the literature, see Freedman (1991, 1995). 
Deriving causation from association by regression depends on stochastic 

assumptions of the familiar kind, and on less familiar causal assumptions. Build
ing on earlier work by Holland (1988) and Robins (1989) among others, Pearl devel
ops a graphical language in which the causal assumptions are relatively easy to 

state. His formulation is both natural and interesting. It captures reasonably well 

*University of California, Berkeley 



288 Chapter 18 Causal Diagrams for Empirical Research (With Discussions) 

one intuition behind regression analysis: causal inferences can be drawn from 

associational data if you are observing the results of a controlled experiment run 

by Nature, and the causal ordering of the variables is known. When these assump
tions hold, there is identifiability theory that gives an intriguing description of 
permissible inferences. 

Following Holland (1988), I state the causal assumptions along with statistical 
assumptions that, taken together, justify inference in conventional path models. 
There is an observational study with n subjects, i = 1, … , n. The data will be anal
ysed by regression. There are three measured variables, X, Y, Z. The path diagram 

has arrows from X to Y ; then, from X and Y to Z. The diagram is interpreted as a 

set of assumptions about causal structure: the data result from coupling together 
two thought experiments, as specified below. Statistical analysis proceeds from the 

assumption that subjects are independent and identically distributed in certain 

respects. That is the basis for estimating regression functions, an issue Pearl does 
not address; customary tests of significance would follow too. 

Random variables are represented in the usual way on a sample space Ω. With 

notation like Holland’s, Yi,x(𝜔) represents the Y -value for subject i at 𝜔 ∈ Ω, if 
you set the X-value to x. The thought experiments are governed by the following 

assumptions (18.IV.1) and (18.IV.2): 

Yi,x(𝜔) = f (x) + 𝛿i(𝜔), (18.IV.1) 

Zi,x,y(𝜔) = g(x, y) + 𝜀i(𝜔). (18.IV.2) 

The same f and g apply to all subjects. Additive disturbance terms help the regres
sion functions f and g to be estimate, but more is required. Typically, linearity is 
assumed: 

f (x) = a + bx, g(x, y) = c + dx + ey. (18.IV.3) 

The 𝛿’s are taken to be independent and identically distributed with mean 0 and 

finite variance, as are the 𝜀’s; furthermore, the 𝛿’s are taken as independent of the 

𝜀’s. 
The experiments are coupled together to produce observables, as follows. 

Nature assigns X-values to the subjects at random, independently of the 𝛿’s and 

𝜀’s. Finally, the data on subject i are modelled as 

Xi(𝜔), Yi(𝜔) = f {Xi(𝜔)} + 𝛿i(𝜔), Zi(𝜔) = g{Xi(𝜔), Yi(𝜔)} + 𝜀i(𝜔). 

Linearity of regression functions and normality of errors would be critical for small 
data sets; with more data, less is needed. Conditioning on the {Xi} is a popular 
option. 
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The critical assumption is: if you intervene to set the value x for X on subject i in 

the first ‘experiment’, the Y -value responds according to (18.IV.1) above: the distur
bance 𝛿i(𝜔) is unaffected by intervention. If you set x and y as the values for X and Y 

on subject i in the second experiment, the Z-value responds according to (18.IV.2) 
above; again, 𝜀i(𝜔) is unaffected. In particular, the assignment by Nature of subjects 
to levels of X does not affect the 𝛿’s or 𝜀’s. Given this structure, the parameters a, b, 
c, d, e in (18.IV.1)–(18.IV.3) above can be estimated from nonexperimental data and 

used to predict the results of interventions: for instance, setting X to x and Y to y 
should make Z around �c + � ey.dx + �

Pearl says in § 18.6 that he gives a ‘clear empirical interpretation’ and ‘opera
tional meaning’ to causal assumptions, and clarifies their ‘empirical basis’. There 

are two ways to read this: 

(i) assumptions that justify causal inference from regression have been stated 

quite sharply; 

(ii) feasible methods have been provided for validating these assumptions, at 
least in certain examples. 

The first assertion seems right, indeed, that is one of the main contribu
tions of the paper. The second reading, which is probably not the intended one, 
would be a considerable over-statement. Invariance of errors under hypothetical 
interventions is a tall order. How can we test that Zi(𝜔) would have been g(x, y) + 

𝜀i(𝜔) if only Xi(𝜔) had been set to x and Yi(𝜔) to y? What about the stochastic 
assumptions on 𝛿 and 𝜀? In the typical observational study, there is no manipula
tion of variables and precious little sampling. Validation of causal models remains 
an unresolved problem. 

Pearl’s framework is more general than Equations (18.IV.1)–(18.IV.3) above, and 

the results are more subtle. Still, the causal laws, i.e. the analogues of the equa
tions, are assumed rather than inferred from the data. One technical complication 

should be noted: in Pearl’s Equation (18.IV.3), distributions are identifiable but 
the ‘link functions’ fi are not. The focus is qualitative rather than quantitative, so 

weaker invariance assumptions may suffice. More discussion of this point would 

be welcome. 
Concomitants. Concomitant variables pose further difficulties (Dawid, 1979). 

Thus, in Equations (18.IV.1)–(18.IV.3) above, suppose X is a dummy variable for 
sex, Y is education and Z is income. Some would consider a counterfactual inter
pretation: How much would Harriet have made if she had been Harry and gone 

to college? Others would view X as not manipulable, even in principle. Setting a 
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subject’s sex to M, even in a thought experiment, is then beside the point. Robins 
(1986, 1987a) offers another way to model concomitants. 

Conclusions. Pearl has developed mathematical language in which causal 
assumptions can be discussed. The gain in clarity is appreciable. The next step 

must be validation: to make real progress, those assumptions have to be tested. 

[Received April 1995] 

18.V Discussion of ‘Causal Diagrams for Empirical Research’
 
by J. Pearl
 

Guido W. Imbens and Donald B. Rubin* 

Judea Pearl presents a framework for deriving causal estimands using graphical 
models representing statements of conditional independence in models with inde
pendent and identically distributed random variables, and a ‘set’ notation with 

associated rules to reflect causal manipulations. This is an innovative contribution 

as it formalises the use of path-analysis diagrams for causal inference, tradition
ally popular in many fields including econometrics, e.g. Goldberger (1973). Because 

Pearl’s technically precise framework separates issues of identification and func
tional form, often inextricably linked in the structural equations of literature, this 
paper should serve to make this extensive literature more accessible to statisticians 
and reduce existing confusion between statisticians and econometricians: see, e.g., 
the Discussion of Wermuth (1992). 

Our discussion, however, focuses on this framework as an alternative to the 

practice in statistics, typically based on the potential outcomes framework for 
causal effects, or Rubin causal model (Holland, 1986; Rubin, 1974, 1978), which 

itself is an extension of Neyman’s (1923) formulation for randomised experiments 
as discussed by Rubin (1990). The success of these frameworks in defining causal 
estimands should be measured by their applicability and ease of formulating and 

assessing critical assumptions. 
Much important subject-matter information is not conveniently represented 

by conditional independence in models with independent and identically dis
tributed random variables. Suppose that, when a person’s health status is ‘good’, 
there is no effect of a treatment on a final health outcome, but, when a person’s 
health status is ‘sick’, there is an effect of this treatment, so there is dependence 

of final health status on treatment received conditional on initial health status. 

*Harvard University 
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Although the available information is clearly relevant for the analysis, its incorpo
ration, although immediate using potential outcomes, is not straightforward using 

graphical models. 
Next, consider a two-treatment randomised experiment with imperfect com

pliance, so that the received treatment is, in general, not ignorable despite the 

ignorability of the assigned treatment. Assuming that any effect of the assigned 

treatment on the outcome works through the received treatment, one has the 

instrumental variables example in Figure 18.5(b), which excludes a direct effect of 
Z on Y, given X. In other work (‘Bayesian inference for causal effects in random
ized experiments with noncompliance’, Working Paper 1976, Harvard Institute of 
Economic Research, Harvard University) we have discussed important distinctions 
between different versions of this exclusion restriction, which can be stated using 

potential outcomes but are blurred in graphical models. In that paper and related 

work (Imbens & Angrist, 1994; Angrist, Imbens & Rubin, 1995), we also stress the 

importance of the ‘monotonicity assumption’, requiring the absence of units tak
ing the treatment if assigned to control and not taking it if assigned to treatment. 
This allows identification of the average effect of the treatment for the subpop
ulation of compliers without assuming a common, additive, treatment effect for 
all units. Yet the monotonicity assumption is difficult to represent in a graphical 
model without expanding it beyond the representation in Figure 18.5(b). 

Complications also arise in Pearl’s framework when attempting to represent 
standard experimental designs (Cochran & Cox, 1957) having clustering of units in 

nests, split-plot randomisations, carryover treatments, etc. 
A related reason for preferring the Rubin causal model is its explicit distinc

tion between assignment mechanisms, which are often to some extent under the 

investigator’s control even in observational studies, and scientific models under
lying the data, which are not. Consider the discussion of the equivalence of the 

Rosenbaum–Rubin condition of strong ignorability of the assignment mecha
nism and the back-door criterion. In general, the concept of ignorable assignment 
(Rubin, 1976, 1978) does not require the conditional independence used in Pearl’s 
analysis. For example, a sequential assignment mechanism with future treatment 
assignments dependent on observed outcomes of previous units is ignorable, but 
such an assignment mechanism apparently requires a very large graphical model 
with all units defined as separate nodes, thereby making Pearl’s results, which 

require ‘an arbitrary large sample randomly drawn from the joint distribution’, 
irrelevant. 

Finally, consider the smoking–tar–cancer example in Figures 18.3, 18.4 and 

18.6(e). Pearl claims that his analysis reveals that one can learn the effect of one’s 
smoking on one’s lung cancer from observational data, the only provision being 
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that ‘smoking does not have any direct effect on lung cancer except that mediated 

by tar deposits’, i.e. no direct arrow from X to Y. But this claim is misleading as 
there are many other provisions hidden by the lack of an arrow between X and Z. 
For example, suppose that smokers are more likely to live in cities, and therefore 

more likely to be exposed to tar through pollution, or that smokers are more likely 
to interact with smokers, and are therefore exposed to more second-hand smoke 

than nonsmokers, etc. In this example the role of ‘tar deposits’ as an outcome is 
confounded with its role as a cause whose assignment may partially depend on 

previous treatments and outcomes, as can occur in serial experiments (Herzberg & 

Cox, 1969). 
Our overall view of Pearl’s framework is summarised by Hill’s concluding sen

tence (1971, p. 296). ‘Technical skills, like fire, can be an admirable servant and 

a dangerous master’. We feel that Pearl’s methods, although formidable tools for 
manipulating directed acyclical graphs, can easily lull the researcher into a false 

sense of confidence in the resulting causal conclusions. Consequently, until we see 

convincing applications of Pearl’s approach to substantive questions, we remain 

somewhat sceptical about its general applicability as a conceptual framework for 
causal inference in practice. 

[Received April 1995] 

18.VI Discussion of ‘Causal Diagrams for Empirical Research’
 
by J. Pearl
 

James M. Robins* 

18.VI.A Introduction 
Pearl has carried out two tasks. In the first, in § 18.2, using some results of Spirtes, 
Glymour & Scheines (1993), he showed that a nonparametric structural equations 
model depicted as a directed acyclic graph G implies that the causal effect of any 
variables X ⊆ G on Y ⊆ G is a functional of (i) the distribution function PG of 
the variables in G, and (ii) the partial ordering of these variables induced by the 

directed graph. This functional is the g-computation algorithm functional, here
after g-functional, of Robins (1986, p. 1423). In the second, in §§ 18.3–18.5, only a 

subset of the variables in G is observed. Given known conditional independence 

restrictions on PG encoded as missing arrows on G, Pearl develops elegant graph
ical inference rules for determining identifiability of the g-functional from the 

law of the observed subset. Task 2 requires no reference to structural models or 

*Harvard School of Public Health 



18.VI Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 293 

to causality. A potential problem with Pearl’s formulation is that his structural 
model implies that all variables in G, including concomitants such as age or sex, 
are potentially manipulable. Below I describe a less restrictive model that avoids 
this problem but, when true, still implies that the g-functional equals the effect 
of the treatments X of interest on Y. This critique of Pearl’s structural model is 
unconnected with his graphical inference rules, which were his main focus and 

are remarkable and path-breaking, going far beyond my own and others’ results 
(Robins, 1986, § 8, Appendix F). 

18.VI.B	 Task 1 
18.VI.B.1	 General 

Robins (1986, 1987b) proposed a set of counterfactual causal models based on event 
trees, called causally interpreted structured tree graphs, hereafter causal graphs, 
that includes Pearl’s non-parametric structural equations model as a special case. 
These models extended Rubin’s (1978) ‘time-independent treatment’ model to 

studies with direct and indirect effects and time-varying treatments, concomitants, 
and outcomes. In this section, I describe some of these models. 

18.VI.B.2	 A Causal Model 
Let Vi = {V1i, … , VMi} denote a set of temporally-ordered discrete random vari
ables observed on the ith study subject, i = 1, …, n. Let Xi := {X1i, … , XKi} ⊆ Vi 
be temporally-ordered, potentially manipulable, treatment variables of interest. 
The effect of Xi on outcomes Yi ⊆ Vi⧵Xi is defined to be pr{Yi(x) = y}, where the 

counterfactual random variable Yi(x) denotes a subject’s Y value had all n subjects 
followed the generalised treatment regime g = x := {x1, … , xK }. Robins (1986) 
wrote pr{Yi(x) = y} as pr(y | g = x). Pearl substitutes pr(y | ̌x). We regard the 

{Vi, Yi(x); x ∈ support of Xi} (i = 1, … , n) 

as independent and identically distributed, and henceforth suppress the i sub
script. 

This formal set-up can accommodate a superpopulation model with deter
ministic outcomes and counterfactuals as did that of Rubin (1978). Suppose we 

regard the n study subjects as randomly sampled without replacement from a 

large superpopulation of N subjects, and our interest is in the causal effect of X 

on Y in the superpopulation. Then, even if for each superpopulation member, V 

and Y(x) were deterministic nonrandom quantities, nonetheless, in the limit as 
N → ∞ and n/N → 0, we can model the data on the n study subjects as inde
pendent and identically distributed draws from the empirical distribution of the 

superpopulation. 
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We now show that pr(y | g = x) is identified from the law of V if each com
ponent Xk of X is assigned at random given the past. Let Lk be the variables 
occurring between Xk−1 and Xk, with L1 being the variables preceding X1. Write 

Lk := (L1, … , Lk), L := Lk and Xk := (X1, … , Xk), and define X0 L0 and V0 to be iden
tically 0. In considering Task 1 I have proved the following (Robins, 1987b, Theorem 

AD.1 and its corollary). 

Theorem If, in Dawid’s (1979) conditional independence notation, for all k, 

Y(x) ⊥⊥ Xk | Lk, Xk−1 = xk−1, (18.VI.1) 

X = x ⇒ Y(x) = Y , (18.VI.2) 

pr(Xk = xk | Xk−1 = xk−1, Lk) ̸ 0, (18.VI.3)= 

then 

pr(y | g = x) = h(y | g = x), (18.VI.4) 

where 

K
¯ ¯h(y | g = x) := ∑ pr(y | lK , xK )∏ pr(lk | lk−1, xk−1) 

l̄K k=1 

is the g-functional for x on y based on covariates L. If X is univariate, 

h(y | g = x) = ∑ pr(y | x, l1)pr(l1) 
l1 

(Rosenbaum & Rubin, 1983). 

Following Robins (1987b, p. 327), I shall refer to V as a R(Y , g = x) causal 
graph whenever (18.VI.1) and (18.VI.2) above hold, where R(Y, g = x) stands for ‘ran
domised with respect to Y for treatment g = x given covariates L’. Robins et al. (1992) 
called (18.VI.1) the assumption of no unmeasured confounders given L. Under the 

aforementioned superpopulation model, (18.VI.1) will hold in a true sequential ran
domised trial with X randomised and Xk-specific randomisation probabilities that 
depend only on the past (Lk, Xk−1). In observational studies, (18.VI.1) is untestable; 
investigators can at best hope to identify covariates L so that (18.VI.1) is approxi
mately true. Equation (18.VI.2) is Rubin’s (1978) stable unit treatment value assump
tion: it says Y and Y(x) are equal for subjects with X = x, irrespective of other 
subjects’ X values. Robins (1993) shows that 

{ }
K 

h(y | g = x) = E I(X = x)I(Y = y) ∏ pr(xk | ̄xk−1, Lk) ,
/ k=1 



18.VI Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl 295 

whose denominator clarifies the need for (18.VI.3). See also Rosenbaum & Rubin 

(1983). 

18.VI.B.3 Relationship with Pearl’s Work 

Suppose we represent our ordered variables V = {V1, … , VM } by a directed acyclic 
graph G that has no missing arrows, so that Vm−1 := {V1, … , Vm−1} are Vm’s parents. 
Then Pearl’s nonparametric structural equation model becomes 

Vm = fm(Vm−1, 𝜀m),	 (18.VI.5) 

for fm(., .) unrestricted (m = 1, … , M), and 

𝜀m (1 ≤ m ≤ M)	 (18.VI.6) 

are jointly independent. 
Pearl’s assumption of missing arrows on G is (i) more restrictive than (18.VI.5), 

and (ii) only relevant when faced with unobserved variables, as in Task 2. We now 

establish the equivalence between model (18.VI.5)–(18.VI.6) above and a particular 
causal graph, the finest fully randomised causal graph. For any X ⊂ V , x ∈ support 
X, let the counterfactual random variable Vm(x) denote the value of Vm had X been 

manipulated to x. 

Definitions 18.VI.1 Robins, 1986, pp. 1421–2 

(a) We have that V is a finest causal graph if (i) all one-step ahead counterfactuals 
Vm(vm−1) exist, and (ii) V and the counterfaetuals Vm(x) for any X ⊂ V are obtained 

by recursive substitution from the Vm(vm−1); for example 

V3 ≡ V3{V1, V2(V1)}, V3(v1) = V3{v1, V2(v1)}. 

(b) A finest causal graph V is a finest fully randomised causal graph if, for all m, 

{Vm+1(Vm−1, vm), … , VM (Vm−1, vm, … , vM−1)} ⊥⊥ Vm | Vm−1. (18.VI.7) 

For V to be a finest causal graph, all variables Vm ∈ V must be manipulable. 
Equation (18.VI.7) above essentially says that each Vm was assigned at random given 

the past Vm−1. In particular, (18.VI.7) would hold in a sequential randomised trial in 

which all variables in V, not just the treatments X of interest, are randomly assigned 

given the past. 

Lemma 18.VI.1	 (i) Equation (18.VI.5) above is equivalent to V’s being a finest causal graph, and (ii) 
Equations (18.VI.5) and (18.VI.6) above are jointly equivalent to V’s being a finest fully 
randomised causal graph. 
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Proof of Lemma. If (18.VI.5) holds, define Vm(vm−1) to be fm(vm−1, 𝜀m). Conversely, 
given Vm(vm−1), define 𝜀m = {Vm(vm−1): vm−1 ∈ support of Vm−1} and set 
fm(vm−1, 𝜀m) = Vm(vm−1). Part (ii) follows by some probability calculations. ■ 

The statement ‘V a finest fully randomised causal graph’ implies that V is a 

R(Y , g = x) causal graph, and thus, given (18.VI.3) above, that pr(y | g = x) = h(y | g = 

x). The converse is false. For example, ‘V a R(Y, g = x) causal graph’ only requires 
that the treatments X of interest be manipulable. 

18.VI.C Task 2 
Given (18.VI.1)–(18.VI.3) above, to obtain pr(y | g = x), we must compute h(y | g = x). 
However, often data cannot be collected on a subset of the covariates L ⊆ V believed 

sufficient to make (18.VI.1) above approximately true. Given a set of correct condi
tional independence restrictions on the law of V, encoded as missing arrows on a 

directed acyclic graph G over V, Pearl provides graphical inference rules for deter
mining whether h(y | g = x) is identified from the observed data. Pearl’s graphical 
inference rules are correct without reference to counterfactuals or causality when 

we define pr(y | ̌x, ž, w) to be 

h{y, w | g = (x, z)}/h{w | g = (x, z)}. 

Unfortunately, since covariates are missing, an investigator must rely on often 

shaky subject matter beliefs to guide link-deletions. Pearl & Verma (1991) appear to 

argue, although I would not fully agree, that beliefs about causal associations are 

generally sharper and more accurate than those about noncausal associations. If 
so, it would be advantageous to have all potential links on G represent direct causal 
effects, which will be the case only if V is a finest fully randomised causal graph and 

would justify Pearl’s focus on nonparametric structural equation models. 

[Received April 1995] 

18.VII Discussion of ‘Causal Diagrams for Empirical Research’ 
by J. Pearl 

Paul R. Rosenbaum* 

18.VII.A Successful and Unsuccessful Causal Inference: Some Examples 
Example 18.VII.1	 Cameron & Pauling (1976) gave vitamin C to patients with advanced cancers and 

compared survival to untreated controls. They wrote: ‘Even though no formal 

*University of Pennsylvania 
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process of randomisation was carried out ... we believe that [treated and control 
groups] come close to representing random subpopulations’, expressing their 
belief in the following diagram. 

(Treatment) → (Survival) 

They concluded: ‘... there is strong evidence that treatment ... [with vitamin C] ... 
increases survival time’. Moertel et al. (1985) repeated this in a randomised trial, 
but found no evidence that vitamin C prolongs survival. Today, few believe vitamin 

C is effective against cancer. The studies have the same path diagram, but only the 

randomised trial gave the correct inference. 

The Coronary Drug Project compared lipid-lowering drugs, including clofibrate, 
to placebo in a randomised trial (May et al., 1981). We focus on the comparison of 
placebo and clofibrate. A drug can work only if consumed, yielding the following 

diagram. 

(Assigned clofibrate or placebo) → (Amount of clofibrate consumed) → (Survival) 

In the clofibrate group, the Project found 15% mortality at five years among good 

compilers who took their assigned clofibrate as opposed to 25% mortality among 

poor compliers who did not take their assigned clofibrate. Theorem 18.2 suggests 
clofibrate prolongs survival. Alas, it does not. In the placebo group, the mortality 
rates among good compliers who took their placebo was 15% compared to 28% 

mortality among poor compliers who did not take their placebo. Total mortality 
was similar in the entire clofibrate and placebo groups. Again, the nonrandomised 

comparison of level of clofibrate gave the wrong inference while the randomised 

comparison of entire clofibrate and placebo groups gave the correct inference. 

Definition 18.2 is not a definition of causal effect, but rather an enormous web of 
assumptions. It asserts that a certain mathematical operation, namely this wiping 

out of equations and fixing of variables, predicts a certain physical reality, namely 
how changes in treatments, programmes and policies will change outcomes. No 

basis is given for believing that physical reality behaves this way. The examples 
above suggest it does not. See also Box (1966). 

Warranted Inferences 
We do not say an inference is justified because it depends upon assumptions. We 

distinguish warranted and unwarranted inferences. To say, as Fisher (1935) said, 
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that randomisation is the ‘reasoned basis for inference’ is to say it warrants a par
ticular causal inference; a warrant is a reasoned basis. An assumption is not a 

basis for inference unless the assumption is warranted. Path diagrams allow one 

to make a large number of complex, interconnected assumptions, but this is not 
desirable, because it is much more difficult to ensure that the assumptions are 

warranted. 
Inferences about treatment effects can sometimes be warranted by the follow

ing methods. 

(i) Care in research design, for instance random assignment of treatments, may 
provide a warrant. 

(ii) Insensitivity to substantial violations of assumptions may provide a warrant. 
For instance, the conclusion that heavy smoking causes lung cancer is highly 
insensitive to the assumption that smokers are comparable to nonsmokers 
(Cornfield et al., 1959; Rosenbaum, 1993, 1995). 

(iii) Confirmation of numerous, elaborate predictions of a simple causal the
ory may at times provide a warrant. Here is Fisher’s advice, as discussed by 
Cochran (1965, § 5): 

About 20 years ago, when asked in a meeting what can be done in 

observational studies to clarify the step from association to causation, 
Sir Ronald Fisher replied: ‘Make your theories elaborate.’ The reply 
puzzled me at first, since by Occam’s razor, the advice usually given 

is to make theories as simple as is consistent with known data. What 
Sir Ronald meant, as subsequent discussion showed, was that when 

constructing a causal hypothesis one should envisage as many dif
ferent consequences of its truth as possible, and plan observational 
studies to discover whether each of these is found to hold. 

This advice is quite the opposite of finding the conditions that just barely identify 
a path model. Fisher is calling for a simple theory that makes extensive, elabo
rate predictions each of which can be contrasted with observable data to check the 

theory, that is an extremely overidentified model. See Rosenbaum (1984a, 1995) for 
related theory and practical examples. 

[Received May 1995] 
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18.VIII Discussion of ‘Causal Diagrams for Empirical Research’ 
by J. Pearl 

Glenn Shafer* 

This is an innovative and useful paper. It establishes a framework in which both 

probability and causality have a place, and it uses this framework to unify and 

extend methods of causal inference developed in several branches of statistics. 
Pearl’s framework is the graphical model. He brings probability and causality 

together by giving this model two roles: (i) it expresses a joint probability distri
bution for a set of variables, and (ii) it tells how interventions can change these 

probabilities. I find this informative and attractive. When it fits a problem, it pro
vides a clear understanding of causality. But how often does it fit? People tend to 

become uncomfortable as soon as we look at almost any extensive example. Even 

in Pearl’s own examples, it is hard to agree that each causal connection is equiva
lent to an opportunity for intervention, or that the simplest interventions are those 

that remove a particular variable from the mechanism. If we try to do something 

about the birds, it will surely fall short of fixing their number at a desired level, and 

it may have other effects on the yield of the crop. 
My inability to overcome objections of these kinds when I defend causal claims 

made for graphical models has led me to undertake a more fundamental analy
sis of causality in terms of probability trees. This analysis, which will be reported 

in a forthcoming book (Shafer, 1996), opens the way to generalising Pearl’s ideas 
beyond their over-reliance on the idea of intervention. 

A probability tree is causal if it is nature’s tree i.e. if it shows how things happen 

step by step in nature. Causes are represented by steps in the tree. These steps 
determine the overall outcome, i.e. the path nature takes through the tree, and 

hence every variable. Some steps identify opportunities for intervention, but oth
ers simply represent how the world works. Variables are not causes, but they can 

be causally related. For example, two variables are independent in the probability-
tree sense if they have no common causes: there is no step in the tree where both 

their probability distributions change. This implies that the variables are indepen
dent in the usual sense at every point in the tree. Similarly, two numerical variables 
are uncorrelated in the probability-tree sense if there is no step where both their 
expected values change, and this implies that they are uncorrelated in the usual 
sense at every point in the tree. 

Pearl’s graphical-model assumptions, explicit and implicit, correspond to the 

following statements about nature’s probability tree: (i) if i < j, then Xi is settled 

*Rutgers University 
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before Xj, and (ii) at any point in the tree where Xi−1 is just settled, the probability 
of Xi eventually coming out equal to xi is p(xi | pai), where pai is the value of Xi’s par
ents. These two conditions imply that Pearl’s conditional independence relations, 
that each variable is independent of its nondescendants given its parents, hold at 
every point in the tree. 

What is Pearl’s p(y | x̌i) in probability-tree terms? It is an average of probabilities: 
we look at each point in the tree where Xi−1 has just been settled, find the point fol
lowing where Xi is settled to have the value xi, and find the probability at that point 
that Y will come out equal to y. Then we average these probabilities of y, weighting 

each by the probability of the point where Xi−1 was settled. This average tells us 
something about how steps in the direction of xi, after Xi−1 is settled, tend to pro
mote y. It has causal meaning, for it describes how the world works, but it does not 
depend how well steps between Xi−1 and xi can be targeted by human intervention. 

This idea of using averages to summarise the causal effect of steps in a probabil
ity tree does not depend on Pearl’s graphical-model assumptions. What is needed, 
in general, is some way of describing a cut across nature’s tree, in addition to the 

event or variable that identifies the following steps whose effect we want to average. 
In observational studies, the cut is often specified by choosing concomitants that 
are just settled there. In randomised studies, it can be specified by the conditions 
of the experiment, without explicit measurement. 

Pearl’s ideas can also be used in graphical models that make weaker assump
tions about nature’s tree. In particular, they can be used in path models, which 

represent only changes in expected values, not all changes in probabilities. These 

models are rather more flexible than Pearl’s graphical models, contrary to the 

suggestion conveyed by Pearl’s use of the term ‘nonparametric’. 

[Received April 1995] 

18.IX Discussion of ‘Causal Diagrams for Empirical Research’
 
by J. Pearl
 

Michael E. Sobel* 

18.IX.A Introduction 
Pearl takes the view, widely held in the social and behavioural sciences, that 
structural equation models are useful for estimating effects that correspond to 

those obtained if a randomised or conditionally randomised experiment were 

*University of Arizona 
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conducted. Typically, linear models are used, and parameters or functions of these 

interpreted as unit or average effects, direct or total. A few workers argue if endoge
nous variables are viewed as causes, these should be treated as exogenous, and 

a new hypothetical system, absent equations for these variables, considered. As 
the effects are defined in the new system, assumptions about the relationship 

between parameters of the old pre-intervention and new post-intervention systems 
are needed (Sobel, 1990). 

Pearl neatly extends this argument. His Equation (18.IX.5) specifies the post
′ intervention probabilities pr(x1, … , xn | ̌x ) in terms of the model based prei 

′ intervention probabilities. The effects of Xi on Xj are comparisons of pr(xj | x̌ ) withi 
′ ′ pr(xj | ̌x *), where xi and xi 

* are distinct values of Xi. If (X1, …, Xn) is observed, pr(xj | ̌x )i i 

is identified; Pearl considers the nontrivial case, giving sufficient conditions for 
identifiability. 

Pearl suggests his results are equivalent to those in Rubin’s model for causal 
inference. For example, he claims that the back-door criterion is ‘equivalent to the 

ignorability condition of Rosenbaum & Rubin (1983)’; if so, it should follow that 

′ pr(xj | ̌xi , w) = pr(xj | w),′ xi 

′ the probability if all units in the subpopulation W = w take value xi of the cause. 
Thus, 

′ pr(xj | ̌xi ) = pr(xj ).′ xi 

But strong ignorability, given covariates W, implies 

′ pr(xj | xi , w) = pr(xj | w);′ xi 

′ ′ the back-door criterion implies pr(xj | xi , w) = pr(xj | ̌xi , w). Neither condition 

implies the other; the two are only equivalent if 

′ pr(xj | w) = pr(xj | ̌xi , w).′ xi 

The assumption 

′ pr(xjx ′ i 
| w) = pr(xj | x̌i , w), 

and others like these, is the basis on which the paper rests, and for the equivalence 

claims made; such quantities need not be identical. 
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Suppose ignorability and the back-door criterion hold above. Then 

′ pr(xj | w) = pr(xj | ̌xi , w);′ xi 

equality is now a conclusion. If W is observed, ignorability implies 

′ pr(xj | w) = pr(xj | xi , w),′ xi 

which can be computed directly. The problematic case in observational studies 
occurs when some covariates are unobserved. But supplementing ignorability with 

assumptions like those in this paper helps to identify effects in Rubin’s model in 

such cases. To simplify, only atomic interventions will be considered and the out
come treated as a scalar quantity. Only the back-door criterion is considered, but 
Theorem 18.2, for example, could also be handled. 

18.IX.B Ignorability and the Back-Door Criterion 
For an atomic intervention, rule 2, which supports the back-door criterion, is 

′ ′ pr(xj | ̌xi , w) = pr(xj | xi , w) (18.IX.1) 

if (Xj ⊥⊥ Xi | W)GXi . Assume, following Pearl’s discussion of the back-door criterion, 
that W is observed. Ostensibly, (18.IX.1) looks similar to the assumption of strongly 
ignorable treatment assignment: Xjxi ⊥⊥ Xi | W for all values xi of Xi, 0 < pr(Xi = 

xi | W = w) for all (xi, w). 

Lemma 18.IX.1 Equality in (18.IX.1) holds if PAi ̸⊆ W , 

Xj ⊥⊥ (PAi ⧵W) | (Xi, W). (18.IX.2) 

Proof. This follows from 

′ ′ 
′ pr(xj | w, xi , pai⧵w) pr(w, xi , pai⧵w)pr(xj, w | ̌xi ) = ∑ . (18.IX.3)′ pr(x | pai)pai⧵w i 

■ 

Lemma 18.IX.2 If PAi ̸⊆ W , the independence conditions in (18.IX.1) and (18.IX.2) are equivalent. 

Proof. Suppose (18.IX.2) holds in G. In GXi , any path p from Xi to Xj has the form 

Xi ← M ⋯ → Xj, where M ∈ PAi. If M ∈ PAi⧵W , the subpath M ⋯ → Xj in 

G is blocked by W, hence p is blocked by W in GXi . Otherwise, p is a subpath of 
l → Xi ← M⋯ → Xj in G, l ∈ PAi⧵W , which is blocked by W as it has arrows con
verging to Xi, implying p is blocked by W in GXi . Conversely, in G any path p* from 
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l to Xj has form (a) l⋯ → Xi → ⋯ → Xj, (b) l⋯ → Xi ← M⋯ → Xj, or (c) l⋯ → Xj, 
where Xi does not appear. Here Xi blocks type (a) paths. Type (b) paths contain sub-
paths Xi ← M⋯ → Xj; by hypothesis, W blocks these in GXi , implying W blocks p * 

in G. Type (c) paths are subpaths of Xi ← l⋯ → Xj; by hypothesis, W blocks these 

in GXi , implying W blocks p* in G. ■ 

Theorem	 If treatment assignment is strongly ignorable, given (W , PAi⧵W), where PAi⧵W ̸= ∅ is 
unobserved, (18.IX.2) above holds, and no node in W is a descendant of Xi, pr(xj ) is′ 

′ 
x 

identified, and pr(xj ′ ) = pr(xj | ̌xi ).	 
i 

xi 

Proof. We have 

′ pr(xj | xi , w, pai⧵w) = pr(xj | w, pai⧵w), (18.IX.4)′ xi 

′	 ′ pr(xj | xi , w, pai⧵w) = pr(xj | xi , w),	 (18.IX.5) 

where (18.IX.4) follows from strong ignorability and (18.IX.5) from (18.IX.2); jointly, 
(18.IX.4) and (18.IX.5) imply 

′ pr(xj | w, pai⧵w) = pr(xj | w) = pr(xj | xi , w). (18.IX.6)′	 ′ x	 xi	 i 

Since no node in W is a descendant of Xi, 

′	 ′ pr(xj ) = ∑ pr(xj | xi , w)pr(w) = pr(xj | ̌xi ).	 ■′ xi w 

[Received May 1995] 

18.X Rejoinder to Discussions of ‘Causal Diagrams for Empirical 
Research’ 

Judea Pearl 

18.X.A	 General 
The subject of causality seems inevitably to provoke controversy among scientists, 
perhaps because causality is so essential to our thought and yet so seldom dis
cussed in the technical literature. I am pleased, therefore, to have the opportunity 
to respond to a range of concerns about the usefulness of the ideas developed in 

my paper. 
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18.X.B Graphs, Structural Equations and Counterfactuals 
Underlying many of the discussions are queries about the assumptions, power 
and limitations of the three major notational schemes used in causal analysis: 
structural equations, graphs and the Neyman–Rubin–Holland model, henceforth 

called ‘counterfactual analysis’. Thus, it seems useful to begin by explicating the 

commonalities among the three representational schemes, as noted in the Discus
sions of Freedman, following Holland (1988), Robins and Sobel; I will start with a 

structural interpretation of counterfactual sentences and then provide a general 
translation from graphs back to counterfactuals. 

The primitive object of analysis in the counterfactual framework is the unit-
based response variable, denoted Y(x, u) or Yx(u), read: ‘the value that Y would 

′ obtain in unit u, had X been x . This variable has a natural interpretation in 

structural equations model. Consider a set T of equations 

Xi = fi(PAi, Ui) (i = 1, … , n), (18.X.1) 

where the Ui are latent exogenous variables or disturbances and the PAi are the 

observed explanatory variables. Equation (18.X.1) above is similar to (18.X.3) in my 
paper, except we no longer insist on the equations being recursive or on the Ui’s 
being independent. Let U stand for the vectors (U1, … , Un), let X and Y be two dis
joint subsets of observed variables, and let Tx be the submodel created by replacing 

the equations corresponding to variables in X with X = x, as in Definition 18.2. The 

structural interpretation of Y(x, u) is given by 

Y(x, u) = YTx (u), (18.X.2) 

namely, Y(x, u) is the unique solution for Y under the realisation U = u in the sub-
model Tx of T. While the term unit in the counterfactual literature normally stands 
for the identity of a specific individual in a population, a unit may also be thought 
of as the set of attributes that characterise that individual, the experimental condi
tions under study, the time of day, and so on, which are represented as components 
of the vector u in structural modelling. Equation (18.X.2) above forms a connection 

between the opaque English phrase ‘the value that Y would obtain in unit u, had 

X been x’ and the physical processes that transfer changes in X into changes in Y. 
The formation of the submodel Tx represents a minimal change in model T needed 

for making x and u compatible; such a change could result either from external 
intervention or from a natural yet unanticipated eventuality. 

Given this interpretation of Y(x, u), it is instructive to contrast the method
ologies of causal inference in the counterfactual and the structural frameworks. 
If U is treated as a random variable, then the value of the counterfactual Y(x, u) 
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becomes a random variable as well, denoted by Y(x) or Yx. The counterfactual anal
ysis proceeds by imagining the observed distribution pr(x1, … , xn) as the marginal 
distribution of an augmented probability function pr* defined over both observed 

and counterfactual variables. Queries about causal effects, written pr(y | ̌x) in the 

structural analysis, are phrased as queries about the marginal distribution of the 

counterfactual variable of interest, written pr{Y(x) = y}. The new entities Y(x) are 

treated as ordinary random variables that are connected to the observed variables 
via the logical constraints (Robins, 1987b) 

X = x ⇒ Y(x) = Y (18.X.3) 

and a set of conditional independence assumptions which the investigator must 
supply to endow the augmented probability, pr*, with causal knowledge, paral
lelling the knowledge that a structural analyst would encode in equations or in 

graphs. 
For example, to communicate the understanding that in a randomised clini

cal trial, see Figure 18.5(b), the way subjects react, Y, to treatments X is statistically 
independent of the treatment assignment Z, the analyst would write Y(x) ⊥⊥ Z. Like
wise, to convey the understanding that the assignment process is randomised, 
hence independent of any variation in the treatment selection process, structurally 
written as UX ⊥⊥ UZ , the analyst would use the independence constraint X(z) ⊥⊥ Z. 

A collection of constraints of this type might sometimes be sufficient to per
mit a unique solution to the query of interest, for example, pr{Y(x) = y}; in other 
cases, only bounds on the solution can be obtained. Section 18.6 explains why 
this approach is conceptually appealing to some statisticians, even though the 

process of eliciting judgments about counterfactual dependencies has so far not 
been systematised. When counterfactual variables are not viewed as by-products 
of a deeper, process-based model, it is hard to ascertain whether all relevant judg
ments have been articulated, whether the judgments articulated are redundant, 
or whether those judgments are self-consistent. The elicitation of such judgments 
can be systematised using the following translation from graphs. 

Graphs provide qualitative information about the structure of both the equa
tions in the model and the probability function pr(u). Each parent-child family 
(PAi, Xi) in a causal diagram G corresponds to an equation in the model (18.X.1) 
above. Additionally, the absence of dashed arcs between a node Y and a set of nodes 
Z1, … , Zk implies that the corresponding error variables, UY and {UZ1 , … , UZk }, are 

independent in pr(u). These assumptions can be translated into the counterfac
tual notation using two simple rules; the first interprets the missing arrows in the 

graph, the second, the missing dashed arcs. 
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Rule 1: Exclusion restrictions. For every variable Y having parents PAY , and for 
every set of variables S disjoint of PAY , we have 

Y(paY ) = Y(paY , s). (18.X.4) 

Rule 2: Independence restrictions. If Z1, … , Zk is any set of nodes not connected to 

Y via dashed arcs, we have 

Y(paY ) ⊥⊥ {Z1(paz1 ), … , Zk(paZk )}. (18.X.5) 

For example, the graph in Figure 18.3, displaying the parent sets 

PAX = {∅}, PAZ = {X}, PAY = {Z} 

encodes the following assumptions. 

Assumption 18.X.1 Exclusion restrictions 
We require 

X(z) = X(y) = X(z, y) = X(∅) := X, 

Z(y, x) = Z(x), Y(z) = Y(z, x). 

Assumption 18.X.2 Independence restrictions 
We require 

Z(x) ⊥⊥ {X, Y(z)}. 

While it is not easy to see that these assumptions suffice for computing the 

causal effect pr{Y(x) = y} using standard probability calculus together with axiom 

(18.X.3) above, the identifiability of pr(y | x̌) in the diagram of Figure 18.3 ensures 
this sufficiency. 

In summary, the structural and counterfactual frameworks are complemen
tary to each other. Structural analysts can interpret counterfactual sentences as 
constraints over the solution set of a given system of Equations (18.X.2) above 

and, conversely, counterfactual analysts can use the constraints over pr* given by 
(18.X.4) and (18.X.5) above as a definition of the graphs, structural equations and 

the physical processes which they represent. 

18.X.C The Equivalence of Counterfactual and Structural Analyses 
Robins’ discussion provides a concrete demonstration of the equivalence of the 

counterfactual and structural definitions of causal effects, pr{Y (x) = y} and 
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pr(y | ̌x), respectively. Whereas (18.X.2) above explicates counterfactual sentences 
in terms of operations on structural equations, Robins has done the converse by 
explicating the assumptions of a certain structural equations model in terms of 
counterfactual specifications. Specifically, starting with a complete directed acyclic 
graph with no confounding arcs, Robins translates the assumptions of error-
independence in my (18.X.3) into the ignorability-type assumptions of his (18.X.1), 
and shows that causal effects can be expressed in the form of the g-functional in 

his (18.X.4), in full conformity with the post-intervention distribution in (18.X.5) 
in § 18.2.2. Note that in the structural equations framework the identifiability of 
causal effects in model (18.X.3) in my paper is almost definitional, because the 

post-intervention distribution (18.X.5) in § 18.2.2 follows immediately from the def
inition of an atomic intervention (Definition 18.2) and from the fact that deleting 

equations does not change the Markovian nature of (18.X.3), and hence the prod
uct form (18.X.2) applies. What is remarkable is that Robins has derived the same 

expression using counterfactual analysis, which, at least on the surface, is oblivious 
to meta-probabilistic notions such as equation deletion or error independence. 

Robins’ approach to dealing with missing links and unmeasured variables is dif
ferent from mine; it follows the algebraic reduction method illustrated in § 18.3.2. 
After writing the g-functional using both observed and unobserved variables as in 

my (18.7) and (18.8), Robins would attempt to use the independencies embodied in 

pr(v) to eliminate the unobservables from the g-formula. Because the elimination 

only requires knowledge of the conditional independencies embodied in pr(v), any 
dependency-equivalent graph of G can be used or, for that matter, any nongraphical 
encoding of those independencies, for example, pr(v) itself. The price paid for this 
generality is complexity: many latent variables are being summed over unneces
sarily, and I am not aware of any systematic way of eliminating the latent variables 
from the g-expression; see the transition from my (18.8) to (18.9). 

The aim of §§ 18.4 and 18.5 of my paper is to demonstrate how the deriva
tion can be systematised and simplified by abandoning this route and resorting 

instead to syntactic manipulation of formulae involving observed variables only. 
The derivation is guided by various subgraphs of G that depend critically on the 

causal directionality of the arrows, hence the conditional independencies carried 

by G will not suffice. It is quite possible that some of these manipulations could be 

translated to equivalent operations on probability distributions but, if we accept 
the paradigm that the bulk of scientific knowledge is organised in the form of quali
tative causal models rather than probability distributions, I do not see tremendous 
benefit in such effort. 

Sobel is correct in pointing out that the equivalence of the ignorability and the 

back-door conditions hinges upon the equality pr{Y(x) = y} = pr(y | x̌). Robins’ 
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results and the translations of (18.X.4) and (18.X.5) above provide the basis for this 
equality. I am puzzled, though, by Rosenbaum’s astonishment at the possibility 
that ‘a certain mathematical operation, namely this wiping out of equations ..., 
predicts a certain physical reality’. While it may seem odd that post-Galilean scien
tists habitually expect reality to obey the predictions of mathematical operations, 
the perfect match between mathematical predictions based on Definition 18.2 and 

those obtained by other, less manageable approaches reaffirms the wisdom of this 
expectation; the scientific basis for deleting equations is given in the paragraph 

preceding Definition 18.2. 

18.X.D Practical Versus Hypothetical Interventions 
Freedman’s concern that invariance of errors under interventions may be a ‘tall 
order’ is a valid concern when addressed to practical, not to hypothetical interven
tions. Given a structural equation Y = f(X,U), the hypothetical atomic intervention 

set(X = x) always leaves f and U invariant, by definition; see (18.X.2) above. The 

crucial point is that, in order to draw valid inferences about the effect of physically 
fixing X at x, we must assume that our means of fixing X possesses the local prop
erty of the operator set(X = x), that is it affects only the mechanism controlling X, 
and leaves all other mechanisms, e.g. the function f, unaltered. If current technol
ogy is such that every known method of fixing X produces side effects, then those 

side effects should be specified and modelled as conjunctions of several atomic 
interventions. Naturally, causal theories can say nothing about interventions that 
might break down every mechanism in the system in a manner unknown to the 

modeller. Causal theories are about a class of interventions that affect a select set 
of mechanisms in a prescribed way. 

Note that this locality assumption is tacitly embodied in every counterfactual 
utterance as well as in the counterfactual variable Y(x) used in Rubin’s model. 
When we say ‘this patient would have survived had he taken the treatment’, we 

exclude from consideration the eventuality that the patient takes the treatment but 
shoots himself. It is only by virtue of this locality assumption that we can predict 
the effect of practical interventions, e.g. how a patient would react to the legislated 

treatment, from counterfactual inferences about behaviour in a given experimental 
study. 

Freedman’s difficulty with unmanipulable concomitants such as age and sex is 
of a slightly different nature because, here, it seems that we lack the mental capac
ity to imagine even hypothetical interventions that would change these variables. 
Remarkably, however, people do not consider common expressions such as ‘If you 

were younger’ or ‘Died from old age’ to be as outrageous as manipulating one’s age 

might suggest. Why? The answer, I believe, lies in the structural equations model 
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of (18.X.1) and (18.X.2) above. If age X is truly nonmanipulable, then the process 
determining X is considered exogenous to the system and X is modelled as a com
ponent of U, or a root node in the graph. As such, no manipulation is required 

for envisioning the event X = x; we can substitute X = x in U without delet
ing any equations from the model and obtain pr(y | x̌) = pr(y | x) for all x and y. 
Additionally, in employment discrimination cases, the focus of concern is not the 

effect of sex on salaries but rather the effect of the employer’s awareness of the 

plaintiff’s sex on salary. The latter effect is manipulable, both in principle and in 

practice. 
Shafer’s uneasiness with the manipulative account of causation also stems from 

taking the notion of intervention, too literally, to mean human intervention. In 

the process of setting up the structural equations (18.X.1) above or their graphi
cal abstraction the analyst is instructed to imagine hypothetical interventions as 
defined by the submodel Tx in Definition 18.2 and Equation (18.X.2) above, regard
less of their feasibility. Such thought experiments, for example slowing down the 

moon’s velocity and observing the effect on the tides, are feasible to anyone who 

possesses a model of the processes that operate in a given domain. 
The analysis in my paper invokes such hypothetical local manipulations, and 

I mean them to be as delicate and incisive as theory will permit; it does not insist on 

technologically feasible manipulations which, as Shafer and Freedman point out, 
might cause undesired side effects. Structural equations models, counterfactual 
sentences, and Shafer’s probability trees all invoke the same type of hypothetical 
scenarios, but I find an added clarity in imagining the desired scenario as trig
gered by some controlled wilful act, rather than by some uncontrolled natural 
phenomenon, e.g. the moon hitting a comet, which might have its own, undesired 

side effects, e.g. the comet creating its own effects on the tides. 
I agree with Shafer that not every causal thought identifies opportunities for 

human intervention, but I would argue strongly that every causal thought is predi
cated upon some notion of a ‘change’. Therefore, a theory of how mechanisms are 

changed, assembled, replaced and broken down, be it by humans or by Nature, is 
essential for causal thinking. 

Intervention as Conditionalisation 
I agree with Dawid that my earlier formulation (Pearl, 1993b), which incorporates 
explicit policy variables in the graph and treats intervention as conditionalisa
tion on those variables, has several advantages over the functional representation 

emphasised here. Fienberg, Glymour & Spirtes articulate similar sentiments. 
Nonetheless, I am pursuing the functional representation, partly because it is a 

more natural framework for thinking about data-generating processes and partly 



310 Chapter 18 Causal Diagrams for Empirical Research (With Discussions) 

18.X.F 

18.X.G 

because it facilitates the identification of ‘causes of effects’, especially in nonrecur
sive systems. 

Balke & Pearl (1994), for example, show that sharp informative bounds on 

‘causes of effects’ can sometimes be obtained without identifying the functions fi 
or the variables 𝜀i. Additionally, if we can assume the functional form of the equa
tions, though not their parameters, then the standard econometric conditions of 
parameter identification are sufficient for consistently inferring ‘causes of effects’. 
Balke & Pearl (1995) demonstrate how linear, nonrecursive structural models can 

be used to estimate the probability that ‘event X = x is the cause for effect E’, by 
computing the counterfactual probability that, given effect E and observations O, 
‘E would not have been realised, had X not been x’. 

Testing Versus using Assumptions 
Freedman’s concern that ‘finding the mathematical consequences of assumptions 
matters, but connecting assumptions to reality matters too’ has also been voiced 

by other discussants, most notably Dawid and Rosenbaum. Testing hypotheses 
against data is indeed the basis of scientific inquiry, and my paper makes no 

attempt to minimise the importance of such tests. However, scientific progress 
also demands that we not re-test or re-validate all assumptions in every study but, 
rather, that we facilitate the transference of knowledge from one study to another, 
so that the conclusions of one study may be imposed as assumptions in the next. 
For example, the careful empirical work of Moertel et al. (1985), which, accord
ing to Rosenbaum’s discussion, refuted the hypothesis that vitamin C is effective 

against cancer, should not be wasted. Instead, their results should be imposed, e.g. 
as a missing causal link, in future studies involving vitamin C and cancer patients, 
so as to enable the derivation of new causal inferences. The transference of such 

knowledge requires a language in which the causal relationship ‘vitamin C does not 
affect survival’ receives symbolic representation. Such a language, to the best of my 
knowledge, so far has not become part of standard statistical practice. Moreover, a 

language for stating assumptions is not very helpful if it is not accompanied by the 

mathematical machinery for quickly drawing conclusions from those assumptions 
or reasoning backward and isolating assumptions that need be tested, justified, 
or reconsidered. Facilitating such reasoning comprises the main advantage of the 

graphical framework. 

Causation Versus Dependence 
Cox & Wermuth welcome the development of graphical models but seem reluc
tant to use graphs for expressing substantive causal knowledge. For example, they 
refer to causal diagrams as ‘a system of dependencies that can be represented by a 
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directed acyclic graph’. I must note that my results do not generally hold in such a 

system of dependencies; they hold only in systems that represent causal processes 
of which statistical dependencies are but a surface phenomenon. Specifically, the 

missing links in these systems are defined by asymmetric exclusion restrictions, 
as in (18.X.4) above, not by conditional independencies. The difficulties that Smith 

(1957) encounters in defining admissible concomitants indeed epitomise the long
standing need for precise notational distinction between causal influences and 

statistical dependencies. 
Another type of problem created by lack of such a distinction is exemplified by 

Cox & Wermuth’s ‘difficulties emphasised by Haavelmo many years ago’. These ‘dif
ficulties’ are, see Discussions following Wermuth (1992) and Cox & Wermuth (1993): 
(i) the term ax in the structural equation y = ax + 𝜀 normally does not stand for the 

conditional expectation E(Y | x), and (ii) variables are excluded from the equation 

for reasons other than conditional independence. Haavelmo (1943), who empha
sises these features in the context of nonrecursive equations, is very explicit about 
defining structural equations in terms of hypothetical experiments and, hence, 
does not view the difference between ax and E(y | x) as a ‘difficulty’ of interpretation 

but rather as an important feature of a well-interpreted model, albeit one which 

requires a more elaborate estimation technique than least squares. Cox & Wer
muth’s difficulty stems from the reality that certain concepts in science do require 

both a causal and a probabilistic vocabulary. The many researchers who embrace 

this richer vocabulary, e.g. Haavelmo, find no difficulty with the interpretation of 
structural equations. I therefore concur with Imbens & Rubin’s observation that 
the advent of causal diagrams should promote a greater understanding between 

statisticians and these researchers. 

Exemplifying Modelling Errors 
Rosenbaum mistakingly perceives path analysis as a competitor to randomised 

experiments and, in attempting to prove the former inferior, he commits precisely 
those errors that most path analysts have learned to avoid. After reporting a ran
domised study (Moertel et al., 1985) that gave different results from those of a 

nonrandomised study (Cameron & Pauling, 1976), he concludes that ‘the stud
ies have the same path diagram, but only the randomised trial gave the correct 
inference’. However, the two studies have different path diagrams. The diagram 

corresponding to the randomised trial is given in Figure 18.6(a), while the diagram 

corresponding to the nonrandomised trial is shown in Figure 18.7(a); the former is 
identifiable, the latter is not. Such modelling errors do not make the diagrams the 

same and do not invalidate the method. 
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In Rosenbaum’s second example, with which he attempts to refute Theo
rem 18.2, he again introduces an incorrect diagram. The example involves a clinical 
trial in which compliance was imperfect, and the diagram corresponding to such 

trials is shown in Figure 18.5(b). Because a confounding back-door path exists 
between X and Y, the conditions of Theorem 18.2 are not satisfied, and the causal 
effect is not identifiable: see the discussion in the second paragraph of § 18.5, and a 

full analysis of noncompliance given by Pearl (1995). The chain diagram chosen by 
Rosenbaum implies a conditional independence relation that does not hold in the 

data reported. Thus, Rosenbaum’s attempted refutation of Theorem 18.2 is based 

on a convenient, but incorrect, diagram. 

18.X.I The Myth of Dangerous Graphs 
Imbens & Rubin perceive two dangers in using the graphical framework: (i) graphs 
hide assumptions; and (ii) graphs lull researchers into a false sense of confidence. 

(i) Like all abstractions, graphs make certain features explicit while keeping 

details implicit, to be filled in by other means if the need arises. When an indepen
dence relationship does not obtain graphical representation, the information can 

be filled in from the numerical probabilities, or structural equations, that annotate 

the links of the graph. However, a graph never fails to display a dependency if the 

graph modeller perceives one; see (18.X.2) of my paper. Therefore, a graph analyst 
is protected from reaching invalid, unintended conclusions. 

Imbens & Rubin’s discussion of my smoking–tar–cancer example in 

Figures 18.3, 18.4 and 18.6(e) illustrate this point. Contrary to their statement, the 

provision that tar deposits not be confounded with smoking is not hidden in the 

graphical representation. Rather, it stands out as vividly as can be, in the form of a 

missing dashed arc between X and Z. I apologise that my terse summary gave the 

impression that a missing link between X and Y is the ‘only provision’ required. 
From the six provisions shown in the graph, I have elected to recall this particular 
one, but the vividness of the graph, condition (ii) of Theorem 18.2, Equation (18.13), 
and the entire analysis, see also (18.X.4) and (18.X.5) above, should convince Imbens 
and Rubin that such provisions have not been neglected. In fact, graphs provide 

a powerful deterrent against forgetting assumptions unmatched by any other for
malism. Every pair of nodes in the graph waves its own warning flag in front of the 

modeller’s eyes: ‘Have you neglected an arrow or a dashed arc?’ I consider these 

warnings to be a strength, not a weakness, of the graphical framework. 
(ii) Imbens & Rubin’s distrust of graphs would suggest, by analogy, that it is 

dangerous to teach differential calculus to physics students lest they become so 

enchanted by the convenience of the mathematics that they overlook the assump
tions. Whilst we occasionally meet discontinuous functions that do not admit the 
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machinery of ordinary differential calculus, this does not make the calculus use
less or harmful. Additionally, I do not think over-confidence is currently holding 

back progress in statistical causality. On the contrary, I believe that repeated warn
ings against confidence are mainly responsible for the neglect of causal analysis 
in statistical research, and that such warnings have already done more harm to 

statistics than graphs could ever do. 
Finally, I would like to suggest that people will be careful with their assumptions 

if given a language that makes those assumptions and their implications trans
parent; moreover, when assumptions are transparent, they are likely to be widely 
discussed. No matter how powerful, a notational system that does not accommo
date an explicit representation of familiar processes will only inhibit people from 

formulating and assessing assumptions. As a result, instead of being brought into 

the light, critical assumptions tend to remain implicit or informal, and important 
problems of causal inference go unexplored. Indeed, the theory of causal inference 

has so far had only minor impact on rank-and-file researchers, on the methods 
presented in statistics textbooks, and on public policy-making. I sincerely hope 

graphical methods can help change this situation, both by uncovering tangible 

new results and by transferring causal analysis from the academic to the laboratory. 

[Received June 1995] 
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experimental and nonexperimental studies can be combined to yield information 

that neither study alone can provide. Finally, we show that necessity and suffi
ciency are two independent aspects of causation, and that both should be invoked 

in the construction of causal explanations for specific scenarios. 

19.1 Introduction 
The standard counterfactual definition of causation1 (i.e., that E would not have 

occurred if it were not for C), captures the notion of “necessary cause”. Competing 

notions such as “sufficient cause” and “necessary-and-sufficient cause” may be of 
interest in a number of applications,2 and these, too, can be given concise counter-
factual definitions. One advantage of casting aspects of causation in the language 

of counterfactuals is that the latter enjoys natural and formal semantics in terms 
of structural models (Galles and Pearl 1997, 1998; Halpern 1998; Pearl 2000), as well 
as effective procedures for computing probabilities of counterfactual expressions 
from a given causal theory (Balke and Pearl 1994a, 1995). These developments are 

reviewed in Section 19.2. 
The purpose of this paper is to explore the counterfactual interpretation of 

necessary and sufficient causes, to illustrate the application of structural-model 
semantics (of counterfactuals) to the problem of identifying probabilities of 
causes, and to present, by way of examples, new ways of estimating probabilities of 
causes from statistical data. Additionally, the paper will argue that necessity and 

sufficiency are two distinct facets of causation that should be kept apart in any 
explication of “actual cause” and, using these two facets, we will show how certain 

problems associated with the standard counterfactual account of causation (Lewis 
1986) can be resolved. 

The results have applications in epidemiology, legal reasoning, artificial intel
ligence (AI), and psychology. Epidemiologists have long been concerned with esti
mating the probability that a certain case of disease is attributable to a particular 
exposure, which is normally interpreted counterfactually as “the probability that 
disease would not have occurred in the absence of exposure, given that disease 

1. This definition dates back to Hume (1748, 115) and Mill (1843) and has been formalized and 

advocated in the philosophical work of Lewis (1986). 

2. The distinction between necessary and sufficient causes goes back to Mill (1843), and has 
received semi-formal explications in the 1960s using the syntax of conditional probabilities (Good 

1961) and logical implications (Mackie 1965). The basic limitations of the logical and probabilistic 
accounts are discussed in Kim (1971) and Pearl (1996, 1998) and stem primarily from lacking syn
tactic distinction between formulas that represent stable mechanisms and those that represent 
transitory logical or probabilistic relationships. 
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and exposure did in fact occur”. This counterfactual notion, which Robins and 

Greenland (1989) called the “probability of causation” measures how necessary the 

cause is for the production of the effect.3 It is used frequently in lawsuits, where 

legal responsibility is at the center of contention. We shall denote this notion by 
the symbol PN, an acronym for Probability of Necessity. 

A parallel notion of causation, capturing how sufficient a cause is for the produc
tion of the effect, finds applications in policy analysis, AI, and psychology. A policy 
maker may well be interested in the dangers that a certain exposure may present 
to the healthy population (Khoury et al. 1989). Counterfactually, this notion can 

be expressed as the “probability that a healthy unexposed individual would have 

gotten the disease had he/she been exposed”, and will be denoted by PS (Probabil
ity of Sufficiency). A natural extension would be to inquire for the probability of 
necessary-and-sufficient causation, PNS, namely, how likely a given individual is 
to be affected both ways. 

As the examples illustrate, PS assesses the presence of an active causal process 
capable of producing the effect, while PN emphasizes the absence of alternative 

processes, not involving the cause in question, still capable of sustaining the effect. 
In legal settings, where the occurrence of the cause (x) and the effect ( y) are fairly 
well established, PN is the measure that draws most attention, and the plaintiff 
must prove that y would not have occurred but for x (Robertson 1997). Still, lack of 
sufficiency may weaken arguments based on PN (Good 1993; Michie 1997). 

It is known that PN is in general non-identifiable, namely, non-estimatable from 

frequency data involving exposures and disease cases (Greenland and Robins 1988; 
Robins and Greenland 1989). The identification is hindered by two factors: 

1.	 Confounding: exposed and unexposed subjects may differ in several relevant 
factors or, more generally, the cause and the effect may both be influenced 

by a third factor. In this case we say that the cause is not exogenous relative to 

the effect. 

2.	 Sensitivity to the generative process: Even in the absence of confounding 

probabilities of certain counterfactual relationships cannot be identified 

from frequency information unless we specify the functional relationships 

3. Greenland and Robins (1988) further distinguish between two ways of measuring probabili
ties of causation: the first (called “excess fraction”) concerns only whether the effect (e.g., disease) 
occurs by a particular time, while the second, (called “etiological fraction”) requires consideration 

of when the effect occurs. We will confine our discussion here to binary events occurring within 

a specified time period, hence, will not be concerned with the temporal aspects of etiological 
fractions. 
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that connect causes and effects. Functional specification is needed when
ever the facts at hand (e.g., disease) might be affected by the counterfac
tual antecedent (e.g., exposure) (Balke and Pearl 1994b) (see example in 

Section 19.4.1). 

Although PN is not identifiable in the general case, several formulas have nev
ertheless been proposed to estimate attributions of various kinds in terms of fre
quencies obtained in epidemiological studies (Breslow and Day 1980; Hennekens 
and Buring 1987; Cole 1997). Naturally, any such formula must be predicated upon 

certain implicit assumptions about the data-generating process. This paper expli
cates some of those assumptions and explores conditions under which they can 

be relaxed.4 It offers new formulas for PN and PS in cases where causes are con
founded (with outcomes) but their effects can nevertheless be estimated (e.g., from 

clinical trials or from auxiliary measurements). We further provide a general con
dition for the identifiability of PN and PS when functional relationships are only 
partially known (Section 19.5). 

Glymour (1998) has raised a number of issues concerning the identifiability of 
causal relationships when the functional relationships among the variables are 
known, but some variables are unobserved. These issues surfaced in connection 

with the psychological model introduced by Cheng according to which people 

assess the “causal power” between two events by estimating the probability of the 

effect in a hypothetical model in which certain elements are suppressed (Cheng 

1997). In the examples provided, Cheng’s “causal power” coincides with PS and 

hence lends itself to counterfactual analysis. Accordingly we shall see that many of 
the issues raised by Glymour can be resolved and generalized using counterfactual 
analysis. 

The distinction between necessary, and sufficient causes has important implica
tions in AI, especially in systems that generate verbal explanations automatically. 
As can be seen from the epidemiological examples above, necessary causation is 
a concept tailored to a specific event under consideration, while sufficient causa
tion is based on the general tendency of certain event types to produce other event 
types. Adequate explanations should respect both aspects. If we base explanations 
solely on generic tendencies (i.e., sufficient causation), we lose important specific 
information. For instance, aiming a gun at and shooting a person from 1000 meters 
away will not qualify as an explanation for that person’s death, due to the very low 

4. A set of sufficient conditions for the identification of etiological fractions are given in Robins 
and Greenland (1989). These conditions, however, are too restrictive for the identification of PN, 
which is oblivious to the temporal aspects associated with etiological fractions. 



19.2 Structural Model Semantics (A Review) 321 

tendency of typical shots fired from such long distances to hit their marks. The fact 
that the shot did hit its mark on that singular day, regardless of the reason, should 

carry decisive weight when we come to assess whether the shooter is the culprit for 
the consequence. If, on the other hand, we base explanations solely on singular-
event considerations (i.e., necessary causation), then various background factors 
that are normally present in the world would awkwardly qualify as explanations. 
For example, the presence of oxygen in the room would qualify as an explana
tion for the fire that broke out, simply because the fire would not have occurred 

were it not for the oxygen. Clearly, some balance must be made between the neces
sary and the sufficient components of causal explanation, and the present paper 
illuminates this balance by formally explicating some of the basic relationships 
between the two components. Section 19.6 further discusses ways of incorporating 

singular-event information in the definition and evaluation of sufficient causation. 

19.2 Structural Model Semantics (A Review)
 
This section presents a brief summary of the structural-equation semantics of
 
counterfactuals as defined in Balke and Pearl (1995), Galles and Pearl (1997, 1998),
 
and Halpern (1998). Related approaches have been proposed in Simon and Rescher
 
(1966), Rubin (1974) and Robins (1986). For detailed exposition of the structural
 
account and its applications see (Pearl 2000).
 

19.2.1 Definitions: Causal Models, Actions and Counterfactuals 
A causal model is a mathematical object that assigns truth values to sentences 
involving causal and counterfactual relationships. Basic of our analysis are sen
tences involving actions or external interventions, such as, “p will be true if we do q” 
where q is any elementary proposition. Structural models are generalizations of the 

structural equations used in engineering, biology, economics and social science.5 

World knowledge is represented as a collection of stable and autonomous relation
ships called “mechanisms”, each represented as an equation, and changes due to 

interventions or hypothetical novel eventualities are treated as local modifications 
of those equations. 

Definition 19.1 Causal model 
A causal model is a triple 

M = ⟨U, V , F⟩ 

5. Similar models, called “neuron diagrams” (Lewis 1986, 200; Hall 1998) are used informally by 
philosophers to illustrate chains of causal processors. 
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where 

(i)	 U is a set of variables called exogenous, that are determined by factors outside 

the model. 
(ii)	 V is a set {V1, V2, … , Vn} of variables, called endogenous, that are determined 

by variables in the model, namely, variables in U ∪ V 

(iii)	 F is a set of functions { f1, f2, … , fn} where each fi is a mapping from U × (V⧵Vi) 
to Vi. In other words, each fi tells us the value of Vi given the values of all other 
variables in U ∪ V . Symbolically, the set of equations F can be represented by 
writing 

𝜐i = fi( pai, ui) i = 1, … , n 

where pai is any realization of the unique minimal set of variables PAi in V/Vi 
(connoting parents) that renders fi nontrivial. Likewise, Ui ⊆ U stands for 
the unique minimal set of variables in U that renders fi nontrivial. 

Every causal model M can be associated with a directed graph, G(M), in which each 

node corresponds to a variable in V and the directed edges point from members of 
PAi toward Vi. We call such a graph the causal graph associated with M. This graph 

merely identifies the endogenous variables PAi that have direct influence on each 

Vi but it does not specify the functional form of fi. 

Definition 19.2 Submodel 
Let M be a causal model, X be a set of variables in V, and x be a particular realization 

of X. A submodel Mx of M is the causal model 

Mx = ⟨U, V , Fx⟩, 

where 

Fx = { fi : Vi ̸∈ X} ∪ {X = x}.	 (19.1) 

In words, Fx is formed by deleting from F all functions fi corresponding to members 
of set X and replacing them with the set of constant functions X = x. 

Submodels are useful for representing the effect of local actions and hypotheti
cal changes, including those dictated by counterfactual antecedents. If we interpret 
each function fi in F as an independent physical mechanism and define the action 

do(X = x) as the minimal change in M required to make X = x hold true under any 
u, then Mx represents the model that results from such a minimal change, since 

it differs from M by only those mechanisms that directly determine the variables 
in X. The transformation from M to Mx modifies the algebraic content of F, which 
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is the reason for the name modifiable structural equations used in (Galles and Pearl 
1998).6 

Effect of action 

Let M be a causal model, X be a set of variables in V, and x be a particular realization 

of X. The effect of action do(X = x) on M is given by the submodel Mx. 

Potential response 

Let Y be a variable in V, and let X be a subset of V. The potential response of Y to 
7action do(x = X), denoted Yx(u), is the solution for Y of the set of equations Fx. 

We will confine our attention to actions in the form of “do(X = x)”. Conditional 
actions, of the form “do(X = x) if Z = z” can be formalized using the replace
ment of equations by functions of Z, rather than by constants (Pearl 1994). We will 
not consider disjunctive actions, of the form “do(X = x or X = x ′)” since these 

complicate the probabilistic treatment of counterfactuals. 

Counterfactual 
Let Y be a variable in V, and let X a subset of V. The counterfactual sentence “The 

value that Y would have obtained, had X been x” is interpreted as denoting the 
8potential response Yx(u). 

This formulation generalizes naturally to probabilistic systems, as is seen below. 

Probabilistic causal model 
A probabilistic causal model is a pair 

⟨M, P(u)⟩ , 

where M is a causal model and P(u) is a probability function defined over the 

domain of U. 

6. Structural modifications date back to Marschak (1950) and Simon (1953). An explicit translation 

of interventions into “wiping out” equations from the model was first proposed by Strotz and 

Wold (1960) and later used in Fisher (1970), Sobel (1990), Spirtes et al. (1993), and Pearl (1995). A 

similar notion of sub-model is introduced in Fine (1985), though not specifically for representing 

actions and counterfactuals. 

7. Galles and Pearl (1998) required that Fx has a unique solution, a requirement later relaxed by 
Halpern (1998). In this paper we are dealing with recursive systems (i.e., G(M) is a cyclic) where 

uniqueness of solution is ensured. 

8. The connection between counterfactuals and local actions (sometimes resembling “miracles”) 
is made in Lewis (1986) and is further elaborated in Balke and Pearl (1994a) and Heckerman and 

Shachter (1995). 
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P(u), together with the fact that each endogenous variable is a function of U, defines 
a probability distribution over the endogenous variables. That is, for every set of 
variables Y ⊆ V, we have 

P( y) £ P(Y = y) = ∑ P(u). (19.2) 
{u | Y(u)=y} 

The probability of counterfactual statements is defined in the same manner, 
through the function Yx(u) induced by the submodel Mx: 

P(Yx = x) = ∑ P(u). (19.3) 
{u | Yx(u)=y} 

Likewise a causal model defines a joint distribution on counterfactual state
ments, i.e., P(Yx = y, Zw = z) is defined for any sets of variables Y , X, Z, W , not 
necessarily disjoint. In particular, P(Yx = y, X = x ′) and P(Yx = y, Yx ′ = y ′) are well 
defined for x, ̸ x ′ , and are given by = 

P(Yx = y, X = x ′) = ∑ P(u), (19.4) 
{u | Yx(u)=y & X(u)=x ′} 

and 

P(Yx = y, Yx ′ = y ′) = ∑ P(u). (19.5) 
{u | Yx(u)=y & Y ′ (u)=y ′}x 

′ When x and x are incompatible, Yx and Yx ′ cannot be measured simultane
ously, and it may seem meaningless to attribute probability to the joint statement 
“Y would be y if X = x and Y would be y ′ if X = x ′ ”. Such concerns have been a source 

of recent objections to treating counterfactuals as jointly distributed random vari
ables (Dawid 1997). The definition of Yx and Yx ′ in terms of two distinct submodels, 
driven by a standard probability space over U, explains away these objections (see 

Appendix 19.A) and further illustrates that joint probabilities of counterfactuals 
can be encoded rather parsimoniously using P(u) and F. 

In particular, the probabilities of causation analyzed in this paper (see Equa
tions (19.12)–(19.14)) require the evaluation of expressions of the form P(Yx ′ = 
′ ′ ′ y | X = x, Y = y) with x and y incompatible with x and y respectively. Equation 

(19.4) allows the evaluation of this quantity as follows: 

′ P(Yx ′ = y | X = x, Y = y) 
′ P(Yx ′ = y , X = x, Y = y)= 

P(X = x, Y = y) 
= ∑ P(Yx ′ (u) = y ′)P(u | x, y). (19.6) 

u 
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In other words, we first update P(u) to obtain P(u | x, y), then we use the updated 
′ distribution P(u | x, y) to compute the expectation of the index function Yx ′ (u) = y . 

19.2.2	 Examples 
Figure 19.1 describes the causal relationships among the season of the year (X1), 
whether rain falls (X2) during the season, whether the sprinkler is on (X3) during 

the season, whether the pavement is wet (X4), and whether the pavement is slip
pery (X5). All variables in this graph except the root variable X1 take a value of either 
“True” or “False” (encoded “1” and “0” for convenience). X1 takes one of four values: 
“Spring”, “Summer”, “Fall”, or “Winter”. Here, the absence of a direct link between, 
for example, X1 and X5, captures our understanding that the influence of the season 

on the slipperiness of the pavement is mediated by other conditions (e.g., the wet
ness of the pavement). The corresponding model consists of five functions, each 

representing an autonomous mechanism: 

x1 = u1, 

x2 = f2(x1, u2), 

x3 = f3(x1, u3), 

x4 = f4(x3, x2, u4), 

x5 = f5(x4, u5).	 (19.7) 

The exogenous variables U1, … , U5, represent factors omitted from the analysis. For 
example, U4 may stand for (unspecified) events that would cause the pavement to 

get wet (x4 = 1) when the sprinkler is off (x2 = 0) and it does not rain (x3 = 0) (e.g., a 

leaking water pipe). These factors are not shown explicitly in Figure 19.1 to commu
nicate, by convention, that the U’s are assumed independent of one another. When 

some of these factors are judged to be dependent, it is customary to encode such 

dependencies by augmenting the graph with double-headed arrows (Pearl 1995). 

X
1

SPRINKLER

WET

RAIN

SEASON

SLIPPERY

X
4

X
5

X
3

X
2

Figure 19.1 Causal graph illustrating causal relationships among five variables. 
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To represent the action “turning the sprinkler ON”, or do(X3 = ON), we replace 

the equation x3 = f3(x1, u3) in the model of Equation (19.7) with the equation 

x3 = 1. The resulting submodel, MX3=ON, contains all the information needed for 
computing the effect of the action on the other variables. Note that the operation 

do(X3 = ON) stands in marked contrast to that of finding the sprinkler ON; the 

latter involves making the substitution without removing the equation for X3, and 

therefore may potentially influence (the belief in) every variable in the network. 
In contrast, the only variables affected by the action do(X3 = ON) are X4 and X5, 
that is, the descendants of the manipulated variable X3. This mirrors the differ
ence between seeing and doing: after observing that the sprinkler is ON, we wish to 

infer that the season is dry, that it probably did not rain, and so on; no such infer
ences should be drawn in evaluating the effects of the action “turning the sprinkler 
ON” that a person may consider taking. 

This distinction obtains a vivid symbolic representation in cases where the 

Ui’s are assumed independent, because the joint distribution of the endogenous 
variables then admits the product decomposition 

P(x1, x2, x3, x4, x5) = P(x1)P(x2 | x1)P(x3 | x1)P(x4 | x2, x3)P(x5 | x4). (19.8) 

Similarly, the joint distribution associated with the submodel Mx representing the 

action do(X3 = ON) is obtained from the product above by deleting the factor 
P(x3 | x1) and substituting x3 = 1. 

P(x1, x2, x4, x5 | do(X3 = ON)) = P(x1)P(x2 | x1)P(x4 | x2, x3 = 1)P(x5 | x4). (19.9) 

The difference between the action do(X3 = ON) and the observation X3 = ON 

is thus seen from the corresponding distributions. The former is represented by 
Equation (19.9), while the latter by conditioning Equation (19.8) on the observation, 
i.e., 

P(x1)P(x2 | x1)P(x3 = 1 | x1)P(x4 | x2, x3 = 1)P(x5 | x4)P(x1, x2, x4, x5 | X3 = ON) = .
P(x3 = 1) 

Note that the conditional probabilities on the r.h.s. of Equation (19.9) are the 

same as those in Equation (19.8), and can therefore be estimated from pre-action 

observations, provided G(M) is available. However, the pre-action distribution P 

together with the causal graph G(M) is generally not sufficient for evaluating 

all counterfactuals sentences. For example, the probability that “the pavement 
would be slippery if the sprinkler were off, given that currently the pavement is 
slippery”, cannot be evaluated from the conditional probabilities P(xi | pai) alone; 
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the functional forms of the fi’s (Equation (19.7)) are necessary for evaluating such 

queries (Balke and Pearl 1994b; Pearl 1996). 
To illustrate the evaluation of counterfactuals, consider a deterministic version 

of the model given by Equation (19.7) assuming that the only uncertainty in the 

model lies in the identity of the season, summarized by a probability distribution 

P(u1) (or P(x1)). We observe the ground slippery and the sprinkler on and we wish 

to assess the probability that the ground would be slippery had the sprinkler been 

off. Formally, the quantity desired is given by 

P(X5x3=0 = 1 | X5 = 1, X3 = 1). 

According to Equation (19.6), the expression above is evaluated by summing over 
all states of U that are compatible with the information at hand. In our example, 
the only state compatible with the evidence X5 = 1 and X3 = 1 is that which yields 
X1 = Summer ∨ Spring, and in this state X2 = no-rain, hence X5x3=0 = 0. Thus, 
matching intuition, we obtain 

P(X5x3=0 = 1 | X5 = 1, X3 = 1) = 0. 

In general, the conditional probability of a counterfactual sentence “If it were A 

then B”, given evidence e, can be computed in three steps: 

1.	 Abduction – update P(u) by the evidence e, to obtain P(u | e). 

2.	 Action – Modify M by the action do(A), where A is the antecedent of the 

counterfactual, to obtain the submodel MA. 

3.	 Deduction – Use the updated probability P(u | e) in conjunction with MA to 

compute the probability of the counterfactual consequence B. 

In temporal metaphors (Thomason and Gupta 1980), this 3-step procedure can be 

interpreted as follows: Step-1 explains the past (U) in light of the current evidence e, 
Step-2 bends the course of history (minimally) to comply with the hypothetical 
condition X = x and, finally, Step-3 predicts the future (Y) based on our new under
standing of the past and our new starting condition, X = x. Effective methods of 
computing probabilities of counterfactuals are presented in Balke and Pearl (1994a, 
1995). 

Relation to Lewis’ Counterfactuals 
The structural model of counterfactuals is closely related to Lewis’s account 
(Lewis 1986),9 but differs from it in several important aspects. According to Lewis’ 

9. Yx(u) = y can be translated to “(X = x) > (Y = y) in world u”. 
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account, one orders possible worlds by some measure of similarity, and the coun
terfactual A > B is true in a world w just in case B is true in all the closest A-worlds 
to w. This semantics leaves two questions unsettled and problematic: 1. What 
choice of similarity measure would make counterfactual reasoning compatible 

with ordinary conception of cause and effect? 2. What mental representation of 
worlds ordering would render the computation of counterfactuals manageable and 

practical (in both man and machine)?10 

Kit Fine’s celebrated example (of Nixon pulling the trigger (Fine 1975)) demon
strates that similarity measures could not be arbitrary, but must respect our con
ception of causal laws.11 Lewis (1979) has subsequently set up an intricate system 

of priorities among various dimensions of similarity: size of miracles (violations 
of laws), matching of facts, temporal precedence etc., to bring similarity closer to 

causal intuition. These difficulties do not enter the structural account. In contrast 
with Lewis’ theory, counterfactuals are not based on an abstract notion of simi
larity among hypothetical worlds, but rests directly on the mechanisms (or “laws”, 
to be fancy) that produce those worlds, and on the invariant properties of those 

mechanisms. Lewis’ elusive “miracles” are replaced by principled mini-surgeries, 
do(X = x), which represent the minimal change (to a model) necessary for estab
lishing the antecedent X = x (for all u). Thus, similarities and priorities, if they are 

ever needed, may be read into the do(*) operator (see Goldszmidt and Pearl 1992), 
but do not govern the analysis. 

The structural account answers the mental representational question by offer
ing a parsimonous encoding of knowledge, from which causes, counterfactual 
and probabilities of counterfactuals can be derived by effective algorithms. This 
parsimony is acquired at the expense of generality; limiting the counterfactual 
antecedent to conjunction of elementary propositions prevents us from analyzing 

disjunctive hypotheticals such as “if Bizet and Verdi were compatriots”. 

19.2.4 Relation to Probabilistic Causality 
The relation between the structural and probabilistic accounts of causality is 
best demonstrated when we make the Markov assumption (see Definition 19.15): 
1. The equations { fi} are recursive (i.e., no feedback), and 2. The exogenous 
terms ui are mutually independent. Under this assumption, which implies the 

10. Since matching human intuition is the ultimate success criterion in most philosophical theo
ries of causation, questions of cognitive compatibility must be considered an integral part of any 
such theory. 

11. In this respect, Lewis’ reduction of causes to counterfactuals is somewhat circular. 
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“screening-off” condition in the probabilistic accounts of causality, it can be shown 

(e.g., Pearl 1995) that the causal effect of a set X of decision variables on outcome 

variables Y is given by the formula: 

P(Y = y | do(X = x)) = ∑ P( y | x, paX )P( paX ), (19.10) 
paX 

where PAX is the set of all parents of variables in X. Equation (19.10) calls for con
ditioning P(y) on the event X = x as well as on the parents of X, then averaging 

the result, weighted by the prior probabilities of those parents. This operation is 
known as “adjusting for PAX ”. 

Variations of this adjustment have been advanced by several philosophers as 
definitions of causality or of causal effects. Good (1961), for example, calls for con
ditioning on “the state of the universe just before” the occurrence of the cause. 
Suppes (1970) calls for conditioning on the entire past, up to the occurrence of the 

cause. Skyrms (1980, 133) calls for conditioning on “… maximally specific specifi
cations of the factors outside of our influence at the time of the decision which are 

causally relevant to the outcome of our actions…”. The aim of conditioning in these 

proposals is, of course, to eliminate spurious correlations between the cause (in our 
case X = x) and the effect (in our case Y = y) and, clearly, the set PAX of direct causes 
accomplishes this aim with great economy. However, the averaged conditional
ization operation is not attached here as an add-on adjustment, aimed at irradi
cating spurious correlations. Rather, it emerges purely formally from the deeper 
principle of discarding the obsolete and preserving all the invariant information 

that the pre-action distribution can provide. Thus, while probabilistic causality 
first confounds causal effects P( y | do(x)) with epistemic conditionalization P( y | x), 
then gets rid of spurious correlations through remedial steps of adjustment, the 

structural account defines causation directly in terms of Nature’s invariants (i.e., 
submodel Mx in Definition 19.3). 

One tangible benefit of this conception is the ability to process common
place causal statements in their natural deterministic habitat, without having to 

immerse them in nondeterministic decor. In other words, an event X = x for 
which P(x | paX ) = 1 (e.g., the output of a logic circuit), may still be a cause of some 

other event, Y = y. Consequently, probabilities of single-case causation are well 
defined, free of the difficulties that plague explications based on conditional prob
abilities. A second benefit lies in the generality of the structural equation model vis-
à-vis probabilistic causality; interventions, causation and counterfactuals are well 
defined without invoking the Markov assumptions. Additionally, and most relevant 
to the topic of this paper, such ubiquitous notions as “probability of causation” 
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cannot easily be defined in the language of probabilistic causality (see discussion 

after Corollary 19.2, and Section 19.4.1). 
Finally, we should note that the structural model, as it is presented in Section 

19.2.1, is quasi-deterministic or Laplacian; chance arises only from unknown prior 
conditions as summarized in P(u). Those who frown upon this classical approxi
mation should be able to extend the results of this paper along more fashionable 

lines (see Appendix 19.A for an outline). However, considering that Laplace’s illu
sion still governs human conception of cause and effect, I doubt that significant 
insight will be gained by such exercise. 

19.2.5 Relation to Neyman–Rubin Model 
Several concepts defined in Section 19.2.1 bear similarity to concepts in the 

potential-outcome model used by Neyman (1923) and Rubin (1974) in the statis
tical analysis of treatment effects. In that model, Yx(u) stands for the outcome of 
experimental unit u (e.g., an individual, or an agricultural lot) under experimental 
condition X = x, and is taken as a primitive, that is, as an undefined relationship, 
in terms of which one must express assumptions about background knowledge. 
In the structural model framework, the quantity Yx(u) is not a primitive, but is 
derived mathematically from a set of equations F that is modified by the opera
tor do(X = x). Assumptions about causal processes are expressed naturally in the 

form of such equations. The variable U represents any set of exogenous factors 
relevant to the analysis, not necessarily the identity of a specific individual in the 

population. 
Using these semantics, it is possible to derive a complete axiomatic characteri

zation of the constraints that govern the potential response function Yx(u) vis-à-vis 
those that govern directly observed variables, such as X(u) and Y(u) (Galles and 

Pearl 1998; Halpern 1998). These basic axioms include or imply relationships that 
were taken as given, and used extensively by statisticians who pursue the potential-
outcome approach. Prominent among these we find the consistency condition 

(Robins 1987): 

(X = x) ⟹ (Yx = Y), (19.11) 

stating that if we intervene and set the experimental conditions X = x equal 
to those prevailing before the intervention, we should not expect any change in 

the response variable Y. (For example, a subject who selects treatment X = x by 
choice and responds with Y = y would respond in exactly the same way to treat
ment X = x under controlled experiment.) This condition is a proven theorem in 

structural-model semantics (Galles and Pearl 1998) and will be used in several of the 
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derivations of Section 19.3. Rules for translating the topology of a causal diagram 

into counterfactual sentences are given in (Pearl 2000, Chapter 7). 

19.3 Necessary and Sufficient Causes: Conditions of Identification 

19.3.1 Definitions, Notations, and Basic Relationships 
Using the counterfactual notation and the structural model semantics introduced 

in Section 19.2.1, we give the following definitions for the three aspects of causation 

discussed in the introduction. 

Definition 19.7 Probability of necessity (PN) 
Let X and Y be two binary variables in a causal model M, let x and y stand for 

′ ′ the propositions X = true and Y = true, respectively, and x and y for their 
complements. The probability of necessity is defined as the expression 

PN £ P(Yx ′ = false | X = true, Y = true) 
′ £ P( yx ′ | x, y). (19.12) 

In other words, PN stands for the probability that event y would not have occurred 
′ in the absence of event x, ( yx ′ ), given that x and y did in fact occur. 

Note a slight change in notation relative to that used in Section 19.2. Lower
case letters (e.g., x, y) denoted values of variables in Section 19.2, and now stand 

′ for propositions (or events). Note also the abbreviations yx for Yx = true and y forx 

Yx = false.12 Readers accustomed to writing “A > B” for the counterfactual “B if it 
′ ′ were A” can translate Equation (19.12) to read PN £ P(x > y | x, y). 

Definition 19.8 Probability of sufficiency (PS) 

′ PS £ P( yx | y , x ′), (19.13) 

PS measures the capacity of x to produce y and, since “production” implies a tran
sition from the absence to the presence of x and y, we condition the probability 
P( yx) on situations where x and y are both absent. Thus, mirroring the necessity of 
x (as measured by PN), PS gives the probability that setting x would produce y in a 

situation where x and y are in fact absent. 

12. These were proposed by Peyman Meshkat in class homework, and substantially simplify the 

derivations. 



332 Chapter 19 Probabilities of Causation: Three Counterfactual Interpretations and Their Identification 

Definition 19.9 Probability of necessity and sufficiency (PNS) 

′ PNS £ P( yx, yx ′ ). (19.14) 

PNS stands for the probability that y would respond to x both ways, and therefore 

measures both the sufficiency and necessity of x to produce y. 
Associated with these three basic notions, there are other counterfactual quan

tities that have attracted either practical or conceptual interest. We will mention 

two such quantities, but will not dwell on their analyses, since these can be easily 
inferred from our treatment of PN, PS, and PNS. 

Definition 19.10 Probability of disablement (PD) 

′ PD £ P(yx ′ | y). (19.15) 

PD measures the probability that y would have been prevented if it were not for x; it 
is therefore of interest to policy makers who wish to assess the social effectiveness 
of various prevention programs (Fleiss 1981, 75–76). 

Definition 19.11 Probability of enablement (PE) 

PE £ P( yx | y ′), 

PE is similar to PS, save for the fact that we do not condition on x ′ . It is applica
ble, for example, when we wish to assess the danger of an exposure on the entire 

population of healthy individuals, including those who were already exposed. 
Although none of these quantities is sufficient for determining the others, they 

are not entirely independent, as shown in the following lemma. 

Lemma 19.1 The probabilities of causation, PNS, PN and PS satisfy the following relationship: 

′ PNS = P(x, y)PN + P(x , y ′)PS. (19.16) 

Proof of Lemma 19.1. Using the consistency conditions of Equation (19.11), 

′ x ⇒ ( yx = y), x ⇒ ( yx ′ = y), 

we can write 

′ ′ ′ yx ∧ yx ′ = ( yx ∧ yx ′ ) ∧ (x ∨ x ′) = ( y ∧ x ∧ yx ′ ) ∨ ( yx ∧ y ′ ∧ x ′). 

Taking probabilities on both sides, and using the disjointness of x and x ′ , we 

obtain: 

′ ′ ′ ′ ′ ′ P( yx, yx ′ ) = P( yx ′ , x, y) + P( yx, x , y ′) = P(yx ′ | x, y)P(x, y) + P( yx | x , y ′)P(x , y ′), 

which proves Lemma 19.1. ■ 
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To put into focus the aspects of causation captured by PN and PS, it is helpful to 

characterize those changes in the causal model that would leave each of the two 

measures invariant. The next two lemmas show that PN is insensitive to the intro
duction of potential inhibitors of y, while PS is insensitive to the introduction of 
alternative causes of y. 

Let PN(x, y) stand for the probability that x is a necessary cause of y, and z = y ∧ q 

a consequence of y, potentially inhibited by q ′ . If q ∐{X, Yx, Yx ′}, then 

′ ′ PN(x, z) £ P(zx ′ | x, z) = P( yx ′ | x, y) £ PN(x, y). 

Cascading the process Yx(u) with the link z = y ∧ q amounts to inhibiting y with 

probability P(q ′). Lemma 19.2 asserts that we can add such a link without affect
ing PN, as long as q is randomized. The reason is clear; conditioning on the event 
x and y implies that, in the scenario under consideration, the added link was not 

′ inhibited by q . 

Proof of Lemma 19.2. 

′ ′ ′ P(zx ′ , x, z) P(zx ′ , x, z | q)P(q) + P(zx ′ , x, z | q ′)P(q ′)′ PN(x, z) = P(zx ′ | x, z) = = . (19.17)
P(x, z) P(z, x, q) + P(z, x, q ′) 

Using z = y ∧ q, we have 

′ ′ ′ ′ q ⇒ (z = y), q ⇒ (zx ′ = yx ′ ), and q ⇒ z , 

therefore 

′ ′ P( yx ′ , x, y | q)P(q) + 0 P( yx ′ , x, y) ′ PN(x, z) = = = P( yx ′ | xy) = PN(x, y).
P( y, x, q) + 0 P( y, x) ■ 

Let PS(x, y) stand for the probability that x is a sufficient cause of y, and let z = y ∨ r 
be a consequence of y, potentially triggered by r. If r ∐{X, Yx, Yx ′}, then 

′ ′ PS(x, z) = P(zx | x , z ′) = P(yx | x , y ′) = PS(x, y). 

Lemma 19.3 asserts that we can add alternative independent causes (r), without 
affecting PS. The reason again is clear; conditioning on the event x ′ and y ′ implies 
that the added causes (r) were not active. The proof of Lemma 19.3 is similar to that 
of Lemma 19.2. 
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Definition 19.12 

19.3.2 
Definition 19.13 

Identifiability 
Let Q(M) be any quantity defined on a causal model M. Q is identifiable in a class 
M of models iff any two models M1 and M2 from M that satisfy PM1 (𝜐) = PM2 (𝜐) 
also satisfy Q(M1) = Q(M2). In other words, Q is identifiable if it can be determined 

uniquely from the probability distribution P(𝜐) of the endogenous variables V. 

The class M that we will consider when discussing identifiability will be deter
mined by assumptions that one is willing to make about the model under study. 
For example, if our assumptions consist of the structure of a causal graph G0, M 

will consist of all models M for which G(M) = G0. If, in addition to G0, we are also 

willing to make assumptions about the functional form of some mechanisms in 

M, M will consist of all models M that incorporate those mechanisms, and so on. 
Since all the causal measures defined above invoke conditionalization on y, 

and since y is presumed affected by x, the antecedent of the counterfactual yx, we 

know that none of these quantities is identifiable from knowledge of the structure 

G(M) and the data P(𝜐) alone, even under condition of no confounding. Moreover, 
none of these quantities determines the others in the general case. However, sim
ple interrelationships and useful bounds can be derived for these quantities under 
the assumption of no-confounding, an assumption that we call exogeneity. 

Bounds and Basic Relationships under Exogeneity 
Exogeneity 
A variable X is said to be exogenous relative to Y in model M iff 

P( yx, yx ′ | x) = P( yx, yx ′ ), (19.18) 

′ namely, the way Y would potentially respond to conditions x or x is independent 
of the actual value of X. 

Equation (19.18) has been given a variety of (equivalent) definitions and interpre
tations. Epidemiologists refer to this condition as “no-confounding” (Robins and 

Greenland 1989), statisticians call it “as if randomized”, and Rosenbaum and Rubin 

(1983) call it “ignorability”. A graphical criterion ensuring exogeneity is the absence 

of a common ancestor of X and Y in G(M). The classical econometric criterion for 
exogeneity (e.g., Dhrymes 1970, 169) states that X be independent of the error term 

13in the equation for Y. 

13. This criterion has been the subject of relentless objections by modern econometricians (Engle 

et al. 1983; Hendry 1995; Imbens 1997), but see Aldrich (1993) and Galles and Pearl (1998) for a 

reconciliatory perspective on this controversy. 
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The importance of exogeneity lies in permitting the identification of P( yx), the 

causal effect of X on Y, since (using x ⇒ ( yx = y)) 

P( yx) = P( yx | x) = P( y | x),	 (19.19) 

with similar reduction for P( yx ′ ). 

Theorem 19.1	 Under condition of exogeneity, PNS is bounded as follows: 

′max[0, P( y | x) + P( y | x ′) − 1] 
(19.20)

′ ≤ PNS ≤ min[P( y | x), P( y | x ′)]. 

Both bounds are sharp in the sense that for every joint distribution P(x, y) there 

exists a model y = f (x, u), with u independent of x, that realizes any value of PNS 

permitted by the bounds. 

Proof of Theorem 19.1. For any two events A and B we have tight bounds: 

max [0, P(A) + P(B) − 1] ≤ P(A, B) ≤ min[P(A), P(B)]. (19.21) 

′ Equation (19.20) follows from (19.21) using A = yx, B = yx ′ , P( yx) = P( y | x) and 
′ ′ P( yx ′ ) = P( y	 | x ′). ■ 

Clearly, if exogeneity cannot be ascertained, then PNS is bound by inequalities 
′ identical to those of Equation (19.20), with P( yx) and P( yx ′ ) replacing P( y | x) and 

′ P( y | x ′), respectively. 

Theorem 19.2	 Under condition of exogeneity, the probabilities PN, PS, and PNS are related to each 

other as follows: 

PNS
PN =	 (19.22)

P( y | x) 
, 

PNS
PS =	 (19.23)

1 − P( y | x ′) 
. 

Thus, the bounds for PNS in Equation (19.20) provide corresponding bounds for 
PN and PS. 

The resulting bounds for PN 

′max[0, P( y | x) + P( y | x ′) − 1] 
P( y | x) 

′min[P( y | x), P( y | x ′)]≤ PN ≤	 , (19.24)
P( y | x) 
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have significant implications relative to both our ability to identify PN by exper
imental studies and the feasibility of defining PN in stochastic causal models. 
Replacing the conditional probabilities with causal effects (licensed by exogene
ity), Equation (19.24) implies the following: 

′ Corollary 19.2	 Let P( yx) and P( yx ′ ) be the causal effects established in an experimental study. For 
any point p in the range 

′	 ′max[0, P( yx) + P( yx ′ ) − 1] min[P( yx), P( yx ′ )]≤ p ≤	 , (19.25)
P( yx)	 P( yx) 

′ we can find a causal model M that agrees with P( yx) and P( yx ′ ) and for which 

PN = p. 

This corollary implies that probabilities of causation cannot be defined uniquely 
in stochastic (non-Laplacian) models where, for each u, Yx(u) is specified in proba
bility P(Yx(u) = y) instead of a single number.14 (See Example 1, Section 19.4.1.) 

Proof of Theorem 19.2. Using x ⇒ ( yx = y), we can write x ∧ yx = x ∧ y, and obtain 

′	 ′ PN = P( yx ′ | x, y) = P( yx ′ , x, y)/P(x, y), (19.26) 
′ = P( yx ′ , x, yx)/P(x, y), (19.27) 
′ = P( yx ′ , yx)P(x)/P(x, y), (19.28) 

PNS =	 (19.29)
P( y | x) 

, 

which establishes Equation (19.22). Equation (19.23) follows by identical steps. ■ 

For completion, we note the relationship between PNS and the probabilities of 
enablement and disablement: 

P(x)PNS P(x ′)PNS
PD =	 , PE = . (19.30)

P( y) P( y ′) 

19.3.3 Identifiability under Monotonicity and Exogeneity 
Before attacking the general problem of identifying the counterfactual quanti
ties in Equations (19.12)–(19.14) it is instructive to treat a special condition, called 

14. Robins and Greenland (1989), who used a stochastic model of Yx(u), defined the probability of 
causation as 

′ PN(u) = [P( y | x, u) − P( y | x , u)]/P( y | x, u), 

instead of the counterfactual definition in Equation 19.12. 
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monotonicity, which is often assumed in practice, and which renders these quan
tities identifiable. The resulting probabilistic expressions will be recognized as 
familiar measures of causation that often appear in the literature. 

Monotonicity 
A variable Y is said to be monotonic relative to variable X in a causal model M iff 
the junction Yx(u) is monotonic in x for all u. Equivalently, Y is monotonic relative 

to X iff 

′ y ∧ yx ′ = false. (19.31)x 

Monotonicity expresses the assumption that a change from X = false to X = true 
cannot, under any circumstance make Y change from true to false.15 In epidemiol
ogy, this assumption is often expressed as “no prevention”, that is, no individual 
in the population can be helped by exposure to the risk factor. Angrist et al. (1996) 
used this assumption to identify treatment effects from studies involving non
compliance (see also Balke and Pearl (1997)). Glymour (1998) and Cheng (1997) 
resort to this assumption in using disjunctive or conjunctive relationships between 

causes and effects, excluding functions such as exclusive-or, or parity. 

Identifiability under exogeneity and monotonicity 
If X is exogenous and Y is monotonic relative to X, then the probabilities PN, PS, 
and PNS are all identifiable, and are given by Equations (19.22)–(19.23) with 

PNS = P( y | x) − P( y | x ′). (19.32) 

The r.h.s. of Equation (19.32) is called “risk-difference” in epidemiology, and is also 

misnomered “attributable risk” (Hennekens and Buring 1987, 87). 
From Equation (19.22) we see that the probability of necessity, PN, is identifiable 

and given by the excess-risk-ratio 

PN = [P( y | x) − P( y | x ′)]/P( y | x), (19.33) 

often misnomered as the attributable fraction (Schlesselman 1982), attributable-rate 
percent (Hennekens and Buring 1987, 88), attributed fraction for the exposed (Kelsey 
et al. 1987, 38), or attributable proportion (Cole 1997). Taken literally, the ratio pre
sented in (19.33) has nothing to do with attribution, since it is made up of statistical 

15. Our analysis remains invariant to complementing x or y (or both), hence, the general condi
′ ′ tion of monotonicity should read: either yx ∧ yx ′ = false or yx ′ ∧yx = false. For simplicity, however, 

we will adhere to the definition in Equation (19.31). 
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terms and not of causal or counterfactual relationships. However, the assumptions 
of exogeneity and monotonicity together enable us to translate the notion of attri
bution embedded in the definition of PN (Equation (19.12)) into a ratio of purely 
statistical associations. This suggests that exogeneity and monotonicity were tac
itly assumed by authors who proposed or derived Equation (19.33) as a measure for 
the “fraction of exposed cases that are attributable to the exposure”. 

Robins and Greenland (1989) have analyzed the identification of PN under the 

assumption of stochastic monotonicity (i.e., P(Yx(u) = y) > P(Yx ′ (u) = y)) and have 

shown that this assumption is too weak to permit such identification; in fact, it 
yields the same bounds as in Equation (19.24). This indicates that stochastic mono
tonicity imposes no constraints whatsoever on the functional mechanisms that 
mediate between X and Y. 

The expression for PS (Equation (19.23)), is likewise quite revealing 

PS = [P( y | x) − P( y | x ′)]/[1 − P( y | x ′)], (19.34) 

as it coincides with what epidemiologists call the “relative difference” (Shep 1958), 
which is used to measure the susceptibility of a population to a risk factor x. Sus
ceptibility is defined as the proportion of persons who possess “an underlying 

factor sufficient to make a person contract a disease following exposure” (Khoury 
et al. 1989). PS offers a formal counterfactual interpretation of susceptibility, which 

sharpens this definition and renders susceptibility amenable to systematic analy
sis. Khoury et al. (1989) have recognized that susceptibility in general is not iden
tifiable, and have derived Equation (19.34) by making three assumptions: no con
founding, monotonicity,16 and independence (i.e., assuming that susceptibility to 

exposure is independent of susceptibility to background not involving exposure). 
This last assumption is often criticized as untenable, and Theorem 19.3 assures 
us that independence is in fact unnecessary; Equation (19.34) attains its validity 
through exogeneity and monotonicity alone. 

Equation (19.34) also coincides with what Cheng calls “causal power” (1997), 
namely, the effect of x on y after suppressing “all other causes of y”. The counterfac

′ tual definition of PS, P( yx | x , y ′), suggests another interpretation of this quantity. 
It measures the probability that setting x would produce y in a situation where x 

and y are in fact absent. Conditioning on y ′ amounts to selecting (or hypothesizing) 
only those worlds in which “all other causes of y” are indeed suppressed. 

16. Monotonicity is not mentioned in (Khoury et al. 1989), but it must have been assumed 

implicitly to make their derivations valid. 
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It is important to note, however, that the simple relationships among the three 

notions of causation (Equations (19.22)–(19.23)) only hold under the assumption of 
exogeneity; the weaker relationship of Equation (19.16) prevails in the general, non-
exogenous case. Additionally, all these notions of causation are defined in terms 
of the global relationships Yx(u) and Yx ′ (u) which is too crude to fully characterize 

the many nuances of causation; the detailed structure of the causal model lead
ing from X to Y is often needed to explicate more refined notions, such as “actual 
cause” (see Section 19.6). 

′ Proof of Theorem 19.3. Writing yx ′ ∨ yx = true, we have 

yx = yx ∧ ( yx ′ ∨ y ′ x ′ ) = ( yx ∧ yx ′ ) ∨ ( yx ∧ y ′ x ′ ), (19.35) 

and 

yx ′ = yx ′ ∧ ( yx ∨ y ′ x) = ( yx ′ ∧ yx) ∨ ( yx ′ ∧ y ′ x) = yx ′ ∧ yx, (19.36) 

′ since monotonicity entails yx ′ ∧ y = false. Substituting Equation (19.36) into x 

Equation (19.35) yields 

′ yx = yx ′ ∨ ( yx ∧ yx ′ ). (19.37) 

′ Taking the probability of Equation (19.37), and using the disjointness of yx ′ and yx ′ , 
we obtain 

′ P(yx) = P( yx ′ ) + P( yx, yx ′ ), 

or 

′ P( yx, yx ′ ) = P( yx) − P( yx ′ ). (19.38) 

Equation (19.38) together with the assumption of exogeneity (Equation (19.19)) 
establish Equation (19.32). ■ 

19.3.4 Identifiability under Monotonicity and Non-Exogeneity 
The relations established in Theorems 19.1–19.3 were based on the assumption of 
exogeneity. In this section, we relax this assumption and consider cases where the 

effect of X on Y is confounded, i.e., P( yx) ≠ P( y | x). In such cases P( yx) may still 
be estimated by auxiliary means (e.g., through adjustment of certain covariates, or 
through experimental studies) and the question is whether this added information 

can render the probability of causation identifiable. The answer is affirmative. 
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Theorem 19.4	 If Y is monotonic relative to X, then PNS, PN, PS are identifiable whenever the 

causal effect P( yx) is identifiable and are given by 

′ PNS = P( yx, yx ′ ) = P( yx) − P( yx ′ ), (19.39) 
P( y) − P( yx ′ )′ PN = P( yx ′ | x, y) = ,	 (19.40)

P(x, y) 
P(yx) − P(y)′ PS = P(yx | x , y ′) = .	 (19.41)
P(x ′ , y ′) 

To appreciate the difference between Equations (19.40) and (19.33) we can 

expand P( y) and write 

P( y | x)P(x) + P( y | x ′)P(x ′) − P( yx ′ )PN = 
P( y | x)P(x) 

P( y | x) − P( y | x ′) P( y | x ′) − P( yx ′ )=	 + . (19.42)
P( y | x) P(x, y) 

The first term on the r.h.s. of Equation (19.42) is the familiar excess-risk-ratio as 
in Equation (19.33), and represents the value of PN under exogeneity. The sec
ond term represents the correction needed to account for X’s non-exogeneity, i.e., 
P( yx ′ ) ̸ | ′).= P( y x 

Equations (19.39)–(19.41) thus provide more refined measures of causation, 
which can be used in situations where the causal effect P( yx) can be identified 

through auxiliary means (see Example 4, Section 19.4.4). Note however that these 

measures are no longer governed by the simple relationships given in Equations 
(19.22)–(19.23). Instead, the governing relation is Equation (19.16). 

Remarkably, since PS and PN must be non-negative, Equations (19.40)–(19.41) 
provide a simple necessary test for the assumption of monotonicity 

P( yx) ≥ P( y) ≥ P( yx ′ ),	 (19.43) 

which strengthen the standard inequalities 

′ P( yx) ≥ P(x, y), P( yx ′ ) ≥ P(x , y). 

It can be shown that these inequalities are in fact sharp, that is, every combi
nation of experimental and nonexperimental data that satisfy these inequalities 
can be generated from some causal model in which Y is monotonic in X. That 
the commonly made assumption of “no prevention” is not entirely exempt from 

empirical scrutiny should come as a relief to many epidemiologists. Alternatively, 
if the no-prevention assumption is theoretically unassailable, the inequalities of 
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Equation (19.43) can be used for testing the compatibility of the experimental 
and non-experimental data, namely, whether subjects used in clinical trials are 

representative of the target population, characterized by the joint distribution 

P(x, y). 

Proof of Theorem 19.4. Equation (19.39) was established in (19.38). To prove (19.41), 
we write 

′	 ′ ′ P( yx, x , y ′)	 P( yx, x , yx ′ )′ P( yx | x , y ′) = = , (19.44)
P(x ′ , y ′)	 P(x ′ , y ′) 

′ ′ because x ′ ∧ y = x ′ ∧ yx ′ (by consistency). To calculate the numerator of Equation 
′ (19.44), we conjoin Equation (19.37) with x 

′ ′	 ′ x ∧ yx = (x ∧ yx ′ ) ∨ ( yx ∧ yx ′ ∧ x ′), 

′ and take the probability on both sides, which gives (since yx ′ and yx ′ are disjoint) 

′ ′ ′ P(yx, yx ′ , x ′) = P(x , yx) − P(x , yx ′ ) 
′ ′ = P(x , yx) − P(x , y) 

′ = P(yx) − P(x, yx) − P(x , y) 
′ = P(yx) − P(x, y) − P(x , y) 

= P(yx) − P(y). 

Substituting in Equation (19.44), we finally obtain 

P(yx) − P(y)′ P(yx | x , y ′) = ,
P(x ′ , y ′) 

which establishes Equation (19.41). Equation (19.40) follows through identical 
steps. ■ 

One common class of models which permits the identification of P( yx) under 
conditions of non-exogeneity is called Markovian. 

Definition 19.15	 Markovian models 
A causal model M is said to be Markovian if the graph G(M) associated with M 

is acyclic, and if the exogenous factors ui are mutually independent. A model is 
semi-Markovian iff G(M) is acyclic and the exogenous variables are not necessarily 
independent. A causal model is said to be positive-Markovian if it is Markovian and 

P(𝜐) > 0 for every 𝜐. 
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It is shown in Pearl (1993, 1995) that for every two variables, X and Y, in a positive-
Markovian model M, the causal effect P( yx) is identifiable and is given by 

P( yx) = ∑ P( y | paX , x)P( paX ),	 (19.45) 
paX 

where paX are (realizations of) the parents of X in the causal graph associate with 

M (see also Spirtes et al. (1993) and Robins (1986)). Thus, we can combine Equation 

(19.45) with Theorem 19.4 and obtain a concrete condition for the identification of 
the probability of causation. 

Corollary 19.3	 If in a positive-Markovian model M, the function Yx(u) is monotonic, then the prob
abilities of causation PNS, PS and PN are identifiable and are given by Equations 
(19.39)–(19.41), with P( yx) in Equation (19.45). 

A broader identification condition can be obtained through the use of the back-
door and front-door criteria (Pearl 1995), which are applicable to semi-Markovian 

models. These were further generalized in Galles and Pearl (1995)17 and lead to the 

following corollary: 

Corollary 19.4	 Let GP be the class of semi-Markovian models that satisfy the graphical criterion 

of Galles and Pearl (1995). If Yx(u) is monotonic, then the probabilities of causation 

PNS, PS and PN are identifiable in GP and are given by Equations (19.39)–(19.41), 
with P( yx) determined by the topology of G(M) through the GP criterion. 

19.4 Examples and Applications 

19.4.1 Example 1: Betting against a Fair Coin 
We must bet heads or tails on the outcome of a fair coin toss; we win a dollar if we 

guess correctly, lose if we don’t. Suppose we bet heads and we win a dollar, without 
glancing at the outcome of the coin, was our bet a necessary cause (respectively, 
sufficient cause, or both) for winning? 

Let x stand for “we bet on heads”, y for “we win a dollar”, and u for “the coin 

turned up heads”. The functional relationship between y, x and u is 

′ y = (x ∧ u) ∨ (x ∧ u ′),	 (19.46) 

17. Galles and Pearl (1995) provide an efficient method of deciding from the graph G(M) whether 
P( yx) is identifiable and, if the answer is affirmative, deriving the expression for P( yx). 
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which is not monotonic but nevertheless permits us to compute the probabilities 
of causation from the basic definitions of Equations (19.12)–(19.14). To exemplify, 

′ ′ PN = P(yx ′ | x, y) = P(yx ′ | u) = 1, 

because x ∧ y ⇒ u, and Yx ′ (u) = false. In words, knowing the current bet (x) and 

current win (y) permits us to infer that the coin outcome must have been a head 

(u), from which we can further deduce that betting tails (x ′) instead of heads, would 

have resulted in a loss. Similarly, 

′ PS = P( yx | x , y ′) = P( yx | u) = 1, 

′ because x ′ ∧ y ⇒ u, and 

′ PNS = P( yx, yx ′ ) 

′ ′ = P( yx, yx ′ | u)P(u) + P( yx, yx ′ | u ′)P(u ′) 

1 1 1 = 1 + 0 = .
2 2 2 

We see that betting heads has 50% chance of being a necessary-and-sufficient cause 

of winning. Still, once we win, we can be 100% sure that our bet was necessary for 
our win, and once we lose (say on betting tails) we can be 100% sure that betting 

heads would have been sufficient for producing a win. The empirical content of 
such counterfactuals is discussed in Appendix 19.A. 

Note that these counterfactual quantities cannot be computed from the joint 
probability of X and Y without knowledge of the functional relationship in Equa
tion (19.46) which tells us the (deterministic) policy by which a win or a loss is 
decided. This can be seen, for instance, from the conditional probabilities and 

causal effects associated with this example 

1
P( y | x) = P( y | x ′) = P( yx) = P( yx ′ ) = P( y) = 

2
, 

because identical probabilities would be generated by a random payoff policy in 

which y is functionally independent of x, say by a bookie who watches the coin 

and ignores our bet. In such a random policy, the probabilities of causation PN, 
PS and PNS are all zero. Thus, according to our definition of identifiability (Defini
tion 19.12), if two models agree on P and do not agree on a quantity Q, then Q is not 
identifiable. Indeed, the bounds delineated in Theorem 19.1 (Equation (19.20)) read 

0 ≤ PNS ≤ 2
1 , meaning that the three probabilities of causation cannot be deter

mined from statistical data on X and Y alone, not even in a controlled experiment; 
knowledge of the functional mechanism is required, as in Equation (19.46). 
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It is interesting to note that whether the coin is tossed before or after the bet 
has no bearing on the probabilities of causation as defined above. This stands in 

contrast with some theories of probabilistic causality which attempt to avoid deter
ministic mechanisms by conditioning all probabilities on “the state of the world 

just before” the occurrence of the cause in question (x) (e.g., Good 1961). In the bet
ting story above, the intention is to condition all probabilities on the state of the 

coin (u), but it is not fulfilled if the coin is tossed after the bet is placed. Attempts 
to enrich the conditioning set with events occurring after the cause in question 

have led back to deterministic relationships involving counterfactual variables (see 

Cartwright 1989; Eells 1991). 
One may argue, of course, that if the coin is tossed after the bet, then it is not 

at all clear what our winning would be had we bet differently; merely uttering our 
bet could conceivably affect the trajectory of the coin (Dawid 1997). This objection 

can be diffused by placing x and u in two remote locations and tossing the coin a 

split second after the bet is placed, but before any light ray could arrive from the 

betting room to the coin-tossing room. In such hypothetical situation the counter-
factual statement: “our winning would be different had we bet differently” is rather 
compelling, even though the conditioning event (u) occurs after the cause in ques
tion (x). We conclude that temporal descriptions such as “the state of the world 

just before x” cannot be used to properly identify the appropriate set of condition
ing events (u) in a problem; a deterministic model of the mechanisms involved is 
needed for such identification. 

19.4.2 Example 2: The Firing Squad 
Consider a 2-man firing squad (see Figure 19.2) in which A and B are riflemen, C is 
the squad’s Captain who is waiting for the court order, U, and T is a condemned 

prisoner. Let u be the proposition that the court has ordered an execution, x the 

proposition stating that A pulled the trigger, and y that T is dead. Assume that 
1P(u) = , that A and B are perfectly accurate marksmen who are alert and law abid2 

ing, and that T is not likely to die from fright or other extraneous causes. We wish 

to compute the probability that x was a necessary (or sufficient, or both) cause for 
y (i.e., PN, PS, and PNS). 

Definitions (19.7)–(19.9) permit us to compute these probabilities directly from 

the given causal model, since all functions and all probabilities are specified, with 

the truth value of each variable tracing that of U. Accordingly, we can write18 

18. Recall that P(Yx(u ′) = true) involves the submodel Mx, in which X is set to true independently 
of U. Thus, although under condition u ′ the captain has not given a signal, the potential outcome 

Yx(u ′) calls for hypothesizing rifleman-A pulling the trigger (x) despite a court order to stay the 

execution. 
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T (Prisoner)

Ax:  A shoots

y:  T dies

(Riflemen)B

C (Captain)

U (Court order)

Figure 19.2 Causal relationships in the 2-man firing squad example. 

P(yx) = P(Yx(u) = true)P(u) + P(Yx(u ′) = true)P(u ′) 

= 
1 
(1 + 1) = 1. (19.47)
2
 

Similarly, we have
 

P( yx ′ ) = P(Yx ′ (u) = true)P(u) + P(Yx ′ (u ′) = true)P(u ′) 

= 
1 
(1 + 0) = 

1 
. (19.48)

2 2 

To compute PNS, we need to evaluate the probability of the joint event yx ′ ∧ yx. 
Considering that these two events are jointly true only when U = true, we have 

PNS = P( yx, yx ′ ) 

= P( yx, yx ′ | u)P(u) + P( yx, yx ′ | u ′)P(u ′) 

= 
1 
(1 + 0) = 

1 
. (19.49)

2 2 

The calculation of PS and PN, likewise, are simplified by the fact that each of 
′ the conditioning events, x ∧ y for PN and x ′ ∧ y for PS, is true in only one state of 

U. We thus have 

′ ′ PN = P( yx ′ | x, y) = P( yx ′ | u) = 0 

reflecting the fact that, once the court orders an execution (u), T will die ( y) from 

the shot of rifleman B, even if A refrains from shooting (x ′). Indeed, upon learning 

of T’s death, we can categorically state that rifleman-A’s shot was not a necessary 
cause of the death. 
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Similarly, 

′ PS = P(yx | x , y ′) = P(yx | u ′) = 1 

matching our intuition that a shot fired by an expert marksman would be sufficient 
for causing the death of T, regardless of the court decision. 

Note that Theorems 19.1 and 19.2 are not applicable to this example, because x 

is not exogenous; events x and y have a common cause (the Captain’s signal) which 
1renders P(y | x ′) = 0 ̸= P(yx ′ ) = . However, the monotonicity of Y (in x) permits 2 

us to compute PNS, PS and PN from the joint distribution P(x, y) (using Equations 
(19.39)–(19.41)), instead of consulting the basic model. Indeed, writing 

1′ P(x, y) = P(x , y ′) = 
2
, (19.50) 

′ P(x, y ′) = P(x , y) = 0, (19.51) 

we obtain 

1P( y) − P( yx ′ ) 2 − 1 2PN = = = 0, (19.52)1P(x, y) 2 

P( yx) − P( y) 1 − 1 2PS = = = 1, (19.53)1P(x ′ , y ′) 2 

as expected. 

19.4.3 Example 3: The Effect of Radiation on Leukemia 
Consider the following data (adapted from Finkelstein and Levin19 (1990)) com
paring leukemia deaths in children in Southern Utah with high and low exposure 

to radiation from fallout from nuclear tests in Nevada. Given these data, we wish 

to estimate the probabilities that high exposure to radiation was a necessary (or 
sufficient or both) cause of death due to leukemia. 

Assuming that exposure to nuclear radiation had no remedial effect on any indi
vidual in the study (i.e., monotonicity), the process can be modeled by a simple 

disjunctive mechanism represented by the equation 

y = f (x, u, q) = (x ∧ q) ∨ u, (19.54) 

19. The data in Finkelstein and Levin (1990) are given in person-year units. For the purpose of illus
tration we have converted the data to absolute numbers (of deaths and non-deaths) assuming a 

10-year observation period. 



Table 19.1 

19.4 Examples and Applications 347 

where u represents “all other causes” of y, and q represents all “enabling” mech
anisms that must be present for x to trigger y. Assuming q and u are both unob
served, the question we ask is under what conditions we can identify the probability 
of causation, PNS, PN, and PS, from the joint distribution of X and Y. 

Since Equation (19.54) is monotonic in x, Theorem 19.3 states that all three quan
tities would be identifiable provided X is exogenous, namely, x should be indepen
dent of q and u. Under this assumption, Equations (19.32)–(19.34) further permit us 
to compute the probabilities of causation from frequency data. Taking fractions 
to represent probabilities, the data in Table 19.1 imply the following numerical 
results 

PNS = P( y | x) − P( y | x ′) 

30 16 = − = 0.0001625, (19.55)
30 + 69,130 16 + 59,010 

PNS PNS
PN = = = 0.37535, (19.56)

P( y | x) 30/(30 + 69,130) 

PNS PNS
PS = = = 0.0001625. (19.57)

1 − P( y | x ′) 1 − 16/(16 + 59,010) 

Statistically, these figures mean: There is a 1.625 in ten thousand chance that a 

randomly chosen child would both die of leukemia if exposed and survive if not 
exposed. There is a 37.535% chance that a child who died from leukemia after 
exposure would have survived had he/she not been exposed. There is a 1.625 in ten-
thousand chance that any unexposed surviving child would have died of leukemia 

had he/she been exposed. 
Glymour (1998) analyzes this example with the aim of identifying the probability 

P(q) (Cheng’s “causal power”) which coincides with PS (see Lemma 19.3). Glymour 
concludes that P(q) is identifiable and is given by Equation (19.34), provided x, u, 
and q are mutually independent. Our analysis shows that Glymour’s result can 

Frequency data comparing leukemia deaths in children 
with high and low exposure to nuclear radiation 

Exposure 

High Low 
′ x x 

Deaths y 30 16 
′ Survivals y 69,130 59,010 



348 Chapter 19 Probabilities of Causation: Three Counterfactual Interpretations and Their Identification 

be generalized in several ways. First, since Y is monotonic in X, the validity of 
Equation (19.34) is assured even when q and u are dependent, because exogene
ity merely requires independence between x and {u, q} jointly. This is important 
in epidemiological settings, because an individual’s susceptibility to nuclear radi
ation is likely to be associated with his/her susceptibility to other potential causes 
of leukemia (e.g., natural kinds of radiation). 

Second, Theorem 19.2 assures us that the relationships between PN, PS and PNS 

(Equations (19.22)–(19.23)), which Glymour derives for independent q and u, should 

remain valid even when u and q are dependent. 
Finally, Theorem 19.4 assures us that PN and PS are identifiable even when x is 

not independent of {u, q}, provided only that the mechanism of Equation (19.54) 
is embedded in a larger causal structure which permits the identification of P( yx). 
For example, assume that exposure to nuclear radiation (x) is suspect of being asso
ciated with terrain and altitude, which are also factors in determining exposure to 

cosmic radiation. A model reflecting such consideration is depicted in Figure 19.3, 
where W represents factors affecting both X and U. A natural way to correct for pos
sible confounding bias in the causal effect of X on Y would be to adjust for W, that 

X

AND

Y

W

U

Q

OR

Figure 19.3 Causal relationships in the Radiation–Leukemia example. W represents confounding 
factors. 
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is, to calculate P( yx) using the adjustment formula 

P(yx) = ∑ P(y | x, w)P(w), (19.58) 
w 

(instead of P( y | x)) where the summation runs over levels of W. This adjustment 
formula, which follows from Equation (19.45), is correct regardless of the mech
anisms mediating X and Y, provided only that W represents all common factors 
affecting X and Y (Pearl 1995). Theorem 19.4 instructs us to evaluate PN and PS by 
substituting (19.58) into Equations (19.40) and (19.41), respectively, and it assures us 
that the resulting expressions constitute consistent estimates of PN and PS. This 
consistency is guaranteed jointly by the assumption of monotonicity and by the 

(assumed) topology of the causal graph. 
Note the monotonicity as defined in Equation (19.31) is a global property of 

all pathways between x and y. The causal model may include several nonmono
tonic mechanisms along these pathways without affecting the validity of Equation 

(19.31). Arguments for the validity of monotonicity, however, must be based on 

substantive information, as it is not testable in general. For example, Robins and 

Greenland (1989) argue that exposure to nuclear radiation may conceivably be of 
benefit to some individuals, since such radiation is routinely used clinically in 

treating cancer patients. 

Example 4: Legal Responsibility from Experimental and 
Nonexperimental Data 
A lawsuit is filed against the manufacturer of drug x, charging that the drug is likely 
to have caused the death of Mr. A, who took the drug to relieve symptom S associ
ated with disease D. The manufacturer claims that experimental data on patients 
with symptom S show conclusively that drug x may cause only negligible increase 

in death rates. The plaintiff argues, however, that the experimental study is of little 

relevance to this case, because it represents the effect of the drug on all patients, 
not on patients like Mr. A who actually died while using drug x. Moreover, argues 
the plaintiff, Mr. A is unique in that he used the drug on his own volition, unlike 

subjects in the experimental study who took the drug to comply with experimental 
protocols. To support this argument, the plaintiff furnishes non-experimental data 

indicating that most patients who chose drug x would have been alive if it were not 
for the drug. The manufacturer counter-argues by stating that: (1) counterfactual 
speculations regarding whether patients would or would not have died are purely 
metaphysical and should be avoided (Dawid 1997), and (2) non-experimental data 

should be dismissed a priori, on the ground that, such data may be highly biased; 
for example, incurable terminal patients might be more inclined to use drug x if 
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Table 19.2	 Frequency data (hypothetical) obtained in experimental and non-experimental studies, 
comparing deaths among drug users (x) and non-users (x ′) 

Experimental	 Non-Experimental 
′	 ′ x x x x 

Deaths y 16 14 Deaths y 2 28 
′	 ′ Survivals	 y 984 986 Survivals y 998 972 

it provides them greater symptomatic relief. The court must now decide, based on 

both the experimental and non-experimental studies, what the probability is that 
drug x was in fact the cause of Mr. A’s death. 

The (hypothetical) data associated with the two studies are shown in Table 19.2. 
The experimental data provide the estimates 

P(yx) = 16/1000 = 0.016, (19.59) 

P(yx ′ ) = 14/1000 = 0.014. (19.60) 

The non-experimental data provide the estimates 

P(y) = 30/2000 = 0.015, (19.61) 

P(y, x) = 2/2000 = 0.001. (19.62) 

Assuming that drug x can only cause, never prevent, death, Theorem 19.4 is 
applicable and Equation (19.40) gives 

P(y) − P(yx ′ ) 0.015 − 0.014
PN = = = 1.00. (19.63)

P(y, x) 0.001 

Thus, the plaintiff was correct; barring sampling errors, the data provide us with 

100% assurance that drug x was in fact responsible for the death of Mr. A. Note 

that a straightforward use of the experimental excess-risk-ratio would yield a much 

lower (and incorrect) result: 

P(yx) − P(yx ′ ) 0.016 − 0.014 = = 0.125. (19.64)
P(yx) 0.016 

Evidently, what the experimental study does not reveal is that, given a choice, termi
nal patients stay away from drug x. Indeed, if there were any terminal patients who 

would choose (given the choice), then the control group (x ′) would have included 

some such patients (due to randomization) and then the proportion of deaths 
′ among the control group P(yx ′ ) should have been higher than P(x , y), the popu

lation proportion of terminal patients avoiding x. However, the equality P(yx ′ ) = 

P(y, x ′) tells us that no such patients were included in the control group, hence 
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(by randomization) no such patients exist in the population at large and, there
fore, none of the patients who freely chose drug x was a terminal case; all were 

susceptible to x. 
The numbers in Table 19.2 were obviously contrived to represent an extreme 

case, so as to facilitate a qualitative explanation of the validity of Equation (19.40). 
Nevertheless, it is instructive to note that a combination of experimental and non-
experimental studies may unravel what experimental studies alone will not reveal 
and, in addition, that such combination may provide a test for the assumption of 
no-prevention, as outlined in Section 19.3.4 (Equation (19.43)). 

19.5 Identification in Non-Monotonic Models 
In this section we discuss the identification of probabilities of causation without 
making the monotonicity assumption. We will assume that we are given a causal 
model M in which all functional relationships are known, but since the exogenous 
variables U are not observed, their distributions are not known. 

A straightforward way to identify any causal or counterfactual quantity (includ
ing PN, PS and PNS) would be to infer the probability distribution of the exogenous 
variables – that would amount to inferring the entire model, from which all quanti
ties can be computed. Thus, our first step would be to study under what conditions 
the function P(u) can be identified. 

If M is Markovian, the problem can be analyzed by considering each parents-
child family separately. Consider any arbitrary equation in M 

y = f ( paY , uY ) 

= f (x1, x2, … , xk, u1, … , um), (19.65) 

where UY = {U1, … , Um} is the set of exogenous, possibly dependent variables that 
appear in the equation for Y. In general, the domain of UY can be arbitrary, discrete, 
or continuous, since these variables represent unobserved factors that were omit
ted from the model. However, since the observed variables are binary, there is only 
a finite number (2(2k )) of functions from PAY to Y and, for any point UY = u, only 
one of those functions is realized. This defines a partition of the domain of UY into 

a set S of equivalence classes, where each equivalence class s ∈ S induces the same 

function f (s) from PAY to Y. Thus, as u varies over its domain, a set S of such func
tions is realized, and we can regard S as a new exogenous variable, whose values 
are the set { f (s) : s ∈ S} of functions from PAY to Y that are realizable in UY . The 

20number of such functions will usually be smaller than 2(2k). 

20. Balke and Pearl (1994a) called these S variables “response variables”, and Heckerman and 

Shachter (1995) called them “mapping variables”. 
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For example, consider the model described in Figure 19.3. As the exogenous vari
ables (q, u) vary over their respective domains, the relation between X and Y spans 
three distinct functions 

Y = true, Y = false, and Y = X. 

The fourth possible function, Y = not-X, is never realized because fY (⋅) is mono
′ tonic. The cells (q, u) and (q , u) induce the same function between X and Y, hence 

they belong to the same equivalence class. 
If we are given the distribution P(uY ), we can compute the distribution P(s) and 

this will determine the conditional probabilities P(y | paY ) by summing P(s) over all 
those functions f (s) that map paY into the value true, 

P( y | paY ) = ∑ P(s). (19.66) 
s: f (s)( paY )=true 

To insure model identifiability it is sufficient that we can invert the process and 

determine P(s) from P( y | paY ). If we let the set of conditional probabilities P(y | paY ) 
be represented by a vector p (of dimensionality 2k), and P(s) by a vector q, then the 

relation between q and p is linear and can be represented as a matrix multiplication 

(Balke and Pearl 1994b) 

p = Rq, (19.67) 

where R is a 0-1 matrix, with dimension 2k × | S | . Thus, a sufficient condition for 
identification is simply that R, together with the normalizing equation ∑j qj = 1, 
be invertible. 

In general, R will not be invertible because the dimensionality of q can be much 

larger than that of p. However, in many cases, such as the Noisy-OR mechanism 

Y = U0 ⋁ (Xi ∧ Ui), (19.68) 
i=1,…,k 

symmetry permits q to be identified from P(y | paY ) even when the exogenous vari
ables U0, U1, … , Uk are not independent. This can be seen by noting that every point 
u for which U0 = false defines a unique function f (s) because, letting T be the set of 
indices i for which Ui is true, the relationship between PAY and Y becomes 

Y = U0 ⋁ Xi (19.69) 
i∈T 

and, for U0 = false, this equation defines a distinct function for each T. The num
ber of induced functions is 2k + 1, which (subtracting 1 for normalization) is exactly 
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the number of distinct realizations of PAY . Moreover, it is easy to show that the 

matrix connecting p and q is invertible. We thus conclude that the probability of 
every counterfactual sentence can be identified in any Markovian model composed 

of Noisy-OR mechanisms, regardless of whether the exogenous variables in each 

family are mutually independent. The same holds of course for Noisy-AND mecha
nisms or any combination thereof, including negating mechanisms, provided that 
each family consists of one type of mechanism. 

To generalize these results to mechanisms other than Noisy-OR and Noisy-
AND, we note that although fY (⋅) in this example was monotonic (in each Xi), it 
was the redundancy of fY (⋅), not its monotonicity, that ensured identifiability. The 

following is an example of a monotonic function for which the R matrix is not 
invertible 

Y = (X1 ∧ U1) ∨ (X2 ∧ U1) ∨ (X1 ∧ X2 ∧ U3). 

It represents a Noisy-OR gate for U3 = false, and becomes a Noisy-AND gate for 
U3 = true, U1 = U2 = false. U1 = U2 = false. The number of equivalence-classes 
induced is six, which would require five independent equations to determine their 
probabilities; the data P( y | paY ) provide only four such equations. 

In contrast, the mechanism governed by the equation below, although non-
monotonic, is invertible: 

Y = XOR(X1, XOR(U2, … , XOR(Uk−1, XOR(Xk, Uk)))), 

where XOR(*) stands for Exclusive-OR. This equation induces only two functions 
from PAY to Y ; 

{
XOR(X1, … , Xk) if XOR(U1, … , Uk) = false 

Y = 
¬XOR(X1, … , Xk) if XOR(U1, … , Uk) = true. 

A single conditional probability, say P( y | x1, … , xk), would therefore suffice 

for computing the one parameter needed for identification: P[XOR(U1, … , Uk) 
= true]. 

We summarize these considerations with a theorem. 

Definition 19.16	 Local invertability 
A model M is said to be locally invertible if for every variable Vi ∈ V the set of 2k + 1 
equations 
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P( y | pai) = ∑ qi(s),	 (19.70) 
s: f (s)( pai)=true 

∑ qi(s) = 1 (19.71) 
S 

has a unique solution for qi(s), where each f (s)( pai) corresponds to the function i
 

fi( pai, ui) induced by ui in equivalence-class s.
 

Theorem 19.5	 Given a Markovian model M = ⟨U, V , { fi}⟩ in which the functions { fi} are known 

and the exogenous variables U are unobserved, if M is locally invertible, then 

the probability of every counterfactual sentence is identifiable from the joint 
probability P(v). 

Proof. If Equation (19.70) has a unique solution for qi(s), we can replace U with S 

and obtain an equivalent model 

M ′ = ⟨S, V , { fi 
′}⟩ where f ′ = f (s)( pai).i i 

M ′ together with qi(s) completely specifies a probabilistic model ⟨M ′ , P(s)⟩ (due to 

the Markov property) from which probabilities of counterfactuals are derivable by 
definition. ■ 

Theorem 19.5 provides a sufficient condition for identifying probabilities of causa
tion, but of course does not exhaust the spectrum of assumptions that are helpful 
in achieving identification. In many cases we might be justified in hypothesiz
ing additional structure on the model, for example, that the U variables entering 

each family are themselves independent. In such cases, additional constraints are 

imposed on the probabilities P(s) and Equation (19.70) may be solved even when 

the cardinality of S far exceeds the number of conditional probabilities P( y | paY ). 

19.6 From Necessity and Sufficiency to “Actual Cause” 

19.6.1 The Role of Structural Information 
In Section 19.3, we alluded to the fact that both PN and PS are global (i.e., input– 

output) features of a causal model, depending only on the function Yx(u), but not on 

the structure of the process mediating between the cause (x) and the effect ( y). That 
such structure plays a role in causal explanation is seen in the following example. 

Consider an electric circuit consisting of a light bulb and two switches, and 

assume that the light is turned on whenever either switch-1 or switch-2 is on. 
Assume further that, internally, when switch-1 is on it not only activates the light 
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but also disconnects switch-2 from the circuit, rendering it inoperative. From an 

input–output viewpoint, the light responds symmetrically to the two switches; 
either switch is sufficient to turn the light on. However, with both switches on, 
we would not hesitate to proclaim to switch-1 as the “actual cause” of the current 
flowing in the light bulb, knowing that, internally, switch-2 is totally disconnected 

in this particular state of affairs. There is nothing in PN and PS that could possibly 
account for this asymmetry; each is based on the response function Yx(u), and is 
therefore oblivious to the internal workings of the circuit. 

This example is isomorphic to Suppes’ Desert Traveler, and belongs to a large 

class of counterexamples that were brought up against Lewis’ counterfactual 
account of causation. It illustrates how an event (e.g., switch-1 being on) can be 

considered a cause although the effect persists in its absence. Lewis’ (1986) answer 
to such counterexamples was to modify the counterfactual criterion and let x be 

a cause of y as long as there exists a counterfactual-dependence chain of inter
mediate variables between x to y, that is, the output of every link in the chain is 
counterfactually dependent on its input. Such a chain does not exist for switch-2, 
since it is disconnected when both switches are on. 

Lewis’ chain criterion retains the connection between causation and coun
terfactuals, but it is rather ad-hoc; after all, why should the existence of a 

counterfactual-dependence chain be taken as a defining test for such crucial con
cepts as “actual cause”, by which we decide the guilt or innocence of defendants 
in a court of law? Another problem with Lewis’ chain is its failure to capture sym
metric cases of overdetermination. For example, consider two switches connected 

symmetrically, such that each participates equally in energizing the light bulb. In 

this situation, our intuition regards each of the switches as a contributory actual 
cause of the light, though none passes the counterfactual test and none supports 
a counterfactual-dependence chain in the presence of the other. 

An alternative way of using counterfactuals to define actual causes is proposed 

in (Pearl 1998). An event x is defined as the “actual cause” of event y (in a world u), 
if x passes the standard counterfactual test (i.e., Yx ′ (u) = false) in some mutilated 

model M ′ , minimally removed from M. In the symmetric two-switch example, we 

declare each switch to be an actual cause of the light because the light would be off 
if that switch were off, when we consider a slightly mutilated circuit, one in which 

the other switch is disconnected from the power source. The mutilated model M ′ , 
called a “causal beam”, is carefully constructed in (Pearl 1998) to ensure minimal 
deviation from the actual causal model M, considering the actual history of the 

world u. 
The concept of causal sufficiency offers yet a third way of rescuing the counter-

factual account of causation. Consider again the symmetric two-switch example 



356 Chapter 19 Probabilities of Causation: Three Counterfactual Interpretations and Their Identification 

(or the firing squad example of Section 19.4.2). Both switches enjoy high PS value, 
because each would produce light from a state (u ′) of darkness, namely, a state 

in which the other switch is off. Likewise, the shot of each riflemen in Example 2 

(Section 19.4.2) enjoys a PS value of unity (see Equation (19.53)), because each shot 
′ would cause the prisoner’s death in the state u in which the prisoner is alive, 

namely, the court orders no execution. Thus, if our intuition is driven by some 

strange mixture of sufficiency and necessity considerations, it seems plausible 

that we could formulate an adequate criterion for actual causation using the right 
mixture of PN and PS components. 

Similar expectations are expressed in Hall (1998). In analyzing problems faced 

by the counterfactual approach, Hall makes the observation that there are two con
cepts of causation, only one of which is captured by the counterfactual account, 
and that failure to capture the second concept may well explain its clashes with 

intuition. Hall calls the first concept “dependence” and the second “production”. 
In the symmetrical two-switch example (an instance of “over-determination”), 
intuition considers each switch to be an equal “producer” of the light, while the 

counterfactual account tests for “dependence” only, and fails because the light 
does not “depend” on either switch alone. 

The notions of dependence and production closely parallel those of necessity 
and sufficiency, respectively. Thus, our formulation of PS could well provide the 

formal basis for Hall’s notion of production, and serve as a step toward the for
malization of actual causation. For this program to succeed, several hurdles must 
be overcome, the most urgent being the problems of incorporating singular event 
information and structural information into PS. These will be discussed next. 

19.6.2 Singular Sufficient Causes 
So far we have explicated the necessity and sufficiency conceptions of causation 

in terms of their probabilities, but not as properties of a given specific scenario, 
dictated by a specific state of U. This stands in contrast with standard practice 

of first defining truth values of sentences in each specific world, then evaluating 

probabilities of sentences from probabilities of worlds. Lewis (1986) counterfac
tual account of causation, for example, assigns a truth value to the sentence “x is 

′ a cause of y” in each specific world (u), given by the conjunction x ∧ y ∧ yx ′ . The 

question arises whether sentences about sufficient causation can likewise be given 

world-level truth values and, if they do, which worlds should provide those val
ues, and how evidential information about those worlds should enter probability 
calculations. 

Necessary causation can be formulated deterministically (at the world-level) in 

the standard counterfactual way: 
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Deterministic necessity 
Event x is said to be a necessary cause of event y in a world u just in case the 

following hold in u: 

1. Y(u) = y and X(u) = x. 
′ 2. Yx ′ (u) ̸ = x.= y for every x 

Accordingly, if additional evidence e is available about our current world, it can 

easily be incorporated into the evaluation of PN as follows: 

′ PN(x → y | e) = P( yx ′ | x, y, e), 

where PN(x → y | e) is the probability that x was a necessary cause of y, given 

evidence e. 
Sufficient causation, on the other hand, requires a nonstandard deterministic 

(i.e., world-level) formulation. 

Deterministic sufficiency 
Event x is said to be a sufficient cause of event y in a world u just in case the 

following hold in u: 

1. Y(u) ̸ ̸= y and X(u) = x. 
2. Yx(u) = y. 

In words, x is a sufficient cause for y if x would produce y (counterfactually) in world 

u in which x and y are absent. 
The nonstandard feature of this definition lies in requiring both the explanation 

(x) and the explanandum (y) to be false in any world u where the former pertains to 

cause the latter. Thus, it appears that nothing could possibly explain (by consider
ation of sufficiency) events that happened to materialize in the actual world. This 
feature reflects, of course our commitment to interpret sufficiency as the capacity 
to produce an effect and, as strange as it may sound, it is indeed impossible to talk 

about “x producing y” in a world (say ours) in which x and y are already true. The 

word “production” implies the establishment of new facts. Therefore to test pro
duction, we must step outside our world momentarily, imagine a new world with x 

and y absent, apply x, and see if y sets in. 
This peculiar feature of sufficiency leads to difficulties in incorporating world-

specific findings into the analysis. Consider a 1-man firing squad in which rifleman 

A has a hit rate of 99% and the prisoner has a small chance p of dying from fear. 
Our analysis of Section 19.3 indicates that PS equals 99%, independent of p. Now 

suppose we find that the bullet fired hit the prisoner’s leg, from which we conclude 

that the prisoner must have died from fear. Would this finding change our assess
ment of how sufficient A’s shot was for causing T’s death? There are grounds for 
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arguing that it should: although, in general, a shot from a rifleman like Mr. A would 

be 99% sufficient for the job, this particular shot was evidently of a different type, 
a peculiar type that scores zero on the accuracy and sufficiency scale. 

However it is not at all trivial to formalize this argument using the logical 
machinery at our disposal. First, to properly incorporate the new piece of evidence, 
e: “The bullet was found in the prisoner’s leg” we need to know the structure of the 

causal process; the function Yx(u) in itself would be insufficient, for it does not 
tell us how the location of the bullet alters the chance of death. But even given 

the structure, say in the form of an intermediate variable denoting “Location of 
bullet”, we cannot simply add e to the conditioning part in the expression for PS, 

′ ′ forming P(yx | x , y , e), as we did for PN. The location of the bullet was observed in 

the actual world, that is, after x was enacted and y verified, while the conditioning 

events, x ′ and y ′ pertain to a hypothetical world that existed prior to the action (x). 
Mixing the two without making this distinction leads to contradictions and misin

′ ′ terpretations. The expression P(yx | x , y , e) amounts to evaluating the probability 
that a living prisoner carrying a bullet in his leg would die if shot by Mr. A. This is 
certainly not the intended interpretation of PS and would not evaluate to zero as 
it should. As another example, if e stands for “bullet in the heart”, which conflicts 
with y ′ , we would be instructed into conditioning P( yx) on a contradictory event. 

An attempt to place e in the consequent part of the counterfactual, forming 
′ P( yx, e | x , y ′), again does not accomplish our mission.21 It expresses the probabil

ity that, both, the shot would be sufficient to cause death and that a living prisoner 
would have a bullet in his leg; still far from the probability that a shot in the leg 

will suffice to cause death. 
These difficulties stem from dealing with the dynamic process of “production” 

using a syntax that does not allow explicit reference to time. Fortunately, the diffi
culty can be resolved even in the confines of this syntax. Since the evidence e was 
obtained in a world created by the action x, and since events in such worlds are 

governed by the submodel Mx (see Section 19.2.1), the proper syntax for introduc
ing such evidence would be to condition on the subscripted symbol ex. This leads 
to: 

Definition 19.19 Singular-event sufficiency 
The probability that x was a sufficient cause of y given evidence e is defined as:22 

21. Related attempt to modify the consequent part is reported in Michie (1997), using an adapta
tion of Good’s measure of causal sufficiency, Qsuf. 

′ 22. Other expressions are also possible, for example, P( yx, ex | x , y ′), which captures the capacity 
of x to produce both y and e. This expression suffers, however, from sensitivity to detail; elaborate 

descriptions of e would yield extremely low probabilities. 
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′ PS(x → y | e) = P(yx | ex, x , y ′). (19.72) 

To illustrate, assume Z stands for a 2-state variable “Location of bullet”, with z 
denoting “bullet in chest” and z ′ denoting “bullet not in chest”. Assuming further 
that the flow of causation is governed by the causal chain X → Z → Y , and that 
a bullet would cause death if and only if it ends up in the chest. It is not hard to 

show that Definition 19.19 yields 

PS(x → y | z) = 1, 

PS(x → y | z ′) = 0, 

PN(x → y | z) = 1, 

PN(x → y | z ′) = 1 − P(death from fear), (19.73) 

as expected. 
The next subsection illustrates the role of singular event information in a 

probabilistic analysis of Suppes’ desert traveller story. 

Example: The Desert Traveler (after P. Suppes) 
A desert traveller T has two enemies. Enemy-1 poisons T’s canteen, and Enemy-2, 
unaware of Enemy-1’s action, shoots and empties the canteen. 

A week later, T is found dead and the two enemies confess to action and 

intention. A jury must decide whose action was the cause of T’s death. 
Let u be the proposition that traveller’s first need of drink occurred after the 

shot was fired. Let x and p be the propositions “Enemy-2 shot”, and “Enemy-1 poi
soned the water”, respectively, and let y denote “T is dead”. In addition to these 

events we will make informal use of possible exceptions to the normal story, such 

as T surviving the ordeal or T suspecting that the water is poisoned. 
The causal model underlying the story is depicted in Figure 19.4. The model is 

completely specified through the functions fi( pai, u) which are not shown explic
itly in Figure 19.4, but are presumed to determine the value of each child vari
able from those of its parent variables in the graph, in accordance with our usual 
understanding of the story: 

′ c = p ∧ (u ∨ x ′), 

d = x ∧ (u ∨ p ′), 

y = c ∨ d. 

(We assume that T will not survive with empty canteen (x) even after drinking some 
′ unpoisoned water before the shot ( p ∧ u ′).) 
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C  cyanide intake
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Figure 19.4 Causal relationships in the Desert-Traveler example. 

19.6.3.1 Necessity and Sufficiency Ignoring Internal Structure 

The global function Y(x, p, u) is given by 

y = x ∨ p, 

which is symmetric in x and p. 
The calculations of PS(x → y) = PS( p → y) and PN(p g y) = PN(x g y), can pro

ceed directly from their definitions, without resorting to structural information. 

′ PS(x → y) = P(yx | x , y ′) = 1, 

′ because (x , y ′) implies that no poison was added ( p ′), in which case P( yx) is 1, 
barring the unlikely event that T manages to survive with an empty canteen. 

Similarly, 

′ PN(x → y) = P( yx ′ | x, y) = 0. 

If we wish to include the possibility of T surviving with either an empty canteen 

or a poisoned canteen, we have: 

′ PS(x → y) = P( yx | x , y ′) = 1 − P(survival with empty canteen) 

′ PS( p → y) = P( yp | p , y ′) = 1 − P(survival with poisoned water). (19.74) 

Note that PN(x → y) and PN( p → y) remain zero, unaffected by the possibility of 
survival, because T’s death ( y) is taken as evidence that conditions necessary for 
survival did not in fact materialize (see Lemma 19.2). 
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19.6.3.2 Sufficiency and Necessity given Forensic Reports 

Let c stand for: “Cyanide was found in T’s body” and d for: T’s body showed signs 
of dehydration”. 

Incorporating the first evidence into the probability of sufficiency (Equation 

(19.72)), we have 

′ ′ PS(x → y | c) = P(yx | x , y , cx). 

The conditioning part instructs us to imagine a scenario in which Enemy-2 did 

not shoot, T did not die and cyanide would be found in T’s body if Enemy-2 

were to shoot. The one scenario which complies with these conditions is as fol
lows: The water was poisoned, T drank the water before the time Enemy-2 was 
about to shoot (u ′), (thus cx is true despite x), and T was somehow rescued ( y ′). 
Under such a scenario, Enemy-2 shooting would not produce T’s death, hence, 
PS(x → y | c) = 0. This matches our intuition; upon learning that T’s body contains 
cyanide, emptying the canteen is no longer death. 

Now consider the evidence d: “dehydration”. To evaluate 

′ ′ PS(x → y | d) = P( yx | x , y , dx) 

′ ′ we need first list all scenarios compatible with (x , y , dx), namely: no shot fired, T 

is alive and T would be dehydrated if Enemy-2 were to shoot. Two scenarios come 

to mind, one natural, the other bizarre. 
Scenario 1: No shot fired, the water is poisoned, the poisoned water would be 

emptied if Enemy-2 were to shoot (u), and T would suffer dehydration. In this 
scenario x would produce death, unless T is rescued. 

Scenario 2: No shot was fired, T would come to drink before the shot (if any) but 
would somehow suspect that the water is poisoned and refrain from drinking. This 
would cause dehydration by choice, and death unless rescued. 

Summing over both scenarios, we obtain 

PS(x → y | d) = 1 − P(T survives in dehydration). 

To summarize, we now have 

PS(x → y) = 1 − P(survival with empty canteen) 

PS(x → y | c) = 0 

PS(x → y | d) = 1 − P(T will be rescued after dehydration). (19.75) 
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Now consider the sufficiency of Enemy-1’s action, in light of the two forensic 
reports. The conditioning part in 

′ ′ PS( p → y | c) = P(yp | p , y , cp) 

instructs us to imagine a scenario in which Enemy-1 did not poison the water, T 

did not die, but cyanide would be found in T’s body if Enemy-1 were to poison the 

water. This is the natural scenario to evolve if Enemy-2 did not shoot – T would die 

if the water were poisoned ( yp) unless rescued before the cyanide exerts its effect. 
Thus, 

PS( p → y | c) = 1 − P(rescued after drinking cyanide). 

Finally, consider the evidence d: “dehydration” 

′ ′ PS( p → y | d) = P(yp | p , y , dp). 

′ ′ We need first to list all scenarios compatible with ( p , y , dp), namely: no poisoning 

occurred, T is alive and T would be dehydrated if enemy-1 were to poison the water. 
This is a bit hard to imagine, but not totally infeasible if we allow a special rescue 

operation: Enemy-2 shoots, the container is empty, T comes to drink after the shot 
is fired, dehydration occurs regardless of Enemy-1 action (dp), but a rescue team 

revives T despite his state of dehydration. 
In this scenario survival would occur even under p, therefore 

PS( p → y | d) = 0. 

Summarizing: 

PS( p → y) = 1 − P(survival with poisoned canteen) 

PS( p → y | c) = 1 − P(rescue after drinking cyanide) 

PS( p → y | d) = 0. (19.76) 

19.6.3.3 Necessity Given Forensic Reports 

The probabilities associated with necessary causation are usually easier to evalu
ate than their sufficiency counterparts, because the former call for scenarios that 
actually materialized in the story. To illustrate, let us evaluate the probability that 
Enemy-2 was a necessary cause of T’s death, given that cyanide was found in T’s 
body, 

′ PN(x → y | c) = P( yx ′ | x, y, c). 
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The condition (x, y, c) can materialize only in state u ′ , where T drinks the poisoned 

water before the shot. Assuming this state, it is clear that T is doomed regardless 
′ of Enemy-2 action, and yx ′ is false. Thus, 

PN(x → y | c) = 0. 

Prospects of rescue, as we have mentioned before, do not alter this conclusion, 
because those are ruled out by the conditioning part. 

A dehydration report would evoke the normal scenario, since 

′ PN(x → y | d) = P( yx ′ | x, y, d), 

and condition (x, y, d) can materialize in state u: T reaches for drink after the shot 
′ is fired, finds the canteen empty, and suffers dehydration. In this state, yx ′ is again 

false, because death would occur (from poison) even if Enemy-2 refrains from 

action (x ′). Thus, as expected, 

PN(x → y | d) = 0. 

For completeness, we evaluate the necessity ascribed to Enemy-1 action, 

′ PN( p → y | c) = P( yp ′ | p, y, c) 
(19.77) 

= P(T survives if not p | u ′) = 0, 

because (p, y, c) implies that T drank the poisoned water before Enemy-2 fired and, 
in this state (u ′), he would have died (from dehydration) even if Enemy-1 had not 
poisoned the water. 

′ PN( p → y | d) = P( yp ′ | p, y, d) (19.78)
= P(T survives if not p | u) = 0, 

because (p, y, d) implies that T reached for drink after Enemy-2 fired (u) and, in this 
state would have died (from dehydration) even if Enemy-l had not poisoned the 

canteen. 
Note that if we are not given any forensic report but assume, nevertheless, that 

such reports were available from the natural scenario in the story (i.e., u, x, p, d, y), 
then the probabilities of sufficiency would be (barring considerations of survival): 

PS(x → y | d) = 1,
 

PS( p → y | d) = 0. (19.79)
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These results coincide with those obtained from Lewis’ analysis, using 

counterfactual-dependence chains. Whether this coincidence is universal, and 

whether it could serve as the basis for improving Lewis’ account of causation 

remain a topic for future investigation. 

19.7 Conclusion 
This paper explicates and analyzes the necessary and sufficient components of cau
sation. Using counterfactual interpretations that rest on structural-model seman
tics, the paper demonstrates how simple techniques of computing probabilities of 
counterfactuals can be used in computing probabilities of causes, deciding ques
tions of identification, defining conditions under which probabilities of causes can 

be estimated from statistical data, and uncovering tests for assumptions that are 

routinely made (often unwittingly) by analysts and investigators. 
On the practical side, the paper offers several useful tools to epidemiologists 

and health scientists. It formulates and calls attention to basic assumptions that 
must be ascertained before statistical measures such as excess-risk-ratio could rep
resent causal quantities such as attributable-risk or probability of causes. It shows 
how data from both experimental and non-experimental studies can be combined 

to yield information that neither study alone can reveal. Finally, it provides tests 
for the commonly made assumption of “no prevention”, and for the often asked 

question of whether a clinical study is representative of its target population. 
On the conceptual side, we have seen that both the probability of necessity (PN) 

and probability of sufficiency (PS) play a role in our understanding of causation, 
and that both components have their logics and computational rules. Although the 

counterfactual concept of necessary cause (i.e., that an outcome would not have 

occurred “but for” the action) is predominant in legal settings (Robertson 1997) 
and in ordinary discourse, the sufficiency component of causation has a definite 

influence on causal thoughts. 
The sufficiency component plays a major role in scientific and legal explana

tions, as can be seen from examples where the necessary component is dormant. 
Why do we consider striking a match to be a more adequate explanation (of a fire) 
than the presence of oxygen? Recasting the question in the language of PN and PS, 
we note that, since both explanations are necessary for the fire, each will command 

a PN of unity. (In fact PN is higher for the oxygen, if we allow for alternative ways of 
igniting a spark). Thus, it must be the sufficiency component alone that endows the 

match with greater explanatory power than the oxygen. If the probabilities associ
ated with striking a match and the presence of oxygen are pm and po, respectively, 
the PS measures associated with these explanations evaluate to PS(match) = po, 
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and PS(oxygen) = pm, clearly favoring the match when po ≫ pm. Thus, a robot 
instructed to explain why a fire broke out has no choice but to consider both PN 

and PS in its deliberations. 
Should PS enter legal considerations in criminal and tort law? I believe that 

it should (as does Good (1993)) because attention to sufficiency implies attention 

to the consequences of one’s action. The person who lighted the match ought to 

have anticipated the presence of oxygen, whereas the person who supplied (or who 

could but failed to remove) the oxygen is not generally expected to have anticipated 

match-striking ceremonies. 
However, what weight should the law assign to the necessary versus the suffi

cient component of causation? This question obviously lies beyond the scope of 
our investigation, and it is not at all clear who would be qualified to tackle the 

question or whether our legal system would be prepared to implement the rec
ommendation. I am hopeful, however, that whoever undertakes to consider such 

questions will find the analysis in this paper to be of some use. 

19.A Appendix: The Empirical Content of Counterfactuals 
The word “counterfactual” is a misnomer, as it connotes a statement that stands 
contrary to facts or, at the very least, a statement that escapes empirical verifica
tion. Counterfactuals are in neither category; they are fundamental to scientific 
thought and carry as clear an empirical message as any scientific law. 

Consider Ohm’s law V = I R, the empirical content of this law can be encoded 

in two alternative forms. 
1.	 Predictive form: If at time t0 we measure current I∅ and voltage V0 then, 
ceteras paribum, at any future times t > t0, if the current flow will be I(t) 
the voltage drop will be: 

V0V(t) = I(t).
I0 

2.	 Counterfactual form: If at time t0 we measure current I0 and voltage V0 then, 
had the current flow at time t0 been I ′ , instead of I0, the voltage drop would 

have been: 

V0I ′ V ′ = .
I0 

On the surface, it seems that the predictive form makes meaningful and testable 

empirical claims while the counterfactual form merely speculates about events 
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that have not, and could not have occurred; as it is impossible to apply two differ
ent currents into the same resistor at the same time. However, if we interpret the 

counterfactual form to mean no more nor less than a conversational short hand 

of the predictive form, the empirical content of the former shines through clearly. 
Both enable us to make an infinite number of predictions from just one measure
ment (I0, V0), and both derive their validity from a scientific law (Ohm’s law) which 

ascribes a time-invariant property (the ratio V/I) to any physical object. 
I will adapt this predictive interpretation when I speak of counterfactuals, and 

I base this interpretation on the observation that counterfactuals, despite their 
a-temporal appearance, are invariably associated with some law-like, persistent 
relationships in the world. For example, the statement “had Germany not been 

punished so severely at the end of world-war I, Hitler would not have come to 

power” would sound bizarre to anyone who does not share our understanding that, 
as a general rule, “humiliation breeds discontent”. 

But if counterfactual statements are merely a round-about way of stating sets 
of predictions, why do we resort to such convoluted modes of expression instead 

of using the predictive mode directly? The answer, I believe, rests with the qual
ification “ceteras paribum” that accompanies the predictive claim, which is not 
entirely free of ambiguities. What should be held constant when we change the cur
rent in a resistor? The temperature? The laboratory equipments? The time of day? 
Certainly not the reading on the voltmeter? Such matters must be carefully speci
fied when we pronounce predictive claims and take them seriously. Many of these 

specifications are implicit (hence superfluous) when we use counterfactual expres
sions, especially when we agree over the underlying causal model. For example, we 

do not need to specify under what temperature and pressure future predictions 
should hold true; these are implied by the statement “had the current flow at time 

t0 been I ′ , instead of I0”. In other words, we are referring to precisely those condi
tions that prevailed in our laboratory at time t0. That statement also implies that 
we do not really mean for anyone to hold the reading on the voltmeter constant – 

only variables that, according to our causal model, are not affected by the coun
terfactual antecedent (I) are expected to remain constant for the predictions to 

hold true. 
To summarize, I interpret a counterfactual statement to convey a set of predic

tions under a well defined set of conditions, those prevailing in the factual part 
of the statement. For these predictions to be valid, two components must remain 

invariants: the laws (or mechanisms) and the boundary conditions. Cast in the 

language of structural models, the laws correspond to the equations { fi} and the 

boundary conditions correspond to the state of the exogenous variables U. Thus, a 
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precondition for the validity of the predictive interpretation of a counterfactual 
statement is the assumption that U will remain the same at the time where our 
predictive claim is to be applied or tested. 

This is best illustrated using the betting example of Section 19.4.1. The predic
tive interpretation of the counterfactual “Had I bet differently I would have lost a 

dollar” is the claim: “If my next bet is tails, I will lose a dollar”. For this claim to 

be valid, two invariants must be assumed: the payoff policy and the outcome of 
the coin. While the former is a plausible assumption in betting context, the latter 
would be realized in only rare circumstances. It is for this reason that the predictive 

utility of the statement “Had I bet differently I would have lost a dollar” is rather 
low, and some would even regard it as hind-sighted nonsense. (It is not hard how
ever to imagine a lottery in which the payoff policy and the outcome of the random 

device remain constant for a short period of time, during which additional bets are 

accepted and processed. Most of those who play the stock market believe in strate
gies that allow an investor to quickly recover from a bad move.) At any rate, it is 
the persistence across time of U and f(x, u) that endows counterfactual expressions 
with predictive power; take this persistence away, and the counterfactual loses its 
obvious economical utility. 

I said “obvious” because there is an element of utility in counterfactuals that 
does not translate immediately to predictive payoff, and may explain, nevertheless, 
the ubiquity of counterfactuals in human discourse. I am thinking of explanatory 
value. Suppose, in the betting story, coins were tossed afresh for every bet. Is there 

no value whatsoever to the statement “Had I bet differently I would have lost a 

dollar?” I believe there is; it tells us that we are not dealing here with a whimsical 
bookie like the one who decides which way to spin our atoms and electrons, but 
one who at least glances at the bet, compares it to some standard, and decides a 

win or a Toss using a consistent policy. This information may not be very useful to 

us as players, but it may be useful to say state inspectors who come every so often 

to calibrate the gambling machines to ensure the State’s take of the profit. More 

significantly, it may be useful to us players, too, if we venture to cheat slightly, say 
by manipulating the trajectory of the coin, or by installing a tiny transmitter to tell 
us which way the coin landed. For such cheating to work, we should know the pol
icy y = f (x, u) and the statement “Had I bet differently I would have lost a dollar?” 
reveals important aspects of that policy. 

Is it far fetched to argue for the merit of counterfactuals by hypothesizing 

unlikely situations where players cheat and rules are broken? I submit that such 

unlikely operations are the norm in gauging the explanatory value of sentences. 
In fact, it is the nature of any explanation, especially causal, that its utility be 
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amortized not over standard situations but, rather, over novel settings which 

require innovative manipulation of one’s environment. 
Recapping our discussion, we see that counterfactuals may earn predictive 

value under two conditions; (1) when the unobserved uncertainty-producing 

variables (U) remain constant (until our next prediction or action), (2) when the 

uncertainty-producing variables offer the potential of being observed sometime 

in the future (before our next prediction or action.) In both cases we also need to 

ensure that the outcome-producing mechanism f(x, u) persists unaltered. 
These conclusions raise interesting questions on the use of counterfactuals in 

microscopic phenomena, as none of these conditions holds for the type of uncer
tainty that we encounter in quantum theory. Heisenberg’s dice is rolled afresh 

billions of times each second, and our measurement of u will never be fine enough 

to remove all uncertainty from the response equation y = f (x, u). Thus, when we 

include quantum-level processes in our analysis we face a dilemma; either we dis
band all talk of counterfactuals (a strategy recommended by some researchers 
(Dawid 1997)) or we continue to use counterfactuals but limit their usage to sit
uations where they assume empirical meaning. This amounts to keeping in the 

analysis only U’s that satisfy conditions (1) and (2) above. Instead of hypothesiz
ing U’s that completely remove all uncertainties, we admit only those U’s that are 

either (1) persistent or (2) potentially observable. 
Naturally, coarsening the granularity of the exogenous variables has its price 

tag; the mechanism equations y = f (x, u) lose their deterministic character and 

should be made stochastic. Instead of constructing causal models from a set 
of deterministic equations { fi} we should consider models made up of stochas
tic functions { f *}, where each f * is a mapping from V ∪ U to some intrini i 

sic probability distribution P*(vi) over the states of Vi. This option lies beyond 

the scope of the present paper, but its basic character should follow from the 

three steps of abduction-action-deduction, abduction-action-deduction, outlined 

in Section 19.2.2. 
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20
not be isolated by holding certain variables constant. This paper presents a new 

way of defining the effect transmitted through a restricted set of paths, with
out controlling variables on the remaining paths. This permits the assessment 
of a more natural type of direct and indirect effects, one that is applicable in 

both linear and nonlinear models and that has broader policy-related interpre
tations. The paper establishes conditions under which such assessments can be 

estimated consistently from experimental and nonexperimental data, and thus 
extends path-analytic techniques to nonlinear and nonparametric models. 

Direct and Indirect Effects 
Judea Pearl 

Abstract 
The direct effect of one event on another can be defined and measured by hold
ing constant all intermediate variables between the two. Indirect effects present 
conceptual and practical difficulties (in nonlinear models), because they can

20.1 Introduction 
The distinction between total, direct, and indirect effects is deeply entrenched 

in causal conversations, and attains practical importance in many applications, 
including policy decisions, legal definitions and health care analysis. Structural 
equation modeling (SEM) (Goldberger 1972), which provides a methodology of 
defining and estimating such effects, has been restricted to linear analysis, and no 

comparable methodology has been devised to extend these capabilities to models 
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involving nonlinear dependencies,1 as those commonly used in AI applications 
(Hagenaars 1993, p. 17). 

The causal relationship that is easiest to interpret, define and estimate is the 

total effect. Written as P(Yx = y), the total effect measures the probability that 
response variable Y would take on the value y when X is set to x by external interven
tion.2 This probability function is what we normally assess in a controlled experi
ment in which X is randomized and in which the distribution of Y is estimated for 
each level x of X. 

In many cases, however, this quantity does not adequately represent the target 
of investigation and attention is focused instead on the direct effect of X on Y. The 

term “direct effect” is meant to quantify an influence that is not mediated by other 
variables in the model or, more accurately, the sensitivity of Y to changes in X while 

all other factors in the analysis are held fixed. Naturally, holding those factors fixed 

would sever all causal paths from X to Y with the exception of the direct link X → Y , 
which is not intercepted by any intermediaries. 

Indirect effects cannot be defined in this manner, because it is impossible to 

hold a set of variables constant in such a way that the effect of X on Y measured 

under those conditions would circumvent the direct pathway, if such exists. Thus, 
the definition of indirect effects has remained incomplete, and, save for asserting 

inequality between direct and total effects, the very concept of “indirect effect” was 
deemed void of operational meaning (Pearl 2000, p. 165). 

This paper shows that it is possible to give an operational meaning to both 

direct and indirect effects without fixing variables in the model, thus extending 

the applicability of these concepts to nonlinear and nonparametric models. The 

proposed generalization is based on a more subtle interpretation of “effects”, here 

called “descriptive” (see Section 20.2.2), which concerns the action of causal forces 
under natural, rather than experimental conditions, and provides answers to a 

broader class of policy-related questions. This interpretation yields the standard 

path-coefficients in linear models, but leads to different formal definitions and 

different estimation procedures of direct and indirect effects in nonlinear models. 
Following a conceptual discussion of the descriptive and prescriptive inter

pretations (Section 20.2.2), Section 20.2.3 illustrates their distinct roles in 

decision-making contexts, while Section 20.2.4 discusses the descriptive basis and 

1. A notable exception is the counterfactual analysis of Robins and Greenland (1992) which is 
applicable to nonlinear models, but does not incorporate path-analytic techniques. 

2. The subscripted notation Yx is borrowed from the potential-outcome framework of Rubin 

(1974). Pearl (2000) used, interchangeably, Px(y), P(y|do(x)), P(y|x̂), and P(yx), and showed their 
equivalence to probabilities of subjunctive conditionals: P((X = x) □→ (Y = y)) (Lewis 1973). 
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policy implications of indirect effects. Sections 20.3.2 and 20.3.3 provide, respec
tively, mathematical formulation of the prescriptive and descriptive interpreta
tions of direct effects, while Section 20.3.4 establishes conditions under which 

the descriptive (or “natural”) interpretation can be estimated consistently from 

either experimental or nonexperimental data. Sections 20.3.5 and 20.3.6 extend the 

formulation and identification analysis to indirect effects. In Section 20.3.7, we gen
eralize the notion of indirect effect to path-specific effects, that is, effects transmitted 

through any specified set of paths in the model. 

20.2 Conceptual Analysis 

20.2.1 Direct versus Total Effects 
A classical example of the ubiquity of direct effects (Hesslow 1976) tells the story 
of a birth-control pill that is suspect of producing thrombosis in women and, at 
the same time, has a negative indirect effect on thrombosis by reducing the rate 

of pregnancies (pregnancy is known to encourage thrombosis). In this example, 
interest is focused on the direct effect of the pill because it represents a stable bio
logical relationship that, unlike the total effect, is invariant to marital status and 

other factors that may affect women’s chances of getting pregnant or of sustain
ing pregnancy. This invariance makes the direct effect transportable across cul
tural and sociological boundaries and, hence, a more useful quantity in scientific 
explanation and policy analysis. 

Another class of examples involves legal disputes over race or sex discrimina
tion in hiring. Here, neither the effect of sex or race on applicants’ qualification 

nor the effect of qualification on hiring are targets of litigation. Rather, defendants 
must prove that sex and race do not directly influence hiring decisions, whatever 
indirect effects they might have on hiring by way of applicant qualification. This is 
made quite explicit in the following court ruling: 

“The central question in any employment-discrimination case is whether 
the employer would have taken the same action had the employee been of a 

different race (age, sex, religion, national origin etc.) and everything else had 

been the same.” (Carson versus Bethlehem Steel Corp., 70 FEP Cases 921, 7th 

Cir. (1996), Quoted in Gastwirth 1997.) 

Taking this criterion as a guideline, the direct effect of X on Y (in our case X = 

gender Y = hiring) can roughly be defined as the response of Y to change in X 

(say from X = x * to X = x) while keeping all other accessible variables at their 
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initial value, namely, the value they would have attained under X = x * .3 This 
doubly-hypothetical criterion will be given precise mathematical formulation in 

Section 20.3, using the language and semantics of structural counterfactuals (Pearl 
2000; Chapter 7). 

As a third example, one that illustrates the policymaking ramifications of direct 
and total effects, consider a drug treatment that has a side effect – headache. 
Patients who suffer from headache tend to take aspirin which, in turn may have its 
own effect on the disease or, may strengthen (or weaken) the impact of the drug on 

the disease. To determine how beneficial the drug is to the population as a whole, 
under existing patterns of aspirin usage, the total effect of the drug is the target of 
analysis, and the difference P(Yx = y) − P(Yx * = y) may serve to assist the decision, 
with x and x * being any two treatment levels. However, to decide whether aspirin 

should be encouraged or discouraged during the treatment, the direct effect of the 

drug on the disease, both with aspirin and without aspirin, should be the target of 
investigation. The appropriate expression for analysis would then be the difference 

P(Yxz = y) − P(Yx * z = y), where z stands for any specified level of aspirin intake. 
In linear systems, direct effects are fully specified by the corresponding path 

coefficients, and are independent of the values at which we hold the intermediate 

variables (Z in our examples). In nonlinear systems, those values would, in general, 
modify the effect of X on Y and thus should be chosen carefully to represent the 

target policy under analysis. This lead to a basic distinction between two types of 
conceptualizations: prescriptive and descriptive. 

20.2.2 Descriptive versus Prescriptive Interpretation 
We will illustrate this distinction using the treatment-aspirin example described 

in the last section. In the prescriptive conceptualization, we ask whether a specific 
untreated patient would improve if treated, while holding the aspirin intake fixed 

at some predetermined level, say Z = z. In the descriptive conceptualization, we 

ask again whether the untreated patient would improve if treated, but now we hold 

the aspirin intake fixed at whatever level the patient currently consumes under no-
treatment condition. The difference between these two conceptualizations lies in 

whether we wish to account for the natural relationship between the direct and the 

mediating cause (that is, between treatment and aspirin) or to modify that rela
tionship to match policy objectives. We call the effect computed from the descrip
tive perspective the natural effect, and the one computed from the prescriptive 

perspective the controlled effect. 

3. Robins and Greenland (1992) have adapted essentially the same criterion (phrased differently) 
for their interpretation of “direct effect” in epidemiology. 
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Consider a patient who takes aspirin if and only if treated, and for whom the 

treatment is effective only when aspirin is present. For such a person, the treat
ment is deemed to have no natural direct effect (on recovery), because, by keeping 

the aspirin at the current, pre-treatment level of zero, we ensure that the treatment 
effect would be nullified. The controlled direct effect, however, is nonzero for this 
person, because the efficacy of the treatment would surface when we fix the aspirin 

intake at non-zero level. Note that the descriptive formulation requires knowl
edge of the individual natural behavior—in our example, whether the untreated 

patient actually uses aspirin—while the prescriptive formulation requires no such 

knowledge. 
This difference becomes a major stumbling block when it comes to estimating 

average direct effects in a population of individuals. At the population level, the 

prescriptive formulation is pragmatic; we wish to predict the difference in recovery 
rates between treated and untreated patients when a prescribed dose of aspirin is 
administered to all patients in the population—the actual consumption of aspirin 

under uncontrolled conditions need not concern us. In contrast, the descriptive 

formulation is attributional; we ask whether an observed improvement in recov
ery rates (again, between treated and untreated patients) is attributable to the 

treatment itself, as opposed to preferential use of aspirin among treated patients. 
To properly distinguish between these two contributions, we therefore need to 

measure the improvement in recovery rates while making each patient take the 

same level of aspirin that he/she took before treatment. However, as Robins and 

Greenland (1992) pointed out, such control over individual behavior would require 

testing the same group of patients twice (i.e., under treatment and no treatment 
conditions), and cannot be administered in experiments with two different groups, 
however randomized. (There is no way to determine what level of aspirin an 

untreated patient would take if treated, unless we actually treat that patient and, 
then, this patient could no longer be eligible for the untreated group.) Since repeat
able tests on the same individuals are rarely feasible, the descriptive measure of 
the direct effect is not generally estimable from standard experimental studies. 
In Section 20.3.4 we will analyze what additional assumptions are required for 
consistently estimating this measure, the average natural direct effect, from either 
experimental or observational studies. 

Policy Implications of the Descriptive Interpretation 
Why would anyone be interested in assessing the average natural direct effect? 
Assume that the drug manufacturer is considering ways of eliminating the adverse 

side-effect of the drug, in our case, the headache. A natural question to ask is 
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whether the drug would still retain its effectiveness in the population of inter
est. The controlled direct effect would not give us the answer to this question, 
because it refers to a specific aspirin level, taken uniformly by all individuals. Our 
target population is one where aspirin intake varies from individual to individual, 
depending on other factors beside drug-induced headache, factors which may also 

cause the effectiveness of the drug to vary from individual to individual. Therefore, 
the parameter we need to assess is the average natural direct effect, as described 

in the Subsection 20.2.2. 
This example demonstrates that the descriptive interpretation of direct effects 

is not purely “descriptive”; it carries a definite operational implications, and 

answers policy-related questions of practical significance. Moreover, note that the 

policy question considered in this example cannot be represented in the standard 

syntax of do(x) operators—it does not involve fixing any of the variables in the 

model but, rather, modifying the causal paths in the model. Even if “headache” 
were a genuine variable in our model, the elimination of drug-induced headache is 
not equivalent to setting “headache” to zero, since a person might get headache for 
reason other than the drug. Instead, the policy option involves the de-activation of 
the causal path from “drug” to “headache”. 

In general, the average natural direct effect would be of interest in evaluating 

policy options of a more refined variety, ones that involve, not merely fixing the 

levels of the variables in the model, but also determining how these levels would 

influence one another. 
Typical examples of such options involve choosing the manner (e.g., instrument, 

or timing) in which a given decision is implemented, or choosing the agents that 
should be informed, about the decision. A firm often needs to assess, for example, 
whether it would be worthwhile to conceal a certain decision from a competi
tor. This amounts, again, to evaluating the natural direct effect of the decision 

in question, unmediated by the competitor’s reaction. Theoretically, such policy 
options could conceivably be represented as (values of) variables in a more refined 

model, for example one where the concept “the effect of treatment on headache” 
would be given a variable name, and where the manufacturer decision to elimi
nate side-effects would be represented by fixing this hypothetical variable to zero. 
The analysis of this paper shows that such unnatural modeling techniques can 

be avoided, and that important nonstandard policy questions can be handled by 
standard models, where variables stands for directly measurable quantities. 

Descriptive Interpretation of Indirect Effects 
The descriptive conception of direct effects can easily be transported to the formu
lation of indirect effects; oddly, the prescriptive formulation is not transportable. 
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Returning to our treatment-aspirin example, if we wish to assess the natural indi
rect effect of treatment on recovery for a specific patient, we withhold treatment 
and ask, instead, whether that patient would recover if given as much aspirin as 
he/she would have taken if he/she had been under treatment. In this way, we 

insure that whatever changes occur in the patient’s condition are due to treatment-
induced aspirin consumption and not to the treatment itself. Similarly, at the 

population level, the natural indirect effect of the treatment is interpreted as the 

improvement in recovery rates if we were to withhold treatment from all patients 
but, instead, let each patient take the same level of aspirin that he/she would have 

taken under treatment. As in the descriptive formulation of direct effects, this 
hypothetical quantity involves nested counterfactuals and will be identifiable only 
under special circumstances. 

The prescriptive formulation has no parallel in indirect effects, for reasons dis
cussed in the introduction section; there is no way of preventing the direct effect 
from operating by holding certain variables constant. We will see that, in linear sys
tems, the descriptive and prescriptive formulations of direct effects lead, indeed, 
to the same expression in terms of path coefficients. The corresponding linear 
expression for indirect effects, computed as the difference between the total and 

direct effects, coincides with the descriptive formulation but finds no prescriptive 

interpretation. 
The operational implications of indirect effects, like those of natural direct 

effect, concern nonstandard policy options. Although it is impossible, by con
trolling variables, to block a direct path (i.e., a single edge), if such exists, it is 
nevertheless possible to block such a path by more refined policy options, ones 
that deactivate the direct path through the manner in which an action is taken or 
through the mode by which a variable level is achieved. In the hiring discrimination 

example, if we make it illegal to question applicants about their gender, (and if no 

other indication of gender are available to the hiring agent), then any residual sex 
preferences (in hiring) would be attributable to the indirect effect of sex on hiring. 
A policy maker might well be interested in predicting the magnitude of such pref
erences from data obtained prior to implementing the no-questioning policy, and 

the average indirect effect would then provide the sought for prediction. A similar 
refinement applies in the firm-competitor example of the preceding subsection. 
A firm might wish to assess, for example, the economical impact of bluffing a com
petitor into believing that a certain decision has been taken by the firm, and this 
could be implemented by (secretly) instructing certain agents to ignore the deci
sion. In both cases, our model may not be sufficiently detailed to represent such 

policy options in the form of variable fixing (e.g., the agents may not be repre
sented as intermediate nodes between the decision and its effect) and the task 



380 Chapter 20 Direct and Indirect Effects 

amounts then to evaluating the average natural indirect effects in a coarse-grain 

model, where a direct link exists between the decision and its outcome. 

20.3 Formal Analysis 

20.3.1 Notation 
Throughout our analysis we will let X be the control variable (whose effect we seek 

to assess), and let Y be the response variable. We will let Z stand for the set of all 
intermediate variables between X and Y which, in the simplest case considered, 
would be a single variable as in Figure 20.1(a). Most of our results will still be valid 

if we let Z stand for any set of such variables, in particular, the set of Y ’s parents 
excluding X. 

We will use the counterfactual notation Yx(u) to denote the value that Y would 

attain in unit (or situation) U = u under the control regime do(X = x). See Pearl 
(2000, Chapter 7) for formal semantics of these counterfactual utterances. Many 
concepts associated with direct and indirect effect require comparison to a ref
erence value of X, that is, a value relative to which we measure changes. We will 
designate this reference value by x * . 

20.3.2 Controlled Direct Effects (review) 
Definition 20.1	 Controlled unit-level direct-effect; qualitative 

A variable X is said to have a controlled direct effect on variable Y in model M and situ
ation U = u if there exists a setting Z = z of the other variables in the model and two 

values of X, x* and x, such that 

Yx * z(u) ≠ Yxz(u)	 (20.1) 

In words, the value of Y under X = x * differs from its value under X = x when we keep 

all other variables Z fixed at z. If condition (20.1) is satisfied for some z, we say that the 
transition event X = x has a controlled direct-effect on Y, keeping the reference point 
X = x * implicit. 

Clearly, confining Z to the parents of Y (excluding X) leaves the definition 

unaltered. 

Definition 20.2	 Controlled unit-level direct-effect; quantitative 

Given a causal model M with causal graph G, the controlled direct effect of X = x on Y 

in unit U = u and setting Z = z is given by 

CDEz(x, x *; Y , u) = Yxz(u) − Yx * z(u)	 (20.2) 

where Z stands for all parents of Y (in G) excluding X. 
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Alternatively, the ratio Yxz(u)/Yx * z(u), the proportional difference (Yxz(u) − Yx * z(u))/ 
Yx * z(u), or some other suitable relationship might be used to quantify the magni
tude of the direct effect; the difference is by far the most common measure, and 

will be used throughout this paper. 

Definition 20.3	 Average controlled direct effect 
Given a probabilistic causal model ⟨M, P(u)⟩, the controlled direct effect of event X = x 

on Y is defined as: 

CDEz (x, x *; Y) = E (Yxz − Yx * z)	 (20.3) 

where the expectation is taken over u. 

The distribution P(Yxz = y) can be estimated consistently from experimental 
studies in which both X and Z are randomized. In nonexperimental studies, the 

identification of this distribution requires that certain “no-confounding” assump
tions hold true in the population tested. Graphical criteria encapsulating these 

assumptions are described in Pearl (2000, Sections 4.3 and 4.4). 

20.3.3 Natural Direct Effects: Formulation 
Definition 20.4	 Unit-level natural direct effect; qualitative 

An event X = x is said to have a natural direct effect on variable Y in situation U = u if 
the following inequality holds 

Yx * (u) ̸	 (20.4)= Yx,Zx * (u)(u) 

In words, the value of Y under X = x * differs from its value under X = x even when we 
keep Z at the same value (Zx * (u)) that Z attains under X = x * . 

We can easily extend this definition from events to variables by defining X as hav
ing a natural direct effect on Y (in model M and situation U = u) if there exist two 

values, x * and x, that satisfy (20.4). Note that this definition no longer requires that 
we specify a value z for Z; that value is determined naturally by the model, once 

we specify x, x *, and u. Note also that condition (20.4) is a direct literal translation 

of the court criterion of sex discrimination in hiring (Section 20.2.1) with X = x * 

being a male, X = x a female, Y = 1 a decision to hire, and Z the set of all other 
attributes of individual u. 

If one is interested in the magnitude of the natural direct effect, one can take 

the difference 

Yx,Zx * (u)(u) − Yx * (u)	 (20.5) 
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and designate it by the symbol NDE(x, x *; Y , u) (acronym for Natural Direct Effect). 
If we are further interested in assessing the average of this difference in a popula
tion of units, we have: 

Average natural direct effect 
The average natural direct effect of event X = x on a response variable Y, denoted NDE(x, 
x *; Y), is defined as 

NDE(x, x *; Y) = E(Yx,Zx * ) − E(Yx* ) (20.6) 

Applied to the sex discrimination example of Section 20.2.1 (with x * = male, 
x = female, y = hiring, z = qualifications), Equation (20.6) measures the 

expected change in male hiring, E(Yx * ), if employers were instructed to treat males’ 
applications as though they were females’. 

Natural Direct Effects: Identification 
As noted in Section 20.2, we cannot generally evaluate the average natural direct-
effect from empirical data. Formally, this means that Equation (20.6) is not 
reducible to expressions of the form 

P (Yx = y) or P (Yxz = y) ; 

the former governs the causal effect of X on Y (obtained by randomizing X) and 

the latter governs the causal effect of X and Z on Y (obtained by randomizing both 

X and Z). 
We now present conditions under which such reduction is nevertheless 

feasible. 

Experimental identification 

If there exists a set W of covariates, nondescendants of X or Z, such that 

Yxz ⊥⊥ Zx * |W for all z and x (20.7) 

(read: Yxz is conditionally independent of Zx * , given W), then the average natural 
direct-effect is experimentally identifiable, and it is given by 

NDE(x, x *; Y) = ∑[E(Yxz|w) − E(Yx * z|w)]P(Zx * = z|w)P(w). (20.8) 
w,z 

Proof. The first term in (20.6) can be written 

E(Yx,Zx * ) = ∑∑ E(Yxz|Zx * = z, W = w)P(Zx * = z|W = w)P(W = w). (20.9) 
w z 
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Using (20.7), we obtain: 

E(Yx,Zx * ) = ∑∑ E(Yxz = y|W = w)P(Zx* = z|W = w)P(W = w). (20.10) 
w z 

Each factor in (20.10) is identifiable; E(Yxz = y|W = w), by randomizing X and Z 

for each value of W, and P(Zx * = z|W = w) by randomizing X for each value of 
W. This proves the assertion in the theorem. Substituting (20.10) into (20.6) and 

using the law of composition E(Yx * ) = E(Yx *Zx * ) (Pearl 2000, p. 229) gives (20.8), and 

completes the proof of Theorem 20.1. ■ 

The conditional independence relation in Equation (20.7) can easily be verified 

from the causal graph associated with the model. Using a graphical interpretation 

of counterfactuals (Pearl 2000, p. 214-5), this relation reads: 

(Y ⊥⊥ Z|W)GXZ (20.11) 

In words, W d-separates Y from Z in the graph formed by deleting all (solid) arrows 
emanating from X and Z. 

Figure 20.1(a) illustrates a typical graph associated with estimating the direct 
effect of X on Y. The identifying subgraph is shown in Figure 20.1(b), and illus
trates how W d-separates Y from Z. The separation condition in (20.11) is somewhat 
stronger than (20.7), since the former implies the latter for every pair of values, x 

and x *, of X (see (Pearl 2000, p. 214)). Likewise, condition (20.7) can be relaxed in 

several ways. However, since assumptions of counterfactual independencies can be 

meaningfully substantiated only when cast in structural form (Pearl 2000, p. 244–5), 
graphical conditions will be the target of our analysis. 

The identification of the natural direct effect from nonexperimental data 

requires stronger conditions. From Equation (20.8) we see that it is sufficient to 

identify the conditional probabilities of two counterfactuals: P(Yxz = y|W = w) 
and P(Zx * = z|W = w), where W is any set of covariates that satisfies Equation 

(20.7) (or (20.11)). This yields the following criterion for identification: 

Nonexperimental identification 

The average natural direct-effect NDE(x, x *; Y) is identifiable in nonexperimental stud
ies if there exists a set W of covariates, nondescendants of X or Z, such that, for all values 
z and x we have: 

(i) Yxz ⊥⊥ Zx* |W 

(ii) P(Yxz = y|W = w) is identifiable 
(iii) P(Zx * = z|W = w) is identifiable 
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Figure 20.1	 (a) A causal model with latent variables (U’s) where the natural direct effect can be 
identified in experimental studies. (b) The subgraph GXZ illustrating the criterion of 
experimental identifiability (Equation 20.11): W d-separates Y from Z. 

Moreover, if conditions (i)-(iii) are satisfied, the natural direct effect is given by (20.8). 

Explicating these identification conditions in graphical terms (using Theorem 4.41 
in (Pearl 2000)) yields the following corollary: 

Corollary 20.1	 Graphical identification criterion 

The average natural direct-effect NDE(x, x *; Y) is identifiable in nonexperimental stud
ies if there exist four sets of covariates, W0, W1, W2, and W3, such that 

(i) (Y ⊥⊥ Z|W0)GXZ 

(ii) (Y ⊥⊥ X |W0, W1)GXZ 

(iii) (Y ⊥⊥ Z|X, W0, W1, W2)GZ 

(iv) (Z ⊥⊥ X |W0, W3)GX 

(v) W0, W1, and W3 contain no descendant of X and W2 contains no descendant of Z. 

(Remark: GXZ denotes the graph formed by deleting (from G) all arrows emanating 

from X or entering Z.) 
As an example for applying these criteria, consider Figure 20.1(a), and assume that 
all variables (including the U’s) are observable. Conditions (i)-(iv) of Corollary 20.1 
are satisfied if we choose: 

W0 = {W}, W1 = {U1, U2}, W2 = ∅ and W3 = {U4} 

or, alternatively, 

W0 = {U2}, W1 = {U1}, W2 = ∅ and W3 = {U3, U4}. 
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It is instructive to examine the form that expression (20.8) takes in Markovian 

models, (that is, acyclic models with independent error terms) where condition 

(20.7) is always satisfied with W = ∅, since Yxz is independent of all variables in the 

model. In Markovian models, we also have the following three relationships: 

P(Yxz = y) = P(y|x, z)	 (20.12) 

since X ∪ Z is the set of Y ’s parents, 

*P(Zx * = z) = ∑ P(z|x , s)P(s),	 (20.13) 
s 

*P(Yx,Zx * = y) = ∑∑ P(y|x, z)P(z|x , s)P(s) (20.14) 
s z 

where S stands for the parents of Z, excluding X, or any other set satisfying 

the back-door criterion (Pearl 2000, p. 79). This yields the following corollary of 
Theorem 20.1: 

Corollary 20.2	 The average natural direct effect in Markovian models is identifiable from nonexperi
mental data, and it is given by 

* *NDE(x, x *; Y) = ∑ ∑[E(Y |x, z) − E(Y |x , z)]P(z|x , s)P(s) (20.15) 
s z 

where S stands for any set satisfying the back-door criterion between X and Z. 

Equation (20.15) follows by substituting (20.14) into (20.6) and using the identity 
E(Yx * ) = E(Yx *Zx * ). 

Further insight can be gained by examining simple Markovian models in which 

the effect of X on Z is not confounded, that is, 

P(Zx * = z) = P(z|x *).	 (20.16) 

In such models, a simple version of which is illustrated in Figure 20.2(b), Equation 

(20.13) can be replace by Equation (20.16) and Equation (20.15) simplifies to 

*NDE(x, x *; Y) = ∑[E(Y |x, z) − E(Y |x , z)]P(z|x *). (20.17) 
z 

This expression has a simple interpretation as a weighted average of the con
trolled direct effect E(Y |x, z) − E(Y |x * , z), where the intermediate value z is chosen 

according to its distribution under x * . 
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20.3.5 Natural Indirect Effects: Formulation 
As we discussed in Section 20.2.4, the prescriptive formulation of “controlled direct 
effect” has no parallel in indirect effects; we therefore use the descriptive formu
lation, and define natural indirect effects at both the unit and population levels. 
Lacking the controlled alternative, we will drop the title “natural” from discussions 
of indirect effects, unless it serves to convey a contrast. 

Definition 20.6 Unit-level indirect effect; qualitative 

An event X = x is said to have an indirect effect on variable Y in situation U = u if the 
following inequality holds 

Yx* (u) ̸ (u)(u).= Yx * ,Zx (20.18) 

In words, the value of Y changes when we keep X fixed at its reference level X = x * and 

change Z to a new value, Zx(u) , the same value that Z would attain under X = x. 

Taking the difference between the two sides of Equation (20.18), we can define the 

unit level indirect effect as 

NIE(x, x *; Y , u) = Yx * ,Zx(u)(u) − Yx * (u) (20.19) 

and proceed to define its average in the population: 

Definition 20.7 Average indirect effect 
The average indirect effect of event X = x on variable Y, denoted NIE(x,x *;Y), is defined 

as 

NIE(x, x *; Y) = E(Yx * ,Zx ) − E(Yx * ) (20.20) 
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Y
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Figure 20.2 Simple Markovian models for which the natural direct effect is given by 
Equation (20.15) (for (a)) and Equation (20.17) (for (b)). 
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Comparing Equations (20.6) and (20.20), we see that the indirect effect associated 

with the transition from x * to x is closely related to the natural direct effect associ
ated with the reverse transition, from x to x *. In fact, recalling that the difference 

E(Yx) − E(Yx* ) equals the total effect of X = x on Y, 

TE(x, x *; Y) = E(Yx) − E(Yx * ) (20.21) 

we obtain the following theorem: 

Theorem 20.3 The total, direct and indirect effects obey the following relationships 

*TE(x, x *; Y) = NIE(x, x *; Y) − NDE(x , x; Y) (20.22) 
*TE(x, x *; Y) = NDE(x, x *; Y) − NIE(x , x; Y) (20.23) 

In words, the total effect (on Y) associated with the transition from x* to x is equal to the 
difference between the indirect effect associated with this transition and the (natural) 
direct effect associated with the reverse transition, from x to x* . 

As strange as these relationships appear, they produce the standard, additive 

relation 

TE(x, x *; Y) = NIE(x, x *; Y) + NDE(x, x *; Y) (20.24) 

when applied to linear models. The reason is clear; in linear systems the effect of 
the transition from x * to x is proportional to x − x *, hence it is always equal and 

of opposite sign to the effect of the reverse transition. Thus, substituting in (20.22) 
(or (20.23)), yields (20.24). 

20.3.6 Natural Indirect Effects: Identification 
Equations (20.22) and (20.23) show that the indirect effect is identified whenever 
both the total and the (natural) direct effect are identified (for all x and x *). More
over, the identification conditions and the resulting expressions for indirect effects 
are identical to the corresponding ones for direct effects (Theorems 20.1 and 20.2), 
save for a simple exchange of the indices x and x *. This is explicated in the following 

theorem. 

Theorem 20.4 If there exists a set W of covariates, nondescendants of X or Z, such that 

Yx * z ⊥⊥ Zx|W (20.25) 

for all x and z, then the average indirect-effect is experimentally identifiable, and it is 
given by 

NIE(x, x *; Y) = ∑ E(Yx*z|w)[P(Zx = z|w) − P(Zx* = z|w)]P(w). (20.26) 
w,z 
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Moreover, the average indirect effect is identified in nonexperimental studies whenever 
the following expressions are identified for all z and w: 

E(Yx*z|w), P(Zx = z|w) and P(Zx* = z|w), 

with W satisfying Equation (20.25). 

In the simple Markovian model depicted in Figure 20.2(b), Equation (20.26) reduces 
to 

*NIE(x, x *; Y) = ∑ E(Y |x , z)[P(z|x) − P(z|x *)] (20.27) 
z 

Contrasting Equation (20.27) with Equation (20.17), we see that the expression for 
the indirect effect fixes X at the reference value x *, and lets z vary according to its 
distribution under the post-transition value of X = x. The expression for the direct 
effect fixes X at x, and lets z vary according to its distribution under the reference 

conditions X = x * . 
Applied to the sex discrimination example of Section 20.2.1, Equation (20.27) 

measures the expected change in male hiring, E(Yx* ), if males were trained to 

acquire (in distribution) equal qualifications (Z = z) as those of females (X = x). 

General Path-specific Effects 
The analysis of the last section suggests that path-specific effects can best be under
stood in terms of a path-deactivation process, where a selected set of paths, rather 
than nodes, are forced to remain inactive during the transition from X = x * to 

X = x. In Figure 20.3, for example, if we wish to evaluate the effect of X on Y trans
mitted by the subgraph, g : X → Z → W → Y , we cannot hold Z or W constant, 
for both must vary in the process. Rather, we isolate the desired effect by fixing 

the appropriate subset of arguments in each equation. In other words, we replace 

x with x * in the equation for W, and replace z with z *(u) = Zx * (u) in the equation 

for Y. This amounts to creating a new model, in which each structural function fi 
in M is replaced with a new function of a smaller set of arguments, since some of 
the arguments are replaced by constants. The following definition expresses this 
idea formally. 

path-specific effect 
Let G be the causal graph associated with model M, and let g be an edge-subgraph of G 

containing the paths selected for effect analysis. The g-specific effect of x on Y (relative 
to reference x*) is defined as the total effect of x on Y in a modified model M* formed as g 

follows. Let each parent set PAi in G be partitioned into two parts 

PAi = {PAi(g), PAi(ḡ)} (20.28) 
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Y

(a)

W Z
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x*

Y

(b)

W Z

X

Figure 20.3	 The path-specific effect transmitted through X → Z → W → Y (heavy lines) in (a) is 
equal to the total effect transmitted through the model in (b), treating x * and z *(u) as 
constants. (By convention, u is not shown in the diagram.) 

where PAi (g) represents those members of PAi that are linked to Xi in g, and PAi(ḡ) rep
resents the complementary set, from which there is no link to Xi in g. We replace each 

function fi(pai, u) with a new function f *(pai, u; g), defined as i 

*fi 
*(pai, u; g) = fi(pai(g), pa i (ḡ), u)	 (20.29) 

where pa*(ḡ) stands for the values that the variables in PAi(ḡ) would attain (in M and i 

u) under X	 = x * (that is, pa*(ḡ) = PAi(ḡ)x * ). The g-specific effect of x on Y, denoted i 

SEg (x, x *; Y , u)M is defined as 

SEg (x, x *; Y , u)M = TE(x, x *; Y , u)Mg 
* .	 (20.30) 

We demonstrate this construction in the model of Figure 20.3 which stands for the 

equations: 

z = fZ(x, uZ) 

w = fW (z, x, uW ) 

y = fY (z, w, uY ) 

where uZ , uW , and uY are the components of u that enter the corresponding 

equations. Defining z *(u) = fZ (x * , uZ), the modified model M* reads:g 

z = fZ(x, uZ) 
* w = fW (z, x	 , uW ) and 

y = fY (z *(u), w, uY )	 (20.31) 
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and our task amounts to computing the total effect of x on Y in Mg 
* , or 

*TE(x, x *; Y , u)Mg 
* = fY (z *(u), fW ( fZ(x, uZ), x , uW ), uY ) − Yx * (u) (20.32) 

It can be shown that the identification conditions for general path-specific effects 
are much more stringent than those of the direct and indirect effects. The path-
specific effect shown in Figure 20.3, for example, is not identified even in Marko
vian models. Since direct and indirect effects are special cases of path-specific 
effects, the identification conditions of Theorems 20.2 and 20.3 raise the interest
ing question of whether a simple characterization exists of the class of subgraphs, g, 
whose path-specific effects are identifiable in Markovian models. I hope inquisitive 

readers will be able to solve this open problem. 

20.4 Conclusions 
This paper formulates a new definition of path-specific effects that is based on path 

switching, instead of variable fixing, and that extends the interpretation and eval
uation of direct and indirect effects to nonlinear models. It is shown that, in non
parametric models, direct and indirect effects can be estimated consistently from 

both experimental and nonexperimental data, provided certain conditions hold in 

the causal diagram. Markovian models always satisfy these conditions. Using the 

new definition, the paper provides an operational interpretation of indirect effects, 
the policy significance of which was deemed enigmatic in recent literature. 

On the conceptual front, the paper uncovers a class of nonstandard policy ques
tions that cannot be formulated in the usual variable-fixing vocabulary and that 
can be evaluated, nevertheless, using the notions of direct and indirect effects. 
These policy questions concern redirecting the flow of influence in the system, 
and generally involve the deactivation of existing influences among specific vari
ables. The ubiquity and manageability of such questions in causal modeling 

suggest that value-assignment manipulations, which control the outputs of the 

causal mechanism in the model, are less fundamental to the notion of causa
tion than input-selection manipulations, which control the signals driving those 

mechanisms. 
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tions involved were causal and inaccessible to conventional mathematics. In the 

first paper, I have used Simpson’s paradox to demonstrate the limits of statisti
cal methods, and why causal, rather than statistical considerations, are necessary 
for reaching a resolution and for answering the intricate questions that it raises. 
I consider this paradox to be the most compelling demonstration that our mind is 
governed by causal, rather than probabilistic, logic [Pearl 2014]. 

A popular belief in statistical circles has it that causal inference is a missing 

data problem. The second paper in this section (Chapter 23) argues for the con
verse: missing data is a causal problem, even in descriptive tasks. In other words, 
causal diagrams provide the natural way of modeling the mechanism causing miss
ingness, and they permit us to determine, using graphical criteria, what quantities 
can be estimated consistently despite missingness. This work, by Karthika Mohan, 
opened our eyes to the possibility that many, if not all, so-called “statistical tasks” 
invoke informal causal reasoning and would therefore benefit from the formal 
methods offered by structural causal models [Mohan and Pearl 2014]. 

Another stalemate brought to a happy resolution was the problem of External 
Validity, which deals with generalizing empirical results across diverse environ
ments. This age-old problem, the subject of Chapter 25 [Pearl and Bareinboim 

2014], is at the heart of every scientific exploration since, invariably, laboratory 
findings are used in settings that are vastly different from the laboratory. Remark
ably, despite efforts in psychology [Shadish et al. 2002] and economics [Manski 
2007] the tasks of testing and establishing external validity have remained illu
sive, because statistics does not provide us with a language to encode disparities 

Introduction 
by Judea Pearl 

Paradoxes are the watchdogs of our hidden assumptions. Simpson’s paradox, the 

topic of the first paper in this section (Chapter 22), has perplexed statisticians and 

philosophers for over a century and has escaped resolution because the assump
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and commonalities among environments or populations. “Selection diagrams,” 
described in Chapter 25, provide such encoding and enabled Elias Bareinboim and 

myself to reduce these tasks to symbolic exercise in do-calculus and decide what 
knowledge is required to take findings from experimental studies and generalize 

them to a new environment where no experiments are feasible. This technique has 
later led to the more general theory of Data Fusion [Bareinboim and Pearl 2016] 
which takes data from multiple sources, experimental as well as observational, and 

produces estimates of causal effects in yet a new environment, different from those 

studied. Data Fusion theory is one of the crown achievement of causal inference 

for it illuminates several key problems in machine learning, including “domain 

adaptation,” “robustness,” “transfer learning,” and more. 
Selection bias, the topic of the third article in this section (Chapter 24), is 

another threat to validity that generations of experimentalists have bemoaned 

yet were unable to circumvent. This bias, created by selecting non-representative 

samples into the study, cannot be removed by randomization and can rarely be 

detected in the data. I was therefore delighted that the paper received the “Best 
Paper Award” at the 2014 Association for the Advancement of Artificial Intelligence 

(AAAI) Conference in Quebec. But more so, I was pleased to see a long-standing 

stalemate brought to a resolution by causal analysis [Bareinboim et al. 2014]. 
The fifth paper in this section, titled “Detecting latent heterogeneity,” (Chap

ter 26) was written in reaction to social scientists’ concerns with whether individu
als differ in their response to a given treatment or program. It shows that, by com
bining observational and experimental data, it is possible to detect heterogeneity 
in the population even without observing the variables that are responsible for the 

differences. I labeled this counterintuitive result “a victory of formal counterfactual 
analysis,” and I am disappointed to see that it has received only 26 citations since 

its publication in [Pearl 2017]. This is the price one must pay for heroic victories. 
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by rigorous statistical methods. In recent years, ironically, the paradox assumed 

an added dimension when educators began using it to demonstrate the limits of 
statistical methods, and why causal, rather than statistical considerations are nec
essary to avoid those paradoxical conclusions (Wasserman 2004; Arah 2008; Pearl 
2009, pp. 173–182). 

My comments are divided into three parts. First, I will give a brief summary 
of the history of Simpson’s paradox and how it has been treated in the statistical 
literature in the past century. Next, I will ask what is required to declare the para
dox “resolved,” and argue that modern understanding of causal inference has met 
those requirements. Finally, I will answer specific questions raised in Armistead’s 
article and show how the resolution of Simpson’s paradox can be taught for fun 

and progress. 

Comment: Understanding 
Simpson’s Paradox 
Judea Pearl 

Simpson’s paradox is often presented as a compelling demonstration of why we 

need statistics education in our schools. It is a reminder of how easy it is to fall 
into a web of paradoxical conclusions when relying solely on intuition, unaided 

22.1 The History 
Simpson’s paradox refers to a phenomenon whereby the association between a pair 
of variables (X, Y) reverses sign upon conditioning of a third variable, Z, regardless 
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of the value taken by Z. If we partition the data into subpopulations, each repre
senting a specific value of the third variable, the phenomenon appears as a sign 

reversal between the associations measured in the disaggregated subpopulations 
relative to the aggregated data, which describes the population as a whole. 

Edward H. Simpson first addressed this phenomenon in a technical article in 

1951, but Karl Pearson et al. in 1899 and Udny Yule in 1903 had mentioned a similar 
effect earlier. All three reported associations that disappear, rather than reversing 

signs upon aggregation. Sign reversal was first noted by Cohen and Nagel (1934) and 

then by Blyth (1972) who labeled the reversal “paradox,” presumably because the 

surprise that association reversal evokes among the unwary appears paradoxical 
at first. 

Chapter 6 of my book Causality (Pearl 2009, p. 176) remarks that, surprisingly, 
only two articles in the statistical literature attribute the peculiarity of Simpson’s 
reversal to causal interpretations. The first is Pearson, Lee, and Bramley-Moore 

(1899), in which a short remark warns us that correlation is not causation, and the 

second is Lindley and Novick (1981) who mentioned the possibility of explaining 

the paradox in “the language of causation” but chose not to do so “because the 

concept, although widely used, does not seem to be well defined” (p. 51). My survey 
further documents that, other than these two exceptions, the entire statistical liter
ature from Pearson, Lee, and Bramley-Moore (1899) to the 1990s was not prepared 

to accept the idea that a statistical peculiarity, so clearly demonstrated in the data, 
could have causal roots.1 

In particular, the word “causal” does not appear in Simpson’s article, nor in the 

vast literature that followed, including Blyth (1972), who coined the term “paradox,” 
and the influential writings of Agresti (1983), Bishop, Fienberg, and Holland (1975), 
and Whittemore (1978). 

What Simpson did notice though, was that depending on the story behind the 

data, the more “sensible interpretation” (his words) is sometimes compatible with 

the aggregate population, and sometimes with the disaggregated subpopulations. 
His example of the latter involves a positive association between treatment and 

survival both among males and females which disappears in the combined pop
ulation. Here, his “sensible interpretation” is unambiguous: “The treatment can 

hardly be rejected as valueless to the race when it is beneficial when applied to 

males and to females.” His example of the former involved a deck of cards, in 

1. This contrasts the historical account of Hernán, Clayton, and Keiding (2011) according to which 

“Such discrepancy [between marginal and conditional associations in the presence of confound
ing] had been already noted, formally described and explained in causal terms half a century 
before the publication of Simpson’s article...” Simpson and his predecessor did not have the 

vocabulary to articulate, let alone formally describe and explain causal phenomena. 
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which two independent face types become associated when partitioned accord
ing to a cleverly crafted rule (see Hernán, Clayton, and Keiding 2011). Here, claims 
Simpson, “it is the combined table which provides what we would call the sensible 

answer.” This key observation remained unnoticed until Lindley and Novick (1981) 
replicated it in a more realistic example which gave rise to reversal. The idea that 
statistical data, however large, are insufficient for determining what is “sensible,” 
and that it must be supplemented with extra-statistical knowledge to make sense 

was considered heresy in the 1950s. 
Lindley and Novick (1981) elevated Simpson’s paradox to new heights by show

ing that there was no statistical criterion that would warn the investigator against 
drawing the wrong conclusions or indicate which data represented the correct 
answer. First they showed that reversal may lead to difficult choices in critical 
decision-making situations: 

The apparent answer is, that when we know that the gender of the patient is 
male or when we know that it is female we do not use the treatment, but if the 

gender is unknown we should use the treatment! Obviously that conclusion 

is ridiculous. (Novick 1983, p. 45) 

Second, they showed that, with the very same data, we should consult either 
the combined table or the disaggregated tables, depending on the context. Clearly, 
when two different contexts compel us to take two opposite actions based on the 

same data, our decision must be driven not by statistical considerations, but by 
some additional information extracted from the context. 

Third, they postulated a scientific characterization of the extra-statistical infor
mation that researchers take from the context, and which causes them to form 

a consensus as to which table gives the correct answer. That Lindley and Novick 

opted to characterize this information in terms of “exchangeability” rather than 

causality is understandable;2 the state of causal language in the 1980s was so prim
itive that they could not express even the simple yet crucial fact that gender is not 
affected by the treatment.3 What is important though, is that the example they 
used to demonstrate that the correct answer lies in the aggregated data, had a 

totally different causal structure than the one where the correct answer lies in 

the disaggregated data. Specifically, the third variable (Plant Height) was affected 

2. Lindley later regretted that choice (Pearl 2009, p. 384), and indeed, his treatment of exchange-
ability was guided exclusively by causal considerations (Meek and Glymour 1994). 

3. Statistics teachers would enjoy the challenge of explaining how the sentence “treatment does 
not change gender” can be expressed mathematically. Lindley and Novick tried, unsuccessfully 
of course, to use conditional probabilities. 
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Figure 22.1	 Graphs demonstrating the insufficiency of chronological information. In models (c) 
and (d), Z may occur before or after the treatment, yet the correct answer remains 
invariant to this timing: we should not condition on Z in model (c), and we should 
condition on Z in model (d). In both models, Z is not affected by the treatment. 

by the treatment (Plant Color) as opposed to gender which is a pre-treatment 
confounder. (See an isomorphic model in Figure 22.1(b), where blood-pressure 

replacing plant-height.4) 
More than 30 years have passed since the publication of Lindley and Novick’s 

article, and the face of causality has changed dramatically. Not only do we now 

know which causal structures would support Simpson’s reversals, we also know 

which structure places the correct answer with the aggregated data or with the dis
aggregated data. Moreover, the criterion for predicting where the correct answer 
lies (and, accordingly, where human consensus resides) turns out to be rather 
insensitive to temporal information, nor does it hinge critically on whether or not 
the third variable is affected by the treatment. It involves a simple graphical condi
tion called “back-door” (Pearl 1993) which traces paths in the causal diagram and 

assures that all spurious paths from treatment to outcome are intercepted by the 

third variable. This will be demonstrated in the next section, where we argue that, 
armed with these criteria, we can safely proclaim Simpson’s paradox “resolved.” 

22.2 A Paradox Resolved 
Any claim to a resolution of a paradox, especially one that has resisted a century of 
attempted resolution must meet certain criteria. First and foremost, the solution 

must explain why people consider the phenomenon surprising or unbelievable. 

4. Interestingly, Simpson’s examples also had different causal structure; in the former, the third 

variable (gender) was a common cause of the other two, whereas in the latter, the third vari
able (paint on card) was a common effect of the other two (Hernán, Clayton, and Keiding 2011). 
Yet, although this difference changed Simpson’s intuition of what is “more sensible,” it did not 
stimulate his curiosity as a fundamental difference, worthy of scientific exploration. 
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Second, the solution must identify the class of scenarios in which the paradox may 
surface and distinguish it from scenarios where it will surely not surface. Finally, 
in those scenarios where the paradox leads to indecision, we must identify the cor
rect answer, explain the features of the scenario that lead to that choice, and prove 

mathematically that the answer chosen is indeed correct. The next three subsec
tions will describe how these three requirements are met in the case of Simpson’s 
paradox and, naturally, will proceed to convince readers that the paradox deserves 
the title “resolved.” 

Simpson’s Surprise 
In explaining the surprise, we must first distinguish between “Simpson’s rever
sal” and “Simpson’s paradox;” the former being an arithmetic phenomenon in the 

calculus of proportions, the latter a psychological phenomenon that evokes sur
prise and disbelief. A full understanding of Simpson’s paradox should explain why 
an innocent arithmetic reversal of an association, albeit uncommon, came to be 

regarded as “paradoxical,” and why it has captured the fascination of statisticians, 
mathematicians, and philosophers for over a century (though it was first labeled 

“paradox” by Blyth 1972). 
The arithmetics of proportions has its share of peculiarities, no doubt, but 

these tend to become objects of curiosity once they have been demonstrated and 

explained away by examples. For instance, naive students of probability may expect 
the average of a product to equal the product of the averages but quickly learn to 

guard against such expectations, given a few counterexamples. Likewise, students 
expect an association measured in a mixture distribution to equal a weighted aver
age of the individual associations. They are surprised, therefore, when ratios of 
sums, (a + b)/(c + d), are found to be ordered differently than individual ratios, 
a/c and b/d.5 Again, such arithmetic peculiarities are quickly accommodated by 
seasoned students as reminders against simplistic reasoning. 

In contrast, an arithmetic peculiarity becomes “paradoxical” when it clashes 
with deeply held convictions that the peculiarity is impossible, and this occurs 
when one takes seriously the causal implications of Simpson’s reversal in decision-
making contexts. Reversals are indeed impossible whenever the third variable, say 
age or gender, stands for a pretreatment covariate because, so the reasoning goes, 
no drug can be harmful to both males and females yet beneficial to the population 

as a whole. The universality of this intuition reflects a deeply held and valid convic
tion that such a drug is physically impossible. Remarkably, such impossibility can 

5. In Simpson’s paradox, we witness the simultaneous orderings: (a1 + b1)/(c1 + d1) > (a2 + b2)/ 
(c2 + d2), (a1/c1) < (a2/c2), and (b1/d1) < (b2/d2). 
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be derived mathematically in the calculus of causation in the form of a “sure-thing” 
theorem (Pearl 2009, p. 181): 

An action A that increases the probability of an event B in each subpopu
lation (of C) must also increase the probability of B in the population as 
a whole, provided that the action does not change the distribution of the 

subpopulations.6 

Thus, regardless of whether effect size is measured by the odds ratio or other 
comparisons, regardless of whether Z is a confounder or not, and regardless of 
whether we have the correct causal structure on hand, our intuition should be 

offended by any effect reversal that appears to accompany the aggregation of data. 
I am not aware of another condition that rules out effect reversal with com

parable assertiveness and generality, requiring only that Z not be affected by our 
action, a requirement satisfied by all treatment-independent covariates Z. Thus, it 
is hard, if not impossible, to explain the surprise part of Simpson’s reversal with
out postulating that human intuition is governed by causal calculus together with 

a persistent tendency to attribute causal interpretation to statistical associations. 

22.2.2 Which Scenarios Invite Reversals? 
Attending to the second requirement, we need first to agree on a language that 
describes and identifies the class of scenarios for which association reversal is 
possible. Since the notion of “scenario” connotes a process by which data is gener
ated, a suitable language for such a process is a causal diagram, as it can simulate 

any data-generating process that operates sequentially along its arrows. For exam
ple, the diagram in Figure 22.1(a) can be regarded as a blueprint for a process 
in which Z = Gender receives a random value (male or female) depending on 

the gender distribution in the population. The treatment is then assigned a value 

(treated or untreated) according to the conditional distribution P(treatment | male) 
or P(treatment | female). Finally, once gender and treatment receive their values, 
the outcome process (recovery) is activated and assigns a value to Y using the con
ditional distribution P(Y = y | X = x, Z = z). All these local distributions can be 

estimated from the data. Thus, the scientific content of a given scenario can be 

encoded in the form of a directed acyclic graph (DAG), capable of simulating a set 
of data-generating processes compatible with the given scenario. 

The theory of graphical models (Pearl 1988; Lauritzen 1996) can tell us, for a 

given DAG, whether Simpson’s reversal is realizable or logically impossible in the 

6. The no-change provision is probabilistic; it permits the action to change the classification of 
individual units so long as the relative sizes of the subpopulations remain unaltered. 
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simulated scenario. By a logical impossibility, we mean that for every scenario 

that fits the DAG structure, there is no way to assign processes to the arrows and 

generate data that exhibit association reversal as described by Simpson. 
For example, the theory immediately tells us that all structures depicted in 

Figure 22.1 can exhibit reversal, while in Figure 22.2, reversal can occur in (a), (b), 
and (c), but not in (d), (e), or (f). That Simpson’s paradox can occur in each of 
the structures in Figure 22.1 follows from the fact that the structures are obser
vationally equivalent; each can emulate any distribution generated by the others. 
Therefore, if association reversal is realizable in one of the structures, say (a), it 
must be realizable in all structures. The same consideration applies to graphs 
(a), (b), and (c) of Figure 22.2, but not to (d), (e), or (f) which are where the X, Y 

association is collapsible over Z. 

22.2.3	 Making the Correct Decision 
We now come to the hardest test of having resolved the paradox: proving that we 

can make the correct decision when reversal occurs. This can be accomplished 

either mathematically or by simulation. Mathematically, we use an algebraic 
method called “do-calculus” (Pearl 2009, p. 85–89) which is capable of determin
ing, for any given model structure, the causal effect of one variable on another 
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Figure 22.2 Simpson’s reversal can be realized in models (a), (b), and (c) but not in (d), (e), or (f). 
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and which variables need to be measured to make this determination.7 Compli
ance with do-calculus should then constitute a proof that the decisions we made 

using graphical criteria is correct. Since some readers of this article may not be 

familiar with the do-calculus, simulation methods may be more convincing. Simu
lation “proofs” can be organized as a “guessing game,” where a “challenger” who 

knows the model behind the data dares an analyst to guess what the causal effect 
is (of X on Y) and checks the answer against the gold standard of a randomized 

trial, simulated on the model. Specifically, the “challenger” chooses a scenario (or 
a “story” to be simulated), and a set of simulation parameters such that the data 

generated would exhibit Simpson’s reversal. He then reveals the scenario (not the 

parameters) to the analyst. The analyst constructs a DAG that captures the scenario 

and guesses (using the structure of the DAG), whether the correct answer lies in the 

aggregated or disaggregated data. Finally, the “challenger” simulates a randomized 

trial on a fictitious population generated by the model, estimates the underlying 

causal effect, and checks the result against the analyst’s guess. 
For example, the back-door criterion instructs us to guess that in Figure 22.1, 

in models (b) and (c) the correct answer is provided by the aggregated data, while 

in structures (a) and (d) the correct answer is provided by the disaggregated data. 
We simulate a randomized experiment on the (fictitious) population to determine 

whether the resulting effect is positive or negative, and compare it with the associ
ations measured in the aggregated and disaggregated population. Remarkably, our 
guesses should prove correct regardless of the parameters used in the simulation 

model, as along as the structure of the simulator remains the same.8 This explains 
how people form a consensus about which data is “more sensible” (Simpson 1951) 
prior to actually seeing the data. 

This is a good place to explain how the back-door criterion works, and how it 
determines where the correct answer resides. The principle is simple: the paths 
connecting X and Y are of two kinds, causal and spurious. Causative associations 
are carried by the causal paths, namely, those tracing arrows directed from X to Y. 
The other paths carry spurious associations and need to be blocked by condition
ing on an appropriate set of covariates. All paths containing an arrow into X are 

spurious paths and need to be intercepted by the chosen set of covariates. 
When dealing with a singleton covariate Z, as in the Simpson’s paradox, we need 

to merely ensure that 

7. When such determination cannot be made from the given graph, as is the case in Figure 22.2(b), 
the do-calculus alerts us to this fact. 

8. By “structure” we mean the list of variables that need be consulted in computing each variable 

Vi in the simulation. 
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1. Z is not a descendant of X, and 

2. Z blocks every path that ends with an arrow into X. 

(Extensions for descendants of X are given in Pearl (2009, p. 338), Shpitser, 
VanderWeele, and Robins (2010), and Pearl and Paz (2013)). 

The operation of “blocking” requires a special handling of “collider” variables, 
which behave oppositely to arrow-emitting variables. The latter block the path 

when conditioned on, while the former block the path when they and all their 
descendants are not conditioned on. This special handling of “colliders” reflects a 

general phenomenon known as Berkson’s paradox (Berkson 1946), whereby obser
vations on a common consequence of two independent causes render those causes 
dependent. For example, the outcomes of two independent coins are rendered 

dependent by the testimony that at least one of them is a tail. 
Armed with this criterion we can determine, for example, that in Figures 22.1(a) 

and (d), if we wish to correctly estimate the effect of X on Y, we need to condition 

on Z (thus blocking the back-door path X ← Z → Y). We can similarly determine 

that we should not condition on Z in Figures 22.1(b) and (c). The former because 

there are no back-door paths requiring blockage, and the latter because the back-
door path X ← ○ → Z ← ○ → Y is blocked when Z is not conditioned on. 
The correct decisions follow from this determination; when conditioning on Z is 
required, the Z-specific data carry the correct information. In Figure 22.2(c), for 
example, the aggregated information carries the correct information because the 

spurious (noncausal) path X → Z ← Y is blocked when Z is not conditioned on. 
The same applies to Figures 22.2(a) and 22.1 (c). 

Finally, we should remark that in certain models the correct answer may not lie 

in either the disaggregated or the aggregated data. This occurs when Z is not suffi
cient to block an active back-door path as in Figure 22.2(b); in such cases, a set of 
additional covariates may be needed, which takes us beyond the scope of this note. 

The model in Figure 22.3 presents opportunities to simulate successive rever
sals, which could serve as an effective (and fascinating) instruction tool for intro
ductory statistics classes. Here, we see that to block the only unblocked back-door 
path X ← Z1 → Z3 → Y , we need to condition on Z1. This means that, if the 

simulation machine is set to generate association reversal, the correct answer will 
reside in the disaggregated, Z1-specific data. If we further condition on a second 

variable, Z2, the back-door path X ← ○ → Z2 ← Z3 → Y will become unblocked, 
and a bias will be created, meaning that the correct answer lies with the aggregated 

data. Upon further conditioning on Z3 the bias is removed and the correct answer 
returns to the disaggregated, Z3-specific data. 



408 Chapter 22 Comment: Understanding Simpson’s Paradox 
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Figure 22.3	 A multistage Simpson’s paradox machine. Cumulative conditioning in the order (Z1, Z2, 
Z3, Z4, Z5) creates reversal at each stage, with the correct answers alternating between 
disaggregated and aggregated data. 

Note that in each stage, we can set the numbers in the simulation machine 

so as to generate association reversal between the preconditioning and post-
conditioning data. Note further that at any stage of the process we can check where 

the correct answer lies by subjecting the population generated to a hypothetical 
randomized trial. 

22.3 Armistead’s Critique 
Armistead does not disagree with the technical points presented above and rightly 
so; they are backed by sound mathematical proofs. The main point of contention 

seems to be whether the disaggregated data are still valuable, when the correct 
answer lies with the aggregated data (as in Figures 22.1(a) and (c)). On this issue, 
Armistead says: 

Whether causal or not, third variables can convey critical information about 
a first order relationship, study design, and previously unobserved variables. 
Any conditioning on nontrivial third variable that produces Simpson’s Para
dox should be carefully examined before either the aggregated or the disag
gregated findings are accepted, regardless of whether the variable is thought 
to be causal. 

I agree with the general thrust of this paragraph. Every variable can indeed 

“convey critical information” if such information is needed for answering the 

investigator’s research question. But in our examples, we asked not whether the 

third variable conveys information about study design or other interesting sub
jects; we asked whether it would help us estimate the total effect of X on Y. In the 

context of this query, the answer is: NO; the aggregated (or disaggregated) findings 
can be accepted without further examination. 
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When we endeavor to ask other queries, other than total treatment effects, 
intermediate variables can of course provide useful information. For example, 
when we ask about the role of blood pressure in mediating the effect of treat
ment on recovery (as in Section 22.4) a whole set of mediation analytic techniques 
can be brought to bear on the question (e.g., VanderWeele 2009; Imai, Keele, and 

Yamamoto 2010; Pearl 2013) which aims to assess direct and indirect effects as for
mulated in Pearl (2001) and Robins and Greenland (1992). If, on the other hand, we 

ask questions about how the third variable (e.g., blood pressure) can help estimate 

treatment effects in the presence of unmeasured confounders, another set of tools 
is brought into consideration (see Pearl 1995). But when our query is “Which drug 

is more effective?” (assuming no unmeasured confounders, as in Figure 22.1(b)), 
the answer is unequivocal: “Ignore blood pressure.” 

Finally, I also agree with the spirit of Armistead’s statement: 

Any conditioning on nontrivial third variable that produces Simpson Para
dox should be carefully examined before either the aggregated or the disag
gregated findings are accepted, regardless of whether the variable is thought 
to be causal. 

I must point out, however, that we can do better than “carefully examine” the 

third variable. Modern tools of causal analysis now permit us to determine math
ematically whether the aggregated or disaggregated findings should be accepted.9 

Specifically, in the blood-pressure example, mathematical analysis dictates that 
the aggregated findings give the correct answer to our specific research question, 
which is precisely what “careful examination” aims to accomplish. Armistead is 
correct in stating that this holds regardless of whether one categorizes “blood pres
sure” as causal or noncausal variable; what matters is the causal relationships of 
the third variable to other variables in the analysis, as portrayed in the diagram. 
Indeed, in Figure 22.1(c), for example, the third variable Z is not affected by the 

treatment, and still, it should not be controlled for; the aggregated finding should 

be accepted. 

22.4 Conclusions 
I hope that playing the multistage Simpson’s guessing game (Figure 22.3) would 

convince readers that we now understand most of the intricacies of Simpson’s 
paradox, and we can safely title it “resolved.” 

9. Expressions such as “should be carefully examined” were used by statisticians in the precausal 
era to convey helplessness in handling causal questions. 
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Graphical Models for 
Recovering Probabilistic 
and Causal Queries from 
Missing Data 
Karthika Mohan* and Judea Pearl 

Abstract 
We address the problem of deciding whether a causal or probabilistic query is 
estimable from data corrupted by missing entries, given a model of missingness 
process. We extend the results of Mohan et al. (2013) by presenting more gen
eral conditions for recovering probabilistic queries of the form P(y|x) and P(y, x) 
as well as causal queries of the form P(y|do(x)). We show that causal queries may 
be recoverable even when the factors in their identifying estimands are not recov
erable. Specifically, we derive graphical conditions for recovering causal effects of 
the form P(y|do(x)) when Y and its missingness mechanism are not d-separable. 
Finally, we apply our results to problems of attrition and characterize the recovery 
of causal effects from data corrupted by attrition. 

23.1 Introduction 
All branches of experimental science are plagued by missing data. Improper han
dling of missing data can bias outcomes and potentially distort the conclusions 
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drawn from a study. Therefore, accurate diagnosis of the causes of missingness 
is crucial for the success of any research. We employ a formal representation 

called ‘Missingness Graphs’ (m-graphs, for short) to explicitly portray the missing
ness process as well as the dependencies among variables in the available dataset 
(Mohan et al. 2013). Apart from determining whether recoverability is feasible 

namely, whether there exists any theoretical impediment to estimability of queries 
of interest, m-graphs can also provide a means for communication and refine
ment of assumptions about the missingness process. Furthermore, m-graphs per
mit us to detect violations in modeling assumptions even when the dataset is 
contaminated with missing entries (Mohan and Pearl 2014). 

In this paper, we extend the results of Mohan et al. (2013) by presenting gen
eral conditions under which probabilistic queries such as joint and conditional 
distributions can be recovered. We show that causal queries of the type P(y|do(x)) 
can be recovered even when the associated probabilistic relations such as P(y, x) 
and P(y|x) are not recoverable. In particular, causal effects may be recoverable 

even when Y is not separable from its missingness mechanism. Finally, we apply 
our results to recover causal effects when the available dataset is tainted by 
attrition. 

This paper is organized as follows. Section 23.2 provides an overview of miss
ingness graphs and reviews the notion of recoverability i.e., obtaining consistent 
estimates of a query, given a dataset and an m-graph. Section 23.3 refines the 

sequential factorization theorem presented in Mohan et al. (2013) and extends its 
applicability to a wider range of problems in which missingness mechanisms may 
influence each other. In Section 23.4, we present general algorithms to recover 
joint distributions from the class of problems for which sequential factoriza
tion theorem fails. In Section 23.5, we introduce new graphical criteria that pre
clude recoverability of joint and conditional distributions. In Section 23.6, we 

discuss recoverability of causal queries and show that unlike probabilistic queries, 
P(y|do(x)) may be recovered even when Y and its missingness mechanism (Ry) are 

not d-separable. In Section 23.7, we demonstrate how we can apply our results to 

problems of attrition in which missingness is a severe obstacle to sound infer
ences. Related works are discussed in Section 23.8 and conclusions are drawn 

in Section 23.9. Proofs of all theoretical results in this paper are provided in 

Appendix 23.A. 

23.2 Missingness Graph and Recoverability 
Missingness graphs as discussed below was first defined in Mohan et al. (2013) and 

we adopt the same notations. Let G(V, E) be the causal DAG where V = V ∪ U ∪ 
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V* ∪ R. V is the set of observable nodes. Nodes in the graph correspond to vari
ables in the data set. U is the set of unobserved nodes (also called latent variables). 
E is the set of edges in the DAG. We use bi-directed edges as a shorthand notation 

to denote the existence of a U variable as common parent of two variables in V ∪ R. 
V is partitioned into Vo and Vm such that Vo ⊆ V is the set of variables that are 

observed in all records in the population and Vm ⊆ V is the set of variables that 
are missing in at least one record. Variable X is termed as fully observed if X ∈ Vo, 
partially observed if X ∈ Vm and substantive if X ∈ Vo ∪ Vm. Associated with every 
partially observed variable Vi ∈ Vm are two other variables Rvi and Vi 

*, where V* is a i 

proxy variable that is actually observed, and Rvi represents the status of the causal 
mechanism responsible for the missingness of Vi 

*; formally, 
{ 
vi if rvi = 0* v = f (rvi , vi) =	 (23.1)i m if rvi = 1 

V* is the set of all proxy variables and R is the set of all causal mechanisms that are 

responsible for missingness. R variables may not be parents of variables in V ∪ U. 
We call this graphical representation Missingness Graph (or m-graph). An example 

of an m-graph is given in Figure 23.1 (a). We use the following shorthand. For any 
variable X, let X ′ be a shorthand for X = 0. For any set W ⊆ Vm ∪ Vo ∪ R, let Wr, Wo 

and Wm be the shorthand for W ∩ R, W ∩ Vo and W ∩ Vm respectively. Let Rw be a 

shorthand for RVm∩W i.e., Rw is the set containing missingness mechanisms of all 

RQ

RI

I*

Q*

Experience (X) Income (I)

Missingness Mechanism

of Income

Proxy variable for Income

U

Latent Variable

Sex (S) Qualification (Q)

Figure 23.1	 Typical m-graph where Vo = {S, X}, Vm = {I, Q}, V* = {I* , Q*}, R = {Ri, Rq} and U is the 
latent common cause. Members of Vo and Vm are represented by full and hollow circles 
respectively. The associated missingness process and assumptions are elaborated in 
Appendix 23.A.1. 
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partially observed variables in W. Note that Rw and Wr are not the same. GX and 

GX represent graphs formed by removing from G all edges leaving and entering X, 
respectively. 

A manifest distribution P(Vo, V* , R) is the distribution that governs the available 

dataset. An underlying distribution P(Vo, Vm, R) is said to be compatible with a given 

manifest distribution P(Vo, V* , R) if the latter can be obtained from the former 
using Equation 23.1. Manifest distribution Pm is compatible with a given under
lying distribution Pu if ∀X, X ⊆ Vm and Y = Vm ⧵ X, the following equality holds 
true. 

Pm(R ′ x, Ry, X
* , Y* , Vo) = Pu(Rx

′ , Ry, X, Vo) 

where R ′ denotes Rx = 0 and Ry denotes Ry = 1. Refer Appendix 23.A.2 for an x 

example. 

23.2.1 Recoverability 
Given a manifest distribution P(V* , Vo, R) and an m-graph G that depicts the miss
ingness process, query Q is recoverable if we can compute a consistent estimate of 
Q as if no data were missing. Formally, 

Definition 23.1 Recoverability (Mohan et al. 2013) 
Given a m-graph G, and a target relation Q defined on the variables in V, Q is said to 

be recoverable in G if there exists an algorithm that produces a consistent estimate of Q 

for every dataset D such that P(D) is (1) compatible with G and (2) strictly positive1 i.e., 
P(Vo, V* , R) > 0. 

For an introduction to the notion of recoverability, see Pearl and Mohan (2013) and 

Mohan et al. (2013). 

23.3 Recovering Probabilistic Queries by Sequential Factorization 
Mohan et al. (2013) (Theorem 23.4) presented a sufficient condition for recov
ering probabilistic queries such as joint and conditional distributions by using 

ordered factorizations. However, the theorem is not applicable to certain classes 
of problems such as those in longitudinal studies in which edges exist between 

R variables. General ordered factorization defined below broadens the concept of 
ordered factorization (Mohan et al. 2013) to include the set of R variables. Subse
quently, the modified theorem (stated below as Theorem 23.1) will permit us to 

handle cases in which R variables are contained in separating sets that d-separate 

1. An extension to datasets that are not strictly positive is sometimes feasible (Mohan et al. 2013). 
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Figure 23.2	 (a) m-graph in which P(V) is recoverable by the sequential factorization (b) & (c): 
m-graphs for which no admissible sequence exists. 

partially observed variables from their respective missingness mechanisms (exam
ple: X ⊥⊥ Rx|Ry in Figure 23.2 (a)). 

Definition 23.2	 General Ordered factorization 

Given a graph G and a set O of ordered V ∪ R variables Y1 < Y2 < … < Yk, a gen
eral ordered factorization relative to G, denoted by f (O), is a product of conditional 
probabilities f (O) = ∏i P(Yi|Xi) where Xi ⊆ {Yi+1, … , Yn} is a minimal set such that 

Yi ⊥⊥ ({Yi+1, … , Yn} ⧵ Xi)|Xi holds in G. 

Theorem 23.1	 Sequential Factorization 

A sufficient condition for recoverability of a relation Q defined over substantive variables 
is that Q be decomposable into a general ordered factorization, or a sum of such factor
izations, such that every factor Qi = P(Yi|Xi) satisfies, (1) Yi ⊥⊥ (Ryi , Rxi )|Xi ⧵ {Ryi , Rxi }, if 
Yi ∈ (Vo ∪ Vm) and (2) Rz ⊥⊥ RXi |Xi if Yi = Rz for any Z ∈ Vm, Z ∉ Xi and Xr ∩ RXm = ∅. 

An ordered factorization that satisfies the condition in Theorem 23.1 is called an 

admissible sequence. 
The following example illustrates the use of Theorem 23.1 for recovering the 

joint distribution. Additionally, it sheds light on the need for the notion of mini
mality in Definition 23.2. 

Example 23.1	 We are interested in recovering P(X, Y , Z) given the m-graph in Figure 23.2 (a). We discern 

from the graph that Definition 23.2 is satisfied because: (1) P(Y |X, Z, Ry) = P(Y |X, Z) and 

(X, Z) is a minimal set such that Y ⊥⊥ ({X, Z, Ry} ⧵ (X, Z))|(X, Z), (2) P(X |Ry, Z) = P(X |Ry) 
and Ry is the minimal set such that X ⊥⊥ ({Ry, Z} ⧵ Ry)|Ry and (3) P(Z|Ry) = P(Z) and ∅ is 
the minimal set such that Z ⊥⊥ Ry|∅. Therefore, the order Y < X < Z < Ry induces a gen
eral ordered factorization P(X, Y , Z, Ry) = P(Y |X, Z)P(X |Ry)P(Z)P(Ry). We now rewrite 
P(X, Y , Z) as follows: 

P(X, Y , Z) = ∑ P(Y , X, Z, Ry) = P(Y |X, Z)P(Z)∑ P(X |Ry)P(Ry) 
Ry	 Ry 
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Since Y ⊥⊥ Ry|X, Z, Z ⊥⊥ Rz, X ⊥⊥ Rx|Ry, by Theorem 23.1 we have, 

P(X, Y , Z) = P(Y |X, Z, Rx
′ , R ′ y, R ′ )P(Z|R ′ )∑ P(X |R ′ x, Ry)P(Ry)z z

Ry 

Indeed, Equation 23.1 permits us to rewrite it as: 

P(X, Y , Z) = P(Y*|X* , Z* , R ′ x, Ry
′ , R ′ )P(Z*|R ′ )∑ P(X*|Rx

′ , Ry)P(Ry)z z
Ry 

P(X, Y , Z) is recoverable because every term in the right hand side is consistently 
estimable from the available dataset. 

Had we ignored the minimality requirement in Definition 23.2 and chosen to factor
ize Y < X < Z < Ry using the chain rule, we would have obtained: P(X, Y , Z, Ry) = 

P(Y |X, Z, Ry)P(X |Z, Ry)P(Z|Ry)P(Ry) which is not admissible since X ⊥⊥ (Rz, Rx)|Z does 
not hold in the graph. In other words, existence of one admissible sequence based 

on an order O of variables does not guarantee that every factorization based on O is 
admissible; it is for this reason that we need to impose the condition of minimality in 

Definition 23.2. 

The recovery procedure presented in Example 23.1 requires that we introduce 

Ry into the order. Indeed, there is no ordered factorization over the substantive 

variables {X, Y , Z} that will permit recoverability of P(X, Y , Z) in Figure 23.2 (a). 
This extension of Mohan et al. (2013) thus permits the recovery of probabilistic 
queries from problems in which the missingness mechanisms interact with one 

another. 

23.4 Recoverability in the Absence of an Admissible Sequence 
Mohan et al. (2013) presented a theorem (refer to Appendix 23.A.4) that stated the 

necessary and sufficient condition for recovering the joint distribution for the class 
of problems in which the parent set of every R variable is a subset of Vo ∪Vm. In con
trast to Theorem 23.1, their theorem can handle problems for which no admissible 

sequence exists. The following theorem gives a generalization and is applicable to 

any given semi-Markovian model (for example, m-graphs in Figure 23.2 (b) & (c)). 
It relies on the notion of collider path and two new subsets, Rpart: the partitions of 
R variables and Mb(R(i)): substantive variables related to R(i), which we will define 

after stating the theorem. 

Theorem 23.2	 Given an m-graph G in which no element in Vm is either a neighbor of its missingness 
mechanism or connected to its missingness mechanism by a collider path, P(V) is recov
erable if no Mb(R(i)) contains a partially observed variable X such that Rx ∈ R(i) i.e., ∀i, 
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R(i) ∩ RMb(R(i)) = ∅. Moreover, if recoverable, P(V) is given by, 

P(V , R = 0)
P(V) = 

∏i P(R(i) = 0|Mb(R(i)), RMb(R(i)) = 0) 

In Theorem 23.2: 

(i) collider path p between any two nodes X and Y is a path in which every 
intermediate node is a collider. Example, X → Z < −− > Y . 

(ii)	 Rpart = {R(1), R(2), … , R(N)} are partitions of R variables such that for every ele
ment Rx and Ry belonging to distinct partitions, the following conditions 
hold true: (i) Rx and Ry are not neighbors and (ii) Rx and Ry are not connected 

by a collider path. In Figure 23.2 (b): Rpart = {R(1), R(2)} where R(1) = {Rw, Rz}, 
R(2) = {Rx, Ry}. 

(iii)	 Mb(R(i)) is the Markov blanket of R(i) comprising of all substantive variables 
that are either neighbors or connected to variables in R(i) by a collider path 

(Richardson 2003). In Figure 23.2 (b): Mb(R(1)) = {X, Y} and Mb(R(2)) = 

{Z, W}. 

Appendix 23.A.6 demonstrates how Theorem 23.2 leads to the recoverability of P(V) 
in Figure 23.2, to which theorems in Mohan et al. (2013) do not apply. 

The following corollary yields a sufficient condition for recovering the joint 
distribution from the class of problems in which no bi-directed edge exists 
between variables in sets R and Vo ∪ Vm (for example, the m-graph described in 

Figure 23.2 (c)). These problems form a subset of the class of problems covered in 

Theorem 23.2. Subset Pasub(R(i)) used in the corollary is the set of all substantive 

variables that are parents of variables in R(i). In Figure 23.2 (b): Pasub(R(1)) = ∅ and 

Pasub(R(2)) = {Z, W}. 

Corollary 23.1	 Let G be an m-graph such that (i) ∀X ∈ Vm ∪ Vo, no latent variable is a common parent 
of X and any member of R, and (ii) ∀Y ∈ Vm, Y is not a parent of Ry. If ∀i, Pasub(R(i)) 
does not contain a partially observed variables whose missing mechanism is in R(i) i.e., 
R(i) ∩ RPasub(R(i)) = ∅, then P(V) is recoverable and is given by, 

P(R = 0, V)
P(v) = 

∏i P(R(i) = 0|Pasub(R(i)), RPasub (R(i)) = 0) 
. 

23.5 Non-recoverability Criteria for Joint and Conditional 
Distributions 
Up until now, we dealt with sufficient conditions for recoverability. It is important 
however to supplement these results with criteria for non-recoverability in order to 
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alert the user to the fact that the available assumptions are insufficient to produce 

a consistent estimate of the target query. Such criteria have not been treated for
mally in the literature thus far. In the following theorem we introduce two graphical 
conditions that preclude recoverability. 

Theorem 23.3 Non-recoverability of P(V) 
Given a semi-Markovian model G, the following conditions are necessary for recoverabil
ity of the joint distribution: 

(i)	 ∀X ∈ Vm, X and Rx are not neighbors and 

(ii)	 ∀X ∈ Vm, there does not exist a path from X to Rx in which every intermediate 
node is both a collider and a substantive variable. 

In the following corollary, we leverage Theorem 23.3 to yield necessary conditions 
for recovering conditional distributions. 

Corollary 23.2 Non-recoverability of P(Y|X) 
Let X and Y be disjoint subsets of substantive variables. P(Y |X) is non-recoverable in 

m-graph G if one of the following conditions is true: 

(1)	 Y and Ry are neighbors 
(2)	 G contains a collider path p connecting Y and Ry such that all intermediate nodes 

in p are in X. 

23.6 Recovering Causal Queries 
Given a causal query and a causal Bayesian network a complete algorithm exists for 
deciding whether the query is identifiable or not (Shpitser and Pearl 2006). Obvi
ously, a query that is not identifiable in the substantive model is not recoverable 

from missing data. Therefore, a necessary condition for recoverability of a causal 
query is its identifiability which we will assume in the rest of our discussion. 

Definition 23.3 Trivially Recoverable Query 
A causal query Q is said to be trivially recoverable given an m-graph G if it has an 

estimand (in terms of substantive variables) in which every factor is recoverable. 

Classes of problems that fall into the MCAR (Missing Completely At Random) and 

MAR (Missing At Random) category are much discussed in the literature (Rubin 

1976) because in such categories probabilistic queries are recoverable by graph-
blind algorithms. An immediate but important implication of trivial recoverabil
ity is that if data are MAR or MCAR and the query is identifiable, then it is also 

recoverable by model-blind algorithms. 
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Example 23.2	 In the gender wage-gap study example in Figure 23.1 (a), the effect of sex on income, 
P(I|do(S)), is identifiable and is given by P(I|S). By Theorem 23.2, P(S, X, Q, I) is recover
able. Hence P(I|do(S)) is recoverable. 

23.6.1 Recovering P(y|do(z)) when Y and Ry are inseparable 
The recoverability of P(V) hinges on the separability of a partially observed vari
able from its missingness mechanism (a condition established in Theorem 23.3). 
Remarkably, causal queries may circumvent this requirement. The following exam
ple demonstrates that P(y|do(z)) is recoverable even when Y and Ry are not 
separable. 

Example 23.3	 Examine Figure 23.3. By backdoor criterion, P(y|do(z)) = ∑w P(y|z, w)P(w). One might 
be tempted to conclude that the causal relation is non-recoverable because P(w, z, y) is 
non-recoverable (by Theorem 23.2) and P(y|z, w) is not recoverable (by Corollary 23.2). 
However, P(y|do(z)) is recoverable as demonstrated below: 

P(y|do(z)) = P(y|do(z), R ′ ) = ∑ P(y|do(z), w, R ′ )P(w|do(z), R ′ ) (23.2)y y y
w 

P(y|do(z), w, R ′ ) = P(y|z, w, R ′ ) (by Rule-2 of do-calculus (Pearl 2009)) (23.3)y	 y

P(w|do(z), R ′ ) = P(w|R ′ ) (by Rule-3 of do-calculus)	 (23.4)y y

Substituting (23.3) and (23.4) in (23.2) we get: 

*P(y|do(z)) = ∑ P(y|z, w, R ′ )P(w|R ′ ) = ∑ P(y |z, w, R ′ )P(w|R ′ )y y y y
w w 

The recoverability of P(y|do(z)) in the previous example follows from the notion of 
d*-separability and dormant independence (Shpitser and Pearl 2008). 

Definition 23.4	 d*-separation (Shpitser and Pearl 2008) 
Let G be a causal diagram. Variable sets X, Y are d*-separated in G given Z, W (writ
ten X ⊥w Y |Z), if we can find sets Z, W, such that X ⊥ Y |Z in Gw, and P(y, x|z, do(w)) is 
identifiable. 

Definition 23.5	 Inducing path (Verma and Pearl 1991) 
A path p between X and Y is called an inducing path if every node on the path is a collider 
and an ancestor of either X or Y. 

Ry W Z Y

Figure 23.3 m-graph in which Y and Ry are not separable but still P(Y |do(Z)) is recoverable. 
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Theorem 23.4	 Given an m-graph in which |Vm| = 1 and Y and Ry are connected by an inducing path, 
P(y|do(x)) is recoverable if there exists Z, W such that Y ⊥w Ry|Z and for W = W ⧵ X, the 
following conditions hold: 

(1) Y ⊥⊥ W1|X, Z in GX,W1 and 

(2) P(W1, Z|do(X)) and P(Y |do(W1), do(X), Z, R ′ y) are identifiable. 

Moreover, if recoverable then, 

P(y|do(x)) = ∑ P(Y |do(W), do(X), Z, Ry
′ )P(Z, W1|do(X)). 

W1,Z 

We can quickly conclude that P(y|do(z)) is recoverable in the m-graph in 

Figure 23.3 by verifying that the conditions in Theorem 23.4 hold in the m-graph. 

23.7 Attrition 
Attrition (i.e., participants dropping out from a study/experiment), is a ubiqui
tous phenomenon, especially in longitudinal studies. In this section, we shall 
discuss a special case of attrition called ‘Simple Attrition’ (for an in-depth treat
ment see Garcia 2013). In this problem, a researcher conducts a randomized trial, 
measures a set of variables (X, Y , Z) and obtains a dataset where outcome (Y) 
is corrupted by missing values (due to attrition). Clearly, due to randomization, 
the effect of treatment (X) on outcome (Y), P(y|do(x)), is identifiable and is given 

by P(Y |X). We shall now demonstrate the usefulness of our previous discussion 

in recovering P(y|do(x)). Typical attrition problems are depicted in Figure 23.4. In 

Figure 23.4 (b) we can apply Theorem 23.1 to recover P(y|do(x)) as given below: 
P(Y |X) = ∑Z P(Y*|X, Z, R ′ )P(Z|X). In Figure 23.4 (a), we observe that Y and Ry arey

connected by a collider path. Therefore by Corollary 23.2, P(Y |X) is not recoverable; 
hence P(y|do(x)) is also not recoverable. 

23.7.1 Recovering Joint Distributions under Simple Attrition 
The following theorem yields the necessary and sufficient condition for recovering 

joint distributions from semi-Markovian models with a single partially observed 

variable i.e., |Vm| = 1 which includes models afflicted by simple attrition. 

R
Y

X Y Z

(b)

R
Y

YX Z

(a)

Figure 23.4 (a) m-graphs in which P(y|do(x)) is not recoverable (b) m-graphs in which P(y|do(x)) is 
recoverable. 
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Theorem 23.5	 Let Y ∈ Vm and |Vm| = 1. P(V) is recoverable in m-graph G if and only if Y and Ry 
are not neighbors and Y and Ry are not connected by a path in which all intermediate 
nodes are colliders. If both conditions are satisfied, then P(V) is given by, P(V) = P(Y |VO, 
Ry = 0)P(VO). 

23.7.2 Recovering Causal Effects under Simple Attrition 
Theorem 23.6	 P(y|do(x)) is recoverable in the simple attrition case (with one partially observed vari

able) if and only if Y and Ry are neither neighbors nor connected by an inducing path. 
Moreover, if recoverable, 

P(Y |X) = ∑ P(Y*|X, Z, R ′ )P(Z|X)	 (23.5)y
z 

where Z is the separating set that d-separates Y from Ry. 

23.8 Related Work 
Deletion based methods such as listwise deletion that are easy to understand as 
well as implement, guarantee consistent estimates only for certain categories of 
missingness such as MCAR (Rubin 1976). Maximum Likelihood method is known 

to yield consistent estimates under MAR assumption; expectation maximization 

algorithm and gradient based algorithms are widely used for searching for ML esti
mates under incomplete data (Lauritzen 1995; Dempster et al. 1977; Darwiche 2009; 
Koller and Friedman 2009). Most work in machine learning assumes MAR and pro
ceeds with ML or Bayesian inference. However, there are exceptions such as recent 
work on collaborative filtering and recommender systems which develop proba
bilistic models that explicitly incorporate missing data mechanism (Marlin et al. 
2011; Marlin and Zemel 2009; Marlin et al. 2007). 

Other methods for handling missing data can be classified into two: (a) Inverse 

Probability Weighted Methods and (b) Imputation based methods (Rothman et al. 
2008). Inverse Probability Weighting methods analyze and assign weights to com
plete records based on estimated probabilities of completeness (van der Laan and 

Robins 2003; Robins et al. 1994). Imputation based methods substitute a reason
able guess in the place of a missing value (Allison 2002) and Multiple Imputation 

(Little and Rubin 2002) is a widely used imputation method. 
Missing data is a special case of coarsened data and data are said to be coars

ened at random (CAR) if the coarsening mechanism is only a function of the 

observed data (Heitjan and Rubin 1991). Robins and Rotnitzky (1992) introduced 
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a methodology for parameter estimation from data structures for which full data 

has a non-zero probability of being fully observed and their methodology was later 
extended to deal with censored data in which complete data on subjects are never 
observed (van der Laan and Robins 1998). 

The use of graphical models for handling missing data is a relatively new devel
opment. Daniel et al. (2012) used graphical models for analyzing missing informa
tion in the form of missing cases (due to sample selection bias). Attrition is a com
mon occurrence in longitudinal studies and arises when subjects drop out of the 

study (Twisk and de Vente 2002; Shadish 2002) and Garcia (2013) analysed the prob
lem of attrition using causal graphs. Thoemmes and Rose (2013) and Thoemmes 
and Mohan (2015) cautioned the practitioner that contrary to popular belief, not 
all auxiliary variables reduce bias. Both Garcia (2013) and Thoemmes and Rose 

(2013) associate missingness with a single variable and interactions among several 
missingness mechanisms are unexplored. 

Mohan et al. (2013) employed a formal representation called Missingness 
Graphs to depict the missingness process, defined the notion of recoverability and 

derived conditions under which queries would be recoverable when datasets are 

categorized as Missing Not At Random (MNAR). Tests to detect misspecifications 
in the m-graph are discussed in Mohan and Pearl (2014). 

23.9 Conclusion 
Graphical models play a critical role in portraying the missingness process, encod
ing and communicating assumptions about missingness and deciding recoverabil
ity given a dataset afflicted with missingness. We presented graphical conditions 
for recovering joint and conditional distributions and sufficient conditions for 
recovering causal queries. We exemplified the recoverability of causal queries of 
the form P(y|do(x)) despite the existence of an inseparable path between Y and 

Ry, which is an insurmountable obstacle to the recovery of P(Y). We applied our 
results to problems of attrition and presented necessary and sufficient graphical 
conditions for recovering causal effects in such problems. 
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23.A Appendix 

23.A.1 Missingness Process in Figure 23.1 
Figure 23.1 Missingness Graph depicting the missingness process in a hypothet
ical ( job-specific) gender wage gap study that measured the variables: sex (S), 
work experience (X), qualification (Q) and income (I). Fully observed and par
tially observed variables are represented by filled and hollow nodes respectively. 
While sex and work experience were found to be fully observed in all records i.e., 
Vo = {S, X}, qualification and income were found to be missing in some of the 

records i.e., Vm = {Q, I}. RQ and RI denote the causes of missingness of Q and I 
respectively and are assumed to be independent of S, Q, I and X. The assumptions 
in the model are: (1) women are likely to be less qualified and experienced than 
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men, (2) income is determined by qualification and job experience of the candi
date, and (3) missingness in Q and I are correlated, caused by unobserved common 

factors such as laziness or resistance to respond. 

23.A.2 Testing Compatibility between Underlying and Manifest Distributions 
Example 23.4	 Let the incomplete dataset contain two partially observed variables, Z and W. The tests 

for compatibility between manifest distribution: Pm(Z* , W* , Rz, Rw) and the underlying 
distribution: Pu(Z, W , Rz, Rw) are: 

Case-1: Let X = {Z, W}, then Y = Vm ⧵ X = {} 

Pm(Z* = z, W* = w, Rz = 0, Rw = 0) = Pu(Z = z, W = w, Rz = 0, Rw = 0)∀z, w 

Case-2: Let X = {Z}, then Y = {W} 

Pm(Z* = z, W* = m, Rz = 0, Rw = 1) = ∑ Pu(Z = z, w, Rz = 0, Rw = 1)∀z 
w 

Case-3: Let X = {W}, then Y = {Z} 

Pm(Z* = m, W* = w, Rz = 1, Rw = 0) = ∑ Pu(z, W = w, Rz = 1, Rw = 0)∀w 
z 

Case-4: Let X = {}, then Y = {Z, W} 

Pm(Z* = m, W* = m, Rz = 1, Rw = 1) = ∑ Pu(z, w, Rz = 1, Rw = 1) 
z,w 

23.A.3 Proof of Theorem 23.1 
Proof. follows from Theorem 23.1 in Mohan et al. (2013) (restated below 

as Theorem 23.7) noting that ordered factorization is one specific form of 
decomposition. ■ 

Theorem 23.7	 Mohan et al. (2013) 
A query Q defined over variables in Vo ∪Vm is recoverable if it is decomposable into terms 
of the form Qj = P(Sj |Tj) such that Tj contains the missingness mechanism Rv = 0 of 
every partially observed variable V that appears in Qj. 

23.A.4 Recovering P(V) when Parents of R belong to Vo U Vm 

Theorem 23.8	 Recoverability of the Joint P(V) (Mohan et al. 2013) 
Given a m-graph G with no edges between the R variables and no latent variables as 
parents of R variables, a necessary and sufficient condition for recovering the joint 
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R
Z

R
Y

R
X

Y ZX

Figure 23.5 m-graph in which joint distribution is recoverable. 

distribution P(V) is that no variable X be a parent of its missingness mechanism RX. 
Moreover, when recoverable, P(V) is given by 

P(R = 0, v)
P(v) =	 (23.6)

∏i P(Ri = 0|pao , pam, RPam = 0)ri ri ri 

where Pao ⊆ Vo and Pam ⊆ Vm are the parents of Ri.ri	 ri 

Example 23.5	 We wish to recover P(X, Y , Z) from the m-graph in Figure 23.1 (a). An enumeration of 
various orderings will reveal that none of the orders are admissible. Nevertheless, using 
Theorem 23.8, we can recover the joint probability as given below: 

P(R ′ x, R ′ y, Rz′ , X, Y , Z)P(X, Y , Z) = 
P(R ′ |X, R ′ )P(R ′ |Y , R ′ )P(R ′ |Z, R ′ ) 

. 
z x x y y z

23.A.5 Proof of Theorem 23.2 
Proof.
 

P(R = 0, V)

P(V) = 

P(R = 0|V) 

P(R = 0, V)= 
P(R(1) = 0, R(2) = 0, … , RN = 0|V) 

Mb(R(i)) d-separates R(i) from all variables that are not in R(i) ∪ Mb(R(i)) i.e., 
R(i) ⊥⊥ ({R, V} − {R(i), Mb(R(i))})|Mb(R(i)). Hence, 

P(R = 0, V)
P(V) = 

∏i P(R(i) = 0|Mb(R(i))) 
. 

Using R(i) ∩ RMb(R(i)) = ∅ and R(i) ⊥⊥ ({R, V} − {R(i), Mb(R(i))})|Mb(R(i)) we get, 

P(R = 0, V)
P(V) = 

∏i P(R(i) = 0|Mb(R(i)), RMb(R(i)) = 0) 
. 

Now we can directly apply Equation 23.1 and express P(V) in terms of quantities 
estimable from the available dataset. Therefore, P(V) is recoverable. ■ 
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23.A.6 Example: Recoverability by Theorem 23.2 
Example 23.6	 P(X, Y , Z, W) is the query of interest and Figure 23.2 (b) depicts the missingness process 

and identifies the sets Rpart and Mb(R(i)). A quick inspection reveals that no admissi
ble sequence exists. However, notice that CI1 : R(1) ⊥⊥ (R(2), Mb(R(2)))|Mb(R(1)) and CI2 : 
R(2) ⊥⊥ (R(1), Mb(R(1)))|Mb(R(2)) hold in the m-graph. We exploit these independencies to 
recover the joint distribution as detailed below: 

P(R = 0, X, Y , Z, W) P(R = 0, X, Y , Z, W)
P(X, Y , Z, W) =	 = 

P(R = 0|X, Y , Z, W) P(R(1) = 0, R(2) = 0|X, Y , Z, W) 

P(R = 0, X, Y , Z, W)=	 (Using CI1 and CI2)P(R(1) = 0|X, Y , R(2) = 0)P(R(2) = 0|Z, W , R(1) = 0) 

P(R = 0, X* , Y* , Z* , W*)
P(V) = 

P(Rw = 0, Rz = 0|X* , Y* , Rx = 0, Ry = 0)P(Rx = 0, Ry = 0|Z* , W* , Rz = 0, Rw = 0) 
(By Equation 23.1) 

23.A.7 Proof of Corollary 23.1 
Proof. 

P(R = 0, V) P(R = 0, V)
P(V) = = 

P(R = 0|V)	 P(R(1), R(2), … , RN |V) 
. 

Since Pasub(R(i)) ⊆ V d-separates Ri from all the other variables in (V ∪ R) ⧵ (R(i) ∪ 

Pasub(R(i))), we get 

P(R = 0, V)
P(V) = 

∏i P(R(i) = 0|Pasub(R(i))) 
. 

Using R(i) ∩ RPasub(R(i)) = ∅ and R(i) ⊥⊥ ({R, V} − {R(i), Pasub(R(i))})|Pasub(R(i)) we get, 

P(R = 0, V)
P(V) = 

∏i P(R(i) = 0|Pasub(R(i)), RPasub(R(i)) = 0) 
. 

■ 

23.A.8 Proof of Theorem 23.3 
We will be using the following lemma (stated and proved in Mohan et al. (2013) 
(Supplementary materials)) in our proof. 

Lemma 23.1	 If a target relation Q is not recoverable in m-graph G, then Q is not recoverable in the 
graph G ′ resulting from adding a single edge to G. 
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X Z1

U0 U1 U2 Uk

Z2 Z3 Zk RX

Figure 23.6 

23.A.9 

23.A.10 

An m-graph in which P(X, Z) is not-recoverable where Z = {Z1, Z2, … , Zk}. X is partially 
observed, all Z variables are fully observed, parents of Zi are Ui−1 and Ui, parent of X is 
Uo and parent of Rx is Uk. 

Proof. Non-recoverability of P(V) when X is a parent of Rx has been proved in 

Mohan et al. (2013). We will now prove non-recoverability of P(X) and hence P(V) 
when X and Rx have a latent parent. 

M1 and M2 are two models in which variables U, X and Rx are binary and U is 
a fair coin. In M1, X = 0 and Rx = u and in M2, X = u and Rx = u. Notice that 
although the two models agree on the manifest distribution, they disagree on the 

query P(X). Hence P(X) is non-recoverable in X < − − U − − > Rx. Using Lemma 

23.1, we can conclude that P(V) is non-recoverable in any m-graph in which X and 

Rx are connected by a bi-directed edge. 
Given the m-graph in Figure 23.6 we will now prove that P(X, Z1, Z2, … , Zk) is non

recoverable. Let M3 and M4 be two models such that all the variables are binary, all 
the U variables are fair coins, X = U0, Rx = Uk and Zi = Ui−1 ⊕ Ui, 1 ≤ i < k. In 

M3, Zk = Uk−1 and in M4, Zk = Uk−1 ⊕ Uk. Both models yield the same manifest dis
tribution. However, they disagree on the query P(X, Z1, Z2, … , Zk). For instance, in 

M3, P(X = 0, Z = 0, Rx = 1) > 0 where as in M4, P(X = 0, Z = 0, Rx = 1) = 0. 
Therefore in M4, P(X = 0, Z = 0) = P(X = 0, Z = 0, Rx = 0) and in M3, 
P(X = 0, Z = 0) = P(X = 0, Z = 0, Rx = 0) + P(X = 0, Z = 0, Rx = 1). Hence in 

the m-graph in Figure 23.6, the joint distribution P(X, Z) is non-recoverable. Using 

Lemma 23.1, we can conclude that joint distribution is non-recoverable in any m-
graph which has a bi-directed path from any partially observed variable X to its 
missingness mechanism Rx. ■ 

Proof of Corollary 23.2 
Proof. Let |Vm| = 1 and Y1 ∈ Y be the only partially observed variable. Let G ′ be 

the subgraph containing all variables in X ∪ Y ∪ {Ry1 , Y1 *}. We know that if (1) or (2) 
are true, then, (i) P(X, Y) is not recoverable in G ′ and (ii) P(X) is recoverable in G ′ . 

P(Y ,X)Therefore, P(Y |X) = P(X) is not recoverable in G ′ and hence by Lemma 23.1, not 
recoverable in G. ■ 

Proof of Theorem 23.4 
Proof. P(Y |do(X)) = ∑z,w ′ P(Y |Z, W ′ , do(X))P(Z, W ′|do(X)). 
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If condition 1 holds, then by Rule-2 of do-calculus (Pearl 2009) we have: 

P(Y |Z, W ′ , do(X)) = P(Y |Z, do(X), do(W ′)). 

Since Y ⊥w Ry|Z, 

P(Y |Z, do(X), do(W ′)) = P(Y |Z, do(X), do(W ′), R ′ )y
= P(Y*|Z, do(X), do(W ′), R ′ ).y

Therefore, P(y|do(x)) is recoverable. ■ 

23.A.11 Proof of Theorem 23.5 
Proof.
 
(Sufficiency) Whenever (1) and (2) are satisfied, Y ⊥⊥ Ry|Vo holds. Hence, P(V) which
 

may be written as P(Y |VO)P(VO) can be recovered as P(Y*|VO, Ry = 0)P(VO).
 
(Necessity) Follows from Theorem 23.2. ■
 

23.A.12 Proof of Theorem 23.6 
Proof. 
(Sufficiency) Under simple attrition, all paths to Ry from Y containing X are blocked 

by X. Therefore, when both conditions specified in the theorem are satisfied, it 
implies that Y and Ry are separable. Given that Z is any separator between Y and 

Ry, P(Y |X) may be recovered as ∑z P(Y*|X, Z, R ′ )P(Z|X).y

(Necessity) Follows from Theorem 23.2. ■ 
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Abstract 
Selection bias is caused by preferential exclusion of units from the samples and 

represents a major obstacle to valid causal and statistical inferences; it cannot be 

removed by randomized experiments and can rarely be detected in either exper
imental or observational studies. In this paper, we provide complete graphical 
and algorithmic conditions for recovering conditional probabilities from selection 

biased data. We also provide graphical conditions for recoverability when unbiased 

data is available over a subset of the variables. Finally, we provide a graphical con
dition that generalizes the backdoor criterion and serves to recover causal effects 
when the data is collected under preferential selection. 
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24.1 Introduction 
Selection bias is induced by preferential selection of units for data analysis, usu
ally governed by unknown factors including treatment, outcome, and their conse
quences, and represents a major obstacle to valid causal and statistical inferences. 
It cannot be removed by randomized experiments and can rarely be detected in 
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either experimental or observational studies.1 For instance, in a typical study of the 

effect of training program on earnings, subjects achieving higher incomes tend to 

report their earnings more frequently than those who earn less. The data-gathering 

process in this case will reflect this distortion in the sample proportions and, 
since the sample is no longer a faithful representation of the population, biased 

estimates will be produced regardless of how many samples were collected. 
This preferential selection challenges the validity of inferences in several tasks 

in AI (Cooper 1995; Elkan 2001; Zadrozny 2004; Cortes et al. 2008) and Statistics 
(Whittemore 1978; Little and Rubin 1986; Jewell 1991; Kuroki and Cai 2006) as well 
as in the empirical sciences (e.g., Genetics (Pirinen, Donnelly, and Spencer 2012; 
Mefford and Witte 2012), Economics (Heckman 1979; Angrist 1997), and Epidemi
ology (Robins 2001; Glymour and Greenland 2008)). 

To illuminate the nature of preferential selection, consider the data-generating 

model in Figure 24.1(a) in which X represents an action, Y represents an outcome, 
and S represents a binary indicator of entry into the data pool (S = 1 means that the 

unit is in the sample, S = 0 otherwise). If our goal is to compute the population-
level conditional distribution P(y | x), and the samples available are collected under 
selection, only P(y, x | S = 1) is accessible for use.2 Given that in principle these 

two distributions are just loosely connected, the natural question to ask is under 
what conditions P(y | x) can be recovered from data coming from P(y, x | S = 1). In 

this specific example, both action and outcome affect the entry in the data pool, 
which will be shown not to be recoverable (see Corollary 24.1) – i.e., there is no 

method capable of unbiasedly estimating the population-level distribution using 

data gathered under this selection process. 
The bias arising from selection differs fundamentally from the one due to con

founding, though both constitute threats to the validity of causal inferences. The 

former bias is due to treatment or outcome (or ancestors) affecting the inclusion of 
the subject in the sample (Figure 24.1(a)), while the latter is the result of treatment 
X and outcome Y being affected by a common omitted variables U (Figure 24.1(b)). 
In both cases, we have unblocked extraneous “flow” of information between treat
ment and outcome, which appear under the rubric of “spurious correlation,” since 

it is not what we seek to estimate. 
It is instructive to understand selection graphically, as in Figure 24.1(a). The 

preferential selection that is encoded through conditioning on S creates spurious 

1. Remarkably, there are special situations in which selection bias can be detected even from 

observations, as in the form of a non-chordal undirected component (Zhang 2008). 

2. In a typical AI task such as classification, we could have X being a collection of features and Y 

the class to be predicted, and P(y | x) would be the classifier that needs to be trained. 
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Figure 24.1	 (a,b) Simplest examples of selection and confounding bias, respectively. (c,d) 
Treatment-dependent and outcome-dependent studies under selection, Q = P(y | x) 
is recoverable in (c) but not in (d). (e,f) Treatment-dependent study where selection is 
also affected by driver of treatment Z (e.g., age); Q is recoverable in (e) but not in (f). 

association between X and Y through two mechanisms. First, given that S is a col
lider, conditioning on it induces spurious association between its parents, X and Y 

(Pearl 1988). Second, S is also a descendant of a “virtual collider” Y, whose parents 
are X and the error term UY (also called “hidden variable”) which is always present, 
though often not shown in the diagram.3 

24.1.1 Related Work and Our Contributions 
There are three sets of assumptions that are enlightening to acknowledge if we 

want to understand the procedures available in the literature for treating selec
tion bias – qualitative assumptions about the selection mechanism, parametric 
assumptions regarding the data-generating model, and quantitative assumptions 
about the selection process. 

In the data-generating model in Figure 24.1(c), the selection of units to the 

sample is treatment-dependent, which means that it is caused by X, but not Y. 
This case has been studied in the literature and Q = P(y | x) is known to be 

non-parametrically recoverable from selection (Greenland and Pearl 2011). Alter
natively, in the data-generating model in Figure 24.1(d), the selection is caused 

by Y (outcome-dependent), and Q is not recoverable from selection (formally 
shown later on), but is the odds ratio (Cornfield 1951; Whittemore 1978; Geng 1992; 
Didelez, Kreiner, and Keiding 2010). As mentioned earlier, Q is also not recover
able in the graph in Figure 24.1(a). By and large, the literature is concerned with 

treatment-dependent or outcome-dependent selection, but selection might be 

3. See (Pearl 2000, pp. 339-341) and (Pearl 2013) for further explanations of this bias mechanism. 
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caused by multiple reasons and embedded in more intricate realities. For instance, 
a driver of the treatment Z (e.g., age, sex, socio-economic status) may also be caus
ing selection, see Figure 24.1(e,f). As it turns out, Q is recoverable in Figure 24.1(e) 
but not in (f), so different qualitative assumptions need to be modelled explicitly 
since each topology entails a different answer for recoverability. 

The second assumption is related to the parametric form used by recoverabil
ity procedures. For instance, one variation of the selection problem was studied 

in Econometrics, and led to the celebrated method developed by James Heckman 

(1979). His two-step procedure removes the bias by leveraging the assumptions of 
linearity and normality of the data-generating model. A graph-based parametric 
analysis of selection bias is given in (Pearl 2013). 

The final assumption is about the probability of being selected into the sample. 
In many settings in Machine learning and Statistics (Elkan 2001; Zadrozny 2004; 
Smith and Elkan 2007; Storkey 2009; Hein 2009; Cortes et al. 2008), it is assumed 

that this probability, P(S = 1 | Pas), can be modelled explicitly, which often is an 

unattainable requirement for the practitioner (e.g., it might be infeasible to assess 
the differential rates of how salaries are reported). 

Our treatment differs fundamentally from the current literature regarding these 

assumptions. First, we do not constrain the type of data-generating model as 
outcome- or treatment-dependent, but we take arbitrary models (including these 

two) as input, in which a node S indicates selection for sampling. Second, we 

do not make parametric assumptions (e.g. linearity, normality, monotonicity) but 
operate non-parametrically based on causal graphical models (Pearl 2000), which 

is more robust, less prone to model misspecifications. Third, we do not rely on 

having the selection’s probability P(S = 1 | Pas), which is not always available in 

practice. Our work hinges on exploiting the qualitative knowledge encoded in 

the data-generating model for yielding recoverability. This knowledge is admit
tedly a demanding requirement for the scientist, but we now understand for
mally its necessity for any approach to recoverability – any procedure aiming for 
recoverability, implicitly or explicitly, relies on this knowledge (Pearl 2000).4 

The analysis of selection bias requires a formal language within which 

the notion of data-generating model is given precise characterization, and the 

qualitative assumptions regarding how the variables affect selection can be 

encoded explicitly. The advent of causal diagrams (Pearl 1995; Spirtes, Glymour, 
and Scheines 2000; Pearl 2000; Koller and Friedman 2009) provides such a language 

and renders the formalization of the selection problem possible. 

4. A trivial instance of this necessity is Figure 24.1(c,d) where the odds ratio is recoverable, yet 
P(y | x) is recoverable in 24.1(c) but not in (d). 
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Using this language, (Bareinboim and Pearl 2012) provided a complete treat
ment for selection relative to the OR.5 We generalize their treatment considering 

the estimability of conditional distributions and address three problems: 

1. Selection without external data: The dataset is collected under selection bias, 
P(v | S = 1); under which conditions is P(y | x) recoverable? 

2. Selection with external data: The dataset is collected under selection bias, 
P(v | S = 1), but there are unbiased samples from P(t), for T ⊆ V; under which 

conditions is P(y | x) recoverable? 

3. Selection in causal inferences: The data is collected under selection bias, 
P(v | S = 1), but there are unbiased samples from P(t), for T ⊆ V; under which 

conditions is the interventional distribution P(y | do(x)) estimable? 

We provide graphical and algorithmic conditions for these problems without 
resorting to parametric assumptions nor selection probabilities. Furthermore, the 

solution for selection without external data is complete, in the sense that whenever 
a quantity is said not to be recoverable by our conditions, there exists no procedure 

that are able to recover it (without adding assumptions). In estimating the effects of 
interventions, we generalize the backdoor criterion for when data is collected under 
selection. 

24.2 Recoverability without External Data 
We first introduce the formal notion of recoverability for conditional distributions 
when data is under selection.6 

Definition 24.1 s-Recoverability 
Given a causal graph Gs augmented with a node S encoding the selection mechanism 

(Bareinboim and Pearl 2012), the distribution Q = P(y | x) is said to be s-recoverable 
from selection biased data in Gs if the assumptions embedded in the causal model ren
ders Q expressible in terms of the distribution under selection bias P(v | S = 1). Formally, 
for every two probability distributions P1 and P2 compatible with Gs, P1(v | S = 1) = 

7P2(v | S = 1) > 0 implies P1(y | x) = P2(y | x). 

5. The odds ratio (OR) is a commonly used measure of association and has the form 

(P(y | x)P(y | x))/(P(y | x)P(y | x)). The symmetric form of the OR allows certain derivations. 

6. This definition generalizes G-admissibility given in (Bareinboim and Pearl 2012). 

7. We follow the conventions given in (Pearl 2000). We use typical graph notation with families 
(e.g., children, parents, ancestors). We denote variables by capital letters and their realized values 
by small letters. We use bold to denote sets of variables. We denote the set of all variables by V, 
except for the selection mechanism S. 
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Consider the graph Gs in Figure 24.1(c) and assume that our goal is to establish 

s-recoverability of Q = P(y | x). Note that by d-separation (Pearl 1988), X separates 
Y from S, (or (Y ⊥⊥ S | X)), so we can write P(y | x) = P(y | x, S = 1). This is a very 
special situation since these two distributions can be arbitrarily distant from each 

other, but in this specific case Gs constrains Q in such a way that despite the fact 
that data was collected under selection and our goal is to answer a query about 
the overall population, there is no need to resort to additional data external to the 

biased study. 
Now we want to establish whether Q is s-recoverable in the graph Gs in 

Figure 24.1(d). In this case, S is not d-separated from Y if we condition on X, so 

(S ⊥⊥ Y | X) does not hold in at least one distribution compatible with Gs, and the 

identity P(y | x) = P(y | x, S = 1) is not true in general. One may wonder if there is 
another way to s-recover Q in Gs, but this is not the case as formally shown next. 
That is, the assumptions encoded in Gs imply a universal impossibility; no mat
ter how many samples of P(x, y | S = 1) are accumulated or how sophisticated the 

estimation technique is, the estimator of P(y | x) will never converge to its true value. 

Lemma 24.1 P(y | x) is not s-recoverable in Figure 24.1(d). 

Proof. We construct two causal models such that P1 is compatible with the graph 

Gs in Figure 24.1(d) and P2 with the subgraph G2 = Gs ⧵ {Y → S}. We will set the 

parameters of P1 through its factors and then computing the parameters of P2 by 
enforcing P2(V | S = 1) = P1(V | S = 1). Since P2(V | S = 1) = P2(V), we will be enforc
ing P1(V | S = 1) = P2(V). Recoverability should hold for any parametrization, so we 

assume that all variables are binary. Given a Markovian causal model (Pearl 2000), 
P1 can be parametrized through its factors in the decomposition over observables, 
P1(X), P1(Y | X), P1(S = 1 | Y), for all X, Y . 

We can write the conditional distribution in the second causal model as follows: 

P1(y, x, S = 1)
P2(y | x) = P1(y | x, S = 1) = (24.1)

P1(x, S = 1) 

P1(S = 1 | y)P1(y | x)= (24.2)
P1(S = 1 | y)P1(y | x) + P1(S = 1 | y)P1(y | x) 

, 

where the first equality, by construction, should be enforced, and the second and 

third by probability axioms. The other parameters of P2 are free and can be chosen 

to match P1. 
Finally, set the distribution of every family in P1 but selection variable equal to 

1/2, and set the distribution P1(S = 1 | y) = 𝛼, P1(S = 1 | y) = 𝛽, for 0 < 𝛼, 𝛽 < 1 and 

𝛼 ̸ 𝛽. This parametrization reduces Equation (24.2) to P2(y | x) = 𝛼/(𝛼 + 𝛽) and= 

P1(y | x) = 1/2, the result follows. ■ 
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P(y | x) is not s-recoverable in Figure 24.1(a). 

The corollary follows immediately noting that lack of s-recoverability with a sub
graph (Figure 24.1(d)) precludes s-recoverability with the graph itself since the extra 

edge can be inactive in a compatible parametrization (Pearl 1988) (the converse is 
obviously not true). Lemma 24.1 is significant because Figure 24.1(d) can repre
sent a study design that is typically used in empirical fields known as case-control 
studies. The result is also theoretically instructive since Figure 24.1(d) represents 
the smallest graph structure that is not s-recoverable, and its proof will set the 

tone for more general and arbitrary structures that we will be interested in (see 

Theorem 24.1). 
Furthermore, consider the graph in Figure 24.1(e) in which the independence 

(S ⊥⊥ Y | X) holds, so we can also recover Q from selection (P(y | x, S = 1) = P(y | x)). 
However, (S ⊥⊥ Y | X) does not hold in Figure 24.1(f) – there is an open path passing 

through X’s ancestor W (i.e., S ← Z → X ← W → Y) – and the natural ques
tion that arises is whether Q is recoverable in this case. It does not look obvious 
whether the absence of an independence precludes s-recoverability since there are 

other possible operators in probability theory that could be used leading to the 

s-recoverability of Q. To illustrate this point, note that it is not the case in causal 
inference that the inapplicability of the backdoor criterion (Pearl 2000, Chapter 3), 
which is also an independence constraint, implies the impossibility of recovering 

certain effects. 
Remarkably, the next result states that the lack of this independence indeed 

precludes s-recoverability, i.e., the probe of one separation test in the graph is 
sufficient to evaluate whether a distribution is or is not s-recoverable. 

8The distribution P(y | x) is s-recoverable from Gs if and only if (S ⊥⊥ Y | X). 

In words, Theorem 24.1 provides a powerful test for s-recoverability without 
external data, which means that when it disavows s-recoverability, there exists no 

procedure that would be capable of recovering the distribution from selection bias 
(without adding assumptions). Its sufficiency part is immediate, but the proof of 
necessity is somewhat involved since we need to show that for all graphical struc
tures in which the given d-separation test fails, each of these structures does not 
allow for s-recoverability (i.e., a counter-example can always be produced showing 

agreement on P(v | S = 1) and disagreement on P(y | x)). 
The next corollary provides a test for s-recoverability of broader joint distribu

tions (including Y alone): 

8. Please refer to the Appendix 2 in the full report for the proofs (Bareinboim, Tian, and Pearl 
2014). 
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Corollary 24.2	 Let Z = An(S) ⧵ An(Y) including S, and A = Pa(Z) ∩ (An(Y) ⧵ {Y}). P(Y , An(Y) ⧵ 
(A ⧵ {Y}) | A) is s-recoverable if and only if Y is not an ancestor of S. 

This result can be embedded as a step reduction in an algorithm to s-recover 
a collection of distributions in the form of the corollary. We show such algorithm 

in (Bareinboim, Tian, and Pearl 2014).9 The main idea is to traverse the graph in a 

certain order s-recovering all joint distributions with the form given in the corol
lary (updating S along the way). If the algorithm exits with failure, it means that 
the distributions of its predecessors are not s-recoverable. 

24.3 Recoverability with External Data 
A natural question that arises is whether additional measurements in the pop
ulation level over certain variables can help recovering a given distribution. For 
example, P(age) can be estimated from census data which is not under selection 

bias. 
To illustrate how this problem may arise in practice, consider Figure 24.2 and 

assume that our goal is to s-recover Q = P(y | x). It follows immediately from 

Theorem 24.1 that Q cannot be s-recovered without additional assumptions. Note, 
however, that the parents of the selection node Pas = {W1, W2} separates S from all 
other nodes in the graph, which indicates that it would be sufficient for recover
ability to measure T = {W1, W2} ∪ {X} from external sources. To witness, note that 
after conditioning Q on W1 and W2, we obtain: 

P(y | x) = ∑ P(y | x, w1, w2)P(w1, w2 | x) 
w1,w2 

= ∑ P(y | x, w1, w2, S = 1)P(w1, w2 | x), (24.3) 
w1,w2 

where the last equality follows from (Y ⊥⊥ S | X, W1, W2). That is, Q can be s-recovered 

and is a combination of two different types of data; the first factor comes from 

biased data under selection, and the second factor is available from external data 

collected over the whole population. 
Our goal is to understand the interplay between measurements taken over two 

types of variables, M, T ⊆ V , where M are variables collected under selection bias, 
P(M | S = 1), and T are variables collected in the population-level, P(T). In other 
words, we want to understand when (and how) can this new piece of evidence 

P(T) together with the data under selection (P(M | S = 1)) help in extending the 

9. This listing is useful when one needs to examine properties of the collection of distributions, 
analogously to the list of all backdoor admissible sets by (Textor and Liskiewicz 2011). 
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Figure 24.2	 Causal model in which Q = P(y | x) is not recoverable without external data 
(Theorem 24.1), but it is recoverable if measurements on the set Pas = {W1, W2} 
are taken (Theorem 24.2). Alternatively, even if not all parents of S are measured, any 
set including {W2, Z3} would yield recoverability of Q. 

treatment of the previous section for recovering the true underlying distribution 
10Q = P(y | x). 

Formally, we need to redefine s-recoverability for accommodating the availabil
ity of data from external sources. 

Definition 24.2	 s-Recoverability 
Given a causal graph Gs augmented with a node S, the distribution Q = P(y | x) is said 

to be s-recoverable from selection bias in Gs with external information over T ⊆ V and 

selection biased data over M ⊆ V (for short, s-recoverable) if the assumptions embed
ded in the causal model render Q expressible in terms of P(m | S = 1) and P(t), both 

positive. Formally, for every two probability distributions P1 and P2 compatible with 

Gs, if they agree on the available distributions, P1(m | S = 1) = P2(m | S = 1) > 0, 
P1(t) = P2(t) > 0, they must agree on the query distribution, P1(y | x) = P2(y | x). 

The observation leading to Equation (24.3) provides a simple condition for 
s-recoverability when we can choose the variables to be collected. Let Pas be the 

parent set of S. If measurements on the set T = Pas ∪ {X} can be taken without 
selection, we can write P(y | x) = ∑pas 

P(y | x, pas, S = 1)P(pas | x), since S is sepa
rated from all nodes in the graph given its parent set. This implies s-recoverability 
where we have a mixture in which the first factor is obtainable from the biased data 

and the second from external sources. 
This solution is predicated on the assumption that Pas can be measured in the 

overall population, which can be a strong requirement, and begs a generalization 

10. This problem subsumes the one given in the previous section since when T = ∅, the two prob
lems coincide. We separate them since they come in different shades in the literature and also 

just after solving the version without external data we can aim to solve its more general version; 
we discuss more about this later on. 
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Theorem 24.2 

Theorem 24.3 

to when part of Pas is not measured. For instance, what if in Figure 24.2 W1 can
not be measured? Would other measurements over a different set of variables also 

entail s-recoverability? 
This can be expressed as a requirement that subsets of T and M can be found 

satisfying the following criterion: 

If there is a set C that is measured in the biased study with {X, Y} and in the population 

level with X such that (Y ⊥⊥ S | {C, X}), then P(y | x) is s-recoverable as 

P(y | x) = ∑ P(y | x, c, S = 1)P(c | x). (24.4) 
c 

In the example in Figure 24.2, it is trivial to confirm that any (pre-treatment) 
set C containing W2 and Z3 would satisfy the conditions of the theorem. In par
ticular, {W2, Z3} is such a set, and it allows us to s-recover Q without measuring 

W1 (W1 ∈ Pas) through Equation (24.4). Note, however, that the set C = {W2, Z1, Z2} 

is not sufficient for s-recoverability. It fails to satisfy the separability condition 

of the theorem since conditioning on {X, W2, Z1, Z2} leaves an unblocked path 

between S and Y (i.e., S ← W1 → T1 → X ← Z3 → Y). 
It can be computationally difficult to find a set satisfying the conditions of the 

theorem since this could imply a search over a potentially exponential number of 
subsets. Remarkably, the next result shows that the existence of such a set can be 

determined by a single d-separation test. 

There exists some set C ⊆ T ∩ M such that Y ⊥⊥ S | {C, X} if and only if the set (C ′ ∪ X) 
d-separates S from Y where C ′ = [(T ∩ M) ∩ An(Y ∪ S ∪ X)] ⧵ (Y ∪ S ∪ X). 

In practice, we can restrict ourselves to minimal separators, that is, looking only 
for minimal set C ⊆ T∩M such that (Y ⊥⊥ S | {C, X}). The algorithm for finding min
imal separators has been given in (Acid and de Campos 1996; Tian, Paz, and Pearl 
1998). 

Despite the computational advantages given by Theorem 24.3, Theorem 24.2 

still requires the existence of a separator C measured in both the biased study (M) 
and in the overall population (T), and it is natural to ask whether this condition 

can be relaxed. Assume that all we have is a separator C ⊆ M, but C (or some of its 
elements) is not measured in population T, and therefore P(c | x) in Equation (24.4) 
still needs to be s-recovered. We could s-recover P(c | x) in the spirit of Theorem 24.2 

as 

P(c | x) = ∑ P(c | x, c1, S = 1)P(c1 | x), (24.5) 
c1 
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if there exists a set C1 ⊆ M ∩ T such that (S ⊥⊥ C | X, C1). Now if this fails in that we 

can only find a separator C1 ⊆ M not measured in T, we can then attempt to recover 
P(c1 | x) in the spirit of Theorem 24.2 by looking for another separator C2, and so on. 
At this point, it appears that Theorem 24.2 can be extended. 

We further extend this idea by considering other possible probabilistic manip
ulations and embed them in a recursive procedure. For W, Z ⊆ M, consider the 

problem of recovering P(w | z) from P(t) and P(m | S = 1), and define procedure 

RC(w, z) as follows: 

1. If W ∪ Z ⊆ T, then P(w | z) is s-recoverable. 

2. If (S ⊥⊥ W | Z), then P(w | z) is s-recoverable as P(w | z) = P(w | z, S = 1). 

3. For minimal C ⊆ M such that (S ⊥⊥ W | (Z ∪ C)), P(w | z) = ∑c P(w | z, c, S = 

1)P(c | z). If C ∪ Z ⊆ T, then P(w | z) is s-recoverable. Otherwise, call RC(c, z). 
′ ′ ′ ′ 4. For some W ′ ⊂ W, P(w | z) = P(w | w ⧵ w , z)P(w ⧵ w | z). Call RC(w , {w ⧵ w ′}∪z) 

′ and RC(w ⧵ w , z)). 

5. Exit with FAIL (to s-recover P(w | z)) if for a singleton W, none of the above 

operations are applicable. 

Now, we define recoverability based on this procedure: 

We say that P(w | z) is C-recoverable if and only if it is recovered by the procedure 
RC(w, z). 

Remarkably, the manipulations considered in RC() are not actually more pow
erful than Theorem 24.2, as shown next. 

For X ⊆ T, Y ∉ T, Q = P(y | x) is C-recoverable if and only if it is recoverable by 
Theorem 24.2, that is, if and only if there exists a set C ⊆ T∩M such that (Y ⊥⊥ S | {C, X}) 
(where C could be empty). If s-recoverable, P(y | x) is given by P(y | x) = ∑c P(y | x, c, 
S = 1)P(c | x). 

This result suggests that the constraint between measurement sets cannot be 

relaxed through ordinary decomposition and Theorem 24.2 captures the bulk of 
s-recoverable relations. (See proof in (Bareinboim, Tian, and Pearl 2014).) Impor
tantly, this does not constitute a proof of necessity of Theorem 24.2. 

Now we turn our attention to some special cases that appear in practice. Note 

that, so far, we assumed X being measured in the overall population, but in some 

scenarios Y ’s prevalence might be available instead. So, assume Y ∈ T but some 

variables in X are not measured in the population-level. Let X0 = X ∩ T and 
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Xm = X ⧵ X0, we have 

P(xm | y, x0)p(y | x0)
P(y | x) =	 (24.6)

∑y P(xm | y, x0)p(y | x0) 

Therefore, P(y | x) is recoverable if P(xm | y, x0) is recoverable. We could use the 

previous results to recover P(xm | y, x0). In particular, Theorems 24.2 and 24.3 lead 

to: 

Corollary 24.3	 P(y | x) is recoverable if there exists a set C ⊆ T ∩ M (C could be empty) such that 
(Xm ⊥⊥ S | {C ∪ Y ∪ X0}). If recoverable, P(y | x) is given by Equation (24.6) where 

m m 0P(x | y, x0) = ∑ P(x | y, x , c, S = 1)P(c | y, x0) (24.7) 
c 

Corollary 24.4	 P(y | x) is recoverable via Corollary 24.3 if and only if the set (C ′ ∪ Y ∪ X0) d-separates S 

from Xm where C ′ = [(T ∩ M) ∩ An(Y ∪ S ∪ X)] ⧵ (Y ∪ S ∪ X). 

For example, in Figure 24.2, assuming M = {X, Y , W1, W3, Z3} and T = {Y , W1, 
W3, Z3}, we have S ⊥⊥ X | {Y , W1, W3, Z3}, therefore we can s-recover 

P(x | y) = ∑ P(x | y, w1, w3, z3, S = 1)P(w1, w3, z3 | y), (24.8) 
w1,w3,z3 

as well as P(y | x) by substituting back Equation (24.8) in Equation (24.6). 
Furthermore, it is worth examining when no data is gathered over X or Y in the 

population level. In this case, P(y | x) may be recoverable through P(x, y), as shown 

in the sequel. 

Corollary 24.5	 P(y | x) is recoverable if there exists a set C ⊆ T ∩ M such that ({Y} ∪ X ⊥⊥ S | C). If 
recoverable, P(y, x) is given by P(y, x) = ∑c P(y, x | c, S = 1)P(c). 

For instance, P(x, y) is s-recoverable in Figure 24.2 if T ∩ M contains {W2, T1, Z3} 

or {W2, T1, Z1} (without {X, Y}). 

24.4 Recoverability of Causal Effects 
We now turn our attention to the problem of estimating causal effects from 

selection biased data.11 

Our goal is to recover the effect of X on Y, P(y | do(x)) given the structure of Gs. 
Consider the graph Gs in Figure 24.3(a), in which X and Y are not confounded, 
hence, P(y | do(x)) = P(y | x) and, based on Theorem 24.1, we conclude that P(y | do(x)) 

11. We assume the graph Gs represents a causal model, as defined in (Pearl 2000; Spirtes, Glymour, 
and Scheines 2000). 



24.4 Recoverability of Causal Effects 445 

X

(a) (b) (c)

Y
W

1

W

S S S

X Y W
2

X Y

W
2 W

1

U

Figure 24.3	 (a) Causal diagram in which (S ⊥⊥ Y | {X, W}) but P(y | do(x)) is not s-backdoor admissi
ble. (b) P(y | do(x)) is s-recoverable through T = {W2} but not {W1}. (c) {W2} does not 
satisfy the s-backdoor criterion but P(y | do(x)) is still recoverable. 

is not recoverable in Gs. Figure 24.3(b) and 24.3(c), on the other hand, contains 
covariates W1 and W2 that may satisfy conditions similar to those in Theorem 24.1 
that would render P(y | do(x)) recoverable. These conditions, however, need to be 

strengthened significantly, to account for possible confounding between X and Y 

which, even in the absence of selection bias, might require adjustment for admissi
ble covariates, namely, covariates that satisfy the backdoor condition (Pearl 1993). 
For example, {W2} satisfies the backdoor condition in both Figure 24.3(b) and (c), 
while {W1} satisfies this condition in (b) but not in (c). 

Definition 24.4 below extends the backdoor condition to selection bias prob
lems by identifying a set of covariates Z that accomplishes two functions. Condi
tions (i) and (ii) assure us that Z is backdoor admissible (Pearl and Paz 2013),12 while 

conditions (iii) and (iv) act to separate S from Y, so as to permit recoverability from 

selection bias. 

Definition 24.4	 Selection-backdoor criterion 

Let a set Z of variables be partitioned into Z+ ∪ Z− such that Z+ contains all non-
descendants of X and Z− the descendants of X. Z is said to satisfy the selection backdoor 
criterion (s-backdoor, for short) relative to an ordered pair of variables (X, Y) and an 

ordered pair of sets (M, T) in a graph Gs if Z+ and Z− satisfy the following conditions: 

(i) Z+ blocks all back door paths from X to Y ; 
(ii) X and Z+ block all paths between Z− and Y , namely, (Z− ⊥⊥ Y | X, Z+); 
(iii) X and Z block all paths between S and Y , namely, (Y ⊥⊥ S | X, Z); 
(iv) Z ∪ {X, Y} ⊆ M, and Z ⊆ T. 

12. These two conditions extend the usual backdoor criterion (Pearl 1993) to allow descendants of 
X to be part of Z. 
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Consider Figure 24.3(a) where Z− = {W}, Z+ = {} and Z− is not separated from 

Y given {X} ∪ Z+ in Gs, which means that condition (ii) of the s-backdoor is vio
lated. So, despite the fact that the relationship between X and Y is unconfounded 

and (Y ⊥⊥ S | {W , X}), it is improper to adjust for {W} when computing the target 
effect. 

For the admissible cases, we are ready to state a sufficient condition that guar
antees proper identifiability and recoverability of causal effects under selection 

bias: 

Theorem 24.5	 Selection-backdoor adjustment 
If a set Z satisfies the s-backdoor criterion relative to the pairs (X, Y) and (M, T) (as given 

in Definition 24.2), then the effect of X on Y is identifiable and s-recoverable and is given 

by the formula 

P(y | do(x)) = ∑ P(y | x, z, S = 1)P(z)	 (24.9) 
z 

Interestingly, X does not need to be measured in the overall population when 

the s-backdoor adjustment is applicable, which contrasts with the expression given 

in Theorem 24.2 where both X and Z (equivalently C) are needed. 
Consider Figure 24.3(b) and assume our goal is to establish Q = P(y | do(x)) when 

external data over {W2} is available in both studies. Then, Z = {W2} is s-backdoor 
admissible and the s-backdoor adjustment is applicable in this case. However, if 
T = {W1}, Z = {W1} is backdoor admissible, but it is not s-backdoor admissible 

since condition (iii) is violated (i.e., (S ⊥⊥ Y | {W1, X}) does not hold in Gs). This is 
interesting since the two sets {W1} and {W2} are c-equivalent (Pearl and Paz 2013), 
having the same potential for bias reduction in the general population. To under
stand why c-equivalence is not sufficient for s-recoverability, note that despite the 

equivalence for adjustment, ∑w1 P(y | x, w1)P(w1) = ∑w2 
P(y | x, w2)P(w2), the r.h.s. is 

obtainable from the data, while the l.h.s. is not. 
Now we want to recover Q = P(y | do(x)) in Figure 24.3(c) (U is a latent vari

able) with T = {W2}. Condition (iii) of the s-backdoor fails since (S ⊥⊥ Y | {X, W2}) 
does not hold. Alternatively, if we discard W2 and consider the null set for adjust
ment (Z = {}), condition (i) fails since there is an open backdoor path from X to 

Y (X ← W2 ← U → Y). Despite the inapplicability of the s-backdoor, P(y | do(x)) is 
still s-recoverable since, using do-calculus, we can show that Q = P(y | do(x), S = 1), 
which reduces to ∑w2 

P(y | x, w2, S = 1)P(w2 | S = 1), both factors s-recoverable 

without the need for external information. 
The reliance on the do-calculus in recovering causal effects is expected since 

even when selection bias is absent, there exist identifiability results beyond the 

backdoor. Still, this criterion, which is generalized by the s-backdoor criterion, 
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is arguably the most used method for identifiability of causal effects currently 
available in the literature. 

24.5 Conclusions 
We provide conditions for recoverability from selection bias in statistical and 

causal inferences applicable for arbitrary structures in non-parametric settings. 
Theorem 24.1 provides a complete characterization of recoverability when no exter
nal information is available. Theorem 24.2 provides a sufficient condition for 
recoverability based on external information; it is optimized by Theorem 24.3 and 

strengthened by Theorem 24.4. Verifying these conditions takes polynomial time 

and could be used to decide what measurements are needed for recoverability. 
Theorem 24.5 further gives a graphical condition for recovering causal effects, 
which generalizes the backdoor adjustment. Since selection bias is a common 

problem across many disciplines, the methods developed in this paper should 

help to understand, formalize, and alleviate this problem in a broad range of 
data-intensive applications. This paper complements another aspect of the gen
eralization problem in which causal effects are transported among differing envi
ronments (Bareinboim and Pearl 2013a; 2013b). 
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Abstract 
The generalizability of empirical findings to new environments, settings or popu
lations, often called “external validity,” is essential in most scientific explorations. 
This paper treats a particular problem of generalizability, called “transportability,” 
defined as a license to transfer causal effects learned in experimental studies to a 

new population, in which only observational studies can be conducted. We intro
duce a formal representation called “selection diagrams” for expressing knowledge 

about differences and commonalities between populations of interest and, using 

this representation, we reduce questions of transportability to symbolic deriva
tions in the do-calculus. This reduction yields graph-based procedures for decid
ing, prior to observing any data, whether causal effects in the target population can 

be inferred from experimental findings in the study population. When the answer 
is affirmative, the procedures identify what experimental and observational find
ings need be obtained from the two populations, and how they can be combined 

to ensure bias-free transport. 
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25.1 Introduction: Threats vs. Assumptions 
Science is about generalization, and generalization requires that conclusions 
obtained in the laboratory be transported and applied elsewhere, in an environ
ment that differs in many aspects from that of the laboratory. 

Clearly, if the target environment is arbitrary, or drastically different from the 

study environment, nothing can be transferred and scientific progress will come to 

a standstill. However, the fact that most studies are conducted with the intention 

of applying the results elsewhere means that we usually deem the target envi
ronment sufficiently similar to the study environment to justify the transport of 
experimental results or their ramifications. 

Remarkably, the conditions that permit such transport have not received sys
tematic formal treatment. In statistical practice, problems related to combining 

and generalizing from diverse studies are handled by methods of meta analysis 
(Glass, 1976; Hedges and Olkin, 1985; Owen, 2009), or hierarchical models (Gelman 

and Hill, 2007), in which results of diverse studies are pooled together by standard 

statistical procedures (e.g., inverse-variance reweighting in meta-analysis, partial 
pooling in hierarchical modelling) and rarely make explicit distinction between 

experimental and observational regimes; performance is evaluated primarily by 
simulation. 

To supplement these methodologies, our paper provides theoretical guidance 

in the form of limits on what can be achieved in practice, what problems are 

likely to be encountered when populations differ significantly from each other, 
what population differences can be circumvented by clever design and what dif
ferences constitute theoretical impediments, prohibiting generalization by any 
means whatsoever. 

On the theoretical front, the standard literature on this topic, falling under 
rubrics such as “external validity” (Campbell and Stanley, 1963, Manski, 2007), “het
erogeneity” (Höfler, Gloster and Hoyer, 2010), “quasi-experiments” (Shadish, Cook 

and Campbell, 2002, Chapter 3; Adelman, 1991),1 consists primarily of “threats,” 
namely, explanations of what may go wrong when we try to transport results 
from one study to another while ignoring their differences. Rarely do we find an 

analysis of “licensing assumptions,” namely, formal conditions under which the 

1. Manski (2007) defines “external validity” as follows: “An experiment is said to have “external 
validity” if the distribution of outcomes realized by a treatment group is the same as the distri
bution of outcome that would be realized in an actual program.” Campbell and Stanley (1963), 
page 5, take a slightly broader view: ““External validity” asks the question of generalizability: to 

what populations, settings, treatment variables, and measurement variables can this effect be 

generalized?” 
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transport of results across differing environments or populations is licensed from 

first principles.2 

The reasons for this asymmetry are several. First, threats are safer to cite than 

assumptions. He who cites “threats” appears prudent, cautious and thoughtful, 
whereas he who seeks licensing assumptions risks suspicions of attempting to 

endorse those assumptions. 
Second, assumptions are self-destructive in their honesty. The more explicit 

the assumption, the more criticism it invites, for it tends to trigger a richer space 

of alternative scenarios in which the assumption may fail. Researchers prefer, 
therefore, to declare threats in public and make assumptions in private. 

Third, whereas threats can be communicated in plain English, supported by 
anecdotal pointers to familiar experiences, assumptions require a formal lan
guage within which the notion “environment” (or “population”) is given pre
cise characterization, and differences among environments can be encoded and 

analyzed. 
The advent of causal diagrams (Wright, 1921; Heise, 1975; Davis, 1984; Verma and 

Pearl, 1988; Spirtes, Glymour and Scheines, 1993; Pearl, 1995) together with mod
els of interventions (Haavelmo, 1943; Strotz and Wold, 1960) and counterfactuals 
(Neyman, 1923; Rubin, 1974; Robins, 1986; Balke and Pearl, 1995) provides such a 

language and renders the formalization of transportability possible. 
Armed with this language, this paper departs from the tradition of communi

cating “threats” and embarks instead on the task of formulating “licenses to trans
port,” namely, assumptions that, if they held true, would permit us to transport 
results across studies. 

In addition, the paper uses the inferential machinery of the do-calculus (Pearl, 
1995; Koller and Friedman, 2009; Huang and Valtorta, 2006; Shpitser and Pearl, 
2006) to derive algorithms for deciding whether transportability is feasible and 

how experimental and observational findings can be combined to yield unbiased 

estimates of causal effects in the target population. 
The paper is organized as follows. In Section 25.2, we review the foundations 

of structural equations modelling (SEM), the question of identifiability and the 

do-calculus that emerges from these foundations. (This section can be skipped 

2. Hernán and VanderWeele (2011) studied such conditions in the context of compound treat
ments, where we seek to predict the effect of one version of a treatment from experiments with a 

different version. Their analysis is a special case of the theory developed in this paper (Petersen, 
2011). A related application is reported in Robins, Orellana and Rotnitzky (2008) where a treatment 
strategy is extrapolated between two biological similar populations under different observational 
regimes. 
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by readers familiar with these concepts and tools.) In Section 25.3, we motivate 

the question of transportability through simple examples, and illustrate how the 

solution depends on the causal story behind the problem. In Section 25.4, we for
mally define the notion of transportability and reduce it to a problem of symbolic 
transformations in do-calculus. In Section 25.5, we provide a graphical criterion for 
deciding transportability and estimating transported causal effects. We conclude 

in Section 25.6 with brief discussions of related problems of external validity, these 

include statistical transportability and meta-analysis. 

25.2 Preliminaries: The Logical Foundations of Causal Inference 
The tools presented in this paper were developed in the context of non
parametric Structural Equations Models (SEM), which is one among several 
approaches to causal inference and goes back to (Haavelmo, 1943; Strotz and Wold, 
1960). Other approaches include, for example, potential-outcomes (Rubin, 1974), 
Structured Tree Graphs (Robins, 1986), decision analytic (Dawid, 2002), Causal 
Bayesian Networks (Spirtes, Glymour and Scheines, 2000; Pearl, 2000, Chapter 1; 
Bareinboim, Brito and Pearl, 2012), and Settable Systems (White and Chalak, 2009). 
We will first describe the generic features common to all such approaches, and then 

summarize how these features are represented in SEM.3 

25.2.1 Causal Models as Inference Engines 
From a logical viewpoint, causal analysis relies on causal assumptions that cannot 
be deduced from (nonexperimental) data. Thus, every approach to causal inference 

must provide a systematic way of encoding, testing and combining these assump
tions with data. Accordingly, we view causal modeling as an inference engine that 
takes three inputs and produces three outputs. The inputs are: 

I-1. A set A of qualitative causal assumptions which the investigator is prepared 

to defend on scientific grounds, and a model MA that encodes these assump
tions mathematically. (In SEM, MA takes the form of a diagram or a set of 
unspecified functions.) A typical assumption is that no direct effect exists 
between a pair of variables (known as exclusion restriction), or that an 

3. We use the acronym SEM for both parametric and nonparametric representations though, his
torically, SEM practitioners preferred the former (Bollen and Pearl, 2013). Pearl (2011) has used 

the term Structural Causal Models (SCM) to eliminate this confusion. While comparisons of the 

various approaches lie beyond the scope of this paper, we nevertheless propose that their merits 
be judged by the extent to which each facilitates the functions described below. 
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omitted factor, represented by an error term, is independent of other such 

factors observed or unobserved, known as well as unknown. 

I-2. A set Q of queries concerning causal or counterfactual relationships among 

variables of interest. In linear SEM, Q concerned the magnitudes of struc
tural coefficients but, in general, Q may address causal relations directly, for 
example: 

Q1: What is the effect of treatment X on outcome Y? 

Q2: Is this employer practicing gender discrimination? 

In principle, each query Qi ∈ Q should be “well defined,” that is, computable 

from any fully specified model M compatible with A. (See Definition 25.1 for 
formal characterization of a model, and also Section 25.2.4 for the problem 

of identification in partially specified models.) 

I-3. A set D of experimental or non-experimental data, governed by a joint 
probability distribution presumably consistent with A. 

The outputs are: 

O-1. A set A* of statements which are the logical implications of A, separate from 

the data at hand. For example, that X has no effect on Y if we hold Z constant, 
or that Z is an instrument relative to {X, Y}. 

O-2. A set C of data-dependent claims concerning the magnitudes or likelihoods 
of the target queries in Q, each contingent on A. C may contain, for exam
ple, the estimated mean and variance of a given structural parameter, or the 

expected effect of a given intervention. Auxiliary to C, a causal model should 

also yield an estimand Qi(P) for each query in Q, or a determination that Qi 
is not identifiable from P (Definition 25.2). 

O-3. A list T of testable statistical implications of A (which may or may not be 

part of O-2), and the degree g(Ti), Ti ∈ T, to which the data agrees with 

each of those implications. A typical implication would be a conditional 
independence assertion, or an equality constraint between two probabilis
tic expressions. Testable constraints should be read from the model MA (see 

Definition 25.3), and used to confirm or disconfirm the model against the 

data. 

The structure of this inferential exercise is shown schematically in Figure 25.1. For 
a comprehensive review on methodological issues, see Pearl (2009a, 2012a). 
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Q − Estimates of Q(P)

Statistical inference

Causal inference

Goodness of fit

Figure 25.1	 Causal analysis depicted as an inference engine converting assumptions (A), queries 
(Q), and data (D) into logical implications (A*), conditional claims (C), and data-fitness 
indices (g(T)). 

25.2.2 Assumptions in Nonparametric Models 
A structural equation model (SEM) M is defined as follows. 

Definition 25.1 Structural equation model (Pearl, 2000, page 203) 

1. A set U of background or exogenous variables, representing factors outside 

the model, which nevertheless affect relationships within the model. 
2. A set V = {V1, … , Vn} of endogenous variables, assumed to be observable. 

Each of these variables is functionally dependent on some subset PAi of U ∪V . 
3. A set F of functions { f1, … , fn} such that each fi determines the value of Vi ∈ V , 

vi = fi(pai, u). 
4. A joint probability distribution P(u) over U. 

A simple SEM model is depicted in Figure 25.2(a), which represents the follow
ing three functions: 

z = fZ(uZ ), 

x = fX (z, uX ), 

y = fY (x, uY ),	 (25.1) 
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25.2.3 

The diagrams associated with (a) the structural model of Equation (25.1) and (b) the 
modified model of Equation (25.2), representing the intervention do(X = x0). 

where in this particular example, UZ, UX and UY are assumed to be jointly indepen
dent but otherwise arbitrarily distributed. Whenever dependence exists between 

any two exogenous variables, a bidirected arrow will be added to the diagram to 

represent this dependence (e.g., Figure 25.4).4 Each of these functions represents 
a causal process (or mechanism) that determines the value of the left variable (out
put) from the values on the right variables (inputs), and is assumed to be invariant 
unless explicitly intervened on. The absence of a variable from the right-hand side 

of an equation encodes the assumption that nature ignores that variable in the pro
cess of determining the value of the output variable. For example, the absence of 
variable Z from the arguments of fY conveys the empirical claim that variations in 

Z will leave Y unchanged, as long as variables UY and X remain constant. 
It is important to distinguish between a fully specified model in which P(U) and 

the collection of functions F are specified and a partially specified model, usually 
in the form of a diagram. The former entails one and only one observational dis
tribution P(V); the latter entails a set of observational distributions P(V) that are 

compatible with the graph (those that can be generated by specifying ⟨F, P(u)⟩). 

Representing Interventions, Counterfactuals and Causal Effects 
This feature of invariance permits us to derive powerful claims about causal effects 
and counterfactuals, even in nonparametric models, where all functions and dis
tributions remain unknown. This is done through a mathematical operator called 

do(x), which simulates physical interventions by deleting certain functions from 

the model, replacing them with a constant X = x, while keeping the rest of the 

model unchanged (Haavelmo, 1943; Strotz and Wold, 1960; Pearl, 2014). For exam
ple, to emulate an intervention do(x0) that sets X to a constant x0 in model M of 
Figure 25.2(a), the equation for x in Equation (25.1) is replaced by x = x0, and we 

4. More precisely, the absence of bidirected arrows implies marginal independences relative of 
the respective exogenous variables. In other words, the set of all bidirected edges constitute an 

i-map of P(U) (Richardson, 2003). 
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obtain a new model, Mx0 , 

z = fZ(uZ ), 

x = x0,
 

y = fY (x, uY ), (25.2)
 

the graphical description of which is shown in Figure 25.2(b). 
The joint distribution associated with this modified model, denoted 

P(z, y | do(x0)) describes the postintervention distribution of variables Y and Z (also 

called “controlled” or “experimental” distribution), to be distinguished from the 

preintervention distribution, P(x, y, z), associated with the original model of Equa
tion (25.1). For example, if X represents a treatment variable, Y a response variable, 
and Z some covariate that affects the amount of treatment received, then the distri
bution P(z, y | do(x0)) gives the proportion of individuals that would attain response 

level Y = y and covariate level Z = z under the hypothetical situation in which 

treatment X = x0 is administered uniformly to the population.5 

In general, we can formally define the postintervention distribution by the 

equation 

PM (y | do(x)) = PMx (y). (25.3) 

In words, in the framework of model M, the postintervention distribution of out
come Y is defined as the probability that model Mx assigns to each outcome level 
Y = y. From this distribution, which is readily computed from any fully specified 

model M, we are able to assess treatment efficacy by comparing aspects of this 
distribution at different levels of x0.6 

25.2.4 Identification, d-Separation and Causal Calculus 
A central question in causal analysis is the question of identification of causal 
queries (e.g., the effect of intervention do(X = x0)) from a combination of data and 

a partially specified model, for example, when only the graph is given and neither 
the functions F nor the distribution of U. In linear parametric settings, the question 

of identification reduces to asking whether some model parameter, 𝛽, has a unique 

5. Equivalently, P(z, y | do(x0)) can be interpreted as the joint probability of (Z = z, Y = y) under 
a randomized experiment among units receiving treatment level X = x0. Readers versed in 

potential-outcome notations may interpret P(y | do(x), z) as the probability P(Yx = y | Zx = z), 
where Yx is the potential outcome under treatment X = x. 

6. Counterfactuals are defined similarly through the equation Yx(u) = YMx (u) (see Pearl, 2009b, 
Chapter 7), but will not be needed for the discussions in this paper. 
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solution in terms of the parameters of P (say the population covariance matrix). 
In the nonparametric formulation, the notion of “has a unique solution” does not 
directly apply since quantities such as Q(M) = P(y | do(x)) have no parametric signa
ture and are defined procedurally by simulating an intervention in a causal model 
M, as in Equation (25.2). The following definition captures the requirement that Q 

be estimable from the data: 

Identifiability 
A causal query Q(M) is identifiable, given a set of assumptions A, if for any two (fully 
specified) models, M1 and M2, that satisfy A, we have7 

P(M1) = P(M2) ⟹ Q(M1) = Q(M2).	 (25.4) 

In words, the functional details of M1 and M2 do not matter; what matters is 
that the assumptions in A (e.g., those encoded in the diagram) would constrain the 

variability of those details in such a way that equality of P’s would entail equality of 
Q’s. When this happens, Q depends on P only, and should therefore be expressible 

in terms of the parameters of P. 
When a query Q is given in the form of a do-expression, for example, Q = 

P(y | do(x), z), its identifiability can be decided systematically using an algebraic pro
cedure known as the do-calculus (Pearl, 1995). It consists of three inference rules 
that permit us to map interventional and observational distributions whenever 
certain conditions hold in the causal diagram G. 

The conditions that permit the application these inference rules can be read off 
the diagrams using a graphical criterion known as d-separation (Pearl, 1988). 

d-separation 

A set S of nodes is said to block a path p if either 

1.	 p contains at least one arrow-emitting node that is in S, or 
2.	 p contains at least one collision node that is outside S and has no descendant 

in S. 

If S blocks all paths from set X to set Y, it is said to “d-separate X and Y ,” and then, 
8it can be shown that variables X and Y are independent given S, written X ⊥⊥ Y | S. 

7. An implication similar to (25.4) is used in the standard statistical definition of parameter iden
tification, where it conveys the uniqueness of a parameter set 𝜃 given a distribution P𝜃 (Lehmann 

and Casella, 1998). To see the connection, one should think about the query Q = P(y | do(x)) as a 

function Q = g(𝜃) where 𝜃 is the pair F ∪ P(u) that characterizes a fully specified model M. 

8. See Hayduk, Cummings, and Stratkotter (2003), Glymour and Greenland (2008) and Pearl 
(2009b), pages 335, for a gentle introduction to d-separation. 
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25.2.5 

Rule 25.1 

Rule 25.2 

Rule 25.3 

D-separation reflects conditional independencies that hold in any distribution 

P(v) that is compatible with the causal assumptions A embedded in the diagram. 
To illustrate, the path UZ → Z → X → Y in Figure 25.2(a) is blocked by S = {Z} 

and by S = {X}, since each emits an arrow along that path. Consequently we can 

infer that the conditional independencies UZ ⊥⊥ Y | Z and UZ ⊥⊥ Y | X will be satis
fied in any probability function that this model can generate, regardless of how we 

parameterize the arrows. Likewise, the path UZ → Z → X ← UX is blocked by the 

null set {∅}, but it is not blocked by S = {Y} since Y is a descendant of the colli
sion node X. Consequently, the marginal independence UZ ⊥⊥ UX will hold in the 

distribution, but UZ ⊥⊥ UX | Y may or may not hold.9 

The Rules of do-Calculus 
Let X, Y, Z and W be arbitrary disjoint sets of nodes in a causal DAG G. We denote 

by GX the graph obtained by deleting from G all arrows pointing to nodes in X. Like
wise, we denote by GX the graph obtained by deleting from G all arrows emerging 

from nodes in X. To represent the deletion of both incoming and outgoing arrows, 
we use the notation GXZ . 

The following three rules are valid for every interventional distribution compat
ible with G: 

Insertion/deletion of observations 

P(y | do(x), z, w) = P(y | do(x), w) if (Y ⊥⊥ Z | X, W)GX 
. (25.5) 

Action/observation exchange 

P(y | do(x), do(z), w) = P(y | do(x), z, w) if (Y ⊥⊥ Z | . (25.6)X, W)GXZ 

Insertion/deletion of actions 

P(y | do(x), do(z), w) = P(y | do(x), w) if (Y ⊥⊥ Z | (25.7)X, W)GXZ(W) 
, 

where Z(W) is the set of Z-nodes that are not ancestors of any W -node in GX . 
To establish identifiability of a query Q, one needs to repeatedly apply the rules 

of do-calculus to Q, until the final expression no longer contains a do-operator;10 

this renders it estimable from nonexperimental data. The do-calculus was proven 

9. This special handling of collision nodes (or colliders, e.g., Z → X ← UX ) reflects a general 
phenomenon known as Berkson’s paradox (Berkson, 1946), whereby observations on a common 

consequence of two independent causes render those causes dependent. For example, the out
comes of two independent coins are rendered dependent by the testimony that at least one of 
them is a tail. 

10. Such derivations are illustrated in graphical details in Pearl (2009b), page 87. 
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to be complete for the identifiability of causal effects in the form Q = P(y | do(x), z) 
(Shpitser and Pearl, 2006; Huang and Valtorta, 2006), which means that if Q cannot 
be expressed in terms of the probability of observables P by repeated application 

of these three rules, such an expression does not exist. In other words, the query 
is not estimable from observational studies without making further assumptions, 
for example, linearity, monotonicity, additivity, absence of interactions, etc. 

We shall see that, to establish transportability, the goal will be different; instead 

of eliminating do-operators from the query expression, we will need to separate 

them from a set of variables S that represent disparities between populations. 

25.3 Inference Across Populations: Motivating Examples 
To motivate the treatment of Section 25.4, we first demonstrate some of the subtle 

questions that transportability entails through three simple examples, informally 
depicted in Figure 25.3. 

Example 25.1	 Consider the graph in Figure 25.3(a) that represents cause-effect relationships in 

the pretreatment population in Los Angeles. We conduct a randomized trial in Los 
Angeles and estimate the causal effect of exposure X on outcome Y for every age 

group Z = z.11,12 We now wish to generalize the results to the population of New 

York City (NYC), but data alert us to the fact that the study distribution P(x, y, z) in 

LA is significantly different from the one in NYC (call the latter P*(x, y, z)). In partic
ular, we notice that the average age in NYC is significantly higher than that in LA. 
How are we to estimate the causal effect of X on Y in NYC, denoted P*(y | do(x))? 

YX YX YX

(c)(b)(a)

Z Unobserved Unobserved

Z

Z

Unobserved

Figure 25.3	 Causal diagrams depicting Examples 25.1–25.3. In (a) Z represents “age.” In (b), Z repre
sents “linguistic skills” while age (in hollow circle) is unmeasured. In (c), Z represents 
a biological marker situated between the treatment (X) and a disease (Y). 

11. Throughout the paper, each graph represents the causal structure of the population prior to 

the treatment, hence X stands for the level of treatment taken by an individual out of free choice. 

12. The arrow from Z to X represents the tendency of older people to seek treatment more often 

than younger people, and the arrow from Z to Y represents the effect of age on the outcome. 
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Our natural inclination would be to assume that age-specific effects are invari
ant across cities and so, if the LA study provides us with (estimates of) age-specific 
causal effects P(y | do(x), Z = z), the overall causal effect in NYC should be 

P*(y | do(x)) = ∑ P(y | do(x), z)P*(z).	 (25.8) 
z 

This transport formula combines experimental results obtained in LA, 
P(y | do(x), z), with observational aspects of NYC population, P*(z), to obtain an 

experimental claim P*(y | do(x)) about NYC.13 

Our first task in this paper will be to explicate the assumptions that renders 
this extrapolation valid. We ask, for example, what must we assume about other 
confounding variables beside age, both latent and observed, for Equation (25.8) 
to be valid, or, would the same transport formula hold if Z was not age, but some 

proxy for age, say, language proficiency? More intricate yet, what if Z stood for an 

exposure-dependent variable, say hypertension level, that stands between X and Y? 
Let us examine the proxy issue first. 

Example 25.2	 Let the variable Z in Example 25.1 stand for subject’s language proficiency, and 

let us assume that Z does not affect exposure (X) or outcome (Y), yet it correlates 
with both, being a proxy for age which is not measured in either study [see 

Figure 25.3(b)]. Given the observed disparity P(z) ̸ P*(z), how are we to estimate = 

the causal effect P*(y | do(x)) for the target population of NYC from the z-specific 
causal effect P(y | do(x), z) estimated at the study population of LA? 

The inequality P(z) ̸= P*(z) in this example may reflect either age difference or 
differences in the way that Z correlates with age. If the two cities enjoy identical 
age distributions and NYC residents acquire linguistic skills at a younger age, then 

since Z has no effect whatsoever on X and Y, the inequality P(z) ̸ P*(z) can be = 

ignored and, intuitively, the proper transport formula would be 

P*(y | do(x)) = P(y | do(x)).	 (25.9) 

If, on the other hand, the conditional probabilities P(z | age) and P*(z | age) are the 

same in both cities, and the inequality P(z) ̸= P*(z) reflects genuine age differences, 
Equation (25.9) is no longer valid, since the age difference may be a critical factor in 

determining how people react to X. We see, therefore, that the choice of the proper 

13. At first glance, Equation (25.8) may be regarded as a routine application of “standardization” or 
“recalibration”—a statistical extrapolation method that can be traced back to a century-old tra
dition in demography and political arithmetic (Westergaard, 1916; Yule, 1934; Lane and Nelder, 
1982). On a second thought it raises the deeper question of why we consider age-specific effects 
to be invariant across populations. See discussion following Example 25.2. 



Example 25.3 

25.3 Inference Across Populations: Motivating Examples 463 

transport formula depends on the causal context in which population differences 
are embedded. 

This example also demonstrates why the invariance of Z-specific causal effects 
should not be taken for granted. While justified in Example 25.1, with Z = age, it 
fails in Example 25.2, in which Z was equated with “language skills.” Indeed, using 

Figure 25.3(b) for guidance, the Z-specific effect of X on Y in NYC is given by: 

P*(y | do(x), z) 

= ∑ P*(y | do(x), z, age)P*(age | do(x), z) 
age 

= ∑ P*(y | do(x), age)P*(age | z) 
age 

= ∑ P(y | do(x), age)P*(age | z). 
age 

Thus, if the two populations differ in the relation between age and skill, that is, 

P(age | ̸ | z)z) = P*(age 

the skill-specific causal effect would differ as well. 
The intuition is clear. A NYC person at skill level Z = z is likely to be in a totally 

different age group from his skill-equals in Los Angeles and, since it is age, not 
skill that shapes the way individuals respond to treatment, it is only reasonable 

that Los Angeles residents would respond differently to treatment than their NYC 

counterparts at the very same skill level. 
The essential difference between Examples 25.1 and 25.2 is that age is normally 

taken to be an exogenous variable (not assigned by other factors in the model) while 

skills may be indicative of earlier factors (age, education, ethnicity) capable of mod
ifying the causal effect. Therefore, conditional on skill, the effect may be different 
in the two populations. 

Examine the case where Z is a X-dependent variable, say a disease bio-marker, 
standing on the causal pathways between X and Y as shown in Figure 25.3(c). 
Assume further that the disparity P(z | x) ̸ P*(z | x) is discovered and that, again, = 

both the average and the z-specific causal effect P(y | do(x), z) are estimated in the LA 

experiment, for all levels of X and Z. Can we, based on information given, estimate 

the average (or z-specific) causal effect in the target population of NYC? 

Here, Equation (25.8) is wrong because the overall causal effect (in both LA 

and NYC) is no longer a simple average of the z-specific causal effects. The correct 
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weighting rule is 

P*(y | do(x)) 

= ∑ P*(y | do(x), z)P*(z | do(x)), (25.10) 
z 

which reduces to (25.8) only in the special case where Z is unaffected by X. 
Equation (25.9) is also wrong because we can no longer argue, as we did in 

Example 25.2, that Z does not affect Y, hence it can be ignored. Here, Z lies on 

the causal pathway between X and Y so, clearly, it affects their relationship. What 
then is the correct transport formula for this scenario? 

To cast this example in a more realistic setting, let us assume that we wish to 

use Z as a “surrogate endpoint” to predict the efficacy of treatment X on outcome 

Y, where Y is too difficult and/or expensive to measure routinely (Prentice, 1989; 
Ellenberg and Hamilton, 1989). Thus, instead of considering experimental and 

observational studies conducted at two different locations, we consider two such 

studies taking place at the same location, but at different times. In the first study, 
we measure P(y, z | do(x)) and discover that Z is a good surrogate, namely, know
ing the effect of treatment on Z allows prediction of the effect of treatment on the 

more clinically relevant outcome (Y) (Joffe and Greene, 2009). Once Z is proclaimed 

a “surrogate endpoint,” it invites efforts to find direct means of controlling Z. 
For example, if cholesterol level is found to be a predictor of heart diseases in a 

long-run trial, drug manufacturers would rush to offer cholesterol-reducing sub
stances for public consumption. As a result, both the prior P(z) and the treatment-
dependent probability P(z | do(x)) would undergo a change, resulting in P*(z) and 

P*(z | do(x)), respectively. 
We now wish to reassess the effect of the drug P*(y | do(x)) in the new popula

tion and do it in the cheapest possible way, namely, by conducting an observational 
study to estimate P*(z, x), acknowledging that confounding exists between X and Y 

and that the drug affects Y both directly and through Z, as shown in Figure 25.3(c). 
Using a graphical representation to encode the assumptions articulated thus 

far, and further assuming that the disparity observed stems only from a difference 

in people’s susceptibility to X (and not due to a change in some unobservable con
founder), we will prove in Section 25.5 that the correct transport formula should 

be 

P*(y | do(x)) = ∑ P(y | do(x), z)P*(z | x), (25.11) 
z 
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which is different from both (25.8) and (25.9). It calls instead for the z-specific 
effects to be reweighted by the conditional probability P*(z | x), estimated in the 

target population.14 

To see how the transportability problem fits into the general scheme of causal 
analysis discussed in Section 25.2.1 (Figure 25.1), we note that, in our case, the 

data comes from two sources, experimental (from the study) and non-experimental 
(from the target), assumptions are encoded in the form of selection diagrams, and 

the query stands for the causal effect (e.g., P*(y | do(x))). Although this paper does 
not discuss the goodness-of-fit problem, standard methods are available for testing 

the compatibility of the selection diagram with the data available. 

25.4 Formalizing Transportability 

25.4.1 Selection Diagrams and Selection Variables 
The pattern that emerges from the examples discussed in Section 25.3 indicates 
that transportability is a causal, not statistical notion. In other words, the con
ditions that license transport as well as the formulas through which results are 

transported depend on the causal relations between the variables in the domain, 
not merely on their statistics. For instance, it was important in Example 25.3 to 

ascertain that the change in P(z | x) was due to the change in the way Z is affected by 
X, but not due to a change in confounding conditions between the two. This cannot 
be determined solely by comparing P(z | x) and P*(z | x). If X and Z are confounded 

[e.g., Figure 25.6(e)], it is quite possible for the inequality P(z | ̸ | x) to hold, x) = P*(z 
reflecting differences in confounding, while the way that Z is affected by X (i.e., 
P(z | do(x))) is the same in the two populations—a different transport formula will 
then emerge for this case. 

Consequently, licensing transportability requires knowledge of the mecha
nisms, or processes, through which population differences come about; differ
ent localization of these mechanisms yield different transport formulae. This can 

be seen most vividly in Example 25.2 [Figure 25.3(b)] where we reasoned that no 

reweighting is necessary if the disparity P(z) ̸ P*(z) originates with the way lan= 

guage proficiency depends on age, while the age distribution itself remains the 

same. Yet, because age is not measured, this condition cannot be detected in 

the probability distribution P, and cannot be distinguished from an alternative 

14. Quite often the possibility of running a second randomized experiment to estimate P*(z | do(x)) 
is also available to investigators, though at a higher cost. In such cases, a transport formula 

would be derivable under more relaxed assumptions, for example, allowing for X and Z to be 

confounded. 
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condition, 

P(age) ̸ and P(z | age) = P*(z |= P*(age) age), 

one that may require reweighting according to Equation (25.8). In other words, 
every probability distribution P(x, y, z) that is compatible with the process of 
Figure 25.3(b) is also compatible with that of Figure 25.3(a) and, yet, the two 

processes dictate different transport formulas. 
Based on these observations, it is clear that if we are to represent formally the 

differences between populations (similarly, between experimental settings or envi
ronments), we must resort to a representation in which the causal mechanisms are 

explicitly encoded and in which differences in populations are represented as local 
modifications of those mechanisms. 

To this end, we will use causal diagrams augmented with a set, S, of “selection 

variables,” where each member of S corresponds to a mechanism by which the two 

populations differ, and switching between the two populations will be represented 

by conditioning on different values of these S variables.15 

Intuitively, if P(v | do(x)) stands for the distribution of a set V of variables in the 

experimental study (with X randomized) then we designate by P*(v | do(x)) the dis
tribution of V if we were to conduct the study on population Π* instead of Π. We 

now attribute the difference between the two to the action of a set S of selection 

variables, and write16,17 

P*(v | do(x)) = P(v | do(x), s *). 

The selection variables in S may represent all factors by which populations may 
differ or that may “threaten” the transport of conclusions between populations. For 

15. Disparities among populations or subpopulations can also arise from differences in design; 
for example, if two samples are drawn by different criteria from a given population. The prob
lem of generalizing between two such subpopulations is usually called sampling selection bias 
(Heckman, 1979; Hernán, Hernández-Díaz and Robins, 2004; Cole and Stuart, 2010; Pearl, 2013; 
Bareinboim, Tian and Pearl, 2014). In this paper, we deal only with nature-induced, not man-made 

disparities. 

16. Alternatively, one can represent the two populations’ distributions by P(v | do(x), s), and 

P(v | do(x), s *), respectively. The results, however, will be the same, since only the location of S 

enters the analysis. 

17. Pearl (1993, 2009b, page 71), Spirtes, Glymour and Scheines (1993) and Dawid (2002), for 
example, use conditioning on auxiliary variables to switch between experimental and observa
tional studies. Dawid (2002) further uses such variables to represent changes in parameters of 
probability distributions. 
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Z YX
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Figure 25.4	 Selection diagrams depicting specific versions of Examples 25.1–25.3. In (a), the two 
populations differ in age distributions. In (b), the populations differ in how Z depends 
on age (an unmeasured variable, represented by the hollow circle) and the age dis
tributions are the same. In (c), the populations differ in how Z depends on X. In all 
diagrams, dashed arcs (e.g., X +----+ Y) represent the presence of latent variables 
affecting both X and Y. 

example, in Figure 25.4(a) the age disparity P(z) ̸= P*(z) discussed in Example 25.1 
will be represented by the inequality 

P(z) ̸ |= P(z s), 

where S stands for all factors responsible for drawing subjects at age Z = z to NYC 

rather than LA. 
Of equal importance is the absence of an S variable pointing to Y in 

Figure 25.4(a), which encodes the assumption that age-specific effects are invariant 
across the two populations. 

This graphical representation, which we will call “selection diagrams” is 
defined as follows:18 

Definition 25.4	 Selection diagram 

Let ⟨M, M*⟩ be a pair of structural causal models (Definition 25.1) relative to 

domains ⟨Π, Π*⟩, sharing a causal diagram G. ⟨M, M*⟩ is said to induce a selection 

diagram D if D is constructed as follows: 

1. Every edge in G is also an edge in D; 

18. The assumption that there are no structural changes between domains can be relaxed starting 

with D = G* and adding S-nodes following the same procedure as in Definition 25.4, while enforc
ing acyclicity. In extreme cases in which the two domains differ in causal directionality (Spirtes, 
Glymour and Scheines, 2000, pages 298–299), acyclicity cannot be maintained. This complication 

as well as one created when G is an edge-super set of G* require a more elaborated graphical 
representation and lie beyond the scope of this paper. 
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25.4.2 

Definition 25.5 

2.	 D contains an extra edge Si → Vi whenever there might exist a discrepancy 
fi ̸ or P(Ui) = P*(Ui) between M and M* .= fi 

* ̸

In summary, the S-variables locate the mechanisms where structural discrepan
cies between the two populations are suspected to take place. Alternatively, the 

absence of a selection node pointing to a variable represents the assumption that 
the mechanism responsible for assigning value to that variable is the same in the 

two populations. In the extreme case, we could add selection nodes to all variables, 
which means that we have no reason to believe that the populations share any 
mechanism in common, and this, of course would inhibit any exchange of infor
mation among the populations. The invariance assumptions between populations, 
as we will see, will open the door for the transport of some experimental findings. 

For clarity, we will represent the S variables by squares, as in Figure 25.4, which 

uses selection diagrams to encode the three examples discussed in Section 25.3. 
(Besides the S variables, these graphs also include additional latent variables, rep
resented by bidirected edges, which makes the examples more realistic.) In partic
ular, Figure 25.4(a) and 25.4(b) represent, respectively, two different mechanisms 
responsible for the observed disparity P(z) ̸ P*(z). The first [Figure 25.4(a)] dic= 

tates transport formula (25.8), while the second [Figure 25.4(b)] calls for direct, 
unadjusted transport (25.9). This difference stems from the location of the S vari
ables in the two diagrams. In Figure 25.4(a), the S variable represents unspec
ified factors that cause age differences between the two populations, while in 

Figure 25.4(b), S represents factors that cause differences in reading skills (Z) while 

the age distribution itself (unobserved) remains the same. 
In this paper, we will address the issue of transportability assuming that scien

tific knowledge about invariance of certain mechanisms is available and encoded 

in the selection diagram through the S nodes. Such knowledge is, admittedly, more 

demanding than that which shapes the structure of each causal diagram in iso
lation. It is, however, a prerequisite for any attempt to justify transfer of findings 
across populations, which makes selection diagrams a mathematical object worthy 
of analysis. 

Transportability: Definitions and Examples 
Using selection diagrams as the basic representational language, and harnessing 

the concepts of intervention, do-calculus, and identifiability (Section 25.2), we can 

now give the notion of transportability a formal definition. 

Transportability 
Let D be a selection diagram relative to domains ⟨Π, Π*⟩. Let ⟨P, I⟩ be the pair of 
observational and interventional distributions of Π, and P* be the observational 
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distribution of Π*. The causal relation R(Π*) = P*(y | do(x), z) is said to be trans
portable from Π to Π* in D if R(Π*) is uniquely computable from P, P* , I in any 
model that induces D. 

Two interesting connections between identifiability and transportability are 

worth noting. First, note that all identifiable causal relations in D are also trans
portable, because they can be computed directly from P* and require no experi
mental information from Π. Second, note that given causal diagram G, one can 

produce a selection diagram D such that identifiability in G is equivalent to trans
portability in D. First set D = G, and then add selection nodes pointing to all 
variables in D, which represents that the target domain does not share any mech
anism with its counterpart—this is equivalent to the problem of identifiability 
because the only way to achieve transportability is to identify R from scratch in 

the target population. 
While the problems of identifiability and transportability are related, proofs 

of nontransportability are more involved than those of nonidentifiability for they 
require one to demonstrate the nonexistence of two competing models compatible 

with D, agreeing on {P, P* , I}, and disagreeing on R(Π*). 
Definition 25.5 is declarative, and does not offer an effective method of demon

strating transportability even in simple models. Theorem 25.1 offers such a method 

using a sequence of derivations in do-calculus. 

Let D be the selection diagram characterizing two populations, Π and Π*, and S a set 
of selection variables in D. The relation R = P*(y | do(x), z) is transportable from Π to 

Π* if the expression P(y | do(x), z, s) is reducible, using the rules of do-calculus, to an 

expression in which S appears only as a conditioning variable in do-free terms. 

Proof. Every relation satisfying the condition of Theorem 25.1 can be written as 
an algebraic combination of two kinds of terms, those that involve S and those 

that do not. The former can be written as P*-terms and are estimable, therefore, 
from observations on Π*, as required by Definition 25.5. All other terms, especially 
those involving do-operators, do not contain S; they are experimentally identifiable 

therefore in Π. ■ 

This criterion was proven to be both sufficient and necessary for causal effects, 
namely R = P*(y | do(x)) (Bareinboim and Pearl, 2012). Theorem 25.1, though proce
dural, does not specify the sequence of rules leading to the needed reduction when 

such a sequence exists. Bareinboim and Pearl (2013b) derived a complete procedu
ral solution for this, based on graphical method developed in (Tian and Pearl, 2002; 
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Example 25.4 

Definition 25.7 

Remark 

Example 25.5 

Example 25.6 

Shpitser and Pearl, 2006). Despite its completeness, however, the procedural solu
tion is not trivial, and we take here an alternative route to establish a simple and 

transparent procedure for confirming transportability, guided by two recognizable 

subgoals. 

Trivial transportability 
A causal relation R is said to be trivially transportable from Π to Π*, if R(Π*) is 
identifiable from (G* , P*). 

This criterion amounts to an ordinary test of identifiability of causal relations 
using graphs, as given by Definition 25.2. It permits us to estimate R(Π*) directly 
from observational studies on Π*, un-aided by causal information from Π. 

Let R be the causal effect P*(y | do(x)) and let the selection diagram of Π and Π* be 

given by X → Y ← S, then R is trivially transportable, since R(Π*) = P*(y | x). 

Another special case of transportability occurs when a causal relation has 
identical form in both domains—no recalibration is needed. 

Direct transportability 
A causal relation R is said to be directly transportable from Π to Π*, if R(Π*) = R(Π). 

A graphical test for direct transportability of R = P*(y | do(x), z) follows from do-
calculus and reads: (S ⊥⊥ Y | X, Z)GX 

; in words, X blocks all paths from S to Y once 

we remove all arrows pointing to X and condition on Z. As a concrete example, this 
test is satisfied in Figure 25.4(a) and, therefore, the z-specific effects is the same in 

both populations; it is directly transportable. 

The notion of “external validity” as defined by Manski (2007) (footnote 1) corre
sponds to Direct Transportability, for it requires that R retains its validity without 
adjustment, as in Equation (25.9). Such conditions preclude the use of information 

from Π* to recalibrate R. 

Let R be the causal effect of X on Y, and let D have a single S node pointing to X, then 

R is directly transportable, because causal effects are independent of the selection 

mechanism (see Pearl, 2009b, pages 72 and 73). 

Let R be the z-specific causal effect of X on Y P*(y | do(x), z) where Z is a set of 
variables, and P and P* differ only in the conditional probabilities P(z | pa(Z)) and 

P*(z | pa(Z)) such that (Z ⊥⊥ Y | pa(Z)), as shown in Figure 25.4(b). Under these con
ditions, R is not directly transportable. However, the pa(Z)-specific causal effects 
P*(y | do(x), pa(Z)) are directly transportable, and so is P*(y | do(x)). Note that, due to 

the confounding arcs, none of these quantities is identifiable. 
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25.5 Transportability of Causal Effects—A Graphical Criterion
 
We now state and prove two theorems that permit us to decide algorithmically,
 
given a selection diagram, whether a relation is transportable between two popu
lations, and what the transport formula should be.
 

Theorem 25.2	 Let D be the selection diagram characterizing two populations, Π and Π*, and S the set of 
selection variables in D. The strata-specific causal effect P*(y | do(x), z) is transportable 
from Π to Π* if Z d-separates Y from S in the X-manipulated version of D, that is, Z 

satisfies (Y ⊥⊥ S | Z, X)DX 
. 

Proof. 

P*(y | do(x), z) = P(y | do(x), z, s *). 

From Rule 25.1 of do-calculus we have: P(y | do(x), z, s *) = P(y | do(x), z) whenever Z 

satisfies (Y ⊥⊥ S | Z, X) in DX . This proves Theorem 25.2. ■ 

Definition 25.8	 S-admissibility 
A set T of variables satisfying (Y ⊥⊥ S | T, X) in DX will be called S-admissible (with 

respect to the causal effect of X on Y). 

Corollary 25.1	 The average causal effect P*(y | do(x)) is transportable from Π to Π* if there exists a 

set Z of observed pretreatment covariates that is S-admissible. Moreover, the transport 
formula is given by the weighting of Equation (25.8). 

Example 25.7	 The causal effect is transportable in Figure 25.4(a), since Z is S-admissible, and in 

Figure 25.4(b), where the empty set is S-admissible. It is also transportable by the 

same criterion in Figure 25.5(b), where W is S-admissible, but not in Figure 25.5(a) 
where no S-admissible set exists. 

Corollary 25.2 Any S variable that is pointing directly into X as in Figure 25.6(a), or that is d-separated 

from Y in DX can be ignored. 

S

X Y

S

ZZ

(a)

Y

W

X

(b)

Figure 25.5 Selection diagrams illustrating S-admissibility. (a) Has no S-admissible set while in (b), 
W is S-admissible. 
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Figure 25.6	 Selection diagrams illustrating transportability. The causal effect P(y | do(x)) is 
(trivially) transportable in (c) but not in (b) and (f). It is transportable in (a), (d), and (e) 
(see Corollary 25.2). 

This follows from the fact that the empty set is S-admissible relative to any 
such S variable. Conceptually, the corollary reflects the understanding that dif
ferences in propensity to receive treatment do not hinder the transportability of 
treatment effects; the randomization used in the experimental study washes away 
such differences. 

We now generalize Theorem 25.2 to cases involving treatment-dependent Z 

variables, as in Figure 25.4(c). 

Theorem 25.3	 The average causal effect P*(y | do(x)) is transportable from Π to Π* if either one of the 
following conditions holds: 

1.	 P*(y | do(x)) is trivially transportable; 
2.	 There exists a set of covariates, Z (possibly affected by X) such that Z is 

S-admissible and for which P*(z | do(x)) is transportable; 
3.	 There exists a set of covariates, W that satisfy (X ⊥⊥ Y | W)DX(W) 

and for which 

P*(w | do(x)) is transportable. 

Proof. 1. Condition 1 entails transportability. 
2. If condition 2 holds, it implies 

P*(y | do(x)) = P(y | do(x), s) (25.12) 

= ∑ P(y | do(x), z, s)P(z | do(x), s) (25.13) 
z 

= ∑ P(y | do(x), z)P*(z | do(x)). (25.14) 
z 
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We now note that the transportability of P(z | do(x)) should reduce P*(z | do(x)) to a 

star-free expression and would render P*(y | do(x)) transportable. 
3. If condition 3 holds, it implies 

P*(y | do(x)) = P(y | do(x), s) (25.15) 

= ∑ P(y | do(x), w, s)P(w | do(x), s) (25.16) 
w 

= ∑ P(y | w, s)P*(w | do(x)) (25.17) 
w 

(by Rule 25.3 of do-calculus) 

= ∑ P*(y | w)P*(w | do(x)). (25.18) 
w 

We similarly note that the transportability of P*(w | do(x)) should reduce 

P(w | do(x), s) to a star-free expression and would render P*(y | do(x)) transportable. 
This proves Theorem 25.3. ■ 

To illustrate the application of Theorem 25.3, let us apply it to Figure 25.4(c), 
which corresponds to the surrogate endpoint problem discussed in Section 25.3 
(Example 25.3). Our goal is to estimate P*(y | do(x))—the effect of X on Y in the 

new population created by changes in how Z responds to X. The structure of 
the problem permits us to satisfy condition 2 of the Theorem 25.3, since Z is 
S-admissible and P*(z | do(x)) is trivially transportable. The former can be seen from 

(S ⊥⊥ Y | X, Z)GX 
, hence P*(y | do(x), z) = P(y | do(x), z)); the latter can be seen from 

the fact that X and Z are unconfounded, hence P*(z | do(x)) = P*(z | x). Putting the 

two together, we get 

P*(y | do(x)) = ∑ P(y | do(x), z)P*(z | x), (25.19) 
z 

which proves Equation (25.11). 

The test entailed by Theorem 25.3 is recursive, since the transportability of one 

causal effect depends on that of another. However, given that the diagram is finite 

and acyclic, the sets Z and W needed in conditions 2 and 3 of Theorem 25.3 would 

become closer and closer to X, and the iterative process will terminate after a 

finite number of steps. This occurs because the causal effects P*(z | do(x)) (like
wise, P*(w | do(x))) is trivially transportable and equals P(z) for any Z node that is 
not a descendant of X. Thus, the need for reiteration applies only to those mem
bers of Z that lie on the causal pathways from X to Y. Note further that the analyst 
need not terminate the procedure upon satisfying the conditions of Theorem 25.3. 
If one wishes to reduce the number of experiments, it can continue until no further 
reduction is feasible. 
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Figure 25.6(d) requires that we invoke both conditions of Theorem 25.3, iteratively. 
To satisfy condition 2, we note that Z is S-admissible, and we need to prove the 

transportability of P*(z | do(x)). To do that, we invoke condition 3 and note that 
W d-separates X from Z in D. There remains to confirm the transportability of 
P*(w | do(x)), but this is guaranteed by the fact that the empty set is S-admissible rel
ative to W, since (W ⊥⊥ S). Hence, by Theorem 25.2 (replacing Y with W) P*(w | do(x)) 
is transportable, which bestows transportability on P*(y | do(x)). Thus, the final 
transport formula (derived formally in 25.A) is: 

P*(y | do(x)) = ∑ P(y | do(x), z) ⋅∑ P(w | do(x))P*(z | w). (25.20) 
z w 

The first two factors of the expression are estimable in the experimental study, and 

the third through observational studies on the target population. Note that the 

joint effect P(y, w, z | do(x)) need not be estimated in the experiment; a decomposi
tion that results in decrease of measurement cost and sampling variability. 

A similar analysis proves the transportability of the causal effect in 

Figure 25.6(e) (see Pearl and Bareinboim, 2011). The model of Figure 25.6(f), how
ever, does not allow for the transportability of P*(y | do(x)) as witnessed by the 

absence of S-admissible set in the diagram, and the inapplicability of condition 3 
of Theorem 25.3. 

To illustrate the power of Theorem 25.3 in discerning transportability and deriv
ing transport formulae, Figure 25.7 represents a more intricate selection diagram, 
which requires several iteration to discern transportability. The transport formula 

for this diagram is given by (derived formally in 25.A): 

P*(y | do(x)) = ∑ P(y | do(x), z) ⋅∑ P*(z | w)∑ P(w | do(x), t)P*(t). (25.21) 
z w t 

The main power of this formula is to guide investigators in deciding what mea
surements need be taken in both the experimental study and the target population. 
It asserts, for example, that variables U and V need not be measured. It likewise 

asserts that the W -specific causal effects need not be estimated in the experimen
tal study and only the conditional probabilities P*(z | w) and P*(t) need be estimated 

in the target population. The derivation of this formulae is given in 25.A. 
Despite its power, Theorem 25.3 in not complete, namely, it is not guaranteed 

to approve all transportable relations or to disapprove all nontransportable ones. 
An example of the former is contrived in Bareinboim and Pearl (2012), where an 

alternative, necessary and sufficient condition is established in both graphical 
and algorithmic form. Theorem 25.3 provides, nevertheless, a simple and powerful 
method of establishing transportability in practice. 
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Figure 25.7	 Selection diagram in which the causal effect is shown to be transportable in multiple 
iterations of Theorem 25.3 (see 25.A). 

25.6 Conclusions 
Given judgements of how target populations may differ from those under study, 
the paper offers a formal representational language for making these assessments 
precise and for deciding whether causal relations in the target population can be 

inferred from those obtained in an experimental study. When such inference is 
possible, the criteria provided by Theorems 25.2 and 25.3 yield transport formulae, 
namely, principled ways of calibrating the transported relations so as to prop
erly account for differences in the populations. These transport formulae enable 

the investigator to select the essential measurements in both the experimental 
and observational studies, and thus minimize measurement costs and sample 

variability. 
The inferences licensed by Theorem 25.2 and 25.3 represent worst case analy

sis, since we have assumed, in the tradition of nonparametric modeling, that every 
variable may potentially be an effect-modifier (or moderator). If one is willing to 

assume that certain relationships are noninteractive, or monotonic as is the case 

in additive models, then additional transport licenses may be issued, beyond those 

sanctioned by Theorems 25.2 and 25.3. 
While the results of this paper concern the transfer of causal information from 

experimental to observational studies, the method can also benefit in transporting 

statistical findings from one observational study to another (Pearl and 

Bareinboim, 2011). The rationale for such transfer is two-fold. First, information 

from the first study may enable researchers to avoid repeated measurement of 
certain variables in the target population. Second, by pooling data from both pop
ulations, we increase the precision in which their commonalities are estimated 

and, indirectly, also increase the precision by which the target relationship is 
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transported. Substantial reduction in sampling variability can be thus achieved 

through this decomposition (Pearl, 2012b). 
Clearly, the same data-sharing philosophy can be used to guide Meta-Analysis 

(Glass, 1976; Hedges and Olkin, 1985; Rosenthal, 1995; Owen, 2009), where one 

attempts to combine results from many experimental and observational studies, 
each conducted on a different population and under a different set of conditions, 
so as to construct an aggregate measure of effect size that is “better,” in some for
mal sense, than any one study in isolation. While traditional approaches aims to 

average out differences between studies, our theory exploits the commonalities 
among the populations studied and the target population. By pooling together 
commonalities and discarding areas of disparity, we gain maximum use of the 

available samples (Bareinboim and Pearl, 2013c). 
To be of immediate use, our method relies on the assumption that the analyst 

is in possession of sufficient background knowledge to determine, at least qual
itatively, where two populations may differ from one another. This knowledge is 
not vastly different from that required in any principled approach to causation 

in observational studies, since judgement about possible effects of omitted fac
tors is crucial in any such analysis. Whereas such knowledge may only be partially 
available, the analysis presented in this paper is nevertheless essential for under
standing what knowledge is needed for the task to succeed and how sensitive 

conclusions are to knowledge that we do not possess. 
Real-life situations will be marred, of course, with additional complications 

that were not addressed directly in this paper; for example, measurement errors, 
selection bias, finite sample variability, uncertainty about the graph structure 

and the possible existence of unmeasured confounders between any two nodes 
in the diagram. Such issues are not unique to transportability; they plague any 
problem in causal analysis, regardless of whether they are represented formally 
or ignored by avoiding formalism. The methods offered in this paper are rep
resentative of what theory permits us to do in ideal situations, and the graphi
cal representation presented in this paper makes the assumptions explicit and 

transparent. Transparency is essential for reaching tentative consensus among 

researchers and for facilitating discussions to distinguish that which is deemed 

plausible and important from that which is negligible or implausible. 
Finally, it is important to mention two recent extensions of the results reported 

in this article. Bareinboim and Pearl (2013a) have addressed the problem of trans
portability in cases where only a limited set of experiments can be conducted at 
the source environment. Subsequently, the results were generalized to the prob
lem of “meta-transportability,” that is, pooling experimental results from multiple 

and disparate sources to synthesize a consistent estimate of a causal relation at yet 
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another environment, potentially different from each of the former (Bareinboim 

and Pearl, 2013c). It is shown that such synthesis may be feasible from multiple 

sources even in cases where it is not feasible from any one source in isolation. 

25.A Appendix 
Derivation of the transport formula for the causal effect in the model of 
Figure 25.6(d), [Equation (25.20)]: 

P*(y | do(x)) = P(y | do(x), s) 

= ∑ P(y | do(x), s, z)P(z | do(x), s) 
z 

= ∑ P(y | do(x), z)P(z | do(x), s) 
z 

(2nd condition of Theorem 25.3, S-admissibility of Z of CE(X, Y)) 

= ∑ P(y | do(x), z) ⋅∑ P(z | do(x), w, s)P(w | do(x), s) 
z w 

= ∑ P(y | do(x), z) ⋅∑ P(z | w, s)P(w | do(x), s) 
z w 

(3rd condition of Theorem 25.3, (X ⊥⊥ Z | W , S)DX(W)
) 

= ∑ P(y | do(x), z) ⋅∑ P(z | w, s)P(w | do(x)) 
z w 

(2nd condition of Theorem 25.3, S-admissibility 

of the empty set {} of CE(X, W)) 

= ∑ P(y | do(x), z) ⋅∑ P*(z | w)P(w | do(x)). (25.A.1) 
z w 

Derivation of the transport formula for the causal effect in the model of Figure 25.7, 
[Equation (25.21)]: 

P*(y | do(x)) = P(y | do(x), s, s ′) 
′ = ∑ P(y | do(x), s, s , z)P(z | do(x), s, s ′) 

z 

= ∑ P(y | do(x), z)P(z | do(x), s, s ′) 
z 

(2nd condition of Theorem 25.3, S-admissibility of Z of CE(X, Z)) 
′ = ∑ P(y | do(x), z) ⋅∑ P(z | do(x), s, s , w)P(w | do(x), s, s ′) 

z w 

′ = ∑ P(y | do(x), z) ⋅∑ P(z | s, s , w)P(w | do(x), s, s ′) 
z w 
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(3rd condition of Theorem 25.3, (X ⊥⊥ Z | W , S, S ′)DX(W)
) 

′ ′ = ∑ P(y | do(x), z)∑ P(z | s, s , w) ⋅∑ P(w | do(x), s, s , t)P(t | do(x), s, s ′) 
z w t 

′ = ∑ P(y | do(x), z)∑ P(z | s, s , w) ⋅∑ P(w | do(x), t)P(t | do(x), s, s ′) 
z w t 

(2nd condition of Theorem 25.3, S-admissibility of T on C E(X, W)) 

′ = ∑ P(y | do(x), z)∑ P(z | s, s , w) ⋅∑ P(w | do(x), t)P(t | s, s ′) 
z w t 

(1st condition of Theorem 25.3/Rule 25.3 of do-calculus, 

(X ⊥⊥ T | S, S ′)D) 

= ∑ P(y | do(x), z)∑ P*(z | w) ⋅∑ P(w | do(x), t)P*(t). (25.A.2) 
z w t 
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26

population under study consists of several subpopulations, unknown to the inves
tigator, each responding to a given treatment markedly differently. We show that 
such determination is feasible in three cases: (1) randomized trials with binary 
treatments, (2) models where treatment effects can be identified by adjustment for 
covariates, and (3) models in which treatment effects can be identified by mediat
ing instruments. In each of these cases, we provide an explicit condition which, 
if confirmed empirically, proves that treatment effect is not uniform but varies 
appreciably across individuals. 

Keywords 
heterogeneity, treatment on the treated, negative selection, effect modification, 
variable-effect bias 

Detecting Latent 
Heterogeneity 
Judea Pearl 

Abstract 
We address the task of determining, from statistical averages alone, whether a 

26.1 Introduction 
Many social and health researchers are concerned with “the problem of hetero
geneity,” namely, the presence of idiosyncratic groups that react differently to treat
ment or policies (Angrist 1998; Angrist and Krueger 1999; Elwert and Winship 2010; 

Originally published in Sociological Methods & Research 1-20, 2015.
 
© The Author(s). Republished with permission.
 
Reprints and permission: sagepub.com/journalsPermissions.nav
 
Original DOI:10.1177/0049124115600597 smr.sagepub.com
 

http://doi.org/sagepub.com/journalsPermissions.nav
http://doi.org/10.1177/0049124115600597
http://smr.sagepub.com


484 Chapter 26 Detecting Latent Heterogeneity 

Heckman and Robb 1985; Heckman, Urzua, and Vytlacil 2006; Morgan and Winship 

2007, 2015; Morgan and Todd 2008; Winship and Morgan 1999; Xie, Brand, and Jann 

2012). The reason is obvious. Health scientists need to know whether an approved 

drug is uniformly beneficial or kills some and saves more. Social scientists need to 

know whether those who have access to a program benefit most from the program; 
the alternative calls for revising recruiting policies (Brand and Xie 2010). 

Heterogeneity also introduces bias if one ventures to estimate average effects 
using linear or constant-effect models. Indeed, the bulk of the literature on this 
topic is concerned with demonstrating or minimizing this bias. Such bias is of 
no concern, however, to students of nonparametric models where heterogeneity 
is assumed a priori within the model, thus protecting analysts from ever drawing 

conclusions that heterogeneity could invalidate. 
Instead, nonparametric analysis concerns the detection of heterogeneity, if 

such exists, and locating its boundaries as narrowly as possible, within the gran
ularity of the model. A straightforward way of assessing heterogeneity is to esti
mate the “interaction” or “effect modifying” capacity of various features of units 
(VanderWeele and Robins 2007). This amounts to estimating and comparing c-
specific, or “conditional” effects, where c stands for a set of baseline covariates 
that characterize the units (Shpitser and Pearl 2006). 

This article shows, however, that, under certain conditions, it is possible to 

assess the degree of heterogeneity in the population even without knowing the 

covariates C that make units differ in their response to treatment. We call this type 

of exogeneity “latent.” 
The second section of this article will describe covariate-specific methods of 

detecting heterogeneity and will summarize the capabilities and limitations of 
these methods. The third section defines a latent heterogeneity that produces dif
ferences between treated and untreated units. The fourth section will identify three 

settings in which this type of heterogeneity can be detected and assessed from 

empirical data. These include 

1. randomized trials with binary	 treatments (Detecting Heterogeneity in 

Randomized Trials subsection), 

2.	 covariate adjustment (Detecting Heterogeneity Through Adjustment subsec
tion), and 

3. mediating	 instrumental variables (Detecting Heterogeneity Through 

Mediating Instruments subsection). 

The fifth section presents a numerical example involving enrollment disparity 
in a job training program, where individuals possessing an unusual talent (a latent 
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characteristics) have higher propensity to enroll in the program and are less likely 
to benefit from it. The section shows how the tests developed in Detecting Hetero
geneity in Randomized Trials and Detecting Heterogeneity Through Adjustment 
subsections can be used to detect such unusual characteristic and to assess its 
prevalence in the population. 

Finally, Appendix A demonstrates the detection of a more drastic type of hetero
geneity, where the population is composed of two distinct subpopulations unde
tected by any observed characteristics, only through their behavior under both 

observational and experimental studies (Pearl 2013).1 Appendix B will illustrate 

how structural models facilitate the evaluation of counterfactuals in general and 

heterogeneity in particular. 

26.2 Covariate-Induced Heterogeneity 
If we can measure any characteristic C of individuals, a straightforward way of 
searching for heterogeneity is to determine if people having this characteristic 
respond differently from those not having it. There can of course be many group 

differences that escape measurement, this is unavoidable, but finding an observed 

characteristic accompanied by unusual effect size gives us a definitive warning 

that heterogeneity exists, and that its magnitude is at least equal to that found 

by examining C. 
Formally, we can cast these considerations as follows. 

26.2.1 Assessing Covariate-Induced Heterogeneity 
Let C stand for any measured baseline covariate, and let E(Y1 − Y0|C = c) stand for 
the causal effect2 in stratum C = c of C. If E(Y1 − Y0|C = c) is identifiable (for all c), 
we can then estimate the effect difference: 

D(ci, cj) = |E(Y1 − Y0|C = cj) − E(Y1 − Y0|C = cj)|, (26.1) 

for any two strata ci and cj of C. D(ci, cj) gives the extent to which the effect size 

in group C = ci differs from that of group C = cj. Further generalizing to all 
pairs (ci, cj), we get a lower bound LB on the heterogeneity between any two labeled 

groups in the population: 

1. This example is taken from Pearl (2013). 

2. In this section, we assume a binary treatment variable X = (0, 1) and an outcome variable Y with 

two potential outcomes, Y0 and Y1, designating the hypothetical values of Y under treatment con
ditions X = 0 and X = 1, respectively. The logic of potential outcomes (Rosenbaum and Rubin 

1983) and its equivalence to structural equations where established in (Simon and Rescher 1966; 
Balke and Pearl 1994a, b; Galles and Pearl 1998; Halpern 1998; Pearl 2015). 
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LB = maxD(ci, cj). (26.2)
(ci, cj ) 

This bound extends, of course, to the case where C is a vector of measured 

covariates and ci, cj are any two instantiations of the variables in that vector. If 
we remove the requirement of identifiability, LB represents the best measure of 
heterogeneity in the population, given the crudeness of our measurements. When 

the identifiability requirement is imposed, LB represents the best assessment of 
heterogeneity, given both the crudeness of measurements and the opacity of non-
experimental data. The two main problems in computing the lower bound in Equa
tion (26.2) are, first, to find a C for which the c-specific effect is identifiable and, 
second, to perform the maximization in Equation (26.2) over all pairs (i, j) and all 
vectors C. 

26.2.2 Special Cases 
Three special cases of estimable covariate-based heterogeneity are worth mention
ing. 

C is admissible. If C is admissible,3 the c-specific effect is identified through 

E(Y1 − Y0|C = c) = E(Y |X = 1, C = c) − E(Y |X = 0, C = c), 

and D(ci, cj) is estimable by simple regression. 

C is part of an admissible set. Assume C in itself is not admissible, but we can 

observe a set S of covariates such that S ∪ C is admissible (as in Figure 26.1b and c). 
In such a case, the c-specific effect is still identifiable with4: 

E(Y1 − Y0|C = c) = ∑[E(Y |X = 1, S = s, C = c) 
s 

− E(Y |X = 0, S = s, C = c)]P(s|c). 

Figure 26.1 depicts four models in which the c-specific effect is identifiable and 

two models in which it is not identifiable. 

3. By “admissible,” we mean a set C of covariates that satisfy the backdoor criterion (Pearl 1993; 
Pearl 2009:79-81) in the causal diagram and thus permits the identification of the average causal 
effect by controlling for C. Admissibility entails the conditional independence (Yx ⊥⊥ X |C), some
times called “conditional ignorability” (Rosenbaum and Rubin 1983). The backdoor criterion 

provides a scientific basis and a transparent test for conditional ignorability–type claims, which 

many researchers entrust to intuition. 

4. In practice, the summation over S can be prohibitive, and propensity score weighting can be 

used over the unit interval 0 ≤ PS ≤ 1 (Brand and Xie 2010). 
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Figure 26.1	 Models (a), (b), and (c) permit the identification of the c-specific effect of X on Y (by 
adjustment). Model (d) does not permit this identification, lacking an admissible set. 
Model (e) does not permit the identification of c-specific effects, even though S is 
admissible. Model (f) permits the identification using measurement of Z though no 
admissible set exists (U, U1 and U2 are unobserved). 

Identification in the absence of admissible sets. If C is not part of an admissible 

set, the c-specific effect cannot be identified by adjustment. A typical example is 
given in Figure 26.1d. Since U is unobserved, the confounding path X ← U → Y 

remains open even if we adjust for C. However, the measurement of other variables 
in the model may nevertheless permit the identification of E(Y1 −Y0|C = c) by other 
methods, and the bound LB can be estimated accordingly. An example is given in 

Figure 26.1f, where E(Y1 − Y0|C = c) is identifiable through the front-door estima
tor (Pearl 1995, see also Detecting Heterogeneity Through Mediating Instruments 
subsection) by virtue of measuring an intermediate variable Z. A complete charac
terization of models that permit the identification of c-specific effects is given by 
Shpitser and Pearl (2006). 

C excluded from all admissible sets. An intriguing pattern of heterogeneity is 
described in Figure 26.1e. Here S is an admissible set, but if we add C to S, admissi
bility is destroyed. This occurs because C is a collider, so conditioning on C would 

open the path X ← U1 → C ← U2 → Y in violation of the backdoor condition. 
This means that, even if C is observed, we cannot identify the c-specific effects (of 
X on Y) and, therefore, we cannot assess whether units falling in different strata 

of C differ in their response to X. Adjustment for ci or cj, be it with or without 
S, would tell us nothing about the causal effects in those strata and would thus 
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prevent us from using the comparisons described in the subsection on Assessing 

Covariate-Induced Heterogeneity, Equation (26.1). 
Note that model (e) is statistically indistinguishable from model (c), imply

ing that no statistical test, however clever, can determine whether a given set 
{S,C} of covariates is admissible. This includes sensitivity analysis, which is often 

presumed to provide evidence for ignorability or admissibility. 

26.3 Latent Heterogeneity between the Treated and Untreated 
So far, the aim of the analysis has been to find two subgroups C = ci and C = cj with 

unequal effect sizes, where C was an observed baseline characteristic of individu
als. In this section, we abandon this requirement and seek “latent heterogeneity,” 
namely, heterogeneity that is not present in any baseline covariate but stems from 

unknown origin and manifests itself in effect differences between the treated and 

untreated groups. 

26.3.1 Two Types of Confounding 
The potential for detecting such heterogeneity was unveiled in the analyses of 
Winship and Morgan (1999) and Xie et al. (2012) who decomposed the average 
treatment effect ATE into several components5: 

ATE = E(Y1 − Y0) = E(Y |X = 1) − E(Y |X = 0) 

− [E(Y0|X = 1) − E(Y0|X = 0)] − (ETT − ETU)/P(X = 0), 

where ETT and ETU are the average effect of treatment on the treated and untreated 

respectively,6 that is: 

ETT = E(Y1 − Y0|X = 1), 

ETU = E(Y1 − Y0|X = 0). 

They observed that the bias, 

Bias = E(Y |X = 1) − E(Y |X = 0) − ATE, 

5. This decomposition follows from the consistency rule: E(Y1|X = 1) = E(Y |X = 1), E(Y0|X = 0) = 

E(Y |X = 0). It was first proposed in sociology by Winship and Morgan (1999:667) in a paper that 
raised awareness for the importance of treatment-effect heterogeneity. Emphasis on ETT and ETU 

was introduced earlier in econometrics by Heckman and his coworkers (Heckman 1992; Heckman 

and Robb 1986). 

6. Xie et al. (2012) used D for treatment and TT – TUT instead of ETT – ETU. In contrast, Morgan 

and Winship (2015) use ATT − ATC. Here, we use X for treatment, consistent with theoretical anal
yses in Shpitser and Pearl (2009), where the acronym ETT was used, and a necessary and sufficient 
condition for identifying ETT was developed. 
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is made up of two components with distinct characteristics. The first is [E(Y0|X = 

1) − E(Y0|X = 0)] and the second is ETT − ETU. The former is not a causal 
effect but merely a difference in output (Y) between two groups under the same 

“no-treatment” regime. The latter, on the other hand, represents difference in 

treatment effects of two groups, the treated and the untreated, and would be 

nonzero only if the two groups respond differently to treatment, thus exhibiting 

heterogeneity.7 

Xie et al. called the former type-I bias and the latter type-II bias, whereas 
Morgan and Winship (2007:46-48) called them baseline bias and differential treat
ment effect bias. We will shorten the labels to read baseline and variable-effect biases, 
respectively. To understand the two types of biases, think about two groups, one 

with high Y that is aggressively selected for treatment, and one with low Y, which is 
rarely selected for treatment. There will definitely be a bias in estimating ATE, even 

if all units have the same treatment effect. Now think about two other groups, both 

achieving the same Y under no treatment, but one is sensitive to X and one is not. 
If the second is more likely to select treatment, a bias is generated solely by the 

sensitivity difference between the two groups. 

26.3.2	 Separating Fixed-Effect from Variable-Effect Bias 
To convince ourselves that baseline and variable-effect biases, as defined earlier, 
indeed capture fixed-effect and variable-effect subpopulations, respectively, we 

evaluate their corresponding expressions in a linear model with an interaction 

term. The model is shown in Figure 26.2 and represents the structural equations: 

y = βx + γz + δxz + ε1 

x = αz + ε2 

z = ε3, 

Figure 26.2	 A linear model with interaction, demonstrating baseline and variable-effect biases. The 
former is proportional to γα and independent of δ; the latter is proportional to δα and 
independent of γ, reflecting effect variability. 

7. Heckman et al. (2006) called this difference essential heterogeneity. 
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where the disturbances 𝜀1, 𝜀2, and 𝜀3 are assumed to be mutually independent. 
Indeed, for variable-effect bias, we obtain8: 

ETT − ETU = αδ(x ′ − x)2, 

whereas for baseline bias, we have: 

E(Yx|X = x ′) − E(Yx|X = x) = γα(x ′ − x). 

′ (x and x are two arbitrary levels of the treatment.) This is exactly the decomposi
tion we expect; the former captures the bias introduced through the interaction 

term δ (representing variable effect), whereas the latter represents the bias that 
would prevail in the linear (or fixed-effect) case, without that interaction. 

Note also the ETT − ETU vanishes when α = 0. Thus, not every effect hetero
geneity is detected through the difference ETT −ETU. When interactions are strong 

(i.e., high δ) we certainly have appreciable heterogeneity between units with high 

Z and units with low Z. However, this heterogeneity will remain undetected, and 

it will not be revealed through the difference ETT − ETU, unless Z also affects the 

treatment assignment X. 

26.4 Three Ways of Detecting Heterogeneity 
The interesting feature in the preceding analysis is that the decomposition into 

fixed-effect and variable-effect components can be defined counterfactually, with
out resorting to a specific model or a specific covariate set. This means that when
ever we can identify ETT and ETU, we can also obtain an indication of heterogene
ity, regardless of whether we can name or observe the covariates responsible for the 

heterogeneity. Moreover, even in cases where auxiliary measurements are needed 

for identifying ETT and ETU, the graphical theory of ETT (Shpitser and Pearl 2009) 
can guide us in the assessment of heterogeneity by (26.1) selecting the right set of 
measurements and (26.2) obtaining the right estimands for ETT and ETU. 

The three classical cases where ETT can be identified are as follows: 

1. The treatment is binary, and E(Y1) and E(Y0) are identifiable by some method 

(e.g., randomized trials). 

2. The treatment is arbitrary, and E(Yx) is identifiable (for all x) by adjustment 
for an admissible set of covariates. 

3. ATE is identified through mediating instruments. 

The following subsections deal separately with each of these cases. 

8. These expressions follow directly from the structural definition of counterfactuals (Pearl 
2009:98) as defined in Equation (26.12). A complete derivation is given in Appendix B. 
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Detecting Heterogeneity in Randomized Trials 
It is well known that, when treatment is binary, ETT and ETU are identified 

whenever E(Y0) and E(Y1) are identified (Pearl 2009:396-97). Moreover, the relation 

between these quantities is given by: 

ETT = E(Y1 − Y0|X = 1) 

= E(Y |X = 1) − [E(Y0) − E(Y |X = 0)(1 − p)]/p 

ETU = E(Y1 − Y0|X = 0) 

= [E(Y1) − E(Y |X = 1)p]/(1 − p) − E(Y |X = 0), 

9where p = P(X = 1). 
We conclude that in a (binary) randomized clinical trial, where E(Y0) and E(Y1) 

are estimable empirically, the difference ETT −ETU is estimable as well and is given 

by: 

ETT − ETU = [E(Y |X = 1) − E(Y1)]/(1 − p) + [E(Y |X = 0) − E(Y0)]/p. (26.3) 

Likewise, the size of the baseline bias is identifiable from clinical trials and is 
given by: 

E(Y0|X = 1) − E(Y0|X = 0) = [E(Y0) − E(Y |X = 0)]/p. (26.4) 

This means that, based on pretrial and posttrial data, we can estimate the het
erogeneity bias that exists in the population prior to randomization, and we can 

accomplish this without measuring any covariate whatsoever. 
This result might appear surprising at first; how can we possibly detect the exis

tence of individual variations among units when we have only population data? 
Upon further reflection, however, we note that ETT − ETU does not represent the 

degree of heterogeneity in the population but rather that portion of heterogeneity 
that exhibits preferential selection to treatment. Additionally, we are not entirely 
justified in claiming that we accomplish this assessment without measuring any 
covariate. The treatment itself serves as a measured covariate in our case, since it 
is a proxy for those factors that affect the choice of treatment. 

While these explanations mitigate the surprise, the point remains that effect 
heterogeneity is not entirely shielded from empirical scrutiny, even when we 

only have population data. Whenever experimental findings reveal a nonzero 

9. These expressions can readily be derived by noting that E(Y0|X = 0) = E(Y |X = 0) and writing: 
E(Y0) = E(Y0|X = 1)p + E(Y |X = 0)(1 − p). For nonbinary treatments, ETT is not expressible in 

terms of E(Y0) and E(Y1). 
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ETT − ETU, one can categorically state that heterogeneity exists in the popula
tion, that is, there exist at least two groups whose treatment effects differ from 

one another. 
The analysis also tells us which combination of observational and experimen

tal data would compel us to conclude that the population consists of at least two 

disparate groups. In particular, Equation (26.3) implies that whenever we observe 

the inequality: 

P(X = 1)[E(Y |X = 1) − E(Y1)] ̸= P(X = 0)[E(Y |X = 0) − E(Y0)], (26.5) 

we can be assured that the population is marred by heterogeneity, and, in such 

cases, a systematic exploration may be undertaken to unveil its underlying sources. 
This is not a trivial result by any means; it is in fact counterintuitive and should be 

considered a victory of formal counterfactual analysis. The fifth section presents 
numerical examples of such findings and Appendix A provides an example where 

Equation (26.5) returns equality despite rampant heterogeneity. 
Sander Greenland suggested (personal communication, January 24, 2015) that 

heterogeneity in randomized trials is related to the issue debated by Fisher versus 
Neyman about the appropriate nulls to test. Fisher advocated the strict (point) null 
Y1 = Y0 for all units (which led to his famous exact test); in contrast, Neyman advo
cated the much weaker mean null E(Y1) = E(Y0), which allows arbitrarily extensive 

heterogeneity, ostensibly on the grounds that nothing finer could be discerned in 

a randomized experiment (Greenland 1991). 
Equation (26.5) casts this debate in a new setting. While Fisher’s exact null can

not be distinguished from Neyman’s mean null in a pure randomized experiment, 
such distinction is feasible when we have a combination of randomized and obser
vational data. In fact, the inequality in Equation (26.5) can be regarded as a testable 

condition for rejecting Fisher’s null hypothesis. 
The fifth section and Appendix A present models where Neyman’s mean null 

holds, E(Y1) = E(Y0), as well as inequality in Equation (26.5), thus rejecting 

Fisher’s sharp null. The same test can be applied when the outcome distribution 

under treatment is identical to the outcome distribution for control, a case where 

conventional approaches to testing heterogeneity fail (Ding 2014; Greenland 1991). 

26.4.2 Detecting Heterogeneity Through Adjustment 
The second case where ETT and ETU are identified is when an admissible set Z of 
covariates can be measured, yielding (see note 2) the adjustment formula: 

E(Yx) = ∑ E(Y |x, z)P(z), (26.6) 
z 
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where x is any treatment level, not necessarily one or zero. It can be further shown 

that if Z is admissible, the expression for E(Yx|x ′) can be identified as well (Shpitser 
and Pearl 2009), and is given by: 

E(Yx|x ′) = ∑ E(Y |x, z)P(z|x ′). (26.7) 
z 

(Shpitser and Pearl 2009). It is almost the same as the adjustment Equation 
10(26.6), save for using P(z|x ′) as a weighting function, instead of P(z). 

Accordingly, we can write the difference ETT − ETU as: 

ETT − ETU = E(Yx ′ − Yx|X = x ′) − E(Yx ′ − Yx|X = x)
 
′
 = ∑[E(Y |X = x , z) − E(Y |X = x, z)][P(z|X = x ′) − P(z|X = x)] (26.8) 

z 

and thus establish an explicit and general formula for the detectable part of 
variable-effect heterogeneity.11 

When the set Z is large, the estimation of Equation (26.8) can be enhanced 

using propensity score adjustment. But aside from providing a powerful estima
tion method in sparse data studies, the use of propensity scores does not add to 

the discussion of identification (Pearl 2009:348-52). 
An objection might be raised to classifying the heterogeneity detected by Equa

tion (26.8) as latent when, in fact, it could only be uncovered using a set Z of 
observed covariates. The justification rests on the realization that the treated– 

untreated heterogeneity, ETT −ETU, is a property of the population, not of the set Z 

chosen to uncover it. Z serves merely as an auxiliary tool for uncovering ETT −ETU; 
it does not affect its value. Moreover, ETT − ETU represents a new species of het
erogeneity, unrelated to those induced by the strata of Z (see the subsection on 

Special Cases). To witness, Equation (26.8) shows that the heterogeneity between 

the treated and untreated groups may be many times larger than that induced by 
any two strata of Z. For a trivial, albeit contrived example, let Z take on integer 
values z = 1, 2, … , k, and let: 

′ E(Y |X = x , z) − E(Y |X = x, z), 

10. This difference accounts for the modified Horvits–Thompson weights required for estimating 

ETT and ETU by regression (Morgan and Winship 2015:231). 

11. Morgan and Todd (2008) recognized the fact that ETT and ETU are estimable (using weighted 

regression) whenever conditional ignorability holds. Equation (26.8) extends their analysis by pro
viding an explicit formula for ETT − ETU, applicable whenever a set Z of covariates is observed 

that is deemed admissible for identifying ATE. (Note that identifying ATE, in itself, is insuffi
cient.) Brand and Halaby (2005) used bootstrapping methods to determine whether the difference 

between the ETT and the ETU is significant. 
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26.4.3 

Figure 26.3 

be positive for even values of z and negative for odd values. If we now let the differ
ence P(z|X = x ′) − P(z|X = x) be positive for even values and negative for odd values 
of z, ETT − ETU increases indefinitely as k increases, while the effect difference 

between any two strata of Z remains bounded. We also note, somewhat counter-
intuitively, that the treated–untreated heterogeneity (ETT − ETU) vanishes within 

each stratum Z = z of an admissible set Z, while the overall difference ETT − ETU 

need not be zero. The reason is that ETT and ETU invoke different weighing func
tions in averaging over the values of z; P(z|X = x ′) is invoked in the former and 

P(z|X = x) in the latter.12 

Detecting Heterogeneity Through Mediating Instruments 
Identification by adjustment requires modeling assumptions that researchers 
may not be prepared to make. Attempting to circumvent this requirement, some 

researchers have advocated the use of instrumental variables, which appears to 

require milder assumptions (Angrist and Pischke 2010; Pearl 2015). Aside from 

the fact that good instruments are hard to come by and that the choice of instru
ments often requires strong modeling assumptions, identification through instru
ments suffers from a fundamental limitation in that it is effective only in linear 
(or pseudo-linear) models, and in nonparametric models, can only identify local 
effects, sometimes called LATE (Angrist, Imbens, and Rubin 1996; Brand and 

Thomas 2013). 
Fortunately, the use of mediating instruments overcomes these limitations and 

identifies causal effects in nonparametric models even in the presence of unknown 

confounders. The method of mediating instruments, also known as “the front-
door criterion” (Pearl 1995) is depicted in Figure 26.3 and assumes the availability 

U

X YZ

(Unobserved)

A model in which variable Z acts as a mediating instrument for identifying the causal 
effect of X on Y in the presence of unknown or unobserved confounders (U). 

12. This is an interesting variant of Simpson’s paradox that surfaces when the aggregation of data 

results in sign reversal of all statistical associations (Blyth 1972; Simpson 1951). However, in the 

standard exposition of Simpson’s paradox, the signs of all causal effects remain unaltered (Pearl 
2009:180-82; 2014). Here we witness a causal, not associational relationship that is present in the 

combined population and is absent in each and every subpopulation. 
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of covariates Z that intercept all directed paths from treatment (X) to outcome 

(Y).13 Moreover, the graphical theory of ETT teaches us that both ETT and ETU are 

identifiable in the model of Figure 26.3 and can be obtained from the estimand: 

E(Yx|X = x ′) = ∑ E(Y |z, x ′)P(z|x), (26.9) 
z 

where x and x ′ are any two levels of the treatment (Shpitser and Pearl 2009). 
Remarkably, this expression is almost identical to the one obtained through 

adjustment for confounders Z, Equation (26.7), save for exchanging x and x ′ . More
over, and in contrast to identification by randomized experiment, this estimand 

remains valid for nonbinary treatments as well. 
Accordingly, the estimand for the heterogeneous component of the bias 

becomes identical to that of Equation (26.8): 

ETT − ETU = E(Yx ′ − Yx|X = x ′) − E(Yx ′ − Yx|X = x) 
′ = ∑[E(Y |X = x , z) = −E(Y |X = x, z)][P(z|X = x ′) − P(z|X = x)], 

z 
(26.10) 

′ with X = x representing the treatment level received and X = x a compari
son reference. Likewise, the expression for the baseline component of the bias 
becomes: 

E(Yx|X = x ′) − E(Yx|X = x) = ∑[E(Y |z, x ′) − E(Y |z, x)]P(z|x). (26.11) 
z 

We are now in possession of simple expressions for both the heterogeneous 
and homogeneous parts of the bias. These expressions enable us to decompose 

the bias into its heterogeneous and homogeneous parts without any reference to 

the latent confounders (U), which may remain unknown or unnamed. Whereas 
detection by randomized trials requires physical control, and is limited to binary 
treatments, and detection through ordinary adjustment requires an admissible set 
of deconfounders, the method of mediating instruments gives us a general way of 
assessing the impact of homogeneous versus heterogeneous mechanisms on the 

observed bias without knowing the actual mechanisms involved. 

26.5 Example: Heterogeneity in Recruitment 
A government is funding a job training program aimed at getting jobless people 

back into the workforce. A pilot randomized experiment shows that the program 

13. For application of the front-door criterion in the social sciences, see Chalak and White (2012) 
and Morgan and Winship (2007, 2015). 
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is effective; a higher percentage of people were hired among those trained than 

among the untrained. As a result, the program is approved, and a recruitment effort 
is launched to encourage enrollment among the unemployed. 

A study conducted a year later reveals that the hiring rate among the trained is 
even higher than in the randomized study. Still, critics claim that the program is 
a waste of tax payers’ money because, while the program was somewhat success
ful in the experimental study, where participants were chosen at random, there 

is no proof that the program accomplishes its mission among those recruited for 
enrollment. Those enrolled, so the critics say, are more intelligent, more resource
ful, and more socially connected than the eligibles who did not enroll, and would 

have found a job regardless of the training. The population is not homogeneous, 
the critics claim; the informed who are first to enroll draw little benefit from the 

program, while the weak and uninformed who could truly benefit from it were not 
aggressively recruited. 

In order to assess the extent to which the ETT − ETU test can detect the pres
ence of such heterogeneity, we will simulate the hiring process assuming two types 
of individuals, “informed” and “uninformed.” Let Z = 1 stand for the class of 
informed individuals, for whom the chances of hiring after training is only 10 per
centage higher than without training, 0.9 versus 0.8. Let Z = 0 stands for the 

class of uninformed individuals, for whom the chances of hiring after training are 

70 percent higher than without training, 0.8 versus 0.1. We will assume that the 

propensity for enrollment among the informed, q2, is higher than that among the 

uninformed, q1, that is, q2 − q1 = P(X = 1|Z = 1) = P(X = 1|Z = 0) > 0. 
Since we are dealing with a binary treatment, we can assess the magnitude 

of ETT − ETU using Equation (26.3) without measuring any covariates. We rely 
solely on {E(Y1), E(Y0)}, which are estimable from the experimental study, and 

{E(Y |X = 1), E(Y |X = 1)}, which are estimable from the observational study, and 

reflect the current recruitment policy. The plots in Figure 26.4 depict the differ
ence ETT − ETU as a function of r, the percentage of informed individuals in the 

population, with each curve representing a fixed enrollment disparity q2 − q1. 
In generating these plots, we assume a model similar in structure to the one in 

Figure 26.2, with Z being the only confounder between X and Y. We further assume 

the following parameters: 

E[Y |X = 1, Z = 1) = 0.9 

E[Y |X = 0, Z = 1) = 0.8 

E[Y |X = 1, Z = 0) = 0.8 
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Figure 26.4 ETT − ETU versus r for different levels of enrollment disparity, q2 − q1. 

E[Y |X = 0, Z = 0) = 0.1 

q1 = P(X = 1|Z = 0) = 0.1. 

We see that ETT − ETU is negative, indicating loss of opportunity due to 

misdirected recruiting policy, with those in the program benefitting less from it 
than (potentially) those who are not in it. The higher the enrollment discrepancy 
q2 −q1 between the informed and the uninformed, the more negative the difference 

ETT − ETU. 
We further see that the difference ETT − ETU becomes zero when the popula

tion becomes homogeneous, at r = 0 or r = 1, with the slopes at these two points 
measuring the sensitivity of program effectiveness to the presence of heteroge
nous individuals. Plots such as those in Figure 26.2 provide valuable information 

about the nature and magnitude of the heterogeneity observed. For example, if in 

a randomized experiment we observe the difference ETT − ETU = −0.3 (through 

Equation (26.3)), we can then infer that, if the propensity difference q2 − q1 is lower 
than 0.5, the proportion r must lie between 0.20 and 0.62. The larger the difference 

q2 − q1, the wider the bounds for r. 

26.6 Conclusions 
This article explores ways of uncovering the presence of effect heterogeneity with
out knowing the factors that may produce it. This possibility was shown to be 
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realizable in the three most common designs in which the ATE can be estimated: 
(1) randomized experiments, (2) covariate adjustment, and (3) mediating instru
ments. The only exceptions in these three designs are randomized experiments 
with nonbinary treatments and models in which ATE is identified and ETT is not. 
Such models can be recognized using the graphical theory of ETT (Shpitser and 

Pearl 2009), which provides a complete set of conditions for the identification of 
ETT and ETU from modeling assumptions. 

In all three cases that allow for the detection of latent heterogeneity, we have 

derived explicit conditions that, if observed in practice, behoove us to conclude 

that subpopulations exist that differ in their response to treatment. These condi
tions can also serve to assess, albeit roughly (in the form of lower bounds), the 

magnitude of the heterogeneity detected. 
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26.A Appendix A (An Extreme Case of Latent Heterogeneity)14 

The example below demonstrates a case in which the bias is zero, the average causal 
effect is zero and, yet, heterogeneity is high and can be detected by Equation (26.5), 
using no modeling assumptions. 

A study was conducted to determine which of two schools, A or B, has a more 

effective educational program. 200 randomly selected students underwent a ran
domized trial and were randomly assigned to the two schools, 100 to each. Another 
group of 200 (randomly selected) students were allowed to choose schools on their 
own; 100 selected A and 100 B. After a year of study, students were tested in a 

uniform, state run exam, and data showed the following: 

100% of the A-choosing students failed the state exam 

100% of the B-choosing students failed the state exam 

50% of the A-randomized students failed the state exam 

50% of the B-randomized students failed the state exam 

It appears that, when given a choice, students tend to pick the school that is 
worse for them, which is strange but explainable. Suppose school A deemphasized 

math and B deemphasized history, while the state exam demands proficiency in 

both math and history. If students choose schools by the area of their strength, 
then free choice amounts to a license to neglect one of the required subjects, 

14. This example is taken from (Pearl, 2012). 
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which is a ticket to failure. Random assignment would force at least 50% of the 

students to study an area of weakness, which may explain the 50% success rate in 

the randomized groups. 
From the data available, and letting X = 1 and X = 0 stand for “School A chosen” 

and “School B chosen,” respectively, we can infer the following findings: 

p = 
1
, E(Y |X = 1) = 0, E(Y |X = 0) = 0
2 

E(Y1) = 
1
, E(Y0) = 

1 
2 2 

Accordingly we have: 

Bias = E[(Y |X = 1) − E(Y |X = 0)] − [E(Y1) − E(Y0)] 
1 = 0 − 0 − ( 

1 − )
2 2 

= 0 

Baseline Bias = E(Y0|X = 1) − E(Y0|X = 0) 

= [E(Y0) − E(Y |X = 0)]/p 

= ( 
1 − 0)2
2 

= 1 

Variable-effect Bias = (ETT − ETU)(1 − p) 

= [E(Y |X = 1) − E(Y1)]p/(1 − p) + [E(Y |X = 0) − E(Y0)] 

= (0 − 
1 
) + (0 − 

1 
)

2 2 
= −1 

We conclude that a substantial effect-heterogeneity exists in the population. In 

fact, the bias is composed of two components of equal magnitude and opposite 

sign. This result is not surprising given that our population is composed indeed 

of two distinct subpopulations, indexed by school preference, which have two dif
ferent treatment effects. Those who prefer school B have clearly different benefit 
from A vs. B as compared to those who prefer school A; the former would pass the 

exam, the latter would fail. 
It is also interesting, at this point, to examine models in which latent hetero

geneity is rampant, yet remains undetected by the difference ETT − ETU. Such 

models are discussed in (Pearl, 2009, pp. 35–6), which can be adapted to the story 
above by assuming that Z (students school preference) is totally independent of X 
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(the school actually attended). In such an environment, the two groups will still 
exhibit the disparate treatment effects, but the difference ETT − ETU will be zero, 
because the relationship between X and Y is not confounded. 

26.B Appendix B (Assessing Heterogeneity in Structural Equation 
Models) 
In this Appendix, I first define counterfactuals in terms of structural equation mod
els, and then illustrate how this definition facilitates the detection of heterogeneity 
in the linear model discussed in Section 26.3.2. The definition is fundamental to 

the understanding of counterfactuals in general, and for that reason, I will first 
introduce the method and then solve the example in minute details. The solu
tion will demonstrate the role of structural models in defining and evaluating 

counterfactuals. 

26.B.1 The Structural Origin of Counterfactuals 
At the center of the definition lies a model M consisting of a set of equations 
that represents the investigator’s perception of reality. M consists of two sets of 
variables, U and V (exogenous and endogenous), and a set F of equations that 
determine how values are assigned to each variable Vi ∈ V . Thus for example, the 

equation 

vi = fi(v, u) 

describes a physical process by which Nature examines the current values, v and u, 
of all variables in V and U and accordingly assigns variable Vi the value vi = fi(v, u). 
The variables in U are considered “exogenous,” namely, background conditions 
for which no explanatory mechanism is encoded in model M. Every instantiation 

U = u of the exogenous variables corresponds to defining a “unit,” or a “situation” 
in the model, and uniquely determines the values of all variables in V. Therefore, 
if we assign a probability P(u) to U, it defines a probability function P(v) on V. 
The probabilities on U and V can best be interpreted as the proportion of the 

population with a particular combination of values on U and/or V. 
The basic counterfactual entity in structural models is the sentence: “Y would 

be y had X been x in situation U = u,” denoted Yx(u) = y, where Y and X are any 
variables in V. The key to interpreting counterfactuals is to treat the subjunctive 

phrase “had X been x” as an instruction to make a minimal modification in the 

current model, so as to ensure the antecedent condition X = x. Such a minimal 
modification amounts to replacing the equation for X with a constant x, which may 
be thought of as an external intervention do(X = x), not necessarily by a human 
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experimenter, that imposes the condition X = x. This replacement permits the 

constant x to differ from the actual value of X (namely fx(v, u)) without rendering 

the system of equations inconsistent, thus allowing all variables, exogenous as well 
as endogenous, to serve as antecedents. 

Letting Mx stand for a modified version of M, with the equation(s) of X replaced 

by X = x, the formal definition of the counterfactual Yx(u) reads: 

Yx(u) £ YMx (u). (26.12) 

In words: The counterfactual Yx(u) in model M is defined as the solution for Y in 

the “surgically modified” submodel Mx. 
This definition, first proposed in (Balke and Pearl, 1994a, b) was recently dubbed 

the “First Law of causal inference” (Pearl, 2015) due to its universality, and because 

it treats counterfactuals as an intrinsic property of reality rather than a byproduct 
of a specific experimental design. Simon and Rescher (1966) came close to this defi
nition but, lacking the “wiping out” operator, could not reconcile the contradiction 

′ that evolves when an observation X = x clashes with the antecedent X = x of the 

counterfactual Yx. Galles and Pearl (1998) and Halpern (1998) have given a complete 

axiomatization of structural counterfactuals, embracing both recursive and non-
recursive models (see also Pearl, 2009, Chapter 7). They showed that the axioms 
governing recursive structural counterfactuals are identical to those used in the 

potential outcomes framework, hence the two systems are logically identical – a 

theorem in one is a theorem in the other. This means that relying on structural 
models as a basis for counterfactuals does not impose additional assumptions 
beyond those routinely invoked by potential outcome practitioners. 

P(u) induces a well defined probability distribution on V, P(v). As such, it not 
only defines the probability of any single counterfactual, also assigns joint distribu
tion of all conceivable counterfactuals, including those that may not be observed. 
Thus the probability of the Boolean combination, “Yx = y AND Zx ′ = z” for 
variables Y and Z in V and two different values of X, x and x ′ , is well-defined even 

though it is impossible for both outcomes to be simultaneously observed as X = x 

and X = x ′ cannot be concurrently true. 
In general, the probability of the counterfactual sentence P(Yx = y|e), where e is 

any information about an individual, can be computed by the 3-step process: 

Step 1 (abduction): Update the probability P(u) to obtain P(u|e). 

Step 2 (action): Replace the equations corresponding to variables in set X by the 

equations X = x. 

Step 3 (prediction): Use the modified model to compute the probability of Y = y. 
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In temporal metaphors, Step 1 explains the past (U) in light of the current evi
dence e; Step 2 bends the course of history (minimally) to comply with the hypo
thetical antecedent X = x; finally, Step 3 predicts the future (Y) based on our new 

understanding of the past and our newly established condition, X = x. 

26.B.2	 Illustration 
To demonstrate the power of this definition, let us compute the latent heterogene
ity ETT − ETU for the interaction model discussed in Section 26.3.2. The model 
(shown in Figure 26.2) represents the structural equation model: 

M : Y = 𝛽X + 𝛾Z + 𝛿XZ + 𝜖1 

X = 𝛼Z + 𝜖2 

Z = 𝜖3. 

The modified model Mx, representing the intervention X = x, is given by 

Mx :	 Y = 𝛽X + 𝛾Z + 𝛿xZ + 𝜖1 

X = x 

Z = 𝜖3. 

′ Let X = x represent the treatment administered and X = x the level that X 

attains under natural, no-treatment conditions. We first compute the conditional 
counterfactual E(Yx|X = x ′) which appears in the expressions of ETT and ETU 

ETT = E[Yx − Yx ′ |X = x] 

ETU = E[Yx − Yx ′ |X = x ′]. 

Since Yx is equal to the solution for Y in the mutilated model Mx, we have 

E[Yx|X = x ′] = E[𝛽x + 𝛾Z + 𝛿xZ + 𝜖1|X = x ′] 

= 𝛽x + (𝛾 + 𝛿x)E[Z|X = x ′] 

where we make use of the orthogonality assumption 𝜖1 ⊥⊥ X. Further assuming 

standardized variables (i.e., zero mean and unit variance) we have E[Z|X = x ′] = 

𝛼x ′ , which leads to 

′ E[Yx|X = x ′] = 𝛽x + (𝛾 + 𝛿x)𝛼x . 

Accordingly, the effect of treatment on the treated is given by 

ETT = E[Yx − Yx ′ |X = x] 

= E[Y |X = x] − E[Yx ′ |X = x] 
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= 𝛽x + 𝛼𝛾x + 𝛼𝛿x2 − [𝛽x ′ + (𝛾 + 𝛿x ′)𝛼x] 

= (𝛽 + 𝛼𝛿x)(x − x ′). 

In a similar fashion we obtain 

ETU = E[Yx − Yx ′ |X = x ′] 

= (𝛽 + 𝛼𝛿x ′)(x − x ′) 

and finally: 

ETT − ETU = 𝛼𝛿(x − x ′)2, 

which confirms the result stated in Section 26.3.2. 
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Abstract 
Cause-and-effect relationships play a central role in how we perceive and make 

sense of the world around us, how we act upon it, and ultimately, how we under
stand ourselves. Almost two decades ago, computer scientist Judea Pearl made a 

breakthrough in understanding causality by discovering and systematically study
ing the “Ladder of Causation,” a framework that highlights the distinct roles 
of seeing, doing, and imagining. In honor of this landmark discovery, we name 

this the Pearl Causal Hierarchy (PCH). In this chapter, we develop a novel and 

comprehensive treatment of the PCH through two complementary lenses: one 

logical-probabilistic and another inferential-graphical. Following Pearl’s own pre
sentation of the hierarchy, we begin by showing how the PCH organically emerges 
from a well-specified collection of causal mechanisms (a structural causal model, 
or SCM). We then turn to the logical lens. Our first result, the Causal Hierarchy 
Theorem (CHT), demonstrates that the three layers of the hierarchy almost always 
separate in a measure-theoretic sense. Roughly speaking, the CHT says that data 

at one layer virtually always underdetermines information at higher layers. As in 

most practical settings the scientist does not have access to the precise form of the 

underlying causal mechanisms—only to data generated by them with respect to 

some of the PCH’s layers—this motivates us to study inferences within the PCH 

through the graphical lens. Specifically, we explore a set of methods known as 
causal inference that enable inferences bridging the PCH’s layers given a partial 
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specification of the SCM. For instance, one may want to infer what would happen 

had an intervention been performed in the environment (second-layer statement) 
when only passive observations (first-layer data) are available. We introduce a fam
ily of graphical models that allows the scientist to represent such a partial speci
fication of the SCM in a cognitively meaningful and parsimonious way. Finally, we 

investigate an inferential system known as do-calculus, showing how it can be suf
ficient, and in many cases necessary, to allow inferences across the PCH’s layers. 
We believe that connecting with the essential dimensions of human experience as 
delineated by the PCH is a critical step toward creating the next generation of arti
ficial intelligence (AI) systems that will be safe, robust, human-compatible, and 

aligned with the social good. 

27.1 Introduction 
Causal information is deemed highly valuable and desirable along many dimen
sions of the human endeavor, including science, engineering, business, and law. 
The ability to learn, process, and leverage causal information is arguably a dis
tinctive feature of Homo sapiens when compared to other species, perhaps one of 
the hallmarks of human intelligence [Penn and Povinelli 2007]. Pearl argued for 
the centrality of causal reasoning eloquently in his most recent book [Pearl and 

Mackenzie 2018, p. 1], for instance: “Some tens of thousands of years ago, humans 
began to realize that certain things cause other things and that tinkering with the 

former can change the latter... From this discovery came organized societies, then 

towns and cities, and eventually the science and technology-based civilization we 

enjoy today. All because we asked a simple question: Why?” 
Given the centrality of causation throughout so many aspects of human experi

ence, we would naturally like to have a formal framework for encoding and reason
ing with cause-and-effect relationships. Interestingly, the 20th century saw other 
instances in which an intuitive, ordinary concept underwent mathematical for
malization before entering engineering practice. As an especially notable example, 
it may be surprising to readers outside computer science and related disciplines 
to learn that the notion of computation itself was only semi-formally understood 

up until the 1920s. Following the seminal work of mathematician and philoso
pher Alan Turing, among others, multiple breakthroughs ensued, including the 

very emergence of the modern computer, passing through the theory and founda
tions of computer science, and culminating in the rich and varied technological 
advances we enjoy today. 

We feel it is appropriate in this special edition dedicated to Judea Pearl, a 

Turing awardee himself, to recognize a similar historical development in the dis
cipline of causality. The subject was studied in a semi-formal way for centuries 
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[Hume 1739, 1748, von Wright 1971, Mackie 1980], to cite a few prominent references, 
and Pearl, his collaborators, and many others helped to understand and formalize 

this notion. Following this precise mathematization, we now see a blossoming of 
developments and rapid expansion toward applications. 

What was the crucial development that spawned such dramatic progress on this 
centuries-old problem? One critical insight, tracing back at least to the British 

empiricist philosophers, is that the causal mechanisms behind a system under 
investigation are not generally observable, but they do produce observable traces 
(“data,” in modern terminology).1 That is, “reality” and the data generated by it are 

fundamentally distinct. This dichotomy has been prominent at least since Pearl’s 
seminal Biometrika paper [Pearl 1995], and received central status and comprehen
sive treatment in his longer treatise [Pearl 2000]. This insight naturally leads to two 

practical desiderata for any proper framework for causal inference, namely: 

1. The causal mechanisms underlying the phenomenon under investigation 

should be accounted for—indeed, formalized—in the analysis. 

2. This collection of mechanisms (even if mostly unobservable) should be 

formally tied to its output: the generated phenomena and corresponding 

datasets. 

This intuitive picture is illustrated in Figure 27.1(a). One of the main goals of 
this chapter is to make this distinction crisp and unambiguous, translating these 

two desiderata into a formal framework, and uncovering its consequences for the 

practice of causal inference. 
Regarding the first requirement, the underlying reality (“ground truth”) that is 

our putative target can be naturally represented as a collection of causal mecha
nisms in the form of a mathematical object called a structural causal model (SCM) 
[Pearl 1995, 2000], to be introduced in Section 27.2. In many practical settings, it 
may be challenging, even impossible, to determine the specific form of the under
lying causal mechanisms, especially when high-dimensional, complex phenomena 

are involved and humans are present in the loop.2 Nevertheless, we ordinarily 

1. For instance, Locke famously argued that when we observe data, we cannot “so much as guess, 
much less know, their manner of production” [Locke 1690, Essay IV]. Hume maintained a simi
larly skeptical stance, stating that “nature has kept us at a great distance from all her secrets, and 

has afforded only the knowledge of a few superficial qualities of objects; while she conceals from 

us those powers and principles, on which the influence of these objects entirely depends” [Hume 

1748, section 4.16]. See de Pierris [2015] for a discussion. 

2. At the same time, many of the natural sciences, most prominently physics and chemistry, 
will often purport to determine the underlying causal mechanisms quite precisely, under strict 
experimental conditions. 
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Figure 27.1	 (a) Collection of causal mechanisms (or SCM) generating certain observed phenomena 
(qualitatively different probability distributions). (b) PCH’s containment structure. 

presume that these causal mechanisms are there regardless of our practical ability 
to discover their form, shape, and specific details. 

Regarding the second requirement, Pearl further noted something very basic 
and fundamental, namely, that each collection of causal mechanisms (i.e., SCM) 
induces a causal hierarchy (or “ladder of causation”), which highlights qualita
tively different aspects of the underlying reality. We fondly name this the Pearl 
Causal Hierarchy (PCH, for short), for he was the first to identify and study it sys
tematically [Pearl 1995, 2000, Pearl and Mackenzie 2018]. The hierarchy consists of 
three layers (or “rungs”) encoding different concepts: the associational, the inter
ventional, and the counterfactual, corresponding roughly to the ordinary human 

activities of seeing, doing, and imagining, respectively [Pearl and Mackenzie 2018, 
chapter 27]. Knowledge at each layer allows reasoning about different classes of 
causal concepts, or “queries.” Layer 1 deals with purely “observational,” factual 
information. Layer 2 encodes information about what would happen, hypotheti
cally speaking, were some intervention to be performed, namely, effects of actions. 
Finally, Layer 3 involves queries about what would have happened, counterfactu
ally speaking, had some intervention been performed, given that something else 

in fact occurred (possibly conflicting with the hypothetical intervention). The hier
archy establishes a useful classification of concepts that might be relevant for a 

given task, thereby also classifying formal frameworks in terms of the questions 
that they are able to represent and, ideally, answer. 

27.1.1 Roadmap of the Chapter 
Against this background, we start in Section 27.2 by showing how the PCH naturally 
emerges from an SCM, formally characterizing the layers by means of symbolic 
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logical languages, each of which receives a straightforward interpretation in an 

SCM. Thus, as soon as one admits that a domain of interest can be represented by 
an SCM (whether or not we, as an epistemological matter, know much about it), 
the hierarchy of causal concepts already exists.3 In Section 27.3, we prove that the 

PCH is strict for almost-all SCMs (Theorem 27.1), in a technical sense of “almost
all” (Figure 27.1(b)).4 It follows (Corollary 27.1) that it is generically impossible to 

draw higher-layer inferences using only lower-layer information, a result known 

informally in the field under the familiar adage: “no causes-in, no causes-out” 
[Cartwright 1989]. 

In the second part of the chapter (Section 27.4), we acknowledge that in many 
practical settings our ability to interact with (observe and experiment on) the phe
nomenon of interest is modest at best, and inducing a reasonable, fully specified 

SCM is essentially hopeless.5 Virtually all approaches to causal inference, there
fore, set for themselves a more restricted target, operating under the less-stringent 
condition that only partial knowledge of the underlying SCM is available. The prob
lem of causal inference is thus to perform inferences across layers of the hierarchy 
from a partial understanding of the SCM. Technically speaking, if one has Layer-1 
type of data, for example, collected through random sampling, and aims to infer 
the effect of a new intervention (Layer-2 type of query), we show that the problem 

is not always solvable. 
Departing from these impossibility results, we develop a framework that can 

parsimoniously and efficiently encode knowledge (viz., structural constraints) nec
essary to perform this general class of inferences. In particular, we move beyond 

Layer-1 type constraints (conditional independences) and investigate structural 
constraints that live in Layer 2. We use these constraints to define a new family 

3. This is despite skepticism that has been expressed in the literature about meaningfulness of 
one layer of the hierarchy or another; cf., for example, Maudlin [2019] on Layer 2, and Dawid [2000] 
on Layer 3. 

4. Hierarchies abound in logic and computer science, particularly those pertaining to com
putational resources, with prominent examples being the Chomsky–Schützenberger hierarchy 
[Chomsky 1959] and its probabilistic variant (see Icard [2020]), or the polynomial time complex
ity hierarchy [Stockmeyer 1977]. Such hierarchies delimit what can be computed given various 
bounds on computational resources. Perhaps surprisingly, the Pearl hierarchy is orthogonal to 

these hierarchies. If one’s representation language is only capable of encoding queries at a given 

layer, no amount of time or space for computation—and no amount of data either—will allow 

making inferences at higher layers. 

5. Of course, if we have been able to induce the structural mechanisms themselves—as may be 

feasible in some of the sciences, for example, molecular biology or Newtonian physics—we can 

simply “read off” any causal information we like by computing it directly or, for instance, by 
simulating the corresponding mechanisms. 
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of graphical models called causal Bayesian networks (CBNs), which are composed 

of a pair, a graphical model, and a collection of observational and interventional 
distributions. Against this backdrop, we provide a novel proof of do-calculus [Pearl 
1995] based strictly on Layer 2 semantics. We then show how the graphical struc
ture bridges the layers of the PCH; one may be able to draw inferences at a higher 
layer from a combination of partial knowledge of the underlying structural model, 
in the form of a causal graph, and data at lower layers. We conclude and summarize 

this chapter in Section 27.5. 

27.1.2 Notation 
We now introduce the notation used throughout this chapter. Single random vari
ables are denoted by (non-boldface) uppercase letters X and the range (or pos
sible values) of X is written as Val(X). Lowercase x denotes a particular element 
in this range, x ∈ Val(X). Boldfaced uppercase X denotes a collection of vari
ables, Val(X) their possible joint values, and boldfaced lowercase x a particular 
joint realization x ∈ Val(X). For example, two independent fair coin flips are rep
resented by X = {X1, X2}, Val(X1) = Val(X2) = {0, 1}, Val(X) = {(0, 0), … , (1, 1)}, with 

P(x1) = P(x2) = ∑x2 
P(x1, x2) = ∑x(X1)=x1 P(x) = 1/2. 

27.2 Structural Causal Models and the Causal Hierarchy 
We build on the language of SCMs to describe the collection of mechanisms under
pinning a phenomenon of interest. Essentially, any causal inference can be seen as 
an inquiry about these mechanisms or their properties, in some way or another. We 

will generally dispense with the distinction between the underlying system and its 
SCM. 

Each SCM naturally defines a qualitative hierarchy of concepts, described as 
the “ladder of causation” in Pearl and Mackenzie [2018], which we have been call
ing the PCH (Figure 27.1). Following Pearl’s presentation, we label the layers (or 
rungs, or levels) of the hierarchy associational, interventional, and counterfactual. 
The concepts of each layer can be described in a formal language and correspond 

roughly to distinct notions within human cognition. Each of these allows one to 

articulate, with mathematical precision, qualitatively different types of questions 
regarding the observed variables of the underlying system; for some examples, see 

Table 27.1. 
SCMs provide a flexible formalism for data-generating models, subsuming 

virtually all of the previous frameworks in the literature. In the sequel, we formally 
define SCMs and then show how a fully specified model underpins the concepts in 

the PCH. 
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Table 27.1 Pearl’s Causal Hierarchy 

Layer 
(Symbolic) 

Typical 
Activity 

Typical 
Question 

Example Machine 

Learning 

ℒ1	 Associational 
P(y | x) 

ℒ2	 Interventional 
P(y | do(x), c) 

ℒ3	 Counterfactual 
′ P(yx | x , y ′) 

Seeing What is? 
How would 

seeing X 

change my 
belief in Y? 

What does a 

symptom 

tell us about 
the disease? 

Supervised/ 
Unsupervised 

Learning 

Doing What if? 
What if I do X? 

What if I 
take aspirin, 
will my 
headache be 

Reinforcement 
Learning 

cured? 
Imagining Why? 

What if I had 

acted 

differently? 

Was it the 

aspirin that 
stopped my 
headache? 

Definition 27.1 Structural Causal Model (SCM) 
An SCM ℳ is a 4-tuple ⟨U, V, ℱ , P(U)⟩, where 

∙	 U is a set of background variables, also called exogenous variables, that are 

determined by factors outside the model; 
∙	 V is a set {V1, V2, … , Vn} of variables, called endogenous, that are determined 

by other variables in the model—that is, variables in U ∪ V; 
∙	 ℱ is a set of functions {f1, f2, … , fn} such that each fi is a mapping from (the 

respective domains of) Ui ∪ Pai to Vi, where Ui ⊆ U, Pai ⊆ V⧵Vi, and the entire 

set ℱ forms a mapping from U to V. That is, for i = 1, … , n, each fi ∈ ℱ is 
such that 

vi ← fi(pai, ui),	 (27.1) 

that is, it assigns a value to Vi that depends on (the values of) a select set of 
variables in U ∪ V; and 

∙	 P(U) is a probability function defined over the domain of U. ■ 

Each SCM can be seen as partitioning the variables involved in the phenomenon 

into sets of exogenous (unobserved) and endogenous (observed) variables, respec
tively, U and V. The exogenous ones are determined “outside” of the model 
and their associated probability distribution, P(U), represents a summary of the 
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state of the world outside the phenomenon of interest. In many settings, these 

variables represent the units involved in the phenomenon, which correspond to 

elements of the population under study, for instance, patients, students, and cus
tomers. Naturally, their randomness (encoded in P(U)) induces variations in the 

endogenous set V. 
Inside the model, the value of each endogenous variable Vi is determined by 

a causal process, vi ← fi(pai, ui), that maps the exogenous factors Ui and a set 
of endogenous variables Pai (so-called parents) to Vi. These causal processes— 

or mechanisms—are assumed to be invariant unless explicitly intervened on (as 
defined later in the section).6 Together with the background factors, they repre
sent the data-generating process according to which Nature assigns values to the 

endogenous variables in the study. 
Henceforth, we assume that V and its domain are finite,7 and that the model 

is acyclic (sometimes known as recursive).8 A structural model is Markovian if the 

exogenous parent sets Ui, Uj are independent whenever i ̸= j. Here, we will allow for 
the sharing of exogenous parents and for arbitrary dependences among the exoge
nous variables, which means that, in general, the SCM need not be Markovian. 
This wider class of models is called semi-Markovian. For concreteness, we provide 

a simple SCM next. 

Example 27.1	 Consider a game of chance described through the SCM ℳ1 = ⟨U = {U1, U2}, 
V = {X, Y}, ℱ , P(U1, U2)⟩, where 

{ 
X ← U1 + U2ℱ = ,	 (27.2)
Y ← U1 − U2 

and P(Ui = k) = 1/6, i = 1, 2, k = 1, … , 6. In other words, this structural 
model represents the setting in which two dice are rolled but only the sum (X) 
and the difference (Y) of their values are observed. Here, Val(X) = {2, … , 12} and 

Val(Y) = {−5, … , 0, … , 5}. ■ 

6. It is possible to conceive an SCM as “a high-level abstraction of an underlying system of differen
tial equations” [Schölkopf 2019], which under relatively mild conditions is attainable [Rubenstein 

et al. 2017]. 

7. Much of the theory of SCMs extends straightforwardly to the infinitary setting [Ibeling and 

Icard 2019]. 

8. An SCM ℳ is said to be recursive if there exists a “temporal” order over the functions in ℱ 

such that for every pair fi, fj ∈ ℱ , if fi < fj in the order, we have that fi does not have Vj as an argu
ment. In particular, this implies that choosing a unit u uniquely fixes the values of all variables 
in V. For Y ⊆ V, we write Y(u) to denote the solution of Y given unit u. For a more comprehensive 

discussion, see Galles and Pearl [1998] and Halpern [1998, 2000]. 
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Pearl Hierarchy, Layer 1—Seeing 
Layer 1 of the hierarchy (Table 27.1) captures the notion of “seeing,” that is, 
observing a certain phenomenon unfold, and perhaps making inferences about 
it. For instance, if we observe a certain symptom, how will this change our belief 
in the disease? An SCM gives natural valuations for quantities of this kind (cf. 
equation (7.2) in Pearl [2000]), as shown next. 

Layer 1 Valuation—“Observing” 
An SCM ℳ = ⟨U, V, ℱ , P(U)⟩ defines a joint probability distribution Pℳ(V) such 

that for each Y ⊆ V:9 

Pℳ(y) = ∑ P(u), (27.3) 
{u | Y(u)=y} 

where Y(u) is the solution for Y after evaluating ℱ with U = u. ■ 

This evaluation is graphically depicted in Figure 27.2(i), which represents a 

mapping from the external and unobserved state of the system (distributed as 
P(U)), to an observable state (distributed as P(V)). For concreteness, let us consider 
Example 27.1 again. Let the dice (exogenous variables) be ⟨U1 = 1, U2 = 1⟩, then 

V = {X, Y} attain their values through ℱ as X = 1 + 1 = 2 and Y = 1 − 1 = 0. 
As P(U1 = 1, U2 = 1) = 1/36 and ⟨U1 = 1, U2 = 1⟩ is the only configura
tion capable of producing the observed behavior ⟨X = 2, Y = 0⟩, it follows that 
P(X = 2, Y = 0) = 1/36. More interestingly, consider the different dice (exoge
nous) configurations ⟨U1, U2⟩ = {⟨1, 1⟩, ⟨2, 2⟩, ⟨3, 3⟩, ⟨4, 4⟩, ⟨5, 5⟩, ⟨6, 6⟩}, which are 

all compatible with ⟨Y = 0⟩. As each of the U’s realization happens with prob
ability 1/36, the event of the difference between the first and second dice being 

zero (Y = 0) occurs with probability 1/6. Finally, what is the probability of the 

difference of the two dice being zero (Y = 0) if we know that their sum is two, 
that is, P(Y = 0 | X = 2)? The answer is one as the only event compatible with 

⟨X = 2, Y = 0⟩ is ⟨U1 = 1, U2 = 1⟩. Without any evidence, the event (Y = 0) hap
pens with probability 1/6, yet if we know that X = 2, the event becomes certain 

(probability 1). 
Many tasks throughout data sciences can be seen as evaluating the probability 

of certain events occurring. In the context of modern machine learning, for exam
ple, one could observe a certain collection of pixels, or features, with the goal of 
predicting whether it contains a dog or a cat. Consider a slightly more involved 

example that appears in the context of medical decision-making. 

9. We will typically omit the superscript on Pℳ whenever there is no room for confusion, thus 
using P for both the distribution P(U) on exogenous variables and the distributions P(Y) on 

endogenous variables induced by the SCM. 
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(a) External State

(b) Transformation

(c) Induced Distribution

(i)

Observational

(ii)

Interventional

(iii)

Counterfactual

P(U) P(U) P(U)

F Fx Fx Fw
· · ·

P(Y) P(Yx) P(Yx, . . . ,Zw)

Figure 27.2	 Given an SCM’s initial state (i.e., population) (a), we show the different functional 
transformations (b) and the corresponding induced distribution (c) of each layer of 
the hierarchy. (i) represents the transformation (i.e., ℱ ) from the natural state of the 
system (P(U)) to an observational world, (ii) to an interventional world (i.e., with mod
ified mechanisms ℱx), and (iii) to multiple counterfactual worlds (i.e., with multiple 
modified mechanisms). 

Example 27.2	 The SCM ℳ2 = ⟨V = {X, Y , Z}, U = {Ur, Ux, Uy, Uz}, ℱ = {fx, fy, fz}, P(Ur, Ux, 
Uy, Uz)⟩, where ℱ will be specified below. The endogenous variables V represent, 
respectively, a certain treatment X (e.g., drug), an outcome Y (survival), and the 

presence or not of a symptom Z (hypertension). The exogenous variable Ur rep
resents whether the person has a certain natural resistance to the disease, and 

Ux, Uy, Uz are sources of variations outside the model affecting X, Y , Z, respectively. 
In this population, units with resistance (Ur = 1) are likely to survive (Y = 1) 
regardless of the treatment received. Whenever the symptom is present (Z = 1), 
physicians try to counter it by prescribing this drug (X = 1). While the treatment 
(X = 1) helps resistant patients (with Ur = 1), it worsens the situation for those 

who are not resistant (Ur = 0). The form of the underlying causal mechanisms is: 

⎧
Z ← {Ur =1,Uz =1}⎪⎪⎪

ℱ = ⎨X ← {Z=1,Ux =1} + {Z=0,Ux =0}	 . (27.4)⎪⎪⎪Y ← {X=1,Ur =1} + {X=0,Ur =1,Uy=1} + {X=0,Ur =0,Uy=0}⎩ 

Finally, all the exogenous variables are binary with P(Ur = 1) = 0.25, P(Uz = 1) = 

0.95, P(Ux = 1) = 0.9, and P(Uy = 1) = 0.7. 
Recall that Definition 27.2 (Equation 27.3) induces a mapping between P(U) and 

P(V), such that a query P(Y = 1 | X = 1) can be evaluated from ℳ as: 

P(Y = 1, X = 1) ∑{u | Y(u)=1,X(u)=1} P(u) 0.215
P(Y = 1 | X = 1) = =	 = = 0.7414,

P(X = 1) ∑{u | X(u)=1} P(u) 0.29 
(27.5) 
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which is just the ratio between the sum of the probabilities of the events in the 

space of U consistent with the events ⟨Y = 1, X = 1⟩ and ⟨X = 1⟩. This means that 
the probability of survival given that one took the drug is higher than chance. Sim
ilarly, one could obtain other probabilistic expressions such as P(Y = 1 | X = 0) = 

0.3197 or P(Z = 1) = 0.2375. One may be tempted to believe at this point that the 

drug has a positive effect upon comparing the probabilities P(Y = 1 | X = 0) and 

P(Y = 1 | X = 1). We shall discuss this issue next. ■ 

Pearl Hierarchy, Layer 2—Doing 
Layer 2 of the hierarchy (Table 27.1) allows one to represent the notion of “doing,” 
that is, intervening (acting) in the world to bring about some state of affairs. For 
instance, if a physician gives a drug to her patient, would the headache be cured? 
A modification of an SCM gives natural valuations for quantities of this kind, as 
defined next. 

Submodel—“Interventional SCM”
 
Let ℳ be a causal model, X a set of variables in V, and x a particular realization of
 
X. A submodel ℳx of ℳ is the causal model 

ℳx = ⟨U, V, ℱx, P(U)⟩, where ℱx = {fi : Vi ∉ X} ∪ {X ← x}. (27.6) 

■ 

In other words, performing an external intervention (or action) is modeled 

through the replacement of the original (natural) mechanisms associated with 

some variables X with a constant x, which is represented by the do-operator.10,11 The 

impact of the intervention on an outcome variable Y is called potential response (cf. 
definition (7.1.4) in Pearl [2000]). 

Potential Response 

Let X and Y be two sets of variables in V, and u be a unit. The potential response 

10. The idea of representing intervention through the modification of equations in a struc
tural system appears to have first emerged in the context of Econometrics, see Haavelmo [1943], 
Marschak [1950], and Simon [1953]. It was then made more explicit and called “wiping out” by 
Strotz and Wold [1960]. 

11. Pearl credits his realization on the connection of this operation with graphical models to a 

lecture of Peter Spirtes at the International Congress on Logic, Methodology and Philosophy of 
Science (Uppsala, Sweden, 1991), in his words [Pearl 2000, p. 104]: “In one of his slides, Peter illus
trated how a causal diagram would change when a variable is manipulated. To me, that slide of 
Spirtes’s—when combined with the deterministic structural equations—was the key to unfolding 

the manipulative account of causation (...).” 
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Yx(u) is defined as the solution for Y of the set of equations ℱx with respect to SCM 

ℳ (for short, Yℳx (u)). That is, Yx(u) = Yℳx (u). ■ 

An SCM gives valuation for interventional quantities (equation 7.3 Pearl [2000]) 
as follows: 

Definition 27.5	 Layer 2 Valuation—“Intervening” 
An SCM ℳ = ⟨U, V, ℱ , P(U)⟩ induces a family of joint distributions over V, one for 
each intervention x. For each Y ⊆ V: 

Pℳ(y ) = ∑ P(u).	 (27.7) x
{u | Yx(u)=y} 

■ 

The potential response expresses causal effects, and over a probabilistic setting 

it induces random variables. Specifically, Yx denotes a random variable induced 

by averaging the potential response Yx(u) over all u according to P(U).12 Further, 
note that this procedure disconnects X from any other source of “natural” varia
tion when it follows the original function fx (e.g., the observed (Pax) or unobserved 

(Ux) parents). This means that the variations of Y in this world would be due to 

changes in X (say, from 0 to 1) that occurred externally, from outside the modeled 

system.13 This, in turn, guarantees that they will be causal. To see why, note that 
all variations of X that may have an effect on Y can only be realized through vari
ables of which X is an argument, as X itself is a constant, not affected by other 
variables. Indeed, the notion of an average causal effect can be formally written as 

14E(YX=1) − E(YX=0). 
The distribution P(Yx) defined in Equation (27.7) is often written P(Y | do(x)), and 

we henceforth adopt this notation in the context of PCH’s second layer.15 

12. The notation Yx(u) is borrowed from the potential-outcome framework of Neyman [1923] and 

Rubin [1974]. See Pearl [2000, section 7.4.4] for a more detailed comparison; see also Pearl and 

Bareinboim [2019]. 

13. For a discussion of what it means for these changes to arise “from outside” the system, see, 
for example, Woodward [2003]. Of course, in many settings this simply means the intervention 

is performed deliberately by an agent outside the system, for example, in typical reinforcement 
learning applications [Sutton and Barto 2018]. 

14. This difference and the corresponding expected values are sometimes taken as the definition 

of “causal effect,” see Rosenbaum and Rubin [1983]. In the structural account of causation pur
sued here, this quantity is not a primitive but derivable from the SCM, as all others within the 

PCH. To witness, note YX=1 ← fY (1, 𝜀Y ) when do(X = 1). 

15. This allows researchers to use the syntax to immediately distinguish statements that are 

amenable to some sort of experimentation, at least in principle, from other counterfactuals that 
may be empirically unrealizable. 
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Example 27.3	 Example 27.1 continued 

Let us consider the same dice game but now the observer decides to misreport the 

sum of the two dice as 2, which can be written as submodel ℳX=2: 

{ 
X ← 2 

,	 (27.8)ℱX=2 = 
Y ← U1 − U2, 

while P(U) remains invariant. It can be immediately seen that YX=2(u1, u2) is the 

same as Y(u1, u2); in other words, misreporting the sum of the two dice will of 
course not change their difference. This, in turn, entails the following probabilistic 
invariance, 

P(Y = 0 | do(X = 2)) = P(Y = 0). (27.9) 

In fact, the distribution of Y when X is fixed to two remains the same as before 

(i.e., P(Y = 0 | do(X = 2)) = 1/6). We saw in the first part of the example that know
ing that the sum was two meant that, with probability one, their difference had to 

be zero (i.e., P(Y = 0 |X = 2) = 1). On the other hand, intervening on X will not 
change Y ’s distribution (Equation 27.9); as we say, X does not have a causal effect 
on Y . ■ 

Example 27.4	 Example 27.2 continued 

Consider now that a public health official performs an intervention by giving 

the treatment to all patients regardless of the symptom (Z). This means that 
the function fX would be replaced by the constant 1. In other words, patients 
do not have an option of deciding their own treatment but are compelled to 

take the specific drug.16 This is represented through the new modified set of 
mechanisms, 

ℱX=1 = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

Z ← {Ur =1,Uz =1} 

, (27.10)X ← 

Y ← {X=1,Ur =1} + {X=0,Ur =1,Uy=1} + {X=0,Ur =0,Uy =0} 

and where the distribution of exogenous variables remains the same. Note that 
the potential response YX=1(u) represents the survival of patient u had they been 

treated, while the random variable YX=1 describes the average population survival 

16. This physical procedure is the very basis for the discipline of experimental design [Fisher 1936], 
which is realized through randomization of the treatment assignment in a sample of the popula
tion. In practice, the function of X, fX , is replaced with an alternative source of randomness that 
is uncorrelated with any other variable in the system. 
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had everyone been given the treatment. Notice that for those patients who natu
rally received treatment (X ← fx(U) = 1), the natural outcome Y(u) is equal to 

YX=1(u). For this intervened model, YX=1(u) is equal to 1 in every event where Ur = 1, 
regardless of Uz, Ux, and Uy. Then 

P(Y = 1 | do(X = 1)) = ∑ P(u) = ∑ P(ur) = P(Ur = 1) = 0.25. 
{u | YX=1(u)=1} {ur | YX=1(ur )=1} 

(27.11) 
Similarly, one can evaluate P(Y = 1 | do(X = 0)), which is equal to 0.4. This 
may be surprising as from the perspective of Layer 1, P(Y = 1 | X = 1) − P(Y = 

1 | X = 0) = 0.43 > 0, which appears to suggest that taking the drug is helpful, 
having a positive effect on recovery. On the other hand, interventionally speaking, 
P(Y = 1 | do(X = 1)) − P(Y = 1 | do(X = 0)) = −0.15 < 0, which means that the drug 

has a negative (average) effect in the population. ■ 

The evaluation of an interventional distribution is a function of the modified 

system ℳx that reflects ℱx, which follows from the replacement of X, as illustrated 

in Figure 27.2(ii). Even though computing observational and interventional distri
butions is immediate from a fully specified SCM, the distinction between Layer 1 
(seeing) and Layer 2 (doing) is a central topic in causal inference, as discussed more 

substantively in Section 27.4. 

27.2.3 Pearl Hierarchy, Layer 3—Imagining Counterfactual Worlds 
Layer 3 of the hierarchy (Table 27.1) allows operationalizing the notion of “imagi
nation” (and the closely related activities of retrospection, prospection, and other 
forms of “modal” reasoning), that is, thinking about alternative ways the world 

could be, including ways that might conflict with how the world, in fact, currently 
is. For instance, if the patient took the aspirin and the headache was cured, would 

the headache still be gone had they not taken the drug? Or, if an individual ended 

up getting a great promotion, would this still be the case had they not earned a 

PhD? What if they had a different gender? Obviously, in this world, the person has 
a particular gender, has a PhD, and ended up getting the promotion, so we would 

need a way of conceiving and grounding these alternative possibilities to evalu
ate such scenarios. In fact, no experiment in the world (Layer 2) will be sufficient 
to answer this type of question in general, despite their ubiquity in human dis
course, cognition, and decision-making. Fortunately, the meaning of every term in 

the counterfactual layer (ℒ3) can be directly determined from a fully specified SCM, 
as described in the sequel: 
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Layer 3 Valuation 

An SCM ℳ = ⟨U, V, ℱ , P(U)⟩ induces a family of joint distributions over counter-
factual events Yx, … , Zw, for any Y, Z, … , X, W ⊆ V: 

Pℳ(yx, … , zw) = ∑ P(u). (27.12) 
{u | Yx(u)=y, 
…, Zw(u)=z} 

■ 

Note that the left-hand side (LHS) of Equation (27.12) contains variables with dif
ferent subscripts, which, syntactically, encode different counterfactual “worlds.” 

Example 27.2 continued 

As there is a group of patients who did not receive the treatment and died (X = 0, 
Y = 0), one may wonder whether these patients would have been alive (Y = 1) 
had they been given the treatment (X = 1). In the language of Layer 3, this ques
tion is written as P(YX=1 = 1 | X = 0, Y = 0). This is a non-trivial question as these 

individuals did not take the drug and are already deceased in the actual world (as 
displayed after the conditioning bar, X = 0, Y = 0); the question is about an unreal
ized world and how these patients would have reacted had they been submitted to a 

different course of action (formally written before the conditioning bar, YX=1 = 1). 
In other words, did they die because of the lack of treatment? Or would this fatal 
unfolding of events happen regardless of the treatment? Unfortunately, there is no 

conceivable experiment in which we could draw samples from P(YX=1 = 1 | X = 0, 
Y = 0), as these patients cannot be resuscitated and submitted to the alternative 

condition. This is the very essence of counterfactuals. 
For simplicity, note that P(YX=1 = 1 | X = 0, Y = 0) can be written as the ratio 

P(YX=1 = 1, X = 0, Y = 0)/P(X = 0, Y = 0), where the denominator is trivially 
obtainable as it only involves observational probabilities (about one specific world, 
the factual one). The numerator, P(YX=1 = 1, X = 0, Y = 0), refers to two different 
worlds, which requires us to climb up to the third layer in order to formally specify 
the quantity of interest. Using the procedure dictated in Equation (27.12), we obtain 

P(YX=1 = 1, X = 0, Y = 0)
P(YX=1 = 1 | X = 0, Y = 0) = 

P(X = 0, Y = 0)
∑{u | YX=1(u)=1,X(u)=0,Y(u)=0} P(u)= = 0.0217.

∑{u | X(u)=0,Y(u)=0} P(u) 

This evaluation is shown step by step in Bareinboim et al. [2020, appendix D], 
but we emphasize here that the expression in the numerator involves evaluat
ing multiple worlds simultaneously (in this case, one factual and one related to 
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intervention do(X = 1)), as illustrated in Figure 27.2(iii). The conclusion follow
ing from this counterfactual analysis is clear: even if we had given the treatment 
to everyone who did not survive, only around 2% would have survived. In other 
words, the drug would not have prevented their deaths. Another aspect of this sit
uation worth examining is whether the treatment would have been harmful for 
those who did not get it and still survived, formally written in Layer 3 language as 
P(YX=1 = 1 | X = 0, Y = 1). Following the same procedure, we find that this quan
tity is 0.1079, which means that about 90% of such people would have died had 

they been given the treatment. While a uniform policy over the entire population 

would be catastrophic (as shown in Example 27.4), the physicians knew what they 
were doing in this case and were effective in choosing the treatment for the patients 
who could benefit more from it. ■ 

There are many other counterfactual quantities implied by a structural model, 
for example, the previous two quantities can be combined to form the probability of 

′ necessity and sufficiency (PNS) [Pearl 2000, chapter 9], written as P(yx, yx ′ ). The PNS 

encodes the extent to which a certain treatment to a particular outcome would be 

both necessary and sufficient. This quantity addresses a quintessential “why” ques
tion, where one wants to understand what caused a given event. Still in the purview 

of Layer 3, some critical applications demand that counterfactuals be nested inside 

other counterfactuals. For instance, consider the quantity Yx, M that represents the ′ x 

counterfactual value of Y had X been x, and M had whatever value it would have 

taken had X been x ′ . In other words, for Y the value of X is x, while for M the value 

of X is x ′ . This type of nested counterfactuals allow us to write contrasts such as 
P[Yx, Mx −Yx, M ′ ], the so-called indirect effect on Y when X changes from x ′ to x [Pearl 

x 

2001]. The use of nested counterfactuals led to a very natural and general treat
ment of direct, indirect, and spurious effects, including a precise understanding 

of their relationship in non-linear systems [Pearl 2012, VanderWeele 2015, Zhang 

and Bareinboim 2018]. 

27.3 Pearl Hierarchy—A Logical Perspective 
We have seen that each layer of the PCH corresponds to a different intuitive notion 

in human cognition: seeing, acting, and imagining. Table 27.1 presents character
istic questions associated with each of the layers. Layer 1 concerns questions like, 
“How likely is Y given that I observe X?” Layer 2 asks hypothetical (“conditional”) 
questions such as, “How likely would Y be if one were to make X happen?” Layer 3 
takes us further, allowing questions like, “Given that I observed X and Y , how likely 
would Y have been if X ′ had been true instead of X?” 
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What does the difference among these questions amount to, given that an SCM 

answers all of them? Implicit in our presentation was a series of increasingly com
plex symbolic languages (Definitions 27.2, 27.5, and 27.6). Each type of question 

above can be phrased in one of these languages, the analysis of which reveals a 

logical perspective on PCH. We begin our analysis by isolating the syntax of these 

systems. We define languages ℒ1, ℒ2, ℒ3, each based on polynomials built over 
basic probability terms P(𝛼). The only differences among them are the terms P(𝛼) 
allowed: as we go up in the PCH, increasingly complex expressions 𝛼 are allowed 

in the probability terms. In particular, ℒ1 is just a familiar probabilistic logic (see 

Fagin et al. [1990]). 

Symbolic Languages ℒ1, ℒ2, ℒ3
 

Let variables V be given and X, Y, Z ⊆ V. Each language ℒi, i = 1, 2, 3, consists
 
of (Boolean combinations of) inequalities between polynomials over terms P(𝛼),
 
where P(𝛼) is an ℒi term, defined as follows:
 

ℒ1	 terms are those of the form P(Y = y), encoding the probability that Y take on 

values y; 
ℒ2	 terms additionally include probabilities of conditional expressions, P(Yx = y), 

giving the probability that variables Y would take on values y, were X to have 

values x; 
ℒ3	 terms encode probabilities over conjunctions of conditional (that is, ℒ2) 

expressions, P(Yx = y, … , Zw = z), symbolizing the joint probability that all 
of these conditional statements hold simultaneously. ■ 

For concreteness, a typical ℒ1 sentence might be P(X = 1, Y = 1) = P(X = 

1)P(Y = 1). The ℒ1 conjunction over all such combinations 

P(X = 1, Y = 1) = P(X = 1)P(Y = 1) ∧ P(X = 1, Y = 0) = P(X = 1)P(Y = 0) 

∧ P(X = 0, Y = 1) = P(X = 0)P(Y = 1) ∧ P(X = 0, Y = 0) = P(X = 0)P(Y = 0) 
(27.13) 

would express that X and Y are probabilistically independent if X and Y are binary 
variables. Of course, we would ordinarily write this simply as P(X, Y) = P(X)P(Y). 

In ℒ2 we have sentences like P(YX=1 = 1) = 3/4, which intuitively expresses 
that the probability of Y taking on value 1 were X to take on value 1 is 3/4.17 As 
before, we could also write this as P(Y = 1 | do(X = 1)) = 3/4. Finally, ℒ3 allows 

17. These “conditional” expressions such as YX=1 = 1 are familiar from the literature in condi
tional logic. In David Lewis’s early work on counterfactual conditionals, YX=1 = 1 would have 

been written X = 1 □→ Y = 1 (see Lewis [1973]). More recently, some authors have used notation 

from dynamic logic, [X = 1]Y = 1, with the same interpretation over SCMs (see, e.g., Halpern 

[2000]). For more discussion on the connection between the present SCM-based interpretation 
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statements about joint probabilities over conditional terms with possibly incon
′ sistent subscripts (also known as antecedents in logic). For instance, P(yx, yx ′ ) ≥ 

P(y | x) − P(y | x ′) is a statement expressing a lower bound on the PNS. 18 

Definition 27.7 gives the formal structure (syntax) of ℒ1, ℒ2, ℒ3, but not their 
interpretation or meaning (semantics). In fact, we have already specified their 
meaning in SCMs via Definitions 27.2, 27.5, and 27.6. Specifically, let Ω denote the 

set of all SCMs over endogenous variables V. Then each ℳ ∈ Ω assigns a real 
number to P(𝛼) for all 𝛼 at each layer, namely the value Pℳ(𝛼) ∈ [0, 1]. Given such 

numbers, arithmetic and logic suffice to finish evaluating these languages. Thus, 
in each SCM ℳ, every sentence of our languages, such as Equation (27.13), comes 
out true or false.19 At this stage, we are ready to formally define the PCH: 

Definition 27.8 Pearl Causal Hierarchy (PCH) 
Let ℳ* be a fully specified SCM. The collection of observational, interventional, 
and counterfactual distributions induced by ℳ*, as delineated by languages ℒ1, 
ℒ2, ℒ3 (syntax) and following Definitions 27.2, 27.5, and 27.6 (semantics), is called 

the Pearl Causal Hierarchy. ■ 

In summary, as soon as we have an SCM, the PCH is thereby well defined, in the 

sense that this SCM provides valuations for any conceivable quantity in these lan
guages ℒ1, ℒ2, ℒ3 (of associations, interventions, and counterfactuals, respectively). 
It therefore makes sense to ask about properties of the hierarchy for any given SCM, 
as well as for the class Ω of all SCMs. One substantive question is whether the PCH 

can be shown strict. 
If we take ℒ1 terms to involve a tacit empty intervention, that is, that P(y) means 

P(y∅), then the formal syntax of this series of languages clearly forms a strict hier
archy ℒ1 � ℒ2 � ℒ3: there are patently ℒ2 terms that do not appear in ℒ1 (e.g., 

and Lewis’s “system-of-spheres” interpretation, we refer readers to Pearl [2000, sections 7.4.1– 

7.4.3] and Briggs [2012], Halpern [2013], and Zhang [2013]. A third interpretation is over (prob
abilistic) “simulation” programs, which under suitable conditions are equivalent to SCMs—see 

Ibeling and Icard [2018, 2019, 2020]. 

18. For details of this bound and the assumptions guaranteeing it, see Pearl [2000, theorem 9.2.10]. 
Formally speaking, statements such as this one involving conditional probabilities are short

′ hand for polynomial inequalities; in this case the polynomial inequality is P(yx, yx ′ )P(x)P(x ′) + 
′ P(x , y)P(x) ≥ P(x, y)P(x ′). 

19. Building on the classic axiomatization for (finite) deterministic SCMs [Galles and Pearl 1998, 
Halpern 2000], the probabilistic logical languages ℒ1, ℒ2, ℒ3 were axiomatized over probabilistic 
SCMs in Ibeling and Icard [2020]. The work presented in this chapter—including Definition 27.8 

and Theorem 27.1 (below)—can be cast in axiomatic terms, although these results do not depend 

in any direct way on questions of axiomatization. 
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′ P(yx)), and ℒ3 terms that do not appear in ℒ2 (e.g., P(yx, yx ′ )). One has the impres
sion that each layer of the Pearl hierarchy is somehow richer or more expressive 

than those below it, capable of encoding information about an underlying ground 

truth that surpasses what lower layers can possibly express. Is this an illusion, the 

mere appearance of complexity, or are the concepts expressed by the layers in some 

way fundamentally distinct?20 The sense of strictness that we would like to under
stand concerns the fundamental issue of logical expressiveness. If each language 

did not expressively exceed its predecessors, then in some sense our talk of causa
tion and imagination would be no more than mere figures of speech, being fully 
reducible to lower layers. 

What would it mean for the layers of the hierarchy not to be distinct? Toward 

clarifying this, let us call the set of all layer i (ℒi) statements that come out true 

according to some ℳ ∈ Ω the ℒi-theory of ℳ. We shall write ℳ ∼i ℳ ′ for 
ℳ, ℳ ′ ∈ Ω to mean that their ℒi-theories coincide, that is, that ℳ, ℳ ′ agree on all 
layer i statements. Intuitively, ℳ ∼i ℳ ′ says that ℳ and ℳ ′ are indistinguishable 

given knowledge only of ℒi. 
For the remainder of this section assume that the true data-generating process 

ℳ* is fixed. Suppose we had that ℳ* ∼2 ℳ implies ℳ* ∼3 ℳ for any other SCM 

ℳ ∈ Ω; that is, any SCM ℳ which agrees with ℳ* on all ℒ2 valuations also agrees 
on all of the ℒ3 valuations.21 This would mean that the collection of ℒ2 facts fully 
determines all of the ℒ3 facts. More colloquially, if this happens, it means that we 

can answer any ℒ3 question—including any counterfactual question, for example, 
′ the exact value of P(yx | yx ′ )—merely from ℒ2 information. For instance, simply con

struct any SCM ℳ with the right ℒ2 valuation (i.e., such that ℳ ∼2 ℳ*) and read 

off the ℒ3 facts from ℳ.22 In this case it would not matter that ℳ is not the true 

data-generating process, as any differences would not be visible even at ℒ3. This can 

20. As a rough analogy, consider the ordinary concepts of “cardinality of the integers,” “cardinal
ity of the rational numbers,” and “cardinality of the real numbers.” One’s first intuition may be 

that these are three distinct notions, and moreover that they form a kind of hierarchy: there are 

strictly more rational numbers than integers, and strictly more real numbers than rational num
bers. Of course, in this instance the intuition can be vindicated in the second case but dismissed 

as an illusion in the first. (See, e.g., Cantorian arguments from any basic textbook in logic or CS.) 

21. For readers familiar with causal inference, this can be seen as a generalization of the notion 

of identifiability (e.g., see Pearl [2000, definition 3.2.3]), where P represents all quantities in layer 
i, Q all quantities in layer j, and the set of features FM is left unrestricted (all in the notation of 
Pearl [2000]). This more relaxed notion has a long history in mathematical logic, namely, Padoa’s 
method in the theory of definability [Beth 1956]. 

22. Alternatively, given the completeness results in Ibeling and Icard [2020], one could axiomati
cally derive any ℒ3 statement from appropriate ℒ2 statements. 
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Definition 27.9 

Theorem 27.1 

happen in exceptional circumstances, for instance, if the functional relationship 

is deterministic. 
An additional motivation for understanding when layers of the PCH might col

lapse comes from the observation that, at least in some notable cases, adding 

syntactic complexity does not genuinely increase expressivity. As an example, we 

could extend the language ℒ3 to allow more complex expressions. We discussed 

nested counterfactuals earlier in this chapter (Section 27.2), namely, statements 
such as P(Yx, Z ′ ), which can also be given a natural interpretation in SCMs. Such 

x 

notions are of significant interest, but it can be shown that any such statement 
is systematically reducible to a Layer 3 statement. (See Bareinboim et al. [2020, 
appendix B] for details.) That is, for any statement 𝜙 involving nested counter-
factual expressions, there is an ℒ3 statement 𝜓 such that 𝜙 and 𝜓 hold in exactly 
the same models.23 Such a result shows that adding nested counterfactuals, while 

providing a useful shorthand, would not allow us to say anything about the world 

above and beyond what we can say in ℒ3. Does something similar happen with 

Layers 1, 2, and 3 themselves? How often might an ℒ3-theory completely reduce to 

an ℒ2-theory, or an ℒ2-theory reduce to an ℒ1-theory? 
In light of the foregoing, we can say exactly what it means for the PCH to collapse 

in a given SCM ℳ*. Note that the quantification here is over the class of all SCMs 
in Ω, that is, all SCMs with the same set of endogenous (i.e., observable) variables 
as ℳ*: 

Collapse relative to ℳ* 

Layer j of the causal hierarchy collapses to Layer i, with i < j, relative to ℳ* ∈ Ω if 
ℳ* 24∼i ℳ implies that ℳ* ∼j ℳ for all ℳ ∈ Ω. ■ 

The significance of the possibility of collapse cannot be overstated. To the 

extent that Layer 2 collapses to Layer 1, this would imply that we can draw all 
possible causal conclusions from mere correlations. Likewise, if Layer 3 collapses 
to Layer 2, this means that we could make statements about any counterfactual 
merely by conducting controlled experiments. 

Our main result can then be stated (first, informally) as: 

Causal Hierarchy Theorem (CHT), informal version 

The PCH almost never collapses. That is, for almost any SCM, the layers of the 

hierarchy remain distinct. ■ 

23. In logic, we would say that nested counterfactuals are thus definable in ℒ3 (see, e.g., Beth 

[1956]). 

24. Equivalently, there does not exist ℳ ∈ Ω such that ℳ* ∼i ℳ but ℳ* ≁j ℳ. In other words, 
every layer j query can be answered with suitable layer i data. 
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What does almost-never mean? Here is an analogy. Suppose (fully specified) 
SCMs are drawn at random from Ω. Then, the probability that we draw an SCM 

relative to which PCH collapses is 0. This holds regardless of the distribution on 

SCMs, so long as it is smooth. 
The CHT says that there will typically be causal questions that one cannot 

answer with knowledge and/or data restricted to a lower layer.25 This can be seen 

as the formal grounding for the intuition behind the PCH discussed in Pearl and 

Mackenzie [2018, chapter 27]: 

To answer questions at Layer i, one needs knowledge at Layer i or higher. 

With this intuitive understanding of the CHT, we now state the formal version 

and offer an outline of the main arguments used in the proof. In order to state the 

theorem, note that ∼3 is an equivalence relation on Ω, inducing ℒ3-equivalence 

classes of SCMs. Under a suitable encoding, this space of equivalence classes can 

be seen as a convex subset of [0, 1]K , for K ∈ N. This means we can put a natural 
(uniform) measure on the space of (equivalence classes) of SCMs. The theorem then 

states (for the complete proof and further details, we refer readers to Bareinboim 

et al. [2020, appendix A]): 

CHT, formal version 

With respect to the Lebesgue measure over (a suitable encoding of ℒ3 -equivalence 

classes of) SCMs, the subset in which any PCH collapse occurs is measure zero. ■ 

It bears emphasis that the CHT is a theory-neutral result in the sense that it 
makes only minimal assumptions and only presupposes the existence of a tempo
ral ordering of the structural mechanisms—an assumption made to obtain unique 

valuations via Definitions 27.2, 27.5, and 27.6. 
In the remainder of this section, we would like to discuss the basic idea behind 

the CHT proof. There are essentially two parts to the argument: one showing that 
ℒ2 almost never collapses to ℒ1, and the second showing that ℒ3 almost never col
lapses to ℒ2. In both parts it suffices to identify some simple property of SCMs that 
we can show is typical, and moreover sufficient to ensure non-collapse. 

In fact, Layer 2 never collapses to Layer 1: for any SCM ℳ* there is always 
another SCM ℳ with the same ℒ1-theory but a different ℒ2-theory. In case there 

25. The investigation of the next section will be on conditions that could allow causal infer
ences from lower-level data combined with graphical assumptions of the underlying SCM; see, 
for example, Bareinboim and Pearl [2016]. Another common thread in the literature is structural 
learning: adopting arguably mild assumptions of minimality (e.g., faithfulness) one can often 

discover fragments of the underlying causal diagram (Layer 2) from observational data (Layer 1) 
[Spirtes et al. 2001, Peters et al. 2017]. 
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is any non-trivial dependence in ℳ*, we can construct a second model ℳ with a 

single exogenous variable U and all endogenous variables depending only on U, 
such that ℳ* ∼1 ℳ (cf. Suppes and Zanotti [1981]). On the other hand, if ℳ* has 
no variable depending on any other, it is possible to induce such a dependence 

that, nonetheless, does not show up at Layer 1. (For full details of the argument, 
see Bareinboim et al. [2020, appendix A]). 

The case of Layers 2 and 3 is slightly more subtle. The reason is that adding or 
removing arguments in the underlying functional relationships usually changes 
the corresponding causal effect. Here we need to show that the equations of the 

true ℳ* can be perturbed in a way that it does not affect any ℒ2 facts but does 
change some joint probabilities over combinations of potential responses. It turns 
out there are many ways to accomplish this goal; however, for the CHT we need 

a systematic method. One possibility—again, informally speaking—is to take two 

exogenous variable settings that witness two different values for some potential 
response, and swap these values with some sufficiently small probability (see 

Bareinboim et al. [2020, appendix A]). For this to work, essentially all we need is for 
there to be at least some non-trivial probabilistic relationship between variables. 
This property is quite obviously typical of SCMs. We illustrate this method with our 
running Example 27.2 (Example 27.7 below). 

Turning now to these examples, we start with a variation of a classic construc
tion presented by Pearl himself [Pearl 2000, section 1.4.4]. The example has been 

used to demonstrate the inadequacy of (causal) Bayesian networks (discussed fur
ther in the next section) for encoding counterfactual information. Here we use it to 

illustrate a more abstract lesson, namely, that knowing the values of higher-layer 
expressions generically requires knowing progressively more about the underlying 

SCM (Corollary 27.1). 

Example 27.6 Let ℳ* = ⟨U = {U1, U2}, V = {X, Y}, ℱ* , P(U)⟩, where 

{ 
X ← U1ℱ * = . (27.14)
Y ← U2 

and U1, U2 are binary with P(U1 = 1) = P(U2 = 1) = 1/2. Let the variable X represent 
whether the patient received treatment and Y whether they recovered. Evidently, 
Pℳ* (x, y) = 1/4 for all values of X, Y . In particular X, Y are independent. Now, 
suppose that we just observed samples from Pℳ* and were confident, statistically 
speaking, that X, Y are probabilistically independent. Would we be justified in con
cluding that X has no causal effect on Y? If the actual mechanism happened to be 

ℳ*, then this would certainly be the case. However, this Layer 1 data is equally con
sistent with other SCMs in which Y depends strongly on X. Let ℳ be just like ℳ* , 
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except with mechanisms: 

{ 
X ← U1=U2ℱ = . (27.15)
Y ← U1 + X=1,U1=0,U2=1 

Then Pℳ* (X, Y) = Pℳ(X, Y), yet Pℳ* (Y = 1 | do(X = 1)) = 1/2 as X does not affect 
Y in ℳ*, while Pℳ(Y = 1 | do(X = 1)) = 3/4. If ℳ were the actual mechanisms, 
assigning the treatment would actually improve the chance of survival. Thus, just 
as one cannot infer causation from correlation, one cannot always expect to infer 
correlation from causation. 

Having internalized this lesson that correlation and causation are distinct, one 

might perform a randomized controlled trial and discover that all causal effects 
in this setting trivialize; in particular, P(Y | do(X)) = P(Y)—the treatment does not 
affect the chance of survival at all. Suppose we observe patient S, who took the 

treatment and died. We might well like to know whether S’s death occurred because 
of the treatment, in spite of the treatment, or regardless of the treatment. This is a 

quintessentially counterfactual question: given that S took the treatment and died, 
what is the probability that S would have survived had they not been treated? We 

write this as P(YX=0 = 1 | X = 1, Y = 0), as discussed in Example 27.4. Can we 

infer anything about this expression from Layer 2 information (in this case, that 
all causal effects trivialize)? We cannot, as shown by other variations of ℳ* , say 
ℳ ′ such that 

{ 
X ← U1ℱ ′ = . (27.16)
Y ← XU2 + (1 − X)(1 − U2) 

Like ℳ, this model reveals a dependence of Y on X. However, this is not at all visi
ble at Layer 1 or at Layer 2; all causal effects trivialize in ℳ ′ as well. The dependence 

only becomes visible at Layer 3. In ℳ*, we have Pℳ* (YX=0 = 1 | X = 1, Y = 0) = 0, 
whereas in ℳ ′ we have the exact opposite pattern, Pℳ ′ (YX=0 = 1 | X = 1, Y = 0) = 1. 
These two models thus make diametrically opposed predictions about whether 
S would have survived had they not taken the treatment. In other words, the 

best explanation for S’s death may be completely different depending on whether 
the world is like ℳ* or ℳ ′ . In ℳ* , S would have died anyway, while in ℳ ′ , S 

would actually have survived, if only they had not been given the treatment. Need
less to say, such matters can be of fundamental importance for critical practical 
questions, such as determining who or what is to blame for S’s death. ■ 

The CHT tells us that the failure of collapse witnessed in Example 27.6 is typical. 
However, it is worth seeing further examples to appreciate the many ways we can 
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take an SCM ℳ* and find an alternative SCM ℳ that agrees at all lower layers but 
disagrees at higher layers. 

We discuss two quite different strategies in the next example. To show that 
Layer 2 does not collapse to Layer 1, we actually eliminate the functional depen
dence of one variable on another—all probabilistic dependence patterns are due 

to common causes. More interestingly, we employ a very general method to show 

that Layer 3 does not collapse to Layer 2, whose efficacy is proven systematically in 

Bareinboim et al. [2020, lemma 2]. 

Example 27.7 Example 27.2 continued 

For the SCM ℳ* = ℳ2 of Example 27.2, consider another model ℳ with the equa
tion for Y replaced by a new equation Y ← {Ur =1,Ux =1,Uz =1} + {Ur =1,Ux =0,Uz =0} + 

{Ur =1,Ux =1,Uy =0}, and everything else 

unchanged. It is then easy to check that ℳ* ∼1 ℳ. However, Y now no longer 
shows a functional dependence on X: the probabilistic dependence of Y on X is due 

to the common causes Ux, Uz, Ur. While in Example 27.4 we saw that Pℳ* (Y | ̸

{Ur =1,Ux =0,Uy=1,Uz =1} + {Ur =1,Ux =1,Uy =1,Uz =0} + 

X) = 

Pℳ* (Y | do(X)), here we have Pℳ(Y | X) = Pℳ(Y | do(X)). In other words, even though 

X does exert a causal influence on Y (assuming ℳ* is the true data-generating 

process), we would not be able to infer this from observational data alone. 
To show that Layer 3 does not collapse to Layer 2, consider a third model ℳ ′ , 

in which X, Y , Z all share one exogenous parent U, with Val(U) = {0, 1}4 ∪ {u * 
1 , u * 

2 }. 
The probability of a quadruple ⟨ur, uz, ux, uy⟩ in this model is simply given by the 

product from model ℳ* —P(Ur = ur) ⋅ P(Uz = uz) ⋅ P(Ux = ux) ⋅ P(Uy = uy)—with one 

exception: for the two quadruples, ⟨1, 1, 1, 0⟩ and ⟨1, 1, 0, 0⟩, we subtract 𝜀 = .005 

from these probabilities, and redistribute the remaining mass so that u * and u * 
1 2 

each receive probability 𝜀. This produces a proper distribution P ′(U). We will con
tinue to write, for example, Ur = u simply to mean that U ̸ u1 * , u *= 2 and the first 
coordinate of U is u, and similarly for Uz, Ux, Uy. The mechanisms are now: 

⎧
Z ← U∈{u * 

1 ,u * 
2 }{Ur =1,Uz =1} +⎪⎪⎪

U=u * .ℱ ′ = ⎨X ← {Z=1,Ux =1} + {Z=0,Ux =0} + 
2⎪⎪⎪Y ← {X=1,Ur =1} + {X=0,Ur =1,Uy=1} + {X=0,Ur =0,Uy=0} + {X=1,U∈{u * 

1 ,u * 
2 }}⎩ 

(27.17) 
To check that the joint distributions Pℳ* (X, Y , Z) and Pℳ ′ (X, Y , Z) are the same, 
note that the two models coincide at all exogenous settings with the exception of 
the two quadruples ⟨1, 1, 1, 0⟩ and ⟨1, 1, 0, 0⟩. In the first we have Z = X = Y = 

1, and the 𝜀-loss in probability for this possibility is corrected by the fact that 
X(u * 

2 ) = Y(u * 
2 ) = Z(u * 

2 ) = 1 and P ′(u2 
*) = 𝜀. Similarly for ⟨1, 1, 0, 0⟩ and the state 

Z = 1, X = Y = 0, which results when U = u1 * . To show that ℳ* ∼2 ℳ ′ is also 

straightforward. 
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However, consider the ℒ3 expression YZ=1 = 1, YZ=0 = 1, which says that the 

patient would survive no matter whether hypertension was induced or prevented. 
For both exogenous settings ⟨1, 1, 1, 0⟩ and ⟨1, 1, 0, 0⟩, this expression is false, yet in 

setting u * 
2 the expression is true. Hence, Pℳ ′ (YZ=1 = 1, YZ=0 = 1) = Pℳ* (YZ=1 = 

1, YZ=0 = 1) + 𝜀. ■ 

While collapse of the layers is possible if ℳ* is exceptional, the CHT shows that 
this is the exception indeed. Typical cases are similar to Examples 27.6 and 27.7, 
each showing a different way of perturbing an SCM to obtain a second SCM reveal
ing non-collapse. In fact, a typical data-generating process ℳ* encodes rich infor
mation at all three layers, and even small changes to the mechanisms in ℳ* 

can have substantial impact on quantities across the hierarchy. Critically, such 

differences will often be visible only at higher layers in the PCH. 
The lesson learned from the CHT is clear—as the layers of PCH come apart in 

the generic case and one cannot make inferences at one layer given knowledge at 
lower layers (e.g., using observational data to make interventional claims), some 

additional assumptions are logically necessary if one wants in general to do causal 
inference. 

27.4 Pearl Hierarchy—A Graphical Perspective 
All conceivable quantities from any layer of the PCH—associational, interven
tional, and counterfactual—are immediately computable once the fully specified 

SCM is known. Unfortunately, in most practical settings, it’s usually hard to deter
mine the structural model at this level of precision, and the CHT severely cur
tails the ability to “climb up” the PCH via lower-level data. Learning about cause
and-effect relationships is arguably one of the main goals found throughout the 

sciences. After all, how could causal inferences be performed? 
The recognition that there are mechanisms underlying the phenomena of inter

est, but that we usually cannot determine them precisely, gives rise to the dis
cipline of causal inference [Pearl 2000]. Virtually every approach to causal infer
ence works under the stringent condition that only partial knowledge of the 

underlying SCM is available. One pervasive task is to determine the effect of an 

intervention—what would happen with Y were X to be intervened on and set to x, 
P(Y | do(X = x))—from observational data, P(X, Y). This constitutes a cross-layer 
inference where the goal is to use data from layer ℒ1 to try to make an infer
ence about an ℒ2 quantity, given a partial specification of the underlying SCM (see 

Figure 27.3 [a–d]). 
In this section, we investigate the question of what type of causal knowledge 

could be (1) intuitively meaningful, (2) possibly available, and (3) powerful enough 

to encode constraints that would allow cross-layer inferences, as if the SCM were 
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Figure 27.3	 Example of Prototypical Causal Inference—on top the SCM itself, representing the 
unobserved collection of mechanisms and corresponding uncertainty (a); at the bot
tom, the different probability distributions entailed by the model (b, c); on the right 
side, the graphical model representing the specific constraints of the SCM (d). 

itself available. A key observation useful to answer this question is that each SCM 

imprints specific “marks” on the distributions it generates, depicted generically in 

the schema in Figure 27.3(d) as structural constraints. 
One first attempt to solve this task could be to leverage ℒ1-constraints, those 

imprinted on the observed ℒ1 data by the unknown SCM, to make inferences 
about the target ℒ2-quantity. This is especially appealing considering that ℒ1 data 

is often readily available. The signature type of constraint for ℒ1 distributions is 
known as conditional independence, and Bayesian Networks (BNs) are among the 

most prominent formal models used to encode this type of knowledge. The exam
ple below shows that ℒ1 constraints (and BNs) alone are insufficient to support 
causal reasoning in general. 

Example 27.8	 Let ℳ1 and ℳ2 be two SCMs such that V = {X, Z, Y}, U = {Ux, Uz, Uy}, and the 

structural mechanisms are, respectively, 

ℱ1 = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

, ℱ2 = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

← Ux ← Z ⊕ UxX X 

← X ⊕ Uz ← Y ⊕ Uz , (27.18)Z Z 

← Z ⊕ Uy ← UyY Y 

where ⊕ is the logical xor operator. Further, the distributions of the exogenous 
variables are P1(Ux = 1) = P2(Uy = 1) = 1/2, P1(Uz = 1) = P2(Ux = 1) = a, 
and P1(Uy = 1) = P2(Uz = 1) = b, for some a, b ∈ (0, 1). It can immediately be 

seen (via Definition 27.2 and Equation (27.3)) that both models generate the same 
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observational distribution, 

P1,2(X = 0, Z = 0, Y = 0) = P1,2(X = 1, Z = 1, Y = 1) = (1 − a)(1 − b)/2,
 

P1,2(X = 0, Z = 0, Y = 1) = P1,2(X = 1, Z = 1, Y
 = 0) = (1 − a)b/2,
 

P1,2(X = 0, Z = 1, Y = 1) = P1,2(X = 1, Z = 0, Y
 = 0) = a(1 − b)/2,
 

P1,2(X = 0, Z = 1, Y = 0) = P1,2(X = 1, Z = 0, Y
 = 1) = ab/2. (27.19) 

We further compute the effect of the intervention do(x) (via Definition 27.5 and 

Equation 27.7), 

P1(Y = 1 | do(X = 1)) = ab + (1 − a)(1 − b), P2(Y = 1 | do(X = 1)) = 1/2, (27.20) 

which are different for most values a, b. The models ℳ1 and ℳ2 naturally induce 

BNs 𝒢1 and 𝒢2, respectively; see Figure 27.4(a) and (b).26 In terms of ℒ1-constraints, 
𝒢1 and 𝒢2 both imply that X is independent of Y given Z (for short, X⊥Y | Z) and 

nothing more.27 This means that 𝒢1 and 𝒢2 are equivalent through the lens of ℒ1, 
while the original ℳ1 and ℳ2 generate different answers to ℒ2 queries, as shown 

in Equation (27.20). ■ 

The main takeaway from the example is that from only the distribution P(V) 
and the qualitative (conditional independence) constraints implied by it, it is 
impossible to tell whether the underlying reality corresponds to ℳ1, ℳ2, or any 
other SCM inducing the same P(V), while each such model could entail a differ
ent causal effect. This suggests that, in general, causal inference cannot be carried 

out with mere ℒ1 objects—the observational distribution, its constraints, and cor
responding models (BNs). This result can be seen as a graphical instantiation of 
Corollary 27.1 and is schematically summarized in Figure 27.4. 

Causal Inference via ℒ2-constraints—Markovian Causal Bayesian 
Networks 
Having witnessed the impossibility of performing causal inference from ℒ1 con
straints, we come back to the original question—what kind of structural con
straints (Figure 27.3(d)) imprinted by the underlying SCM could license causal 

26. This construction follows from the order in which the functions are determined in the SCM, 
systematized in Definition 24 [Bareinboim et al. 2020, appendix C]. This procedure is guaranteed 

to produce BNs that are compatible with the independence constraints implied by the SCM in ℒ1 

[Bareinboim et al. 2020, theorem 8, appendix C]. 

27. We refer readers to Bareinboim et al. [2020, appendix C], for more details on a criterion called d-
separation [Pearl 1988], which is the tool used for reading these constraints off from the graphical 
model. 
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Figure 27.4	 Two causal diagrams encoding knowledge about the causal mechanisms governing 
three observable variables X, Z, and Y. In (a) X is an argument to fZ, and Z an argu
ment to fY . In (b) the opposite is true. In (c), schema representing the impossibility of 
identifying causal queries from ℒ1 data, constraints, and graphical models. 

inferences? To answer this question, it is instructive to compare more closely the 

effect of an intervention X = 1 in the two SCMs from Example 27.8. First, note that 
the function fY does not depend on X in the submodel ℳ2 

X=1 (constructed follow
ing Definition 27.3); so, probabilistically, Y will not depend on X. This implies the 

following relationship between distributions, 

P2(Y = 1 | do(X = 1)) = P(Y = 1),	 (27.21) 

In contrast, note that (i) fY does take into account the value of X in ℳ1 
X=1, and (ii) 

Y responds (or varies) in the same way when X takes a particular value, be it natu
rally (as in ℳ1) or due to an intervention (as in ℳ1 

X=1). These facts can be formally 
written as 

P1(Y = 1 | do(X = 1)) = P(Y = 1 | X = 1). (27.22) 

The exact computation of Equations (27.21) and (27.22) follows immediately from 

Definitions 27.2 and 27.5. Remarkably, the intuition behind these equalities does 
not arise from the particular form of the underlying functions, the exogenous 
variables, or their distribution, but from structural properties of the model. In 

particular, they are determined by qualitative functional dependences among the 

variables: what variable is an argument to the function of the other. 
Technically, these equalities can be seen as constraints (not conditional 

independences) and can be pieced together and given a graphical interpretation. 
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Consider again Equation (27.21) as an example, which says that variable X does not 
have an effect on Y (doing X does not change the marginal distribution of Y), which 

graphically would entail that X is not an ancestor of Y in 𝒢2. While true in ℳ2, it 
certainly does not hold in ℳ1, nor, consequently, in 𝒢1. Even though 𝒢1 and 𝒢2 are 

graphically equivalent with respect to ℒ1, and could be used interchangeably for 
probabilistic reasoning, they are, interventionally speaking, very distinct objects. 

These constraints encode one of the fundamental intuitions we have about 
causality, namely, the asymmetry that a cause may change its effect but not the 

other way around. Our goal henceforth will be to systematically incorporate these 

constraints into a new family of graphical models with arrows carrying causal 
meaning and supporting ℒ2-types of inferences. First, we introduce a procedure 

that returns a new graphical model following the intuition behind the constraints 
discussed so far, and then show how it relates to the collection of interventional 
distributions (ℒ2-valuations) entailed by the SCM. 

Causal Diagram (Markovian Models) 
Consider a Markovian SCM ℳ = ⟨U, V, ℱ , P(U)⟩. Then, 𝒢 is said to be a causal 
diagram (of ℳ) if constructed as follows: 

1. add a vertex for every endogenous variable in the set V, 
2. add an edge (Vj → Vi) for every Vi ∈ V if Vj appears as an argument of fi ∈ ℱ . 

■ 

The procedure encapsulated in Definition 27.10 is central to the elicitation of 
the knowledge necessary to perform causal inference (Figure 27.3(d)). Intuitively, 
𝒢 has an arrow from A to B (A → B) if B “listens” to the value of A; functionally, 
A appears as an argument of the mechanism of B. The importance of this notion 

has been emphasized in the literature by Pearl: “This listening metaphor encapsu
lates the entire knowledge that a causal network conveys; the rest can be derived, 
sometimes by leveraging data” [Pearl and Mackenzie 2018, p. 129]. This construc
tion produces a coarsening of the underlying SCM such that the arguments of the 

functions are preserved while their particular forms are discarded.28 

The assumptions that the causal diagram encodes about the SCM impose con
straints not only over the ℒ1-distribution P but also over all the interventional (ℒ2) 
distributions as encapsulated in the following definition [Bareinboim et al. 2012]. 

Causal Bayesian Network (CBN)-Markovian
 

Let P* be the collection of all interventional distributions P(V | do(x)), X ⊆ V,
 

28. Given the lack of constraints over the form and shape of the underlying functions and distri
bution of the exogenous variables, these models are usually called non-parametric in the causal 
inference literature. 
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x ∈ Val(X), including the null intervention, P(V), where V is the set of observed 

variables. A directed acyclic graph 𝒢 is called a CBN for P* if for all X ⊆ V, the 

following conditions hold: 

(i) [Markovian] P(V | do(x)) is Markov relative to 𝒢. 
(ii) [Missing-link] For every Vi ∈ V, Vi ∉ X such that there is no arrow from X to 

Vi in 𝒢: 

P(vi | do(pai), do(x)) = P(vi | do(pai)). (27.23) 

(iii) [Parents do/see] For every Vi ∈ V, Vi ∉ X: 

P(vi | do(x), do(pai)) = P(vi | do(x), pai). (27.24) 

■ 

The first condition requires the graph to be Markov relative29 to every interven
tional distribution P(V | do(X = x)), which holds if every variable is independent 
of its non-descendants given its parents.30 The second condition, missing-link, 
encapsulates the type of constraint exemplified by Equation (27.21): after fixing the 

parents of a variable by intervention, the corresponding function should be insen
sitive to any other intervention elsewhere in the system. In other words, the parents 
Pai interventionally shield Vi from interventions (do(X)) on other variables. Finally, 
the third condition, parents do/see, encodes the intuition behind Equation (27.22): 
whether the function fi takes the value of its arguments following an intervention 

(do(Pai = pai)) or by observation (conditioned on Pai = pai), the same behavior for 
Vi is observed. 

Some observations follow immediately from these conditions. First, and per
haps not surprisingly, a CBN encodes stronger assumptions about the world than 

a BN. In fact, all the content of a BN is encapsulated in condition (i) of a CBN (Defi
nition 27.11) with respect to the observational (null intervention) distribution P(V) 
(ℒ1). A CBN encodes additional constraints on interventional distributions (ℒ2) 
beyond conditional independence, involving different interventions such as those 

represented in conditions (ii) and (iii). 

29. This notion is also known in the literature as compatibility or i-mapness [Pearl 1988, Koller 
and Friedman 2009], which is usually encoded in the decomposition of P(v) as ∏i P(vi | pai) in the 

Markovian case. 

30. In some accounts of causation, this condition is known as the causal Markov condition (CMC), 
and is usually phrased in terms of “causal” parents. We invite the reader to check that conditions 
(ii) and (iii) are in no way implied by (i). One could in fact see Definition 27.11 as offering a precise 

characterization of what CMC formally means. 
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Second, readers familiar with graphical models will be quick to point out that 
the knowledge encoded in these models is not in the presence but in the absence 

of the arrows; each missing arrow makes a claim about a certain type of invariance. 
In the context of BNs (ℒ1), each missing arrow corresponds to a conditional inde
pendence, a probabilistic type of invariance.31 On the other hand, each missing 

arrow in a CBN represents an ℒ2-type constraint, for example, the lack of a direct 
effect, as encoded in Definition 27.11 through condition (ii). This new family of con
straints closes a long-standing semantic gap, from a graphical model’s perspective, 
rendering the causal interpretation of the graphical model totally unambiguous. 

Before proving that this graphical model encapsulates all the probabilistic and 

causal constraints required for reasoning in ℒ2, we show next that the ℒ2-empirical 
content of an SCM—that is, the collection of observational and interventional dis
tributions (Definition 27.5)—indeed matches the content of the CBN (Definition 

27.10), as defined above. 

ℒ2-Connection—SCM-CBN (Markovian) 
The causal diagram 𝒢 induced by the SCM ℳ (following the constructive proce
dure in Definition 27.10) is a CBN for Pℳ—the collection of observational and* 

experimental distributions induced by ℳ. ■ 

For the complete proof, see Bareinboim et al. [2020, appendix D]. As this result 
demonstrates, CBNs serve as proxies for SCMs in terms of the observed ℒ2 dis
tributions. In practice, whenever the SCM is not fully known and the collection 

of interventional distributions is not available, this duality suggests that a CBN 

can act as a basis for causal reasoning. To ground this point, we go back to our 
task of inferring the interventional distribution, P(Y | do(X = x)), from a combina
tion of the observational distribution, P(V), and the qualitative knowledge of the 

SCM encoded in the causal diagram 𝒢. A remarkable result that holds in Marko
vian models is that causal inference is always possible, that is, any interventional 
distribution is computable from ℒ1-data. 

Truncated Factorization Product (Markovian) 
Let the graphical model 𝒢 be a CBN for the set of interventional distributions 
P*. For any X ⊆ V, the interventional (ℒ2) distribution P(V | do(x)) is identifiable 

through the truncated factorization product, namely, 

P(v | do(x)) = ∏ P(vi | pai) . (27.25) 
{i | Vi∉X} 

||||||X=x 

■ 

31. One can show that there always exists a separator, in the d-separation sense, between non
adjacent nodes. 
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27.4.2 

Example 27.9 

In other words, the interventional distribution in the LHS of Equation (27.25) 
can be expressed as the product given in the right-hand side (RHS) involving only 
ℒ1-quantities, where the factors relative to the intervened variables are removed, 
hence the name truncated factorization product (see Pearl [2000, equation 1.37]).32 

Obviously, any marginal distribution of interest can be obtained by summing out 
the irrelevant factors, including the causal effect of X on Y. 

Causal Inference via ℒ2-constraints—Semi-Markovian Causal Bayes 
Networks 
The treatment provided for the Markovian case turned out to be simple and ele
gant, yet surprisingly powerful. The causal graph is a perfect surrogate for the 

SCM in the sense that all ℒ2 quantities (causal effects) are computable from ℒ1
type of data (observational) and the constraints in 𝒢. A “model-theoretic” way of 
understanding this result is that all the SCMs that induce the same causal diagram 

and generate the same observational distribution will also generate the same set 
of experimental distributions, immediately computable via the truncated product 
(Theorem 27.3). This is a quite remarkable result as we moved from a model based 

on ℒ1-structural constraints (e.g., a Bayes net) such that no causal inference was 
permitted, to a model encoding ℒ2-constraints (a causal Bayes net) such that any 
conceivable cross-layer inference is immediately allowed. 

In light of these results, one may be tempted to surmise that causal inference 

is a solved problem. This could not be farther from the truth, unfortunately. The 

assumption that all the relevant factors about the phenomenon under investi
gation are measured and represented in the causal diagram (i.e., Markovianity 
holds) is often too stringent, and violated in most real-world scenarios. This means 
that the aforementioned results are usually not applicable in practice. Departing 

from this observation, our goal is to understand the principles that allow cross-
layer inferences when the Markov condition does not hold, which entails incor
porating unobserved confounders as a building block of ℒ2-graphical models. We 

start by investigating the reasons the machinery developed so far is insufficient to 

accommodate such cases. 

Example 27.1 revisited 

Recall the two-dice game where the endogenous variables X and Y (the sum and 

difference of two dice, respectively) do not functionally depend on each other, 
despite their strong association. One could attempt to model such a setting with 

32. The truncated formula is also known as the “manipulation theorem” [Spirtes et al. 2001] or 
G-computation formula [Robins 1986, p. 1423]. For further details, we refer readers to Pearl [2000, 
section 3.6.4]. 
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Figure 27.5 The diagram in (a) implies that neither X nor Y is an argument to the function of 
the other. In (b, c) one endogenous variable causes the other. In (d) there is no causal 
relationship yet the functions share exogenous arguments, as encoded through the 
bidirected arrow. In (e) both types of influence are encoded. 

the graphical structure shown in Figure 27.5(a), somewhat naively, trying to avoid a 

directed arrow between X and Y . As previously noted, if the sum of the dice is equal 
to two (X = 2), one could, with probability one, infer that the two dice obtained the 

same value (Y = 0). The hypothesized graphical model, however, forces the two 

variables to be independent, which would rule out the possibility of performing 

such an inference. 
Upon recognition of such impropriety, one could reconsider adding an arrow 

from X to Y (or Y to X) so as to leverage the valuable information shared across the 

observed variables, as shown in Figure 27.5(b). We previously learned, on the other 
hand, that reporting that the sum of the dice is 2 does not change their difference, 
formally, P(Y | do(X = 2)) = P(Y) must hold in this setting (Equation 27.9). Obvi
ously, this would be violated were the world to mirror this graphical structure. To 

witness, consider the alternative SCM ℳ ′ where the function for X is identical and 

Y ← (X − 2U2). We can verify that P(X, Y) is the same as in ℳ1, while the causal 
effect of X on Y is non-zero. ■ 

The recognition that certain dependencies among endogenous variables can
not be explained by other variables inside the model (but also cannot be ignored) 
led Pearl to introduce a new type of arrow to account for these relationships. The 

new arrows are dashed and bidirected. In the example above, variables X and Y 

are correlated due to the existence of two common exogenous variables, {U1, U2}, 
which are arguments of both fX and fY . We will usually refer to these variables 
as Uxy since, a priori, we will neither know, nor want to assume, their particu
lar form, dimensionality, or distribution. This new type of arrow will allow for 
the probabilistic dependence between them, (X ⊥⊥ Y), while being neutral with 

respect to their interventional invariance. That is, it would accept constraints such 

as P(Y | do(X)) = P(Y) and P(X | do(Y)) = P(X). See Figure 27.5(d) for a graphical 
example. 

In practice, some variables may be related through both sources of variations— 

one exogenous, not explained by the variables in the model, and another endoge
nous, causally explained by the relationships between the variables in the model, 
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Definition 27.12 

as shown in Figure 27.5(e). Due to the unobserved confounder Uxy, the equality 
P(Y | do(x)) = P(Y | x) will not, in general, hold. In other words, Y ’s distribution will 
be different depending on whether we observe X = x or intervene and do(X = x). 
Fundamentally, this will translate into a violation of the constraint encoded in 

Equation (27.22) and, more generally, in condition (iii) of the definition of CBNs 
(Definition 27.11). 

Our goal, henceforth, will be to cope with the complexity arising due to viola
tions of Markovianity. One particular implication of these violations is the widen
ing of the empirical content carried by the CBN versus its underlying SCM, as 
shown in the next example. 

Consider two SCMs ℳ* and ℳ ′ such that V = {X, Y}, U = {Uxy, Uy}, the structural 
mechanisms are ℱ = {X ← Uxy, Y ← (X ⊕ Uy) if X = Uxy, 𝛿 otherwise}, where 𝛿 = 0 

for ℳ* and 𝛿 = 1 for ℳ ′ . The exogenous distributions of both models, P*(U) and 

P ′(U), are the same and given by P(Uxy = 1) = 1/2, P(Uy = 1) = 3/4, and they both fol
low the diagram shown in Figure 27.5(e). It is easy to verify that both models induce 

the same P(V), while P*(Y = 1 | do(X = 1)) = 1/8 ̸= 5/8 = P ′(Y = 1 | do(X = 1)). 
■ 

Remarkably, this is our first encounter with a situation in which a causal 
diagram—encoding all the ℒ2-structural invariances of the underlying SCM 

ℳ*—is too weak, incapable of answering the intended cross-layer inference— 

computing P(Y | do(x)) from the corresponding ℒ1-distribution, P(X, Y). There 

exists at least one other SCM ℳ ′ that shares the same set of structural features, 
in the form of the constraints encoded in the causal diagram, but generates a dif
ferent answer for the causal effect. In other words, one cannot commit and make 

a claim about the target effect as there are multiple, unobserved SCMs compatible 

with the given diagram and observational data. 
Whenever the causal effect is not uniquely computable from the constraints 

embedded in the graphical model, we say that it is non-identifiable from 𝒢 (to be 

formally defined later on). More generally, we would like to understand under what 
conditions an interventional distribution can be computed from the observational 
one, given the structural constraints encoded in the causal diagram. First, we sup
plement the Markovian construction of CBNs, given in Definition 27.10, to formally 
account for the existence of unobserved confounders. 

Causal Diagram (Semi-Markovian Models) 
Consider an SCM ℳ = ⟨U, V, ℱ , P(U)⟩. Then, 𝒢 is said to be a causal diagram (of 
ℳ) if constructed as follows: 

(1) add a vertex for every endogenous variable in the set V, 
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(a) Graph with four C-components.
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D EF

(b) Graph under intervention do(c).

Figure 27.6 Causal diagram with bidirected arrows and its mutilated counterpart under do(c). 

(2) add an edge (Vj → Vi) for every Vi, Vj ∈ V if Vj appears as an argument of 
fi ∈ ℱ . 

(3) add a bidirected edge (Vj+----+Vi) for every Vi, Vj ∈ V if the corresponding 

Ui, Uj ⊂ U are correlated or the corresponding functions fi, fj share some 

U ∈ U as an argument. ■ 

Following this procedure, each SCM ℳ induces a unique causal diagram. Fur
thermore, each bidirected arrow encodes unobserved confounding in 𝒢. They indi
cate correlation between the unobserved parents of the endogenous variables at 
the endpoints of such edges. 

27.4.2.1 Revisiting Locality in Semi-Markovian Models 

Graphical models provide a transparent and systematic way of encoding struc
tural constraints about the underlying SCM (Figure 27.3(d)). In practice, these con
straints follow from the autonomy of the structural mechanisms [Aldrich 1989, 
Pearl 2000], which materializes as local relationships in the causal diagram. In 

Markovian models, these local constraints appear in the form of family relation
ships, for example, (1) each variable Vi is independent of its non-descendants given 

its parents Pai, or (2) each variable is invariant to interventions in other variables 
once its parents are held constant (following Definition 27.11). The local nature 

of these relations leads to a parsimonious factorization of the joint probability 
distribution, and translates into desirable sample and computational complexity 
properties. 

On the other hand, the family relations in semi-Markovian models are less well-
behaved and the boundaries of influence among the variables are usually less local. 
To witness, consider Figure 27.6(a), and note that, where Pad = {B, C} and the 

remaining NDescd = {A, F}, D ⊥⊥ NDescd | Pad does not hold as D and A are con
nected through the open path D+----+B ← A. We introduce below a construct 
called confounded component [Tian and Pearl 2002b] to restore and help to make 

sense of modularity in these models. 



544 Chapter 27 On Pearl’s Hierarchy and the Foundations of Causal Inference 

Definition 27.13	 Confounded Component 
Let {C1, C2, … Ck} be a partition over the set V. Ci is said to be a confounded com
ponent (C-component) of 𝒢 if there exists a path made of bidirected edges between 

Vi and Vj, for every Vi, Vj ∈ Ci in 𝒢, and Ci is maximal. ■ 

This construct represents clusters of variables that share the same exogenous 
variations regardless of their directed connections. The causal diagram in Fig
ure 27.6(a) has two bidirected edges indicating the presence of unobserved con-
founders affecting the pairs (B, D) and (C, E) and contains four C-components, 
namely, C1 = {A}, C2 = {B, D}, C3 = {C, E}, and C4 = {F}. Similarly, each causal 
diagram in Figure 27.5(a–c) contains two C-components, C1 = {X} and C2 = {Y}, 
while each in Figure 27.5(d, e) contains one C-component, C1 = {X, Y}. 

Our goal is to understand the boundaries of influence among variables in 

semi-Markovian models as the parents of a node no longer shield it from its non-
descendants, and this condition is a basic building block in the construction of 
Markovian models. Consider again the graph in Figure 27.6(a) and the node E 

and its only parent D. If we condition on D, E will not be independent of its non-
descendants in the graph. Obviously, E is automatically connected to its bidirected 

neighbors, so it cannot be separated from C. Further, upon conditioning on the par
ent D, the collider through C is opened up as D is its descendant (i.e., E+----+C ← A 

carries correlation given D). In this case, the ancestors and descendants of C also 

become correlated with E, which is now connected to every other variable in the 

graph (A, F, B). Further, note that by conditioning on C itself, its descendants will 
be independent of E but its ancestors and ancestors’ descendants will still be con
nected. In this graph, E is connected to all other nodes upon conditioning on its 
observed parent D and C-component neighbor C, that is, A, B, F. Then, we also need 

to condition on the parents of C (i.e., A) to render its other ancestors and their 
descendants (i.e., F) independent of E. 

Putting these observations together, for each endogenous variable Vi, we need 

to condition on its parents, the variables in the same C-component that precede 

it, and the parents of the latter so as to shield Vi from the other non-descendants 
in the graph. Such a maximal set is formally defined as Pa+ 

i as follows. Let < be a 

topological order V1, … , Vn of the variables V in 𝒢,33 and let 𝒢(Vi) be the subgraph 

of 𝒢 composed only of variables in V1, … , Vi. Given X ⊆ V, let Pa1(X) = X ∪ {Pa(X) : 
X ∈ X}; further, let C(Vi) be the C-component of Vi in 𝒢(Vi). Then define Pa+ = 

Pa1 ({V ∈ C(Vi) : V ≤ Vi}) ⧵{Vi}. For instance, in Figure 27.6(a), Pa+ 
e = {D, C, A} and 

Pa+ 
d = {B, C, A}. 

33. That is, an order on the nodes (endogenous variables) V such that if Vj → Vi ∈ 𝒢, then Vj < Vi. 

i 
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Akin to the concept of Markov relative, a causal diagram also imposes factoriza
tion constraints over the observational distribution in semi-Markovian CBNs, as 
shown next. 

Semi-Markov Relative 

A distribution P is said to be semi-Markov relative to a graph 𝒢 if for any topological 
order < of 𝒢, P factorizes as 

+P(v) = ∏ P(vi | pa ), (27.26)i 
Vi ∈V 

where Pa+ 
i is defined using <. ■ 

Not only is the joint observational distribution related to a causal graph, but 
so are the ℒ2-distributions P(⋅ | do(x)) under an intervention do(X = x). The cor
responding graph is 𝒢X, where the incoming arrows toward X are cut, and the 

semi-Markovian factorization is 

x+Px(v) = ∏ Px(vi | pa ), (27.27)i 
Vi ∈V 

where Pax+ is constructed as Pax+ but according to 𝒢X.i i 

Factorization implied by the semi-Markov condition 

Let P(A, B, C, D, E, F) be a distribution semi-Markov relative to the diagram 𝒢 in 

Figure 27.6(a). One topological order of 𝒢 is A < B < C < D < E < F, 
which implies that P(a, b, c, d, e, f ) = P(a)P(b | a)P(c | a)P(d | b, c, a)P(e | d, c, a)P(f | a). 
In contrast, an application of the chain rule yields: P(a, b, c, d, e, f ) = 

P(a)P(b | a)P(c | b, a)P(d | b, c, a)P(e | d, c, b, a)P(f | e, d, c, b, a). 
A comparison of the two previous factorizations highlights some of the 

independence constraints implied by the semi-Markov condition, for instance, 
(C ⊥⊥ B | A), (E ⊥⊥ B | D, C, A), and (F ⊥⊥ E, D, C, B | A). The same applies to interven
tional distributions. First, let Pc(A, B, C, D, E, F) be semi-Markov relative to 𝒢C 

(Figure 27.6(b)). Then, note that Pc(A, B, C, D, E, F) factorizes as Pc(a) Pc(b | a)Pc(c) 
Pc(d | b, c, a)Pc(e | d)Pc(f | a). This distribution satisfies the same conditional inde
pendence constraints as P(A, B, C, D, E, F), but also additional ones such as 
(E ⊥⊥ A | D). This constraint holds true as (C+----+E) is absent in 𝒢C. The extended 

parents in both distributions are Pa+ = {A, C, D} and PaC+ = {D}. ■e e 

CBNs with Latent Variables—Putting All the Pieces Together 
The constructive procedure described in Definition 27.12 produces a coarsening 

of the underlying SCM such that (1) the arguments of the functions are preserved 
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while their particular forms are discarded, and (2) the relationships between the 

exogenous variables are preserved while their precise distribution is discarded.34 

The pair (𝒢, P*) consisting of a causal diagram 𝒢, constructed through such a pro
cedure, and the collection of interventional (ℒ2) distributions, P*, will be called a 

CBN if it satisfies the definition below. This substitutes for Definition 27.11 in semi-
Markovian models, and is similar to the way that constraints on a (observational) 
probability distribution (viz., conditional independencies) are captured by graphi
cal constraints in a BN and the additional missing-link and do-see constraints are 

encoded in the Markov-CBNs (Definition 27.11). 

Definition 27.15	 Causal Bayesian Network (CBN)-Semi-Markovian 

Let P* be the collection of all interventional distributions P(V | do(x)), X ⊆ V, 
x ∈ Val(X), including the null intervention, P(V), where V is the set of observed 

variables. A graphical model with directed and bidirected edges 𝒢 is a CBN for P* 

if for every intervention do(X = x), X ⊆ V, the following conditions hold: 

(i) [Semi-Markovian] P(V | do(x)) is semi-Markov relative to 𝒢X. 
(ii) [Missing directed-link] For every Vi ∈ V⧵X, W ⊆ V⧵(Pax+ ∪ X ∪ {Vi}):i 

x+	 x+P(vi | do(x), pa	 , do(w)) = P(vi | do(x), pa ), (27.28)i	 i 

(iii) [Missing bidirected-link] For every Vi ∈ V⧵X, let Pax+ be partitioned into two i 

sets of confounded and unconfounded parents, Paci and Pau in 𝒢X. Then i 

P(vi | do(x), pai
c , do(paui )) = P(vi | do(x), pai

c , paui ). (27.29) 

■ 

The first condition requires each interventional distribution to factorize in a 

semi-Markovian fashion relative to the corresponding interventional graph 𝒢X, 
as discussed in Example 27.11. The remaining conditions give semantics for the 

missing directed and bidirected links in the model, which encode the lack of 
direct effect and of unobserved confounders between the corresponding variables, 
respectively. Specifically, the missing directed-link condition (ii) states that under 
any intervention do(X = x), conditioning on the set of augmented parents Pax+ 

i 

renders Vi invariant to an intervention on other variables W—in other words, W 

has no direct effect on Vi. For instance, note that for Vi = D in Figure 27.6(a), 
P(d | do(f , e), b, c, a) = P(d | b, c, a) as well as P(d | do(b, c), do(a, f , e)) = P(d | do(b, c)). 

34. Given the lack of constraints over the form and shape of the underlying functions and distri
bution of the exogenous variables, it is possible to non-parametrically write one in terms of the 

other. 
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Further, the missing bidirected-link condition relaxes the stringent parents do/see 

condition in Markovian CBNs (Definition 27.11(iii)). Note that the do/see condition 

does not hold due to the unobserved correlation between certain endogenous vari
ables, for instance, both P(d | do(b)) = P(d | b) and P(e | do(d)) = P(e | d) do not hold in 

Figure 27.6(a).35 Still, given the set of extended parents of Vi, observations and inter
ventions on parents not connected via a bidirected path (i.e., Paui ) yield the same 

distribution. For instance, P(e | do(a, d), c) = P(e | a, d, c), where Pau = {A, D}, Pac = e e 

{C}; also, P(d | do(b, a, c)) = P(d | do(b), a, c), where Pau = {A, C}, Pac = {B}. There d d 

exists no unobserved confounding in Markovian models, so Pau = Pai, which i 

means that the condition is enforced for all parents. 
Finally, the causal diagram 𝒢 constructed from the SCM and the set of interven

tional distributions P* can be formally connected through the following result: 

ℒ2-Connection—SCM-CBN (Semi-Markovian) 
The causal diagram 𝒢 induced by the SCM ℳ (following the constructive procedure 

in Definition 27.12) is a CBN for Pℳ . ■* 

One could take an axiomatic view of CBNs and consider alternative construc
tions that satisfy their conditions, detached from the structural semantics (simi
larly to the Markovian case). We provide in Bareinboim et al. [2020, appendix D] 
a procedure called ConstructCBN (see Theorem 10) that constitutes such an 

alternative. It can be seen as the experimental-stochastic counterpart of the SCM-
functional Definition 27.12. We show in the next section that CBNs can act as a basis 
for causal inference regardless of their underlying generating model. 

Cross-layer Inferences through CBNs with Latent Variables 

The causal diagram associated with a CBN will sometimes be a proper surrogate for 
the SCM, and allow one to compute the effect of interventions as if the fully speci
fied SCM were available. Unfortunately, in some other cases, it will be insufficient, 
as evident from the discussion in Example 27.10. We introduce next the notion of 
identifiability [Pearl 2000, p. 77] to more visibly capture each of these instances. 

Effect Identifiability 
The causal effect of an action do(X = x) on a set of variables Y given a set of obser
vations on variables Z = z, P(Y | do(x), z), is said to be identifiable from P and 𝒢 if for 
every two models ℳ(1) and ℳ(2) with causal diagram 𝒢, P(1)(v) = P(2)(v) > 0 implies 
P(1)(Y | do(x), z) = P(2)(Y | do(x), z). ■ 

35. To see why this is the case in the last expression, first let Ud be any exogenous argument to fD. 
Now note that P(e | do(d)) does not depend on Ud, while P(e | d) does due to the path Ud → D ← 

C+----+E. 
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This formalizes the very natural type of cross-layer inference we have discussed 

in Figure 27.3, namely: given qualitative assumptions encoded in the causal dia
gram 𝒢, one would like to establish whether the interventional distribution (ℒ2
quantity) P(Y | do(x), z) is inferable from the observational one (ℒ1-data). We intro
duce next a set of inference rules known as do-calculus [Pearl 1995] developed to 

answer this question.36,37 

Theorem 27.5 Do-Calculus 
Let 𝒢 be a CBN for P*, then P* satisfies the Do-Calculus rules according to 𝒢. 
Namely, for any disjoint sets X, Y, Z, W ⊆ V the following three rules hold: 

Rule 1 P(y | do(x), z, w) = P(y | do(x), w) if (Y ⊥⊥ Z | X, W) in 𝒢X. (27.30) 

Rule 2 P(y | do(x), do(z), w) = P(y | do(x), z, w) if (Y ⊥⊥ Z | X, W) in 𝒢XZ. (27.31) 

Rule 3 P(y | do(x), do(z), w) = P(y | do(x), w) if (Y ⊥⊥ Z | X, W) in 𝒢XZ(W), (27.32) 

where a graph 𝒢XZ is obtained from 𝒢 by removing the arrows incoming to X 

and outgoing from Z, and Z(W) is the set of Z-nodes non-ancestors of W in the 

corresponding graph. ■ 

These rules can be seen as a tool that allows one to navigate in the space of 
interventional distributions, jumping across unrealized worlds, and licensed by 
the invariances encoded in the causal graph. Specifically, rule 1 can be seen as 
an extension of the d-separation criterion for reading conditional independences 
under a fixed intervention do(X = x) from the graph denoted 𝒢X. Furthermore, 
rules 2 and 3 entail constraints among distributions under different interventions. 
Rule 2 permits the exchange of a do(z) operator with an observation of Z = z, cap
turing situations when intervening and observing Z influence the set of variables 
Y indistinguishably. Rule 3 licenses the removal or addition of an intervention from 

36. The do-calculus can be seen as an inference engine that allows the local constraints encoded in 

the CBN, in terms of the family relationships, to be translated and combined to generate (global) 
constraints involving other variables. 

37. The duality between local and global constraints is a central theme in probabilistic reason
ing, where the family factorization dictated by the graphical model is local while d-separation 

is global, allowing one to read off non-trivial constraints implied by the model [Pearl 1988, Lau
ritzen 1996]. The graphical model could be seen as a basis, that is, a parsimonious encoder of 
exponentially many conditional independences. In causal inference, do-calculus can be seen as 
a generalization of d-separation to generate global, interventional-type of constraints. 
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Figure 27.7 (a) Graph representing a model where the query P(y | do(x)) is identifiable. The query 
can be derived using do-calculus rules licensed by graphs (b), (c), and (d). 

a probability expression, recognizing situations where do(z) has no effect whatso
ever on Y. A more detailed discussion of do-calculus can be found in Pearl [2000, 
chapter 3].38 

We have previously shown that in simple settings causal inference is unattain
able with only ℒ1-data, and that knowledge conveniently encoded in the form of a 

causal diagram is required. Next, we show how the knowledge from the diagram 

together with the inference rules of do-calculus allows for the identification of the 

query P(y | do(x)) in the context of the model represented in Figure 27.7(a). First, we 

start with the target query and then apply do-calculus: 

P(y | do(x)) = ∑ P(y | do(x), z)P(z | do(x)) Summing over Z (27.33) 
z 

= ∑ P(y | do(x), z)P(z) Rule 3: (Z ⊥⊥ X)𝒢X 
(27.34) 

z 

= ∑ P(y | x, z)P(z) Rule 2: (Y ⊥⊥ X | Z)𝒢X . (27.35) 
z 

Each step above is accompanied by the corresponding probability axiom or rule, 
supported by the licensing graphs 𝒢X and 𝒢X (Figure 27.7(b) and (c), respectively). 
As desired, the RHS of Equation (27.35) is a function of P(V), hence, estimable from 

ℒ1-data. This means that no matter the functional form of the endogenous vari
ables or the distribution over the exogenous ones, for all SCMs compatible with 

the graph in Figure 27.7(a), the causal effect of X on Y will always be equal to Equa
tion (27.35). This can be seen as an instance of the back-door criterion [Pearl 1993], 
and the particular function in Equation (27.35) is known as adjustment (for Z). 

The importance of the back-door criterion stems from the fact that adjustment 
is a very common technique used to identify causal effects in the sciences. While 

the adjustment expression has been used since much earlier than the discovery of 

38. Interestingly, the do-calculus theorem (Theorem 27.5) as stated here was derived entirely 
within the domain of CBNs and Layer 2 constraints, which contrasts with the traditional propo
sition ([Pearl 1995, theorem 27.3]) based on Layer 3 facts. 
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Figure 27.8 Napkin graph (a) and derived graphs used to identify P(y | do(x)). 

the criterion itself [Pearl 1993], the back-door is the first to provide a transparent 
way one could judge the plausibility of the assumptions required to map ℒ1-data 

to an ℒ2-quantity based on a model of the world.39 

For the effect of Z on X, P(X | do(z)), in the same graph (Figure 27.7(a)), there 

exists no set Z that can be used to identify the effect by adjustment. Note that 
in the graph where the arrows outgoing from Z are cut (Figure 27.7(d)), Z and 

X cannot be separated due to the existence of the latent path, Z+----+X. More 

strongly, P(X | do(z)) is not identifiable from the observational distribution by any 
other means. We leave as an exercise the construction of a counter-example based 

on Example 27.10’s proof. Broadly, the effect of a certain intervention may or may 
not be identifiable, depending on the particular causal diagram and the topological 
relations between treatment, outcome, and latent variables. 

Finally, there are involved scenarios that are somewhat surprising as they go 

beyond some of the intuitions discussed in the examples above; see diagram in 

Figure 27.8(a). The task is to identify the effect of X on Y , P(Y | do(x)), from 

P(W , Z, X, Y). It is obvious that the effect cannot be identified by the back-door 
criterion, and in 𝒢X , conditioning on {Z}, {W}, {Z, W} leaves the back-door path 

X+----+W+----+Y opened. After all, one may be tempted to believe that the effect 
of X on Y is not identifiable in this case. Contrary to this intuition, consider the 

following derivation in do-calculus: 

P(y | do(x)) = P(y | do(x), do(z)) Rule 3: (Y ⊥⊥ Z | X)𝒢XZ 
(27.36) 

= P(y | do(z), x) Rule 2: (Y ⊥⊥ X)𝒢ZX 
(27.37) 

P(y, x | do(z))= Def. of cond. probability. (27.38)
P(x | do(z)) 

The rules used in each step and the licensing graphs are shown in Figure 27.8(b)– 

(c). At this point, the back-door adjustment (similar to Equations (27.33)–(27.35)) 

39. The back-door criterion provides a formal and transparent condition to judge the validity of 
a condition called conditional ignorability [Imbens and Rubin 2015]; see further details in Pearl 
[2000, section 11.3.2]. 
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can be applied to solve for both factors in Equation (27.38). To witness, note 

that in the numerator, P(y, x | do(z)), {W} is back-door admissible with respect to 

(Z, {Y , X}), as (Y , X ⊥⊥ Z | W)𝒢Z , as shown in Figure 27.8(d). The denominator fol
lows by marginalizing Y out. Putting these two results together and replacing it 
back into Equation (27.38) lead to: 

∑w P(y, x | z, w)P(w)
P(y | do(x)) = . (27.39)

∑w P(x | z, w)P(w) 

The RHS of Equation (27.39) is expressible in terms of P(V), which means that for 
any SCM compatible with the graph, the causal effect will always be the same, 
regardless of the details of the underlying mechanisms and distribution over the 

exogenous variables. The expression shown in Equation (27.39) is a ratio following 

from the application of the back-door criterion twice. 
The problem of deciding identifiability, also known as non-parametric iden

tification, has been extensively studied in the literature. There are a number of 
conditions that have been proposed to solve this problem, including Galles and 

Pearl [1995], Pearl and Robins [1995], Kuroki and Miyakawa [1999], and Spirtes 
et al. [2001]. The do-calculus provides a general mathematical treatment for non
parametric identification [Pearl 1995]. It has been made systematic and shown to 

be complete for the task of identification from a combination of observations and 

experiments [Tian and Pearl 2002a, Huang and Valtorta 2006, Shpitser and Pearl 
2006, Bareinboim and Pearl 2012, Lee et al. 2019]. In other words, given a causal 
diagram 𝒢 and a collection of observational and experimental distributions, the 

target effect of X on Y given a set of covariates Z, P(y | do(x), z), is identifiable if and 

only if there exists a sequence of application of the rules of do-calculus that reaches 
an estimand in terms of the available distributions. 

27.5 Conclusions 
We investigated a mathematical structure called the PCH, which was discovered 

by Judea Pearl when studying the conditions under which some types of causal 
explanations can be inferred from data [Pearl 2000, Pearl and Mackenzie 2018]. 
The PCH is certainly one of the most productive conceptual breakthroughs in the 

science of causal inference over the last decades. It highlights and formalizes the 

distinct roles of some basic human capabilities—seeing, doing, and imagining— 

spanning cognition, AI, and scientific discovery. The structure is pervasive in the 

empirical world: as long as a complex system can be described as a collection of 
causal mechanisms—that is, an SCM (Definition 27.1)—the hierarchy relative to 

the modeled phenomena emerges (Definition 27.8). 
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The main contribution of this chapter is a detailed analysis of the PCH through 

different perspectives: one semantical (Section 27.2), another logical-probabilistic 
(Section 27.3), and another inferential-graphical (Section 27.4). These complemen
tary approaches elucidate the PCH from different angles, ranging from when one 

knows everything about a specific SCM (semantical), to talking about classes of 
SCMs in general (probabilistic), and ending with one SCM that is particular to 

the environment of interest but which is not fully observed (graphical). We hope 

these distinct angles provide a powerful tool for studying causation across differ
ent research communities, with far-reaching implications for scientific practice in 

a wide range of data-driven fields. For instance, we expect these results to underpin 

the next generation of AI systems, which should be data-efficient, explainable, and 

aligned with society’s goals. 
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which have played a major role in Judea Pearl’s fundamental contributions to 

probabilistic and causal reasoning. 

The Tale Wags the DAG 
Philip Dawid (University of Cambridge) 

The glass is falling hour by hour, the glass will fall forever, 
But if you break the bloody glass you won’t hold up the weather.1 

Abstract 
In this chapter, I review a number of applications of directed acyclic graphs (DAGs), 

28.1 Introduction 
Over many years and through numerous influential publications, Judea Pearl 
has popularized and developed the use of graphical representations, particularly 
directed acyclic graphs (DAGs), to display and manipulate properties of proba
bilistic and causal systems. There are, however, several ways of doing this, with 

differences in the sort of problem represented, the detailed graphical structure, 
and the intended interpretation. Here I will survey a variety of DAG models, exam
ining their relationships and differences. I emphasize in particular the specific tale 

a DAG is intended to tell, and examine how, and how well, it tells its tale. I hang 

these tales on Pearl’s metaphor of “the ladder of causation,” with its three rungs 
telling tales of association, causation, and imagination. 

In Section 28.2, I briefly outline the ladder of causation and introduce DAGs. 
Section 28.3 gives some necessary, purely mathematical, notation and theory of 
DAGs. In Section 28.4, I describe how a DAG can be used, either as it stands or 
through an elaboration that introduces auxiliary “error variables,” to model and 

manipulate conditional independence properties of a joint probability distribu
tion. Section 28.5 moves up one rung, to consider how a DAG can be used to 

1. From “Bagpipe Music” in Collected Poems, by Louis MacNeice, published by Faber and Faber. 
© Estate of Louis MacNeice, reprinted by permission of David Higham. 
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represent causal properties. Again, this can be in its raw form, or by elaborations 
to include error variables and/or non-stochastic regime indicator variables. I argue 

for the value of regime indicators, but the irrelevance of error variables, for telling 

causal tales. Error (or “background”) variables are, however, vital for Section 28.6, 
which discusses the strengths and limitations of DAG models to relate the actual 
world with unrealized parallel universes, and so address such problems as the 

attribution of blame or responsibility. 
The material covered in this chapter has been described in more detail in a num

ber of previous articles: Constantinou and Dawid et al. [2017], Dawid [2000, 2002, 
2007a, 2007b, 2010a, 2010b, 2015]; however, the organization is new. 

28.2 The Ladder of Causation 
In The Book of Why [Pearl and Mackenzie 2018]—a comprehensive and fascinat
ing overview of his approach and contributions to causal inference—Judea Pearl 
has made vividly explicit the progressive 3-fold nature of the subject, using the 

metaphor of the “ladder of causation.” This ladder has three rungs: from the bot
tom, “Seeing,” “Doing,” and “Imagining.” As we climb the ladder, we meet increas
ingly complex problems and increasingly sophisticated methods for tackling them. 
This logical upwards journey also describes Pearl’s own progression as he devel
oped his causal understandings and contributions—a journey I have followed, in 

Pearl’s footsteps, hoping to pick up a few crumbs here and there. It has been a 

wonderfully educational and fruitful climb—though I have sometimes taken some 

off-piste paths of my own, and have not found it easy to join Pearl at the very 
summit. 

Pearl’s approach is largely centered around the representation of an applied 

problem by means of a DAG, as exemplified in Figure 28.1. A DAG consists of a set 
of nodes, with arrows between some of them, it being impossible to return to one’s 
starting point by following the arrows. In applications, the nodes of such a graph 

will correspond to (observable or unobservable) random quantities of interest. 

A B

C D

E

Figure 28.1 A DAG. 
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However, there is no simple interpretation of the arrows. An attempt to supply an 

interpretation of the arrows may be termed a “DAG semantics.” 
In this chapter, I shall consider the distinctions and connections between the 

DAG semantics relevant to each of the three rungs of the ladder of causation. 

28.3 Ground Level: Syntax 
It is first necessary to introduce some purely syntactical terminology and concepts 
associated with a DAG 𝒟. Let 𝒱 be the set of nodes of 𝒟. For V , W ∈ 𝒱 , if there is 
an arrow in 𝒟 from V to W, then V is called a parent of W, and W is a child of V. The 

set of parents of V is denoted by pa(V), and the set of its children by ch(V). This 
genealogical metaphor is extended, in obvious ways, to define ancestor and descen
dant; de(V) and an(V) are the sets of descendants and ancestors of V, respectively. 
Nodes V and W are married if there is an arrow in either direction between them. 
They are partners if they have a common child. A configuration of two unmarried 

partners with their common child is termed an immorality. 
We now introduce a somewhat complex, but fundamental, graph-separation 

property, 𝒟-separation, that may hold between subsets 𝒮, 𝒯 , 𝒰 of 𝒱 . When it holds, 
we will say that 𝒮 and 𝒯 are 𝒟-separated by 𝒰 , and write 𝒮 ⊥𝒟 𝒯 | 𝒰 . (We also write 

𝒮 ⊥𝒟 𝒯 when 𝒰 is empty.) We may drop the subscript 𝒟 when the relevant DAG 𝒟 

is clear from the context. 
There are two different, but logically equivalent, ways, d-separation and moral

ization, to describe the property 𝒮 ⊥𝒟 𝒯 | 𝒰 . These are as follows. 

d-separation [Verma and Pearl 1990] A trail in 𝒟 is a sequence of distinct nodes 
such that each adjacent pair is married. A trail 𝜋 from V to W is said to be blocked 

by 𝒰 ⊆ 𝒱 if it contains a node Z such that either 

∙	 Z ∈ 𝒰 and the arrows of 𝜋 do not meet head-to-head at Z; or 

∙	 Z and all its descendants are not in 𝒰 , and the arrows of 𝜋 do meet head-to
head at Z. 

Then 𝒮 ⊥𝒟 𝒯 | 𝒰 if all trails in 𝒟 from a node in 𝒮 to a node in 𝒯 are blocked by 𝒰 . 

Moralization [Lauritzen et al. 1990] This criterion involves three successive steps: 

1.	 Ancestral graph Form a new DAG 𝒟 ′ by removing from 𝒟 any node which is 
neither in 𝒮 ∪ 𝒯 ∪ 𝒰 nor is an ancestor of a node in this set, together with 

any edges in or out of such nodes. 

2.	 Moralization In 𝒟 ′ , marry any unmarried partners by adding an undirected 

line between them. Then remove any remaining arrowheads. 
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A B

C D

E

Figure 28.2 Another DAG. 

3.	 Separation In the undirected graph so constructed, look for a path which 

joins a node in 𝒮 to one in 𝒯 but does not intersect 𝒰 . Then 𝒮 ⊥𝒟 𝒯 | 𝒰 if 
there is no such path. 

Applying either of these criteria to the DAG of Figure 28.1, we find that, for example, 
(D, E) ⊥𝒟 (A, B) | C. 

It should be emphasized that the arrows of 𝒟 enter the 𝒟-separation criterion 

only very indirectly. In particular, no direct interpretation should be attached to 

the direction of an arrow. Indeed, different DAGs, with some arrows pointing in 

opposite directions, can determine the identical relation ⊥𝒟, in which case they 
are termed Markov equivalent. A necessary and sufficient condition for this is that 
both DAGs would look the same if the arrowheads were removed, and that they have 

identical immoralities [Frydenberg 1990]. In particular, the DAG of Figure 28.2 is 
Markov equivalent to that of Figure 28.1—which shows that no simple conclusion 

can be drawn from the direction of the arrow between A and B. 

28.4 Rung 1: Seeing 
This rung of the “ladder of causation” in fact has no connection whatsoever with 

causality. Rather, a DAG 𝒟 is used to represent, and facilitate working with, a joint 
probability distribution P for the set 𝒱 of random variables associated with its 
nodes. An early and influential approach, albeit limited to a subclass of DAGs, was 
presented in Pearl [1988]. A thorough development may be found in Cowell et al. 
[1999]. 

28.4.1 Qualitative Structure 
More precisely, the DAG encodes certain qualitative aspects of a distribution: the 

independencies and conditional independencies [Dawid 1979] between sets of vari
ables. For 𝒮, 𝒯 , 𝒰 ⊆ 𝒱 , we write 𝒮 ⊥⊥P 𝒯 | 𝒰 to denote the probabilistic indepen
dence, under P, of 𝒮 and 𝒯 , given 𝒰 (or just 𝒮 ⊥⊥P 𝒯 if 𝒰 is empty). Again, we can 
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drop the subscript P when it is clear from the context. We say that 𝒟 represents 
P if: 

𝒮 ⊥𝒟 𝒯 | 𝒰 ⇒ 𝒮 ⊥⊥P 𝒯 | 𝒰 . (28.1) 

A representation is faithful if the reverse implication also holds. We point out that 
not every probabilistic distribution has a faithful DAG representation. 

As an example of criterion 28.1, if the DAG of Figure 28.1 (or, equivalently, 
Figure 28.2) represents P, then (D, E) ⊥⊥P (A, B) | C. 

Note that, on the left-hand side of criterion 28.1, 𝒮, 𝒯 , and 𝒰 are considered as 
purely geometric objects, being sets of nodes of 𝒟; whereas on the right-hand side 

they are interpreted as the associated sets of random variables, with probability 
distribution governed by P. Correspondingly, the 𝒟-separation relation ⊥D on the 

left-hand side is a purely geometric concept relating to the DAG 𝒟, while the con
ditional independence relation ⊥⊥P on the right-hand side is a purely probabilistic 
concept relating to the distribution P. Criterion 28.1 thus sets up a correspondence 

between these two different universes, and constitutes the probabilistic semantics 
for interpreting a DAG; a DAG endowed with this semantics is a probabilistic DAG. 

It can be shown that 𝒟 represents P if, for each V ∈ 𝒱, 

V ⊥⊥P nd(V) | pa(V), (28.2) 

where nd(V) denotes the non-descendants of V. 

Quantitative Structure 
There will be many distributions P represented by the same probabilistic DAG 𝒟. 
To specify any one of these, it is enough to specify the parent–child distributions: 
that is, for each V ∈ 𝒱 , the conditional distributions of V given pa(V). This is gen
erally much more economical than specifying directly the joint probabilities for all 
the variables in 𝒱 . 

There exist elegant algorithms, taking account of the structure of 𝒟, that 
streamline computation of the marginal distribution over a set of variables 𝒮 ⊆ 𝒱, 
and of the conditional distribution of 𝒮, given observations on some other set of 
variables 𝒯 [Cowell et al. 1999]. The latter solves the “seeing” problem: How should 

I update my uncertainty about 𝒰 , when I have observed the values of the variables 
in 𝒯 ? These algorithms are incorporated into sophisticated software environments 
such as Hugin (https://www.hugin.com) or GeNIe (https://www.bayesfusion.com/ 
genie/). 

https://www.hugin.com
https://www.bayesfusion.com/genie/
https://www.bayesfusion.com/genie/
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28.4.3 Empirical Assessment 
If we can gather data from a joint distribution P, we can check to see whether or not 
it can be represented by a given DAG 𝒟, by testing whether it satisfies all the condi
tional independencies implied by criterion 28.1 (it is enough to test those of 28.2). 
When it is, we can use the data to estimate the parent–child distributions, and so 

reconstruct the whole distribution P. 
Alternatively, if we can assume that P is represented by some DAG (perhaps 

in a given restricted set of DAGs), we can try and identify such a DAG using data 

generated from P. This process can again be based on tests of conditional indepen
dence, or alternatively on techniques of model comparison. The former approach 

is termed “constraint-based,” and the latter, “score-based.” Both methods are typ
ically marketed as aiming at “causal discovery”—though no causal interpretation 

of the DAGs is involved. 

28.4.4	 Functional DAGs 
The DAG 𝒟f of Figure 28.3 has a special structure in which all stochasticity is con
fined to the “error variables” (𝜀A, 𝜀B, 𝜀C, 𝜀D, 𝜀E), while each of the “domain variable” 
(A, B, C, D, E) is specified as a non-random function of its parents (indicated by the 

solid-headed arrows). This is equivalent to a (recursive) non-parametric structural 
equation model, with functional relations and with independent error variables: 

A = fA(εA) 

B = fB(A, εB) 

C = fC(A, B, εC) 

D = fD(εD) 

E = fE(C, D, εd). 

AA B

DC

E

B

C D

E

Figure 28.3 A functional DAG. 
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28.4.5 Downsizing and Upsizing 
It is straightforward to show that, when we consider 𝒟f -separation relationships 
involving only the domain variables, these agree with the 𝒟-separation relation
ships of Figure 28.1. The qualitative structure of any probabilistic DAG 𝒟 can be 

reproduced by “downsizing” from a suitable functional DAG 𝒟f . In fact, it is easy 
to show that the same holds for the quantitative structure: by suitable choices for 
the error variables and their distributions, and for the internal functional relation
ships, in 𝒟f , we can reproduce any distribution P for the domain variables that is 
represented by 𝒟. Pearl and others often move backward and forwards between a 

functional and a purely probabilistic representation of a domain distribution, with 

many researchers apparently treating the functional version as more fundamental: 
this may reflect a background in “hard science” disciplines such as physics, where 

functional dependencies are more familiar than probabilistic ones. 
However, at the quantitative level, “upsizing” from 𝒟 to 𝒟f is far from being 

uniquely determined. 

Example 28.1	 Consider the simple probabilistic DAG of Figure 28.4, and its functional version in 

Figure 28.5. Suppose that, in Figure 28.4, X ∈ {0, 1} is a binary coin flip, Y is contin
uous, and the conditional distribution of Y given X = x is normal, with mean x and 

variance 1. In its functional elaboration, Figure 28.5, we take εX to be binary with 

pr(εX = 1) = 0.5, and X = εX . We take as εY the 2-component vector (E0, E1), hav
ing a bivariate normal distribution, with mean-vector (0, 1), both variances 1, and 

correlation 𝜌: the function Y = fY (X, εY ) is given by Y = EX . This functional model 
reproduces the probabilistic model for (X, Y). But note that this will be so for any 
value of 𝜌 ∈ [−1, 1], so that there is no unique upsizing of quantitative properties 
of Figure 28.4 to Figure 28.5. 

X Y

Figure 28.4 A simple probabilistic DAG. 

X Y

X Y

Figure 28.5 A simple functional DAG. 
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If we want to use a DAG to compute with, or otherwise work with, the dis
tribution P for the domain variables, it makes no difference whether we use the 

probabilistic DAG or some (any) functional upsizing of it. However, there is no 

advantage, either for specification or for computation, in using a functional DAG. 
And if we are tempted to use a functional DAG to make an inference that depends 
essentially, directly or indirectly, on the error variables, we must pay due attention 

to non-uniqueness issues, which could lead to different conclusions, depending 

on how these are resolved. 

28.4.6 Empirical Assessment 
Suppose we can gather data on the domain variables from some distribution P 

represented by Figure 28.1. Given enough data we could essentially identify P, 
and so the full quantitative structure of Figure 28.1. However, since upsizing is 
non-unique, from such empirical data we could never hope to determine the full 
quantitative structure of Figure 28.3. The same holds for any probabilistic DAG 

and its functional version: while the probabilistic DAG can be fully identified 

with only domain data, some aspects of the functional model will remain forever 
unidentifiable. 

28.5 Rung 2: Doing 
We have emphasized that, in the above “seeing” interpretation of a DAG, the 

interpretation of the direction of the arrows in a DAG is indirect: the conditional 
independencies of P, as represented by the graphical separation property ⊥𝒟, are 

determined, in a rather obscure way, by the overall structure of the DAG. Indeed, 
since arrows have direction, whereas the property they represent, 𝒮 ⊥⊥P 𝒯 | 𝒰 , is 
entirely symmetric as between 𝒮 and 𝒯 , it should be obvious that the relationship 

must be very indirect. 
Nevertheless, on eyeballing a probabilistic DAG such as that of Figure 28.1, it is 

hard to resist the temptation to endow each arrow with a meaning: this is the fal
lacy of “reification,” which regards all properties of a representation as necessarily 
relating to the thing represented: it is as if we expected the contour lines on a map 

to be visible on the ground. 
One tempting misinterpretation of a probabilistic DAG is to regard the arrows as 

expressing relationships of cause and effect. Thus, we might interpret Figure 28.1 as 
representing that A causes B, that A and B jointly cause C, that C has no effect on D, 
and that C and D jointly cause E. Of course, all this presupposes some understand
ing, typically implicit, of what is meant by “cause”—a task that philosophers have 

struggled with for millennia. Furthermore, the Markov equivalence of Figures 28.1 
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and 28.2 shows that such an interpretation cannot be consistently applied with
out further qualification, since no observational data could distinguish between 

them, but according to the above causal interpretation they disagree as to whether 
A causes B, or B causes A. In Dawid [2010a, 2010b], I have considered and criticized 

various popular ways in which probabilistic DAGs are endowed with additional 
causal meaning. Many of the so-called “causal discovery” methods mentioned in 

Section 28.4.3, which look for a DAG representing a probability distribution on the 

basis of samples from it, claim to have identified cause–effect relationships; but 
such interpretations can be problematic. 

28.5.1 Intervention DAGs 
Nevertheless, with due care we can impose a clear and meaningful causal inter
pretation on a DAG. A way to do this was signposted by Spirtes et al. [2000], and 

has been intensively explored by Judea Pearl, whose book [Pearl 2009] presents a 

thorough account. 
First, we need a clear interpretation of the term “cause.” We do this in terms of 

a primitive concept of “intervention”: some actual or conceptual means by which 

an external agent can control the value of a variable—for example, by setting a dial. 
Such an intervention is a cause, and we will generally be interested in its effects, in 

terms of the resulting probability distribution over other, unintervened, variables. 
Pearl represents the intervention that sets the value of a variable X to x by 

do(X = x); an alternative notation, which I shall use, is X ← x. As Pearl empha
sizes, we must not confuse pr(Y = y | X = x) and pr(Y = y | X ← x). For example, if 
X is the reading on a barometer and Y is the air pressure, then seeing X = x would 

indicate that Y is likely to be close to x; but doing X ← x, by moving the indicator 
2hand on the barometer, would give no information about Y. 

“Causal inference” can be regarded as the attempt to infer the effects of inter
ventions (“doing”) on the basis of purely observational (“seeing”) data. Now in gen
eral there need be no relationship whatsoever between these different behaviors— 

when we kick a system, it may behave in ways that could not be guessed at by 
merely observing it. So no progress is possible unless we start with some plau
sible assumptions, relating the distinct regimes of seeing and doing, in order to 

extract causal conclusions—“No Causes In, No Causes Out” [Cartwright 1994]. 
A very general algebraic framework in which such assumptions can be formalized 

and manipulated is the “decision-theoretic” approach of Dawid [2015], grounded 

2. —as noted by Louis MacNeice at the top of this chapter. 
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in a generalized concept of conditional independence [Constantinou and Dawid 

2017]. Pearl’s approach can be interpreted as a specialization of this, targeted on 

DAG representations. 
Consider again the DAG of Figure 28.1. Instead of regarding this as represent

ing just one “seeing” distribution for the variables, we could also try to relate it 
to various “doing” regimes. For example, we might believe that the probabilistic 
dependence of C on the values of its parents A and B would be the same, both in 

the seeing regime and in a doing regime where the values of A and/or B and/or both 

are set by external intervention. 
In Pearl’s account, a DAG is taken to represent the additional assumptions that, 

for any node V ∈ 𝒱, its distribution, given the values of its parents, is the same, 
no matter which nodes in the system (excepting V itself) are set by external inter
vention. This supplies the DAG with a new causal semantics, and I term a DAG 

endowed with this semantics an intervention or Pearlian DAG. The extra conditions 
imply that the same qualitative DAG (albeit with a different, but related, quantita
tive structure) represents the probabilistic structure, both of the seeing regime and 

of any doing regime arising from interventions that set the values of any set of the 

variables. The causal semantics of an intervention DAG supports a rich calculus, 
developed by Pearl and his students and collaborators, whereby it is possible to 

interrogate an intervention DAG to determine just what causal conclusions can be 

deduced from the basic assumptions and observational data, and how. 
We note that, when reinterpreted as intervention DAGs, Figures 28.1 and 28.2 

are no longer equivalent. Under the former, an intervention on B will have no effect 
on A, which will retain its marginal seeing distribution, p(a). Under the latter, A will 
respond to an intervention B ← b by assuming its conditional seeing distribution, 
p(a | b). 

28.5.2 Augmented DAGs 
Now it can be confusing to have different semantic interpretations—probabilistic 
or causal—of what looks like the same DAG. One road out of the confusion is to 

modify the DAG itself to make the additional causal assumptions explicit. As an 

example of how to do this, Figure 28.6 elaborates Figure 28.1 into an “augmented 

DAG,” having an additional regime indicator FV associated with each original node 

V [Spirtes et al. 2000]. The square outlines are to indicate that these variables are 

not random, but rather serve to specify which interventions are being considered. 
The values associated with FV are those of V, together with an additional value ∅. 
The interpretation is as follows. If FV = v, for some value v of V, that corresponds 
to making the intervention V ← v. If FV = ∅, that corresponds to leaving V alone. 
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C

Figure 28.6 An augmented DAG. 

Not only does the augmented DAG explicitly show the role of interven
tions, it also encodes, by applying criterion 28.1 to the augmented DAG, the 

Pearlian assumptions that relate the different regimes, which are left implicit in 

Figure 28.1 considered as an intervention DAG. For example, in Figure 28.6 we 

have C ⊥𝒟 (FA, FB) | (A, B, FC). Applying criterion 28.1 yields C ⊥⊥ (FA, FB) | (A, B, FC). 
This makes sense even though the FV nodes are not random: it says that the dis
tribution of C, for given values of (FA, FB, A, B, FC), in fact depends only on the 

values of (A, B, FC). In particular, consider taking FC = ∅, so that C is not inter
vened upon. Then the above expression represents the property that, once we know 

the values of A and B, the distribution of C will be the same, no matter what the 

values of (FA, FB) are—that is, no matter whether A and B arise naturally or are 

set by intervention. In this manner the desired causal interpretation of a DAG is 
fully represented by the 𝒟-separation property applied to its augmented version. 
Furthermore, results relating seeing and doing, such as the back-door criterion or, 
more generally, the axioms of Pearl’s do-calculus, are trivial applications of ordinary 
𝒟-separation applied to the augmented DAG [Dawid 2002]—no new contortions, 
such as restricting attention to back-door paths, are needed. The augmentation 

device also serves to make clear the causal inequivalence of the Markov equivalent 
DAGs of Figures 28.1 and 28.2. Their augmented versions, which explicitly encode 

the causal assumptions otherwise left implicit, are no longer Markov equivalent 
since, for example, the immorality A → B ← FB in Figure 28.6 is not preserved 

when we reverse the arrow from A to B. 
Although Pearl initially made use of augmented DAGs, he later dropped these 

in favor of the leaner unaugmented picture. In my view this was a retrograde step, 
with no advantages to offset its disadvantages. 

28.5.3 Empirical Assessment 
An intervention or augmented DAG represents not just the unperturbed distri
bution for the system but also the many distributions that arise from imposing 
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28.5.4 

28.5.5 

interventions, at any set of nodes. Moreover, it relates these different distribu
tions in highly constrained ways: for any variable V that is not intervened on, 
its parent–child distributions should be the same under all the possible regimes. 
Such a DAG thus typically encodes a very large body of assumptions about how 

the world behaves. In principle, these assumptions are testable, if we can gather 
data under all the regimes; and, when they hold, we can estimate (even from the 

unperturbed regime alone) the parent–child distributions, and thus the full quan
titative structure. In practice it will often be impossible to conduct the required 

experiments to verify that a DAG is correctly specified, and recourse must be had 

to reasoned arguments and justifications (e.g., based on scientific understandings) 
for the selected structure. 

Downsizing and Upsizing 
Any intervention DAG can be downsized to a probabilistic DAG, representing only 
how the system behaves when unperturbed. When data are only available from the 

unperturbed regime, we might find a probabilistic DAG representing the inferred 

distribution, and then be tempted to upsize this to the full Pearlian DAG, now 

also describing interventional behaviors. But without further evidence from inter
ventional studies, or good arguments based on scientific understanding, there 

is no good reason to expect this interpretation to be valid—simply identifying a 

probabilistic DAG and assuming that it would remain valid under the much more 

restricted causal semantics can be a very dangerous step to take. There is the added 

problem that observational data cannot distinguish between Markov equivalent 
DAGs—but these will upsize to inequivalent intervention DAGs. 

Functional Intervention DAGs 
Similarly to Section 28.4.4, we can elaborate an intervention DAG by attaching 

error variables and functional relationships as in Figure 28.3. The causal seman
tics now requires the persistence of all parent–child functional relationships under 
interventions at domain nodes, as well as invariance of the distributions of the 

error variables. Again, this kind of representation is often favored by those whose 

discipline encourages a deterministic view of the laws of nature. 
Again, if we were further to augment a functional intervention DAG with regime 

indicators, as in Figure 28.7, straightforward application of 𝒟-separation would 

automatically and explicitly represent the otherwise implicit causal semantics. But 
this is never done. 

We can downsize from a functional intervention (or augmented functional) 
DAG to obtain a regular intervention (or augmented) DAG, thus moving from a 
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Figure 28.7 An augmented functional DAG. 

model of a world governed by deterministic relationships to one where uncer
tainty is taken seriously; and any regular intervention (or augmented) DAG, with 

its full causal semantics, can be so obtained; but again, upsizing from the regu
lar to the functional version is non-unique. And once again, there is nothing to 

be gained from working with the functional form when only domain variables are 

being considered. Pearl’s initial approach to causal DAGs [Pearl 1993] was based 

on the purely probabilistic interpretation of Section 28.5.1; Pearl [1995] translated 

this into functional language, but no essential use was made of the additional 
structure. 

28.6 Rung 3: Imagining 
As we step up to the third rung of Pearl’s ladder of causation, we leave the empirical 
world behind and enter the world of pure imagination. Thus, in the simple story 
of Example 28.1, let us consider the DAG of Figure 28.4 as an intervention DAG. 
Let X ← 1 [resp., 0] encode that an individual Ann is [resp., is not] treated with 

aspirin for her headache, and let Y be the negative log-duration in minutes of her 
headache. In fact, Ann was treated with the aspirin and her headache went away in 

15 minutes. Did the aspirin help her? 
To answer this question we must consider what might have happened if Ann 

had not been treated with the aspirin—how long might her headache have lasted 

then? If it would have lasted longer than 15 minutes, then taking the aspirin has 
indeed helped her. 

However, this comparator situation is purely imaginary, since Ann was in fact 
treated, and there is no way of knowing, at any rate through any direct empirical 
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evidence, what would have happened in the counterfactual3 case that she was 
not. Instead, we have to imagine what would be the case in such counterfac
tual circumstances. To what extent might we gain some assistance from a formal 
representation of the problem? 

Pearl’s approach is based on a functional representation of a problem, such 

as pictured in Figures 28.3 or 28.5. On the lower rungs of the ladder there was 
no advantage in using a functional rather than a probabilistic representation, but 
here it is essential. What we previously termed “error variables,” which we did not 
need to think much about, are now regarded as “background variables”: real-world 

variables that are unobserved, but, in conjunction with the specified functional 
relations, determine all the domain variables. 

The functional DAG is now endowed with semantics that incorporates, and sig
nificantly extends, the causal semantics of an intervention DAG so as to support 
counterfactual reasoning. Specifically, we suppose that the background variables 
and functional forms are common to all the parallel (factual or counterfactual) uni
verses we wish to consider, while the domain variables can be different in different 
universes. Clearly, this must be the case for any variable imagined to have some 

counterfactual value, and these differences will be propagated through the system 

to other variables. 
Conditioning on known observations and actions in the factual universe, we 

can update the joint distribution of the background variables; we can then feed the 

revised distribution into the model of a counterfactual universe to predict what 
would have happened there. Thus in the story of Example 28.1, we know, from 

observations in the factual universe, that fY (1, εY ) = − log 15 = 𝜆, say. With this 
knowledge we can update the distribution of the background terms. In the imag
ined comparator universe, with X ← 0, we are interested in the implied response, 
fY (0, εY )—whose updated distribution can now be computed. 

Appealing though this ploy is, it has many problems. For starters, when and how 

might one justify one’s model, with its background variables and functions con
stant across universes? There are also choices to be made as to just which variables 
are regarded as staying constant—why only the background variables and not some 

domain variables? In any problem of non-trivial complexity there will be various 
different stories that could be told, relating different universes in different ways. 
For example, there have been lawsuits by various states against tobacco companies, 
claiming that, if the companies had publicized their knowledge of the dangers of 
smoking when they first knew of them, many lives could have been saved. Damages 

3. Because counter to known facts. The term counterfactual is often misused for other, less 
problematic concepts—see Dawid [2007b]. 
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are sought for the additional costs placed on health services—meaning the excess 
cost in the actual world, over that of an imagined world in which they had made 

their knowledge public. But how should we imagine that world? One could rea
sonably argue that in such a world, by giving up smoking, people would have lived 

longer than they actually did. Then the actual (non-)actions of the tobacco compa
nies might well have decreased the cost to the health services. But what seems to 

be required for the case at hand is to imagine a world where people had the same 

lifetimes, but were healthier, that is, to regard lifetimes, as well as background 

variables, as constant across universes. 
More technically, but crucially, this approach falls foul of the non-uniqueness of 

the functional representation of an intervention DAG. Recall that in Example 28.1, 
consistent with the known properties of the domain variables in the factual world, 
we could take εY to be a vector (E0, E1), having a bivariate normal distribution with 

completely arbitrary correlation 𝜌; and then take the function fY (X, εY ) as EX . Then 

on observing Y = 1 in the factual world, we learn E1 = 𝜆. Conditioning on this 
in the bivariate distribution of εY , the updated distribution for E0 is normal with 

mean 𝜌(𝜆 − 1) and variance 1 − 𝜌2. Moreover, in the counterfactual comparator uni
verse, Y = E1, so Y would likewise be assigned this distribution. The problem is 
that 𝜌 is arbitrary and cannot be identified from any empirical evidence, so this 
approach does not supply an answer to our question, unless supplemented with 

further, non-empirically justified, stories about the relationship between real and 

imaginary universes. 
However, this does not mean that nothing at all can be said about counterfac

tual variables. In the above example we must have 𝜌 ∈ [−1, 1], so we can infer that 
the counterfactual mean of Y lies between 𝜆 − 1 and 1 − 𝜆. Similar inequalities can 

be obtained for problems with binary responses, and these can often be improved 

by taking account of information on other variables in the system or data generated 

under different regimes [Tian and Pearl 2000, Dawid 2011, Dawid et al. 2016, 2017, 
2019]. However, although there are very special circumstances where exact identi
fication becomes possible [Tian and Pearl 2000], typically this is not the case, and 

we are left with a rather fuzzy answer to our question. But after all, imagination 

should never be too tightly constrained. 

28.7 Conclusion 
I hope I have shown the richness and variety of uses for a DAG. However, some
times a DAG is used without adequate attention to its interpretation. Judea Pearl’s 
clarity of understanding and exposition of the various applications of DAGs, at all 
levels of the ladder of causation, should serve as a valuable corrective and guide 

for all of us. 
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29
Instrumental Variables 
with Treatment-induced 
Selection: Exact Bias 
Results 
Felix Elwert (University of Wisconsin–Madison), 
Elan Segarra (University of Wisconsin–Madison) 

Instrumental variable (IV) estimation suffers selection bias when the analysis 
conditions on the treatment. Judea Pearl’s [2000, p. 248] early graphical defini
tion of instrumental variables explicitly prohibited conditioning on the treatment. 
Nonetheless, the practice remains common. In this chapter, we derive exact ana
lytic expressions for IV selection bias across a range of data-generating models, and 

for various selection-inducing procedures. We present four sets of results for linear 
models. First, IV selection bias depends on the conditioning procedure (covari
ate adjustment vs. sample truncation). Second, IV selection bias due to covariate 

adjustment is the limiting case of IV selection bias due to sample truncation. 
Third, in certain models, the IV and ordinary least squares (OLS) estimators under 
selection bound the true causal effect in large samples. Fourth, we characterize 

situations where IV remains preferred to OLS despite selection on the treatment. 
These results broaden the notion of IV selection bias beyond sample truncation, 
replace prior simulation findings with exact analytic formulas, and enable formal 
sensitivity analyses. 

29.1 Introduction 
Instrumental variable (IV) analysis is a popular approach for identifying causal 
effects when the treatment is confounded by omitted variables. IV analysis rests 
on two main assumptions: that the instrument is associated with the treatment 
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(“relevance”), and that the instrument is associated with the outcome only via the 

effect of treatment on the outcome (“exclusion”). The exclusion assumption is the 

sticking point of many empirical applications because it requires theoretical jus
tification and is testable only to a very limited degree [e.g., Balke and Pearl 1997, 
Richardson and Robins 2010]. 

One type of exclusion violation that has recently gained attention is selection 

bias [e.g., Mogstad and Wiswall 2012, Engberg et al. 2014, Swanson et al. 2015, 
Ertefaie et al. 2016, Canan et al. 2017, Hughes et al. 2019]. We say that IV anal
ysis suffers selection bias when conditioning (rather than not conditioning) on 

some variable violates the exclusion assumption. One particularly important case 

is treatment-induced IV selection bias: whenever treatment is confounded by unob
servables, conditioning on a variable that has been affected by treatment induces 
bias. Judea Pearl [2000, p. 248] recognized this problem and presented the first 
definition of instrumental variables that outright prohibits conditioning on vari
ables affected by treatment. Despite Pearl’s warning, however, conditioning on 

such “descendants” of treatment remains common in IV analysis. 
Past research on treatment-induced IV selection bias [e.g., Swanson et al. 2015, 

Canan et al. 2017, Gkatzionis and Burgess 2019, Hughes et al. 2019] is limited in 

two respects. First, it has focused on IV selection bias induced by sample trunca
tion, which occurs when observations are excluded from the sample.1 This focus 
neglects that other conditioning procedures, such as covariate adjustment, can 

also induce selection bias. Second, in situations where consistent estimators are 

not readily available, the literature characterizes the size and sign of IV selection 

bias by simulation. Without analytic bias expressions, however, it is unclear which 

stylized facts resulting from simulation studies hold generically. 
This chapter makes two main contributions. First, we derive analytic expres

sions for treatment-induced IV selection bias for a range of different data-
generating models. Second, we compare the biases resulting from two different 
selection-inducing conditioning procedures: sample truncation and covariate 

adjustment. For tractability, we focus on linear models with homogeneous (con
stant) effects and normal errors. 

We highlight several results. First, the selection procedure matters. Within a 

given data-generating model, selection by truncation and selection by covariate 

1. Some studies have proposed corrections, bounds, or sensitivity analyses for IV selection bias 
in certain truncation scenarios (e.g., Mogstad and Wiswall [2012], Engberg et al. [2014], Canan 

et al. [2017], Vansteelandt et al. [2018], Gkatzionis and Burgess [2019], Hughes et al. [2019]). 
These approaches often rely on knowing the selection probability of both the observed and the 

truncated observations. 
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adjustment introduce quantitatively different biases into IV analysis. Second, selec
tion bias by adjustment is the limiting case of selection bias by truncation. Third, 
in certain models, the IV and OLS estimators with selection bound the true causal 
effect in large samples. Fourth, our analytic bias expressions characterize the mod
els in which IV is less biased than OLS, which obtains when treatment does not 
exert an extreme effect on selection. 

The rest of the chapter proceeds as follows. Section 29.2 reviews basic facts 
about directed acyclic graphs for linear models. Section 29.3 defines instrumental 
variables in econometric and graphical notation. Section 29.4 describes conditions 
under which selection violates the IV exclusion assumption and defines IV estima
tion under selection by truncation and covariate adjustment. Section 29.5 presents 
analytic expressions for the bias in IV and OLS estimators over a range of mod
els with treatment-induced selection by truncation and by covariate adjustment. 
Section 29.6 concludes. 

29.2 Causal Graphs 
The challenge of selection bias in IV analysis is transparently communicated with 

graphical causal models [Pearl 2009, Maathuis et al. 2018]. Here, we review the 

basics. A causal graph represents the structural equations of the data-generating 

model. Causal graphs consist of nodes representing variables and directed edges rep
resenting direct causal effects. Causal graphs are assumed explicitly to display the 

observed and unobserved common causes of all variables. By convention, causal 
graphs do not explicitly display the idiosyncratic shocks that affect individual 
variables. 

Throughout, we assume that the causal graphs represent linear data-generating 

models with homogeneous effects and normally distributed errors.2 Without loss 
of generality, we further assume that all variables are standardized to have mean 

zero and unit variance. The direct causal effect of one variable on another vari
able in such models is given by its path parameter, which is bounded by [−1,1]. For 
example, the causal graph in Figure 29.1(a) represents the linear structural equa
tions model given in Figure 29.1(b), with path parameters 𝜋, 𝛽, 𝛾, 𝛿1, and 𝛿2. For 
each variable V ∈ {Z, U, T, S, Y} the idiosyncratic shocks are marginally indepen
dent and normally distributed, 𝜀V ∼ N(0, 𝜎V 

2 ), with variance 𝜎V 
2 scaled so that each 

V ∼ N(0, 1). Since U is unobserved, the structural error term on Y in econometric 
terminology is 𝜔Y = 𝛿2U + 𝜀Y . Notice that T is correlated with the structural error, 
Cov(T, 𝜔Y ) ̸= 0, because both depend on the unobserved confounder, U. 

2. Some results do not rest on the joint normality assumption, but our results on IV selection bias 
with truncation do. 
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Figure 29.1	 IV scenario where the selection variable is a function of treatment alone, equivalently 
displayed as a causal graph (a) and as a linear structural equations model (b). 

Under mild conditions to avoid knife-edge cases, simple rules determine the 

covariance structure of data generated by a model [Pearl 2009]. The notions of 
paths, collider variables, and descendants play a central role in these rules. A path 

is an acyclic sequence of adjacent arrows between two variables, regardless of the 

direction of the arrows. In a causal path from treatment to outcome, all arrows 
point toward the outcome. In a non-causal, or spurious, path between treatment 
and outcome, at least one arrow points away from the outcome. A variable is called 

a collider with respect to a specific path if it receives two inbound arrows on the 

path. For example, T is a collider on the path Z → T ← U → Y . The descendant set 
of a variable contains all variables directly and indirectly caused by it, for example, 
desc(T) = {S, Y} in Figure 29.1(a). 

Two variables are statistically independent if all paths between them are closed; 
and two variables are statistically associated if there is at least one open path 

between them [Verma and Pearl 1988]. A path is closed (does not transmit asso
ciation) iff either (a) it contains a collider and neither the collider nor any of its 
descendants are conditioned on, or (b) it contains a non-collider that is condi
tioned by exact stratification. A path is open (does transmit association) if it is 
not closed [Pearl 1988]. Importantly, when a path contains only one collider, then 

conditioning on this collider, or any of its descendants, opens this path. 
The marginal covariance between two variables in a linear model with stan

dardized variables is given by Wright’s [1934] rule as the sum of the product of 
the path parameters on the open paths that connect the variables. For example, 
the marginal covariance between Z and Y in Figure 29.1(a) is Cov(Y , Z) = 𝜋𝛽 

because the path Z → T → Y is the only open path (the other path, Z → T ← 

U → Y , is closed by the unconditioned collider T). The conditional covariance 
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between variables A and B, after adjusting for some covariate C, is Cov(A, B | C) = 

Cov(A, B) − Cov(A, C)Cov(B, C). The novel bias results in this chapter hinge on 

deriving conditional covariances when truncating the sample as a function of C. 

29.3 Instrumental Variables 
Let T be the treatment variable of interest, Y be the outcome, Z be the can
didate instrumental variable, and X be a set of covariates. Econometrically, an 

instrumental variable is defined by two assumptions. 

Definition 29.1	 A variable, Z, is called an instrumental variable for the causal effect of T on Y, 𝛽, if, 
conditional on the set of covariates X (which may be empty), 

E1: Z is associated with T, Cov(Z, T | ̸X) = 0, 
E2: Z is not associated with the structural error term, 𝜔Y , on Y , Cov(Z, 𝜔Y | X) = 0. 

Assumption E1 is called relevance, and Assumption E2 is called exclusion. Pearl 
[2001] provides a graphical definition. 

Definition 29.2	 A variable, Z, is called an instrumental variable for the causal effect of T on Y, 𝛽, if, 
conditional on the set of covariates X (which may be empty), 

G1: There is at least one open path from Z to T conditional on X,
 
G2: X does not contain descendants of Y, X ∩ desc(Y) = ∅,
 
G3: There is no open path from Z to Y conditional on X, other than those paths
 

that terminate in a causal path from T to Y. 

Assumption G1 defines relevance, and Assumptions G2 and G3 together define 

exclusion. We say that a candidate instrumental variable is “valid” if it is relevant 
and excluded, and “invalid” otherwise. For example, in Figure 29.1(a), Z is a valid 

instrument without conditioning on S, since Z is relevant (associated with T) by 
the open path Z → T, and Z is excluded (unassociated with the structural error 
term on Y) since the only open path from Z to Y, Z → T → Y , terminates in the 

causal effect of T on Y. When Z is a valid instrumental variable, then the standard 

IV estimator, given by the sample analog of 

Cov(Y , Z | X)
𝛽IV = 

Cov(T, Z | X) 
, 

is consistent for the causal effect of T on Y in linear and homogeneous models. 
The numerator of this estimator is called the reduced form and the denominator is 
called the first stage. The behavior of this IV estimator is the focus of this chapter. 
For simplicity, we will henceforth write 𝛽IV and 𝛽OLS to refer to the probability lim
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its (as the sample size tends to infinity) of the standard IV and OLS estimators, 
respectively. 

29.4 Selection Bias in IV: Qualitative Analysis 
We say that the IV estimator suffers selection bias when conditioning on some vari
able violates the exclusion assumption. For example, conditioning on a variable 

that opens a path between Z and Y that does not terminate in the causal effect 
of T on Y violates exclusion both in the sense of G3 and E2. Hughes et al. [2019] 
catalogue several models in which selection violates exclusion. 

We focus on the IV selection bias that results from conditioning on a descen
dant of T, S ∈ desc(T). For example, in Figure 29.1(a), conditioning on S invalidates 
the use of Z as an instrumental variable because T is the only collider variable on 

the path Z → T ← U → Y , and conditioning on S as the descendant of the collider 
T opens this path. The association “transmitted” by this open path overtly violates 
the exclusion condition G3 and similarly violates the exclusion condition E2 since 

𝜔Y is a function of U. This rationalizes why Pearl’s [2000, p. 248] early graphical IV 

definition outright rules out conditioning on descendants of treatment. 
Since conditioning on a variable can result from many different procedures dur

ing data collection or data analysis, selection bias in IV analysis can result from 

many different procedures as well. Analysts should be aware, however, that differ
ent ways of conditioning on a variable may induce quantitatively different selection 

biases. In this chapter, we contrast selection bias resulting from two empirically 
common conditioning procedures: sample truncation and covariate adjustment. 

Truncation occurs when observations are preferentially excluded from the sam
ple [Bareinboim et al. 2014], for example, due to attrition or listwise deletion 

of missing data. Write R = 1 for retained observations and R = 0 for excluded 

(truncated) observations. Let S be the (possibly latent) continuous variable that 
determines truncation. We distinguish between interval truncation and point trun
cation. Interval truncation restricts the sample to observations with a range of val
ues of S, for example, R = 1(S ≥ s0) or R = 1(s1 ≥ S ≥ s0), where 1(⋅) is the indicator 
function. A limiting case of interval truncation is point truncation, where the sam
ple is restricted to units with a single value of S, R = 1(S = s0). The truncated IV 

estimator is given by 

Cov(Z, Y | R = 1)
𝛽IV | Tr = 

Cov(Z, T | R = 1) 
. 

With truncation (as opposed to censoring) the analyst does not have access to the 

truncated observations, cannot estimate the probability of truncation, and hence 

cannot use inverse-probability weights to correct for truncation [Canan et al. 2017, 
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Gkatzionis and Burgess 2019]. In Figure 29.1(a), a truncated sample would involve 

the empiricist observing {Z, T, Y} only for units with R = 1. 
Although selection can also occur due to covariate adjustment for S, this proce

dure has received less attention in the literature on IV selection bias. With covari
ate adjustment the analyst observes {Z, T, S, Y} for all units. Adjustment involves 
first exactly stratifying on S, computing the estimator within each stratum, and 

then averaging across the marginal distribution of S. Thus, the IV estimator under 
adjustment on S is given by 

Cov(Z, Y | S = s)
𝛽IV | Adj = ∫ S = s) 

fS(s)ds,Cov(Z, T | 

where fS(s) is the marginal distribution of S. In linear models, controlling for a 

variable as a main effect in OLS or 2SLS amounts to covariate adjustment on the 

variable [Angrist and Pischke 2008]. 
Next, we analytically characterize selection bias in IV analysis and OLS regres

sion for various data-generating models and provide intuition. 

29.5 Selection Bias in IV: Quantitative Analysis 
This section derives exact analytic expressions for selection bias across a range 

of common data-generating models. For each model, we contrast the selection 

bias for the IV and the OLS estimators, resulting from two different condition
ing strategies. First, we present the selection bias resulting from covariate adjust
ment on S. Next, we newly derive the selection bias from interval truncation on S, 
R = 1(S ≥ s0). We assume a probit link between S and the binary selection indica
tor, R.3 Since IV analysis suffers small-sample bias regardless of selection, we study 
its large-sample behavior (asymptotic bias). 

29.5.1 Selection as a Function of Treatment Alone 
Consider the most basic scenario of IV selection bias in Figure 29.1(a). As stated 

above, Z in this model is a valid instrumental variable for the causal effect of T on 

Y, 𝛽, if the analysis does not condition on S. Conditioning on S, however, invalidates 
Z as an instrumental variable because S is a descendant of T, and T is a collider on 

the path Z → T ← U → Y . Conditioning on S opens this path, which induces an 

association between Z and Y via U and hence violates the exclusion condition. 
Proposition 29.1 gives the selection bias in the standard IV estimator when the 

analysis adjusts for S. 

3. Numerical simulations in prior work have assumed logit selection [Canan et al. 2017, Gkatzionis 
and Burgess 2019, Hughes et al. 2019]. Switching to probit selection captures the same intuition 

but gains analytic tractability. 
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Proposition 29.2 

Corollary 29.1 
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In a linear and homogeneous model with normal errors represented by 
Figure 29.1(a) and covariate adjustment on S, the standard instrumental variable 

estimator converges in probability to 

𝛾2 

𝛽IV | Adj = 𝛽 − 𝛿1𝛿2 1 − 𝛾2
. 

The proof follows from regression algebra and Wright’s rule [Wright 1934]. 
The magnitude of selection bias due to covariate adjustment in the IV estimator 
depends on two components. First, selection bias increases with the strength of 
unobserved confounding between T and Y via U, 𝛿1𝛿2 (which corresponds to the 

path Z → T ← U → Y that is opened by conditioning on S, less the first stage 

Z → T). Second, selection bias increases with the effect of the treatment T on the 

selection variable, S, 𝛾. When 𝛾 = 0, S contains no information about the collider 
T, conditioning on S does not open the path Z → T ← U → Y , and selection bias 
is zero. By contrast, as |𝛾| → 1, the magnitude of the bias increases without bound 

because adjusting for S increasingly amounts to adjusting for the collider T itself, 
while at the same time reducing the first stage. (If the analysis directly adjusted for 
T, then the first stage would go to zero and the IV estimator would not be defined.) 

Proposition 29.2 derives the IV selection bias due to interval truncation on S. 

In a linear and homogeneous model with normal errors represented by Figure 

29.1(a) and truncation on S, R = 1(S ≥ s0), the standard instrumental variable 

estimator converges in probability to 

𝜓𝛾2 𝜑(s0) 𝜑(s0)
𝛽IV | Tr = 𝛽 − 𝛿1𝛿2 where 𝜓 = 

1 − 𝜓𝛾2
, 

1 − Φ(s0) ( 1 − Φ(s0) 
− s0) 

, 

and 𝜑(⋅) and Φ(⋅) are the standard normal pdf and cdf, respectively. 

Proposition 29.2 (proved in Appendix 29.A.1) illustrates that IV selection bias 
due to truncation (Proposition 29.2) differs from IV selection bias due to adjust
ment (Proposition 29.1) only in that truncation deflates the contribution of the 

effect of T on S, 𝛾, by the factor 𝜓 ∈ (0, 1). Since 𝜓 is the derivative of the standard 

normal hazard function, it monotonically increases with the severity of truncation, 
Pr(R = 0) = Φ(s0), as shown in Figure 29.2(a). Hence, interval truncation leads to 

less IV selection bias than covariate adjustment in Figure 29.1(a), 

In a linear and homogeneous model with normal errors represented by 
Figure 29.1(a), the magnitude of IV-adjustment bias is weakly larger than that of 
IV-truncation bias: ||𝛽IV | Adj − 𝛽|| ≥ ||𝛽IV | Tr − 𝛽||. 

Corollary 29.1 makes intuitive sense. Adjustment involves first exactly stratify
ing and then averaging across strata defined by S = s. Exact stratification on S uses 
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Figure 29.2	 (a) 𝜓 monotonically increases with truncation severity. (b) Whether OLS or IV is less 
biased under selection depends on truncation severity and the effect of T on S, |𝛾|. 

all information about T that is contained in S, hence opening the biasing path as 
much as conditioning on S possibly can. By contrast, interval truncation amounts 
to imprecise stratification on S (retaining observations across a range of values on 

S, but not exactly stratifying on any particular value), hence opening the biasing 

path less. 
Of some methodological interest, we further note, in Figure 29.1(a), that IV 

selection bias by truncation converges on IV selection bias by covariate adjustment 
as the severity of truncation increases to shrink the remaining sample to a single 

point. Proposition 29.3 states that this observation is true for all models, not only 
for Figure 29.1(a). 

Proposition 29.3	 In a linear and homogeneous model with normal errors, selection bias in the stan
dard instrumental variable estimator due to covariate adjustment is the limiting 

case of selection bias due to point truncation, 

lim 𝛽IV | Tr = 𝛽IV | Adj.	 (29.1)
s0→∞ 

This proposition makes intuitive sense. Covariate adjustment involves exact 
stratification on S = s, which defines point truncation. Since the probability limits 
of all s-stratum specific estimators are identical in linear Gaussian models, selec
tion bias by adjustment equals selection bias by point truncation. The proof in 

Appendix 29.A.2 formalizes this intuition. 
Proposition 29.2 helps inform empirical choices in practice. When selection is 

unavoidable (e.g., because the data were truncated during data collection), should 
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Corollary 29.2 

29.5.2
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analysts choose IV or OLS? Figure 29.2(b) shows that the IV estimator is preferred to 

OLS, with respect to bias, for most combinations of 𝛾 and truncation severity. Since 

OLS bias (with or without truncation) only depends on unobserved confounding, 
that is, 𝛽OLS | Tr − 𝛽 = 𝛿1𝛿2, the difference in magnitude between the OLS and IV 

biases with truncation is given by 

1 − 2𝜓𝛾2||𝛽OLS | Tr − 𝛽|| − ||𝛽IV | Tr − 𝛽|| = |𝛿1𝛿2| . 
1 − 𝜓𝛾2 

Hence, the IV estimator is preferred when 𝜓𝛾2 ≤ 1 . Specifically, when fewer than2 

29.1% of observations are truncated (corresponding to 𝜓 ≤ 0.5), IV is preferred√ 
regardless of the effect of T on S, 𝛾. Conversely, when |𝛾| < 0.5 ≈ 0.707, no 

amount of truncation makes OLS preferable over IV. Recalling that 𝛾 cannot exceed 

1 in magnitude, the selection variable S would have to be an extraordinarily strong 

proxy for T to make IV more biased than OLS at any level of truncation. 
Perhaps most useful for practice, we note that selection bias (by truncation or 

adjustment) in Figure 29.1(a) is proportional to the negative of OLS confounding 

bias. Therefore, the OLS and IV estimators under selection bound the true causal 
effect. 

In a linear and homogeneous model with normal errors represented by 
Figure 29.1(a), the OLS estimator and the instrumental variable estimator with 

selection bound the causal effect of T on Y, 𝛽, 

𝛽IV | Tr ≤ 𝛽 ≤ 𝛽OLS, when 𝛿1𝛿2 > 0, 

𝛽IV | Tr ≥ 𝛽 ≥ 𝛽OLS, when 𝛿1𝛿2 < 0. 

The fact that the IV selection bias has the opposite sign of the OLS selection 

bias in Figure 29.1(a) is owed to linearity and homogeneity: in linear and homo
geneous models, conditioning on a collider or its descendant reverses the sign of 
the product of the path parameters for the associated path. For example, if all path 

parameters along the biasing path Z → T ← U → Y are positive, then condition
ing on S ∈ desc(T) will induce a negative association along this path. Since the IV 

bias hinges on conditioning on S, the selection bias would be negative. By contrast, 
OLS bias in Figure 29.1(a) does not hinge on conditioning on S and instead results 
from confounding along T ← U → Y . Therefore, OLS bias would be positive. 

Selection as a Function of a Mediator 
Next, consider models in which the selection variable, S, is a mediator of the effect 
of treatment on the outcome, as in the causal graphs in Figure 29.3(a) and (b). 
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Figure 29.3	 IV scenarios where the selection variable is both a descendant of treatment and a 
mediator. 

These situations are worth investigating for two reasons: first, empiricists are often 

interested in the direct causal effect of T on Y, which necessitates conditioning 

on S; second, they result in qualitatively different bias representations. 
Suppose that the analyst is interested in the direct causal effect of T on Y, 𝛽, in 

the model of Figure 29.3(a). The bias in the IV and OLS estimators under interval 
truncation and adjustment for S is given in Proposition 29.4. 

Proposition 29.4	 In a linear and homogeneous model with normal errors represented by 
Figure 29.3(a), the standard instrumental variable estimator with selection on S, 
converges in probability to 

𝜓𝛾2 1 − 𝜓 

1 − 𝜓𝛾2 + 𝛾𝜏𝛽IV | = 𝛽 − 𝛿1𝛿2S 1 − 𝜓𝛾2
, 

and the OLS estimator with selection on S converges in probability to 

1 − 𝜓 = 𝛽 + 𝛿1𝛿2 + 𝛾𝜏𝛽OLS | S 1 − 𝜓𝛾2
, 

where 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

𝜑(s0) 𝜑(s0) with truncation on S, R = 1(S ≥ s0)1 − Φ(s0) ( 1 − Φ(s0) 
− s0)𝜓 = . 

1	 with adjustment on S 

All bias expressions in Proposition 29.4 have a straightforward graphical inter
pretation. With adjustment on S, the indirect causal path T → S → Y is completely 
blocked, because S is a non-collider on this path. Hence, the bias in the IV and 

OLS estimators with adjustment on S equals the IV and OLS adjustment biases 
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in Figure 29.1(a), where S was not a mediator. With adjustment on S, IV is biased 

by selection, whereas OLS is biased by confounding; IV selection bias will gener
ally be smaller in magnitude than OLS confounding bias (unless the effect of T 

on S is very large); and IV and OLS with adjustment bound the true direct causal 
effect. 

With truncation on S, however, the indirect path T → S → Y is not completely 
blocked and hence contributes a new term to both IV and OLS bias. For both IV 

and OLS, this term equals the strength of the partially blocked indirect path, 𝛾𝜏 , 
deflated by the multiplier 0 ≤ (1 − 𝜓)/(1 − 𝜓𝛾2) ≤ 1. The size of the multiplier 
depends both on the truncation severity, 𝜓, and on the effect of T on S, 𝛾, but in 

opposite directions. As 𝛾 is fixed and truncation increases, 𝜓 → 1, the analysis 
conditions ever more precisely on an ever smaller range of values of S; hence the 

indirect path is increasingly blocked, and both the multiplier and the bias term 

tend to 0. By contrast, when 𝜓 is fixed and the effect of T on S increases, |𝛾| → 1, 
the information about T contained in S increases, the multiplier tends to 1, and the 

path is increasingly opened. 
By Proposition 29.3, it remains true in Figure 29.3(a) that IV selection bias due to 

adjustment is the limiting case of IV selection bias due to point truncation. How
ever, it is no longer necessarily true that IV with adjustment is more biased than 

IV with truncation. The bias ordering now depends on the signs and relative sizes 
of the two additive bias term (representing the biasing paths T ← U → Y and 

T → S → Y), and on how well the indirect path T → S → Y is closed by trunca
tion. Hence, when selection is made on a mediator of the treatment effect, selection 

bias by adjustment could be larger or smaller in magnitude than selection bias 
by truncation. Bounding the true causal effect also becomes more difficult. With 

truncation on S, IV and OLS with selection do not necessarily bound the true direct 
causal effect. 

The analysis is further complicated when the effect of S on Y is confounded 

by some unobserved variable, W, as in Figure 29.3(b). This situation is arguably 
more realistic than the model in Figure 29.3(a), because mediators in observational 
studies are expected to be confounded. Here, conditioning on S (by adjustment or 
truncation) in IV analysis opens a new path, Z → T → S ← W → Y , which violates 
the exclusion assumption; and in OLS it opens T → S ← W → Y , which biases OLS 

regression. The resulting bias expressions are the same as those in Proposition 29.4 
𝜓with an additional bias term, −𝛾𝛿3𝛿4 1−𝜓𝛾2 . Once more, IV selection bias due to 

adjustment is the limiting case of IV selection bias due to point truncation. How
ever, no pair of estimators (among 𝛽IV | Tr, 𝛽IV | Adj, 𝛽OLS | Tr, 𝛽OLS | Adj) can be relied on to 

bound the true direct causal effect in the model of Figure 29.3(b). 
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Figure 29.4 IV scenario where the selection variable is both a descendant of the treatment and the 
unobserved confounder. 

29.5.3 Selection on Treatment and the Unobserved Confounder 
Finally, we consider situations where the selection variable, S, is also a descen
dant of the unobserved U that confounds the effect of treatment on the outcome 

(Figure 29.4). 

Proposition 29.5 In a linear and homogeneous model with normal errors represented by Figure 29.4, 
the standard instrumental variable estimator with selection on S converges in 

probability to 

𝜓𝛾2 𝜓 
𝛽IV | S = 𝛽 − 𝛿1𝛿2 1 − 𝜓𝛾(𝛾 + 𝛿1𝛿3) 

− 𝛾𝛿3𝛿2 1 − 𝜓𝛾(𝛾 + 𝛿1𝛿3) 
, 

and the OLS estimator with selection on S converges in probability to 

1 − 𝜓(𝛾2 + 𝛾𝛿1𝛿3 + 𝛿3
2) 𝜓 = 𝛽 + 𝛿1𝛿2 − 𝛾𝛿3𝛿2𝛽OLS | S 1 − 𝜓𝛾(𝛾 + 𝛿1𝛿3)2 1 − 𝜓𝛾(𝛾 + 𝛿1𝛿3)2

, 

where 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

𝜑(s0) 𝜑(s0) with truncation on S, R = 1(S ≥ s0)1 − Φ(s0) ( 1 − Φ(s0) 
− s0)𝜓 = . 

1 with adjustment on S 

Three points stand out about selection bias in Figure 29.4. First, when S is a 

descendant of both T and U, conditioning on S opens a new path, T → S ← U → Y , 
which biases IV and OLS with adjustment or truncation on S. 

Second, in contrast to models considered previously, the bias term associated 

with each biasing path (T ← U → Y and T → S ← U → Y) is now a func
tion of the path parameters of both paths. In other words, the path-specific biases 
interact. Pearl’s graphical causal models provide intuition for this interaction. 
Consider, for example, the second bias term. First, conditioning on S opens the 
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path T → S ← U → Y . Hence, the bias term depends on 𝛾𝛿3𝛿2. Second, condi
tioning on S also absorbs variance from U (a non-collider on T → S ← U → Y) 
because S is a descendant of U along the path U → T → S. Hence, the bias term 

also depends on 𝛿1. 
Third, the direction of the interaction, and hence the overall bias, depends on 

the specific parameter values. This makes the bias order of these estimators fairly 
unpredictable and prevents generic recommendations for or against any one esti
mator. This ambiguity provides additional motivation for using exact bias formulas 
for sensitivity analysis. 

29.6 Conclusion 
Conditioning on the wrong variable can induce selection bias in IV analysis. 
When consistent estimators are not available, analysts should gauge the bias in 

their estimators by principled speculation or formal sensitivity analysis. To enable 

this work, we have derived analytic expressions for IV selection biases that have 

previously been characterized only by simulation. 
Our analysis specifically focused on scenarios where selection is a function of 

a confounded treatment. Judea Pearl’s [2000] graphical IV criterion specifically 
prohibited conditioning on a descendant of treatment. But the practice appears 
to remain common, thereby calling for formal analysis. Our analytic expressions 
present asymptotic IV selection bias in terms of substantively interpretable stan
dardized path parameters for Gaussian models. Empowered by Pearl’s graphi
cal causal models, we further provided intuition by decomposing the bias into 

terms that map onto the paths in the data-generating model that are opened (or 
closed) by selection. Leveraging prior knowledge or principled theory, analysts may 
use our bias expressions to conduct formal sensitivity analyses by populating the 

free parameters to derive the size of the bias. Even with partial information our 
expressions may provide informative bounds on the bias. 

We present three broad conclusions. First, in the models we investigated, IV 

selection bias depends on three ingredients: (i) the strength of each biasing path 

in the model, (ii) the effect of treatment on the selection variable, |𝛾|; and (iii) trun
cation severity, 𝜓, i.e., the share of the full sample excluded from the analysis by 
truncation. The magnitude of the bias term associated with each biasing path 

increases with the strength of the path, with |𝛾|, and with truncation severity, 𝜓, 
if selection is made on a collider or descendant of a collider on the path; and the 

magnitude of the bias term increases with the strength of the path and with |𝛾|, but 
decreases with 𝜓, if selection is made on a non-collider on the biasing path. 

Second, the sign and magnitude of IV selection bias depend on the selec
tion procedure: in all linear Gaussian IV models, the bias induced by covariate 
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adjustment is the limiting case of bias induced by point truncation. This does not 
mean that adjustment bias is always larger than truncation bias, only that adjust
ment bias equals truncation bias if truncation had reduced the sample to a single 

point. 
Third, rather usefully, in some models (where selection is only a function of 

treatment and the selection variable is not a mediator) IV and OLS suffer selection 

biases of opposite signs, such that these estimators bound the true causal effect. In 

the same models, unless the effect of treatment on selection is very large, IV with 

selection suffers less bias than OLS with or without selection. 

29.A Appendix 

29.A.1 Proof of Truncation Bias Expressions 
We derive the bias under truncation by leveraging a result from [Tallis 1965]. 

Lemma 29.1	 Let V ∈ Rk follow a multivariate normal distribution, V ∼ N (0, Σ), and define the 

truncated random vector V� = {v ∈ V : c ′ v ≥ p} with p ∈ R, c ∈ Rk, and |c| = 1. 
Then the expectation and variance of the truncated random vector are given by 

E [V�] = Σc𝜅−1𝜆 ( 
p 
𝜅 ) 

Var (V�) = Σ − Σcc ′ Σ𝜅−2𝜓 

′Σc)−1/2 𝜑(x)where 𝜅 = (c , 𝜆(x) = 1−Φ(x) is the hazard function of the standard normal 
distribution, and 

p p p
𝜓 = 𝜆 ( 𝜅 )(𝜆 ( 𝜅 ) − 

𝜅 ) . 

Using properties of the standard normal hazard function it can be shown that 
𝜓 is in fact the derivative of the hazard function. 

Proof of Proposition 29.2. Consider the model described by Figure 29.1(a). Since the 

idiosyncratic shocks are all normally distributed, all variables in the model are 
′ 

normally distributed. Specifically for vectors V = [Z U T S Y] and 𝜀 = 
′ 

[𝜀Z 𝜀U 𝜀T 𝜀S 𝜀Y ] , the standardized4 model has the reduced form V = Γ𝜀, 

4. Standardization implies non-unit variance for some of the shocks. For example, when 

Var(T) = 1, then 𝜀T is Var(𝜀T ) = 1 − 𝜋2 − 𝛿1
2. 
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where 𝜀 ∼ N(0, Σ𝜀) and 

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣ 

1 0 0 0 0 

0 1 0 0 0 

𝜋 𝛿1 1 0 0 

𝛾𝜋 𝛾𝛿1 𝛾 1 0 

𝛽𝜋 𝛽𝛿1 + 𝛿2 𝛽 0 1 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦ 

Γ = 

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣ 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦ 

. 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 − 𝜋2 − 𝛿2 
1 0 0 

0 0 0 1 − 𝛾2 0 

0 0 0 0 1 − 𝛽2 − 𝛿2 
2 − 2𝛽𝛿1𝛿2 

Σ𝜀 = 

Since this implies that V ∼ N (0, ΓΣ𝜀Γ′), our truncation scenario, R = 1(S ≥ s0), 
allows for direct application of Lemma 29.1 to derive the covariance matrix of the 

′ 
truncated distribution, V� = V | S ≥ s0. For Lemma 29.1, c = [ 0 0 0 1 0 ] , 
p = s0, and Σ = ΓΣ𝜀Γ′ . This implies 𝜅 = 1 and thus 

Var (V�) = ΓΣ𝜀Γ′ − ΓΣ𝜀Γ′ cc ′ΓΣ𝜀Γ′ 𝜓 where 𝜓 = 𝜆(s0) (𝜆(s0) − s0) . 

Finally, the IV estimand with truncation is given by the ratio of the trun
cated covariance between instrument and outcome and the truncated covariance 

between instrument and treatment. After some enjoyable algebra, we evaluate 

Var(V�), extract the relevant covariances, and obtain 

Cov(Z, Y | S ≥ s0) 𝛽𝜋 − 𝜓𝛾𝜋 (𝛽𝛾 + 𝛾𝛿1𝛿2) 𝜓𝛾2 

= = 𝛽 − 𝛿1𝛿2𝛽IV |Tr = 
Cov(Z, T | S ≥ s0) 𝜋 − 𝜓𝛾2𝜋 1 − 𝜓𝛾2

. 

■ 

The proofs of Propositions 29.4 and 29.5 proceed analogously, using the appro
priate reduced form matrix, Γ, for each scenario. 

29.A.2 Proof of Adjustment as Point Truncation (Proposition 29.3) 
Proof. Define the stratum-specific IV estimator when S = s as 

Cov (Z, Y | S = s)
𝛽IV | S (s) = 

Cov (Z, T | S = s) 

S (s) is the IV estimator under point truncation (i.e., the limit of the Notice that 𝛽IV |

interval truncated estimator as the interval collapses to a point). 
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′ 
In a homogeneous linear model with normal errors, V = [ Z U T S Y ] 

will follow a multivariate normal distribution. Multivariate normal distributions 
have the useful property that their conditional distributions have constant covari
ances across the conditioning level. Hence, for all V1, V2, V3 ∈ {Z, U, T, S, Y} and 

v0, v1 ∈ R, we have that 

Cov(V1, V2 | V3 = v0) = Cov(V1, V2 | V3 = v1). 

It follows that 𝛽IV | S (s0) = 𝛽IV | S (s1) for any s0, s1 ∈ R. Since the stratum-specific IV 

estimator is constant across strata of S, this implies that the IV estimator under 
adjustment on S is the same as any stratum-specific IV estimator. ■ 
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essential role in children’s everyday knowledge. Even very young children learn 

such models from data in the ways that Pearl suggested. New frontiers in the 

project of understanding children’s causal learning include sampling, active search 

and experimentation, and combining causal models with deep learning and deep 

reinforcement learning techniques. 
In the year 2000, more than 20 years ago, my graduate students and I made a 

weekly trek across the campus and up the hill to the computer science department. 
We were there as part of a reading group discussing a brand-new book, Causality 
by Judea Pearl. Those students went on to become distinguished faculty, and 20 

years later, they and their students, and many other psychologists, are still working 

on problems that were inspired by that book and those conversations. So am I. 
Why would developmental psychologists, usually found sitting in tiny chairs 

opposite toddlers in preschools, immerse themselves in a volume of statistics and 

equations? The book, and Pearl’s work, in general, speaks to a foundational prob
lem that is at the core of the study of cognitive development. Cognitive develop
ment and machine learning belong to the same natural category, along with the 

philosophy of science, epistemology, and vision science, even if they live in oppo
site corners of the campus. (And all these disciplines are in a different natural 
category than sociologically closer ones like adult cognitive psychology, cognitive 

neuroscience, and philosophy of mind.) 
Developmental psychology, machine learning, and philosophy of science 

might seem like strange bedfellows, but they are all trying to solve the same 

Causal Models and 
Cognitive Development 
Alison Gopnik (University of California at Berkeley) 

Pearl’s work has had an important influence on the field of cognitive development. 
In particular, in hundreds of empirical studies, causal models, combining ideas 
about probability, intervention, and counterfactuals, have turned out to play an 
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problem—sometimes called the problem of induction. How can we know anything 

about the world around us? After all, the information that reaches us from that 
world is just a stream of photons at our retinas and disturbances of air at our ear 
drums. And yet we come to know about people and poodles, tables and toys, quarks 
and quasars. How is this possible? We seem to have abstract, hierarchical, struc
tured representations of the world around us, and those representations allow us 
to make wide-ranging generalizations and predictions. And yet, we also seem to 

somehow construct those representations from data that is concrete, messy, and 

particular. 
Going back to Plato and Aristotle, there have been two basic approaches to 

solving this problem. The nativist option is simply to deny that the abstract rep
resentations are derived from the data. Instead, they are there innately, from a past 
life or in the mind of God, for Plato and Descartes, because of evolution for more 

recent thinkers. The other, empiricist, option is to deny that the abstract represen
tations exist—simply combine enough statistical data and you can do all the same 

inferential work. This approach goes all the way back to Aristotle and Locke but 
also underpins many of the most recent approaches to machine learning. 

For people who actually study the development of human knowledge, whether 
as developmental psychologists or philosophers of science, these alternatives have 

always seemed unsatisfying. When we actually look in detail at the progress of 
children’s thinking, or the progress of science, we do, in fact, see both abstract rep
resentations and qualitative changes in those representations in the light of new 

evidence. 
In the past, Jean Piaget, the great founder of cognitive development, argued 

for “constructivism” as an alternative to nativism and empiricism, and philoso
phers like Carnap and Kuhn, who were actually both influenced by developmen
tal psychology as well as the history of science, articulated similar ideas. In the 

1980s, a number of psychologists including me, Susan Carey, Henry Wellman, 
and Susan Gelman, articulated the “theory theory”—the idea that children’s con
ceptual development could be understood by analogy to scientific theory forma
tion, explicitly connecting conceptual development and scientific theory change 

[Carey 1985, Gopnik 1988, Wellman and Gelman 1992]. “Theory theory” researchers 
could qualitatively describe children’s representations as theories and chart the 

changes in those representations as children learned more. The research program 

made a great deal of empirical progress, describing the development of intuitive 

physics [Smith et al. 1985], biology [Carey 1985] and especially intuitive psychology 
or “theory of mind” [Gopnik and Wellman 1994]. 

The problem, though, was that there was no computational way of charac
terizing the constructive process that was responsible for theory formation and 
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change either in childhood or in science. The overarching faith of cognitive sci
ence is that the mind is a computational system instantiated in the brain. In 

some areas of cognitive science, particularly vision science, we really had begun 

to redeem that faith and solve the problem of induction computationally and even 

neurally. Building on 100 years of perception and psychophysics, vision scientists 
could begin to describe how the visual system recovers information about objects 
and space from the light patterns on the retina, and computer vision systems 
could start to instantiate those ideas (e.g., Marr [1982]). There has been remarkable 

progress on this project since; although, of course, there is still much work to be 

done. 
But doing the same thing for theories, whether these were the everyday theories 

of childhood or the theories of formal science, seemed like an impossibly forbid
ding task. Indeed, in the early 1990s there was a kind of nihilism about solving 

such problems, reflected in both the philosophy of science on the one hand, and 

in statistics, on the other hand. The slogans of the time were “there is a logic of 
confirmation but no logic of discovery” and “no causation from correlation.” 

This was where Pearl’s work came in. Although theories involve many kinds 
of representations, certainly causal representations are crucial, both in everyday 
cognition and in science. And for a long time, going back at least to David Hume, 
causal knowledge was one of the canonical cases of the problem of induction. As 
Hume pointed out, it seemed impossible to see how simply observing the con
stant conjunction of two events could lead you to a causal conclusion, and yet 
such inferences are ubiquitous in both everyday cognition and in science. The 

pessimism about scientific induction very much extended to causation. Bertrand 

Russell famously said, “The law of causality, I believe, like much that passes muster 
among philosophers, is a relic of a bygone age, surviving, like the monarchy, only 
because it is erroneously supposed to do no harm.” 

In the 1990s, two developments coming from very different directions restored 

the reign of causality and articulated a computational account of causal inference 

in the form of “causal Bayes nets.” One set of developments came from Pearl’s ini
tial work on expert reasoning [Pearl 1988]. Initially, Pearl’s project was to find a way 
a computer could generate complex judgments and predictions about conditional 
dependencies in the way that experts, like doctors, do (if, but only if, the patient 
has a fever and green phlegm as well as a cough, and tests for viruses are nega
tive, antibiotics will help). It turned out that the best way to do this was to equip 

the system with causal models, integrating ideas about probability, intervention, 
and counterfactual inference. In parallel, the philosophers of science Peter Spirtes, 
Richard Scheines, and Clark Glymour at Carnegie Mellon University formulated 

very similar mathematical ideas [Spirtes et al. 1993]. Moreover, philosophers like 
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James Woodward, working in a more traditional philosophical framework, used 

these ideas to characterize the very nature of causation [Woodward 2003]. 
The central idea was to use graphical models as a way of representing the 

relations among variables in a causal system, and to systematically relate those rela
tions to the conditional probability of the variables. Within this system it was pos
sible to define the effects of interventions (in what Pearl called the “do-calculus”) 
as well as counterfactuals. The distinction between associations and predictions, 
on the one hand, and interventions and counterfactuals on the other hand, is the 

crucial distinction that separates mere correlation from causation. I might notice 

correlations both between having yellow nicotine-stained fingers and getting lung 

cancer, and between smoking and getting lung cancer, and make the appropriate 

prediction that someone who has yellow fingers or who smokes is more likely to 

have cancer. But an intervention to wash the yellow off a patient’s fingers won’t have 

any effect on the probability of cancer, while an intervention to stop smoking will. 
Similarly, the counterfactual that if the patient had washed his hands he wouldn’t 
have gotten cancer is false while the similar counterfactual about smoking is true. 

The entire causal Bayes net system allowed for interwoven inferences about 
probability, intervention, and counterfactuals in a way that captures many of 
the central elements of causation both in everyday life and in science. If you 

knew the causal structure you could make accurate predictions, interventions, and 

counterfactual inferences, and significantly, the formalism naturally distinguished 

between these different kinds of inferences. 
The Bayes net formalism also had important implications for causal learning 

and the problem of causal induction. The formalism made systematic connections 
between the structure of the causal graphs and data about the conditional prob
ability of events and the outcomes of interventions. This meant that in principle 

the inferences could be reversed—if we knew about the conditional probability of 
variables and the outcomes of interventions on those variables, we could accurately 
infer the causal structure. And this, in turn, suggested a computational solution to 

the classic problem of theory induction. Scientists had always used evidence from 

statistics (i.e., patterns of conditional probability) and experiments (i.e., system
atic interventions on variables) to infer causal structure. But thanks to the new 

work on causal Bayes nets we could begin to explain mathematically how and why 
this actually worked. 

Initially, nobody thought of these systems as potential models of everyday 
human cognition, let alone children’s cognition. (I have an email exchange with 

Clark Glymour from 1989, where I suggested children might be doing something 

similar to Bayes nets, his initial response was that these systems were precisely 
designed to do things that humans couldn’t). By the late 1990s though, this idea 
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had come to seem more appealing, and at least worth testing. Even if children 

couldn’t make inferences about complex systems with hundreds of variables, 
would they use the same basic principles to uncover causal structure? 

At the time essentially all of the work of children’s causal reasoning, and adults’, 
for that matter, fell into one of two camps, either researchers who emphasized the 

role of reasoning about physical mechanisms in causal understanding, or those 

who saw causal reasoning as merely an extension of simple association. The com
bination of graphical models, probability, intervention, and counterfactuals was 
an entirely new way of approaching the subject. 

Glymour and I decided to test whether children might do something like causal 
Bayes net inference with a new method—the blicket detector—a machine that 
lights up and plays music when you put some things on it and not others. The first 
question, which we tested with my student David Sobel, one of the participants in 

the Causality reading group and now at Brown, was whether children could make 

any causal inferences with this method (they could) [Gopnik and Sobel 2000]. By 
2000, we realized that we could use simple methods like this to test more complex 
inferences, of the sort that Pearl described. In particular, could children use condi
tional probability and intervention to make inferences? (they could) [Gopnik et al. 
2001]. After one of the reading group meetings, my student Laura Schulz, now at the 

Massachusetts Institute of Technology, raced excitedly down the hill from the com
puter science department to the hardware store, where she constructed a toy with 

two gears and a switch to test whether children could infer different causal struc
tures (chains vs. common causes, for instance) from the pattern of interventions 
and answer counterfactual questions (they could) [Schulz et al. 2007]. By 2004, we 

had shown that preschoolers could determine the direction of causal arrows, infer 
unobserved variables, and design novel interventions, and that they did so in a 

way that fit much more naturally with Pearl’s and Spirtes, Scheines, and Glymour’s 
ideas than any of the traditional views of causal knowledge [Glymour 2002, Gopnik 

et al. 2004]. In 2005, the McDonnell Foundation funded a large interdisciplinary 
grant combining developmental psychologists, philosophers, and computational
ists to work more on these ideas [see Gopnik and Schulz 2007, Gopnik 2012, Gopnik 

and Wellman 2012]. 
Over the next 10 years, this work continued and expanded. Although the causal 

Bayes net formalism was particularly elegantly designed and relatively easy to 

implement, it was to begin with, at least, rather limited in scope. The causal graphs 
were limited to describing systems of variables at a single level of description. A 

number of psychologists and cognitive scientists, notably Josh Tenenbaum, Tom 

Griffiths, and Noah Goodman, who were all involved in the McDonnell collabo
rative, argued for a much more expansive and general version of the project that 
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Pearl started, including a wide range of probabilistic generative models with dif
ferent kinds of logical structure and including hierarchical as well as single-level 
models [see Griffiths and Tenenbaum 2007, 2009, Griffiths et al. 2010, Goodman 

et al. 2011, review in Tenenbaum et al. 2011]. 
This became an important and pervasive movement within cognitive science. It 

is often described as the “Bayesian” approach but this is something of a misnomer. 
The Bayesian part of the idea is simply this. If you have a probabilistic generative 

model, like a causal Bayes net, and can therefore systematically predict the proba
bility of a pattern of evidence given that model, then you can invert this inference 

in a Bayesian way to infer the probability of the model given the evidence. But all 
the work is done by the specifics of the generative model, how well it is linked to the 

data, and how feasible it is to perform the Bayesian inversion and solve the search 

problems that result. Causal Bayes nets were and remain one of the best examples 
of how a probabilistic generative model could actually work. 

Fei Xu, another developmental psychologist who pioneered the idea of prob
abilistic generative models [Xu and Tenenbaum 2007], came up with the term 

“rational constructivism” [Xu and Kushnir 2012], which is perhaps the best way of 
describing the enterprise. I suspect that the popularity of the Bayesian terminology 
partly reflects a principle I call The Tyranny of the Euphonious Monosyllable—if 
Kolmogorov had discovered Bayes’ rule it wouldn’t have taken off as a descrip
tor. But it certainly could, and perhaps should, be called Pearl-y Cognitive Science 

instead. 
Further work in my lab and others over the next 15 years showed that very young 

children could make Pearl-y causal inferences across a wide range of domains, 
including “theory of mind.” Tamar Kushnir, now at Duke, yet another student 
who had been part of the Pearl reading group, showed that even 18-month
olds could use Pearl-y methods to infer other people’s preferences and desires 
[Kushnir et al. 2010]. One interesting body of work has argued that children use 

something like an intuitive utility calculus—a representation of the causal relation
ships between goals and actions—to understand other people [Hamlin et al. 2013, 
Lucas et al. 2014]. Kushnir and I and others showed that children and even infants 
were remarkably skilled at tracking and using conditional probabilities [Saffran 

et al. 1996, Kushnir and Gopnik 2005, Xu and Garcia 2008]. We and others also 

showed that children were not limited to making inferences about specific causal 
relationships. Instead, they could also infer quite abstract features of causal struc
ture, such as whether causal structures were disjunctive or conjunctive. In fact, 
in some circumstances they could do this better than adults [Dewar and Xu 2010, 
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Lucas et al. 2014, Gopnik et al. 2017]. Moreover, we recently showed that low-income 

children in Peru and in Head Start programs in the USA were just as good at making 

these inferences as the usual middle-class American samples [Wente et al. 2019]. 
In short, across what are now hundreds of studies from dozens of labs with 

thousands of children, it turns out that if you give children a particular pattern 

of data they can infer which causal structure was most likely to have generated 

that data, and can design new interventions and counterfactuals on that basis, in 

precisely the way that Pearl described. 
So far, this is a largely triumphal story. But as always in science, advances lead to 

new problems and much of the most interesting recent work in cognitive science 

focuses on those problems. 
One of the strengths of probabilistic generative models such as Pearl’s is pre

cisely that they are probabilistic. Earlier attempts to solve the problem of induc
tion, such as Noam Chomsky’s theory of how children infer grammars from 

linguistic data, were deterministic. Either a grammar was supported by the data 

or it wasn’t. This also meant that induction was radically underdetermined—there 

was almost never a way of definitely ruling a grammar in or out given the data, 
and that led to Chomsky’s nativist conclusions. The Bayesian probabilistic model 
approach in contrast, considers a wide range of hypotheses and tries to determine 

how likely each hypothesis is given the data and your prior knowledge. 
But there’s a catch. The catch is that for the Bayesian inversion trick to work 

you need to have some way of searching among the possible hypotheses and test
ing them against the data. Even for a relatively restricted set of representations 
like simple causal graphs with a limited number of variables, this problem quickly 
becomes untenable—there are simply too many possibilities to consider. And as 
the range of representations we consider becomes more abstract and complex, as 
with hierarchical Bayes nets, for example, or “language of thought” probabilistic 
logics, the search problem just becomes hairier. 

Much of the exciting recent work in cognitive science, following up on Pearl’s 
work, tries to find solutions to the search problem. Two approaches are especially 
interesting and exciting. First, in the computational literature the search problem 

is often solved by some form of sampling, randomly but systematically testing 

some hypotheses rather than others (e.g., Roberts and Casella [1999]). At least in 

“asymptopia,” as one statistician calls it, these sampling methods can approxi
mate full Bayesian inference. My collaborator Tom Griffiths and I and a number of 
others have shown that both adults and children show the signatures of this kind 

of sampling [Vul and Pashler 2008, Denison et al. 2012, Ullman et al. 2012, Bonawitz 
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et al. 2014]. How these sampling measures could be extended and how randomness 
and systematicity are combined are fascinating directions for the future. 

Active learning is an even more interesting and underexplored way of solving 

the search problem. The relationship between causal structure and intervention 

means that interventions can be deliberately designed to reveal causal structure, 
as in scientific experiments. In the early work on causal Bayes nets the assumption 

was that systems passively absorbed patterns of data and matched them against 
the potential graphical structures. When we began our first blicket detector experi
ments, I remember remarking that one of the big advantages of working with com
puters over kids was that computers weren’t constantly trying to grab the blocks 
and try them on the machine! That observation has turned into a very produc
tive research program, particularly as pursued by Laura Schulz and her student 
and my post-doc Elizabeth Bonawitz, now at Harvard. Schulz and Bonawitz have 

shown that children’s spontaneous play often involves active interventions that 
are designed to resolve causal ambiguities and recover causal models [Schulz and 

Bonawitz 2007, Schulz et al. 2008, Schulz 2012]. The philosopher of science Freder
ick Eberhardt, now at the California Institute of Technology, another product of the 

McDonnell collaborative, has pursued a similar project in the context of science— 

systematically using the formalism to describe how experiments can reveal causal 
structure [Eberhardt and Scheines 2007]. 

A final frontier is the integration of causal inference and the more empiricist 
and statistical forms of learning, such as “deep learning” and “deep reinforce
ment” learning that have led to the very recent renaissance of artificial intelligence 

(AI), and were the subject of the 2018 Turing prize. Although these techniques have 

turned out to be surprisingly effective, they are beginning to come up against sig
nificant limitations. In particular, they allow only limited kinds of generalizations, 
and they require very large data sets and supervised forms of learning. 

Increasingly, AI researchers are turning back to combine the neural network 

techniques with Pearl’s work on causal models and the empirical work in cogni
tive development to try to design systems that have the power and flexibility of 
children’s learning. For example, causality and cognitive development both play a 

central role in the recent DARPA machine common sense program, which we are 

part of at Berkeley. 
Perhaps it is symbolic that the Berkeley Artificial Intelligence Research unit, of 

which I am now a member, just moved into the same building as the Developmen
tal Psychology group. Both geographically and intellectually, the distance between 

the two fields is beginning to disappear. We very much have Judea Pearl to thank 

for that. 
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Abstract 
Statistical science (as opposed to mathematical statistics) involves far more than 

probability theory, for it requires realistic causal models of data generators—even 

for purely descriptive goals. Statistical decision theory requires more causality: 
rational decisions are actions taken to minimize costs while maximizing bene
fits, and thus require explication of causes of loss and gain. Competent statistical 
practice thus integrates logic, context, and probability into scientific inference and 

decision using narratives filled with causality. This reality was seen and accounted 

for intuitively by the founders of modern statistics but was not well recognized in 

the ensuing statistical theory (which focused instead on the causally inert proper
ties of probability measures). Nonetheless, both statistical foundations and basic 
statistics can and should be taught using formal causal models. The causal view 

of statistical science fits within a broader information-processing framework that 
illuminates and unifies frequentist, Bayesian, and related probability-based foun
dations of statistics. Causality theory can thus be seen as a key component con
necting computation to contextual information, not “extra-statistical” but instead 

essential for sound statistical training and applications. 

The only immediate utility of all the sciences is to teach us how to control and 

regulate future events through their causes. – Hume [1748] 

The Causal Foundations 
of Applied Probability and 
Statistics 
Sander Greenland (University of California, Los Angeles) 
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31.1 Introduction: Scientific Inference is a Branch of Causality
 
Theory
 
I will argue that realistic and thus scientifically relevant statistical theory is best 
viewed as a subdomain of causality theory, not a separate entity or an extension of 
probability. In particular, the application of statistics (and indeed most technology) 
must deal with causation if it is to represent adequately the underlying reality of 
how we came to observe what was seen—that is, the causal network leading to the 

data.1 The network we deploy for analysis incorporates whatever time-order and 

independence assumptions we use for interpreting observed associations, whether 
those assumptions are derived from background (contextual) or design informa
tion [Pearl 1995, 2009, Robins 2001]. In making this case, I will invoke Pearl’s own 

arguments (e.g., as in Pearl [2009], Wasserstein [2018]) to deduce that statistics 
should integrate causal networks into its basic teachings and indeed into its entire 

theory, starting with the probability and bias models that are used to build up 

statistical methods and interpret their outputs. 
Every real data analysis has a causal component comprising the causal network 

assumed to have created the dataset. Decision analysis has a further causal com
ponent showing the effects of decisions. Although these causal components are 

usually left implicit, a primary purpose of design strategies is to rule out alternative 

causal explanations for observations. Consider one of the most advanced research 

projects of all time, the search for the Higgs boson. Almost all statistical attention 

focused on the one-sided 5-sigma detection criterion [Lamb 2012], roughly equiva
lent to an 𝛼-level of 0.0000003, or requiring at least −log2(0.0000003) = 22 bits of 
information against the null [Greenland 2019] to declare detection. Yet the causal 
component is just as important: it includes every attempt to eliminate explana
tions for such extreme deviations other than the Higgs boson, for example, the 

painstaking checks of equipment are actions taken to block the mechanisms that 
could cause anything near that deviation (other than the Higgs mechanism itself). 

Thus, because statistical analyses need a causal skeleton to connect to the 

world, causality is not extra-statistical but instead is a logical antecedent of real-
world inferences. Claims of random or “ignorable” or “unbiased” sampling or allo
cation are justified by causal actions to block (“control”) unwanted causal effects 

1. This view arguably applies even when dealing with quantum phenomena, at least in the QBist 
view [Mermin 2016]. In that view, the laws of quantum mechanics describe how equipment set
tings causally affect individual perceptions, where the latter become formalized as coherent pre
dictive bets or frequency claims about subsequent observations under those settings (in contrast 
to other theories that treat quantum probabilities as properties of the environment). Such a con
troversial view is, however, unnecessary for the everyday applications of probability and causation 

that typify most of science and technology, and so will not be pursued here. 
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on the sample patterns. Without such actions of causal blocking, independence 

can only be treated as a subjective exchangeability assumption whose justification 

requires detailed contextual information about the absence of factors capable of 
causally influencing both selection (including selection for treatment) and out
comes [Greenland 1990]. Otherwise, it is essential to consider pathways for the 

causation of biases (non-random, systematic errors) and their interactions [Pearl 
1995, Greenland et al. 1999, Maclure and Schneeweiss 2001, Hernán et al. 2004, 
Greenland 2010a, 2012a, 2021]. 

The remainder of the present chapter elaborates on the following points: prob
ability is inadequate as a foundation for applied statistics because competent 
statistical practice integrates logic, context, and probability into scientific infer
ence and decision, using causal narratives to explain diverse data [Greenland et al. 
2004]. Thus, given the absence of elaborated causality discussions in statistics text
books and coursework, we should not be surprised at the widespread misuse and 

misinterpretation of statistical methods and results. This is why incorporation of 
causality into introductory statistics is needed as urgently as other far more mod
est yet equally resisted reforms involving shifts in labels and interpretations for 
P-values and interval estimates.2 

As a preliminary, consider that the Merriam-Webster Online Dictionary [2019] 
defines statistics as “a branch of mathematics dealing with data collection, orga
nization, analysis, interpretation and presentation.” Many working statisticians 
(including me) regard the “branch of mathematics” portion as abjectly wrong, akin 

to calling physics, computer science, or any other heavily mathematical field a 

branch of mathematics. But we can fix that by replacing “branch of mathematics” 
with “science” to obtain 

Statistics is the science of data collection, organization, analysis, interpreta
tion and presentation, often in the service of decision analysis. 

The amended definition makes no explicit mention of either probability or causa
tion, but it is implicitly causal throughout, describing a sequence of actions with 

at least partial time ordering, each of which is capable of affecting subsequent 
actions: study design affects actions during data collection (e.g., restrictions on 

selection); these actions along with events during data collection (e.g., censoring) 
affect the data that result; these actions and events affect (or should affect) the 

study description and the data analysis; and the analysis results will affect the 

presentation. Overall, the presumed causal structure of this sequence supplies 

2. Such as replacement of misleading terms like “statistical significance” and “confidence” by 
more modest terms like “compatibility” [Greenland 2017b, 2019, Amrhein et al. 2019, McShane 

et al. 2019, Wasserstein et al. 2019, Greenland and Rafi 2020, Rafi and Greenland 2020]. 
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the basis for a justifiable interpretation of the study. Thus, whether answering 

the most esoteric scientific questions or the most mundane administrative ones, 
and whether the question is descriptive, causal, or purely predictive, causal rea
soning will be crucially involved (albeit often hidden to ill effect in equations and 

assumptions used to get the “results”). 

31.2 Causality is Central Even for Purely Descriptive Goals 
As Pearl has often noted, causal descriptions encode the information and goals 
that lead to concerns about associations [Pearl 2009]. Consider survey statistics, in 

which the target question is not itself causal, merely descriptive, such as the propor
tion of voters who would vote for a given candidate. A competent survey researcher 
will be concerned about what characteristics C will affect both survey participation 

(S = 1) and voting intent V. Using square brackets to indicate that the observations 
are conditioned on S = 1, this concern is encoded in the diagram 

[S = 1] ← C → V, 

in which we can see bias in the sampling estimator for the preference distribu
tion Pr(V = v) will be induced by the selection on S. If instead we said only that 
the concern is about characteristics that are associated with both participation 

and preference (as in S ↔ C ↔ V), we would obscure the contextual basis for the 

concern. 
To paraphrase Pearl, statistical analysis without causality is like medicine with

out physiology. As an example, if we see a difference in ethnic distributions (C) 
between our survey and population demographic data, we should be concerned 

about mis-estimating (say) the proportion of Trump voters in the target population. 
This concern is not because “white ethnicity is associated with voting for Trump” 
as some academic descriptions would have it, but because we expect that being 

a white male causes sympathy (or prevents antipathy) for Trump’s pronounce
ments relative to being black. That expectation arises from a simple causal relation 

encoded in C → S, which creates the concern about only seeing preferences of 
those in the survey, that is, seeing only Pr(V = v|S = 1). 

When survey methods attempt to adjust for the difference by reweighting the 

sample using the target-population ethnicity distribution, that adjustment can be 

seen as an attempt to counterbalance the C → S arrow in the mechanism gener
ating the sample. This added computation in producing a reweighted sample is 
traditionally treated as a purely numeric artifice, but is also a causal process: some
one must physically obtain target-weight data and program the reweighting to 

create the adjusted estimate. It is misleading to describe this action as “simulating 
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removal of an arrow”; it is instead the addition to the data generator of a weighting 

intervention W in a new causal pathway within 

[S = 1] ← C → V ← W ← C. 

W is engineered to (hopefully) balance out the bias from conditioning on selec
tion [S = 1]. Note that C appears twice in this diagram to allow it to be written 

in one line; writing it twice separates the initial effect of C on voter preferences 
(V) and sample formation (participation S) from its later effect on the analysis 
weighting W. 

31.3 The Strength of Probabilistic Independence Demands Physical 
Independence 
By data generator, I do not mean some abstract structural equation but rather 
the entire set of actual physical mechanisms that produce our observations. Even 

in the simplest games of chance, it is the physical (mechanical, causal) indepen
dence of coin tosses which licenses our teaching that betting systems for toss 
sequences will fail to beat simple expectations based on the frequency of heads 
observed so far. A causal diagram for a sequence of independent identically dis
tributed (i.i.d.) tosses with outcome indicators Y1, … , YN would thus show these N 

indicators as N isolated (unconnected) nodes.3 More generally, every missing arrow 

implies an independence assumption, and such an assumption is really a large set 
of assumptions on the joint distribution of the data Y1, … , YN. 

One way to measure the information in or logical strength of an indepen
dence assumption is by the number of logically independent constraints it imposes 
(equivalent to the number of parameters whose value it specifies, or the num
ber of dimensions or degrees of freedom it removes from further consideration). 
Allowing for any possible dependency pattern (as suggested by “non-parametric”) 
among the Y1, … , YN yields a measure of order N factorial; even if we count only 
pairwise dependencies, the number of patterns is of order N2 (see Appendix 31.A). 
Either way, when described honestly, an i.i.d. assumption is not one assump
tion but rather a set of assumptions that grows far faster than the number of 
observations N. The amount of deductive (digital, syntactical) information in this 
assumption set is thus beyond anything data frequencies alone could contain; only 
contextual (background and design) information can supply enough information 

to warrant such a large set of assumptions. 

3. A Bayes network would generalize this diagram to show an exchangeable sequence with a node 

representing the single-toss probability feeding into the Yn. 
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This enormous logical content of random sampling and randomization illus
trates why they are such powerful investigative tools: only the physical act of block
ing all causal effects on selection or treatment can provide deductive justification 

for the entire set of assumptions corresponding to “independence.” 

31.4 The Superconducting Supercollider of Selection 
In human field studies, realistic causal diagrams should always have a selection 

(sampling) indicator node S as shown as part of the data-generating process. This 
node may be influenced by (and perhaps even influence) study variables. By defi
nition, only those with S = 1 are observed; thus S will always be conditioned on. If 
S is affected by more than one variable it will be a conditioned collider and thus 
a potential bias source under ordinary graphical rules [Greenland 2010a, 2012a]. 
Most basic causal-diagram introductions (including those I helped write) can be 

faulted for not emphasizing this fact. We can now fault statistics education for the 

same reason in that the “ignorability” of selection under random sampling has 
led to forgettability of the physical selection mechanism in settings where it is not 
random in any mechanical sense and thus not ignorable in any practical sense. 

An important point for graphically representing these problems is that not all 
of what is known as selection bias arises from S being a collider.4 For example, clas
sical selection bias requires no collider in the causal graph of data collection. Con
sider the earlier voting-survey graph [S = 1] ← C → V; the bias here corresponds 
to classical confounding, as it comes from an open back-door path connecting 

V to S via a shared cause (the causal fork at C). As with confounding, a solution 

is to condition (stratify) on C, which allows identification of C-conditional voter 
intentions. 

Unlike in classical confounding, however, conditioning is only a partial solu
tion: in the example, the goal is to recover the marginal (C-unconditional) distri
bution Pr(V = v) of V in the targeted S-unconditional population. Unfortunately, 
that V marginal is not identified if the graph is the only information available 

on the target population. This identification is achieved in classical demographic 
and epidemiologic standardization5 by averaging the observed C-conditionals 
Pr(V = v|C = c,S = 1) over the C distribution of the target population, Pr(C = c); 
this procedure assumes, however, that V is independent of selection given C, so 

that Pr(V = v|C = c,S = 1) = Pr(V = v|C = c), as implied by S ← C → V. 

4. This point is contrary to Hernán et al. [2004]; see Hernán [2017] for a reconciliation. 

5. Not to be confused with “standardization” as in dividing a variable by its standard deviation, 
which damages comparisons of estimates both within and across studies [Greenland et al. 1986, 
1991]. 
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A parallel example of selection bias without collider bias arises in studying the 

effect of a treatment X on an outcome Y when C is a modifier of the treatment 
effect, as in 

[S = 1] ← C → Y ← X 

[Hernán 2017]: C is independent of treatment X, and Y is independent of selection S 

given C, but the S ← C → Y path still can bias the estimated marginal X → Y effect 
given the conditioning on selection (S = 1); this bias would become intractable if 
selection (observation) affected the targeted effects (as in S → Y ← X). 

31.5 Data and Algorithms are Causes of Reported Results 
The causal sequence continues once the data are collected: a statistical procedure 

is a data-processing algorithm whose flow chart can be viewed as a causal diagram 

showing how each computational step determines the next. Usually, each node is a 

deterministic function of its parents, but may include simulations (as in bootstrap 

and Markov chain Monte Carlo procedures) that may result in stochastic condi
tional branches. Finally, the outputs of the algorithm cause researchers and readers 
to interpret and report the study in particular ways, whether mechanically (e.g., in 

misreports of “no association” because a P-value exceeded 0.05) or informally, and 

can strongly affect whether and where the results are published. 
Given the causal nature of data generation, calling causal models “extra-

statistical” is a misleading characterization of both causality and statistics: valid 

statistical analysis is causal to the core; hence, realistic statistical analysis is a sub
set of causal analysis. Not even “extra-distributional” is correct because the core 

problem is about factors producing (causing) differences in distributions of those 

targeted (e.g., voters, patients with a given indication for treatment) and those 

observed (e.g., survey responders, patients in a trial). Without a causal model for 
deducing the assumed data distribution from the entire physical data generator, 
we have no basis for claiming our probability calculations are connected to our 
target or the world beyond our immediate data. 

To summarize so far: taking off from the epilogue of Pearl [2009], statistics as 
conceived and practiced competently is about laying out the causal sequences lead
ing from data to inferences (perceptions) and decisions. Within this sequence, a 

statistical analysis algorithm or protocol is a causal submodel for how that data 

will be processed into outputs. Those outputs will then be interpreted as state
ments connecting the target population to our data under our causally derived 

sampling model, with the connections established via open paths in the causal dia
gram between the target and the data, including connections passing through the 
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ever-present selection node S. Probability plays a central role in terms of formal
izing the expected behaviors (propensities) of the data generator under different 
hypotheses; but that formalization is physically justified only when it is deduced 

from the causal structure of the generator. 

31.6 Getting Causality into Statistics by Putting Statistics into
 
Causal Terms from the Start
 
Labeling causation as “extra-statistical” creates an excuse to continue to ignore 

causality theory in statistical teaching and methods research, and stay within the 

insufficient descriptions of acausal probability theory as the only formal foun
dation of statistics. This leads to bad practice, such as confusing probabilities 
of group events with probabilities of individual events within a group. Exam
ples of such confusion [Greenland and Robins 1988, Robins and Greenland 1989, 
Greenland et al. 2020] may help statisticians recognize causality as an essential 
component that distinguishes application-relevant statistical theory from acausal 
probability and its extensions in mathematical statistics. Again, sound applica
tions also need detailed causal explanations of how the data were generated, 
including the physical mechanisms that led to being in different comparison 

groups and to inclusion in the dataset (S = 1). 
These causal explanations provide the contextual justifications for the prob

ability models used in the analysis, displaying information about study features 
that physically constrain data generation. One teaching implication is that stu
dents must master causal thinking before they can master real-world statistical 
inference; thus, basic logic and its causal extensions should be covered from the 

start of introductory statistics, before probability and statistics. But the curricu
lum for doing so is in its infancy. I used this sequencing in my UCLA courses; 
however, all incoming students had at least basic statistics, and most also had 

research methods courses in which at least informal ideas of causality were cov
ered. Thus, the students needed retraining to remove common misconceptions 
about the implications (or lack thereof) of various statistical results for causal 
questions. 

Students had no trouble mastering the idea of associations passing through 

causal forks (such as X ← C → Y) or mediators (such as X → M → Y); in fact, their 
entire intuition for bias and adjustment came from these two cases. On the other 
hand, their intuitions for paths though colliders (such as X → S ← Y) were back
ward, as should be no surprise: collider bias is by definition the negative or inverse 

of confounding because collider bias arises from conditioning (on colliders), 
whereas confounding is removed by conditioning (on shared causes). Hence, for 
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absolute measures, confounding bias equals the unconditional association minus 
a conditional association, whereas collider bias equals a conditional association 

minus the unconditional association. 
Again, this view applies not only for causal research questions but also for 

descriptive survey research. In all real settings in which perfection is unattainable, 
researchers should try to understand causes of non-response, loss, missing data, 
misreporting, and other sources of uncertainty and inferential distortion,6—for 
example, by placing these bias sources in a causal diagram to guide study design 

and interpretation. Only then can they begin to master the far more subtle notions 
of probabilistic inference from incomplete observations. 

31.7 Causation in 20th-century Statistics 
Statistical foundation debates raged throughout the last century but focused exclu
sively on prioritization of logical criteria such as internal coherence (no violations 
of the axioms of probability theory) versus self-calibration (meeting select fre
quency criteria over data sequences generated by the distribution used to derive 

the data-processing algorithm). Yet formal causal modeling is as old as the modern 

statistical foundations laid down by Fisher, Neyman, DeFinetti, and many others 
in the first half of the 20th century. Although Neyman [1923] went largely unnoticed, 
potential-outcome (“counterfactual”) models entered prestigious statistics jour
nals by the 1930s and had an ongoing presence before their broad uptake began 

in the 1980s (e.g., Welch [1937], Wilk [1955], Copas [1973]). Even without such for
malisms, the probability models on which statistical procedures were based were 

supposed to be frequency summaries of causal mechanisms with certain phys
ical independencies built in by design; these independencies made the mecha
nisms “ignorable” [Rubin 1978], a misleading term because the data-generating 

mechanism should always be described in detail, never ignored. Such mechanisms 
include random sampling, which makes selection S an unaffected (exogenous) 
node, and random allocation, which makes treatment assignment an unaffected 

node. 
Statistical developments in the 20th century were concerned foremost with 

causal inferences derived from physical randomization, whether by nature, as in 

genetic recombination, or by design. Fisher was often quite straightforward in his 
causal descriptions and how he regarded causal inference about treatment effects 

6. These include bad research practices such as “P-hacking”: Searching out analyses that give 

P-values above or below a threshold for “significance” [Greenland 2017a, 2017b, 2019, Amrhein 

et al. 2019]. 
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as the central goal of scientific experimentation in the life sciences. By the mid
1930s, he had laid out potential outcomes clearly enough (even if only verbally) to 

see the distinction between the sharp null of no effect on any unit (used to derive 

randomization tests) and Neyman’s weak null of no effect on the mean [Green
land 1991]. His Design of Experiments [Fisher 1935] gives primacy to experimental 
action (design) over mathematics, as seen in Section 2 of his introduction to the 

first edition, in which he states 

“I have assumed, as the experimenter always does assume, that it is possible 

to draw valid inferences from the results of experimentation; that it is possi
ble to argue from consequences to causes, from observations to hypotheses; 
as a statistician would say, from a sample to the population from which the 

sample was drawn, or, as a logician might put it, from the particular to the 

general.” 

His ensuing verbal descriptions were soon formalized by others into a clear 
potential-outcome model form, where for each unit explicit counterfactual (unob
served) treatment assignments lead to possibly distinct outcomes (e.g., see Welch 

[1937, pp. 22–23]). 
Nonetheless, the statistical theory that dominated subsequent advanced teach

ing and methods research became an extension of measure-theoretic probability, 
a development decried by those who followed Fisher in emphasizing the impor
tance of context [Box 1990]. It is thus somewhat ironic that Fisher’s downfall (as 
manifested in his defense of smoking against charges of carcinogenicity) was his 
inability to neutrally synthesize all available evidence sources, particularly in mis
handling sources of information not derived from physical randomization. This 
failing can be viewed as one of being unable to form realistic models for confound
ing effects coupled with (or perhaps caused by) personal wishes for vindication of 
his own smoking habit [Stolley 1991]. These sorts of “human factors” are them
selves extraneous causes of what gets reported and publicized, and thus need to be 

accounted for in any realistic model for literature analysis [Greenland 2012b, 2017a, 
2017b]. 

31.8 Causal Analysis versus Traditional Statistical Analysis 
In applied statistics, assumptions are made to simplify modeling effort, which 

like everything else is resource constrained. For example, the standard modeling 

assumption “linear in the natural parameter” is rarely, if ever, deduced from any
thing; instead, standard statistical methods treat it as certainly true provided there 

is no evidence to the contrary (even if there is little evidence to judge its accuracy 
or practical impact). This convention is based on the ease of use of such models, 
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especially their transparency and computational stability relative to intrinsically 
non-linear models, along with the idea that basic linear trend components are 

sometimes the only components that are needed or that can be stably estimated 

from available data. 
A retreat from causal to convenience justification is only to be expected when 

applications involve complexities beyond complete formal (algorithmic) modeling 

capacities, as in biology, medicine, and social sciences. In such applications, all 
models are wrong at some practical level of analysis, and are often wrong in very 
consequential ways even when they are useful for improving predictions of yet-unseen 

events such as treatment effects. The classic epidemiologic example is malaria, a dis
ease whose name means “bad air” in the parent Italian. Before modern times, 
social groups noted that malaria rates were higher near swamps and attributed 

that to toxic effects on the air from the swamps, as suggested by the foul smell 
associated with swamps. This wrong theory (causal-system model) of 

swamp → toxic air → malaria
 

housing location → toxic air → malaria
 

led to successful interventions such as draining swamps and building elevated 

houses, even though it missed the actual causal structure of 

swamp → mosquito exposure → malaria
 

housing location → mosquito exposure → malaria
 

which predicted the same intervention effects. To explain these successes of the 

wrong model, we may note that the swamp intervention tested only the swamp → 

malaria effect while the housing intervention tested only the housing → malaria 

effect. Both interventions left wide open the identity of the intermediates (and thus 
specifics of the mechanism for intervention), yet were taken to demonstrate the (in 

fact untested) pathway of toxic air. 
Such examples show that causal theories can include important mistakes even 

while successfully predicting intervention effects, and show why those theories 
should not be taken as true because of such successes (even in a world where causal 
laws are stable and thus inductive reasoning is justified). They instead need ongo
ing novel tests (not just “replication”) before basing actions on pathways that have 

not yet been tested by experiments. The enhanced risk of error for a mechanistic 
causal theory over a mere predictive/associative theory is not a disadvantage; how
ever, it reflects the greater specificity, greater logical content, and hence greater 
testability of such theories, properties that are often promoted as hallmarks of 
good scientific theories [Popper 1962]. 
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That such a theory can pass apparently strong experimental tests yet be erro
neous in important ways (as in the malaria example) is one reason pragmatic 
analysts reject notions of “experimental support” for scientific (real-world) causal 
theories. Other theories (including many never imagined) may pass the same exper
imental test, so at most we can only say an experiment supports the broad class of 
theories that predict results close to what was observed. Put another way: an inter
vention experiment provides evidence only on classes of mechanisms (those whose 

diagrams have directed paths from the observed intervention to the observed out
come), not specific mechanisms, and thus leaves open many details of intervention 

effects. 
That caution applies even more strongly in passive observational (non-

experimental) studies, especially when their data are “analyzed” (summarized) 
by statistics based on randomization assumptions. In that case one can view a 

conventional interval estimate as a blur around the point estimate, indicating 

irreducible uncertainty about the behavior of the data generator. But any infer
ential connection of these summaries to a targeted treatment effect should be 

mediated by explicit causal models; specifically, extraction of information about 
the target effect (e.g., in the form of credible uncertainty intervals for the target) 
requires causal models for physical data generation that include non-random vari
ation (bias) sources beyond the treatment [Greenland 1990, 2012a, Greenland et al. 
1999, Maclure and Schneeweiss 2001, Robins 2001, Hernán et al. 2004, Glymour and 

Greenland 2008]. It also requires recognition that effects cannot always be identi
fied by observed associations, and that some effects cannot be statistically iden
tified at all, even from randomized trials [Kaufman 2009, Robins and Richardson 

2011]. 

31.9 Relating Causality to Traditional Statistical Philosophies and 
“Objective” Statistics 
As has been long and widely emphasized in various terms (e.g., Cox [1978], Box 
[1980, 1990], Rubin [1984], Good [1992], Barnard [1996], Chatfield [2002], Kelly and 

Glymour [2004], Greenland [2006, 2010b], Senn [2011], Gelman and Shalizi [2013]), 
frequentism and Bayesianism are incomplete both as learning theories and as 
philosophies of statistics in the pragmatic sense that each alone are insufficient for 
all sound applications. Notably, causal justifications are the foundation for classi
cal frequentism, which demands that all model constraints be deduced from real 
mechanical constraints on the physical data-generating process. Nonetheless, it 
seems modeling analyses in health, medical, and social sciences rarely have such 

physical justification. 
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Beyond graphs, causality theory formalizes design information (such as ran
domization and matching) by the constraints that information places on the distri
butions of unobserved variables (e.g., Greenland [1990], Pearl [1995], Robins [2001], 
Hernán and Robins [2020]). Use of that information is especially important when 

the modeled data generator is not fully understood as a coherent whole—a prob
lem long recognized and discussed at length in the literature on model uncertainty 
(e.g., Leamer [1978], Box [1980]). The deficiency of strict, coherent (operational sub
jective) Bayesianism is its assumption that all aspects of this uncertainty have been 

captured by the prior and likelihood, thus excluding the possibility of model mis
specification [Leamer 1978, Box 1980, Senn 2011]. DeFinetti himself was aware of 
this limitation: 

“…everything is based on distinctions which are themselves uncertain and 

vague, and which we conventionally translate into terms of certainty only 
because of the logical formulation…In the mathematical formulation of any 
problem it is necessary to base oneself on some appropriate idealizations 
and simplification. This is, however, a disadvantage; it is a distorting factor 
which one should always try to keep in check, and to approach circumspectly. 
It is unfortunate that the reverse often happens. One loses sight of the origi
nal nature of the problem, falls in love with the idealization, and then blames 
reality for not conforming to it.” [DeFinetti 1975, p. 279]7 

By asking for physically causal justifications of the data distributions employed in 

statistical analyses (whether those analyses are labeled frequentist or Bayesian), we 

may minimize the excessive certainty imposed by simply assuming a probability 
model and proceeding as if that idealization were a known fact. 

DeFinetti was of course writing in support of a contentious, purely subjec
tive view of probability, and the utility of the entire “subjective”/“objective” dis
tinction in statistics has been questioned [Gelman and Hennig 2017]. Nonethe
less, many statisticians assign primacy to “objective” model components (those 

derivable from observed mechanisms, such as random-number generators). What 
supports a claim that a variable is “completely random” (fully randomized) in 

an objective frequency sense? Modern causality theory can identify this random
ness with the assumption that the variable is exogenous or instrumental, in that 
its causes affect the system under study only through the variable [Pearl 2009]. 
Again, in “objective” theory this sharp, strong assumption is deduced from the 

7. I am indebted to Stephen Senn for reminding me of this and other remarkable passages in 

DeFinetti. 
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physical data-generating mechanism, not from observed frequencies or other 
purely associational information. 

Consider “fair” coin tossing, in which the influence of the person tossing (who 

might be a magician) is blocked by having them throw the coin against a wall and 

then step back before the bounce and landing, thus blocking skilled tossing and 

other trickery as influences of the outcome. Then, even under classical determin
istic mechanics, the functional complexity of the relation of the outcome to the 

initial toss is transcomputable or chaotic. This type of complexity forces our pre
dictions to rely on distributions that arise as attractors of statistical behavior (e.g., 
laws of large numbers, central-limit effects), instead of deterministic mathemat
ical models. In doing so we assume a certain causal stability across trials whose 

consequences are summarized in our models. Such a stability assumption needs 
justification based on direct observation (the physical mechanism is unchanging) 
and thus is objective; without that, causal stability is an underived (and usually 
implicit) assumption and thus is not objective in this sense. 

In this way, the traditional “objective”/“subjective” distinction in statistical 
methods resides within causality theory, not in the “frequentist” versus “Bayesian” 
distinction (which are both vague labels for highly heterogeneous collections of 
statistical tools and philosophies, as Good [1971] explained for Bayes). The core idea 

behind “objective” statistics is that one demands that each distribution used in the 

statistical processing of the data be derivable from a verifiable physical (causal) 
mechanism. That demand can be made regardless of whether that processing is 
labeled “frequentist,” “Bayesian,” “likelihoodist,” or something else—a view which 

does not exclude Bayesian methods but does reject mere expressions of opinions 
as priors for those methods [von Mises 1981]. 

31.10 Discussion 
Judea Pearl has been a celebrated promoter of causal models over pure probabil
ity, especially for encoding the background (contextual) information in a problem 

[Pearl 1995, 2001, 2009]. At times, however, he has referred to causality as “extra-
statistical,” a label which ignores the realities that any applied statistician must 
face in practice. Those realities make causality integral to statistics; yet, by call
ing causality “extra-statistical,” we absolve those bearing the professional label 
“statistician” of any responsibility to understand, let alone teach, causality the
ory. Fortunately, many younger statisticians have a keen interest in causal models 
as tools to create better statistical science. To encourage this trend, we should 

include causal models from the start of statistical training as an integral compo
nent of study design and data analysis, in addition to complementary presentation 

of frequentist and Bayesian ideas. 
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As a less-often stated yet even more fundamental need, basic statistics should 

begin with the elements of deductive logic. When I was teaching statistical 
foundations and principles, most students I encountered (including statistics 
majors) had neither studied nor fully understood basic logical principles, and thus 
were prone to naïve fallacies in verbal arguments. Thus, the topic sequence in my 
class covered logic as a foundation for causal thinking, followed by causality theory 
as a foundation for probability and association explanation. This material was con
trasted to their previous instruction, which typically involved rote application of 
mysterious descriptions and formulas for statistical comparisons and regressions. 
Students were always delighted to at last see applied statistics as the coordinated 

merging of the three essentials of logic, causation, and probability to provide a 

transparent foundation for sound study design, analysis, and interpretation. 
Admittedly, traditionally trained statisticians may be too firmly wedded to 

probabilistic foundations to ever concede this causal primacy, and some radi
cal subjective Bayesians reject causality altogether (e.g., Lad [2006]). Nonetheless, 
probabilists curious about the causal approach may more easily conceive the uni
fication of causality and probability within information theory, which can serve 

as an overarching framework for statistical modeling and inference (I have found 

that an information framework even helps students correctly understand P-values 
[Greenland 2019, Rafi and Greenland 2020]). Causal diagrams then provide an intu
itive representation of information flows as time-sequential functional relations 
across event sequences. 

31.11 Conclusion 
Statistical science (as opposed to mathematical statistics) involves far more than 

data—it requires realistic causal models for the generation of that data and the 

deduction of their empirical consequences. Evaluating the realism of those models 
in turn requires immersion in the subject matter (context) under study. Decisions 
further require explication of the various pathways by which those decisions would 

cause gains (benefits) and losses (costs). Bringing these causal elements to the 

foreground is essential for sound teaching and applications of statistics. 

31.A Appendix 

31.A.1	 A Counting Measure for the Logical Content of a Finite Exchangeability 
Assumption 
For any formal deductive system and set of constraints A in the system, define A 

as logically minimal if it satisfies the joint deductive independence condition: for 
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any pair (B,C) of disjoint non-empty subsets of A, C cannot be deduced from B. We 

may then define the logical-content measure v(G) of an arbitrary set of constraints 
G in the system as the largest cardinality |A| among minimal subsets A of G; v(G) 
may be infinite if G is infinite. 

Now consider the common statistical assumption that the observations 
Y1, … , YN are independent identically distributed conditional on any model m in 

a set M. Then, given a prior distribution on M, the Y1, … , YN are unconditionally 
exchangeable; that is, every one of the N! permutations of indices in the joint distri
bution leaves that distribution unchanged. Exchangeability is logically equivalent 
to N!-1 independent constraints, one for each non-null permutation; denoting the 

set of these constraints by G, with no further constraint we have v(G) = |G| = N!-1. 
By imposing further constraints on the joint distribution, we may reduce v(G) con
siderably. Nonetheless, even with the extreme simplification of multivariate nor
mality we get v(G) of order N2 (since exchangeability requires homogeneous vari
ances and homogeneous covariances), and thus still entails far more constraints 
than there are observations N. 
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are presented to illustrate some of the difficulties involved in analyzing this con
cept. One of Pearl’s definitions of actual causation is presented in detail, and its 
strengths and weaknesses are examined. The chapter concludes with reflections 
on Pearl’s contributions to the topic. 

Pearl on Actual Causation 
Christopher Hitchcock (California Institute of Technology) 

Abstract 
This chapter surveys Judea Pearl’s work on actual causation. After briefly introduc
ing the concept of actual causation, it presents the structural equation framework 

used by Pearl to analyze actual causation. Earlier definitions of actual causation 

32.1 Introduction 
Judea Pearl offered three different but closely related definitions of actual cau
sation using the formalism of structural equation models. The first appeared in 

chapter 10 of Causality: Models, Reasoning, and Inference [Pearl 2000, 2009]; the oth
ers appeared in a series of papers co-authored with Joseph Halpern [Halpern and 

Pearl 2001a, 2001b, 2005a, 2005b]. Pearl’s definitions are based on the but-for defi
nition of causation used in common law, and build on important earlier work by 
the philosopher David Lewis [Lewis 1973, 1986]. Pearl’s definitions have been very 
influential and have inspired a number of further attempts to refine the defini
tion within the same formalism; an incomplete selection includes Blanchard and 

Schaffer [2017], Beckers and Vennekins [2017, 2018], Fenton-Glynn [2017], Gallow 

[2021], Glymour and Wimberly [2007], Hall [2007], Halpern [2008, 2016], Halpern 

and Hitchcock [2015], Hitchcock [2001, 2007], Menzies [2004, 2017], and Woodward 

[2003, chapter 2]. This chapter will provide an introduction to the topic. 

32.2 Actual Causation 
We may illustrate the concept of actual causation with a traditional example. Billy 
and Suzy are throwing stones. Suzy throws her stone at the window, it hits the 
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window, and the window breaks. We would naturally summarize this episode in 

one of the following ways: 

∙	 Suzy’s throw caused the window to break 

∙	 Suzy caused the window to break by throwing a stone at it 

∙	 The window broke because Suzy threw a stone at it 

These statements describe a relation of actual causation between two events: 
Suzy throwing a stone and the window breaking. We may make the following 

generalizations about relations of actual causation: 

∙	 They relate particular events, rather than types or properties. In our example, 
it is a particular throw, of a particular stone, by a particular girl, at a partic
ular time and place that causes a particular window to break at a particular 
time and place. The statements of actual causation listed above say noth
ing about the efficacy of throws or rocks in general, nor about the causes of 
broken windows in general. 

∙	 They depend on how events actually play out. Suzy might not have thrown, 
her throw might not have hit, Billy might have thrown the stone that broke the 

window; but as things actually happened, it was Suzy’s throw that caused the 

window to break. 

∙	 Claims of actual causation are typically (but not always) made after the fact. 
Before Suzy throws, it may be hard to predict whether she will throw or 
whether her aim will be true. After the fact, it is relatively easy to judge that 
Suzy’s throw caused the window to break. 

∙	 Relations of actual causation are particularly relevant to judgments of moral 
responsibility and legal liability. We would hold Suzy morally responsible for 
the broken window and require her parents to pay for its replacement (Suzy 
is still a minor). 

This is not a rigorous or complete definition, but it provides some indication of 
the target of analysis. 

32.3 Causal Models and But-for Causation 
One of Pearl’s many innovations was introducing the use of structural equation 

models (SEMs) to represent the causal structure of a situation such as the one 

described in the vignette about Billy and Suzy. SEMs have been widely used in a 

number of fields, including agronomy, econometrics, and epidemiology, and Pearl 
has a great deal to say about their use in these areas as well. I will not attempt to 
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provide a rigorous presentation of this formalism, but will introduce it by means 
of examples in the hopes of making it intuitive. These examples will serve three 

purposes. They will help us to introduce the formalism; they will provide test cases 
for theories of actual causation; and they will demonstrate some of the problems 
facing earlier accounts. While I will present two previous definitions of actual cau
sation to set the stage for Pearl’s definitions, my formulations of them will be 

anachronistic—they will be couched within the formalism developed later by Pearl. 
All examples will involve Billy and Suzy throwing stones at a window, and we 

will make the following assumptions throughout: (1) whenever Billy or Suzy throws 
a rock, their aim is true and they throw with sufficient force to shatter the win
dow; (2) the window does not break spontaneously, or due to any other cause not 
explicitly mentioned. We will represent various scenarios using variables with the 

following interpretations: 

∙ ST—Suzy throws her rock 

∙ SF—Suzy’s rock flies through the air toward the window 

∙ SH—Suzy’s rock hits the window 

∙ BT—Billy throws his rock 

∙ BH—Billy’s rock hits the window 

∙ BB—Billy blocks Suzy’s rock 

∙ WB—the window breaks 

Each variable takes the value 1 if the relevant event occurs, and 0 if it does not. 
We might think of these as propositions that can be true or false, rather than vari
ables. But the variables in a SEM need not be binary—we could, for example, have 

a variable representing the velocity of Suzy’s rock—but we will restrict ourselves to 

binary variables for simplicity. An assignment of a value to a variable corresponds 
to a particular event; for example, ST = 1 corresponds to Suzy’s throwing her rock 

at a particular time and place. These will be the candidates for causes and effects. 

Suzy throws her rock at the window, which breaks. (Billy has not yet arrived.) 

In this little story, it would be natural to judge that Suzy’s throw caused the 

window to break. We can model this very simple example as follows: 

M32.1 

∙ ST = 1 
∙ WB = ST 
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The first equation tells us that ST = 1, that is, that Suzy throws her rock. In this 
model, ST is an exogenous variable; its value is determined by factors that are not 
explicitly modeled.1 The second equation tells us how the value of WB depends upon 

the value of ST. Specifically, it tells us that if and only if ST = 1 (Suzy throws), 
then WB = 1 (the window breaks). However, this equation is different from a nor
mal logical biconditional in that it matters which variable we put on the left-hand 

side. The equations in a causal model are structural equations, meaning that they 
encode information about causal structure. This model is acyclic, meaning that 
the equations can be ordered so that each variable appears on the left-hand side 

of an equation before it appears on the right. Variables that are introduced ear
lier in this ordering will be said to be upstream, and those that appear later are 

downstream. In M32.1, ST is upstream of WB, and WB is downstream of ST. We will 
only consider acyclic models in what follows. In an acyclic SEM, the values of the 

exogenous variables uniquely determine the values of all of the endogenous vari
ables via the equations. (Probability can be added to the models, but we will skip 

this complication.) Thus, in M32.1, WB will take the value 1, which we can write 

M32.1 |= WB = 1. One basic criterion of adequacy for a causal model is that it entail 
values of the variables corresponding to events that actually occurred in the situa
tion or story being modeled. (For this reason, we will sometimes refer to the values 
that variables take in a given model as the actual values of the variables in that 
model.) 

If we want to know what would have happened if Suzy had not thrown, we 

remove the original equation for ST and replace it with the imposed value ST = 0. 

M32.1.1 = M32.1[ST ← 0] 

∙ ST = 1, ST = 0 

∙ WB = ST 

The notation M32.1[ST ← 0] indicates that the new model is formed by starting with 

M32.1, striking out the equation for ST, and replacing it with the setting ST = 0. Set
ting the value of a variable in this way is called an intervention. We can now compute 

from the resulting equations that WB = 0. We have thus verified the following coun
terfactual: If Suzy hadn’t thrown her rock, the window would not have broken. The 

breaking of the window counterfactually depends upon Suzy’s throw. A second basic 

1. I am oversimplifying the treatment of exogenous variables. In Pearl’s various formulations, 
exogenous variables do not represent factors that form part of the scenario. Thus the full model 
would treat ST as an endogenous variable whose value is determined by one or more exoge
nous variables. Pearl then distinguishes between the model proper, and a specific setting of the 

exogenous variables. I am combining both of these together in what I am calling a model. 
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condition of adequacy for a causal model is that it entail only counterfactuals that 
are true in the situation or story being modeled. 

This leads us to a first attempt to define actual causation: 

But-for. 
If X and Y are distinct variables in the causal model M, then X = x is an actual 
cause of Y = y in M just in case: 

1. M |= X = x, Y = y 
′ ′ ′ 2. There exist values x ̸ ̸ ′] = Y= x of X and y = y of Y such that M[X ← x | = y 

This is the but-for definition of causation that is frequently used in common law. 
It tells us that X = x is a cause of Y = y just in case (1) these are the actual values 
of these variables, and (2) if X had taken some other value, Y would not have been 

equal to y. To simplify the later exposition, let us say that X = x is a but-for cause of 
Y = y in model M just in case Definition 32.1 rules that X = x is an actual cause of 
Y = y in model M. In Example 32.1, as modeled by M32.1, if ST had not been equal 
to 1, WB would not have been equal to 1. In the language of common law, the win
dow would not have broken but for Suzy’s throw. In Example 32.1, Definition 32.1 
gives the intuitively correct answer. We may also model the scenario described in 

Example 32.1 by interpolating variables between ST and WB: 

M32.1.2 

∙ ST = 1 
∙ SF = ST 

∙ SH = SF 

∙ WB = SH 

This model tells us that whether the window breaks counterfactually depends upon 

whether Suzy’s stone hits it, which depends upon whether Suzy’s rock is flying 

through the air, which depends upon whether she threw it. 
It is helpful, but not strictly necessary, to represent the structure of a causal 

model with a directed graph. We draw an arrow from X to Y just in case X appears 
on the right-hand side of the equation for Y. The graph for M32.1.2 is shown in 

Figure 32.1. 
Like M32.1, M32.1.2 also implies that if Suzy had not thrown, the window would 

not have shattered, as the reader can verify by replacing the first equation with 

Figure 32.1 Directed graph of M32.1.2. 
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ST = 0. Suppose now that we want to evaluate the counterfactual situation where 

Suzy’s rock does not hit the window. Following our procedure, we produce the new 

model: 

M32.1.3 = M32.1.2[SH ← 0] 

∙ ST = 1 
∙ SF = ST 

....∙ SH = SF, SH = 0 

∙ WB = SH 

Note that we replace the equation for SH, rather than just plugging in the value 0 for 
SH in the original equations. This reflects the idea that when we intervene to set 
SH = 0 we override the previously existing causal structure and impose the value 

0 on SH. This is similar to Lewis’s idea that we should think of the antecedent of a 

counterfactual being made true by a small miracle [Lewis 1979]. We represent this 
graphically by “breaking the arrow” into SH (Figure 32.2). 

When we evaluate the new system of equations, we get WB = 0 (the window 

wouldn’t have broken), but ST and SF remain unchanged (Suzy still would have 

thrown, and her rock still would have flown through the air). What this example 

shows is that counterfactuals do not backtrack (in the terminology of Lewis [1979]). 
A hypothetical change introduced through an intervention may lead to changes in 

the values of downstream variables, but it will not lead to any changes in the values 
of upstream variables. The relation of counterfactual dependence is asymmetric (in 

acyclic models). 
The asymmetry of counterfactual dependence is a good thing for Defini

tion 32.1: it means that Definition 32.1 does not have the consequence that Suzy’s 
rock hitting the window caused her to throw it. More generally, if X = x is an actual 
cause of Y = y, then Y = y will not be an actual cause of X = x. Thus Definition 32.1 
can capture the intuitive idea that causation is an asymmetric relation. 

Two further points about counterfactuals: First, we can readily extend our pro
cedure for evaluating counterfactuals to cases where we intervene on multiple 

variables. We replace the equations for all of the variables on which we intervene. 

Figure 32.2 Directed graph of M32.1.3 = M32.1.2[SH ← 0]. 
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Second, if we intervene to set one or more variables to their actual values in the 

model, all other variables will take their actual values.2 That is: 

3Fact 32.1 If M |= X⃗ = ⃗x, Y⃗ = ⃗y, then M[X⃗ ← ⃗x] |= Y⃗ = ⃗y. 

32.4 Pre-emption and Lewis 
It has been known since at least 1925 that Definition 32.1 is inadequate [McLaughlin 

1925]. In particular, it fails in cases of pre-emption. Here is an illustration: 

Example 32.2	 Billy and Suzy are holding their stones, ready to throw. Billy decides to let Suzy 
throw first. Suzy throws her rock, which shatters the window. If Suzy hadn’t thrown 

her rock, Billy would have thrown his rock at the window. 

In this example, the window’s breaking does not counterfactually depend upon 

Suzy’s throw. If Suzy hadn’t thrown, Billy’s rock would have broken the window. 
Nonetheless, it is natural to judge that Suzy’s throw caused the window to shatter. 
This is called a case of pre-emption because Suzy pre-empted Billy by throwing first. 

Here is a simple and natural causal model for Example 32.2: 

Model 32.2 M32.2 

∙ ST = 1 
∙ BT = ¬ST 

∙ WB = ST ∨ BT 

The second equation tells us that Billy would throw just in case Suzy doesn’t. The 

third equation says that the window would break just in case either Suzy or Billy 
throws. This model is pictured in Figure 32.3. Note that the arrow from ST to BT 

indicates that the first variable influences the second, but it does not tell us what 
the direction of influence is. That is, the arrow does not tell us whether the equation 

is BT = ¬ST or BT = ST—whether Suzy’s throw causes Billy’s throw or prevents it. 
Thus, the equations of the model contain strictly more information than the cor
responding graph. The graph does help us to see that ST influences WB via two 

different routes: one direct and one via BT. 

2. Note, however, that not all propositions remain true in the new model that results from such 

an intervention. In particular, some counterfactuals may change in truth value. See, for example, 
Briggs [2012] for discussion. 

3. I am using X⃗ = x⃗ as a fairly intuitive shorthand. If X⃗ ≡ (X1, … , Xn) is an ordered set of vari
ables, and ⃗x ≡ (x1, … , xn) is an ordered set of values, then X⃗ = x⃗ abbreviates the conjunction of 
propositions Xi = xi for i = 1, … , n. 
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Directed graph of M32.2. 

The reader can check that in M32.2, BT = 0 (Billy doesn’t throw) and WB = 1 (the 

window breaks). However, if Suzy hadn’t thrown (ST = 0), then Billy would have 

thrown (BT = 1) and the window would have shattered anyway (WB = 1). 
Lewis [1973] introduced a counterfactual theory of causation that improves 

upon the simple but-for definition. Lewis argued that causation is a transitive rela
tion. If X = x is an actual cause of Y = y and Y = y is an actual cause of Z = z, 
then X = x should be an actual cause of Z = z. Definition 32.1 does not have 

this consequence since the relation of counterfactual dependence is not transitive 

(as we shall see in a moment). Lewis took counterfactual dependence to be suffi
cient for causation, but not necessary. X = x can be an actual cause of Z = z in the 

absence of counterfactual dependence if there is a suitable chain of counterfactual 
dependence. 

Lewis 
If X and Z are distinct variables in the causal model M, then X = x is an actual 
cause of Z = z in M just in case: 

∙	 There exists a sequence of variables X ≡ Y1, Y2, … , Yn−1, Yn ≡ Z such that: 
Yi = yi is a but-for cause of Yi+1 = yi+1 for all i = 1, … , n − 1. 

Note that this entails that M |= X = x, Z = z, Yi = yi for all i. But-for causation is a 

special case where n = 2. 
Lewis’s definition doesn’t yield the intuitive result that ST = 1 is an actual cause 

of WB = 1 in M32.2, but it does give this result in a slightly different model of 
Example 32.2, in which an additional variable is interpolated: 

M32.2.1 

∙	 ST = 1 
∙	 BT = ¬ST 

∙	 SF = ST 

∙	 WB = SF ∨ BT 

(See Figure 32.4.) In this model, ST = 1 is a but-for cause of SF = 1 (if Suzy hadn’t 
thrown, her rock wouldn’t have flown through the air); and SF = 1 is a but-for 
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Figure 32.4 

Model 32.2.2 

Directed graph of M32.2.1. 

cause of WB = 1 (if Suzy’s rock hadn’t been flying through the air, the window 

wouldn’t have broken). Thus we have a chain of counterfactual dependence, and 

Definition 32.2 rules that ST = 1 is an actual cause of WB = 1. The first step of this 
chain, from ST to SF, is both intuitive, and easy to verify using model M32.2.1. The 

second step, from SF to WB, is less intuitive. We will first use the model to evaluate 

what happens under the counterfactual supposition that SF = 0: 

M32.2.2 = M32.2.1[SF ← 0] 

∙ ST = 1 
∙ BT = ¬ST 

....∙ SF = ST, SF = 0 

∙ WB = SF ∨ BT 

In this model, ST = 1 (Suzy still throws), BT = 0 (Billy doesn’t throw), SF = 0 

(Suzy’s rock does not fly through the air), and WB = 0 (the window remains intact). 
Since counterfactuals do not backtrack, if Suzy’s rock hadn’t flown she still would 

have thrown, and Billy still would have refrained from throwing. We are to imag
ine that Suzy’s rock vanishes or disintegrates after leaving her hand, or something 

intervenes to knock it out of the air. Since Billy’s throw was conditioned on Suzy’s 
throw, and not on the flight of her rock, he would not throw in this situation. 

One question this raises is whether M32.2 or M32.2.1 is the “right” model of 
Example 32.2. Definition 32.2 yields a definition of actual causation that is model-
relative. But the hypothetical examples that are used to assess the adequacy of 
definitions of causation are presented in natural language; they don’t wear a pre
ferred model on their sleeve. This raises several questions: What makes one causal 
model rather than another the “right” model of a particular situation? Is there a 

uniquely correct causal model? If not, what makes a causal model apt for analysis? 
Halpern and Hitchcock [2010] and Blanchard and Schaffer [2017] provide some pre
liminary discussion of these issues. Given an analysis of actual causation, when are 

the verdicts of that analysis stable under additions to and deletions from a causal 
model? Is this a desirable feature of an analysis? Can this kind of stability be used 
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to motivate a particular analysis? Halpern [2016, chapter 4] and Gallow [2021] take 

up these issues. As we will see, model-relativity will be a recurring issue. 

32.5 Intransitivity and Overdetermination 
Despite achieving some success with Example 32.2, Lewis’s definition faces prob
lems with other examples. The first such example raises questions about Lewis’s 
hypothesis that actual causation is transitive. 

Example 32.3	 Suzy throws her rock toward the window. Billy does not want the window to break, 
so he leaps into action and blocks Suzy’s rock. The window remains intact. 

We can model this example as follows: 

Model 32.3 M32.3 

∙ ST = 1 
∙ BB = ST 

∙ WB = ST ∧ ¬BB 

(See Figure 32.5.) The last equation says that the window will break just in case Suzy 
throws and Billy doesn’t block her rock. 

In this model, ST = 1 is a but-for cause of BB = 1: if Suzy hadn’t thrown, Billy 
wouldn’t have blocked her rock. Moreover, BB = 1 is a but-for cause of WB = 0: 
if Billy hadn’t blocked Suzy’s rock, the window would have broken. (Remember 
that counterfactuals do no backtrack, so if Billy hadn’t blocked the rock, Suzy still 
would have thrown). We can verify this second counterfactual by intervening to set 
BB = 0. 

Model 32.3.1	 M32.3.1 = M32.3[BB ← 0] 

∙ ST = 1 
∙ ....BB = ST, BB = 0 

∙ WB = ST ∧ ¬BB 

We can compute that WB = 1 in this model. Since there is a chain of counterfactual 
dependence from ST = 1 to BB = 1 to WB = 0, Definition 32.2 rules that ST = 1 is 

ST

BB

WB

Figure 32.5 Directed graph of M32.3. 
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an actual cause of WB = 0.4 But most people find this verdict unintuitive. Suzy’s 
throw did not cause the window to remain intact (or prevent it from breaking). 
Lewis’s definition gives the wrong answer. Moreover, this example is a counterex
ample to the transitivity of causation: Suzy’s throw caused Billy to block her rock, 
and Billy’s action caused the window to remain intact, but Suzy’s throw did not 
cause the window to remain intact. This undermines one of the main motivations 
for moving from Definition 32.1 to Definition 32.2. 

Lewis’s definition also has trouble with causes of symmetric overdetermination: 

Billy and Suzy both throw their rocks at the window. The rocks hit the window 

simultaneously, and the window breaks. 

M32.4 

∙ ST = 1 
∙ BT = 1 
∙ WB = ST ∨ BT 

(See Figure 32.6.) The logical or in the last equation reflects the fact that either 
throw would be sufficient on its own to break the window. 

WB = 1 does not counterfactually depend upon ST = 1: If Suzy hadn’t thrown, 
the window still would have broken (because of Billy’s throw). Nonetheless, most 
people judge that Susy’s throw and Billy’s throw are both causes of the window 

breaking.5 I will leave it to the reader to verify that it does not help to interpolate 

variables such as SF or SH between ST and WB. 
Here is another case of pre-emption that differs from Example 32.26: 

4. Interpolating a variable such as SF between ST and WB won’t change this result. 

5. Or perhaps they are parts of a joint cause. This is the verdict of one of the definitions of actual 
causation discussed in Halpern [2016]. 

6. This is an example of what Lewis [1986] calls late pre-emption; Example 32.2 is a case of early pre
emption. The nomenclature is not very intuitive. The key difference is that in early pre-emption 

the back-up process (Billy) is cut off before the effect (the window breaking) occurs; in late 

pre-emption the back-up process is still in progress when the effect occurs. 
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Suzy throws her rock slightly before Billy does. Her rock hits the window and 

smashes it. Billy’s rock sails through the space where the window used to be. 

Once again, it seems clear that Suzy’s throw caused the window to break; but the 

window would have broken if Suzy hadn’t thrown (due to Billy’s rock). And once 

again, interpolating variables does not solve the problem. Unlike Example 32.4, 
however, there is an asymmetry between Suzy’s throw and Billy’s throw: Suzy’s 
throw is a cause of the window breaking, but Billy’s is not. 

How should we model Example 32.5? M32.4, which we used to model 
Example 32.4, is minimally adequate in the sense that it correctly describes the 

values of the variables, and that it also entails only true counterfactuals. How
ever, if a definition of actual causation is going to yield a different verdict about 
Examples 32.4 and 32.5, then we will need to model these cases differently. In par
ticular, it is apparent that M32.4 is symmetric between ST and BT. Any account of 
actual causation that rules that ST = 1 is an actual cause of WB = 1 in M32.4 will 
also have to rule that BT = 1 is an actual cause. If we wish to rule that Susy’s throw 

is a cause of the window breaking in Example 32.5 while Billy’s throw is not, there 

will need to be a corresponding asymmetry in the causal model. A more adequate 

representation (from Halpern and Pearl [2001a]) would be: 

M32.5 

∙ ST = 1 
∙ SH = ST 

∙ BT = 1 
∙ BH = BT ∧ ¬SH 

∙ WB = SH ∨ BH 

(See Figure 32.7.) In this model, we can derive that SH = 1 (Suzy’s rock hits the 

bottle), while BH = 0 (Billy’s rock does not hit the bottle). This is an important 
asymmetry between Suzy’s throw and Billy’s throw that we might hope to exploit. 

ST

BT

SH

BH

WB

Figure 32.7 Directed graph of M32.5. 
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32.6 Pearl’s Definitions of Actual Causation 
Pearl has given three different definitions of Actual Causation in his published 

work, in chapter 10 of Pearl [2000, 2009]7; and in a series of papers co-authored 

with Halpern [Halpern and Pearl 2001a, 2001b, 2005a, 2005b]. I will focus here on 

the definition from Halpern and Pearl [2001a].8 

Definition 32.3 HP. 
If X and Y are distinct variables in causal model M, then X = x is an actual cause 

of Y = y in M just in case: 

1. M |= X = x, Y = y 
2. There exists a partition (Z⃗, W⃗) of the variables in M, with X ∈ Z⃗, some setting 

x ′ of X, and some setting w⃗′ of the variables in W⃗ such that 
′ (a) M[X ← x , ⃗ w | ̸W ← ⃗ ′] = Y = y 

′ (b) M[X ← x, W⃗ ← w⃗ , Z⃗ ′ ← z⃗ *] |= Y = y for all Z⃗ ′ ⊆ Z⃗ (where 
9M |= Z⃗ ′ = ⃗z *). 

Condition 1 is straightforward: it just says that x and y are the values that X and Y 

actually take in the model. Condition 2 requires some unpacking. 
The variables in the causal model are split into two sets, W⃗ , and ⃗Z. We may think 

of Z⃗ as making up the causal process. It will include X and Y, and may also include 

some of the variables that lie on causal paths between X and Y. The variables in 

W⃗ may be thought of as being off to the side. While they may lie on some causal 

7. A predecessor of this definition appears in a technical report [Pearl 1998]. 

8. Halpern and Pearl [2001a] and the postscript to chapter 10 of Pearl [2009] describe the reasons 
for preferring the definition of Halpern and Pearl [2001a] to that of Pearl [2000]. Halpern and Pearl 
were moved to modify their definition in light of a putative counterexample described in Hopkins 
and Pearl [2003], giving rise to the new definition presented in Halpern and Pearl [2005a]. How
ever, I think that the earlier definition of Halpern and Pearl [2001a] can handle this example by 
using a more sophisticated model. This closely parallels the move from modeling Example 32.5 

using M32.4 to using M32.5 . TheHopkins–Pearl case is an example of pre-emption, and its structure 

is not adequately captured without adding one additional variable. 

9. I have simplified this definition in a couple of ways. Halpern and Pearl [2001a] allow the effect to 

be an arbitrary Boolean combination of propositions about the values of variables in the model. 
They don’t require that the cause and effect involve distinct variables, although they note the pos
sibility of adding such a restriction. They also allow the cause to be a conjunction of assignments 
of values to variables, but add a third clause to the definition that imposes a minimality condition 

on the cause. It turns out that this minimality condition implies that causes always involve single 

variables. (This is not the case with the definition of Halpern and Pearl [2005a], however.) 



638 Chapter 32 

Fact 32.2 

Fact 32.3 

Analysis of Example 32.1 

Analysis of Example 32.2 

Pearl on Actual Causation 

path between X and Y, they are not part of the particular causal process that makes 
10X = x an actual cause of Y = y. 

Condition 2(a) says that Y = y counterfactually depends upon X = x, not in the 

original model M but in the new model that results when we also set W⃗ to w⃗′ . The 

values w⃗′ may be the actual values of W⃗ , but they need not be. 
Condition 2(b) is a restriction on the permissible settings W⃗ = w⃗′ . The condi

′ tion tells us that the setting of ⃗ = w cannot interfere with the causal process Z⃗W ⃗

too much. Specifically, setting W⃗ to w⃗′ can’t result in a different value of Y when X 

is set to its actual value, and when any members of Z⃗ are set to their actual value. 
When X = x and Y = y satisfy the conditions of Definition 32.3 in model M, we 

will say that X = x is an HP cause of Y = y in M. We may note the following two 

facts about Definition 32.3: 

When ⃗ = ∅, Definition 32.3 reduces to Definition 32.1.W 

Hence but-for causation is sufficient for HP causation. 

When M | ⃗ = ⃗ ′ , the setting ⃗ = ⃗ ′ satisfies condition 2(b).= W w W w 

Fact 32.3 follows from Fact 32.1. 
Let us now see how the Halpern–Pearl definition of actual causation handles 

our various examples. 

Suzy throws her rock at the window, which breaks. 

∙ M32.1 : ST = 1, WB = ST 

We want to show that ST = 1 (Suzy’s throw) is an actual cause of WB = 1 
(the window breaking). Let W⃗ = ∅. By Fact 32.2, Definition 32.3 now reduces to 

Definition 32.1. Since the but-for test rules that ST = 1 is an actual cause of WB = 1 
in this simple example, the HP test does as well. 

Billy decides to let Suzy throw first. Suzy throws her rock, which shatters the 

window. If Suzy hadn’t thrown her rock, Billy would have thrown. 

∙ M32.2 : ST = 1, BT = ¬ST, WB = ST ∨ BT 

We want to show that ST = 1 is an actual cause of WB = 1. Let W⃗ = (BT), and 
′ w⃗ = (0). Since BT = 0 in M32.2, Fact 32.3 implies that condition 2(b) is satisfied. To 

check condition 2(a): 

.∙ M32.2[ST ← 0, BT ← 0] : ���� BT = ¬ST, BT = 0, WB = ST ∨ BTST = 1, ST = 0, ....

10. Although there may be more than one way of dividing variables into sets such that 
Definition 32.3 is satisfied. Variables that are off to the side in one partition may be part of the 

causal process in another. 
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We can compute that WB = 0. This computation validates the counterfactual: “If 
Suzy didn’t throw, and Billy didn’t throw, the window would not have broken.” An 

equivalent counterfactual that more closely tracks the logic of the Definition 32.3 
is: “Holding fixed that Billy didn’t throw, if Suzy hadn’t thrown, the window would 

not have broken.” 

We may think of the analysis in this way: ST influences WB via two different 
causal pathways—one direct and one via BT (see Figure 32.3). By intervening to fix 
the value of BT at 0, we block the influence of ST on WB via the indirect path. When 

we “wiggle” ST, we prevent BT from “wiggling” with it. We thus isolate the influ
ence of ST on WB along the direct path. It is in virtue of this influence that ST = 1 
is an actual cause of WB = 1. 

Billy and Suzy both throw their rocks at the window. The rocks hit the window 

simultaneously, and the window breaks. 

∙ M32.4 : ST = 1, BT = 1, WB = ST ∨ BT 

We want to show that ST = 1 is an actual cause of WB = 1. Let W⃗ = (BT), and 
′ w⃗ = (0). Since this is not the actual value of BT, we cannot rely on Fact 32.3 to guar

antee that condition 2(b) is met. To check condition 2(b), we must set ST = 1 and 

BT = 0; and we must check that WB = 1 both when we set WB to 1, and when we 

leave WB alone. Obviously, if we set WB to 1, we will have WB = 1. So let us check 

the other case: 

∙ M32.4[ST ← 1, BT ← 0] : ���� BT = 1, BT = 0, WB = ST ∨ BTST = 1, ST = 1,���� 

We can compute that WB = 1, so condition 2(b) is met. 
Let us now check condition 2(a). 

∙ ST = 1, ST = 0,����M32.4[ST ← 0, BT ← 0] : ���� BT = 1, BT = 0, WB = ST ∨ BT 

We can compute that WB = 0, so condition 2(a) is met. 
Although the window’s breaking does not counterfactually depend upon Suzy’s 

throw in the actual situation, it does depend on her throw in the closely related situ
ation where Billy does not throw. Changing whether Billy throws does not interfere 

sufficiently with the process connecting Suzy’s throw to the shattered window, so 

this is a legitimate situation in which to check for actual causation. 

Suzy throws her rock slightly before Billy does. Her rock hits the window and 

smashes it. 
We will analyze this example using the more sophisticated model M32.5 

(Figure 32.7). 

∙ M32.5 : ST = 1, SH = ST, BT = 1, BH = BT ∧ ¬SH, WB = SH ∨ BH 
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We first want to show that ST = 1 is a cause of WB = 1. We may choose W⃗ = (BH) 
′ with the setting w⃗ = (0).11 Since this is the actual value of BT, Fact 32.3 implies that 

condition 2(b) is satisfied. To check 2(a): 

∙ M32.5[ST ← 0, BH ← 0] : 

�ST�=��1, ST = 0, SH = ST, BT = 1,........

BH = BT ∧ ¬SH, BH = 0, WB = SH ∨ BH 

This implies WB = 0, so 2(a) is satisfied.12 The analysis is similar to that in 

Example 32.2. By holding BH fixed at 0, we isolate the influence of Susy’s throw 

along the path from ST to SH to WB. 
We would also like to show that BT = 1 is not an actual cause of WB = 1. We 

will not go through all of the possible combinations, but let us see why the parallel 
strategy of choosing ⃗ = (SH) will not work. First, we could try the actual settingW
 

SH = 1. With this setting, condition 2(a) fails:
 

∙ M32.5[BT ← 0, SH ← 1] : 

ST = 1,.... BT = 1, BT = 0, BH = BT ∧ ¬SH, WB = SH ∨ BHSH = ST, SH = 1,���� 

This model implies that WB = 1. When we fix SH at 1, WB does not counterfactu
ally depend upon BT. So let us try instead the setting SH = 0. Since this is not the 

actual setting of SH, we will need to check whether this setting satisfies condition 

2(b). We can show that it does not by choosing ⃗Z ′ = (BH). Since BH takes the value 

0 in the actual model, we need to check: 

∙ M32.5[BT ← 0, SH ← 0, BH ← 0] : 

ST = 1,.... BT = 1, BT = 0,SH = ST, SH = 0,���� 

........
BH = BT ∧ ¬SH, BH = 0, WB = SH ∨ BH 

In this model, WB = 0, violating 2(b). Setting SH = 0 is too big a change to the 

model. Thus, no setting for SH works. 

The mathematically astute reader will notice that I have skipped Example 32.3. 
While Definition 32.3 yields the intuitively correct result when we use M32.3, it yields 
the wrong result if we interpolate a variable. 

11. There are other choices that will work: BT = 0, BT = 1 ∧ BH = 0, and BT = 0 ∧ BH = 0. 

12. See Hall [2007] for criticism of this analysis of Example 32.5. 
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Suzy throws her rock toward the window. Billy does not want the window to break, 
so he blocks Suzy’s rock. The window remains intact. 

We will model this example as follows: 

M32.3.2 

∙ ST = 1 
∙ SF = ST 

∙ BB = ST 

∙ WB = SF ∧ ¬BB 

See Figure 32.8. Although the intuitive verdict is that Suzy’s throw did not cause 

the window to remain intact, Definition 32.3 rules that ST = 1 is an actual cause of 
′ WB = 1. To see this, choose ⃗ = (SF) and ⃗ = (1). Since this is the actual value ofW w 

SF, Fact 32.3 implies that condition 2(b) is met. Checking 2(a): 

.∙ M32.3.2[ST ← 0, SF ← 1] ST = 1, ST = SF = ST, SF = 1, BB = ST,: ���� 0, ...

WB = SF ∧ ¬BB 

In this model, WB = 1. Since Suzy didn’t throw, Billy didn’t block. But Suzy’s stone 

was flying through the air (at a point too late for Billy to block it) so the window 

broke. 

Halpern and Pearl [2005a] address this problem by allowing causal models to 

include restrictions on interventions. That is, in addition to the structural equa
tions, a causal model will also specify that certain combinations of values of vari
ables are impermissible, and cannot be realized by interventions. For example, 
model M32.3.2 might specify that one cannot simultaneously set ST = 0 and SF = 1 by 
intervention. Hitchcock [2001] notes that the counterfactual involved in this case 

is psychologically unnatural: We are to imagine that Suzy does not throw, lulling 

Billy into complacency; then somehow Suzy’s rock appears mid-air flying toward 

the window, too late for Billy to block it. Hall [2007], Halpern [2008], Hitchcock 

[2007], Halpern and Hitchcock [2015], and Menzies [2017] try to resolve this kind of 
problem by appeal to considerations of normality: only combinations of settings 

ST

BB

SF WB

Figure 32.8 Directed graph of M32.3.2. 
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that correspond to normal states can underwrite relations of actual causation. All 
of these approaches imply that actual causation depends on more than just the 

objective content of causal models. 
This example also highlights the recurring problem of model-relativity. 

32.7 Pearl’s Achievement 
We have highlighted a few of Pearl’s accomplishments on the topic of actual cau
sation. He has introduced the formalism of SEMs to the project of defining actual 
causation. And he has offered new definitions that have improved upon previ
ous definitions and have inspired further developments by others. But none of 
Pearl’s definitions perfectly capture judgments of actual causation, and—spoiler 
alert—neither do any of the definitions that have followed. So where does this leave 

us? 
The situation is familiar in philosophy. In Plato’s famous dialogues, Socrates 

asks his students: What is justice? What is piety? What is knowledge? His students 
propose definitions, and Socrates presents clever counterexamples to shoot them 

down. Two and a half millennia later, we are still shooting them down. This is not 
to say that we have not learned a great deal in the process, but philosophy has not 
converged on accepted definitions of any of these concepts. 

The situation is no less frustrating for being familiar. And it seems particularly 
frustrating in the case of causation. We might suspect that a concept like justice 
is multi-faceted, and perhaps at least partly subjective; for this reason it might 
defy precise definition. But surely causation is not like this? Aren’t causal relations 
part of the objective structure of the world? Don’t we have well-defined empirical 
procedures, such as randomized controlled trials, for establishing causal claims? 

Perhaps Pearl’s most important contribution to our understanding of actual 
causation is indirect. Through his work, we better understand the place of actual 
causation in our conceptual economy. By setting his definitions of actual causa
tion in the much broader context of causal modeling and causal inference, Pearl 
has shown us that actual causation is in fact a very specialized causal concept. The 

very fact that Pearl’s first definition appears in the tenth and last chapter of Pearl 
[2000] tells us that there is a great deal one can say about causation without settling 

on a definition of actual causation. 
This fact is hidden in our language. We say: “Suzy’s throw caused the window 

to break.” The verb suggests a fully general notion of causation: nothing indicates 
that a specialized causal notion—actual causation—is being invoked. 

Moreover, Pearl’s work helps us to see that actual causation is not just causation 

among particular events (as a number of philosophers have suggested). As we have 

seen without examples, we can construct causal models of particular situations 
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that capture aspects of their causal structure. These models do not, by themselves, 
tell us what the actual causes are. For example, one cannot simply inspect M32.5 and 

read off that Suzy’s throw is an actual cause of the window shattering. To make this 
judgment, we further need a definition of actual causation in terms of the under
lying causal structure. But even without such a definition, we can use our causal 
models to evaluate counterfactuals and predict the effects of interventions. This 
tells us that there is causal structure among individual events that is not actual 
causation. 

Once we recognize that actual causation is a specialized causal concept that 
exists as a kind of overlay on a more basic causal skeleton of causal structure, 
it becomes more palatable to admit that actual causation may be like justice: 
multi-faceted, partly subjective, impossible to define precisely. We may admit this 
without denying that there is objective causal structure in the world, the kind of 
structure that can be rigorously investigated by using formal methods and empir
ical investigation. This does not mean that attempts to define actual causation are 

pointless.13 For example, by embedding a concept of actual causation in a richer 
framework for investigating causation, we are better placed to ask and answer the 

question of why we have and use a notion of actual causation.14 But thanks to Pearl, 
we may be a bit more forgiving on ourselves if our definitions of actual causation 

come up short. Our understanding of causation in general does not hang in the 

balance. 
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disciplinary field of causal inference methodology. Many of us have built and will 
continue to build our research on his foundational work. Personally, I had the plea
sure of working with Judea as co-editor of Journal of Causal Inference over the last 
several years. I also learned a great deal from Judea’s work on causal mediation in 

many occasions, including our lively exchanges in a journal [Imai et al. 2014, Pearl 
2014]. In this chapter, I would like to briefly describe the impact Judea’s work has 
had on social science research and then illustrate it with two examples from my 
own recent research. Finally, I will briefly discuss how Judea’s work may advance 

the future of causal research in the social sciences. 

Causal Diagram and 
Social Science Research 
Kosuke Imai (Harvard University) 

It is a tremendous honor for me to contribute to the volume celebrating Judea 

Pearl’s work. As the Turing Award signifies, Judea is no doubt one of the giants 
(along with Don Rubin and Jamie Robins) who created and developed the inter

33.1 Graphical Causal Models and Social Science Research 
Judea Pearl’s work on the use of graphical models for causal inference [Pearl 
2000] has found many applications in the field of epidemiology. However, graph
ical causal models have not yet made their way into mainstream social science 

research. For example, as Judea himself acknowledges, many popular economet
rics textbooks do not cover the graphical approach [Chen and Pearl 2013]. Although 

there exist some pedagogical work in sociology that introduces the graphical 
models framework [Elwert 2013, Morgan and Winship 2007], most social scien
tists exclusively rely on the potential outcomes framework in their teaching and 

research. Although it is always difficult to make a significant impact in another dis
cipline, the absence of graphical causal models may come as a surprise given that 
econometrics and other social science methodology fields have a long tradition of 
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structural equation models, which can be represented by graphical causal models 
[Pearl 2015]. 

My own view is that graphical causal models have the potential to be applied 

in social science research that studies complex causal relationships. Social science 

has experienced the “causal inference revolution” over the last 30 years. As a result, 
researchers pay more attention to the issues of causal identification in order to 

distinguish causal relationships from associations. The potential outcomes frame
work has provided an intuitive and powerful way to formally conduct causal anal
yses. In many simple problems, it has provided the necessary tools and produced 

numerous methodological developments, from instrumental variables to regres
sion discontinuity and difference-in-differences designs. However, researchers are 

beginning to study more complex causal relationships including spillover and car
ryover effects. I believe that graphical causal models can play an essential role 

in such studies by effectively communicating causal assumptions and allowing 

researchers to formally derive identification results. I will illustrate this point by 
briefly describing two recent examples from my own recent research [Imai and Kim 

2019, Imai et al. 2020]. 

33.2 Two Applications of Graphical Causal Models 

33.2.1 Causal Inference with Panel Data 
Many social scientists rely upon linear regression models with fixed effects when 

estimating causal effects from panel data in observational studies. Suppose we 

have a simple random sample of N units, for each of which we observe a total of T 

repeated measurements. We use Xit to represent a binary treatment variable where 

it equals 1 if unit i receives the treatment at time t and equals zero otherwise. If we 

use Yit to denote the outcome variable for unit i at time t, then a canonical linear 
regression model with unit fixed effects is given by, 

Yit = αi + 𝛽Xit + 𝜀it (33.1) 

where 𝛼i represents the fixed effect for unit i and 𝜀it is the error term with E(𝜀it) = 0. 
Often, researchers also include a set of time-varying confounders Zit as an attempt 
to adjust for them. 

These and other related linear regression models with fixed effects are 

extremely popular among applied social scientists. The main reason for this pop
ularity is that the fixed effects 𝛼i can adjust for any unobserved time-invariant, 
unit-specific confounders Ui. Since most researchers worry about unobserved con
founding, the inclusion of fixed effects gives them great comfort. However, most 
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Figure 33.1	 Directed acyclic graph for regression models with unit fixed effects based on three time 
periods. The model is given in Equation 33.1. The outcome and treatment variables for 
unit i at time t are denoted by Yit and Xit, respectively. The unobserved time-invariant, 
unit-specific confounders are denoted by Ui. This figure is reproduced from figure 1 of 
Imai and Kim [2019]. 

textbooks describe the assumption of the model given in Equation 33.1 as the 

so-called strict exogeneity, which can be written as, 

E(𝜀it | αi, Xit) = 0.	 (33.2) 

In my experience, most applied researchers fail to gain an intuitive understand
ing of this assumption. A part of the problem is that the assumption is stated in 

terms of error term. 
In contrast, directed acyclic graphs (DAGs) can much more effectively commu

nicate the causal assumptions behind these types of models. Figure 33.1 presents 
the causal DAG for the model given in Equation 33.1. We observe that the model 
assumes the absence of causal dynamics. In particular, there is no arrow from a 

past outcome to a future treatment, implying that the former does not causally 
affect the latter. In fact, using the DAG, it is straightforward to show that the 

existence of such an arrow makes it impossible to non-parametrically identify 
the average causal effect of Xit on Yit. Most importantly, the DAG effectively high
lights the fundamental tradeoff in causal inference for panel data, which is dif
ficult to see in the standard statement of the identification assumption given 

in Equation 33.2. The ability to adjust for unobserved, time-invariant, and unit-
specific confounders Ui comes with a cost: one must assume away dynamic causal 
relationships. 
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33.2.2 Causal Inference with Interference between Units 
The second example, which is based on the randomized evaluation of the Indian 

National Health Insurance Program [Imai et al. 2020], also illustrates the poten
tial use of graphical causal models in social science research as a tool to effec
tively communicate certain causal assumptions. Consider a two-stage randomized 

experiment [Hudgens and Halloran 2008] in which randomly selected villages are 

assigned to one of the two different treatment assignment mechanisms, called 

“High” and “Low.” If a village is assigned to the High mechanism, then 80% of 
its households are randomly assigned to the treatment group. On the other hand, 
if a village is randomly assigned to the Low mechanism, only 40% of its households 
are randomly assigned to the treatment group. We use the binary random variable 

Zij to denote whether household i in village j is assigned to the treatment group 

(Zij = 1) or the control group (Zij = 0). 
In this experiment, there was a problem of non-compliance because we could 

only encourage, but not enforce, the random treatment assignment for ethi
cal and logistical reasons. As a result, some households in the treatment group 

did not sign up for the insurance program while others in the control group 

ended up enrolling in it. Let Dij represent the binary treatment receipt variable, 
which is equal to 1 if household i in village j actually received the treatment 
and is equal to 0 otherwise. To further complicate this evaluation project, peo
ple appear to have talked to each other within each village about the insurance 

program and as a result the treatment receipt of one household Dij may have 

been affected by the treatment assignment of another household Zi ′ j within the 

same village. Moreover, researchers have hypothesized that there may exist a 

spillover effect of one’s treatment receipt Dij on the outcome of another house
hold Yi ′ j. For example, if a large number of households enrolled in the insur
ance program, it may affect the healthcare utilization of another household 

who did not sign up for the program because of the overcrowding of local 
clinics. 

Let’s assume the so-called partial interference assumption, which states that 
there exists no interference across villages; that is, households affect one another 
only within each village. In the potential outcomes framework, this means that 
the potential values of one’s treatment receipt and outcome depend on the treat
ment assignment vector, that is, Yij = Yij(Zj) and Dij(Zj) where Zj = (Z1j, … , Znjj) 
is the vector of treatment assignments for nj households in village j. When ana
lyzing such a complex experiment, several assumptions are necessary to make 

progress. Imai et al. [2020] extend the exclusion restriction of the standard instru
mental variables analysis [Angrist et al. 1996, Balke and Pearl 1997] and assume that 
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Figure 33.2	 Three identification assumptions restricting interference. This figure is reproduced 
from figure 1 of Imai et al. [2020]. Scenario I assumes no spillover effect of the treatment 
receipt D on the outcome Y. Scenario II assumes no spillover effect of the treatment 
assignment Z on D. Finally, Scenario III assumes no spillover effect of Z on D (dotted 
arrows) among non-compliers whose own treatment assignment Z1j does not affect 
their own treatment receipt D1j. 

the treatment receipt vector Zj affects the outcome Yij only through the treatment 
receipt vector Dj = (D1j, … , Dnjj). Imai et al. [2020] then consider three additional 
restrictions on the patterns of interference for identifying causal effects. Although 

these assumptions can be expressed using the potential outcomes, the resulting 

notation is complex and makes it difficult to effectively communicate the intuitive 

ideas behind them. 
Figure 33.2 illustrates the effectiveness of causal DAGs in this application. The 

first scenario in the left depicts the assumption of no spillover effect of the treat
ment receipt on the outcome. This assumption is represented by the absence of 
arrows from Dij to Yi ′ j for i ̸= i ′ . The second scenario in the middle represents the 

assumption of no spillover effect of the treatment assignment on the treatment 
receipt, which is indicated by the absence of arrows from Zij to Di ′ j for i ̸= i ′ . Finally, 
the third scenario in the right illustrates the assumption of no spillover effect of 
Z on D among “non-compliers” (dotted arrows) whose own treatment assignment 
Z1j does not affect their own treatment receipt D1j (no arrow from Z1j to D1j). In 

addition, all three scenarios assume the aforementioned exclusion restriction as 
indicated by the absence of direct arrows from Zij to Yij. Thus, although there are 

other types of assumptions such as monotonicity that are difficult to represent in 

causal DAGs, they can visually illustrate many complex assumptions in an intuitive 

manner. 
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33.3 The Future of Causal Research in the Social Sciences 
Over the last three decades, the Causal Revolution has swept through social 
sciences. Of course, the main goal of social science research has always been causal 
inference because social scientists are primarily concerned about the causes and 

consequences of policies and human behavior in the society. And yet, it was the 

formalization of causal language that has brought the explosion of methodologi
cal development and scientific applications. Judea Pearl has played a major role in 

this Causal Revolution and has transformed many scientific disciplines. 
The first half of the Causal Revolution has focused upon simple settings, in 

which spillover and carryover effects are often assumed to be absent. However, 
in social sciences, human beings constantly interact with each other and as a 

result spillover effects are the rule rather than the exception. In addition, many 
social scientists collect repeated measurements and are beginning to conduct 
sequential experiments. More data on social networks and geographical infor
mation systems (GIS) are also becoming available to researchers. These develop
ments call for new methodologies that can handle complex causal relationships 
across time and space. I expect our new methods to be built upon the foundation 

Judea has developed, and his impact in the social sciences will be felt for years to 

come. 
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In this chapter we describe how causal graphs can be used for processing miss
ing data. In particular, we model the missingness process using causal graphs 
and present graph-based definitions of various missingness mechanisms. Given 

a graph and a target quantity to be estimated, we present various methods for 
determining if and how a consistent estimate of the quantity can be computed. 
We further present techniques for detecting misspecifications in the model. We 

demonstrate all of the above using toy examples and small graphs, thus making 

it easy to understand the various intricacies and nuances of graph-based missing 

data analysis. 

Causal Graphs for 
Missing Data: A Gentle 
Introduction 
Karthika Mohan (University of California) 

34.1 Introduction 
Consider the following problems: (i) estimating the average income of a population 

in which the wealthy are reluctant to reveal their income, (ii) estimating the causal 
effect of diet and stress on obesity, given a dataset in which teenagers left several 
questions unanswered, and (iii) making product recommendations using data in 

which customers rated items only when they loved it. The underlying common 

theme in (i), (ii), and (iii) above is the estimation of a desired target quantity given 

missing data, that is, data in which values of one or more variables are missing. 
Problems caused due to missing data are notoriously complex, afflict all 

branches of empirical sciences, and could potentially bias the outcomes of stud
ies. Much of the research on missing data has focused on identifying conditions 
(such as Missing at Random [MAR] and Missing Completely at Random [MCAR] 
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[Rubin 1976]) under which the causes of missingness can be ignored when estimat
ing quantities of interest. A widely held belief is that when the underlying cause of 
missingness is not random (Missing Not at Random (MNAR) [Rubin 1976]), it is 
rarely possible to compute estimates with any degree of confidence (example 1.17 

in Little and Rubin [2002]). 
In this chapter we discuss the recent advances in missing data theory that 

facilitate processing of MNAR data (i.e., non-ignorable missingness); in particu
lar, we focus on recoverability (i.e., computing consistent estimates of quantities 
of interest) and testability (i.e., developing tests to determine the compatibility 
of a model with the available data). The following section describes missingness 
graphs (m-graphs), which are causal graphs that encode the (causal and statistical) 
assumptions about the process that generated missing data. 

34.2 Missingness Graphs 
Let G(V, E) be the causal directed acyclic graph (DAG) where V is the set of nodes 
and E is the set of edges. Nodes in the graph correspond to variables in the dataset 
and are partitioned into five categories, namely, V = Vo ∪ Vm ∪ U ∪ V* ∪ R as 
described in Table 34.1. For example, in Figure 34.1(a), Vo = {G}, Vm = {I}, R = 

{RI }, V* = {I*}, and U = {}. 

Table 34.1 Notations 

VO Set of all fully observed variables 
Vm Set of variables with missing values 
U Set of unobserved (latent) variables 
R Set of missingness mechanisms 
V* Set of all proxy variables 

Gender
Missingness

mechanism

G

I

I*

R
I

Income

Proxy variable

(a) (b) (c)

G

I

I*

R
I

G

I

I*

R
I

Figure 34.1	 Causal graphs depicting various missingness mechanisms: (a) Missing Completely 
at Random (MCAR), (b) Missing at Random (MAR), and (c) Missing Not at Random 
(MNAR). 
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Remark 34.1 
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Every X ∈ Vm is associated with two variables RX and X*, where X* is the proxy 
variable that is actually observed and RX represents the status of the mechanism 

responsible for the missing values in X*; formally, 
{ 
x if rx = 0* x = f (rx, x) = (34.1)
m if rx = 1 

Unless stated otherwise, it is assumed that no variable in Vo ∪ Vm ∪ U is a child 

of an R variable. U is the set of unobserved nodes, also called latent variables. Two 

nodes X and Y can be connected by a directed edge, that is, X → Y , indicating that 
X is a cause of Y, or by a bi-directed edge, X ↔ Y , denoting the existence of a latent 
variable Ui ∈ U that is a parent of both X and Y. This graphical representation is 
called a missingness graph (or m-graph) [Mohan et al. 2013]. P*(V* , Vo, R) is called 

the observed data distribution, and P(Vm, Vo, R) is called the true distribution. Any 
given true and observed data distribution are said to be compatible if the latter 
can be constructed from the former by repeatedly applying Equation (34.1). Condi
tional independencies are read off the graph using the d-separation criterion [Pearl 
2009]. For any binary variable X, x ′ and x denote X = 0 and X = 1, respectively. 

Graphical Representation of Missingness Categories 
The graphical model–based definitions of the various missingness mechanisms 
[Rubin 1976, Little and Rubin 2002] that can be used to effortlessly decide the 

missingness categories are as follows: 

1. Data are MCAR if Vm ∪ Vo ∪ U ⊥⊥ R holds in the m-graph. Example: m-graph in 

Figure 34.1(a) in which {G, I} ⊥⊥ RI holds. Essentially, parents of R variables 
can only be other R variables. 

2. Data are MAR if Vm ∪ U ⊥⊥ R|Vo holds in the m-graph. Example: m-graph in 

Figure 34.1(b) in which {I} ⊥⊥ RI |G holds. For MAR to hold, no parent of any R 

variable should belong to Vm ∪ U; put differently, parents of R variables may 
only belong to VO ∪ R. 

3. Data that are not MAR fall under the MNAR category. Example: m-graph in 

Figure 34.1(c) in which {I} ̸ ⊥⊥ RI |G. In this case at least one R variable will have 

a parent that is either a latent variable or a variable with missing values, that 
is, belonging to Vm ∪ U. 

Observe that the graphical condition for MCAR immediately satisfies that for MAR; 
if parents of R variables may only be other R variables, then they clearly cannot be 

in Vm ∪ U. Thus any model that is MCAR is MAR as well; this also follows from the 

weak union graphoid axiom [Pearl 2009]. 
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34.3 Recoverability 
Let Q denote a quantity of interest such as the joint/conditional distribution and 

causal effect. Given an m-graph G, Q is recoverable if there exists an algorithm that 
can (asymptotically) compute the true value of Q as if no data were missing. In the 

remainder of this section, we exemplify various recoverability techniques and their 
intricacies using small graphs as favored and taught by Judea Pearl, and as seen in 

many of his publications. 

34.3.1 Recoverability in MAR and MCAR Problems 
Consider the problem of recovering the joint distribution P(G, I) given the m-graph 

in Figure 34.1(a) and the observed data distribution in Table 34.2. 

′ P(G, I) = P(G, I|rI ) (since {G, I} ⊥⊥ RI in the m-graph) 
′ = P(G, I*|rI ) (using Equation 34.1) (34.2) 

The preceding equations demonstrated how P(G, I), which is a function of the 

partially observed variable I and fully observed variable G, is transformed into 

one over variables in the observed data distribution, I* and G. The final expres
′ sion derived in Equation (34.2), P(I* , G|rI ), is an estimand for P(G, I), that is, it is an 

expression for P(G, I) in terms of the available data that precisely defines what needs 
to be estimated. Recoverability is established once we derive an estimand. Note that 
the observed data distribution per se played no part in recoverability, which was 
established using assumptions in the m-graph ({G, I} ⊥⊥ RI ) and the missingness 
equation Equation (34.1). Thus, recoverability is a property of the m-graph. 

34.3.1.1 Recoverability of Joint Distribution in MCAR and MAR Models 

We shall now show that the joint distribution, P(Vm, Vo), is recoverable in all MCAR 

and MAR m-graphs. 

Table 34.2 Observed data distribution generated by the m-graph in Figure 34.1(a) 

G I* RI P(G, I* , RI ) 
M H 0 p1 
M L 0 p2 

F H 0 p3 
F L 0 p4 

M M 1 p5 

F M 1 p6 

G and I are binary variables that can take values Male (M) and Female (F), and High (H) and Low (L), 
respectively. Pis denote probabilities such that ∑6 

i=1 pi = 1. 
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Recoverability of joint distribution P(Vo, Vm) in MCAR problems: 

P(Vo, Vm) = P(Vo, Vm|R = 0) (since (Vm, VO) ⊥⊥ R when MCAR holds in an m-graph) 

= P(Vo, V*|R = 0) (using Equation 34.1) (34.3) 

Recoverability of joint distribution P(Vo, Vm) in MAR problems: 

P(Vo, Vm) = P(Vm|VO)P(VO) 

= P(Vm|VO, R = 0)P(VO) (since Vm ⊥⊥ R|VO when MAR holds in an m-graph) 

= P(V*|VO, R = 0)P(VO) (using Equation 34.1) (34.4) 

Equations (34.3) and (34.4) establish recoverability by presenting an estimand 

for the joint distribution. 

34.3.1.2 Recoverability as a Guide for Estimation 

Having established recoverability for all MAR and MCAR problems, we will now 

show how recoverability serves as a guide for estimation. We will exemplify esti
mation using deletion-based procedures. 

The estimand in Equation 34.2 can be expressed as, 

′ P(I* , G, rI )′ P(I* , G|rI ) = ′ P(rI ) 

It licenses the estimation of P(G, I) exclusively from cases/samples in which 

Vm = {I} is always observed, that is, RI = 0. This procedure is known as listwise 
deletion or complete case analysis. In order to estimate using this method we may 
only use the first four rows in Table 34.2 in which RI = 0. Table 34.3 shows the 

joint distribution estimated in this manner. However, notice that the information 

contained in the last two rows of Table 34.2 in which RI = 1 has been left unused, 
thus resulting in wastage of samples [McKnight et al. 2007, Enders 2010]. Hence 

this procedure, while convenient and fast to implement, is not recommended in 

practice even if it guarantees consistent estimates. We describe below an alternate 

procedure that utilizes samples more efficiently. 
As stated in Remark 34.1, any model that is MCAR is also MAR; hence, any esti

mation algorithm applicable to MAR is applicable to MCAR as well. Thus, to recover 
P(G, I) given the MCAR graph in Figure 34.1(a), we could apply Equation (34.4) to 

obtain: 

′ P(G, I) = P(I*|G, rI )P(G) 
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Table 34.3 Complete case analysis–based estimation of joint distribution given the m-graph in 
Figure 34.1(a) and the data in Table 34.2 

G I P(G, I) 
p1M H 
p2 

p1+p2+p3+p4 

p1+p2+p3+p4 

M L 
p3F H 
p4 

p1+p2+p3+p4 

p1+p2+p3+p4 

F L 

′ The estimand above dictates that we compute P(I*|G, rI ) exclusively from sam
ples in which I is observed and P(G) from all samples, including those in which I is 
missing as shown in Table 34.4. Clearly, this utilizes data in a better manner com
pared to listwise deletion exemplified in Table 34.3. Efficient graph-based deletion 

procedures for MCAR and MAR that exploit available samples to a greater extent, 
thus yielding better quality estimates, are discussed in Van den Broeck et al. [2015]. 

34.3.2 Recoverability in MNAR Problems 
In this subsection, we exemplify various recoverability techniques for MNAR using 

simple models. 

34.3.2.1	 Recovering P(X, Y) Given the m-graph G in Figure 34.2(a) 
G is one of the simplest examples of MNAR in which missingness in RX is caused 

by Y, a variable with missing values. Vm = {X, Y}, Vo = {} and due to the edge from 

Y to RX, MAR does not hold, that is, {X, Y} ̸ ⊥⊥ {Rx, Ry}. Joint distribution P(X, Y) is 
recoverable given G as shown below: 

P(X, Y) = P(X |Y)P(Y) (using chain rule) 
′ ′ ′ = P(X |Y , rx, ry)P(Y |ry) (since X ⊥⊥ Rx, Ry|Y and Y ⊥⊥ Ry hold in G) 

′ ′ ′ = P(X*|Y* , rx, r )P(Y
*|r ) (using Equation 34.1)y y

We call the above technique sequential factorization [Mohan and Pearl 2018]. It 
is sensitive to the order of factorization. Had we factorized P(X, Y) as P(Y |X)P(X) in 

Table 34.4	 A deletion-based method with less sample wastage for estimating joint distribution 
given the m-graph in Figure 34.1(a) and the data in Table 34.2 

G I P(G, I) 
p1(p1+p2+p5)M H 
p2 (p1+p2+p5) 

p1 +p2 

p1+p2 

M L 
p3(p3+p4+p6)F H 
p4(p3+p4+p6) 

p3+p4 

p3+p4 

F L 
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(a) (b) (c) (d) (f)

(e)
Rx

YX

Ry

Rx

Rx Ry

YX
X

Y

Rx Ry

X
Y

Ry Rx

ZY

X*

RxZY
X

Figure 34.2	 (a)–(e) m-graphs depicting MNAR missingness. Proxy variables have not been explicitly 
portrayed to keep the figures simple and clear. (f) Graph corresponding to m-graph (e) 
in which X is treated as a latent variable. 

the first step, it would have been harder to establish recoverability. We further note 

that the estimand dictates that P(X |Y) be estimated from samples in which both X 

and Y are observed and P(Y) be estimated from samples in which Y is observed, 
regardless of the missingness status of X. 

34.3.2.2 Recovering P(X, Y) Given the m-graph in Figure 34.2(b) 
For exactly the same reasons as those described in Section 34.3.2.1, this m-graph 

also depicts MNAR. However, notice that m-graphs in Figure 34.2(a) and (b) differ 
in the way the R variables are connected. An edge exists between the R variables 
in m-graph (b) whereas in (a) Rx ⊥⊥ Ry. We show below that this seemingly minor 
change results in a substantially different estimand (and estimation process). 

P(X, Y) = P(X |Y)P(Y) 
′ ′ = P(X |Y , rx, ry)P(Y) (since X ⊥⊥ Rx, Ry|Y) 
′ ′ = P(X |Y , rx, r )∑ P(Y |Rx)P(Rx)y

Rx 

′ ′ ′ = P(X |Y , rx, r )∑ P(Y |Rx, r )P(Rx) (since Y ⊥⊥ Ry|Rx)y y
Rx 

′ ′ ′ = P(X*|Y* , rx, ry)∑ P(Y*|Rx, ry)P(Rx) (using Equation 34.1) 
Rx 

This example underscores the importance of modeling the causal relationship 

among R variables. For instance, had the m-graph been X → Y → Rx ↔ Ry, the 

estimand for P(X, Y) would have been identical to the one derived in Section 34.3.2.1. 

34.3.2.3 Recovering P(X, Y) Given the m-graph in Figure 34.2(c) 
The parents of both R variables in this m-graph are variables with missing val
ues. Hence the m-graph depicts MNAR missingness. Recoverability of P(X, Y) given 
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this m-graph is discussed in Mohan et al. [2013] and the recoverability procedure 

presented therein forms the basis for most recoverability methods for MNAR. 
In this subsection we present an alternate method that requires inspecting all 
missingness patterns one by one. 

P(X, Y) = ∑ P(X, Y , Rx, Ry) 
Rx,Ry 

′ ′ ′ = P(X, Y , rx, ry) + P(X, Y , rx, ry) 

′ + P(X, Y , Rx =, r ) + P(X, Y , rx, ry)y

To prove recoverability of P(X, Y), we will show that each term in the sum is 
′ ′ ′ ′ recoverable. It follows from Equation (34.1) that P(X, Y , rx, r ) = P(X* , Y* , rx, r )y y

′ ′ ′ and hence P(X, Y , rx, r ) is recoverable. We will now show that P(X, Y , rx, r ) isy y

recoverable. 

′ ′ ′ ′ P(X, Y , rx, r ) = P(X |Y , rx, r )P(Y |rx, r )P(rx, r )y y y y

′ ′ ′ ′ = P(X |Y , rx, r )P(Y |rx, r )P(rx, r ) (since X ⊥⊥ Rx|Y , Ry)y y y

′ ′ ′ ′ = P(X*|Y* , rx, ry)P(Y
*|rx, ry)P(rx, ry) (using Equation 34.1) 

′ X* ′ ′ ′ In a similar manner we can show that P(X, Y , rx, ry) = P(Y*| , rx, ry)P(X*|rx, ry) 
′ P(rx, ry) and hence recoverable. What remains to be shown is that P(X, Y , rx, ry) is 

recoverable. 

P(X, Y , rx, ry) = P(X |Y , rx, ry)P(rx|Y , ry)P(Y , ry) 

′ = P(X |Y , rx, ry)P(rx|Y , ry)P(Y , ry) (34.5) 
′ P(X, Y , rx, ry)= P(rx|Y , ry)P(Y , ry)P(Y , rx′ , ry) 
′ ′ P(Y |X, rx, ry)P(X, rx, ry)= P(rx|Y , ry)P(Y , ry)P(r ′ |Y , ry)P(Y , ry)x

′ ′ ′ P(Y*|X* , rx, r )P(X* , rx, ry)y ′ = P(rx|Y* , r ) (34.6)yP(r ′ |Y* , r ′ )x y

′ In Equation (34.5), we replaced rx with r since X ⊥⊥ Rx|Y , Ry holds in the graph.x 

In Equation (34.6), we first cancelled out P(Y , ry) from the numerator and denom
′ ′ inator, and then replaced ry with r in (i) P(Y |X, rx, ry) by applying Y ⊥⊥ Ry|X, Rx andy

′ in (ii) P(r |Y , ry) and P(rx|Y , ry) by applying Rx ⊥⊥ Ry|Y . Finally, using Equation (34.1)x

we replaced Y with Y* and X with X* . 
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34.3.2.4	 Recovering P(X, Y) Given the m-graph in Figure 34.2(d) 
The m-graph depicts MNAR for exactly the same reasons discussed in Section 

34.3.2.4. Here we are recovering a conditional distribution as opposed to all pre
vious examples of recoverability that discussed joint distributions. 

′ P(X |Y) = P(X |Y , r ) (since X ⊥⊥ Rx|Y)x
′ P(X, Y , r )x=	 (34.7)

∑X P(X, Y , r ′ )x
′ ′ ′ P(X, Y , r ) = P(Y |X, r )P(X, r )x x x

′ ′ ′ = P(Y |X, rx, r )P(X, r ) (since Y ⊥⊥ Ry|X, Rx)y x

′ ′	 ′ = P(Y*|X* , rx, ry)P(X
* , rx)	 (34.8) 

Substituting the right-hand side (RHS) of Equation (34.8) in the place of 
′ P(X, Y , r ) in Equation (34.7), we getx

′ ′	 ′ P(Y*|X* , rx, ry)P(X* , rx)P(X |Y) = 
∑X P(Y*|X* , rx′ , r ′ )P(X* , r ′ )y x

34.3.2.5	 Recovering P(X) Given the m-graph in Figure 34.2(e) 
The dotted bi-directed edge indicates that there exists a latent variable that is a par
ent of both Y and RX, and this makes the model MNAR. This graph is different from 

all the other m-graphs that we have examined thus far. Notice that here, although 

X and RX are not connected by an edge, there exists no separating set that can d-
separate them. This is because there are two paths between X and RX; on one path 

Y is a collider and Z, the descendant of a collider, and on the other path Y and Z 

are part of a chain. So, including Y or Z in the separating set will open the collider 
path, while excluding either one of them would leave the chain open. Interestingly, 
P(X) is still recoverable as detailed below: 

P(X) = P(X |do(z)) (using rule 3 of do-calculus [Pearl 2009]) 
′ = P(X |do(z), r ) (using rule 1 of do-calculus [Pearl 2009])x

′ = P(X*|do(z), r ) (using Equation 34.1)x

We have reduced the problem of recovering P(X) to the problem of identifying 

the causal effect such that the causal query is defined over variables in the observed 

data distribution. Since the causal query is not a function of X, it can be identi
fied using methods available in Shpitser and Pearl [2006] and the graph shown in 

Figure 34.2(f) in which X is treated as a latent variable. 
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Table 34.5 Observed data distribution P(X* , Rx) corresponding to the m-graph X → Rx 

X RX P(X* , RX ) 
0 0 0.3 
1 0 0.5 

m 1 0.2 

(a) (b) (c)

Rx
YXRx

YXRy
YX

Figure 34.3 m-graphs in which P(X, Y) is not recoverable. 

Finally, we note that although in this chapter we focus on discrete variables, 
recoverability techniques exist for continuous variables and have been discussed 

in Pearl [2013] and Mohan et al. [2018]. 

34.3.3 Non-recoverability 
Consider the problem of recovering P(X) given the m-graph G : X → Rx. Rx is 
dependent on X and we have no additional information regarding this depen
dence. Table 34.5 presents a dataset generated by G. It could be that X is missing 

only when its value is 1 or it could be that X is missing only when its value is 0. In the 

former case P(x ′) = 0.3, whereas in the latter case P(x ′) = 0.5. Using the available 

information in G, it is not possible to find the (true) value of P(X) even if we are given 

infinitely many samples, that is, P(X) is non-recoverable. In fact, non-recoverability 
of P(X) would persist even if G had more variables in it (formally proved in Mohan 

et al. [2013], Mohan and Pearl [2014a, 2014b]). In general, joint distribution is non
recoverable whenever there exists a variable X with missing values (i.e., X ∈ Vm) 
such that either: 

1. X and RX are neighbors or 

2. X and	 RX are connected by a path in which all intermediate nodes are 

colliders. 

Thus, P(X, Y) is non-recoverable in all the three m-graphs in Figure 34.3. How
ever, in Figure 34.3(a) P(X |Y) is recoverable, and in Figure 34.3(b) and (c) P(X) is 
recoverable. 

34.4 Testability 
Testability when there is no missingness: When X and Y are fully observed variables, 
the independence statement X ⊥⊥ Y is testable, that is, there exist distributions 
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over X and Y in which X ⊥⊥ Y does not hold. Therefore, given a graph G and a dis
tribution P(X, Y), if the graph portrays X ⊥⊥ Y and the claim does not hold in the 

distribution, then we can conclude that the graph and distribution are not com
patible. Thus, under no missingness, d-separations serve as testable implications 
of a graphical model [Pearl 2009]. 

Non-testability under missingness: The simplest missing data distribution is 
P(X* , RX ), which is obtained when the substantive variable of interest is a single 

variable X. Let the query to be recovered be P(X). As shown in the previous sec
tions, recoverability of P(X) hinges on X ⊥⊥ Rx; if it holds then P(X) is recoverable, 
otherwise not. Given the decisive nature of this independence, can we test it? 

X ⊥⊥ Rx is testable only if it is refutable in all true distributions that are compat
ible with the observed data distribution. However, for any observed data distribu
tion P(X* , RX ), there exists a true distribution P ′(X, Rx) in which X ⊥⊥ Rx holds. It can 

be constructed as P ′(X, Rx) = P(X*|Rx = 0)P(Rx). Hence the claim is not refutable. 
Put differently, independence claims between a variable and its mechanism are not 
testable [Mohan and Pearl 2014b]. 

Testable implications of m-graphs: d-separations that abide by the following syn
tactic rules are testable under missingness (X and Y are singletons) [Mohan and 

Pearl 2014a]. 

X ⊥⊥ Y |Z, Rx, Ry, Rz (34.9) 

X ⊥⊥ Ry|Z, Rx, Rz (34.10) 

Rx ⊥⊥ Ry|Z, Rz (34.11) 

Example of testability: Figure 34.2(a) encodes the conditional independence 

X ⊥⊥ Ry|Rx, which matches the syntactic rule 34.10 above when Z = {}. It follows 
from X ⊥⊥ Ry|Rx that: 

′ ′ ′ P(X |ry, r ) = P(X |ry, r )x x

Using Equation (34.1) we can rewrite the above as, 

′ ′ ′ P(X*|ry, r ) = P(X*|ry, r )x x

The preceding claim, which is defined over X* , Rx and Ry, is testable given the 

observed data distribution. If the claim is violated, we conclude that the model 
and data are not compatible. Note that this test not only detects incompatibility 
but also helps in locating the source of incompatibility. 
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On the indispensability of causal assumptions: Let G1 : X RX and G2 : X → RX . G1 
encodes the assumption X ⊥⊥ Rx, whereas G2 does not. Since X ⊥⊥ RX is not testable, 
G1 and G2 are statistically indistinguishable, that is, any given observed data dis
tribution P(X* , RX ) compatible with G1 is also compatible with G2. However, they 
encode different causal assumptions. In G1 where X does not cause its own miss
ingness P(X) is recoverable, whereas in G2 where X causes its own missingness P(X) 
is not recoverable. Thus, there exists no universal algorithm that can determine 

recoverability without examining the model and taking into account the embedded 

causal assumptions. 
In conclusion, missing data is a causal inference problem! 

References 
C. Enders. 2010. Applied Missing Data Analysis. Guilford Press, London, New York. 

R. Little and D. Rubin. 2002. Statistical Analysis with Missing Data. Wiley, New York. 

P. McKnight, K. McKnight, S. Sidani, and A. Figueredo. 2007. Missing Data: A Gentle 
Introduction. Guilford Press, London, New York. 

K. Mohan and J. Pearl. 2014a. On the testability of models with missing data. Proceedings of 
AISTAT. 33, 643–650. 

K. Mohan and J. Pearl. 2014b. Graphical models for recovering probabilistic and causal 
queries from missing data. In Advances in Neural Information Processing Systems 27. 
Curran Associates, Inc., Red Hook, NY, 1520–1528. 

K. Mohan and J. Pearl. 2018. Graphical models for processing missing data. arXiv preprint 
arXiv:1801.03583. 

K. Mohan, J. Pearl, and J. Tian. 2013. Graphical models for inference with missing data. In 
Advances in Neural Information Processing Systems 26. Curran Associates, Inc., Red Hook, 
New York, 1277–1285. 

K. Mohan, F. Thoemmes, and J. Pearl. 2018. Estimation with incomplete data: The linear 
case. In IJCAI. 5082–5088. DOI: https://doi.org/10.24963/ijcai.2018/705. 

J. Pearl. 2009. Causality: Models, Reasoning, and Inference. Cambridge University Press, New 
York. DOI: https://doi.org/10.1017/CBO9780511803161. 

J. Pearl. 2013. Linear models: A useful “microscope” for causal analysis. J. Causal Inference 
1, 1, 155–170. DOI: https://doi.org/10.1515/jci-2013-0003. 

D. Rubin. 1976. Inference and missing data. Biometrika 63, 581–592. DOI: https://doi.org/ 
10.2307/2335739. 

I. Shpitser and J. Pearl. 2006. Identification of conditional interventional distributions. 
In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence. 
437–444. 

G. Van den Broeck, K. Mohan, A. Choi, A. Darwiche, and J. Pearl. 2015. An efficient method 
for Bayesian network parameter learning from incomplete data. In Proceedings of the 31st 
Conference on Uncertainty in Artificial Intelligence. 161–170. 

https://doi.org/10.24963/ijcai.2018/705
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1515/jci-2013-0003
https://doi.org/10.2307/2335739
https://doi.org/10.2307/2335739


35
Paz visited UCLA and he and I began collaborating on the problem of graphical 
representations.” 

Indeed, in the summer of 1985 I visited UCLA in order to attend a conference. 
I met Judea there for the first time and we had several scientific conversations 
and I was very much impressed by the new way of representing causal models by 
graphs. 

In one of those discussions Judea mentioned to me an open problem. I took 

that problem as a challenge and after some time I managed to solve it. Judea liked 

my solution and thus a collaboration started between us that resulted, over the 

years, in six coauthored journal papers, four conference papers, and two tech
nical reports. In addition, a friendship developed between us and I have been 

with him both in happy times, when he received the Turing Award and when he 

received honorary degree from the Technion, his alma mater, and also in tragic 
times. 

I am very thankful to Judea for his friendship and for giving me the opportunity 
to contribute, even if only a small contribution, to the beautiful and useful theory 
he developed. As a token of thanks, I constructed two personal talismans for him 

shown below. 

A Note of Appreciation 
Azaria Paz (The Technion) 

As we all know, Judea’s book, Probabilistic Reasoning in Intelligent Systems, 1988, set 
the foundations of the groundbreaking theory of “Causality.” 

Outlined in his Probabilistic Reasoning book, I found the following paragraph 

on page 132: 
“The theory of graphoids was conceived in the summer of 1985 when Azaria 
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35.1 A Magic Square 

9 7 20

23 12 1

4 17 15

Notice the following: 

a.	 4 and 9 in the first column are the day and month of Judea’s birth 

b.	 4 + 15 = 19 in the last row and 19 + 17 = 36 in the last row together with 19 

give 1936 the year when Judea was born. 

c.	 All rows, columns, and diagonals sum to 36. 

d.	 7 and 20 in the first row point to the Turing Award since T is the 20th letter 
in the alphabet and it was awarded 7 years ago. 

e.	 Finally, there is a legend in the Jewish folklore claiming that there are 36 

righteous men on behalf of which humankind exist. Is Judea one of them? 

35.2 A Magic Shield of David 

3

22

19 6

51 10 20

9

4 7

2

Notice the following: 

a.	 The sum of all 4 integers along any of the 6 edges of the two triangles is 36, 
which together with 19 on the bottom left corner of the upper triangle make 

1936, the year when Judea was born. 

b.	 4 and 9 in the left corner of the upper triangles is the date of Judea’s birth. 

c.	 As in the magic square, 20 and 7 on the right edge of the upper triangle point 
to the Turing Award. 
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d.	 Finally, 22 at the bottom of the shield is the number of letters in the Hebrew 

alphabet and 10 in the upper edge of the lower triangle is the number of dig
its. Together they make 32, which is a very important number in the Kabala, 
the mystical Jewish canon since it is connected to the word LEV, which means 
“heart” in Hebrew. And since 32 = 25, it is believed by the Kabala that 
the world is 5-dimensional: The 3 space dimensions, the time dimension, 
and the “good and bad” dimension. All five dimensions are infinite in both 

directions. 

Thanks for your friendship Judea, and I wish you many more years of scientific 
activity and good health. 
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A probabilistic model describes a system in its observational state. In many situ
ations, however, we are interested in the system’s response under interventions. 
The class of structural causal models provides a language that allows us to model 
the behavior under interventions. It can be taken as a starting point to answer a 

plethora of causal questions, including the identification of causal effects or causal 
structure learning. In this chapter, we provide a natural and straightforward exten
sion of this concept to dynamical systems, focusing on continuous time models. In 

particular, we introduce two types of causal kinetic models that differ in how the 

randomness enters into the model: it may either be considered as observational 
noise or as systematic driving noise. In both cases, we define interventions and 

therefore provide a possible starting point for causal inference. In this sense, this 
chapter provides more questions than answers. The focus of the proposed causal 
kinetic models lies on the dynamics themselves rather than corresponding station
ary distributions, for example. We believe that this is beneficial when the aim is to 

model the full-time evolution of the system and data are measured at different time 

points. Under this focus, it is natural to consider interventions in the differential 
equations themselves. 

We wholeheartedly congratulate Judea Pearl on winning the Turing Award. His 
groundbreaking work has inspired much of our work, with this chapter being only 
one of several examples. 

Causal Models for
 
Dynamical Systems
 
Jonas Peters (University of Copenhagen),
 
Stefan Bauer (MPI Tübingen),
 
Niklas Pfister (University of Copenhagen)
 

Abstract 

36.1 Introduction 
In causality, we aim to understand how a system reacts under interventions, for 
example, in gene knock-out experiments. There are different interventions we can 
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perform (including none at all), and we therefore require different descriptions of 
the data-generating process. Some systems may be adequately described by deter
ministic equations, but if the system possesses observational noise, unobserved 

factors, or intrinsic randomness, data-generating processes are more appropri
ately modeled using the language of probability. In data-driven sciences, we are 

used to modeling the data-generating process with a single probability distribu
tion, for example, using a multivariate Gaussian with a certain covariance matrix. 
As argued above, however, causal models come with a plethora of distributions: 
one distribution for each type of modeled intervention. 

In general, the intervention distributions are not arbitrarily different as it would 

be meaningless to talk about a single underlying system otherwise. It is a key chal
lenge to describe which parts of the distribution change and which parts remain 

invariant when considering different interventions. Many researchers from various 
disciplines engaged in this question and developed the fundamental assumptions 
that are often referred to as invariance, autonomy, or modularity [Wright 1921, 
Haavelmo 1944, Aldrich 1989, Hoover 1990, Pearl 2009, Richardson and Robins 2013, 
Imbens and Rubin 2015]. The concept of invariance relies heavily on what it means 
to intervene on a system, making a precise formulation of interventions crucial for 
causal modeling. Arguably one of the clearest formulation of interventions is Judea 

Pearl’s do-formalism [Pearl 2009, chapter 36]. One starts with a fixed reference dis
tribution called the observational distribution; one may think of it as describing 

the system in its natural state with no intervention being performed. The system 

and its corresponding distribution is assumed to have a modular structure, and 

performing a do-intervention means changing some of the modules. This process 
yields an intervention distribution, often denoted by a do(.) subscript. While this 
description can be made formal in various ways, we focus on one that is based 

on structural causal models (SCMs) [Wright 1921, Bollen 1989, Pearl 2009]. Usually, 
the formulation of SCMs include random variables. We believe, however, that the 

descriptive power of SCMs lies in their modular structure, which can be sepa
rated from randomness. We therefore introduce two different versions of SCMs: 
a deterministic version with measurement noise and a version containing random 

variables. 

36.1.1 Structural Causal Models with Measurement Noise 
A deterministic SCM over d variables x1, … , xd is a collection of d assignments 

PAk ),xk := f k(x k = 1, … , d, (36.1) 

where for any k ∈ {1, … , d}, PAk ⊆ {1, … , d}⧵{k} is called the set of direct parents of 
xk, and f k is a real-valued function. If PAk = ∅, then f k(xPAk ) should be interpreted 
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as a constant. For each SCM, we obtain a corresponding graphical representation 

of the causal structure over the vertices1 (1, … , d) by drawing directed edges from 

PAk to k for all k ∈ {1, … , d}. We further assume that the system (Equation 36.1) 
is uniquely solvable, which may be the case, even if the graph contains directed 

cycles, such as 3 → 1 → 4 → 3. Each SCM then induces a state of the system 

characterized by a single point in Rd. We will see in Section 36.1.3 that the mod
ular structure of Equation (36.1) is key to the ability to serve as a causal model. 
The assignments in Equation (36.1) can be thought of as lines in a computer pro
gram that generate a specific state of the system. Interventions will be modeled as 
replacements of some of these lines. 

We may now assume to obtain noisy observations of the system, for example, 
for each k ∈ {1, … , d}, we may have 

Xk := xk + 𝜀k , (36.2) 

where 𝜀1, … , 𝜀d are jointly independent random variables. Instead of a single point, 
this model now induces a joint distribution over the observed random variables 
X1, … , Xd . 

Structural Causal Models with Driving Noise 
More common than the above approach is the assumption that the randomness 
enters inside the structural assignments. Formally, a stochastic SCM over d random 

variables X1, … , Xd is a collection of d assignments 

Xk := f k(XPAk , 𝜀k), k = 1, … , d, (36.3) 

together with a distribution over the noise variables 𝜀1, … , 𝜀d. As above, we obtain 

a corresponding graphical representation of the causal structure over the vertices 
(1, … , d) by drawing directed edges from PAk to k for all k ∈ {1, … , d}. We further 
assume that the joint noise distribution is absolutely continuous with respect to a 

product measure and that it factorizes, that is, the noise components are assumed 

to be jointly independent. As before, we require the system (Equation 36.3) to 

be uniquely solvable, which is always satisfied if the graph is acyclic, for exam
ple. An SCM induces a unique joint distribution over the variables X1, … , Xd (e.g., 
Bongers et al. [2016]), and an observed dataset may be modeled as a collection of 
independent identically distributed (i.i.d.) realizations from that distribution. 

The two approaches described above serve different purposes. The model 
described in Equation (36.2) might be helpful when the underlying system 

is assumed to be deterministic and all randomness can be thought of as 

1. By slight abuse of notation, we identify (x1, … , xd) with its indices (1, … , d). 
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measurement noise, for example. While this might be a realistic assumption in 

many applications, the approach comes with various statistical difficulties, includ
ing the famous errors-in-variables problem [Carroll et al. 2006] and an increased 

difficulty when identifying parameters or causal structure from data [Zhang et al. 
2018]. We speculate that this is one of the reasons why less work seems to be devoted 

to the first approach. The second approach is better understood but assumes that 
the noise is not purely measurement noise, but enters into the causal mechanism. 
Whether this assumption is reasonable depends on the application at hand. 

36.1.3 Interventions 
SCMs allow us to define interventions. For any j ∈ {1, … , d}, we can replace the 

corresponding assignments in Equation (36.1) or Equation (36.3). In the former 
case, we could replace the assignment with Xj := PAj ) and in the latter case f̃ j(X�

PAj , ˜with Xj := f̃ j(X�
𝜀j), for example. Usually, we restrict ourselves to interventions 

that yield a new SCM, so the interventions must respect unique solvability. If that 
is the case, the intervention induces a new state of the system that we denote by 

PAj , ˜do(xj := f̃ j(xPAj )) or do(Xj := f̃ j(X � 𝜀j)), respectively. An intervention on one of the 

variables propagates through the system, possibly affecting many other variables 
that are graphical descendants of the targeted node. For the stochastic SCMs from 

Section 36.1.2, one may think about randomized experiments as a do-intervention 

and the well-known hard (or point) interventions do(Xj := 4) appear as a special 
case. Pearl [2009] provides many insightful examples of SCMs and interventions 
throughout his book. Bongers et al. [2016] give measure theoretic details underly
ing the construction of SCMs. Below, we extend the concept of SCMs to dynamical 
systems and give a concrete example of an SCM, a graph, and interventions in that 
context (see Figure 36.2). 

The above definition clarifies which parts of the distribution remain invariant 
under interventions. In the case of Section 36.1.2, each conditional distribution Xk , 
given XPAk = x, is determined by the structural assignment for Xk. Thus, two dis-

XPAktributions induce the same conditionals Xk | = x if one of the distributions is 
induced by an SCM and the other one is induced by the same SCM after intervening 

on a fixed j ̸= k, for example. 
It may further be instructive to think about equivalence of two causal models. 

They may be called observationally equivalent if they induce the same observational 
distribution and interventionally equivalent if they induce the same observational 
distribution as well as the same intervention distributions (e.g., Peters et al. [2017, 
section 6.8]). One of the fundamental problems when learning causal structures 
from data is that two causal models may be observationally equivalent, but not 
interventionally equivalent. 
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36.1.4 Time-dependent Data 
In many practical applications, an i.i.d. dataset does not provide an adequate 

description for the data sample at hand. In particular, the concepts above are lack
ing the notion of time. Different causal methodology and several extensions of 
SCMs have been proposed [Wiener 1956, Granger 1969, Schreiber 2000, White and 

Lu 2010, Hyttinen et al. 2013, Peters et al. 2013, Pfister et al. 2018b], mostly con
sidering discrete time models such as vector autoregressive models [Lütkepohl 
2007], for example. Peters et al. [2009], and Bauer et al. [2016] discuss the relation 

between causality and the arrow of time. Causal inference for longitudinal studies 
has been studied extensively too (e.g., Robins [1997], Aalen et al. [2008], Vander
weele [2015]), where the results are often formulated in the language of potential 
outcomes [Imbens and Rubin 2015] rather than SCMs. In this article, we focus on 

continuous time systems that are governed by ODEs. In particular, we propose a 

natural and straightforward extension of the notion of SCM to dynamical systems. 
The construction closely follows the existing ideas of SCMs and interventions. Sim
ilar constructions have been suggested elsewhere, and we try our best to provide 

the relevant references and point out existing differences. Parts of this book chap
ter are taken from Pfister et al. [2018a, 2019], where we focus on model selection 

and parameter inference. 

36.2 Chemical Reaction Networks and ODEs 
In many natural sciences and even some social sciences, there are processes that 
can be modeled by a set of governing differential equations. Examples are found 

in diverse areas such as bioprocessing (e.g., Ogunnaike and Ray [1994]), economics 
(e.g., Zhang [2005]), genetics (e.g., Chen et al. [1999]), neuroscience (e.g., Friston 

et al. [2003]), or robotics (e.g., Murray [2017]). Below, we provide two examples that 
come from a subclass of dynamical models, namely those that are driven by chem
ical reactions and connect to ODE–based models by mass-action kinetics. The gen
eral principles, however, can readily be extended to more complex model classes. 
Formally, a general reaction (e.g., Wilkinson [2006]) takes the form 

m1R1 + m2R2 + … + mrRr → n1P1 + n2P2 + … + npPp, 

where r is the number of reactants and p is the number of products. Both Ri and 

Pj can be thought of as molecules and are often called species. The coefficients 
mi and nj are positive integers, called stoichiometries. We now provide two exam
ples: (1) a famous and often-used model that describes the abundance of predators 
and prey, illustrating the law of mass-action kinetics, and (2) Michaelis–Menten 

kinetics, which results in nonlinear ODEs. 
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Lotka–Volterra model The Lotka–Volterra model [Lotka 1909] takes the form 

A −k1	 (36.4)→ 2A 
k2A + B −→ 2B	 (36.5) 

B −k3	 (36.6)→ ∅, 

where A and B describe abundance of prey and predators, respectively. In this 
model, the prey reproduce by themselves, but the predators require abundance of 
prey for reproduction. The coefficients k1, k2, and k3 indicate the rates with which 

the reactions happen. 
In mass-action kinetics [Waage and Guldberg 1864], one usually considers the 

concentration [X] of a species X, the square parentheses indicating that one refers 
to the concentration rather than to the integer number of abundant species or 
molecules. The law of mass-action states that the instantaneous rate of each reac
tion is proportional to the product of each of its reactants raised to the power of its 
stoichiometry. For the Lotka–Volterra model this yields 

d 
[A] = k1[A] − k2[A][B]	 (36.7)

dt
 
d 
[B] = k2[A][B] − k3[B]. (36.8)


dt 

Figure 36.1 shows solutions for these differential equations for both an observa
tional setting (left plot) with rates k1 = 0.1, k2 = 0.05, and k3 = 0.05 and initial 
values [A]0 = 1 and [B]0 = 1.5, as well as an interventional setting (right plot) where 

we set k1 = 0.05 and [B]0 = 2. Even though Equations (36.7) and (36.8) contain 
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Figure 36.1	 Example trajectories for the basic Lotka–Volterra model given in Equations (36.7) and 
(36.8). The left plot corresponds to observation setting with rates k1 = 0.1, k2 = 0.05, 
and k3 = 0.05 and initial values [A]0 = 1 and [B]0 = 1.5, and the right plot to an 
intervention where we set k1 = 0.05 and [B]0 = 2. 
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interaction terms of the concentration of the different species, they are linear in 

the model parameters, a property that is exploited by many practical methods. 

Michaelis–Menten kinetics In Michaelis–Menten kinetics [Michaelis and Menten 

1913], the starting point is a specific enzyme reaction given by the equations 

E + S 

ES 

ES 

k1→ ES 
k2→ E + S 
k3−

−

−

→ E + P, 

where the enzyme E binds to a substrate S and finally releases a product P. Under 
some simplifying assumptions regarding the relation of rates of the reactions, this 
yields the equation 

d [S]
[P] = c1 (36.9)

dt c2 + [S] 
, 

where c1, c2 are constants. There are many reactions that can be described by this 
model; Michaelis and Menten [1913] used it to describe how the enzyme invertase 

catalyzes the hydrolysis of sucrose into glucose and fructose. 

36.3 Causal Kinetic Models 
We now define a causal model class for dynamical systems. The reader may think 

about the example of a Lotka–Volterra model, as described in Equations (36.7) and 

(36.8), or Michaelis–Menten kinetics (36.9), both of which fit into the general frame
work described below. In analogy to Sections 36.1.1 and 36.1.2, we first consider a 

deterministic version with measurement noise and secondly a version where the 

randomness enters inside the structural equations. 

36.3.1 Causal Kinetic Models with Measurement Noise 
We regard the following definition as a natural and straightforward extension of 
SCMs, even though we have not seen it in this form before. A deterministic causal 
kinetic model over processes x := (xt)t := (x1 t , … , xd)t is a collection of d ODEs and t 

initial value assignments 

1 PA1 1d 
xt := f 1(x ), x0 := 𝜉1 t 0,dt 
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Figure 36.2	 Illustration of different ODE representations: (chemical) reactions (left), ODE system 
derived by mass-action kinetics (middle), and corresponding graph (right). 

2 PA2 2 

d
d 
t 
xt := f 2(xt ), x0 := 𝜉0

2, 

⋮ 

d PAd dd 
x := f d(x ), x0 := 𝜉d 
t t 0 .dt 

dHere, for any k ∈ {1, … , d}, xkt denotes the time derivative of the component xk 
dt 

at time t and PAk ⊆ {1, … , d} is called the set of direct parents of xk (and may include 

xk itself). We require that the system of initial value problems is uniquely solvable. 
For each causal kinetic model, we can obtain a corresponding graph over the ver
tices (1, … , d) by drawing edges from PAk to k, for k ∈ {1, … , d} (see Figure 36.2). If 
we consider the initial values as random variables, this induces a distribution over 
x = (xt)t. 

Similarly, as in the case of deterministic SCMs, causal kinetic models are deter
ministic models describing an underlying causal structure. The observed data can 

then be modeled as noisy observations of the system, that is,2 

Xt = xt + 𝜀t,	 (36.10) 

where one may assume for simplicity that each noise component of 𝜀t is i.i.d., for 
example. This induces a distribution over X = (Xt)t. 

36.3.2 Causal Kinetic Models with Driving Noise 
As for SCMs, the randomness might also be added directly into the structural 
assignments. This yields a more involved mathematical formulation though, since 

2. Alternatively, one may add the noise variables only at observed time points. 
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the objects of interest are continuous time processes. We define a stochastic causal 
kinetic model over processes X := (Xt)t := (Xt 1, … , Xd)t as a collection of d stochastic t 

differential equations (SDEs) and initial value assignments 

:= f k(XPAk )dt + hk(XPAkdXk )dWt
k , X0 

k := 𝜉0
k , (36.11)t t t 

where dWk can be thought of as an independent white noise process and Wk = t t 

∫ t dWk as a Brownian motion.3 Again, we require that the SDEs in Equation (36.11)0 s 

are uniquely solvable, which in the setting of SDEs becomes substantially harder 
to verify. The functions f k are called drift coefficients and the functions hk are 

called diffusion coefficients. Intuitively, it can be helpful to think about the change 

Xt
k 
+Δ − Xk as being normally distributed with expectation f k(XPAk ) ⋅ Δ and variance t t 

hk(XPAk )2 ⋅Δ, where Δ is a small increment in time. In the most basic setting, hk cant 

be assumed to be constant, which results in an integrated equation of the form 

t 
Xk := ∫ f k(XPAk )ds + Wt

k .t s 
0 

In general, solving SDEs is a difficult problem, and numerical procedures often 

have slower rates compared with their deterministic counterparts [Han and 

Kloeden 2017]. We believe that despite these difficulties, SDE-based causal mod
els may potentially prove useful in several areas of applications. There are some 

works that have made first attempts to circumvent the difficulties of models using 

SDEs by looking at random differential equations [Bauer et al. 2017, Bongers and 

Mooij 2018, Abbati et al. 2019], which still allow including randomness directly into 

the causal structure. As for SCMs, it depends on the application whether a causal 
model with measurement noise or the stochastic causal kinetic model is the more 

appropriate choice. 

Interventions 
An intervention on the system replaces some of the structural assignments. Inter
ventions can change the dynamics of the process xk, the initial values or both at 
the same time. This definition allows for several ways of manipulating the sys
tem, which may prove useful when modeling complex dynamical systems and their 
perturbations; some of the possibilities are discussed below. Formally, for a deter
ministic causal kinetic model over a process (xt)t, an intervention on the process xk 

3. Readers who are not familiar with the formal definition of SDEs may think about them as a 

f k(XPAk hk(XPAknotational abbreviation for the integrated form, that is, Xk := ∫ t s )ds + ∫ t s )dWk 
t 0 0 s . 
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for k ∈ {1, … , d} corresponds to replacing the k-th initial condition or the k-th ODE 

with 

k k PA x0 := 𝜉 or 
d 
x := g(x ),

dt t t 

respectively, where PA ⊆ {1, … , d} is the set of new parent components. In both 

cases, we still require that the system of initial value problems is uniquely solvable. 
The interventions are denoted by 

dk k PA do (x0 := 𝜉) and do ( 
xt := g(xt )) 

,
dt 

respectively. The same definitions apply in the presence of observational noise 𝜀t, 
see Equation (36.10), where the noise is added after the system has been perturbed. 
For a stochastic causal kinetic model, we analogously define the interventions 

:= g(XPA ) + j(XPA do (X0 
k := 𝜉) and do (dXt

k
t t )dWt

k) . 

While we regard both deterministic and stochastic causal kinetic models as poten
tially relevant for practical applications, we will, in the remainder of this chapter, 
focus on deterministic causal models. 

If the ODE system is induced by a set of reactions, a natural class of interven
tions is described by replacing one (or some) of the reactions. In the Lotka–Volterra 

model from Section 36.2, changing the rate of the first reaction, (Equation 36.4), 
that is, changing k1 to k̃1, say, yields a change of the assignment (Equation 36.7). 
Changing the rate of the second reaction (Equation 36.5), however, yields a change 

of both assignments, Equation (36.7) and Equation (36.8). In general, changing one 

of the reactions induces a change in differential equations for all variables that 
appear in the reaction (either on the left or on the right). The proposed frame
work additionally allows us to set a variable xk to a constant value c by performing 

the interventions do(xk := c) and do( d xk := 0). To obtain a softer version of this 0 dt t 

effect, we may also introduce a forcing term that “pulls” the variable xk to a certain 

value c. Alternatively, one can keep the dependence of d xk on xℓ intact but change dt 
the strength of this dependence, or even completely change the parent set. 

We believe that in a system that is described well by a system of differential 
equations, it is most natural to formulate the interventions as differential equa
tions too. Nevertheless, for a differentiable 𝜁, interventions of the form xk := 𝜁(xA)t t 

with A ⊆ {1, … , d}⧵{k} (e.g., Hansen and Sokol [2014]) and xk := 𝜁(t) (e.g., Ruben-t 

stein et al. [2018]) are included in the above formalism as well. The intervention 

xk ddo(xtk := 𝜁(xtA)) can be obtained by do( d
d 
t t := dt 𝜁(xt

A)) and do(xk 
0 := 𝜁(xA 

0)). Similarly, 
xk ddo(xk := 𝜁(t)) is realized by do( d := 𝜁(t)) and do(xk 

0 := 𝜁(0)).t dt t dt 
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36.3.4 Other Causal Models for Dynamical Systems and Related Work 
We introduced the formal framework of causal kinetic models that allows us to 

model dynamical systems with a set of differential equations and specify what we 

mean by intervening in the system. Several other useful proposals have been made 

that connect differential equations with causality. Here, we briefly review some of 
these suggestions and point out a few of the differences. In general, the attempts 
are tailored toward different goals. 

Mooij et al. [2013], Blom and Mooij [2018], Bongers and Mooij [2018], and 

Rubenstein et al. [2018] consider (deterministic and random) ODEs. Their goal is to 

describe the asymptotic solution of such a system as a causal model. The authors 
consider interventions that fix the full-time trajectory of a variable to a pre-defined 

solution, for example, to a constant. Mooij et al. [2013] consider interventions on 

the ODE system itself. In that work, the authors are primarily interested in the equi
librium of the ODE system (assuming that it exists) and its relation to standard 

SCMs; they explicitly do not distinguish between interventions that yield the same 

equilibrium. These approaches may be particularly useful when the focus lies on 

the stationary solution, rather than the full dynamics. Hansen and Sokol [2014] 
consider SDEs, which contain ODEs as a special case, and introduce interventions, 
for which at any point in time the intervened variable can be written as a determin
istic function of other variables. Christiansen et al. [2020] consider causal models 
for spatio-temporal data. 

In practice, the application at hand determines which of the models and inter
ventions are most appropriate for describing the real-world experiment. The struc
ture of causal kinetic models closely follows the spirit of the SCMs described above. 
In particular, its modular structure once more highlights which parts remain 

invariant under interventions. 

36.4 Challenges in Causal Inference for ODE-based Systems 
Formalizing a causal model for dynamical systems can be taken as a starting point 
to conduct causal inference. Similarly to the i.i.d. case, we might be interested 

in adjustment results, do-calculus, the effect of hidden variables, or causal dis
covery (see, e.g., Pearl [2009]). To the best of our knowledge, for dynamical sys
tems most of such questions are still open. Possible reasons are the difficulties 
that arise when working with dynamical systems, some of which we highlight 
below. (1) In the deterministic settings, solving a standard algebraic equation is 
easier than solving an algebraic equation involving differentials. (2) When adding 

observational noise, the induced distributions on the left-hand side of the struc
tural assignments are more complicated in causal kinetic systems than in SCMs. 
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(3) Suppose that in the i.i.d. case (Equation 36.3) the noise variables are additive. 
If the parents of each variable (and therefore the structure of the whole system) 
are known, the causal mechanisms, that is, the functions f k, can be estimated by 
nonlinear regression techniques. In contrast, in the case of dynamical systems the 

fitting process is much more involved, and many different methods have been sug
gested. This includes various versions of goodness-of-fit of the integrated system, 
nonlinear least squares methods, or gradient matching [Bard 1974, Benson 1979, 
Varah 1982, Ramsay et al. 2007, Calderhead et al. 2009, Oates et al. 2014, Dattner 
and Klaassen 2015, Macdonald and Husmeier 2015, Raue et al. 2015, Wenk et al. 
2019]. (4) In the i.i.d. setting, Markov conditions connect properties of the graph, 
such as d-separation [Pearl 2009], with properties of the joint distribution, such as 
conditional independence [Lauritzen 1996]. For dynamical models, however, it is 
not apparent that conditional independence is the right notion. For specific model 
classes, there is interesting work exploiting the concept of local independence 

[Schweder 1970, Didelez 2000, 2008, Mogensen et al. 2018, Mogensen and Hansen 

2019], with several questions still being open. Finally, (5), in most real-world sys
tems not all relevant variables are observed, which means that they need to be 

modeled as hidden variables. While in the i.i.d. case there is some understanding 

of the effects of hidden variables on observed distributions, on the identification 

of causal effects, and on causal discovery (e.g., Verma and Pearl [1991], Spirtes et al. 
[2000], Richardson and Spirtes [2002], Hernán and Robins [2006], Silva et al. [2006], 
Pearl [2009], Hyttinen et al. [2012], Evans [2015], Richardson et al. [2017], Shpitser 
[2018]), more work is needed in the case of dynamical systems. 

36.5 From Invariance to Causality and Generalizability 
In many real-world systems the underlying structure is unknown and needs to be 

inferred from data. That is, for any k, we do not know which variables are contained 

in PAk. This setting is often referred to as structure learning or causal discov
ery [Spirtes et al. 2000, Pearl 2009]. To state the problem let us assume that the 

observed data consist of n repetitions of discrete time observations of each of the 

d variables x, or its noisy version X�, on the time grid t = (t1, … , tL). By concatenat
ing the time series for the d variables, one may represent the data by an n × (d ⋅ L) 
matrix. Several methods have been suggested to solve this task (e.g., Oates et al. 
[2014], Raue et al. [2015], Mikkelsen and Hansen [2017]), most of which combine 

structure learning, that is, model selection, with a parameter inference step. Some 

methods [Oates et al. 2014] explicitly consider the causal nature of this problem. 
We briefly describe below, in a simplified setting, how it is possible to exploit the 

invariances induced by the underlying causal kinetic model for causal discovery. 
Assume there is a target process y := x1, for which the parents are unknown and 
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of particular interest. In short, we assume that each of the n repetitions has been 

generated by a model of the form 

d PAyyt = f y(xt ), (36.12)
dt 

for a fixed function f y, possibly with additional measurement noise Y�t = yt + 𝜀t. 
This assumption holds, for example, if the measurements stem from an underly
ing causal kinetic model under different interventional settings, in none of which 

the variable y has been intervened on. In practice, the right-hand side of Equation 

(36.12) is unknown, and the goal is thus to identify the causal predictors among 

the x, that is, to infer both the parents PAy of y as well as the function f y. In 

Pfister et al. [2018a] we propose a procedure that specifically exploits the invari
ance of Equation (36.12) to tackle the problem of structure learning. Each of the 

repetitions is assumed to be part of an environment or experimental condition. 
We suppose this assignment is known, for example, repetitions 1, … , 6 are known 

to belong to experimental condition one, repetitions 7, … , 19 to condition two, and 

all remaining repetitions to condition three. The method then outputs a ranking 

of models (or variables) by trading off the predictability and invariance of such 

models. In the i.i.d. case, trade-offs in a similar spirit have been suggested by Rojas-
Carulla et al. [2018], Magliacane et al. [2018], and Rothenhäusler et al. [2021], for 
example. 

The model in Equation (36.12) is valid independently of interventions on vari
ables other than y and can thus be used for prediction in a new experimental setup, 
even if there are large perturbations on the predictors x. As a consequence, the 

method proposed in Pfister et al. [2018a] outputs models that generalize better to 

unseen experiments, even when considering real data from large metabolic net
work experiments. This finding adds to a recent debate suggesting the addition of 
invariance as a fitting criteria to data science methodology [Schölkopf et al. 2012, 
Yu 2013, Bareinboim and Pearl 2016, Meinshausen et al. 2016, Peters et al. 2016, Yu 

and Kumbier 2019]. At its core lies the modularity of the structure of the causal 
model and its implied relation between causality and invariance. 

36.6 Conclusions 
We have discussed an extension of SCMs to systems that are governed by differ
ential equations. As in the i.i.d. case, the models may be equipped with either 
measurement noise or driving noise, where the latter case uses the concept of 
SDEs. These two model classes, called causal kinetic models, may serve as a start
ing point for answering questions commonly asked in the field of causal inference. 
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Many of such questions are neither fully understood nor answered, and more work 

is needed to gather as much understanding as we have for i.i.d. data. 
The mathematical complexity of the models poses a challenge when working 

with kinetic models. Some aspects of causal inference, however, may become eas
ier. The concept of faithfulness suggests, for example, that in the i.i.d. setting a 

child of a random variable is predictive for its parent. This assumption seems less 
justified in the case of dynamical processes. Also, considering local independence 

and assuming causal sufficiency, Markov equivalence classes contain only a single 

directed acyclic graph [Mogensen and Hansen 2019]. Both of these points may 
prove to be useful for causal discovery. Furthermore, intervening on a set of differ
ential equations usually affects the whole time trajectory. Relatively mild interven
tions may thus carry a lot of information about the causal structure. This may be 

particularly relevant when the available data are not yet sufficient to identify causal 
mechanisms, and additional data have to be collected. There is a close connection 

between experimentation and causal inference (e.g., Imai et al. [2013], Peters et al. 
[2016]); the selection of measurement readouts, time points, or intervention strate
gies could guide experimentation and has the potential to significantly reduce the 

number of complicated and expensive experiments. 
While there are several differences to the i.i.d. case, causal kinetic models 

exhibit the same modularity as SCMs. As a consequence, invariance ideas can be 

exploited in a similar way as it is done in the i.i.d. case. This includes methods that 
trade off invariance and predictability to select models that may generalize better 
to unseen experiments. 
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37
Probabilistic 
Programming Languages: 
Independent Choices and 
Deterministic Systems 
David Poole (University of British Columbia), 
Frank Wood (University of British Columbia) 

Pearl [2000, p. 26] attributes to Laplace [1814] the idea of a probabilistic model 
as a deterministic system with stochastic inputs. Pearl defines causal models in 

terms of deterministic systems with stochastic inputs. In this chapter, we show how 

deterministic systems with (independent) probabilistic inputs are also the basis of 
modern probabilistic programming languages [van de Meent et al. 2018]. Proba
bilistic programs can be seen as consisting of independent choices (over which 

there are probability distributions) and deterministic programs that give the con
sequences of these choices. The work on developing such languages has gone in 

parallel with the development of causal models, and many of the foundations are 

remarkably similar. Most of the work in probabilistic programming languages has 
been in the context of specific languages. This chapter abstracts the work on proba
bilistic programming languages from specific languages and explains some design 

choices in the design of these languages. 
Probabilistic programming languages owe their beginnings to the develop

ment of simulation languages such as Simula [Dahl and Nygaard 1966]. Simula 

was designed for discrete event simulations, and the built-in random number gen
erator allowed for stochastic simulations. Probabilistic programming languages, 
as opposed to simulation languages, introduce one critical additional language 

syntactic feature and are interpreted entirely differently: 
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Conditioning: the ability to indicate, syntactically, that some variable values are 

observed 

Inference: interpreting a probabilistic program means computing the posterior 
distribution of arbitrary variables conditioned on these observations. For the dis
crete case, the semantics can be seen in terms of rejection sampling: accept only 
the simulations that produce the observed values, but there are other semantics 
that have also been developed. 

First, we explain how we can get from discrete Bayesian networks [Pearl 1988] 
to independent choices plus a deterministic system (by augmenting the set of vari
ables). This can then be extended to allow for Turing-complete deterministic sys
tems, which results in discrete probabilistic programming languages. We consider 
languages with continuous random variables later on. 

Consider how to represent a Bayesian network in terms of a deterministic sys
tem with independent inputs. In essence, we construct a random variable for each 

free parameter of the original model. A deterministic system can be used to obtain 

the original variables from the new variables. In this new augmented model, there 

are two possible worlds structures: one in terms of the new independent random 

variables, and one effectively in the space of the original random variables. The 

dimensionality of the augmented space is the number of free parameters which 

is greater than the dimensionality of the original space (unless all variables were 

independent). However, the variables in the augmented worlds can be assumed to 

be independent, which is convenient. 
The original worlds can be obtained using abduction. Abduction is a form 

of reasoning characterized by “reasoning to the best explanation.” It is typically 
characterized by finding a minimal consistent set of assumables that imply some 

observation. Poole [1991, 1993b] gave an abductive characterization of a discrete 

probabilistic programming language, which gave a mapping between the inde
pendent possible world structure, and the descriptions of the worlds produced by 
abduction. Given an observation and query variables, an explanation is an assign
ment of values to a subset of the probabilistic choices that implies the observations 
and a value for the query variable. The set of all observations forms a sigma algebra 

that has the properties needed to compute conditional probabilities. This works 
even in cases where the deterministic system is a Turing machine, in which case 

there can be infinitely many possible worlds, as long as the algorithm halts with 

probability one. With continuous variables, the measure over the real variables 
and the measure over the paths induced by the program interact in complex ways 
[Staton et al. 2016, Heunen et al. 2017, Staton 2017, Scibior et al. 2018]. Here we 

will outline the measure theory induced by programming languages just for the 

discrete case. 
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There had been parallel developments in the development of causality [Pearl 
2000], with causal models being deterministic systems with stochastic inputs. The 

augmented variables in the probabilistic programming languages are the variables 
needed for counterfactual reasoning. 

37.1 Probabilistic Models and Deterministic Systems 
In order to understand probabilistic programming languages, it is instructive to 

see how a discrete probabilistic model in terms of a Bayesian network (belief net
work) [Pearl 1988] can be represented as a deterministic system with probabilistic 
inputs. 

Consider the following simple belief network, with Boolean random variables: 

A B C

There are five free parameters to be assigned for this model; for concreteness 
assume the following values (where A = true is written as a, and A = false is written 

as ¬a, and similarly for the other variables): 

P(a) = 0.1 

P(b|a) = 0.8 

P(b|¬a) = 0.3 

P(c|b) = 0.4 

P(c|¬b) = 0.75 

To represent such a belief network in a probabilistic programming language, 
there are probabilistic inputs corresponding to the free parameters, and the pro
gramming language specifies what follows from them. For example, in Simula 

syntax [Dahl and Nygaard 1966], this could be represented as: 

begin 

Boolean a, b, c; 

a := draw (0.1); 

if a then 

b := draw (0.8); 

else 

b := draw (0.3); 

if b then 

c := draw (0.4); 
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else
 

c := draw (0.75);
 

end
 

where draw(p) is a Simula system predicate that returns true with probability p; 
each time it is called, there is an independent draw. 

Probabilistic programming languages also have mechanisms for specifying 

observations, which Simula did not have. Suppose c was observed, and the query is 
for the posterior probability of b. The conditional probability P(b|c) is the propor
tion of those runs with c true that also have b true. This could be computed using 

the Simula evaluator by doing rejection sampling: running the program many 
times, and rejecting those runs that do not assign c to true. Out of the non-rejected 

runs, it would return the proportion that have b true. Of course, conditioning does 
not need to be implemented that way; much of the development of probabilistic 
programming languages over the last 30 years is in devising more efficient ways to 

implement conditioning. 
An equivalent model to the Simula program can be given in terms of logic. 

There can be five random variables, corresponding to the five independent draws, 
let’s call them A, Bifa, Bifna, Cifb Cifnb. These are independent with P(a) = 0.1, 
P(bifa) = 0.8, P(bifna) = 0.3, P(cifb) = 0.4, and P(cifnb) = 0.75. The other variables 
can be defined in terms of these: 

b ⇔ (a ∧ bifa) ∨ (¬a ∧ bifna) (37.1) 

c ⇔ (b ∧ cifb) ∨ (¬b ∧ cifnbc) (37.2) 

where ∧ means “and,” ∨ means “or,” ¬ means “not,” and ⇔ means “if and only if.” 
These two formulations are essentially the same; they differ in how the deter

ministic system is specified, whether it is in Simula or in logic. 
Any discrete belief network can be represented as a deterministic system with 

independent inputs. This was proven by Poole [1991, 1993b] and Druzdzel and 

Simon [1993]. These papers used different languages for the deterministic systems 
but gave essentially the same construction. 

37.2 Possible Worlds Semantics 
A probabilistic programming language needs a specification of a deterministic 
system (given in some programming language) and a way to specify distributions 
over (independent) probabilistic inputs, or a syntactic variant of this. We will also 

assume that there are some observations and some query variables for which we 

want the posterior probability. 
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In developing the semantics of a probabilistic programming language, we first 
define the set of possible worlds, and then a probability measure over sets of 
possible worlds [Halpern 2003]. We first consider the case of discrete variables. 

In probabilistic programming, there are (at least) two sets of possible worlds 
that interact semantically. It is easiest to see these in terms of the above example. 
In the above belief network, there were three random variables A, B, and C, which 

had complex inter-dependencies among them. With three binary random vari
ables, there are eight possible worlds. These eight possible worlds give a concise 

characterization of the probability distribution over these variables. 
In the corresponding probabilistic program, there is an augmented space with 

five inputs, each of which can be considered a random variable (these are A, Bifa, 
Bifna, Cifb, and Cifnb in the logic representation). With five binary random vari
ables, there are 32 possible worlds. The reason to increase the number of variables, 
and thus possible worlds, is that in this augmented space the random variables can 

be independent. 
Note that the variables in the augmented space do not have to be indepen

dent. For example, P(bifna | a) can be assigned arbitrarily since, when a is true, no 

other variable depends on bifna. In the augmented space, there is enough free
dom to make the variables independent. Thus, we can arbitrarily set P(bifna|a) = 

P(bifna|¬a), which will be the same as P(b|¬a). The independence assumption 

makes the semantics and some computation simpler, for example, in marginal
izing A we can construct a joint that includes bifa and bifna. 

There are three semantics that could be given to a probabilistic program: 

∙	 The rejection sampling semantics: running the program with a random 

number generator, removing those runs that do not predict the observa
tions; the posterior probability of a proposition is the limit, as the number 
of runs increases, of the proportion of the non-rejected runs that have the 

proposition true. 

∙	 The independent choice semantics, where a possible world specifies the out
come of all possible draws. Each of these draws is considered to be indepen
dent. Given a world, the (deterministic) program would specify what follows. 
We will call these the augmented worlds. In this semantics, a possible world 

would select values for all five of the input variables in the example above, 
and thus gives rise to the augmented space of the above program with 32 

worlds. When a program does not have a bounded runtime there can be 

unaccountably infinite many possible worlds (e.g., if someone keeps play
ing the lottery until they win, and we want to compute the number of times 
they play), and we need to define a measure over them. 
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∙	 The abductive semantics forms a measure over the set of possible worlds 
where the possible worlds that produce the same value (or have the same 

proof or derivation for the value) for variables of interest (observed or queried 

variables) are grouped together. For example, in this semantics, an explana
tion would specify the values for three of the draws in the program of the 

previous section, as only three draws are encountered in any run of the pro
gram. We will refer to these grouping as concise worlds; they specify the value 

of a subset of the variables, such that the values of the other variables are 

irrelevant. 

In the logical definition of the belief network (or in the Simula definition if the 

draws are named), there are 32 worlds in the independent choice semantics: 

World A Bifa Bifna Cifb Cifnb Probability 
w0 false false false false false 0.9 × 0.2 × 0.7 × 0.6 × 0.25 

w1 false false false false true 0.9 × 0.2 × 0.7 × 0.6 × 0.75 

… 

w30 true true true true false 0.1 × 0.8 × 0.3 × 0.4 × 0.75 

w31 true true true true true 0.1 × 0.8 × 0.3 × 0.4 × 0.75 

The probability of each world is the product of the probability of each variable 

(as each of these variables is assumed to be independent). Note that in worlds w30 

and w31, the original variables A, B, and C are all true; the value of Cifnb is not used 

when B is true. These variables are also all true in the worlds that only differ in the 

value of Bifna, as, again, Bifna is not used when A is true. 
In the abductive semantics, when C is observed or queried there are eight con

cise worlds for this example, because some of the augmented variables don’t par
ticipate in the program; the program acts the same no matter what the values for 
these variables are. 

World A Bifa Bifna Cifb Cifnb Probability 
w0 false ⊥ false ⊥ false 0.9 × 0.7 × 0.25 

w1 false ⊥ false ⊥ true 0.9 × 0.7 × 0.75 

… 

w7 true True ⊥ false ⊥ 0.1 × 0.8 × 0.6 

w8 true True ⊥ true ⊥ 0.1 × 0.8 × 0.4 

where ⊥ means the variable is not defined in this concise world. These worlds cover 
all eight cases of truth values for the original worlds that give values for A, B, and 
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C. The values of A, B, and C can be obtained from the program. The idea is that a 

run of the program is never going to encounter an undefined value; in particular, 
the Simula program will not actually make these draws. The augmented worlds can 

be obtained from the concise worlds by splitting the concise worlds on each value 

of the undefined variables. Thus, each concise world corresponds to a set of aug
mented worlds, where the distinctions that are ignored do not make a difference 

in any inference. 
If the observation was C = true, and the query was B, a (minimal) explanations 

is a (minimal) set of assignments of values to the independent choices that gives 
C = true ∧ B = true or C = true ∧ B = false. There are four such explanations: 

∙ A = true, Bifa = true, Cifb = true 

∙ A = true, Bifa = false, Cifnb = true 

∙ A = false, Bifna = true, Cifb = true 

∙ A = false, Bifna = false, Cifnb = true 

The probability of each of these explanations is the product of the choices made, 
as these choices are independent. Now suppose the C is observed to be true. 
This observation is evidence that is conditioned on. The posterior probability 
P(B|C = true) can be computed by the weighted sum of the explanations in which 

B is true. Note that the same explanations would be used even if C has unobserved 

descendants. 
While it may seem that we have not made any progress, after all this is just a 

simple Bayesian network, we can do the same thing for any program with discrete 

probabilistic inputs. We just need to define the independent inputs (often these are 

called noise inputs), and a deterministic program that gives the consequences of the 

choices of values for these inputs. It is reasonably easy to see that any belief network 

can be represented in this way, where the number of independent inputs is equal to 

the number of free parameters of the belief network. However, we are not restricted 

to belief networks. The programs can be arbitrarily complex. We also do not need 

special “original variables,” but can define the augmented worlds with respect to 

any variables of interest. Observations can be any proposition, and queries (about 
which we want the posterior probability) can be any variables. 

There can be uncountably many augmented worlds when the language is 
Turing-equivalent, but only countably many concise worlds for programs that even
tually halt. A typical assumption is that the program eventually infers the observa
tions and the query, that is, each run of the program will eventually (with prob
ability 1) assign a value to any given observation and query. Consider again the 

person who plays the lottery until they win; each augmented world would consist 
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of an infinite sequence of lottery outcomes, and so there are uncountably infinitely 
many of these. There are, however, only countable many concise worlds (one for 
each integer n, where the person wins after n steps). 

In an analogous way to how the probability of a real-variable is defined as a 

limit of discretizations, we can see the abductive characterization as providing a 

measure over the independent choice worlds. In terms of the Simula program, 
explanations correspond to execution paths, in particular, the set of outcomes of 
the draws in one trace of the program. In the logical formulation (e.g., in a prob
abilistic logic program), an explanation is a minimal set of assignments to the 

augmented variables that implies the observations and a value for the query vari
able. The probability of an explanation is the product of the probabilities of the 

choices in the explanation, and is the measure of the set of extended worlds that 
are a superset of the explanation. 

Let’s now consider a larger non-trivial program. Figure 37.1 shows code for a 

simple probabilistic context-free grammar. The procedure gen_exp returns a num
ber or a list, such as 1, [“ + ”, 1, 2] or [“ + ”, [“ + ”, 1, 2], [“ + ”, 2, 2]]. Suppose that 
eval takes such a list and evaluates it. The second to last statement of Figure 37.1 
specifies that that expression v is observed to evaluate to 7. (as, for example, does 
the list [“+ ”, [“+ ”, 1, 2], [“+”, 2, 2]]). The program represents the distribution over 
the returned value (v) conditioned on the observation (eval(v) = 7). 

Figure 37.1 Pseudo-Simula program for a simple probabilistic context-free grammar. 
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Figure 37.2 Part of the space of choices for gen_exp(). 

Figure 37.2 shows a tree of choices for this program. Each path in the tree shows one 

set of choices from the gen_exp() program. Given each sequence of choices down 

a branch, the program is deterministic. Note that the choices are numbered arbi
trarily (but in an order they could be encountered by executing the program); the 

program needs to make various independent choices at different points in the pro
gram. The tree is infinite. In the independent choice semantics, a world specifies 
the values for each of the nodes in this tree. There are countably infinitely many 
nodes, and so uncountably many worlds. In the abductive semantics, there is a 

world for each path. Note that, although the existence of a draw in the abductive 

semantics depends on the previous draws, in the independent choice semantics 
the draws are still probabilistically independent. Thus, the draws down a path can 

be multiplied. 
The prior probability of any abductive world (and so the measure of the set of 

augmented worlds compatible with these choices) is the product of the choices 
made on the path to that world. For example, the probability of generating a 1 
is 0.7 * 0.4 and the probability of producing a 2 is 0.7 * 0.6 and the probability of 
producing [“ + ”, 1, 2] is 0.3 * 0.7 * 0.4 * 0.7 * 0.6. 

It turns out that for every ε > 0 there is a finite subtree such that the proba
bility of paths that lead to abductive worlds (and so have halted) is greater than 

1 − ε. Note that this would not be true if the probability of is_dig were smaller. 
This is not a problem with the probabilistic program per se, but that the grammar 
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has a positive probability of generating infinite sentences (and a program cannot 
produce infinite outputs in finite time). 

With continuous variables, the semantics is more complicated as the measure 

theory induced by real variables interacts with the measure theory induced by the 

control flow of the probabilistic program. In particular, the measure theory of a 

real-values variable can be defined in terms of binary “<” splits that need to be 

interleaved with the tree defined above [Kozen 1979, Borgström et al. 2011]. 

37.3 Inference 
The aim of inference is to compute the distribution of query variables conditioned 

on observations. There are two cases that can be treated separately: 

∙	 Discrete variables can be represented as propositions or their characteris
tic functions (sometimes called the “one-hot encoding”), where a variable X 

can represent X = vi with the variable xi which has value 1 when X = vi and 

0 otherwise. In this case, the expected value of xi corresponds to the proba
bility of X = vi. We can then use any method for computing expected values 
to compute probabilities. 

∙	 For a continuous variable, the expected value does not characterize the distri
bution, and there would need to be infinitely many characteristic functions 
(such as X < v for every value v). While there is a closed form for some dis
tributions (such as the Gaussian or the Dirichlet distributions), in general 
the best we can do is to draw samples from the distribution. Indeed, it is 
possible that the probabilistic program is the most concise specification of 
a distribution. 

Another issue that arises with continuous variables is that when a real value 

is observed, and it is pretended to be of infinite precision, the probability of 
the observation is zero. In general, we need to be able to specify the precision 

of observations. The precision is typically more complicated than “to three 

significant digits,” and we need to model how sensors work. 

Earlier algorithms for discrete variables (e.g., Poole 1993a) extract the minimal 
explanations and compute conditional probabilities from these. Later algorithms, 
such as those used in Integrated Bayesian Agent Language (IBAL) [Pfeffer 2001], use 

sophisticated variable elimination to carry out inference in this space. IBAL’s com
putation graph corresponds to a graphical representation of the choice space of 
Figure 37.2 (but with shared structure). The original ProbLog [De Raedt et al. 2007] 
compiled the computation graph into binary decision diagrams (BDDs). More 

modern approaches [Fierens et al. 2015] compile to first-order weighted model 
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counting using better data structures for the computation graphs, exploiting more 

conditional independence, shared structure, and determinism, and allow for lifted 

inference (automatically determining when individual cases need to be reasoned 

about separately, and when we can compute a probability analytically by counting). 
In algorithms that exploit the conditional independent structure, like variable 

elimination or recursive conditioning, the order that variables are summed out or 
split can make a big difference to efficiency. In the independent choice seman
tics, there are more options available for summing out variables, thus there are 

more options available for making inference efficient. For example, consider the 

following fragment of a Simula program: 

begin 

Boolean x; 

x := draw (0.1); 

if x then 

begin 

Boolean y := draw (0.2); 

... 

end 

else 

begin 

Boolean z := draw (0.7); 

... 

end 

... 

end 

Here y is only defined when x is true and z is only defined when x is false. In the 

abductive semantics, y and z are never both defined in any world. In the indepen
dent choice semantics, y and z are defined in all worlds. Efficiency considerations 
may mean that we want to sum out X first. In the independent choice semantics, 
there is no problem, the joint probability on X and Y makes perfect sense. How
ever, in the abductive semantics, it isn’t clear what the joint probability of X and Y 

means. In order to allow for flexible elimination orderings in variable elimination 

or splitting ordering in recursive conditioning, the independent choice semantics 
is a natural choice, but we need to avoid unnecessary splitting of (sets of) worlds. 

Languages that allow worlds with continuous-valued random variables have 

inspired the development of approximate inference algorithms that become cor
rect only asymptotically with continued computation. These algorithms are de 

facto necessary because the partitions of continuous variables’ domains driven by 
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the guard functions to conditional branching (if) statements can become arbitrar
ily small. This leads to onerous program evaluation requirements like tracking the 

partitioning of each domain into subregions. Further, in most practical instances, 
it also leads to an exponential proliferation of discrete random variables that indi
cate tiny subregions of each real valued variable’s domain. This makes variable 

elimination and other exact methods impractical. 
A powerful class of general purpose inference algorithms for probabilistic pro

gramming [Milch et al. 2005, Goodman et al. 2008, McCallum et al. 2009, Nori et al. 
2014, Ritchie et al. 2016] derive from Markov chain Monte Carlo (MCMC) statistical 
inference algorithms [Neal 1993, Gelman et al. 2013]. MCMC probabilistic program
ming inference methods remain compatible with the discrete program semantics 
presented above but also work when the probabilistic programming language is 
endowed with continuous random variables. 

It is possible to do MCMC in either of the spaces of worlds above. The differ
ence arises in the way conditionally present variables are treated. In the augmented 

space, for the example above, an MCMC state would include values for all of X, 
Y, and Z. In the abductive semantics, it would contain values for X and Y when 

X = true, and values for X and Z when X = false, as Y and Z are never simulta
neously defined. Suppose in an MCMC step X’s value changes from true to false. 
In the augmented space it would just use the remembered values for Z. In the 

program-trace semantics, Z was not defined when Z was true; thus changing X 

from true to false means re-sampling all of the variables defined in that branch, 
including Z. 

Original implementations of different probabilistic programming language 

evaluators used different MCMC strategies: BLOG [Milch et al. 2005] and Church 

[Goodman et al. 2008] assigned values to all of the variables in the augmented 

space and used Gibbs sampling and trace-based MCMC, respectively. FACTORIE 

[McCallum et al. 2009] worked in what we have called the abductive space. Anglican 

[Tolpin et al. 2016] and WebPPL [Goodman and Stuhlmüller 2014] use a hybrid “ran
dom database” approach [Wingate et al. 2011], reusing the values of random vari
ables when possible while lazily pruning the store of retained sample values. Which 

of these is more efficient remains an empirical question with a program-dependent 
answer. 

van de Meent et al. [2018] provide a comprehensive overview of general purpose 

inference algorithms for probabilistic programming languages that also include 

continuous choices. Scibior et al. [2018] go some ways beyond this by establish
ing a compositional semantics for inference algorithms themselves, providing 

the theoretical basis for sound implementations of new and existing inference 

algorithms. 
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37.4 Learning 
There are many definitions of learning, but one appealing one is that we want the 

distribution of hypotheses given data. Bayes [1763] showed how to compute the 

probability that the posterior probability (conditioning on data) of some event is 
in some range; he used the beta distribution but the idea is more general. In a prob
abilistic program, we condition on a dataset—a dataset is the observations—and 

determine the distribution over the parameters of interest or use the program to 

then make predictions for other cases. In this way learning is just inference, and, as 
inference is the function of probabilistic programming languages, learning comes 
for free. 

While this reductionist view is accurate, it is often computationally advan
tageous to define learning in terms of computing a point estimate of the val
ues of some subset of the parameters of a probabilistic program. The algorith
mic workhorse of such learning is the Expectation Maximization (EM) algorithm 

[Dempster et al. 1977], as well as related marginal maximum a posteriori and 

variational inference algorithms [Wainwright and Jordan 2008]. 
Learning parameter values using EM in probabilistic programming languages 

has a long history and was described by Sato [1995] and Koller and Pfeffer [1997] 
for learning parameters (probabilities in conditional probability tables) in discrete 

models. EM also forms the basis for learning in Prism [Sato and Kameya 1997, 2001], 
IBAL [Pfeffer 2001, 2007], and many subsequent languages. Modern deep proba
bilistic programming systems [Tran et al. 2016, 2017, Uber 2018] can be purposed 

to use variational methods to learn model parameters in an EM-like way. Referenc
ing the context-free grammar example above, the production probabilities 0.7 and 

0.4 could be replaced with variables whose values could be learned from data (for 
instance, an independent identically distributed [i.i.d.] dataset of single observa
tions 7, 7, 9, 8, and 9). EM, which must integrate out the latent abstract syntax trees 
for each observation, would adjust the 0.7 and 0.4 values to be those that maximize 

the probability of producing the observed values. 
Structure learning in probabilistic programming languages was historically 

explored in the context of logic programs, where the techniques of inductive logic 
programming can be applied. De Raedt et al. [2008] overviews early research in 

this area. With the advent of universal (or Turing-complete) probabilistic program
ming languages, this has been complimented by a spectrum of work on program 

induction [Hwang et al. 2011, Lake et al. 2015, Perov and Wood 2016, Gulwani et al. 
2017]. As before, what counts as learning versus what counts as inference is some
what in the eye of the beholder. Universal languages make it possible and usually 
straightforward to specify a higher-level prior on the structure of the model itself. 
This means that the tools of automatic inference can be employed to learn model 
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structure as well as perform more traditional latent variable inference directly 
from observational data. In the context-free grammar example from above, one 

might imagine a structural change to the program that would evaluate whether 
the is_dig = false branch allows for more than one type of binary mathematical 
operation and in what proportion. Such a construct could use another “structure
level” random choice to choose between a program with one or some other num
ber of binary operators and their meanings. Whether point estimates or distri
butional outcomes for such structure learning are of interest is a problem and 

developer–specific consideration. 

37.5 Other Issues 
In addition to inference and learning, the design and implementation of prob
abilistic programming languages and systems give rise to a number of other 
fascinating and sometimes complex issues. 

One issue that arises is how to handle probabilistic programs that have not yet 
halted. Suppose, for example, that there is a Boolean query variable, and we can 

determine that its value is false in 10% of the runs, true in 20% of the runs, but the 

algorithm has not halted for the other 70% of the runs. We know the probability 
will eventually be between 0.2 and 0.9. In general, it is plausible that the samples 
that can be derived quickly might be different than the samples that require much 

computation; it is not reasonable to assume that they are a random sample. We 

also need to consider what a reasonable answer is if we know that some of the 

probability mass will not halt (e.g., if the rest of the probability mass is just in a 

never-ending loop). As another example, if the other 70% of the probability mass 
consists of searching for proofs and counter-examples to a difficult problem (such 

as P = NP), it might not be reasonable to infer any probability, and the halted 

probability mass might be unrelated to the part that has not halted. Poole [1993a] 
computed upper and lower bounds of the posterior probability of a query based on 

parts of the programs that have halted. 
As is evident in this chapter and inherent to the tensions between statistics and 

computer science, early work in computer science on probabilistic programming 

languages focused on exact probability computation in discrete variable models. In 

statistics, approximate inference in mixed continuous and discrete variable models 
was and remains the focus [Spiegelhalter et al. 1995, Stan Development Team 2014]. 
One might ask in this light, is it not silly to compute pretending we have real con
tinuous values when digital computers use inherently discrete representations? 
Furthermore, isn’t it silly to pretend as if a measured value has infinite precision 

rather than being, maximally, a statement that a value lives in some precision 
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range? Answering these questions forces us to consider issues that range from the 

practical to deep mathematical semantics. Programming languages have nearly 
always been endowed with continuous-valued variables (but typically to finite pre
cision). It is convenient to use such types. Unfortunately, unlike the possible worlds 
discrete semantics discussed earlier in this chapter that are only applicable to dis
crete random-variable languages, the very mathematical meaning of higher-order 
probabilistic programs with continuous random variables was only very recently 
established and in fact required new measure-theoretic mathematical foundations 
[Staton et al. 2016, Heunen et al. 2017, Staton 2017, Scibior et al. 2018]. 

37.6 Causal Models 
It is interesting that the research on causal modeling and probabilistic program
ming languages have gone on in parallel, with similar foundations, but only 
recently have researchers started to combine them by adding causal constructs 
to probabilistic programming languages [Finzi and Lukasiewicz 2003, Baral and 

Hunsaker 2007, Vennekens et al. 2009]. 
In some sense, the programming languages can be seen as representations 

for all of the counterfactual situations. A programming language gives a model 
when some condition is true, but also defines the “else” part of a condition: what 
happens when the condition is false. 

In the future, we expect that programming languages will be the preferred way 
to specify causal models, and for interventions and counterfactual reasoning to 

become part of the repertoire of probabilistic programming languages. 

37.7 Some Pivotal References 
Probabilistic Horn abduction [Poole 1991, 1993b] was the first language with a prob
abilistic semantics that allowed for conditioning. The initial parts of this chapter 
were presented there in the context of logic programs. Probabilistic Horn abduc
tion was refined into the Independent Choice Logic [Poole 1997] that allowed for 
choices made by multiple agents, where there is a clean integration with nega
tion as failure [Poole 2000]. Prism introduced learning into essentially the same 

framework [Sato and Kameya 1997, 2001]. More recently, ProbLog [De Raedt et al. 
2007] has become a focus to implement many logical languages into a common 

framework. 
In parallel to the work on probabilistic logic programming languages has been 

work on developing probabilistic functional programming languages starting with 

Stochastic Lisp [Koller et al. 1997], including IBAL [Pfeffer 2001, 2007], A-Lisp [Andre 
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and Russell 2002], Church [Goodman et al. 2008], Venture [Mansinghka et al. 2014], 
and Anglican [Tolpin et al. 2016]. 

Other probabilistic programming languages are based on more imperative lan
guages such as CES [Thrun 2000] and probabilistic-C [Paige and Wood 2014], both 

based on C, Turing [Ge et al. 2018] based on Julia, and the languages BLOG [Milch 

et al. 2005] and FACTORIE [McCallum et al. 2009] based on object-oriented lan
guages. BLOG concentrates on number and identity uncertainty, where the prob
abilistic inputs include the number of objects and whether two names refer to 

the same object or not. Modern production languages such as STAN [Stan Devel
opment Team 2014] and related research languages [Zhou et al. 2019] also use 

imperative syntactic constructs. 
The most modern probabilistic programming systems use imperative syntax 

and are implemented as domain-specific embedded languages within host lan
guages that include automatic differentiation capabilities. These languages allow 

interesting marriages to form between deep learning and probabilistic program
ming techniques. Besides research languages like PyProb [Le et al. 2017] and 

ProbTorch [Siddharth et al. 2017], modern industrial giants have invested heavily 
as well in languages like Pyro [Uber 2018] and Tensorflow Probability/Edward [Tran 

et al. 2016]. 
The distinctions discussed here in terms of syntactic variation are more care

fully picked apart in terms of language capability by van de Meent et al. [2018]. 
Unlike this work which touches on delineations of languages that allow discrete 

and continuous random variables, they posit a sharp transition between languages 
that allow a finite number of random variables and those that do not. In the finite 

case, direct compilation correspondences are established to graphical models. In 

the infinite case, general purpose inference algorithms are explained, up to and 

including the variational techniques employed in the most modern systems. 

37.8 Conclusion 
This chapter has concentrated on the foundational similarities, rather than the 

differences, between the probabilistic programming languages. 
There has been considerable research in probabilistic programming over the 

last few years, with multiple languages developed and a better understanding of the 

principles underlying any probabilistic programming language [van de Meent et al. 
2018]. There have also been considerable advances in both exact and approximate 

inference algorithms to the point where they are now routinely used for real-world 

problems. Probabilistic programming languages have an exciting future. 
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Judea Pearl’s insight that, when errors are assumed independent, the Pure (aka 

Natural) Direct Effect (PDE) is non-parametrically identified via the Mediation 

Formula was “path-breaking” in more than one sense. In the same paper, Pearl 
described a thought-experiment as a way to motivate the PDE. Analysis of this 
experiment led Robins and Richardson to a novel way of conceptualizing direct 
effects in terms of interventions on an expanded graph in which treatment is 
decomposed into multiple separable components. We further develop this novel 
theory here, showing that it provides a self-contained framework for discussing 

mediation without reference to cross-world (nested) counterfactuals or interven
tions on the mediator. The theory preserves the dictum “no causation with
out manipulation” and makes questions of mediation empirically testable in 

future randomized controlled trials. Even so, we prove the interventionist and 

nested counterfactual approaches remain tightly coupled under a non-parametric 
structural equation model except in the presence of a “recanting witness.” In 

fact, our analysis also leads to a simple, sound, and complete algorithm for 
determining identification in the (non-interventionist) theory of path-specific 
counterfactuals. 

An Interventionist 
Approach to Mediation 
Analysis 
James M. Robins (Harvard T. H. Chan School of Public Health),
 
Thomas S. Richardson (University of Washington),
 
Ilya Shpitser (Johns Hopkins University)
 

38.1 Introduction 
In the companion paper [Chapter 41], we described graphical counterfactual mod
els corresponding to the finest fully randomized causally interpretable struc
tured tree graph (FFRCISTG) models of Robins [1986]. Such models correspond to 
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conditional independencies encoded by the d-separation criterion in single-world 

intervention graphs (SWIGs). We gave a general identification theory for treatment 
effects in such models with hidden variables that is a generalization of the theory 
described in [Tian and Pearl 2002, Shpitser and Pearl 2006a]. We also described 

the differences between the FFRCISTG/SWIG model and the non-parametric 
structural equation model with independent errors (NPSEM-IE). 

Given that a treatment effect of A on Y is established, it is often desirable to try 
to understand the contribution to the total effect of A on Y of the other variables M 

that lie on causal pathways from A to Y . Variables lying on the causal pathways are 

called mediators of the effect of A on Y . This leads to consideration of direct and 

indirect effects. Several different types of direct effect have been considered previ
ously. Most have asked whether “the outcome (Y) would have been different had 

cause (A) been different, but the level of the mediator (M) remained unchanged.” 
Differences arise regarding what it means to say that M remains unchanged. 

In Section 38.2, we will first review these notions, the assumptions under which 

they are identified and the extent to which identification claims can be verified (in 

principle) via an experiment. These considerations will lead to a novel way of con
ceptualizing direct effects introduced in Robins and Richardson [2010] and gener
alized in Section 38.3 herein. This novel interventionist approach does not require 

counterfactuals defined in terms of the mediator. We first describe our interven
tionist approach to causal mediation analysis in the context of direct and indirect 
effects. This approach (i) need not assume that the mediator M has well-defined 

causal effects and/or counterfactuals, but (ii) instead hypothesizes that treatment 
variable A can be decomposed into multiple separable components each contribut
ing to the overall effect of treatment, (iii) preserves the dictum “no causation 

without manipulation,” (iv) makes questions of mediation empirically testable in 

future randomized controlled trials, (v) may facilitate communication with subject 
matter experts, and (vi) when identified from data, the identifying formulae under 
an interventionist approach and those obtained from the other (mediator-based) 
approach are identical; however, the causal effects being identified differ since 

they refer to intervening on different variables. This theory has been extended and 

applied by others in the context of mediation in survival analysis [Didelez 2019, 
Aalen et al. 2020] and recently to competing risks [Stensrud et al. 2020a, 2020c] and 

interference problems [Shpitser et al. 2017]; see also Lok [2016]. 
Finally, in Section 38.4, we extend this approach to arbitrary (identified) path-

specific effects. This allows the (generalized) ID algorithm described in Chapter 41 
plus one extra step to be used as a sound and complete algorithm for deter
mining the identification of path-specific distributions; we also provide a version 
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for handling conditional queries. Finally, we describe the differences between 

the nested counterfactual approach and the interventionist approach under non-
identification. 

38.2 Approaches to Mediation Based on Counterfactuals Defined in 
Terms of the Mediator: The CDE and PDE 
One approach to having M remain unchanged would be for M to be fixed via an 

intervention. On this view both A and M are treatments, and we consider the dif
ference between an intervention setting A to a and M to m versus an intervention 

′ setting A to a and M to m. This leads to the definition of a controlled direct effect 
(CDE): 

′ CDEa,a ′ (m) ≡ E[Y(a , m) − Y(a, m)], (38.1) 

where Y(a, m) is the counterfactual response of Y had A and M been set, possibly 
contrary to fact, to values a and m, respectively. Note that there is a controlled direct 
effect for every value m of M. Given a causal graph 𝒢, a straightforward applica
tion of graphical causal identification theory1 determines whether the distribution 

P(Y(a, m)), and thus whether the CDEa,a ′ (m) contrast, is identified. 
There are situations in which other notions of direct effect are more natural. In 

particular, there are contexts in which we wish to know whether A taking the value 

of a ′ (rather than the baseline level a) would lead to a change in the value of Y if the 
′ effect of A on M were “blocked.” Specifically, if the effect on M of A taking a was 

blocked so that the mediator M takes the value M(a) that M would take were A set 
to the baseline value a. 

Along these lines, in many contexts we may ask what “fraction” of the (total) 
effect of A on Y may be attributed to a particular causal pathway. For example, con
sider a randomized controlled trial that investigates the effect of an anti-smoking 

intervention (A) on the outcome myocardial infarction (MI) at 2 years (Y) among 

non-hypertensive smokers. For simplicity, assume everyone in the treatment arm 

and no one in the placebo arm quit cigarettes, that all subjects were tested for new-
onset hypertension (M) at the end of the first year, and no subject suffered an MI 
in the first year. Hence A, M, and Y occur in that order. Suppose the trial showed 

smoking cessation had a beneficial effect on both hypertension and MI. It is nat
ural to ask: “What fraction of the total effect of smoking cessation (A) on MI (Y) is 
via a pathway that does not involve hypertension (M)?” 

1. See the companion paper [Chapter 41] in this volume and references therein. 
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These ideas lead to the pure direct effect2 (PDE) defined in Robins and Greenland 

[1992], which in counterfactual notation can be written as follows: 

′ ′ PDEa,a ′ ≡ E[Y(a , M(a)) − Y(a, M(a))] = E[Y(a , M(a)) − Y(a)]. (38.2) 

This is the difference between two quantities: first, the outcome Y that would 

result if we set A to a ′ , while “holding fixed” M at the value M(a) that it would have 

taken had A been a; second, the outcome Y that would result from simply setting A 

to a [and thus having M again take the value M(a)]. In Robins and Greenland [1992], 
′ the first was alternately described as the result of setting A to a on Y when the effect 

of A on M is blocked, thereby leaving M unchanged from its reference value M(a). 
Thus the PDE interprets had “M remained unchanged” to mean “had (somehow) 
M taken the value that it would have taken had we fixed A to a.” 

As another application of this idea, Pearl [2009, p. 131] cites the following legal 
opinion arising in a discrimination case: “The central question in any employment 
discrimination case is whether the employer would have taken the same action had the 
employee been of a different race (age, sex, religion, national origin etc.) and everything 
else had been the same.” [Carson vs. Bethlehem Steel Corp., 70 FEP Cases 921, 7th 

Cir. (1996)]. 
Here A corresponds to membership in a protected class, while M corresponds 

to criteria, such as qualifications, that are permitted to be considered in such 

decisions. If the PDE is non-zero, then discrimination has taken place. 
A notion of the indirect effect may be defined similarly, using the nested coun

′ terfactual Y(a , M(a)). On the additive scale, direct and indirect effects may be used 

to give a decomposition of the average causal effect [Robins and Greenland 1992]: 

(38.3) 
′ Notice that the PDE depends on Y(a , M(a))—a variable in which two different 

levels of a are nested within the counterfactual for Y . Consequently, in contrast to 

CDEa,a ′ , this counterfactual does not correspond to any experimental intervention 

on A and M. This is because in order to know the value M(a) for a unit, it is neces
sary to set A to a, but this then precludes setting A to a ′ . This is a manifestation of 
the fundamental problem of causal inference: it is not possible for a single unit to 

2. Also called the natural direct effect in Pearl [2001]. 
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receive two different levels of the same treatment at the same time. For this reason, 
′ the counterfactual Y(a , M(a)) is referred to as a cross-world counterfactual.3 

The differences in the assumptions made by the FFRCISTG and NPSEM-IE 

models lead to quite different identification results for the PDE in the context 
of the simple DAG shown in Figure 38.3(a). These differences reflect important 
epistemological distinctions between the two frameworks that are described in 

Sections 38.2.3 and 38.2.4 below. 

Two Hypothetical River Blindness Treatment Studies 
We will use as a running example the following pair of hypothetical studies that 
are represented together in the single causal graph shown in Figure 38.1(a), as 
described below: A random sample of individuals in an impoverished medically 
underserved catchment area are selected to participate in a double-blind placebo 

controlled randomized trial (A = 1 selected, A = 0 otherwise) of single dose ther
apy with the drug ivermectin (M = 1 received the drug, M = 0 otherwise) for the 

treatment of onchocerciasis (river blindness). The outcome is diminished vision 

9 months later (Y = 1 if worse than 20/100 and Y = 0 otherwise). All subjects 
in the trial complied with their assigned therapy. The trial was motivated in part 
by the fact that ivermectin was already being sold by local shop owners as a cure 

for river blindness without evidence for effectiveness or safety in the local popula
tion. After the trial finished, a non-governmental organization carried out a retro
spective observational cohort study on a random subset of non-selected subjects 
(A = 0), collecting data on M and Y . 

In a subset of patients ivermectin can actually decrease visual acuity. This 
occurs when the larvae in the eye killed by ivermectin induce an overvigorous 
immune response. Because of this side effect, a clinic available to all trial partici
pants was established to screen for the above side-effect and treat with immuno
suppressive drugs if required (R = 1 if treated with immunosuppressants, R = 0 

otherwise) to prevent further eye damage. The patients not selected for the study 
had neither access to the clinic nor to immunosuppressive therapy. Thus letting 

S = 1 (S = 0) denote access (no access) to a clinic, we have S = 1 iff A = 1 and R = 0 

if A = 0. Finally we let U denote an unmeasured variable with U = 1 and U = 0 

denoting individuals with greater versus lesser propensity to take medical treat
ments if offered. In the unselected subjects (A = 0), U is thus positively correlated 

with M. In contrast, owing to random assignment of M, U, and M are independent 
in selected subjects (A = 1). On the other hand, in selected subjects, conditional 

3. Formally, we will say that a counterfactual expression is cross-world if it involves assigning more 
′ ′ than one value to a single index such as a and a in Y(a , M(a)). 
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Figure 38.1	 (a) A DAG 𝒢 representing the underlying structure in the combined observational and 
randomized trial of treatments for river blindness. Shaded variables are not observed. 
Here A indicates a randomized trial (a = 1) or an observational study (a = 0); M is 
whether the patient received ivermectin; Y is the patient’s vision; S indicates access 
to a clinic; R is treatment with immunosuppressants; U indicates the inclination of 
the patient to avail themselves of medical care that is offered. (b) The SWIG 𝒢(a, m) 
resulting from 𝒢; (c) and (d) show SWIGs 𝒢(a = 0, m) and 𝒢(a = 1, m) that incor
porate additional context-specific causal information. (a*), (b*), (c*), (d*) show the 
corresponding latent projections. 

on M, U is positively correlated with R and thus with Y ; in unselected subjects U 

and Y are independent given M because treatment with R is not available. (Here 
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we assume U has an effect on Y only through the treatments actually received.) 
Finally, records recording which of the selected subjects received immunosuppres
sive therapy in the trial were destroyed in a fire so the data available for analysis 
were solely (A, M, Y), the same variables available in the observational study. 

The PDE and CDE in the River Blindness Studies 
We next explain the meaning of the CDE and PDE in the context of the ivermectin 

studies. There we suppose the true data-generating process is as described by the 

DAG in Figure 38.2(a). Recall that the corresponding latent projection4 is given in 

Figure 38.1(a*) because in Figure 38.1(a) there is a causal path from A to Y , and 

U is a common cause of M and Y . In this context M(a = 0) is the ivermectin treat
ment that the patient would select in the observational study where A is 0. Likewise 

Y(a = 1, M(a = 0)) is the patient’s outcome if they received the ivermectin treat
ment as in the observational study (where A is 0) but, as in the randomized study 
(where A is 1), a clinic (S = 1) was made available to them.5 To see why, note 

that Y(a = 1, M(a = 0)) corresponds to the effect of setting a = 1 on Y through 

all causal pathways (S → R → Y) not passing through ivermectin (M) when M 

remains at its self-selected value M(a = 0) in the observational study. Finally, 
Y(a = 0) ≡ Y(a = 0, M(a = 0)) is the patient’s outcome if they were assigned 

to the observational study and did not have access to the clinic. The PDE is the 

mean of the difference Y(a = 1, M(a = 0)) − Y(a = 0, M(a = 0)). 
The CDE(m = 0) is the mean effect on Y of having (s = 1) versus not hav

ing (s = 0) a clinic available had no one received ivermectin (m = 0).6 Likewise, 

A a = 0 s = 1

M(a
0
)

S(a
0
)

m

U R(s
1
, m)

Y(s
1
, m)

The SWIG 𝒢(a = 0, s = 1, m) associated with the DAG shown in Figure 38.1(a); here a0 

and s1 are short for a = 0 and s = 1. 

4. See Section 41.4.1 in the companion paper [Chapter 41] in this volume for this definition and 

other standard graphical definitions. 

5. If patients know that a clinic is available then this may influence their decision to take iver
mectin; thus, in order for the patient’s decision to be as in the observational study, they would 

need to make decisions relating to ivermectin treatment before being told that a clinic is available. 

6. This is because Y(a, m) = Y(S(a), m) = Y(s, m) since S(a) = a. 
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CDE(m = 1) is the clinic effect when all subjects received ivermectin (m = 1). In con
trast, as noted above, the PDE is the mean effect of having versus not having a clinic 
available had subjects chosen ivermectin treatment (M) as in the observational 
study. 

Identification of the CDE in the River Blindness Studies 
We next consider whether the CDE(m = 0) and CDE(m = 1) are identified from the 

available data on A, M, and Y . From examining the latent projection shown in Fig
ure 38.1(a*), one would expect that the CDE is not identified owing to the bidirected 

edge M ↔ Y . In particular, identification does not follow from existing methods 
such as the do-calculus, the ID algorithm,7 or the back-door criterion [Pearl 2009], 
although see Tikka et al. [2019]. 

However, we will now show, perhaps surprisingly, that we do have identification 

of the CDE. This is a consequence of context specific independencies. Although 

such independencies cannot be represented using standard causal DAGs (or their 
latent projections) an extension to context-specific SWIGs due to Dahabreh et al. 
[2019] and Sarvet et al. [2020] makes this possible. 

Consider the SWIG 𝒢(a, m) resulting from a joint intervention setting A to a and 

M to m as shown in Figure 38.1(b) and its latent projection shown in Figure 38.1(b*). 
This SWIG 𝒢(a, m), shown in Figure 38.1(b), represents the conditional indepen
dence relations that hold for all four of the possible counterfactual distributions 
(a, m ∈ {0, 1}) resulting from jointly intervening on A and M. 

Consider the two interventions setting a = 1 and m ∈ {0, 1}. These interventions 
correspond to performing the randomized trial in which treatment M is randomly 
assigned and thus U ⊥⊥ M(a = 1). Consequently, the distribution of the counter
factuals may be represented by the SWIG 𝒢(a = 1, m), shown in Figure 38.1(d), in 

which the edge U → M(a = 1) is absent. 
Now consider the remaining two interventions setting a = 0, that is, assigned 

to the observational study. Recall that the clinic (S) and (hence) treatment with 

immunosuppressants (R) are only available to those people who were selected 

for the trial (a = 1). Thus, for all subjects in the observational study (a = 0), 
S(0) = R(0, m) = 0. Consequently, U ⊥⊥ R(a = 0, m) | A, M(a = 0), since the incli
nation (U) of the patient does not affect whether they have access to immunosup
pressants. Hence the distribution of the counterfactuals may be represented by the 

7. Note that the ID algorithm is complete [Shpitser and Pearl 2006a] with respect to models 
defined in terms of the independences holding in a (standard) causal DAG; these independences 
are not context specific. 
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SWIG 𝒢(a = 0, m), shown in Figure 38.1(c), in which the edge U → R(a = 0, m) is 
absent.8 

Applying d-separation to the latent projections in Figure 38.1(c*) and (d*), we 

see that9 

Y(a, m) ⊥⊥ M(a), A for a = 0, 1. (38.4) 

Consequently, since Y = Y(a, M(a) = m) on the event A = a, M(a) = m, 

p(Y | A = a, M = m) = p(Y(a, m)), (38.5) 

is identified for both a = 0 and a = 1. Hence the CDE(m) of A and M on Y is 
identified. 

As noted above, the identification (Equation (38.5)) does not follow from the 

DAG in Figure 38.1(a), with the latent projection in Figure 38.1(a*). However, the 

independences U ⊥⊥ R(a = 0, m) | A, M(a = 0) and U ⊥⊥ M(a = 1) | A can be encoded 

by and read from the context-specific SWIGs shown in Figure 38.1(c) and (d), 
respectively.10 

Together with consistency, these independences imply, respectively, U ⊥⊥ R | A = 

0 and U ⊥⊥ M | A = 1. Since, in addition to Equation (38.4), we also have 

M(a) ⊥⊥ A for a = 0, 1, it follows that the distribution of the counterfactuals 
{A, M(a), Y(a, m) for all a, m} obeys the FFRCISTG model associated with the graph 

shown in Figure 38.3(a) in which there are no bi-directed edges. Interestingly, we 

show below in Section 38.2.5 that M(a = 0) ̸⊥⊥ Y(a = 1, m). Consequently, the 

distribution of the counterfactuals does not obey the NPSEM-IE associated with 

Figure 38.3(a), and thus as discussed below, the PDE is not identified without 
additional assumptions beyond those of the NPSEM-IE model.11 

8. Since S(0) and R(0, m) are constants we could also leave out the edges S(0) → R(0, m) and 

m → R(0, m) on the same basis, but this would not change our conclusions. 

9. Recall that when testing d-separation in SWIGs, fixed nodes such as a = 0 in Figure 38.1(c*) 
and a = 1 in Figure 38.1(d*) always block paths they occur on (when they are not end points). 

10. These independences cannot be read from the SWIG 𝒢(a, m) shown in Figure 38.1(b) that was 
constructed from 𝒢. Note that the graph 𝒢(a, m) contains the union of edges in the two context-
specific SWIGs 𝒢(a = 0, m) and 𝒢(a = 1, m) shown in Figure 38.1(c) and (d), respectively. 𝒢(a, m) 
thus represents the (non-context-specific) conditional independence relations that are common 

to all four instantiations a, m ∈ {0, 1}. 

11. The distribution does obey the NPSEM-IE (hence also the FFRCISTG) associated with Fig
ure 38.1 (a*) that includes the M ↔ Y edge; see also Footnote 23. 
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Figure 38.3	 (a) A simple DAG 𝒢 representing a causal model with a treatment A, a mediator M, and 
a response Y . (b) An expanded causal model where N and O are a decomposition of A; N 
and O are, respectively, the nicotine and non-nicotine components of tobacco. Thicker 
red edges indicate deterministic relations. (c) An expanded version 𝒢ex of the DAG 𝒢 in 
(a), and an edge subgraph of the DAG in (b), where N does not cause Y directly, and O 
does not cause M directly. In this graph the direct and indirect effects of A on Y may be 
defined via interventions on N and O. (d) Special case of (c) in which A plays the role of 
O; (e) Special case of (c) in which A plays the role of N. 

38.2.3	 Identification of the PDE via the Mediation Formula under the
 
NPSEM-IE for Figure 38.3(a)
 
We now consider the situation in which, unlike the ivermectin example above, the 

NPSEM-IE associated with the graph in Figure 38.3(a) holds. In this case the PDEa,a ′ 

is identified via the following Mediation Formula [Pearl 2001, 2012]: 

meda,a ′ ≡ ∑(E[Y | m, a] − E[Y | m, a ′])p(m | a ′) (38.6) 
m 

= ∑ E[Y | m, a]p(m | a ′)
) 

− E[Y | a ′]. (38.7)
( m 

The proof of this result under the NPSEM-IE is as follows: 

p(Y(a, M(a ′) = m) = y) 
= ∑ p(Y(a, M(a ′) = m) = y | M(a ′) = m)p(M(a ′) = m) 

m 

= ∑ p(Y(a, m) = y)p(M(a ′) = m) 
m 

= ∑ p(Y = y | A = a, M = m)p(M = m | A = a ′). 
m 

Here the first line follows from elementary probability, the second from the 

cross-world NPSEM-IE independence: 

Y(a, m) ⊥⊥ M(a ′) 

which follows from (41.5); the third follows from the FFRCISTG indepen
dence (41.6) and thus also from (41.5). Under the NPSEM-IE associated with 

Figure 41.5 (a*) identification fails because this cross-world independence does not 
hold. 
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Partial Identification of the PDE Under the FFRCISTG for Figure 38.3(a) 
In contrast, under the less restrictive FFRCISTG model associated with the graph 

in Figure 38.3(a), the PDE is not, in general, identified. This follows from the fact 
that the second equality in the previous proof relies on the cross-world indepen
dence Y(a, m) ⊥⊥ M(a ′); but the FFRCISTG model does not assume any cross-world 

independencies. However, under the FFRCISTG the observed data implies bounds 
on the PDE. For example, in the case in which M and Y are binary we have the 

following sharp bounds [Robins and Richardson 2010]: 

max{0, p(M = 0 | A = a ′) + p(Y = 1 | A = a, M = 0) − 1}+ 

max{0, p(M = 1 | A = a ′) + p(Y = 1 | A = a, M = 1) − 1} − p(Y = 1 | A = a ′) 

≤ PDEa,a ′ ≤ 

min{p(M = 0 | A = a ′), p(Y = 1 | A = a, M = 0)}+ 

min{p(M = 1 | A = a ′), p(Y = 1 | A = a, M = 1)} − p(Y = 1 | A = a ′). 

A proof is given in the Appendix. 

An Example in Which an FFRCISTG Model Holds, but an NPSEM-IE 
Does Not 
The differing results on identifiability for the PDE in the previous two sections 
raise the question as to whether it is most appropriate to adopt the NPSEM-IE 

(41.5) or FFRCISTG (41.6) assumptions in practice. As shown above, this choice 

matters since if one assumes the NPSEM-IE associated with the simple graph in 

Figure 38.3(a) then one will believe the PDE is point identified, while if one assumes 
the FFRCISTG associated with Figure 38.3(a) only bounds may be obtained. 

It has been argued that it is hard to conceive of a realistic data-generating pro
cess under which the FFRCISTG model holds, but the NPSEM-IE model does not. 
However, we now show that the river blindness studies described above provides a 

counterexample. 
Recall that due to records being destroyed in a fire, only the three variables 

(A, M, Y) are observed. The first (A) is randomly assigned and the analyst assumes 
(possibly incorrectly) that there is no other variable (either measured or unmea
sured) that is a cause of both the mediator M and the final response Y . This 
hypothesis would imply the causal structure depicted in Figure 38.3(a). The graph 

in Figure 38.3(a) would be the latent projection of Figure 38.1(a) if it were assumed 

incorrectly that there is no unmeasured confounder U. Both the FFRCISTG and 

NPSEM-IE models associated with Figure 38.3(a) imply: 

Y(a, m) ⊥⊥ M(a), for a = 0, 1. (38.8) 
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The NPSEM-IE also implies the cross-world independence: 

Y(a = 1, m) ⊥⊥ M(a = 0). (38.9) 

We have already shown that the underlying data-generating process in the iver
mectin example implies Equation (38.8); see Equation (38.4) above. We now show 

that Equation (38.9) fails to hold for almost all laws corresponding to the NPSEM
IE associated with Figure 38.1(a). This remains true even if we impose, in addition, 
the context-specific counterfactual independences needed to identify the CDE that 
are encoded in Figure 38.1(c) and (d). 

To see this, first consider the SWIG 𝒢(a = 0, s = 1, m) shown in Figure 38.2 

that is constructed from the DAG in Figure 38.1(a). There is a d-connecting path 

Y(s = 1, m) to M(a = 0), namely M(a = 0) ← U → R(s = 1, m) → Y(s = 1, m). 
Consequently, for almost all distributions in the FFRCISTG model, it holds that 
M(a = 0) ⊥⊥ Y(s = 1, m).12 Further, we have: 

Y(s = 1, m) = Y(S(a = 1), m) = Y(a = 1, m), 

we use that, due to determinism, S(a = 1)where in the first equality = 

1 for all individuals; the second follows from recursive substitution.13 Hence 

Equation (38.9) does not hold14 from which it follows that the PDE is not iden
tified; see Appendix 38.A.2. Consequently, the distribution of the counterfactuals 
{A, M(a), Y(a, m) for all a, m} is not in the NPSEM-IE model associated with Fig
ure 38.3(a). Interestingly we see that by considering a SWIG with interventions on 

three variables A, S, and M we have shown that the FFRCISTG model plus recur
sive substitution and some determinism can be used to prove that a cross-world 

independence fails to hold; see Footnote 23 and Appendix 38.A.3. 
Finally, we note that in the ivermectin example the Acyclic Directed Mixed 

Graph (ADMG)15 with fewest edges (over A, M, Y) that represents the distribution 

of the counterfactuals {A, M(a), Y(a, m) for all a, m} is Figure 38.3(a) under the FFR
CISTG. In contrast, the minimal ADMG that represents this distribution under the 

NPSEM-IE is the graph with an additional bi-directed confounding arc shown in 

Figure 38.1(a*). This has the following interesting consequence: typically, people 

12. This is also true if we assume the NPSEM-IE associated with the graph in Figure 38.1(a). 

13. See Equation (41.1) in Chapter 41 in this volume. 

14. Intuitively, this should not be surprising since U is a “common cause” of M(a = 0) and Y(a = 

1, m) in that U → M(a = 0) in Figure 38.1(c) while there is a path U → R(a = 1, m) → Y(a = 1, m) 
in Figure 38.1(d). 

15. see Section 41.2.1 in Chapter 41 in this volume. 
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may make a statement such as “Figure 38.3(a) is the true causal graph.” How
ever, we now see that this statement does not have a truth-value without clarifying 

whether we are referring to the NPSEM-IE or the FFRCISTG as the true underlying 

counterfactual model. 
On the other hand, one might prefer to replace “Figure 38.3(a)” with 

“Figure 38.1(a*)” in the statement above, since then the modified statement holds 
for both counterfactual models;16 furthermore, Figure 38.1(a*) accurately indicates 
that there is confounding for the PDE. However, the disadvantage of this choice is 
that the inclusion of the bi-directed edge M ↔ Y does not reveal that the CDE is 
identified via E[Y(a, m) | A = a, M = m] = E[Y | A = a, M = m]. 

Testable Versus Untestable Assumptions and Identifiability 
Given a graph such as Figure 38.3(a), in principle, there is an empirical test of 
the FFRCISTG model.17 However, there is no additional empirical test (on the 

variables in the graph) for the extra assumptions made by the corresponding 

NPSEM-IE, which are required to identify the PDE. Consequently, there is a quali
tative distinction in the testability of the identification assumptions for these two 

contrasts. 
In more detail, identification of the CDE(m), m = 0, 1 is, in principle, subject 

to direct empirical test: one conducts a four-armed randomized experiment on 

subjects drawn from the same population, in which both A and M are randomly 
assigned to their four possible joint values. If for any (a, m) the distribution in the 

four-arm (A, M) randomized trial p(Y(a, m) = y)18 differs from the conditional dis
tribution in the two-armed trial p(Y(a) = y | M(a) = m) = p(Y = y | M = m, A = a) 
in which only A was randomized, then we may infer that an unmeasured com
mon cause was present between M and Y and hence it was incorrect to postulate 

the causal DAG in Figure 38.3(a), regardless of whether we are considering the 

FFRCISTG or NPSEM-IE models associated with this graph. 

16. Since the distribution of {A, M(a), Y(a, m) for all a, m} obeys the FFRCISTG corresponding to 

Figure 38.3(a), which is a subgraph of Figure 38.1(a*), the distribution also obeys the FFRCISTG 

corresponding to this latter graph. 

17. Formally, this requires that one can observe the “natural” value of a variable prior to 

intervention. 

18. Here and throughout this section, we will use p(A, M, Y) to denote the observed distribution 

in which only A is randomized; we will use {p(Y(a, m)) for a, m ∈ {0, 1} to indicate the four distri
butions that would be observed if both A and M were to be randomized in a four-arm trial. This is 
because in such a trial in the arm in which people are assigned to A = a, M = m we would observe 

the counterfactual Y(a, m). 
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In contrast, whether the PDE equals the mediation formula (38.7) cannot be 

empirically tested using data on (A, M, Y). Even if we can directly manipulate M (in 

addition to A), there is no experiment involving A and M such that the resulting 

contrast corresponds to the PDE. This is for the following reason: to observe, for 
a given subject, the cross-world counterfactual Y(a = 1, M(a = 0)) that occurs in 

the PDE, one would need to “first” assign them to a = 0 and record M(a = 0), 
and “then” perform a “second” experiment (on the same subject) in which they are 

assigned to a = 1 and the recorded value M(a = 0) from the “first” experiment. 
However, this is usually not possible for the simple reason that having assigned 

the patient to a = 0 in the “first” experiment precludes “subsequently” assigning 

them to a = 1, except in the rare circumstances where a valid cross-over trial is 
feasible. 

These considerations are particularly relevant in a setting such as the ivermectin 

example, where, as shown above, the distribution over the counterfactual variables 
{A, M(a), Y(a, m) for all a, m} obeys the FFRCISTG but not the NPSEM-IE model 
associated with the causal DAG in Figure 38.3(a). In particular, an analyst who was 
unaware of the variables U, R, S in Figure 38.1(a) and posited the model in Fig
ure 38.3(a) would find no evidence of confounding between M and Y even if they 
were to subsequently perform a four-arm (A, M) randomized trial. 

In summary, the PDE identification via the mediation formula (38.7) requires 
not only that there be no detectable single-world confounding between M and Y 

(as assumed by the FFRCISTG), but, in addition, that undetectable cross-world 

confounding also be absent.19 Consequently, as with the ivermectin example, it is 
possible for the mediation formula to give an inconsistent estimate of the PDE, 
yet for this to be undetectable given any randomized experiment that could be 

performed using the variables A, M, Y on the graph in Figure 38.3(a). 

38.3 Interventionist Theory of Mediation 
The above considerations motivate a theory of mediation based on interventions 
on sub-components of treatment, rather than on the mediator. 

38.3.1 Interventional Interpretation of the PDE Under an Expanded Graph 
As described above, the counterfactual E[Y(a = 1, M(a = 0))] and thus the PDE 

cannot be empirically tested by any intervention on the variables on the graph. 

19. If, after carrying out an experiment in which A and M are randomly assigned, it is observed 

that p(Y(a,m)) and p(Y | A = a, M = m) are statistically indistinguishable, then this would almost 
certainly increase the probability that a Bayesian would assign to cross-world independence hold
ing. However, the ivermectin example shows the importance of the investigator—Bayesian or 
not—thinking carefully about the underlying data-generating mechanism. 
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However, curiously, Pearl has often argued that the PDE is a causal contrast of sub
stantive and public-health importance by offering examples along the following 

lines. 

Example: Nicotine-Free Cigarette 

Consider the example discussed in Section 38.2 where we have data from a ran
domized smoking-cessation trial. We have data available on smoking status A, 
hypertensive status M 6 months after randomization, and myocardial infarction 

(MI) status Y at 1 year. 
Following a similar argument given in Pearl [2001]20 to motivate the PDE, sup

pose that nicotine-free cigarettes will be newly available starting a year from now. 
The substantive goal is to use the already collected data from the smoking cessa
tion trial to estimate the difference two years from now in the incidence of MI if all 
smokers were to change to nicotine-free cigarettes when they become available (in 

a year) compared to the incidence if all smokers were to stop smoking altogether 
(in a year). 

Further suppose it is believed that the entire effect of nicotine on MI is through 

its effect on hypertensive status, while the non-nicotine toxins in cigarettes have 

no effect on hypertension and that there do not exist unmeasured confounders for 
the effect of hypertension on MI. 

In this context, a researcher following the approach that has been advocated by 
Pearl may postulate that the smoking cessation trial is represented by the NPSEM
IE model associated with Figure 38.3(a). Under these assumptions, the MI inci
dence in smokers of cigarettes free of nicotine would be E[Y(a = 1, M(a = 0))] 
since the hypertensive status of smokers of nicotine-free cigarettes will equal their 
hypertensive status under non-exposure to cigarettes. Thus E[Y(a = 1, M(a = 0))] 
is precisely the incidence of MI in smokers two years from now were all smokers to 

change to nicotine-free cigarettes a year from now, and thus the PDE: 

PDE = E[Y(a = 1, M(a = 0))] − E[Y(a = 0, M(a = 0))] (38.10) 

is the causal contrast of interest. 
Given the assumption of an NPSEM-IE, it follows that E[Y(a = 1, M(a = 0))] 

equals ∑m E[Y | A = 1, M = m]p(m | A = 0), and therefore the PDE is identified from 

the mediation formula applied to the data from the smoking cessation trial. 

20. Pearl [2001, section 2] considers a similar example, but where A is a drug, M is aspirin taken 

to mitigate side-effects, and Y is the final outcome. 
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What is interesting about Pearl’s motivation is that to argue for the substantive 

importance of the parameter E[Y(a = 1, M(a = 0))], he tells a story about the effect 
of a manipulation—a manipulation that makes no reference to M at all. Rather, in 

this context, the manipulation is to intervene to eliminate the nicotine component 
of cigarettes. 

The most direct representation of this story is provided by the expanded DAG 

𝒢ex in Figure 38.3(c), where N is a binary variable representing nicotine exposure 

and O is a binary variable representing exposure to the other non-nicotine compo
nents of a cigarette. The bolded arrows from A to N and O indicate deterministic 
relationships: N(a) = O(a) = a. This is because in the factual data (with probability 
one) either one smokes normal cigarettes so A = N = O = 1 or one is a non-smoker 
(i.e., ex-smoker) and A = N = O = 0. 

This expanded graph now provides a simple interventional interpretation of the 

PDE. The researcher’s assumption of the NPSEM-IE associated with Figure 38.3(a) 
together with the existence of the variables N and O and associated counterfactuals 
imply that the nested counterfactual Y(a = 1, M(a = 0)) is equal to the simple coun
terfactual Y(n = 0, o = 1), the outcome had we intervened to expose all subjects 
to the non-nicotine components, but not to the nicotine components.21 It follows 
that 

PDE = E[Y(n = 0, o = 1)] − E[Y(n = 0, o = 0)]. (38.11) 

Furthermore, these assumptions imply that the graph in Figure 38.3(c) is an 

FFRCISTG. It then follows from proposition 41.3 in Chapter 41 in this volume that 

E[Y(n = 0, o = 1)] = ∑ E[Y | O = 1, M = m]p(m | N = 0), (38.12) 
m 

where the right-hand side (RHS) is the g-formula. Thus E[Y(n = 0, o = 1)] is 
identified provided that the terms in the g-formula are functions of the distribu
tion of the factuals p(A, N, O, M, Y). Since in the factual data now available there 

is no subject with N = 0 and O = 1 positivity fails and one might suppose that 
E[Y(n = 0, o = 1)] is not identified, but in fact it is. To see this, note that the event 
{O = 1, M = m} is equal to the event {A = 1, M = m} and similarly the event 
{N = 0, M = m} is equal to the event {A = 0, M = m} owing to determinism. Thus, 

21. Notice that here we show that the “cross-world” counterfactual Y(a = 1, M(a = 0)) defined in 

the DAG in Figure 38.3(a) is equal (as a random variable) to the “non-cross cross-world” counter-
factual Y(n = 0, o = 1) associated with the DAG in Figure 38.3(c); see Section 38.3.6 for further 
discussion. 
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by substituting these events we conclude that 

E[Y(n = 0, o = 1)] = ∑ E[Y | A = 1, M = m]p(m | A = 0), (38.13) 
m 

which coincides with (one of the terms in) the mediation formula.22 

For a researcher following Pearl [2001], having at the outset assumed an NPSEM
IE associated with the DAG in Figure 38.3(a), the story involving N and O does not 
contribute to identification; rather, it served only to show that the PDE encodes a 

substantively important parameter. 
However, from the FFRCISTG point of view, the story not only provides an inter

ventional interpretation of the PDE but in addition makes the PDE identifiable 

with the mediation formula being the identifying formula. Furthermore, the story 
makes refutable the claim that the PDE is identified by the mediation formula. 
Specifically, when nicotine-free cigarettes become available, Pearl’s claim can be 

tested by an intervention that forces a random sample of the population to smoke 

nicotine-free cigarettes; if the mean of Y under this intervention differs from the 

RHS of Equation (38.12), Pearl’s claim is falsified. As this refers to an actual inter
vention, the variables (N, O) are not simply formal constructions. Without knowl
edge of the substantive meaning of N and O, the trial in which N is set to 0 and 

O is set to 1 is not possible, even in principle. See Robins and Richardson [2010] 
and Stensrud et al. [2020c] for discussion of substantive considerations regarding 

22. Implications of Determinism: The FFRCISTG models associated with Figures 38.3(b) and (c) 
both imply the factuals (A,N,O,M,Y) factor with respect to the corresponding graph. Now in Fig
ure 38.3(c) note (i) N is d-separated from Y given {M, O} and (ii) O is d-separated from M given N 

which imply N ⊥⊥ Y | O, M and O ⊥⊥ M | N, respectively. In contrast on Figure 38.3(b) neither of the 

above d-separations hold. Yet, since by the determinism A = N = O as random variables, both 

independencies also hold for the DAG in Figure 38.3(b). 
Furthermore, E[Y(n = 0, o = 1)] would be identified by the g-formula: 

∑ E[Y | N = 0, O = 1, M = m]p(m | N = 0, O = 1) 
m 

were the formula a function of the factual distribution. However, it is not; the event {N = 0, O = 1} 

has probability zero due to determinism. Notwithstanding this, a naive application of the above 

independences might lead one to conclude that this g-formula is equal to the RHS of (Equa
tion 38.12) and thus is identified by (Equation 38.13). The error in this argument is that O ⊥⊥ M | N 

does not imply p(M = m | N = 0) equals p(M = m | N = 0, O = 1) when the event {O = 1, N = 0} 

has probability zero, since the latter is not well-defined. 
Note that, in the presence of determinism, we have two DAGs with different adjacencies 

that represent the same set of factual distributions. The counterfactuals corresponding to the 

DAGs in Figures 38.3(b) and (c) do not represent the same set of counterfactual distributions; see 

Footnote 27. 
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whether variables N and O exist that satisfy the no direct effect assumptions of 
Figure 38.3(c).23 

Remark 38.1	 It should be noted that, in the following sense, it is sufficient to find one of the 

variables N or O: Specifically, if we have a well-defined intervention N, satisfying: 

(n1) N(a) = a so that N = A in the observed data;
 
(n2) N has no direct effect on Y relative to A and M, so Y(a, n, m) = Y(a, m);
 
(n3) A has no direct effect on M relative to N so M(a, n) = M(n),
 

then A will satisfy the conditions for O; see Figure 38.3 (d). Conversely, if there is a 

well-defined intervention O such that: 

(o1) O(a) = a so that O = A in the observed data;
 
(o2) A has no direct effect on Y relative to O and M, so Y(a, o, m) = Y(o, m);
 
(o3) O has no direct effect on M relative to A so M(a, o) = M(a),
 

then A will satisfy the conditions for N; see Figure 38.3(e). 
We use all three variables (A, N, O) in our subsequent development since this 

choice is symmetric in N and O, covers both cases and more closely aligns with the 

original motivating nicotine intervention. 

Lastly, note that, as in the ivermectin example, the existence of the interven
tions N, O satisfying the no direct effect conditions do not imply that the mediation 

formula identifies the PDE because confounding between M and Y may still be 

present.24 

23. One can trivially construct artificial variables N* ≡ A and O* ≡ A such that the (degen
erate) joint distribution of the factuals p(A, N* , O* , M, Y) will factorize according to the DAG in 

Figure 38.3(c) and thus satisfy M ⊥⊥ O* , A | N* and Y ⊥⊥ N* | A, O* , M. However, these latter inde
pendencies are tautologies owing to determinism and thus do not establish, for example, 
Y(o, m) ⊥⊥ M(n) as required by the FFRCISTG associated with Figure 38.3(c). 

24. An attentive reader might wonder how it is that the first expression in the mediation formula 

fails to identify P(Y(n, o)) in the ivermectin example (with A as “N” and S as “O”; see Remark 38.1 
above). As noted earlier, the counterfactual variables A, M(a), Y(a, m) follow the conditional inde
pendences implied by the FFRCISTG model associated with the DAG in Figure 38.3(a) (in which 

there is no bi-directed arc between M and Y); see the end of Section 38.2.5. Under this FFRCISTG 

model, the absence of the M ↔ Y edge implies that there is no confounding between M and Y 

that is detectable via interventions on A and M, since p(Y(a, m)) = p(Y | A = a, M = m). 
However, in the ivermectin example, the expanded set of counterfactual variables 

A, O, M(a), Y(a, o) do not follow the FFRCISTG model corresponding to the DAG in Figure 38.3(e). 
To see this, consider performing, in addition to the randomized trial where a = 1 and s = 1, 
an intervention setting A to 0 and O ≡ S to 1, which corresponds to an observational study but 
with clinics and immunosuppressants. Notice that the confounding variable U in Figure 38.1(a) 
now becomes detectable in the following sense: If U were not present in Figure 38.13(a) then 
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Direct and Indirect Effects via the Expanded Graph 
In this section we formally introduce the interventionist theory of mediation first 
introduced in Robins and Richardson [2010] and greatly generalized herein. We do 

so by continuing with the Nicotine Example. Recall that N and O were substantively 
meaningful variables, and the goal was to use data from a smoking cessation trial to 

estimate E[Y(n = 0, o = 1)], the incidence of MI through year 2 if all smokers were 

to change to nicotine-free cigarettes at one year. As noted above, this policy inter
vention was used by Pearl to motivate consideration of the PDE. However, given the 

public health importance of the policy question, one could instead focus directly 
on estimating the effect of the proposed substantive intervention given data on 

(A, M, Y) without regard to whether it is equal to the PDE. 
In fact, there are many situations where mediation analysis is applied, in which 

interventions on the putative mediator M are not well-defined. Consequently, sub
stantive researchers may not wish to make reference to the corresponding coun
terfactuals,25 regardless of whether they may be formally constructed. For such 

researchers, the PDE parameter may not be substantively meaningful. Fortunately, 
the interventionist theory described herein, in contrast to Pearl’s approach, does 

26not require reference to counterfactuals indexed by m, such as Y(a, m). 
As noted, the interventionist theory only requires that N, O, and interventions 

on them are substantively meaningful. This is a major advantage since it makes 
it straightforward to discuss with subject matter experts, for example, physicians, 
experiments that would shed light on causal pathways; this is a property not shared 

by the PDE. 
Up to this point we have motivated our interventionist theory, based on the 

expanded graph, as providing an empiricist foundation for the existing media
tion theory that is based on cross-world (nested) counterfactuals. However, the 

interventionist theory can be viewed as autonomous,27 providing a self-contained 

framework for discussing mediation without reference to cross-world (i.e., nested) 

p(Y(a = 0, s = 1) | M(a = 0)) = p(Y(a = 1, s = 1) | M(a = 1)). This follows from Rule 3 of the po
calculus [Malinsky et al. 2019, chapter 41] applied to the SWIG 𝒢(a, s) derived from Figure 38.3(e) 
after replacing “O” with S. However, we show in Appendix 38.A.3 that in this example if U is present 
then this equality does not hold in general. Consequently, the latent projection over the variables 
A, O ≡ S, M, Y includes an M ↔ Y edge; see also the last paragraph of Section 38.2.6. 

25. We regard the existence of interventions as necessary for counterfactuals to be well-defined, 
but Pearl [2018, 2019] and others may take a different view. 

26. The CDE(m) and PDE are defined in terms of such counterfactuals. 

27. Following Wittgenstein [1922, section 6.54], we may view the theory based on nested counter
factuals as a “ladder” that we climbed to reach our interventionist theory, and now having done 

so, we may choose to “kick it away.” 
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counterfactuals. In this section, we adopt this viewpoint. However, we will see 

that we can prove the two theories are tightly coupled in certain settings; see 
28Section 38.3.6. 

Concretely, consider the DAG associated with Figure 38.3(b). Unlike the model 
associated with Figure 38.3(a), which involves counterfactuals M(a) and Y(a), the 

expanded FFRCISTG model associated with Figure 38.3(b) involves counterfactu
als M(n, o) and Y(n, o). Taking the interventionist view as primitive, in what follows 
we will discuss counterfactuals such as Y(n = 0, o = 1) that, without further 
assumptions, are defined solely within this larger expanded model. 

Identification of Four Arms from Two 

For the purposes of our development, consider the following three datasets all 
derived from the same distribution p over the one-step-ahead counterfactuals in 

the FFRCISTG model associated with the graph in Figure 38.3(b): 

(i) The original observed data from the trial in which A was randomized, namely 
A, M, Y ; 

(ii) Data from a putative four-arm (N, O) randomized trial; the data in each arm 

(n, o) ∈ {0, 1}2 corresponds to M(n, o), Y(n, o); 

(iii) A dataset obtained from the four-arm (N, O) trial (ii) by restricting to the two 

arms in which n = o. 

Note that in dataset (i) among people with A = a we observe N = O = a, owing 

to determinism; hence, we observe M(n = a, o = a) and Y(n = a, o = a) on this 

28. In related work, Lok [2016] has developed an interventional approach to mediation that also 

does not require interventions on the mediator in order to be well-defined. Lok introduces a 

notion of an ‘organic intervention’ (I = 1) that is required to satisfy certain conditions. Lok 

then defines notions of direct and indirect effects in term of such organic interventions. Our 
interventional definitions introduced here are similar in spirit to Lok’s conditions. 

However, in order to capture certain aspects of the concept of direct and indirect effects, we, 
unlike Lok, also require that the variables (N and O) defining our additional interventions (e.g., 
on N) be equal to A in the observed data. Among other things, this ensures that N(a) = O(a) = a 

and hence M(a) = M(n = a, o = a) and Y(a) = Y(n = a, o = a). 
In contrast, an organic intervention could change the mechanism by which the mediator is 

produced so that the relevant counterfactual random variables for the mediator under the organic 
intervention (M(a = 0, i = 1)) do not correspond to those in the absence of the organic inter
vention M(a = 1), although they have the same distribution. See Robins [2003], section 3 for 
additional discussion in terms of blocking paths. 
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event.29 By randomization of A, it follows that for a ∈ {0, 1}, 

p(M = m, Y = y | A = a) = p(M(n = a, o = a) = m, Y(n = a, o = a) = y | A = a) 

= p(M(n = a, o = a) = m, Y(n = a, o = a) = y) 

which is the distribution of individuals in dataset (iii). We conclude that the dis
tribution of the data in (iii) is identified from the observed data (i). Thus our goal 
becomes the identification of E[Y(n, o)] for n ̸= o from data on M(n, o) and Y(n, o) in 

the two arms with n = o. Motivated by the nomenclature of Stensrud et al. [2020c], 
when this identification is possible we will say that the effects of N and O on M and 

Y are separable. The following proposition provides sufficient conditions. 

Identifying the Results of a Future Four-arm Study from a Current Two-arm Study 

Proposition 38.1 If for some x ∈ {0, 1} the following two conditions hold: 

p(M(n = x, o = 0) = m) = p(M(n = x, o = 1) = m), (38.14) 

p(Y(n = 1, o = x *) = y | M(n = 1, o = x *) = m) 

= p(Y(n = 0, o = x *) = y | M(n = 0, o = x *) = m), (38.15) 

where x * = 1 − x, then: 

p(M(n = x, o = x *) = m, Y(n = x, o = x *) = y) 
* * = p(Y(n = x , o = x *) = y | M(n = x , o = x *) = m)p(M(n = x, o = x) = m). 

(38.16) 

Note that by consistency and randomization of A in dataset (i), the RHS of Equa
tion (38.16) when summed over m is simply the first expression in the mediation 

formula (38.7). Hence under Equations (38.15) and (38.14) E[Y(n, o)] is identified 

from data set (iii) by this expression in the mediation formula. 

Proof. 

p(M(n = x, o = x *), Y(n = x, o = x *)) 

= p(Y(n = x, o = x *) | M(n = x, o = x *))p(M(n = x, o = x *)) 

* * = p(Y(n = x , o = x *) | M(n = x , o = x *))p(M(n = x, o = x)). 

29. Note that the assumption that p(M(a)) = p(M(n = a, o = a)) and p(Y(a) | M(a)) = p(Y(n = a, o = 

a) | M(n = a)). This assumption is subject to empirical test by examining whether the distribution 

from (i) and (iii) are the same. This corresponds to the six-arm trial described by Stensrud et al. 
[2020b]. The distribution of (i) and (iii) could differ when, for example, the treatment A contains 
additional sub-components that are present in neither N nor O. 
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The constraints in Equations (38.15) and (38.14) are implied by the SWIG given 

in Figure 38.4(b) with treatments n and o over the random variables N, O, M(n, o) 
and Y(n, o).30 Note that Y(n, o) is d-separated from the fixed node n given M(n, 0), 
which implies under the SWIG global Markov property that the distribution 

p(Y(n, o) | M(n, o)) does not depend on n, which is equivalent to Equation (38.15). 
Similarly, since M(n, o) is d-separated from the fixed node o, p(M(n, o)) does not 

depend on o. Thus, we see that the constraints (38.14) are implied by the FFRCISTG 

model.31	 ■ 

Thus, the identifiability result in Proposition 38.1 follows from the fact that in 

the SWIG in Figure 38.4(b), there is no variable whose conditional distributional 
distribution, given its (random) parents, depends on both n and o. 

Proposition 38.1 above, and indeed all the results in the remainder of this 
subsection, holds when counterfactuals indexed by the mediator m are not well-
defined. Recall that Robins [1986] and Robins and Richardson [2010] develop 

an FFRCISTG model in which only interventions on a subset of variables are 

considered well-defined. 

Remarks: 

1. The reader may wonder why in this SWIG we have labeled M with (n, o), 
rather than simply with (n). This is to emphasize that in this subsection 

our results do not require the assumption that missing arrows on a SWIG 

imply the absence of the associated direct effect for all individuals. Rather 
in this sub-section we only impose the weaker assumption that any SWIG 

A
N n

O o

M(n, o)

Y(n, o)
(a)

A
N n

O o

M(n, o)

Y(n, o)
(b)

Figure 38.4	 (a, b) SWIGs derived from the corresponding expanded DAGs 𝒢ex shown in 
Figures 38.3(b) and (c), respectively. In the SWIG shown in (b), the mediator is labeled 
M(n, o) to indicate that this is a population FFRCISTG for Gex, which does not assume 
the absence of individual-level direct effects. 

30. Thus, although, as noted previously in Footnote 21, under determinism, the DAGs in Fig
ure 38.3(b) and (c) imply the same conditional independence relations on p(A, M, Y , N, O), they 
lead to different counterfactual models since the constraints (Equation 38.15) and (Equation 38.14) 
are implied by the SWIG in Figure 38.4(b), but not the SWIG in Figure 38.4(a). 

31. As noted in remark 38.1, in some settings A can play the role of N or O. 
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is a “population causal graph.” A population causal graph [Richardson and 

Robins 2013, section 7] assumes the distribution of the variables on the graph 

factor according to the graph, but does not impose the assumption that a 

missing arrow implies no individual level effects. Thus the variable M(n, o) 
need not equal the variable M(n) = M(n, O) and thus M(n, o) cannot be 

labeled as M(n). That is, in the underlying FFRCISTG model associated with 

the SWIG, the one-step-ahead counterfactuals M(n, o) depend on both n and 

o. In other words, this population FFRCISTG contains the counterfactual 
variables present in the SWIG shown in Figure 38.4(a) that results from split
ting N and O in the graph shown in Figure 38.3(b). It does not correspond 

to an NPSEM associated with the graph in Figure 38.3(c) since that NPSEM 

assumes well-defined counterfactuals intervening on M and also assumes 
that M(n, o) = M(n); see also Footnotes 17 and 22. In particular, under the 

SWIG derived from the population graph, the constraints (Equation 38.15) 
and (Equation 38.14) correspond to the absence of the edges n → Y(n, o) and 

o → M(n, o), respectively. 

2. Since Equations (38.15) and (38.14) are restrictions on the distribution of the 

counterfactuals in Figure 38.4(b), there exist consistent tests of the condi
tions (Equation 38.15) and (Equation 38.14) given the data from (ii). These 

conditions cannot be tested given only the data (iii) [or equivalently (i)].32 

3. We have seen that, under the FFRCISTG associated with Figure 38.4(b), the 

distribution of Y(n, o) for all four arms is identified from the two arms in 

which n = o; thus the structure of this SWIG is sufficient for this iden
tification. However, this structure is also “necessary” in that it is the only 
population SWIG over M(n, o) and Y(n, o) where this identification is possi
ble.33 To see this, first note that if Y(n, o) depends on both n and o then n and 

o are both ancestors of Y . By Proposition 38.2 below, if n and o are both par
ents of Y , then identifiability fails to hold. Given that we only have one other 
measured variable then this implies that we must have one fixed node that is 
a parent of M (and M in turn a parent of Y); the other fixed node is then a par
ent of Y . If any other edges are present between {n, o} and {M(n, o), Y(n, o)}, 
then again by Proposition 38.2 the conditional distributions will not be iden
tifiable. Likewise, if there is an unmeasured confounder between M and Y , 
then Y(n, o) will not be d-separated from n given M(n, o). 

32. We note that consistent tests of individual level no direct effect conditions such as Y(n, o) = 

Y(o) do not exist since it is possible that E[Y(n, o)] = E[Y(n, o ′)] and yet Y(n, o) ≠ Y(n, o ′) (as 
random variables); but see also footnote 29. 

33. Here we are ignoring the structure relating the random variables N and O. 
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Proposition 38.2 

We have the following more general result. 

Assume the distribution of the variables on an unexpanded DAG 𝒢 is positive. 
Under an FFRCISTG corresponding to the population SWIG 𝒢ex(n, o) there is no 

vertex that has both n and o as parents if and only if the joint distributions 
p(V(n = x, o = x *)) for x ̸ x * are identified from the counterfactual distribu= 

tions p(V(n = x, o = x)). Further, since P(V(n = x, o = x)) = P(V(a = x)), also from 
34the distribution of the variables in 𝒢. 

Proof. Consider the g-formula of proposition 3 in Chapter 41 applied to the graph 

𝒢ex under an intervention on n and o. This formula is a function of the joint distri
bution of the observables if and only if none of the terms in the g-formula have 

both N and O in the conditioning event. Note that each term in the g-formula 

is the conditional distribution of a variable given its parents on the population 

SWIG 𝒢ex(n, o). The requirement here that there is no vertex that is a child of both 

n and o is directly analogous to the “no recanting witness” condition in the theory 
developed by Avin et al. [2005]. ■ 

Consider the following examples from Robins and Richardson [2010]. Suppose 

our original causal graph 𝒢 in Figure 38.3(a) for the cigarette cessation trial was 
incorrect and the correct causal graph is shown in Figure 38.5(a). There exist three 

possible (N, O) elaborations of this graph, which are shown in Figure 38.6. These 

represent different causal theories about the causal effect of the treatment vari
ables N, O on L, M, and Y . Figure 38.7 shows the corresponding population SWIGs. 
Under the SWIGs in Figure 38.7(a) and (b) the distributions of the four arms Y(n, o) 
are identified given the distributions Y(n = x, o = x): 

* * * p(Y(x, x *)) = ∑ p(Y(x , x *) | M(x , x *), L(x , x *))p(M(x, x) | L(x, x))p(L(x, x)) 
m,l 

= ∑ p(Y | m, l, a = x *)p(m | l, a = x)p(l | a = x) (38.17) 
m,l 

and 

* * * * p(Y(x, x *)) = ∑ p(Y(x , x *) | M(x , x *), L(x , x *))p(M(x, x) | L(x, x))p(L(x , x *)) 
m,l 

= ∑ p(Y | m, l, a = x *)p(m | l, a = x)p(l | a = x *) (38.18) 
m,l 

respectively, where here we are using Y(i, j) to denote Y(n = i, o = j). Note that the 

identifying formulae are different. See Stensrud et al. [2020a] for generalizations of 
these results. 

34. Note that the result here holds because the DAG 𝒢 here does not contain hidden variables. 
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A M

Y

L

(a)

A M

Y

H

(b)

Figure 38.5	 (a) DAG containing an observed common cause L of the mediator M and outcome Y 
that is also caused by A; (b) DAG containing an unobserved common cause H of the 
mediator M and outcome Y . 

A N
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Y
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A N
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Y

(c)

Figure 38.6	 Elaborations of the graph in Figure 38.5(a), with additional edges. These represent 
different causal theories about the causal effect of the treatment variables N, O on L, 
M, Y . As before, the thicker red edges indicate deterministic relations. 

In contrast, under the SWIG in Figure 38.7(c), p(Y(n, o)) for n ̸ o is not iden= 

tified from the data on the two arms with n = o (equivalently the observed data) 
because in 𝒢ex L has both N and O as parents; hence the term p(l | n = x, o = x *) in 

the g-formula for p(Y(x, x *)) is not a function of the observed data. 
Given that N and O are real interventions, at most one of the expanded causal 

graphs shown in Figure 38.6 can represent the true causal structure. If, in the 

future, we obtain data from a four arm (N, O) trial we can test between the three 

competing theories associated with these expanded graphs.35 

35. Note however, that if the results from the four-arm trial do not correspond to the identifying 

formulae obtained from either Figure 38.7(a) or (b), then although it is possible that the DAG in 
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M(n, o) L(n, o)

Y(n, o)

(a)
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Y(n, o)
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Figure 38.7	 Three different population SWIGs associated with the three expanded DAGs shown 
in Figure 38.6. Under the SWIGs (a), (b) the effects of N and O on Y are separable so 
that the distribution of Y(n, o) in the four arms are identified given the distribution of 
Y(n = x, o = x) although the identification formulae differ; (c) A SWIG under which 
the four arms Y(n, o) are not identified from the two arms Y(n = x, o = x). 

38.3.3 Expanded Graphs for a Single Treatment 
We formally define expanded graphs as follows: 

Given a DAG 𝒢 with a single treatment variable A, an expanded graph 𝒢ex for A is 
a DAG constructed by first adding a set of new variables {A(1), … , A(p)} correspond
ing to a decomposition of the treatment A into p separate components (proposed 

by the investigator); every variable A(i) is a child of A with the same state space and 

A(i)(a) = a, but A has no other children in 𝒢ex; each child Cj of A in 𝒢 has in 𝒢ex a 

subset of {A(1), … , A(p)} as its set of parents. 

Lemma 38.1	 Assume the distribution of the variables on an unexpanded DAG 𝒢 is positive. 
Under an FFRCISTG corresponding to an expanded (population) graph 𝒢ex for 

(1) (1) (p)treatment A, the intervention distribution p(V(a = x , … , a = x(p))) is identi
fied by the g-formula applied to 𝒢ex from the data on 𝒢 if for every child Cj of A in 

𝒢 the set of parents of Cj in 𝒢ex that are components of A take the same value.36 

Figure 38.7(c) holds, it is also possible that the true graph could correspond to Figure 38.7(a) or 
(b) with an added unmeasured confounder between any pair of the variables L, M and Y. 

36. More formally, we require that for all Cj ∈ ch𝒢 (A), if A(k), A(l) ∈ pa𝒢ex (Cj ) ∩ {A(1), … , A(p)} then 
(k) (l)x = x . 
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(1)Proof. As in the proof of Proposition 38.2, consider the g-formula for p(V(a = 

x(1) (p) x, … , a = (p))) of proposition 3 in Chapter 41 applied to the graph 𝒢ex. The g-
formula will be a function of the joint distribution of the observables since each 

term in the g-formula always conditions on a single value of A. ■ 

Robins and Richardson [2010, section 6.2] also described the special case in 

which each child Cj of A in 𝒢 has exactly one component A(j) as a parent.37 We will 
refer to this as the edge expanded graph for A, which we often denote as 𝒢edge. In this 
case p = |ch𝒢 (A)| and in this special case 𝒢ex corresponds to the graph formed from 

𝒢 by replacing each edge A → Cj with A → A(j) → Cj. Note that 𝒢edge is unique.38 

See Figure 38.9 for an example. 

Under the assumptions of Lemma 38.1, if 𝒢ex is the edge expanded graph 𝒢edge for A 
(1) (1) (1) (p)then for all assignments x , … , x(p) p(V(a = x , … , a = x(p))) is identified from 

the data on 𝒢. 

When the conditions of this corollary hold, we will say, following the nomen
clature in Stensrud et al. [2020c], that the treatment components {A(1), … , A(p)} have 

separable effects. 

On the Substantive Relationship between Different 𝒢ex Graphs and 
𝒢edge 

In the context of the smoking cessation trial recall that the two expanded graphs in 

Figure 38.6(a) and (b) led to different identifying formulae for P(Y(n = x, o = x *)) 
given, respectively, by Equations (38.17) and (38.18). The identifying formulae also 

(1)arise in the context of the graph 𝒢edge shown in Figure 38.9. Specifically, p(Y(a = 
(2) (3) (1) (2) (3)x, a = x, a = x *)) and p(Y(a = x * , a = x, a = x *)) are identified by Equa

tions (38.17) and (38.18), respectively. The FFRCISTG models associated with the 

expanded graphs shown in Figure 38.6(a) and (b) correspond to distinct mutually 
exclusive causal structures, which lead to different identifying formulae for the dis
tribution of the counterfactual Y(n = x, o = x *) in an arm of the four arm (N, O) 
trial in which one intervenes to set n = x, and o = x *. However, given the FFRCISTG 

model corresponding to the graph in Figure 38.9, we are able to interpret the iden
tifying expressions (38.17) and (38.18) as identifying two different interventions on 

A(1), A(2), and A(3) on a single graph 𝒢edge. 

37. More formally, we have that for all children Cj of A, pa𝒢ex (Cj) ∩ {A(1), … , A(p)} = {A(j)}. 

38. Since the expanded graph 𝒢edge for A postulates a separate component of treatment corre
sponding to each child of A, such a graph will be unlikely to represent the substantive under
standing of an investigator when p is large. 
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Robins and Richardson [2010] note that the above may seem to, but do not, 
contradict one another. Recall that N and O represent the substantive variables 
recording the presence or absence of nicotine and all other cigarette components. 

Suppose we further divide the other cigarette components (O) into Tar (T) and 

cigarette components other than tar and nicotine (O*). Thus, substantively set
ting O to a value corresponds to setting both O* and T to that value. Furthermore, 
the graph 𝒢edge in Figure 38.9 being an FFRCISTG implies that the graph 𝒢ex in 

Figure 38.6(b) formed by (re)combining O* and T is an FFRCISTG. Thus an inter
vention setting (O = x, N = x *) on Figure 38.6(b) substantively corresponds to the 

intervention on the graph 𝒢edge in Figure 38.9 with O* = A(3) = x, T = A(1) = x, 
N = A(2) = x *. Thus these interventions in this 𝒢ex and in 𝒢edge give the same 

identifying formula (38.18). 
Given we have locked in the substantive interpretation of the A(j) in Figure 38.9, 

the intervention O* ≡ A(3) = x, T ≡ A(1) = x * , N ≡ A(2) = x * on Figure 38.9 cor
responds to the intervention in which N and T are set to the same value and thus 
does not represent a joint intervention on the substantive variables N and O (since 

O = O* = T as random variables in the observed data). However, the identifying 

formula for this intervention if Figure 38.9 were the causal graph happens to have 

the same identifying formula (38.17) as the intervention setting O = x, N = x * 

if Figure 38.6(a) were the causal graph. This might seem surprising since, under 
the substantive meanings of the components (A(1), A(2), A(3)), specifically, A(2) ≡ N, 
Figure 38.9 is compatible with Figure 38.6(b) and not Figure 38.6(a). However, it is 
not surprising from a formal perspective, if we notice that by considering a DAG 

with the same structure as Figure 38.6(a), but in which N is replaced by a variable 

N† ≡ N×T indicating the presence of both Tar and Nicotine, then we may represent 
the intervention that sets O* = x, N = T = x * via an intervention on N† and O* .39 

If, instead of dividing O, one divides Nicotine, N, into sub-components corre
sponding to two different isotopes and re-defines the variables in Figure 38.9 as 
A(1) ≡ Nicotine Isotope 1, A(2) ≡ Nicotine Isotope 2, A(3) ≡ O, then the mirror image of 
the above holds. Specifically, Figure 38.9 is compatible with Figure 38.6(a),40 and 

not Figure 38.6(b). 
Note, however, that there is no way to re-define A(1), A(2), and A(3) such that 

Figure 38.9 is compatible with Figure 38.6(c). Specifically, an intervention setting 

N = x and O = x * ≠ x cannot be represented via an intervention on (A(1), A(2), A(3)), 
since in Figure 38.6(c) L has two parents N and O while in Figure 38.6(c) L has 

39. Though the graph constructed in this way has the same topology as Figure 38.6(a), it repre
sents a different substantive hypothesis since the component T of N† is a parent of L and not N 

itself. 

40. Figure 38.6(a) with the variables N and O (not N† and O). 



38.3.5
 

38.3 Interventionist Theory of Mediation 741 

only one. Of course, this must be the case because the intervention on N and O in 

Figure 38.6(c) is not identified from the observed data. In contrast, by Corollary 38.1 
any intervention on A(1), A(2), A(3) in the graph shown in Figure 38.9 is identified. 

Lastly, note that 𝒢edge assumes that A(1), A(2), and A(3) each directly affect only L, 
M, and Y , respectively; this hypothesis could, in principle, be tested if one were to 

perform an eight-arm (A(1), A(2), A(3)) trial. 
In general, if 𝒢ex is an FFRCISTG with separable (hence, identified) effects and 

further 𝒢edge is an FFRCISTG, then the counterfactual variables in 𝒢ex may be 
(i)obtained from those in 𝒢edge by imposing the equality a = a(j) whenever the cor

responding children Ci and Cj of A in 𝒢 share a common parent in 𝒢ex. Note that 
this is directly analogous to the way in which the counterfactual variables Vi(a) in 

𝒢(a) are equal to the counterfactuals Vi(n = a, o = a) present in 𝒢(n, o). 

Generalizations 
The foregoing development may be further generalized in several ways: 

(a) Rather than having data from a single treatment variable A, we may con
sider a study in which there were multiple treatment variables {A1, … , Ak}. 
In this setting it may be of interest to attempt to identify the distribution 

V(n1, o1, … , nk, ok) of a hypothetical future study where Ni and Oi are compo
nents of Ai such that in the original study Ai = Oi = Ni. See Figure 38.10. 
More generally each Ai may have pi components. The natural generalization 

of Lemma 38.1 holds.41 

(b) We may consider a setting in which some variables (H) in the underlying 

causal DAG 𝒢(V ∪ H) are not observed; though variables we intervene on are 

observed, so A ⊆ V . 

Here, we proceed in two steps. In the first step, we check identification of 
a standard interventional distribution. Specifically, we construct an ADMG 

𝒢ex containing the variables {N1, O1, … , Nk, Ok}, such that Ni and Oi have only 
Ai as a parent; the only edges with an arrowhead at Ni and Oi are of the 

form Ai → while the only edges out are of the form → C where C is a 

child of A in 𝒢. We then apply the extended ID algorithm described in Chap
ter 41 of this volume to first determine whether p(V(n1, o1, … , nk, ok)) would 

be identified given a positive distribution p(V ∪ {N1, O1, … , Nk, Ok}) over the 

observed variables and the treatment components.42 

41. That is, we have identification if, for each i and each child C of Ai in 𝒢, the subset of the pi 
components of Ai that are parents of C in the expanded graph 𝒢ex take the same value. 

42. This would correspond to an observational study where the variables V ∪{N1, O1, … , Nk, Ok} are 

observed in a population in which Ni and Oi are no longer deterministic functions of Ai, but for 
which all other one-step-ahead counterfactuals remain the same; variables in H are not observed. 
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In the second step, we check whether the identification would hold under 
the weaker conditions where we only have access to a positive distribution 

on p(V). This corresponds to (i) making sure that identification of every term 

in the identifying formula given by the ID Algorithm via the inductive appli
cation of Proposition 41.5 from Chapter 41 in this volume ensures that the 

splitting operation is applied to any Ai ∈ A before any Ni or Oi (this ensures 
that the positivity requirement for Proposition 41.5 is met), and (ii) confirm
ing that for every (Ni, Oi), in the identifying formula given by the ID Algo
rithm43 there is no district D that has both Ni and Oi as parents; Shpitser 

44[2013] terms such districts, which violate this condition, recanting districts. 

A simple example of such a structure arises when there is an unobserved 

common cause of M and Y , as shown in Figure 38.5(b): though the four 
distributions E[Y(n, o)] are identified given a four-arm (N, O) trial, the dis
tributions for which n ̸ o are not identified solely given data on (A, M, Y).= 

This is because M ← H → Y forms a district and both N and O are parents 
of this district, hence it is recanting. 

If the two-step procedure yields identification, the resulting functional struc
turally resembles the functional obtained from the ID algorithm, except each 

term in the functional that depends on treatments is evaluated at its own 

treatment value, corresponding to either ni or oi (but never both at once). 

See Section 38.4 below for a general method of addressing all complications 
above simultaneously. 

38.3.6	 Identification of Cross-world Nested Counterfactuals of DAG 𝒢 under 
an FFRCISTG Model for its Expanded Graph 𝒢ex 

From Section 38.3.2 to this point, we only studied the distribution of counterfac
tuals associated with interventions on (Ni, Oi) or, more generally, (A(1), … , A(p)); no 

other counterfactuals associated with an expanded graph 𝒢ex were mentioned. 
As argued in Section 38.3.2, for most purposes these counterfactuals constitute 

an adequate basis for formulating contrasts relating to the mediation of effects. 
However, since the prior literature on mediation has been formulated in terms of 

43. See Equation (41.21) and subsequent discussion in Chapter 41 in this volume. 

44. Note that in the special case where D = {Vi} is a singleton, then D will be a recanting district 
in 𝒢 if and only if Ni and Oi have a common child in 𝒢ex. In this case Vi is a “recanting witness” 
as defined by Avin et al. [2005]; see also Section 38.4. Thus, when no hidden variables exist, the 

first step in (b) always succeeds; hence, as implied by Lemma 38.1, identification fails if and only 
if there exists an Ni and Oi that have a common child. 
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cross-world nested counterfactuals associated with the original (unexpanded) DAG 

𝒢, we return to our earlier discussion. 

The PDE 
Recall that in Section 38.1 we related the PDE from the NPSEM associated with 

Figure 38.3(a) to a four-arm (N, O) trial under the FFRCISTG associated with the 

SWIG 𝒢ex(n, o) shown in Figure 38.4(b). This may be broken down into two steps: 

(1) Show that E[Y(n = 0, o = 1)] was identified from data on p(A, M, Y) via Equa
tion (38.12). This step only required that 𝒢ex was a population FFRCISTG.45 

That is, this identification follows from the deterministic relationship N(a) = 

O(a) = a together with the population level conditions (Equation 38.15) and 

(Equation 38.14), without requiring that counterfactuals for interventions on 

M be well-defined. 

(2) Next show that Y(a = 1, M(a = 0)) = Y(n = 0, o = 1) holds under the indi
vidual level no direct effect assumptions encoded in the NPSEM associated 

with 𝒢ex in Figure 38.8. Note that this step does not require that Figure 38.3(c) 
is an FFRCISTG, only that it be an NPSEM associated with 𝒢ex . 

In more detail, the NPSEM associated with 𝒢ex implies the following: 

(i) M(n) = M(a, n, o); 

(ii) Y(o, m) = Y(a, n, o, m). 

Under conditions (i) and (ii) we have that: 

M(a = 0) = M(N(a = 0)) = M(n = 0), 
Y(a = 1, m) = Y(O(a = 1), m) = Y(o = 1, m), (38.19) 

Y(a = 1, M(a = 0)) = Y(o = 1, M(n = 0)) = Y(n = 0, o = 1). 

A
N n

O o

M(n)

Y(n, o)

Figure 38.8	 A SWIG derived from the expanded DAG 𝒢ex in Figure 38.3(c), under the assumption 
that the counterfactual variables obey the NPSEM associated with Gex. Consequently, 
in contrast to Figure 38.4(b), the graph contains M(n) rather than M(n, o). 

45. Thus, this step does not require that the counterfactual variables follow an NPSEM associated 

with 𝒢ex . 
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Consequently, under the assumptions (i) and (ii) it follows that: 

P(Y(a = 1, M(a = 0))) = P(Y(n = 0, o = 1)). (38.20) 

Remarks: 

1. If N(a) = O(a) = a and conditions (i) and (ii) hold, then PDE = E[Y(n = 0, o = 

1)] − E[Y(n = 0, o = 0)] even if conditions (38.15) and (38.14) fail, for exam
ple due to (M, Y) confounding. This is the situation discussed in Section 38.1 
where data from the four-arm (N, O) trial makes it possible to estimate the 

PDE and hence determine whether it equals the mediation formula.46 

2. The conditions (38.15) and (38.14) alone, that is, without (i) and (ii) above, are 

not sufficient to identify the PDE,47 

3.(i) If condition (i) fails, so that O has a (population) direct effect on M (relative 

to A, N), then the counterfactual M(n, o) is not a function of the original one-
step-ahead counterfactuals Y(a, m) and M(a). This can be seen from the fact 
that whereas M has a single parent A in Figure 38.3(a), under the elaboration 

that includes N and O it now has two: {N, O}. 

3.(ii) Similarly, if condition (ii) fails so that N has a direct effect on Y (relative to A, 
M, O), then the counterfactual Y(n, o) is not a function of the original one-
step-ahead counterfactuals Y(a, m) and M(a). Y has two parents {A, M} in 

Figure 38.3(a), under the elaboration that includes N and O it would have 

three {N, O, M}. 

Example: The River Blindness Studies 
Returning to the river blindness study, note that intervening to set s = 1 and a = 0 

gives Y(s = 1, a = 0) = Y(a = 1, M(a = 0)) as random variables. Hence the PDE 

is identified from data in a four-arm (A, S) trial.48 It is not identified from data on 

46. Note, however, that if P(Y(n = 0, o = 1)) does not equal the first expression in the mediation 

formula it is possible that this is solely because (N, O) do not satisfy (i) and (ii) but that there are 

other subcomponents of A, say (N* , O*) that do satisfy (i) and (ii). 

47. This is because 

E[Y(a = 1, M(a = 0))] = E[Y(n = 1, o = 1, M(n = 0, o = 0))] (38.21) 

= ∑ E[Y(n = 1, o = 1, m) | M(n = 0, o = 0) = m]p(M(n = 0, o = 0) = m), 
m 

(38.22) 

but this latter conditional expectation term is cross-world in terms of the counterfactuals in 𝒢ex 

although, as noted, they do identify E[Y(n = 0, o = 1)] − E[Y(n = 0, o = 0)]. 

48. Recall that in Y(s = 1, a = 0), A is serving as “N” and S is “O”; see Figure 38.3(e) and Footnote 23. 



38.3 Interventionist Theory of Mediation 745 

A, M, Y because M ↔ Y forms a “recanting district,” as defined in Shpitser [2013]. 
Note that had identification of the PDE failed due to a recanting witness, that is, 
A and S having a common child, then additional interventions on the variables 
in the graph would not have led to identification. Finally, we note that, owing to 

the context-specific conditional independences in this example, the distribution 

p(Y(s = 0, a = 1)) = Y(a = 0, M(a = 1)), which occurs in the Total Direct Effect is 
identified given data from the two arms p(Y(s = x, a = x)), x ∈ {0, 1} by the formula 

given in (38.A), and hence also from p(A, M, Y); see Appendix 38.A.2. 

Counterfactuals Related to the DAG in Figure 38.5(a) 
Recall that E [Y(n = 0, o = 1)] is identified under the FFRCISTG models associated 

with the graphs in Figures 38.6(a) and (b), but not (c). 
Let Y(a, l, m), M(a, l), and L(a) denote the one-step-ahead counterfactuals asso

ciated with the graph in Figure 38.5(a). It follows from the deterministic counter-
factual relation N (a) = O (a) = a and the NPSEM associated with Figure 38.5(a), 
and its associated expanded graph 𝒢ex in Figure 38.6(a) that the random variable 

Y(n = 0, o = 1) = Y(o = 1, L(n = 0), M(n = 0, L(n = 0))) 

associated with the NPSEM in Figure 38.6(a) can be written in terms of the coun
terfactuals associated with the graph in Figure 38.5(a) as the cross-world counter-
factual 

Y(a = 1, L(a = 0), M(a = 0)) = Y(a = 1, L(a = 0), M(a = 0, L(a = 0))). (38.23) 

Similarly, if we assume that 𝒢edge of Figure 38.9 is an NPSEM, the counterfactual 
(38.23) also equals, as a random variable, the counterfactual Y(A(1) = 0, A(2) = 

0, A(3) = 1). Thus if either Figure 38.6(a) or Figure 38.9 represented the FFRCISTG 

generating the data, the distribution of Equation (38.23) is identified by the same 

formula (38.17). 

A

A
(1)

A
(2)

A
(3)

M L

Y

Figure 38.9 The edge expanded graph 𝒢edge associated with the DAG shown in Figure 38.5(a). 
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Likewise, 

Y(n = 0, o = 1) = Y(o = 1, L(o = 1), M(n = 0, L(o = 1))) 

associated with the graph in Figure 38.6(b) equals (as a random variable) the 

cross-world counterfactual 

Y(a = 1, L(a = 1), M(a = 0, L(a = 1))). (38.24) 

associated with the graph in Figure 38.5(a). Again, if we assume that 𝒢edge of 
Figure 38.9 is an NPSEM, the counterfactual (38.24) also equals Y(A(1) = 1, A(2) = 

0, A(3) = 1) (as a random variable). Thus, in this case if either Figure 38.6(b) or 
Figure 38.9 represented the FFRCISTG generating the data, the distribution of 
Equation (38.24) is identified by the same formula (38.18). 

In contrast, E[Y(n = 0, o = 1)] associated with the graph in Figure 38.6(c) is 
not the mean of any counterfactual defined from Y(a, l, m), M(a, l), and L(a) under 
the graph in Figure 38.5(a) since L, after intervening to set n = 0, o = 1, is neither 
L(a = 1) nor L(a = 0) as both imply a counterfactual for L under which n = o. 
Furthermore, the parameter occurring in the PDE 

E [Y(a = 1, M(a = 0))] = E [Y(a = 1, L(a = 1), M(a = 0, L(a = 0)))] 

and associated with the graph in Figure 38.5(a) is not identified under the FFR-
CISTGs associated with any of the three graphs in Figures 38.6(a), (b), and (c). 
This is because all three of these graphs are compatible with the NPSEM in 

Figure 38.5(a) under which, by recursive substitution, we have the following equal
ity Y(a1, M(a0)) = Y(a1, L(a1), M(a0, L(a0))), as random variables. But the coun
terfactual Y(a1, L(a1), M(a0, L(a0))), since it involves L(a0) and L(a1), does not cor
respond to an intervention on n and o under any of the expanded graphs in Fig
ures 38.6(a), (b), or (c). Similarly, Y(a0, M(a1)) is not identified under any of these 

graphs. These results follow from the fact that L is a recanting witness for A in 

Figure 38.5(a). 
In the following section, we define path-specific effects associated with the 

NPSEM model. We show that the two identified nested cross-world counterfac
tuals are identified path-specific effects under the NPSEM-IE for the graph in 

Figure 38.5(a). In particular, E[Y(a = 1, L(a = 0), M(a = 0))] is the path-specific 
effect associated with the path A → Y and E[Y(a = 1, L(a = 1), M(a = 0, L(a = 1)))] 
is the path-specific effect associated with the paths A → Y , A → L → Y , and 

A → L → M → Y . Thus, for Pearl, identification of these nested cross-world coun
terfactuals associated with Figure 38.5(a) follows from the assumption that the 
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distribution of the counterfactuals obeys the NPSEM-IE model associated with the 

graph in Figure 38.5(a). In contrast, the identification of these cross-world counter
factuals under an FFRCISTG model follows from two different extensions of Pearl’s 
original story: the first is identified under the extension in which N but not O is a 

cause of L and the second from the extension that O but not N is a cause of L. The 

respective identifying formulae are the same under both theories. 

38.4 Path-Specific Counterfactuals 
In Section 38.1 we considered different notions of direct effect, which led to the 

notion of nested counterfactuals and the PDE, which is identified under the 

NPSEM-IE associated with the graph in Figure 38.3(a) via the associated Media
tion Formula. In Section 38.3.2, following Robins and Richardson [2010], we discuss 
the notion of separability of effects in the sense of Stensrud et al. [2020c] via an 

expanded (N, O) graph. We showed that the counterfactuals defining the PDE were 

equal to ordinary (non-cross-world) interventional counterfactuals in the NPSEM 

given by the expanded graph (with determinism). We also showed that under the 

corresponding FFRCISTG these effects were identified by the mediation formula. 
In this section, we now consider path-specific effects which generalize the notion 

of direct and indirect effects. 
In the simplest setting, the intuition behind an indirect effect is to consider all 

paths from A to Y other than the edge A → Y . This can be generalized to settings 
where the effect along a particular set of causal paths from A to Y is of interest. 
In what follows we will show that each such path-specific effect will correspond 

to a cross-world counterfactual contrast associated with the (original) graph 𝒢. We 

will see that in the absence of recanting witnesses these cross-world counterfactu
als are equal (as random variables) to interventional counterfactuals in the NPSEM 

associated with 𝒢edge, the edge expanded graph associated with the set of treatment 
variables A.49 Consequently, these path-specific counterfactuals will be identified 

if and only if the corresponding intervention is identified under the FFRCISTG 

associated with 𝒢edge. Thus all identifying formulae for path-specific cross-world 

counterfactuals on 𝒢 may be derived from 𝒢edge. Further, it follows that all identi
fying formulae for path-specific cross-world counterfactuals may also be obtained 

under the assumption that 𝒢 is an NPSEM-IE. 

49. As noted earlier, the counterfactuals associated with 𝒢edge may not have clear substantive 

meaning. For 𝒢edge to be substantive it is necessary for each treatment variable A to be decom
posable into components each of which could, in principle, be intervened on (separately) and 

affect one and only one of its children; see Footnote 34, Section 38.3.4 for further discussion. The 

graph 𝒢edge may still be useful as a formal construction. 
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The general theory developed by Shpitser [2013] associates a random variable 

with each subset of causal paths between a treatment A and an outcome Y . The 

intuition is that this subset of proper50 causal paths from A to Y denoted 𝜋 remain 

active, while all other causal paths, denoted 𝜋, from A to Y are blocked.51 Next, pick 

a pair of value sets a and a ′ for elements in A; a will be associated with active paths, 
a ′ with those that are blocked. 

For any Vi ∈ V , define the potential outcome Vi(𝜋, a, a ′) by setting A to a for the 

purposes of paths in 𝜋 that end in Vi, and setting A to a ′ for the purposes of proper 
causal paths from A to Vi not in 𝜋.52 Formally, the definition is as follows, for any 
Vi ∈ V : 

Vi(𝜋, a, a ′) ≡ a if Vi ∈ A, 

𝜋 𝜋Vi(𝜋, a, a ′) ≡ Vi({Vj(𝜋, a, a ′) | Vj ∈ pa }, {Vj(a ′) | Vj ∈ pa }). (38.25)i i 

where Vj(a ′) ≡ a ′ if Vj ∈ A, and given by recursive substitution otherwise, pa𝜋 is the i 
𝜋set of parents of Vi along an edge which is a part of a path in 𝜋, and pa¯ is the set i 

of all other parents of Vi. 
A counterfactual Vi(𝜋, a, a ′) is said to be edge inconsistent if, for some edge 

′ Ak → Vj in 𝒢, counterfactuals of the form Vj(ak, …) and Vj(ak, …) occur in Vi(𝜋, a, a ′), 
otherwise it is said to be edge consistent. In the former case Vj is said to be a recant
ing witness (for 𝜋). It is simple to verify using Equation (38.25) that edge consistent 
counterfactuals are precisely those where no paths in 𝜋 and �̄� share the initial 
edge. Shpitser [2013] and Shpitser and Tchetgen Tchetgen [2016] have shown that 
a joint distribution p(V(𝜋, a, a ′)) containing an edge-inconsistent counterfactual 
Vi(𝜋, a, a ′) is not identified in the NPSEM-IE (nor weaker causal models) in the 

presence of a recanting witness. 
As an example, consider the graph shown in Figure 38.5(a) and the coun

terfactual given in Equation (38.23) that corresponds to the path 𝜋1 = {A → 

Y}: 

Y(𝜋1, a = 1, a = 0) ≡ Y(a = 1, L(a = 0), M(a = 0, L(a = 0))). 

50. A proper causal path intersects the set A only once at the source node. 

51. It is important to understand that the predicates “active” and “blocked” are applied to paths. 
In particular, it is possible for every edge and vertex on a blocked path to also be present on some 

active path, and vice-versa. 

52. Note that it follows from the definition of proper causal path that each path in 𝜋 is associated 

with a unique vertex in A; similarly for each path in 𝜋. (Two paths may be associated with the same 

vertex in A.) 
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The counterfactual associated with the paths 𝜋2 = {A → Y , A → L → Y} is given 

by: 

Y(𝜋2, a = 1, a = 0) ≡ Y(a = 1, L(a = 1), M(a = 0, L(a = 0))). 

Note that Y(𝜋1, a = 1, a = 0) is edge consistent while Y(𝜋2, 1, 0) is edge
53inconsistent due to the presence of L(a = 0) and L(a = 1). 

This result is proved in [Shpitser and Tchetgen Tchetgen 2016]: 

If V(𝜋, a, a ′) is edge consistent, then under the NPSEM-IE for the DAG 𝒢, 

K 
𝜋 �̄� 𝒢p(V(𝜋, a, a ′)) = ∏ p(Vi | a ∩ pai , a ′ ∩ pai , pa ⧵A). (38.26)i 

i=1 

As an example of such an identification consider the distribution p(Y(𝜋, a, a ′)) of 
the edge consistent counterfactual in Figure 38.5(a). It follows from Theorem 38.1 
that 

p(Y(𝜋1, a = 1, a = 0)) = p(Y(a = 1, L(a = 0), M(a = 0, L(a = 0)))) 

= ∑ p(Y | m, l, a = 1)p(m | l, a = 0)p(l | a = 0), 
m,l 

a marginal distribution derived from Equation (38.26). 
In the following, we exploit an equivalence between edge consistent counterfac

tuals Vi(𝜋, a, a ′) and standard potential outcomes based on edge expanded graphs 
54𝒢edge, already defined in the case of a single treatment variable in Section 38.3.3. 

In this section, we will abbreviate 𝒢edge as 𝒢e for conciseness. The edge expanded 

graph both simplifies complex nested potential outcome expressions and enables 
us to leverage the prior result in Shpitser and Pearl [2006b] to identify conditional 
path-specific effects. 

We now extend the definition of expanded graph to sets of treatments |A| > 1: 
Given an ADMG 𝒢(V), define for each Ai ∈ A ⊆ V a new set of variables, ACh ≡i 

{Aji | Vj ∈ Chi} with state spaces Aj Ai ; thus for each directed edge Ai → Vj in ≡ 
i 

𝒢(V) from a treatment variable to its child, we have created a new variable Aji with 

the same state space as Ai. Denote the full set of new variables as ACh ≡ ⋃Ai∈A A
Ch.i 

We define the edge expanded graph of 𝒢(V), written 𝒢e(V ∪ ACh), as the graph with 

53. The above development may be generalized to k different assignments rather than two, by 
partitioning the set of paths into k. These and other generalizations are termed path interventions 
by Shpitser and Tchetgen Tchetgen [2016]. 

54. A similar construction was called the “extended graph” in Malinsky et al. [2019]. 
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the vertex set V ∪ ACh; the edge expanded graph contains all the edges in 𝒢 except 
for the edges Ai → Vj that join a treatment variable Ai to its child Vj, in addition we 

add the edges Ai → Aj → Vj (which thus “replace” the removed edge Ai → Vj).i 

As an example, the edge expanded graph for the DAG in Figure 38.3(a), with 

A1 = V , is shown in Figure 38.10. For conciseness, we will generally drop explicit 
references to vertices V ∪ ACh, and denote edge expanded graph of 𝒢(V) by 𝒢e . 

More generally, we associate a causal model with 𝒢e as follows. Let V be the set 
of one-step-ahead potential outcomes associated with the original graph 𝒢. Simi
larly, we let Ve denote the set of one-step-ahead potential outcomes associated with 

𝒢e, constructed as follows: For every Vi(pai) ∈ V, we let Vi(pae) be in Ve. Note that i 

this is well-defined, since vertices Vi in 𝒢 and 𝒢e share the number of parents, and 

the parent sets for every Vi share state spaces. In addition, for every Aji ∈ ACh, we let 
Aj(ai) for ai ∈ Ai be in Ve .i

The edges Ai → Aji in 𝒢e are understood to represent deterministic equality rela
tionships, such that Aj = Ai. More precisely, every Aj ∈ ACh has a single parent i i 

Ai, and we let Aj(ai) = ai so that Aj(ai) is a degenerate (constant) random variable i i

corresponding to a point-mass at ai. 
The FFRCISTG model associated with the edge expanded graph 𝒢e includes 

these deterministic relationships. Note that it follows that given a distribution 

p(V) over the counterfactuals given by the NPSEM 𝒢 there is a unique distribu
tion pe(Ve) over the counterfactuals given by 𝒢e that satisfies these deterministic 
relationships. 

We now show the following two results. First, we show that an edge-consistent 
V(𝜋, a, a ′) may be represented without loss of generality by a counterfactual 
response to an intervention on a subset of ACh in 𝒢e with the causal model defined 

above. Second, we show that this response is identified by the same functional 
(38.26). 

A1 A
(2)

1

A
(3)

1

A
(2)

1

M

Y

A2A
(1)

2

A
(2)

2

Figure 38.10 An edge expanded graph that considers components of the treatment variables A1 and 
A2. 
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Given an edge consistent V(𝜋, a, a ′), define 𝒢e for A ⊆	 V . We define a𝜋 that 
′ assigns ai to Aji ∈ ACh if Ai → Vj in 𝒢(V) is in 𝜋, and assigns ai to Aji ∈ ACh if Ai → Vj 

in 𝒢(V) is not in 𝜋. The resulting set of counterfactuals V(a𝜋 ) is well defined in the 

model for Ve, and we have the following result, proved in the Appendix. 

Proposition 38.3	 Fix a distribution p(V) in the NPSEM-IE for a DAG 𝒢(V), and consider the cor
responding distribution pe(Ve) in the FFRCISTG model associated with a DAG 

𝒢e(V ∪ ACh). Then for every Vi ∈ V , the random variable Vi in the original model 
associated with 𝒢 is equal to the random variable Vi in the restricted model associ
ated with 𝒢e that includes the equalities defining the variables in ACh. Moreover, for 
any edge consistent 𝜋, a, a ′ , the random variable Vi(𝜋, a, a ′) in the original model 
associated with 𝒢 is equal to the random variable Vi(a𝜋 ) in the restricted model 
associated with 𝒢e . 

Theorem 38.2	 Under the FFRCISTG model associated with the edge expanded DAG 𝒢e, for any 
edge consistent 𝜋, a, a ′ : 

K 
𝒢e 𝒢e 

pe(V(a𝜋 )) = ∏ pe(Vi | a𝜋 ∩ pa , pa ⧵A). (38.27)i i 
i=1 

Note that since, by definition, the distribution pe(V ∪ ACh) is a deterministic func
tion of p(V), hence by Equation (38.27) pe(V(a𝜋 )) is identified by p(V). Recall that 
if 𝒢e is an FFRCISTG model then this requires that all of the interventions on the 

variables in ACh are well-defined. 

Corollary 38.2	 Under the NPSEM-IE model associated with the DAG 𝒢, for any edge consistent 
𝜋, a, a ′ : 

K 
𝒢e 𝒢e 

p(V(𝜋, a, a ′)) = pe(V(a𝜋 )) = ∏ pe(Vi | a𝜋 ∩ pa , pa ⧵A),i i 
i=1 

where 𝒢e is the edge expanded graph corresponding to 𝒢. 

In fact, Corollary 38.2 provides an alternative proof of Theorem 38.1 since, by 
definition, for any edge consistent 𝜋, a, a ′ : 

𝜋 𝜋	 𝒢 𝒢e 𝒢e 
p(Vi | a ∩ pai , a ′ ∩ pai , pa ⧵A) = pe(Vi | a𝜋 ∩ pa , pa ⧵A).i	 i i 

Though, as discussed previously, if the graph 𝒢 is an NPSEM-IE the graph 𝒢e may 
be regarded as a purely formal construction that aids in the derivation of the iden
tifying formulae. However, if 𝒢e is interpreted as a causal model, so that there are 

well-defined counterfactuals associated with intervening on each of the vertices 
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Proposition 38.4 

in ACh, then 𝒢e provides an interventionist interpretation of path-specific coun
terfactuals; in fact these interventions allow the identification results above to be 

checked, in principle, in a hypothetical randomized trial. 
In the causal models derived from DAGs with unobserved variables (e.g., 

𝒢(V ∪ H)), identification of distributions on potential outcomes such as p(V(a)) or 
p(V(𝜋, a, a ′)) may be stated without loss of generality on the latent projection ADMG 

𝒢(V). A complete algorithm for identification of path-specific effects in NPSEM-IEs 
with hidden variable was given in Shpitser [2013] and presented in a more concise 

form in Shpitser and Sherman [2018]. 
We now show that identification theory for p(V(𝜋, a, a ′)) in latent projection 

ADMGs 𝒢(V) may be restated, without loss of generality, in terms of identification 

of pe(V(a𝜋 )) in 𝒢e(V ∪ ACh). 

Let 𝒢(V ∪ H) be a DAG and Y ⊆ V be an ancestral set in 𝒢(a), so an𝒢(a)(Y(a)) = 

Y(a). Under the FFRCISTG model associated with the edge expanded DAG 𝒢e(V ∪ 

ACh ∪ H), for any edge consistent 𝜋, a, a ′ , it follows that Y(𝜋, a, a ′) = Y(a𝜋 ) and 

thus p(Y(𝜋, a, a ′)) is identified given p(V) if and only if pe(Y(a𝜋 )) is identified from 

pe(V ∪ ACh). 

This proposition is a generalization of Theorem 38.2 from DAGs to latent projec
tion ADMGs. To determine whether pe(Y(a𝜋 )) is identified we examine the ADMG 

𝒢e(V , ACh). Since this graph is a standard latent projection ADMG (albeit with 

deterministic relationships relating A and ACh), the extended ID algorithm decom
poses the distribution pe(Y(a𝜋 )) into a set of factors as in (41.21). However, in 

order for pe(Y(a𝜋 )) to be identified given data p(V),55 an additional requirement 
must be placed on the terms of this decomposition. Specifically, for each term 

pe(VD(a𝜋 , v 𝒢e(Y (a𝜋 )) ) = vD) in (41.21), it must be the case that a𝜋 assigns consistent 
pas

𝒢e (Y(a𝜋 ))
D 

values to each element of A that is in pas𝒢e(Y(a𝜋 )) ≡ pa ⧵ (D ∪ a𝜋 ), the ran-D D 

dom parents of district D that are not in D. This requirement corresponds to the 

recanting district criterion that was introduced and shown to be complete in Shpitser 
[2013]. Aside from this requirement, each term must be identified by the extended 

ID algorithm described in the companion paper [Chapter 41].56 

55. Note that the vertex set for 𝒢e(V , ACh) comprises V ∪ACh. Further, by construction, the distribu
tion over pe(V ∪ ACh) is degenerate since the variables in ACh are deterministic functions of those 

in A. 

56. See Point (b) in Section 38.3.5. 
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Conditional Path-specific Distributions 
Having established that we can identify path-specific effects by working with poten
tial outcomes derived from the 𝒢e model, we turn to the identification of condi
tional path-specific effects using the po-calculus. In Shpitser and Pearl [2006b], 
the authors present the conditional identification (IDC) algorithm for identifying 

quantities of the form p(Y(x) | W(x)) (in our notation), given an ADMG. Since con
ditional path-specific effects correspond to exactly such quantities defined on the 

model associated with the edge expanded graph 𝒢e, we can leverage their scheme 

for our purposes. The idea is to reduce the conditional problem, identification 

of pe(Y(a𝜋 ) | W(a𝜋 )), to an unconditional ( joint) identification problem for which 

a complete identification algorithm already exists. 
The algorithm has three steps: first, exhaustively apply Rule 2 of the po-calculus 

to reduce the conditioning set as much as possible; second, identify the rel
evant joint distribution using Proposition 38.4 and the complete algorithm of 
Shpitser and Sherman [2018]; third, divide that joint by the marginal distribution 

of the remaining conditioning set to yield the conditional path-specific potential 
outcome distribution. 

Note that we make use of SWIGs defined from edge expanded graphs of the 

form 𝒢e(a𝜋 , z). Beginning with 𝒢e the SWIG 𝒢e(a𝜋 , z) is constructed by the usual 
node-splitting operation: split nodes Z and Aji into random and fixed halves, where 

Aj ′ 
i has a fixed copy a if Ai → Vj in 𝒢(V) is in 𝜋, and ai if Ai → Vj in 𝒢(V) is not in 𝜋. 
Relabeling of random nodes proceeds as previously described. This procedure is 
in fact complete, as shown by the following result with a proof found in Malinsky 
et al. [2019].57 

Let p(Y(𝜋, a, a ′) | W(𝜋, a, a ′)) be a conditional path-specific distribution in the 

NPSEM-IE model for 𝒢, and let pe(Y(a𝜋 ) | W(a𝜋 )) be the corresponding distribution 

under the FFRCISTG associated with the edge expanded graph 𝒢e(V ∪ACh). Let Z be 

W(a𝜋the maximal subset of W such that pe(Y(a𝜋 ) | W(a𝜋 )) = pe(Y(a𝜋 , z) | , z)⧵Z(a𝜋 , z)). 
, z), W(a𝜋Then pe(Y(a𝜋 ) | W(a𝜋 )) is identifiable in 𝒢e if and only if pe(Y(a𝜋 , z)⧵ Z(a𝜋 , z)) 

is identifiable in 𝒢e . 

As an example, p(Y(a, M(a ′))) is identified from p(C, A, M, Y) in the NPSEM-IE 

model for the graph in Figure 38.11(a) via 

∑c p(Y , m | a, c)p(c) ′ p(Y(a, M(a ′))) = ∑ ∑ p(m | a , c *)p(c *)( ∑c p(m | a, c)p(c) )( ) 
. 

m c * 

57. Malinsky et al. [2019] assumed an NPSEM-IE but the proof only uses the rules of the 

po-calculus, hence also applies under the less restrictive FFRCISTG assumptions for 𝒢e . 
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H2

(a)

C A M Y

H2

(b)

Figure 38.11	 (a) A hidden variable causal DAG where p(Y(a, M(a ′))) is identified but p(Y(a, M(a ′)) | C) 
is not identified. (b) A seemingly similar hidden variable causal DAG where both 
p(Y(a, M(a ′))) and p(Y(a, M(a ′)) | C) are identified. 

However, p(Y(a, M(a ′)) | C) is not identified since p(Y(a, M(a ′)), C) must first be iden
tified, and this joint distribution is not identified via results in Shpitser [2013]. 
On the other hand, p(Y(a, M(a ′)) | C) is identified from p(C, A, M, Y) in a seemingly 

′ similar graph in Figure 38.11(b), via ∑M p(Y | M, a, C)p(M | a , C). 

38.5 Conclusion 
We have shown here that graphical insights derived from Pearl’s thought experi
ment may be used to place mediation analysis on a firm interventionist footing, 
and yield analyses of direct, indirect, and path-specific effects that are amenable 

to falsification, and explainable to practitioners. 
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38.A Appendix 

38.A.1 Proof of PDE Bounds under the FFRCISTG Model 
We here prove the bounds on the PDE implied by the FFRCISTG model associated 

with the graph in Figure 38.3(a). 



38.A Appendix 755 

Proof. It follows from the definition that: PDEa,a ′ = P(Y(a, M(a ′)) = 1) −P(Y = 

1 | A = a ′). Note that 

p(Y(a, M(a ′)) = 1) = p(Y(a, m = 0) = 1 | M(a ′) = 0)p(M(a ′) = 0 | A = a ′) 

+ p(Y(a, m = 1) = 1 | M(a ′) = 1)p(M(a ′) = 1 | A = a ′) 

= p(Y(a, m = 0) = 1 | M(a ′) = 0)p(M = 0 | A = a ′) 

+ p(Y(a, m = 1) = 1 | M(a ′) = 1)p(M = 1 | A = a ′). 

The quantities p(Y(a, m = 0) = 1 | M(a ′) = 0) and p(Y(a, m = 1) = 1 | M(a ′) = 1) are 

constrained by the law for the observed data via: 

p(Y = 1 | A = a, M = 0) = p(Y(a, m = 0) = 1)
 

= p(Y(a, m = 0) = 1 | M(a ′) = 0)p(M(a ′) = 0)
 

+ p(Y(a, m = 0) = 1 | M(a ′) = 1)p(M(a ′) = 1) 

= p(Y(a, m = 0) = 1 | M(a ′) = 0)p(M = 0 | A = a ′) 

+ p(Y(a, m = 0) = 1 | M(a ′) = 1)p(M = 1 | A = a ′), 

p(Y = 1 | A = a, M = 1) = p(Y(a, m = 1) = 1)
 

= p(Y(a, m = 1) = 1 | M(a ′) = 0)p(M(a ′) = 0)
 

+ p(Y(a = 1, m = 1) = 1 | M(a ′) = 1)p(M(a ′) = 1) 

= p(Y(a, m = 1) = 1 | M(a ′) = 0)p(M = 0 | A = a ′) 

+ p(Y(a, m = 1) = 1 | M(a ′) = 1)p(M = 1 | A = a ′). 

It then follows from the analysis in Section 2.2 in Richardson and Robins [2010] 
that the set of possible values for the pair 

(𝛼0, 𝛼1) ≡ (p(Y(a, m = 0) = 1 | M(a ′) = 0), p(Y(a, m = 1) = 1 | M(a ′) = 1)) 

compatible with the observed joint distribution p(m, y | a) is given by: 

(𝛼0, 𝛼1) ∈ [l0, u0] × [l1, u1] 

where, 

l0 = max{0, 1 + (p(Y = 1 | A = a, M = 0) − 1)/p(M = 0 | A = a ′)}, 

u0 = min{p(Y = 1 | A = a, M = 0)/p(M = 0 | A = a ′), 1}, 

l1 = max{0, 1 + (p(Y = 1 | A = a, M = 1) − 1)/p(M = 1 | A = a ′)}, ■ 

u1 = min{p(Y = 1 | A = a, M = 1)/p(M = 1 | A = a ′), 1}. 
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38.A.2 Proof that the PDE is Not Identified in the River Blindness Study 
Consider the NPSEM-IE corresponding to the DAG shown in Figure 38.12, which 

may be obtained by marginalizing R from the causal DAG representing the river 
blindness studies shown in Figure 38.1(a). 

The one-step-ahead counterfactuals defining the model are: U, A, S(a), M(a, u), 
Y(m, s, u). We will assume that all variables, including U, are binary. Though 

not shown explicitly on the graph, we also have the following constraints: (i) 
Y(m, s0, u0) = Y(m, s0, u1) ≡ Y(m, s0); (ii) Y(m0, s1, u0) = Y(m0, s1, u1) ≡ Y(m0, s1); (iii) 
M(a1, u0) = M(a1, u1) ≡ M(a1), and (iv) S(a) = a, where here we use xi as a shorthand 

for x = i. These arise from, respectively, (i) the fact that if immunosuppressants 
are not available (s = 0) then the patient’s outcome (Y) is not influenced by their 
predisposition (U) to use medicine; (ii) the availability of immunosuppressants, 
and hence the patient’s predisposition (U) to use them, is not relevant to patients 
who do not receive ivermectin;58 (iii) the fact that in a randomized trial (a = 1) 
the treatment the patient receives is not influenced by U; and (iv) the fact that the 

clinic is available (s = 1) if and only if a patient is in the randomized trial (a = 1). 
The NPSEM-IE is then defined by the following 10 parameters: 

U :	 θU ≡ p(U = 1); 
A : 𝜃A ≡ p(A = 1); 

M(a, u) : 𝜃M (a0, u) ≡ p(M(a0, u) = 1), for u ∈ {0, 1}, 
𝜃M (a1) ≡ p(M(a1) = 1); 

Y(m, s, u) : 𝜃Y (m1, s1, u) ≡ p(Y(m1, s1, u) = 1), for u ∈ {0, 1}, 
𝜃Y (m, s) ≡ p(Y(m, s) = 1), for (m, s) ∈ {(0, 0), (0, 1), (1, 0)}. 

A

S

M

U

Y

Figure 38.12	 The DAG corresponding to the projection of the DAG 𝒢 shown in Figure 38.1(a) after 
marginalizing R. 

58. This is an additional restriction not present in the original account but introduced here solely 
to reduce the number of parameters. This corresponds to removing the U → R edge in the 

SWIG 𝒢(a1, m0, s1) where m is set to 0; see Figure 38.2. (Since non-identifiability under a sub-
model implies non-identifiability in the larger model, we can make this assumption without loss 
of generality.) 
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Let 𝜃 denote a vector containing all of these parameters. The corresponding 

observed distribution p𝜃(A, M, Y) is given by the following equations: 

p𝜃(A = 1) = 𝜃A,
{ 
𝜃M (a0, u0)(1 − 𝜃U ) + 𝜃M (a0, u1)𝜃U , if a = 0, 

p𝜃(M = 1 | A = a) = 
𝜃M (a1), if a = 1, 

p𝜃(Y = 1 | A = a, M = m)
{ 

𝜃Y (m, sa), if (a, m) ∈ {(0, 0), (0, 1), (1, 0)},
= 

𝜃Y (m1, s1, u0)(1 − 𝜃U ) + 𝜃Y (m1, s1, u1)𝜃U , if (a, m) = (1, 1). 

Given 𝜃, consider a perturbed vector 𝜃 defined by taking 

𝜃M (a0, u0) ≡ 𝜃M (a0, u0) + 𝜀/(1 − 𝜃U ), 

𝜃M (a0, u1) ≡ 𝜃M (a0, u1) − 𝜀/𝜃U , 

for sufficiently small 𝜀 and leaving the other 8 parameters unchanged from 𝜃. 
It is simple to see that the resulting observed distribution is unchanged, so 

p𝜃𝜀 (A, M, Y) = p𝜃 (A, M, Y), since the perturbation only changes the expression for 
p(M = 1 | A = 0), but the additional terms involving 𝜀 cancel. 

Turning to the PDE we see that: 

p𝜃(Y(a1, M(a0)) = 1) 

= p𝜃(Y(M(a0), s1) = 1) 

= ∑ p𝜃(Y(M(a0), s1) = 1 | U = u)p𝜃(U = u) 
u 

= ∑ p𝜃(Y(mk, s1) = 1 | U = u, M(a0) = k)p𝜃 (M(a0) = k | U = u)p𝜃 (U = u) 
u,k 

consistency = ∑ p𝜃(Y(mk, s1, u) = 1 | U = u, M(a0) = k)p𝜃(M(a0, u) = k | U = u)p𝜃(U = u) 
u,k 

independence = ∑ p𝜃(Y(mk, s1, u) = 1)p𝜃(M(a0, u) = k)p𝜃(U = u) 
u,k 

= 𝜃Y (m0, s1)(1 − 𝜃M (a0, u0))(1 − 𝜃U ) + 𝜃Y (m0, s1)(1 − 𝜃M (a0, u1))𝜃U 

+ 𝜃Y (m1, s1, u0)𝜃M (a0, u0)(1 − 𝜃U ) + 𝜃Y (m1, s1, u1)𝜃M (a0, u1)𝜃U . 

A simple calculation shows that 

p𝜃(Y(M(a0), s1) = 1) = p𝜃(Y(M(a0), s1) = 1) + 𝜀(𝜃Y (m1, s1, u0) − 𝜃Y (m1, s1, u1)) 
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so that the PDE will take a different value under p˜, so long as 𝜃Y (m1, s1, u0) ≠𝜃 
59𝜃Y (m1, s1, u1). 

That the PDE is not identified in the river blindness study example should not 
be surprising in light of the results in Section 38.4. In particular, we know that 
Y(a1, M(a0)) = Y(s1, a0).60 In addition, we see that in the SWIG 𝒢(a = 0, s = 1) 
shown in Figure 38.13(a), which here plays the role of the SWIG for the expanded 

graph 𝒢ex , Y(a0, s1) is in the same district as M(a0), but the fixed nodes a = 0 

and s = 1 are both parents of this district, but are both associated with A in the 

original graph. Consequently M(a0) ↔ Y(a0, s1) forms a recanting district. How
ever, formally Section 38.4 considers models defined solely via ordinary conditional 
independences, whereas the model in the river blindness study also incorporated 

context-specific independences. For this reason, since a quantity may be unidenti
fied in a model but identified in a submodel, we provided an explicit construction 

of an NPSEM-IE for the DAG in Figure 38.1(a).61 

Similarly, consideration of the SWIG 𝒢(a = 1, s = 0) shown in Figure 38.13(b) 
shows that p(Y(a1, s0)) is identified from p(A, M, Y) because there is no recanting 

district:62 
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0
)
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1
, s

0
)
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Figure 38.13	 (a) The SWIG 𝒢(a = 0, s = 1) associated with the DAG shown in Figure 38.1(a); (b) The 
SWIG 𝒢(a = 1, s = 0) associated with the DAG shown in Figure 38.1(a). The U → M edge 
is absent because this is a randomized study (a = 1). The U → R edge is not present 
because the clinic is not available (s = 0), hence patients do not have the option to take 
immunosuppressants. 

59. This inequality corresponds to the presence of the edge U → Y in Figure 38.12. 

60. This assumes that missing edges correspond to the absence of direct effects at the individual 
level, so that M(a0, s1) = M(a0). 

61. Since the NPSEM-IE is a submodel of the FFRCISTG, this also establishes that the PDE is not 
identified under the latter interpretation of the DAG in Figure 38.1(a). 

62. Note that this identification argument does not use the additional constraint (ii). 
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p(Y(a1, s0) = 1) = ∑ p(y = 1 | r, m)p(r | s = 0, m)p(m | a = 1) g-formula 

r,m 

independence = ∑ p(y = 1 | r, m, s = 0)p(r | s = 0, m)p(m | a = 1) 
r,m 

marginalization = ∑ p(y = 1 | m, s = 0)p(m | a = 1) 
m 

determinism = ∑ p(y = 1 | m, a = 0)p(m | a = 1).	 (38.A) 
m 

Thus, in this example, p(Y(a, s)) = p(Y(s, M(a))) is identified for (a, s) ∈ 

{(0, 0), (1, 1), (1, 0)} but is not identified for (a, s) = (0, 1). Since Y(a0, M(a1)) = 

Y(a1, s0), it follows that p(Y(a0, M(a1))), which forms part of the Total Direct Effect 
(38.3), is also identified. 

This conclusion also follows from Proposition 38.1, here letting A be “N” and S 

be “O”, since equality (38.15) holds with x = 1 (though not with x = 0). 

38.A.3	 Detecting Confounding via Interventions on A and S 
In the river blindness study, it is not possible to detect the confounder U via inter
ventions on A and M since the distribution {A, M(a), Y(a, m)} obeys the FFRCISTG 

model corresponding to Figure 38.3(a). This is due to the context-specific inde
pendences that hold in this example; see Section 38.2.5. However, confounding 

becomes detectable if we are able to intervene on S and A. To see this, note that: 

p(Y(a0, s1) = 1 | M(a0) = 1] 

= ∑ p(Y(a0, s1) = 1 | M(a0) = 1, U = u)p(u | M(a0) = 1) 
u 

= ∑ p(Y(m1, s1, u) = 1 | M(a0) = 1, U = u)p(u | M(a0) = 1) 
u 

= ∑ p(Y(m1, s1, u) = 1)p(u | M(a0) = 1) 
u 

𝜃Y (m1, s1, u0)(1 − 𝜃U )𝜃M (a0, u0) + 𝜃Y (m1, s1, u1)𝜃U 𝜃M (a0, u1)= 
(1 − 𝜃U )𝜃M (a0, u0) + 𝜃U 𝜃M (a0, u1) 

which will depend on 𝜃M (a0, u0) and 𝜃M (a0, u1), (if 𝜃Y (m1, s1, u0) ̸= 𝜃Y (m1, s1, u1)). 
However, 

p(Y(a1, s1) | M(a1) = 1) = ∑ p(Y(a1, s1) | M(a1) = 1, U = u)p(u | M(a1) = 1) 
u 

= ∑ p(Y(m1, s1, u) | M(a1) = 1, U = u)p(u | M(a1) = 1) 
u 
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= ∑ p(Y(m1, s1, u))p(u | M(a1) = 1) 
u 

= ∑ p(Y(m1, s1, u))p(u) 
u 

= 𝜃Y (m1, s1, u0)(1 − 𝜃U ) + 𝜃Y (m1, s1, u1)𝜃U . 

Thus p(Y(a0, s1) = 1 | ̸ | M(a1) = 1), while if U were absent M(a0) = 1) = p(Y(a1, s1) = 1 
we would have equality.63 That the equality holds if U is absent may be seen by 
removing U from the SWIG 𝒢(a, s) constructed from 𝒢 in Figure 38.1(a) and then 

applying Rule 3 of the po-calculus [Shpitser et al. 2021]: the equality follows from 

the fact that a is d-separated from Y(a, s) given M(a). Conversely, that the equality 
fails to hold when U is present is not surprising since we have the d-connecting 

path a → M(a) ← U → R(m, s) → Y(m, s) in Figure 38.13(a). 

38.A.4	 Proof of Proposition 38.3 
Proof. For any Vi ∈ V , Vi(a𝜋 ) is defined via (41.1) applied to 𝒢edge, 

Vi(a𝜋 ) ≡ Vi (a
𝜋 

𝒢edge , V 𝒢edge (a𝜋 )) 
. 

pa pa∩ACh ⧵ACh 
i i 

Similarly, Vi(𝜋, a, a ′) is defined via Equation (38.25) applied to 𝒢 as 

Vi(𝜋, a, a ′) ≡ a if Vi ∈ A, 
𝜋	 𝜋Vi(𝜋, a, a ′) ≡ Vi({Vj(𝜋, a, a ′) | Vj ∈ pa }, {Vj(a ′) | Vj ∈ pa })i	 i 

where Vj(a ′) ≡ a ′ if Vj ∈ A, and given by (41.1) otherwise, pa𝜋 is the set of parents of i 

Vi along an edge that is a part of a path in 𝜋, and pa𝜋 is the set of all other parents i 

of Vi. 
By definition of 𝒢edge, the induction on the tree structure of Equation (38.25) in 

𝒢 matches the induction on the tree structure of (41.1) in 𝒢edge. 
Finally, since Vi(𝜋, a, a ′) is edge consistent, any edge of the form Ak → Vj in 𝒢, 

for any Ak ∈ A that starts a proper causal path that ends at Vi is assigned precisely 
′ one value (either aAk or aAk 
). Moreover, this value in the base case of the induc

tion of Equation (38.25), by definition of a𝜋 matches the value a𝜋 assigned by the Ak 

corresponding base case of the induction of (41.1). This establishes our conclusion. 
That the corresponding observed data variables Vi match in models represented 

by the original graph 𝒢, and the edge expanded graph 𝒢edge follows by the above 

63. Note that under the additional assumption (iii), we have: p(Y(a0, s1) = 1 | M(a0) = 0) = 

p(Y(a1, s1) = 1 | M(a1) = 0) since 𝜃Y (m0, s1, u0) = 𝜃Y (m0, s1, u1). Without (iii) the equality will not 
hold. 
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argument, using the fact that all elements in ACh are deterministically related to 

the appropriate elements in A. 

Malinsky et al. [2019] prove a weaker result establishing equality in distribution. 
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39

artificial intelligence (AI), and for a long time had little connection to the field 

of machine learning. This chapter discusses where links have been and should 

be established, introducing key concepts along the way. It argues that the hard 

open problems of machine learning and AI are intrinsically related to causality, 
and explains how the field is beginning to understand them. 

Causality for Machine 
Learning 
Bernhard Schölkopf (Max Planck Institute for Intelligent Systems) 

Abstract 
Graphical causal inference as pioneered by Judea Pearl arose from research on 

39.1 Introduction 
The machine learning community’s interest in causality has significantly increased 

in recent years. My understanding of causality has been shaped by Judea Pearl and 

a number of collaborators and colleagues, and much of it went into a book writ
ten with Dominik Janzing and Jonas Peters [Peters et al. 2017]. I have spoken about 
this topic on various occasions,1 and some of it is in the process of entering the 

machine learning mainstream, in particular the view that causal modeling can lead 

to more invariant or robust models. There is excitement about developments at the 

interface of causality and machine learning, and the present article tries to put my 
thoughts into writing and draw a bigger picture. I hope it may not only be useful 
by discussing the importance of causal thinking for AI, but it can also serve as an 

introduction to some relevant concepts of graphical or structural causal models 
(SCMs) for a machine learning audience. 

1. For example, Schölkopf [2017], talks at the International Conference on Learning Represen
tations, the Asian Conference on Machine Learning, and in machine learning labs that have 

meanwhile developed an interest in causality (e.g., DeepMind); much of the present paper is 
essentially a written-out version of these talks. 
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In spite of all recent successes, if we compare what machine learning can do to 

what animals accomplish, we observe that the former is rather bad at some cru
cial feats where animals excel. This includes transfer to new problems, and any 
form of generalization that is not from one data point to the next one (sampled 

from the same distribution), but rather from one problem to the next one—both 

have been termed generalization, but the latter is a much harder form thereof. 
This shortcoming is not too surprising since machine learning often disregards 
information that animals use heavily: interventions in the world, domain shifts, 
temporal structure—by and large, we consider these factors a nuisance and try to 

engineer them away. Finally, machine learning is also bad at thinking in the sense 

of Konrad Lorenz, that is, acting in an imagined space.2 I will argue that causality, 
with its focus on modeling and reasoning about interventions, can make a sub
stantial contribution toward understanding and resolving these issues and thus 
take the field to the next level. I will do so mostly in non-technical language, for 
many of the difficulties of this field are of a conceptual nature. 

39.2 The Mechanization of Information Processing 
The first industrial revolution began in the late 18th century and was triggered by 
the steam engine and waterpower. The second one started about a century later 
and was driven by electrification. If we think about it broadly, then both are about 
how to generate and convert forms of energy. Here, the word “generate” is used in 

a colloquial sense—in physics, energy is a conserved quantity and can thus not be 

created, but only converted or harvested from other energy forms. Some think we 

are now in the middle of another revolution, called the digital revolution, the big 

data revolution, and, more recently, the AI revolution. The transformation, how
ever, really started already in the mid-20th century under the name of cybernetics. 
It replaced energy by information. Like energy, information can be processed by 
people, but to do it at an industrial scale we needed to invent computers, and to 

do it intelligently we now use AI. Just like energy, information may actually be a 

conserved quantity, and we can probably only ever convert and process it, rather 
than generating it from thin air. When machine learning is applied in industry, 
we often convert user data into predictions about future user behavior and thus 
money. Money may ultimately be a form of information—a view not inconsistent 
with the idea of bitcoins generated by solving cryptographic problems. The first 
industrial revolutions rendered energy a universal currency [Smil 2017]; the same 

may be happening to information. 

2. “I do not see how thinking should fundamentally differ from such tentative acting in imagined space, 
taking place only in the brain” [Lorenz 1973]. 
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Like for the energy revolution, one can argue that the present revolution has two 

components: the first one built on the advent of electronic computers, the develop
ment of high-level programming languages, and the birth of the field of computer 
science, engendered by the vision to create AI by manipulation of symbols. The 

second one, which we are currently experiencing, relies upon learning. It allows to 

extract information also from unstructured data, and it automatically infers rules 
from data rather than relying on humans to conceive of and program these rules. 
While Judea’s approach arose out of classic AI, he was also one of the first to recog
nize some of the limitations of hard rules programmed by humans, and thus led 

the way in marrying classic AI with probability theory [Pearl 1988]. This gave birth 

to graphical models, which were adopted by the machine learning community, yet 
largely without paying heed to their causal semantics. In recent years, genuine con
nections between machine learning and causality have emerged, and we will argue 

that these connections are crucial if we want to make progress on the major open 

problems of AI. 
At the time, the invention of automatic means of processing energy trans

formed the world. It made human labor redundant in some fields, and it spawned 

new jobs and markets in others. The first industrial revolution created industries 
around coal, the second one around electricity. The first part of the information 

revolution built on this to create electronic computing and the IT industry, and 

the second part is transforming IT companies into “AI first” as well as creating an 

industry around data collection and “clickwork.” While the latter provides labeled 

data for the current workhorse of AI, supervised machine learning [Vapnik 1998], 
one may anticipate that new markets and industries will emerge for causal forms of 
directed or interventional information, as opposed to just statistical dependences. 

The analogy between energy and information is compelling, but our present 
understanding of information is rather incomplete, as was the concept of energy 
during the course of the first two industrial revolutions. The profound modern 

understanding of the concept of energy came with the mathematician Emmy 
Noether, who understood that energy conservation is due to a symmetry (or covari
ance) of the fundamental laws of physics: they look the same no matter how we 

shift the time, in present, past, and future. Einstein, too, was relying on covari
ance principles when he established the equivalence between energy and mass. 
Among fundamental physicists, it is widely held that information should also be 

a conserved quantity, although this brings about certain conundra especially in 

cosmology.3 One could speculate that the conservation of information might also 

3. What happens when information falls into a black hole? According to the no hair conjecture, 
a black hole seen from the outside is fully characterized by its mass, (angular) momentum, and 

charge. 
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be a consequence of symmetries—this would be most intriguing, and it would 

help us understand how different forms of (phenomenological) information relate 

to each other, and define a unified concept of information. We will below intro
duce a form of invariance/independence that may be able to play a role in this 
respect.4 The intriguing idea of starting from symmetry transformations and defin
ing objects by their behavior under these transformations has been fruitful not just 
in physics but also in mathematics [Klein 1872, MacLane 1971]. 

Clearly, digital goods are different from physical goods in some respects, and 

the same holds true for information and energy. A purely digital good can be copied 

at essentially zero cost [Brynjolfsson et al. 2019], unless we move into the quantum 

world [Wootters and Zurek 1982]. The cost of copying a physical good, on the other 
hand, can be as high as the cost of the original (e.g., for a piece of gold). In other 
cases, where the physical good has a non-trivial informational structure (e.g., a 

complex machine), copying it may be cheaper than the original. In the first phase 

of the current information revolution, copying was possible for software, and the 

industry invested significant effort in preventing this. In the second phase, copying 

extends to datasets, for given the right machine learning algorithm and computa
tional resources others can extract the same information from a dataset. Energy, 
in contrast, can only be used once. 

Just like the first industrial revolutions had a major impact on technology, econ
omy, and society, the same will likely apply for the current changes. It is arguably 
our information processing ability that is the basis of human dominance on this 
planet, and thus also of the major impact of humans on our planet. Since it is about 
information processing, the current revolution is thus potentially even more sig
nificant than the first two industrial revolutions. We should strive to use these tech
nologies well to ensure they will contribute toward the solutions of humankind’s 
and our planet’s problems. This extends from questions of ethical generation of 
energy (e.g., environmental concerns) to ethical generation of information (pri
vacy, clickwork) all the way to how we are governed. In the beginnings of the 

information revolution, cybernetician Stafford Beer worked with Chile’s Allende 

government to build cybernetic governance mechanisms [Medina 2011]. In the 

4. Mass seemingly played two fundamentally different roles (inertia and gravitation) until Ein
stein furnished a deeper connection in general relativity. It is noteworthy that causality intro
duces a layer of complexity underlying the symmetric notion of statistical mutual information. 
Discussing source coding and channel coding, Shannon [1959] remarked: “This duality can be 

pursued further and is related to a duality between past and future and the notions of control 
and knowledge. Thus we may have knowledge of the past but cannot control it; we may control 
the future but have no knowledge of it.” According to Kierkegaard, “Life can only be understood 

backwards; but it must be lived forwards.” 
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current data-driven phase of this revolution, China is beginning to use machine 

learning to observe and incentivize citizens to behave in ways deemed beneficial 
[Chen and Cheung 2018, Dai 2018]. It is hard to predict where this development 
takes us—this is science fiction at best, and the best science fiction may provide 

insightful thoughts on the topic.5 

39.3 From Statistical to Causal Models 

39.3.1 Methods Driven by Independent and Identically Distributed Data 
Our community has produced impressive successes with applications of machine 

learning to big data problems [LeCun et al. 2015]. In these successes there are 

multiple trends at work: (1) we have massive amounts of data, often from sim
ulations or large-scale human labeling, (2) we use high-capacity machine learn
ing systems (i.e., complex function classes with many adjustable parameters), (3) 
we employ high-performance computing systems, and finally (often ignored, but 
crucial when it comes to causality) (4) the problems are independent and iden
tically distributed (IID). The settings are typically either IID to begin with (e.g., 
image recognition using benchmark datasets), or they are artificially made IID, 
for example, by carefully collecting the right training set for a given application 

problem, or by methods such as DeepMind’s “experience replay” [Mnih et al. 2015] 
where a reinforcement learning agent stores observations in order to later permute 

them for the purpose of further training. For IID data, strong universal consistency 
results from statistical learning theory apply, guaranteeing convergence of a learn
ing algorithm to the lowest achievable risk. Such algorithms do exist, for instance, 
nearest neighbor classifiers and support vector machines [Vapnik 1998, Schölkopf 
and Smola 2002, Steinwart and Christmann 2008]. Seen in this light, it is not sur
prising that we can indeed match or surpass human performance if given enough 

data. Machines often perform poorly, however, when faced with problems that vio
late the IID assumption yet seem trivial to humans. Vision systems can be grossly 
misled if an object that is normally recognized with high accuracy is placed in a 

context that in the training set may be negatively correlated with the presence of 
the object. For instance, such a system may fail to recognize a cow standing on 

the beach. Even more dramatically, the phenomenon of “adversarial vulnerability” 
highlights how even tiny but targeted violations of the IID assumption, generated 

by adding suitably chosen noise to images (imperceptible to humans), can lead to 

5. Quoting from Asimov [1951]: “Hari Seldon [..] brought the science of psychohistory to its full 
development. [..] The individual human being is unpredictable, but the reactions of humans 
mobs, Seldon found, could be treated statistically.” 
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dangerous errors such as confusion of traffic signs. Recent years have seen a race 

between “defense mechanisms” and new attacks that appear shortly after and re
affirm the problem. Overall, it is fair to say that much of the current practice (of 
solving IID benchmark problems) as well as most theoretical results (about gen
eralization in IID settings) fail to tackle the hard open problem of generalization 

across problems. 
To further understand the way in which the IID assumption is problematic, let 

us consider a shopping example. Suppose Alice is looking for a laptop rucksack 

on the Internet (i.e., a rucksack with a padded compartment for a laptop), and the 

web store’s recommendation system suggests that she should buy a laptop to go 

along with the rucksack. This seems odd because she probably already has a laptop, 
otherwise she would not be looking for the rucksack in the first place. In a way, the 

laptop is the cause and the rucksack is an effect. If I am told whether a customer 
has bought a laptop, it reduces my uncertainty about whether she also bought a 

laptop rucksack, and vice versa—and it does so by the same amount (the mutual 
information), so the directionality of cause and effect is lost. It is present, however, 
in the physical mechanisms generating statistical dependence, for instance the 

mechanism that makes a customer want to buy a rucksack once she owns a lap
top. Recommending an item to buy constitutes an intervention in a system, taking 

us outside the IID setting. We no longer work with the observational distribution, 
but a distribution where certain variables or mechanisms have changed. This is the 

realm of causality. 
Reichenbach [1956] clearly articulated the connection between causality and 

statistical dependence. He postulated the Common Cause Principle: if two observ
ables X and Y are statistically dependent, then there exists a variable Z that causally 
influences both and explains all the dependence in the sense of making them inde
pendent when conditioned on Z. As a special case, this variable can coincide with 

X or Y. Suppose that X is the frequency of storks and Y the human birth rate (in 

European countries, these have been reported to be correlated). If storks bring the 

babies, then the correct causal graph is X → Y . If babies attract storks, it is X ← Y . 
If there is some other variable that causes both (such as economic development), 
we have X ← Z → Y . 

The crucial insight is that without additional assumptions, we cannot distin
guish these three cases using observational data. The class of observational distri
butions over X and Y that can be realized by these models is the same in all three 

cases. A causal model thus contains genuinely more information than a statistical 
one. 

Given that already the case where we have two observables is hard, one might 
wonder if the case of more observables is completely hopeless. Surprisingly, this 
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is not the case: the problem in a certain sense becomes easier, and the reason 

for this is that in that case there are non-trivial conditional independence prop
erties [Spohn 1978, Dawid 1979, Geiger and Pearl 1990] implied by causal structure. 
These can be described by using the language of causal graphs or SCMs, merging 

probabilistic graphical models and the notion of interventions [Spirtes et al. 2000, 
Pearl 2009a] best described using directed functional parent–child relationships 
rather than conditionals. While conceptually simple in hindsight, this constituted 

a major step in the understanding of causality, as later expressed by Pearl [2009a, 
p. 104]: 

We played around with the possibility of replacing the parents–child relationship 

P(Xi | PAi) with its functional counterpart Xi = fi(PAi, Ui) and, suddenly, every
thing began to fall into place: We finally had a mathematical object to which we 
could attribute familiar properties of physical mechanisms instead of those slip
pery epistemic probabilities P(Xi | PAi) with which we had been working so long 
in the study of Bayesian networks. 

Structural Causal Models 
The SCM viewpoint is intuitive for those machine learning researchers who are 

more accustomed to thinking in terms of estimating functions rather than prob
ability distributions. In it, we are given a set of observables X1, … , Xn (modeled as 
random variables) associated with the vertices of a directed acyclic graph (DAG). 
We assume that each observable is the result of an assignment 

Xi := fi(PAi, Ui), (i = 1, … , n), (39.1) 

using a deterministic function fi depending on Xi’s parents in the graph (denoted 

by PAi) and on a stochastic unexplained variable Ui. Directed edges in the graph 

represent direct causation, since the parents are connected to Xi by directed edges 
and through Equation (39.1) directly affect the assignment of Xi. The noise Ui 
ensures that the overall object (39.1) can represent a general conditional distribu
tion p(Xi | PAi), and the set of noises U1, … , Un are assumed to be jointly independent. 
If they were not, then by the Common Cause Principle there should be another 
variable that causes their dependence, and thus our model would not be causally 
sufficient. 

If we specify the distributions of U1, … , Un, recursive application of Equa
tion (39.1) allows us to compute the entailed observational joint distribution 

p(X1, … , Xn). This distribution has structural properties inherited from the graph 

[Lauritzen 1996, Pearl 2009a]: it satisfies the causal Markov condition stating that 
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conditioned on its parents, each Xj is independent of its non-descendants. Intu
itively, we can think of the independent noises as “information probes” that 
spread through the graph (much like independent elements of gossip can spread 

through a social network). Their information gets entangled, manifesting itself in 

a footprint of conditional dependences rendering the possibility to infer aspects 
of the graph structure from observational data using independence testing. Like 

in the gossip analogy, the footprint may not be sufficiently characteristic to pin 

down a unique causal structure. In particular, it certainly is not if there are only two 

observables since any non-trivial conditional independence statement requires at 
least three variables. 

We have studied the two-variable problem over the last decade. We realized 

that it can be addressed by making additional assumptions, as not only the graph 

topology leaves a footprint in the observational distribution but the functions fi 
do, too. This point is interesting for machine learning, where much attention is 
devoted to properties of function classes (e.g., priors or capacity measures), and 

we shall return to it below. Before doing so, we note two more aspects of Equation 

(39.1). First, the SCM language makes it straightforward to formalize interventions 
as operations that modify a subset of assignments (39.1), for example, changing Ui, 
or setting fi (and thus Xi) to a constant [Spirtes et al. 2000, Pearl 2009a]. Second, the 

graph structure along with the joint independence of the noises implies a canon
ical factorization of the joint distribution entailed by Equation (39.1) into causal 
conditionals that we will refer to as the causal (or disentangled) factorization, 

n 

p(X1, … , Xn) = ∏ p(Xi | PAi). (39.2) 
i=1 

While many other entangled factorizations are possible, for example, 

n 

p(X1, … , Xn) = ∏ p(Xi | Xi+1, … , Xn), (39.3) 
i=1 

Equation (39.2) is the only one that decomposes the joint distribution into condi
tionals corresponding to the structural assignments (39.1). We think of these as 
the causal mechanisms that are responsible for all statistical dependences among 

the observables. Accordingly, in contrast to Equation (39.3), the disentangled 

factorization represents the joint distribution as a product of causal mechanisms. 
The conceptual basis of statistical learning is a joint distribution p(X1, … , Xn) 

(where often one of the Xi is a response variable denoted as Y), and we make 

assumptions about function classes used to approximate, say, a regression E(Y | X). 
Causal learning considers a richer class of assumptions and seeks to exploit the 
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fact that the joint distribution possesses a causal factorization (Equation (39.2)). It 
involves the causal conditionals p(Xi | PAi) [i.e., the functions fi and the distribution 

of Ui in Equation (39.1)], how these conditionals relate to each other, and interven
tions or changes that they admit. We shall return to this below. 

39.4 Levels of Causal Modeling 
Being trained in physics, I like to think of a set of coupled differential equations 
as the gold standard in modeling physical phenomena. It allows us to predict the 

future behavior of a system, to reason about the effect of interventions in the sys
tem, and—by suitable averaging procedures—to predict statistical dependences 
that are generated by coupled time evolutions.6 It also allows us to gain insight 
in a system, explain its functioning, and in particular read off its causal structure: 
consider the coupled set of differential equations 

dx = f (x), x ∈ Rd , (39.4)
dt 

with initial value x(t0) = x0. The Picard–Lindelöf theorem states that at least locally, 
if f is Lipschitz, there exists a unique solution x(t). This implies in particular that 
the immediate future of x is implied by its past values. 

If we formally write this in terms of infinitesimal differentials dt and dx = 

x(t + dt) − x(t), we get: 

x(t + dt) = x(t) + dt ⋅ f (x(t)). (39.5) 

From this, we can ascertain which entries of the vector x(t) determine the future 

of others x(t + dt). This tells us that if we have a physical system whose physical 
mechanisms are correctly described using such an ordinary differential Equation 

(39.4), solved for dx (i.e., the derivative only appears on the left-hand side), then its dt 
causal structure can be directly read off. 

While a differential equation is a rather complete description of a system, a 

statistical model can be viewed as a much more superficial one. It usually does 
not talk about time; instead, it tells us how some of the variables allow prediction 

of others as long as experimental conditions do not change. For example, if we 

drive a differential equation system with certain types of noise, or we average over 
time, then it may be the case that statistical dependences between components 
of x emerge, and those can then be exploited by machine learning. Such a model 
does not allow us to predict the effect of interventions; however, its strength is that 
it can often be learned from data, while a differential equation usually requires an 

6. Indeed, one could argue that all statistical dependences in the world are due to such coupling. 
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Table 39.1	 A simple taxonomy of models. The most detailed model (top) is a mechanistic or phys
ical one, usually in terms of differential equations. At the other end of the spectrum 
(bottom), we have a purely statistical model; this can be learned from data, but it often 
provides little insight beyond modeling associations between epiphenomena. Causal 
models can be seen as descriptions that lie in between, abstracting away from physical 
realism while retaining the power to answer certain interventional or counterfactual 
questions. See also Mooij et al. [2013] for a formal link between physical models and 
SCMs 

Model Predict 
in IID 

setting 

Predict 
under distr. 
shift/inter
vention 

Answer 
counter-
factual 
questions 

Obtain 

physical 
insight 

Learn 

from 

data 

Mechanistic/ Yes Yes Yes Yes ? 
physical 
Structural causal Yes Yes Yes ? ? 
Causal graphical Yes Yes No ? ? 
Statistical Yes No No No Yes 

intelligent human to come up with it. Causal modeling lies in between these two 

extremes. It aims to provide understanding and predict the effect of interventions. 
Causal discovery and learning tries to arrive at such models in a data-driven way, 
using only weak assumptions.7 The overall situation is summarized in Table 39.1, 
adapted from [Peters et al. 2017]. 

39.5 Independent Causal Mechanisms 
We now return to the disentangled factorization [Equation (39.2)] of the joint dis
tribution p(X1, … , Xn). This factorization according to the causal graph is always 
possible when the Ui are independent, but we will now consider an additional 
notion of independence relating the factors in Equation (39.2) to one another. We 

can informally introduce it using an optical illusion known as the Beuchet chair, 
shown in Figure 39.1. 

Whenever we perceive an object, our brain makes the assumption that the 

object and the mechanism by which the information contained in its light reaches 
our brain are independent. We can violate this by looking at the object from an 

accidental viewpoint. If we do that, perception may go wrong: in the case of the 

Beuchet chair, we perceive the three-dimensional (3D) structure of a chair that 
in reality is not there. The above independence assumption is useful because in 

7. It has been pointed out that this task is impossible without assumptions, but this is similar for 
the (easier) problems of machine learning from finite data. We always need assumptions when 

we perform non-trivial inference from data. 
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Figure 39.1	 Beuchet chair, made up of two separate objects that appear as a chair when viewed 
from a special vantage point violating the independence between object and per
ceptual process. (Image courtesy of Markus Elsholz, reprinted from Peters et al. 
[2017].) 

practice it holds most of the time, and our brain thus relies on objects being inde
pendent of our vantage point and the illumination. Likewise, there should not 
be accidental coincidences, 3D structures lining up in two-dimensional (2D), or 
shadow boundaries coinciding with texture boundaries. In vision research, this is 
called the generic viewpoint assumption. Likewise, if we move around the object, 
our vantage point changes, but we assume that the other variables of the overall 
generative process (e.g., lighting, object position and structure) are unaffected by 
that. This is an invariance implied by the above independence, allowing us to infer 
3D information even without stereo vision (“structure from motion”). An example 

of an extreme violation of this principle would be a head-mounted virtual reality 
display tracking the position of a perceiver’s head and adjusting the display accord
ingly. Such a device can create the illusion of visual scenes that do not correspond 

to reality. 
For another example, consider a dataset that consists of altitude A and average 

annual temperature T of weather stations [Peters et al. 2017]. A and T are corre
lated, which we believe is due to the fact that the altitude has a causal effect on 

the temperature. Suppose we had two such datasets, one for Austria and one for 
Switzerland. The two joint distributions may be rather different since the marginal 
distributions p(A) over altitudes will differ. The conditionals p(T | A), however, may 
be rather similar since they characterize the physical mechanisms that generate 

temperature from altitude. However, this similarity is lost upon us if we only look 

at the overall joint distribution, without information about the causal structure 
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A → T. The causal factorization p(A)p(T | A) will contain a component p(T | A) 
that generalizes across countries, while the entangled factorization p(T)p(A | T) will 
exhibit no such robustness. Cum grano salis, the same applies when we consider 
interventions in a system. For a model to correctly predict the effect of interven
tions, it needs to be robust with respect to generalizing from an observational 
distribution to certain interventional distributions. 

One can express the above insights as follows [Schölkopf et al. 2012, Peters et al. 
2017]: 

Independent Causal Mechanisms (ICM) Principle The causal generative process of 
a system’s variables is composed of autonomous modules that do not inform or 
influence each other. 

In the probabilistic case, this means that the conditional distribution of each 

variable given its causes (i.e., its mechanism) does not inform or influence the other 
mechanisms. 

This principle subsumes several notions important to causality, includ
ing separate intervenability of causal variables, modularity and autonomy of 
subsystems, and invariance [Pearl 2009a, Peters et al. 2017]. If we have only two 

variables, it reduces to an independence between the cause distribution and the 

mechanism producing the effect distribution. 
Applied to the causal factorization [Equation (39.2)], the principle tells us that 

the factors should be independent in the sense that 

(a)	 changing (or intervening upon) one mechanism p(Xi | PAi) does not change 

the other mechanisms p(Xj | ̸PAj) (i = j), and 

(b) knowing some other mechanisms p(Xi | ̸PAi) (i = j) does not give us informa
tion about a mechanism p(Xj | PAj). 

Our notion of independence thus subsumes two aspects: the former pertaining 

to influence and the latter to information. 
We view any real-world distribution as a product of causal mechanisms. A 

change in such a distribution (e.g., when moving from one setting/domain to a 

related one) will always be due to changes in at least one of those mechanisms. 
Consistent with the independence principle, we hypothesize that smaller changes 
tend to manifest themselves in a sparse or local way, that is, they should usually not 
affect all factors simultaneously (sparse mechanism shift). In contrast, if we consider 
a non-causal factorization, for example, Equation (39.3), then many terms will be 

affected simultaneously as we change one of the physical mechanisms responsi
ble for a system’s statistical dependences. Such a factorization may thus be called 
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entangled, a term that has gained popularity in machine learning [Bengio et al. 2012, 
Locatello et al. 2018a, Suter et al. 2018]. 

The notion of invariant, autonomous, and independent mechanisms has 
appeared in various guises throughout the history of causality research.8 Our 
contribution may be in unifying these notions with the idea of informational inde
pendence, and in showing that one can use rather general independence mea
sures [Steudel et al. 2010], a special case of which (algorithmic information) will 
be described below. 

Measures of dependence of mechanisms Note that the dependence of two mecha
nisms p(Xi | PAi) and p(Xj | PAj) does not coincide with the statistical dependence 

of the random variables Xi and Xj. Indeed, in a causal graph, many of the random 

variables will be dependent even if all the mechanisms are independent. 
Intuitively speaking, the independent noise terms Ui provide and parametrize 

the uncertainty contained in the fact that a mechanism p(Xi | PAi) is non
deterministic, and thus ensure that each mechanism adds an independent ele
ment of uncertainty. I thus like to think of the ICM Principle as containing the 

independence of the unexplained noise terms in an SCM [Equation (39.1)] as a 

special case.9 However, it goes beyond this, as the following example illustrates. 
Consider two variables and structural assignments X := U and Y := f (X). That is, 
the cause X is a noise variable (with density pX), and the effect Y is a deterministic 
function of the cause. Let us moreover assume that the ranges of X and Y are both 

[0, 1], and f is strictly monotonically increasing. The principle of ICMs then reduces 
to the independence of pX and f. Let us consider pX and the derivative f ′ as ran
dom variables on the probability space [0, 1] with Lebesgue measure, and use their 

8. Early work on this was done by Haavelmo [1944], stating the assumption that changing one 

of the structural assignments leaves the other ones invariant. Hoover [2008] attributes to Herb 

Simon the invariance criterion: the true causal order is the one that is invariant under the right sort 
of intervention. Aldrich [1989] provides an overview of the historical development of these ideas in 

economics. He argues that the “most basic question one can ask about a relation should be: How 

autonomous is it?” [Frisch et al. 1948, Preface]. Pearl [2009a] discusses autonomy in detail, argu
ing that a causal mechanism remains invariant when other mechanisms are subjected to external 
influences. He points out that causal discovery methods may best work “in longitudinal studies 
conducted under slightly varying conditions, where accidental independencies are destroyed and 

only structural independencies are preserved.” Overviews are provided by Aldrich [1989], Hoover 
[2008], Pearl [2009a], and Peters et al. [2017, section 2.2]. 

9. See also Peters et al. [2017]. Note that one can also implement the independence principle 

by assigning independent priors for the causal mechanisms. We can view ICM as a meta-level 
independence, akin to assumptions of time-invariance of the laws of physics [Bohm 1957]. 
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correlation as a measure of dependence of mechanisms.10 It can be shown that for 
f ̸ implies dependence between pY and (f −1)′ = id, independence of pX and f ′ (see 

Figure 39.2). Other measures are possible and admit information-geometric inter
pretations. Intuitively, under the ICM assumption, the “irregularity” of the effect 
distribution becomes a sum of irregularity already present in the input distribu
tion and irregularity introduced by the function, that is, the irregularities of the 

two mechanisms add up rather than compensating each other, which would not 
be the case in the anticausal direction (for details, see Janzing et al. [2012]). 

Algorithmic independence So far, I have discussed links between causal and statis
tical structures. The fundamental of the two is the causal structure, since it cap
tures the physical mechanisms that generate statistical dependences in the first 
place. The statistical structure is an epiphenomenon that follows if we make the 

unexplained variables random. It is awkward to talk about the (statistical) informa
tion contained in a mechanism since deterministic functions in the generic case 

neither generate nor destroy information. This motivated us to devise an algorith
mic model of causal structures in terms of Kolmogorov complexity [Janzing and 

Schölkopf 2010]. The Kolmogorov complexity (or algorithmic information) of a bit 
string is essentially the length of its shortest compression on a Turing machine, 
and thus a measure of its information content. Independence of mechanisms can 

be defined as vanishing mutual algorithmic information; that is, two conditionals 
are considered independent if knowing (the shortest compression of) one does not 
help us achieve a shorter compression of the other one. 

Algorithmic information theory provides a natural framework for non-
statistical graphical models. Just like the latter are obtained from SCMs by making 

the unexplained variables Ui random, we obtain algorithmic graphical models by 
making the Ui bit strings ( jointly independent across nodes) and viewing the node 

Xi as the output of a fixed Turing machine running the program Ui on the input 
PAi. Similar to the statistical case, one can define a local causal Markov condition, a 

global one in terms of d-separation, and an additive decomposition of the joint Kol
mogorov complexity in analogy to Equation (39.2), and prove that they are implied 

by the SCM [Janzing and Schölkopf 2010]. What is elegant about this approach is 
that it shows that causality is not intrinsically bound to statistics, and that inde
pendence of noises and the independence of mechanisms now coincide since the 

independent programs play the role of the unexplained noise terms. 

10. Other dependence measures have been proposed for high-dimensional linear settings and 

time series by Janzing et al. [2010], Shajarisales et al. [2015], Besserve et al. [2018a], and Janzing 

and Schölkopf [2018]; see also Janzing [2019]. 
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Figure 39.2	 If f and pX are chosen independently, then peaks of pY tend to occur in regions where 
f has small slope and f −1 has large slope. Thus pY contains information about f −1. 
(From Peters et al. [2017].) 

The assumption of algorithmically independent mechanisms has intriguing 

implications for physics, as it turns out to imply the second law of thermody
namics (i.e., the arrow of time) [Janzing et al. 2016]. Consider a process where 

an incoming ordered beam of particles (the cause) is scattered by an object (the 

mechanism). Then the outgoing beam (the effect) contains information about 
the object. That is what makes vision and photography possible: photons contain 

information about the objects at which they have been scattered. Now we know 

from physics that, microscopically, time evolution is reversible. Nevertheless, the 

photons contain information about the object only after the scattering. Why is this 
the case, or in other words, why do photographs show the past rather than the 

future? 
The reason is the independence principle, which we apply to initial state and 

system dynamics, postulating that the two are algorithmically independent, that 
is, knowing one does not allow a shorter description of the other one. Then we 

can prove that the Kolmogorov complexity of the system’s state is non-decreasing 

under the time evolution. If we view Kolmogorov complexity as a measure of 
entropy, this means that the entropy of the state can only stay constant or increase, 
amounting to the second law of thermodynamics and providing us with the 

thermodynamic arrow of time. 
Note that this does not contradict microscopic irreversibility of the dynamics; 

the resulting state after time evolution is clearly not independent of the system 

dynamic: it is precisely the state that when fed to the inverse dynamics would 

return us to the original state, that is, the ordered particle beam. If we were able to 

freeze all particles and reverse their momenta, we could thus return to the original 
configuration without violating our version of the second law. 
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39.6 Cause–Effect Discovery 
Let us return to the problem of causal discovery from observational data. Subject 
to suitable assumptions such as faithfulness [Spirtes et al. 2000], one can some
times recover aspects of the underlying graph from observations by performing 

conditional independence tests. However, there are several problems with this 
approach. One is that in practice our datasets are always finite, and conditional 
independence testing is a notoriously difficult problem, especially if conditioning 

sets are continuous and multi-dimensional. So, while in principle the conditional 
independences implied by the causal Markov condition hold true irrespective of 
the complexity of the functions appearing in an SCM, for finite datasets condi
tional independence testing is hard without additional assumptions.11 The other 
problem is that in the case of only two variables, the ternary concept of condi
tional independences collapses and the Markov condition thus has no non-trivial 
implications. 

It turns out that both problems can be addressed by making assumptions on 

function classes. This is typical for machine learning, where it is well-known that 
finite-sample generalization without assumptions on function classes is impossi
ble. Specifically, although there are learning algorithms that are universally consis
tent, that is, that approach minimal expected error in the infinite sample limit, for 
any functional dependence in the data there are cases where this convergence is 
arbitrarily slow. So, for a given sample size, it will depend on the problem being 

learned whether we achieve low expected error, and statistical learning theory 
provides probabilistic guarantees in terms of measures of complexity of function 

classes [Devroye et al. 1996, Vapnik 1998]. 
Returning to causality, we provide an intuition why assumptions on the func

tions in an SCM should be necessary to learn about them from data. Consider 
a toy SCM with only two observables X → Y . In this case, Equation (39.1) turns 
into 

X = U (39.6) 

Y = f (X, V) (39.7) 

with U ⊥⊥ V . Now think of V acting as a random selector variable choosing from 

among a set of functions ℱ = {fv(x) ≡ f (x, v) | v ∈ supp(V)}. If f (x, v) depends on v 
in a non-smooth way, it should be hard to glean information about the SCM from 

11. We had studied this for some time with Kacper Chwialkowski, Arthur Gretton, Dominik 

Janzing, Jonas Peters, and Ilya Tolstikhin; a formal result was obtained by Shah and Peters [2018]. 
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a finite dataset, given that V is not observed and it randomly switches between arbi
trarily different fv.12 This motivates restricting the complexity with which f depends 
on V. A natural restriction is to assume an additive noise model 

X = U (39.8) 

Y = f (X) + V . (39.9) 

If f in Equation (39.7) depends smoothly on V, and if V is relatively well 
concentrated, this can be motivated by a local Taylor expansion argument. It 
drastically reduces the effective size of the function class—without such assump
tions the latter could depend exponentially on the cardinality of the support 
of V. 

Restrictions of function classes not only make it easier to learn functions from 

data, but it turns out that they can break the symmetry between cause and effect in 

the two-variable case: one can show that given a distribution over X, Y generated 

by an additive noise model, one cannot fit an additive noise model in the opposite 

direction (i.e., with the roles of X and Y interchanged) [Hoyer et al. 2009, Mooij 
et al. 2009, Kpotufe et al. 2014, Peters et al. 2014, Bauer et al. 2016], cf. also the work 

of Sun et al. [2006]. This is subject to certain genericity assumptions, and notable 

exceptions include the case where U, V are Gaussian and f is linear. It generalizes 
the results of Shimizu et al. [2006] for linear functions, and it can be generalized 

to include non-linear rescalings [Zhang and Hyvarinen 2009], loops [Mooij et al. 
2011], confounders [Janzing et al. 2009], and multi-variable settings [Peters et al. 
2011]. We have collected a set of benchmark problems for cause–effect inference, 
and by now there is a number of methods that can detect causal direction better 
than chance [Mooij et al. 2016], some of them building on the above Kolmogorov 
complexity model [Budhathoki and Vreeken 2016], and some directly learning to 

classify bivariate distributions into causal vs. anticausal [Lopez-Paz et al. 2015]. 
This development has been championed by Isabelle Guyon whom (along with 

Andre Elisseeff) I had known from my previous work on kernel methods, and who 

had moved into causality through her interest in feature selection [Guyon et al. 
2007]. 

Assumptions on function classes have thus helped address the cause–effect 
inference problem. They can also help address the other weakness of causal dis
covery methods based on conditional independence testing. Recent progress in 

12. Suppose X and Y are binary, and U, V are uniform Bernoulli variables, the latter selecting from 

ℱ = {id, not} (i.e., identity and negation). In this case, the entailed distribution for Y is uniform, 
independent of X, even though we have X → Y . We would be unable to discern X → Y from data. 
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(conditional) independence testing heavily relies on kernel function classes to rep
resent probability distributions in reproducing kernel Hilbert spaces [Gretton et al. 
2005a, 2005b, Fukumizu et al. 2008, Zhang et al. 2011, Chalupka et al. 2018, Pfister 
et al. 2018b]. 

We have thus gathered some evidence that ideas from machine learning can 

help tackle causality problems that were previously considered hard. Equally 
intriguing, however, is the opposite direction: can causality help us improve 

machine learning? Present-day machine learning (and thus also much of modern 

AI) is based on statistical modeling, but as these methods becomes pervasive, their 
limitations are becoming apparent. I will return to this after a short application 

interlude. 

39.7 Half-sibling Regression and Exoplanet Detection 
The application described below builds on causal models inspired by additive 

noise models and the ICM assumption. By a stroke of luck, it enabled a recent 
breakthrough in astronomy, detailed at the end of the present section. 

Launched in 2009, the National Aeronautics and Space Administration (NASA)’s 
Kepler space telescope initially observed 150,000 stars over four years in search of 
exoplanet transits. These are events where a planet partially occludes its host star, 
causing a slight decrease in brightness, often orders of magnitude smaller than the 

influence of instrument errors. When looking at stellar light curves with our col
laborators at New York University, we noticed that not only were these light curves 
very noisy, but the noise structure was often shared across stars that were light 
years apart. Since that made direct interaction of the stars impossible, it was clear 
that the shared information was due to the instrument acting as a confounder. We 

thus devised a method that (a) predicts a given star of interest from a large set of 
other stars chosen such that their measurements contain no information about the 

star’s astrophysical signal, and (b) removes that prediction in order to cancel the 

instrument’s influence.13 We referred to the method as “half-sibling” regression 

since target and predictors share a parent, namely the instrument. The method 

recovers the random variable representing the desired signal almost surely (up to 

a constant offset), for an additive noise model, and subject to the assumption that 
the instrument’s effect on the star is in principle predictable from the other stars 
[Schölkopf et al. 2016a]. 

13. For events that are localized in time (such as exoplanet transits), we further argued that the 

same applies for suitably chosen past and future values of the star itself, which can thus also be 

used as predictors. 
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Meanwhile, the Kepler spacecraft suffered a technical failure, which left it 
with only two functioning reaction wheels, insufficient for the precise spatial 
orientation required by the original Kepler mission. NASA decided to use the 

remaining fuel to make further observations, however the systematic error was 
significantly larger than before—a godsend for our method designed to remove 

exactly these errors. We augmented it with models of exoplanet transits and an 

efficient way to search light curves, leading to the discovery of 36 planet candi
dates [Foreman-Mackey et al. 2015], of which 21 were subsequently validated as 
bona fide exoplanets [Montet et al. 2015]. Four years later, astronomers found traces 
of water in the atmosphere of the exoplanet K2-18b—the first such discovery for 
an exoplanet in the habitable zone, that is, allowing for liquid water [Benneke 

et al. 2019, Tsiaras et al. 2019]. The planet turned out to be one that had been first 
been detected in our work [Foreman-Mackey et al. 2015, exoplanet candidate EPIC 

201912552]. 

39.8 Invariance, Robustness, and Semi-supervised Learning 
Around 2009 or 2010, we started getting intrigued by how to use causality for 
machine learning. In particular, the “neural net tank urban legend”14 seemed to 

have something to say about the matter. In this story, a neural net is trained to 

classify tanks with high accuracy, but subsequently found to have succeeded by 
focusing on a feature (e.g., time of day or weather) that contained information 

about the type of tank only due to the data collection process. Such a system 

would exhibit no robustness when tested on new tanks whose images were taken 

under different circumstances. My hope was that a classifier incorporating causal
ity could be made invariant with respect to this kind of changes, a topic that I had 

earlier worked on using non-causal methods [Chapelle and Schölkopf 2002]. We 

started to think about connections between causality and covariate shift, with the 

intuition that causal mechanisms should be invariant, and likewise any classifier 
building on learning these mechanisms. However, many machine learning classi
fiers were not using causal features as inputs, and indeed, we noticed that they 
more often seemed to solve anticausal problems, that is, they used effect features 
to predict a cause. 

Our ideas relating to invariance matured during a number of discussions with 

Dominik, Jonas, Joris Mooij, Kun Zhang, Bob Williamson and others, from a 

departmental retreat in Ringberg in April 2010 to a Dagstuhl workshop in July 
2011. The pressure to bring them to some conclusion was significantly stepped up 

14. For a recent account, cf. https://www.gwern.net/Tanks. 

https://www.gwern.net/Tanks
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when I received an invitation to deliver a Posner lecture at the Neural Informa
tion Processing Systems conference. At the time, I was involved in founding a new 

Max Planck Institute, and it was getting hard to carve out enough time to make 

progress.15 Dominik and I thus decided to spend a week in a Black Forest holi
day house to work on this full time, and during that week in November 2011 we 

completed a draft manuscript suitably named invariant.tex, submitted to the arXiv 
shortly after [Schölkopf et al. 2011]. The paper argued that causal direction is crucial 
for certain machine learning problems, that robustness (invariance) to covariate 

shift is to be expected and transfer is easier for learning problems where we pre
dict effect from cause, and it made a non-trivial prediction for semi-supervised 

learning (SSL). 

39.8.1 Semi-supervised Learning 
Suppose our underlying causal graph is X → Y , and at the same time we are trying 

to learn a mapping X → Y . The causal factorization (39.2) for this case is 

p(X, Y) = p(X)p(Y | X). (39.10) 

The ICM Principle posits that the modules in a joint distribution’s causal 
decomposition do not inform or influence each other. This means that in par
ticular p(X) should contain no information about p(Y | X), which implies that SSL 

should be futile in as far as it is using additional information about p(X) (from 

unlabeled data) to improve our estimate of p(Y | X = x). What about the opposite 

direction, is there hope that SSL should be possible in that case? It turns out that 
the answer was yes, due to the work on cause–effect inference using ICMs men
tioned in Section 39.5. This work was done by Povilas Daniušis et al. [2010].16 It 
introduced a measure of dependence between the input and the conditional of out
put given input, and showed that if this dependence is zero in the causal direction 

then it would be strictly positive in the opposite direction. Independence of cause 

and mechanism in the causal direction would thus imply that in the backward 

direction (i.e., for anticausal learning) the distribution of the input variable should 

contain information about the conditional of output given input, that is, the quan
tity that machine learning is usually concerned with. I had previously worked on 

SSL [Chapelle et al. 2006], and it was clear that this was exactly the kind of informa
tion that SSL required when trying to improve the estimate of output give input by 

15. Meanwhile, Google was stepping up their activities in AI, and I even forwent the chance to 

have a personal meeting with Larry Page to discuss this arranged by Sebastian Thrun. 

16. Povilas was an original Erasmus intern visiting from Lithuania. If an experiment was success
ful, he would sometimes report this with a compact “works.” The project won him the best student 
paper prize at the Uncertainty in Artificial Intelligence conference. 
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using unlabeled inputs. We thus predicted that SSL should be impossible for causal 
learning problems, but feasible otherwise, in particular for anticausal ones. 

I presented our analysis and the above prediction in the Posner lecture. 
Although a few activities relating to causality had been present at the conference 

during the years before, in particular a workshop in 2008 [Guyon et al. 2010], it is 
probably fair to say that the Posner lecture helped pave the way for causality to 

enter the machine learning mainstream. Judea, who must have been waiting for 
this development for some time, sent me a kind e-mail in March 2012, stating “[...] 
I watched the video of your super-lecture at nips. A miracle.” 

A subsequent meta-analysis of published SSL benchmark studies corroborated 

our prediction, was added to the arXiv report, and the paper was narrowly accepted 

for the ICML [Schölkopf et al. 2012]. We were intrigued with these results since 

we felt they provided some structural insight into physical properties of learning 

problems, thus going beyond the applications or methodological advances that 
machine learning studies usually provided. The line of work provided rather fruit
ful [Zhang et al. 2013, Weichwald et al. 2014, Zhang et al. 2015, Blöbaum et al. 2016, 
Gong et al. 2016, Huang et al. 2017, Zhang et al. 2017, Guo et al. 2018, Li et al. 2018a, 
2018b, Lipton et al. 2018, Magliacane et al. 2018, Rabanser et al. 2018, Rojas-Carulla 

et al. 2018, Subbaswamy et al. 2018, Wang et al. 2019] and nicely complementary 
to studies of Elias Bareinboim and Judea [Bareinboim and Pearl 2014, Pearl and 

Bareinboim 2015]. When Jonas moved to Zürich to complete and defend his PhD 

in Statistics at ETH, he carried on with the invariance idea, leading to a thread of 
work in the statistics community exploiting invariance for causal discovery and 

other tasks [Peters et al. 2016, Heinze-Deml and Meinshausen 2017, Heinze-Deml 
et al. 2017, Pfister et al. 2018a].17 

On the SSL side, subsequent developments include further theoretical analy
ses [Janzing and Schölkopf 2015, Peters et al. 2017, section 5.1.2] and a form of 
conditional SSL [von Kügelgen et al. 2019]. The view of SSL as exploiting depen
dences between a marginal p(x) and a non-causal conditional p(y | x) is consistent 
with the common assumptions employed to justify SSL [Chapelle et al. 2006]. The 

cluster assumption asserts that the labeling function (which is a property of p(y | x)) 
should not change within clusters of p(x). The low-density separation assumption 

posits that the area where p(y | x) takes the value of 0.5 should have small p(x); and 

17. Jonas also played a central role in spawning a thread of causality research in industry. In March 

2011, Leon Bottou, working for Microsoft at the time, asked me if I could send him a strong causal
ity student for an internship. Jonas was happy to take up the challenge, contributing to the work 

of Bottou et al. [2013], an early use of causality to learn large scale interacting systems. Leon, one 

of the original leaders of the field of deep learning, has since taken a strong interest in causality 
[Lopez-Paz et al. 2017]. 
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the semi-supervised smoothness assumption, applicable also to continuous outputs, 
states that if two points in a high-density region are close, then so should be the cor
responding output values. Note, moreover, that some of the theoretical results in 

the field use assumptions well-known from causal graphs (even if they do not men
tion causality): the co-training theorem [Blum and Mitchell 1998] makes a statement 
about learnability from unlabeled data, and relies on an assumption of predictors 
being conditionally independent given the label, which we would normally expect 
if the predictors are (only) caused by the label, that is, an anticausal setting. This 
is nicely consistent with the above findings. 

39.8.2 Adversarial Vulnerability 
One can hypothesize that causal direction should also have an influence on 

whether classifiers are vulnerable to adversarial attacks. These attacks have recently 
become popular, and consist of minute changes to inputs, invisible to a human 

observer yet changing a classifier’s output [Szegedy et al. 2013]. 
This is related to causality in several ways. First, these attacks clearly constitute 

violations of the IID assumption that underlies predictive machine learning. If all 
we want to do is prediction in an IID setting, then statistical learning is fine. In 

the adversarial setting, however, the modified test examples are not drawn from 

the same distribution as the training examples—they constitute interventions 
optimized to reveal the non-robustness of the (anticausal) p(y | x). 

The adversarial phenomenon also shows that the kind of robustness current 
classifiers exhibit is rather different from the one a human exhibits. If we knew 

both robustness measures, we could try to maximize one while minimizing the 

other. Current methods can be viewed as crude approximations to this, effectively 
modeling the human’s robustness as a mathematically simple set, say, an lp ball 
of radius 𝜀 > 0: they often try to find examples which lead to maximal changes 
in the classifier’s output, subject to the constraint that they lie in an lp ball in the 

pixel metric. This also leads to procedures for adversarial training, which are simi
lar in spirit to old methods for making classifiers invariant by training on “virtual” 
examples (e.g., Schölkopf and Smola [2002]). 

Now consider a factorization of our model into components [cf. Equation (39.3)]. 
If the components correspond to causal mechanisms, then we expect a certain 

degree of robustness since these mechanisms are properties of nature. In particu
lar, if we learn a classifier in the causal direction, this should be the case. One may 
thus hypothesize that for causal learning problems (predicting effect from cause) 
adversarial examples should be impossible, or at least harder to find [Schölkopf 
2017, Kilbertus et al. 2018]. Recent work supports this view: it was shown that a 

possible defense against adversarial attacks is to solve the anticausal classification 
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problem by modeling the causal generative direction, a method which in vision is 
referred to as analysis by synthesis [Schott et al. 2019]. 

More generally, also for graphs with more than two vertices, we can speculate 

that structures composed of autonomous modules, such as given by a causal fac
torization [Equation (39.2)], should be relatively robust with respect to swapping 

out or modifying individual components. We shall return to this shortly. 
Robustness should also play a role when studying strategic behavior, that is, deci

sions or actions that take into account the actions of other agents (including AI 
agents). Consider a system that tries to predict the probability of successfully pay
ing back a credit, based on a set of features. The set could include, for instance, 
the current debt of a person as well as their address. To get a higher credit score, 
people could thus change their current debt (by paying it off), or they could change 

their address by moving to a more affluent neighborhood. The former probably 
has a positive causal impact on the probability of paying back; for the latter, this is 
less likely. We could thus build a scoring system that is more robust with respect to 

such strategic behavior by only using causal features as inputs [Khajehnejad et al. 
2019]. 

Multi-task Learning 
Suppose we want to build a system that can solve multiple tasks in multiple envi
ronments. Such a model could employ the view of learning as compression. Learn
ing a function f mapping x to y based on a training set (x1, y1), … , (xn, yn) can be 

viewed as conditional compression of y given x. The idea is that we would like to 

find the most compact system that can recover y1, … , yn given x1, … , xn. Suppose 

Alice wants to communicate the labels to Bob, given that both know the inputs. 
First, they agree on a finite set of functions ℱ that they will use. Then Alice picks 
the best function from the set, and tells Bob which one it is (the number of bits 
required will depend on the size of the set, and possibly on prior probabilities 
agreed between Alice and Bob). In addition, she might have to tell him the indices 
i of those inputs for which the function does not correctly classify Xi, that is, for 
which f (xi) ̸ yi. There is a trade-off between choosing a huge function class (in = 

which case it will cost many bits to encode the index of the function) and allow
ing too many training errors (which need to be encoded separately). It turns out 
that this trade-off beautifully maps to standard VC bounds from statistical learning 

theory [Vapnik 1995]. One could imagine generalizing this to a multi-task setting: 
suppose we have multiple datasets, sampled from similar but not identical SCMs. 
If the SCMs share most of the components, then we could compress multiple 

datasets (sampled from multiple SCMs) by encoding the functions in the SCMs, 
and it is plausible that the correct structure (in the two-variables case, this would 
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amount to the correct causal direction) should be the most compact one since it 
would be one where many functions are shared across datasets, and thus need only 
be encoded once. 

39.8.4 Reinforcement Learning 
The program to move statistical learning toward causal learning has links to rein
forcement learning (RL), a sub-field of machine learning. RL used to be (and still 
often is) considered a field that has trouble with real-world high-dimensional 
data, one reason being that feedback in the form of a reinforcement signal is rel
atively sparse when compared to label information in supervised learning. The 

DeepQ agent [Mnih et al. 2015] yielded results that the community would not have 

considered possible at the time, yet it still has major weaknesses when compared 

to animate intelligence. Two major issues can be stated in terms of questions 
[Schölkopf 2017]; cf. also Schölkopf [2015]: 

Question 1: why is RL on the original high-dimensional ATARI games harder than 

on downsampled versions? For humans, reducing the resolution of a game screen 

would make the problem harder, yet this is exactly what was done to make the 

DeepQ system work. Animals likely have methods to identify objects (in computer 
game lingo, “sprites”) by grouping pixels according to “common fate” (known from 

Gestalt psychology) or common response to intervention. This question thus is 
related to the question of what constitutes an object, which concerns not only per
ception but also concerns how we interact with the world. We can pick up one 

object, but not half an object. Objects thus also correspond to modular struc
tures that can be separately intervened upon or manipulated. The idea that objects 
are defined by their behavior under transformation is a profound one not only in 

psychology but also in mathematics, cf. Klein [1872] and MacLane [1971]. 
Question 2: why is RL easier if we permute the replayed data? As an agent moves 

about in the world, it influences the kind of data it gets to see, and thus the statis
tics change over time. This violates the IID assumption, and as mentioned earlier, 
the DeepQ agent stores and re-trains on past data (a process the authors liken 

to dreaming) in order to be able to employ standard IID function learning tech
niques. However, temporal order contains information that animate intelligence 

uses. Information is not only contained in temporal order but also in the fact 
that slow changes of the statistics effectively create a multi-domain setting. Multi-
domain data have been shown to help identify causal (and thus robust) features, 
and more generally in the search for causal structure by looking for invariances 
[Peters et al. 2017]. This could enable RL agents to find robust components in 

their models that are likely to generalize to other parts of the state space. One way 
to do this is to employ model-based RL using SCMs, an approach that can help 
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address a problem of confounding in RL where time-varying and time-invariant 
unobserved confounders influence both actions and rewards [Lu et al. 2018]. In 

such an approach, non-stationarities would be a feature rather than a bug, and 

agents would actively seek out regions that are different from the known ones in 

order to challenge their existing model and understand which components are 

robust. This search can be viewed and potentially analyzed as a form of intrinsic 
motivation, a concept related to latent learning in Ethology that has been gaining 

traction in RL [Chentanez et al. 2005]. 
Finally, a large open area in causal learning is the connection to dynamics. 

While we may naively think that causality is always about time, most existing causal 
models do not (and need not) talk about time. For instance, returning to our exam
ple of altitude and temperature, there is an underlying temporal physical process 
that ensures that higher places tend to be colder. On the level of microscopic 
equations of motion for the involved particles, there is a clear causal structure (as 
described above, a differential equation specifies exactly which past values affect 
the current value of a variable). However, when we talk about the dependence or 
causality between altitude and temperature, we need not worry about the details 
of this temporal structure—we are given a dataset where time does not appear, 
and we can reason about how that dataset would look if we were to intervene 

on temperature or altitude. It is intriguing to think about how to build bridges 
between these different levels of description. Some progress has been made in 

deriving SCMs that describe the interventional behavior of a coupled system that 
is in an equilibrium state and perturbed in an “adiabatic” way [Mooij et al. 2013], 
with generalizations to oscillatory systems [Rubenstein et al. 2018]. There is no 

fundamental reason why simple SCMs should be derivable in general. Rather, an 

SCM is a high-level abstraction of an underlying system of differential equations, 
and such an equation can only be derived if suitable high-level variables can be 

defined [Rubenstein et al. 2017], which is probably the exception rather than the 

rule. 
RL is closer to causality research than the machine learning mainstream in that 

it sometimes effectively directly estimates do-probabilities. For example, on-policy 
learning estimates do-probabilities for the interventions specified by the policy 
(note that these may not be hard interventions if the policy depends on other vari
ables). However, as soon as off-policy learning is considered, in particular in the 

batch (or observational) setting [Lange et al. 2012], issues of causality become sub
tle [Gottesman et al. 2018, Lu et al. 2018]. Recent work devoted to the field between 

RL and causality includes Bareinboim et al. [2015], Bengio et al. [2017], Buesing 

et al. [2018], Lu et al. [2018], Dasgupta et al. [2019], and Zhang and Bareinboim 

[2019]. 
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39.9 Causal Representation Learning 
Traditional causal discovery and reasoning assumes that the units are random 

variables connected by a causal graph. Real-world observations, however, are usu
ally not structured into those units to begin with, for example, objects in images 
[Lopez-Paz et al. 2017]. The emerging field of causal representation learning hence 

strives to learn these variables from data, much like machine learning went beyond 

symbolic AI in not requiring that the symbols that algorithms manipulate be 

given a priori (cf. Bonet and Geffner [2019]). Defining objects or variables that are 

related by causal models can amount to coarse-graining of more detailed models 
of the world. Subject to appropriate conditions, structural models can arise from 

coarse-graining of microscopic models, including microscopic structural equa
tion models [Rubenstein et al. 2017], ordinary differential equations [Rubenstein 

et al. 2018], and temporally aggregated time series [Gong et al. 2017]. Although 

every causal models in economics, medicine, or psychology uses variables that are 

abstractions of more elementary concepts, it is challenging to state general condi
tions under which coarse-grained variables admit causal models with well-defined 

interventions [Chalupka et al. 2015, Rubenstein et al. 2017]. 
The task of identifying suitable units that admit causal models is challenging 

for both human and machine intelligence, but it aligns with the general goal of 
modern machine learning to learn meaningful representations for data, where 

meaningful can mean robust, transferable, interpretable, explainable, or fair [Kilber
tus et al. 2017, Kusner et al. 2017, Zhang and Bareinboim 2018]. To combine struc
tural causal modeling [Equation (39.1)] and representation learning, we should 

strive to embed an SCM into larger machine learning models whose inputs and 

outputs may be high-dimensional and unstructured, but whose inner workings are 

at least partly governed by an SCM. A way to do so is to realize the unexplained vari
ables as (latent) noise variables in a generative model. Note, moreover, that there is 
a natural connection between SCMs and the modern generative models: they both 

use what has been called the reparametrization trick [Kingma and Welling 2013], 
consisting of making desired randomness an (exogenous) input to the model (in 

an SCM, these are the unexplained variables) rather than an intrinsic component. 

39.9.1 Learning Transferable Mechanisms 
An artificial or natural agent in a complex world is faced with limited resources. 
This concerns training data, that is, we only have limited data for each individual 
task/domain, and thus need to find ways of pooling/re-using data, in stark con
trast to the current industry practice of large-scale labeling work done by humans. 
It also concerns computational resources: animals have constraints on the size of 
their brains, and evolutionary neuroscience knows many examples where brain 
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regions get re-purposed. Similar constraints on size and energy apply as ML meth
ods get embedded in (small) physical devices that may be battery powered. Future 

AI models that robustly solve a range of problems in the real world will thus likely 
need to re-use components, which requires that the components are robust across 
tasks and environments [Schölkopf et al. 2016b]. An elegant way to do this is to 

employ a modular structure that mirrors a corresponding modularity in the world. 
In other words, if the world is indeed modular, in the sense that different compo
nents of the world play roles across a range of environments, tasks, and settings, 
then it would be prudent for a model to employ corresponding modules [Goyal 
et al. 2019]. For instance, if variations of natural lighting (the position of the sun, 
clouds, etc.) imply that the visual environment can appear in brightness condi
tions spanning several orders of magnitude, then visual processing algorithms in 

our nervous system should employ methods that can factor out these variations, 
rather than building separate sets of face recognizers, say, for every lighting con
dition. If our brain were to compensate for the lighting changes by a gain control 
mechanism, say, then this mechanism in itself need not have anything to do with 

the physical mechanisms bringing about brightness differences. It would, however, 
play a role in a modular structure that corresponds to the role the physical mech
anisms play in the world’s modular structure. This could produce a bias toward 

models that exhibit certain forms of structural isomorphism to a world that we 

cannot directly recognize, which would be rather intriguing, given that ultimately 
our brains do nothing but turn neuronal signals into other neuronal signals. 

A sensible inductive bias to learn such models is to look for ICMs [Locatello 

et al. 2018b], and competitive training can play a role in this: for a pattern recog
nition task, Parascandolo et al. [2018] show that learning causal models that con
tain independent mechanisms helps in transferring modules across substantially 
different domains. In this work, handwritten characters are distorted by a set of 
unknown mechanisms including translations, noise, and contrast inversion. A 

neural network attempts to undo these transformations by means of a set of mod
ules that over time specialize on one mechanism each. For any input, each module 

attempts to produce a corrected output, and a discriminator is used to tell which 

one performs best. The winning module gets trained by gradient descent to further 
improve its performance on that input. It is shown that the final system has learned 

mechanisms such as translation, inversion, or denoising, and that these mecha
nisms transfer also to data from other distributions, such as Sanskrit characters. 
This has recently been taken to the next step, embedding a set of dynamic mod
ules into a recurrent neural network, coordinated by a so-called attention mech
anism [Goyal et al. 2019]. This allows learning modules whose dynamics operate 

independently much of the time but occasionally interact with each other. 
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39.9.2 Learning Disentangled Representations 
We have earlier discussed the ICM Principle implying both the independence of 
the SCM noise terms in Equation (39.1) and thus the feasibility of the disentangled 

representation 
n 

p(S1, … , Sn) = ∏ p(Si | PAi) (39.11) 
i=1 

as well as the property that the conditionals p(Si | PAi) be independently manipula
ble and largely invariant across related problems. Suppose we seek to reconstruct 
such a disentangled representation using independent mechanisms [Equation (39.11)] 
from data, but the causal variables Si are not provided to us a priori. Rather, we are 

given (possibly high-dimensional) X = (X1, … , Xd) (below, we think of X as an image 

with pixels X1, … , Xd), from which we should construct causal variables S1, … , Sn 

(n ≪ d) as well as mechanisms, cf. Equation (39.1), 

Si := fi(PAi, Ui), (i = 1, … , n), (39.12) 

modeling the causal relationships among the Si. To this end, as a first step, we 

can use an encoder q : Rd → Rn taking X to a latent “bottleneck” representa
tion comprising the unexplained noise variables U = (U1, … , Un). The next step 

is the mapping f (U) determined by the structural assignments f1, … , fn.18 Finally, 
we apply a decoder p : Rn → Rd. If n is sufficiently large, the system can be trained 

using reconstruction error to satisfy p ◦ f ◦ q ≈ id on the observed images.19 To 

make it causal, we use the ICM Principle, that is, we should make the Ui statisti
cally independent, and we should make the mechanisms independent. This can 

be done by ensuring that they be largely invariant across problems (one could call 
this sparse causal shift training), or that they can be independently intervened upon: 
if we manipulate some of them, they should thus still produce valid images (one 

could refer to this as counterfactual training). The latter could be trained using the 

discriminator of a generative adversarial network [Goodfellow et al. 2014]. 
While we ideally manipulate causal variables or mechanisms, we discuss the 

special case of intervening upon the latent noise variables.20 One way to intervene 

18. Note that for a DAG, recursive substitution of structural assignments reduces them to 

functions of the noise variables only. Using recurrent networks, cyclic systems may be dealt with. 

19. If the causal graph is known, the topology of a neural network implementing f can be fixed 

accordingly; if not, the neural network decoder learns the composition p̃ = p ◦ f . In practice, 
one may not know f, and thus only learn an autoencoder p̃ ◦ q, where the causal graph effectively 
becomes an unspecified part of p̃. By choosing the network topology, one can ensure that each 

noise should only feed into one subsequent unit (using connections skipping layers), and that all 
DAGs can be learnt. 

20. Interventions on the Si can be done accordingly, including the case of decoders without 
encoder (e.g., GANs). 
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is to replace noise variables with the corresponding values computed from other 
input images, a procedure that has been referred to as hybridization by Besserve 

et al. [2018b]. In the extreme case, we can hybridize latent vectors where each com
ponent is computed from another training example. For an IID training set, these 

latent vectors have statistically independent components by construction. 
In such an architecture, the encoder is an anticausal mapping that recognizes 

or reconstructs causal drivers in the world. These should be such that in terms of 
them mechanisms can be formulated that are transferable (e.g., across tasks). The 

decoder establishes the connection between the low-dimensional latent represen
tation (of the noises driving the causal model) and the high-dimensional world; 
this part constitutes a causal generative image model. The ICM assumption implies 
that if the latent representation reconstructs the (noises driving the) true causal 
variables, then interventions on those noises (and the mechanisms driven by them) 
are permissible and lead to valid generation of image data. 

39.9.3 Learning Interventional World Models and Reasoning 
Modern representation learning excels at learning representations of data that pre
serve relevant statistical properties [Bengio et al. 2012, LeCun et al. 2015]. It does 
so, however, without taking into account causal properties of the variables, that 
is, it does not care about the interventional properties of the variables it analyzes 
or reconstructs. I expect that going forward causality will play a major role in tak
ing representation learning to the next level, moving beyond the representation of 
statistical dependence structures toward models that support intervention, plan
ning, and reasoning, realizing Konrad Lorenz’s notion of thinking as acting in an 

imagined space. This ultimately requires the ability to reflect back on one’s actions 
and envision alternative scenarios, possibly necessitating (the illusion of) free will 
[Pearl 2009b]. The biological function of self-consciousness may be related to the 

need for a variable representing oneself in one’s Lorenzian imagined space, and free 

will may then be a means to communicate about actions taken by that variable, 
crucial for social and cultural learning, a topic that has not yet entered the stage of 
machine learning research although it is at the core of human intelligence [Henrich 

2016]. 

39.10 Personal Notes and Conclusion 
My first conscious encounter with Judea Pearl was in 2001, at a symposium on 

the Interface of Computing Sciences and Statistics.21 We both spoke at this sympo
sium, and I recall his talk, formalizing an area of scientific inquiry that I had 

previously considered solidly part of the realm of philosophy. It stirred the same 

21. https://www.ics.uci.edu/~interfac/. 

https://www.ics.uci.edu/~interfac/
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fascination that had attracted me to the research that I was doing at that time, in 

statistical learning theory and kernel methods. I had a background in mathemat
ics and physics, had dabbled in neural networks, and was impressed when in 1994 

I met Vladimir Vapnik, who taught me a statistical theory underlying the philo
sophical problems of induction and generalization. Judea Pearl, another giant of 
our still young field of AI, seemed to be doing the same on a rather different but 
equally fascinating problem. Like Vladimir, Judea left me with a lasting impres
sion as someone who has mastered not just technicalities but has gained access to 

profound philosophical understanding. With kernel methods and learning theory 
taking off, I did not manage to go into depth on causality at the time. I did follow 

some of the work in graphical models which became a staple in machine learn
ing, and I knew that although most researchers shied away from presenting these 

models as causal, this interpretation existed and formed a conceptual motivation 

for that field. 
I was brought in touch with causality research for the second time in 2004 

by my study friend Dominik Janzing. He was at the time working on quantum 

information, and spoke about causality in a course he taught in Karlsruhe. The 

student Xiaohai Sun followed that lecture and convinced Dominik to start work
ing with him on a project. Eventually, the question of a PhD project came up, and 

Dominik (who felt his own field was too far from that) decided to ask me whether 
a joint supervision would make sense. At the time, Vladimir Vapnik was visiting 

my lab, and after a long conversation, he agreed this could be interesting (“you 

should decide if you want to play this game”—by his standards, a fairly enthusias
tic endorsement). I decided to take the risk, Xiaohai became a student in my lab 

in Tübingen, and in 2007, Dominik joined us. We also recruited the student Jonas 
Peters, who had taken part in a summer course I had taught in 2006, as well as the 

postdocs Joris Mooij and Kun Zhang, both independently driven toward the prob
lem of causality. With Andre Elisseeff and Steffen Lauritzen, Dominik and I wrote 

a proposal to organize a causality workshop in Dagstuhl. This workshop took place 

in 2009, and helped us become members of the causality community; it was where 

I first personally met Peter Spirtes. 
I feel fortunate to have had such a strong team of people to do this work (includ

ing many whom I did not mention by name above), and I believe we have made 

a contribution to modern causality research and especially its links to machine 

learning: both by using learning methods to develop data-driven causal methods, 
and by using inspiration from causality to better understand machine learning and 

develop new learning methods. In that respect, representation learning and dis
entanglement are intriguing fields. I recall a number of discussions with Yoshua 

Bengio when I was a member of the review panel and advisory board of the CIFAR 
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program. He was driven by the goal to disentangle the underlying factors of varia
tion in data using deep learning, and I was arguing that this is a causal question. 
Our opinions have since then converged, and research has started to appear that 
combines both fields [Goudet et al. 2017, Locatello et al. 2018a, Suter et al. 2018, 
Bengio et al. 2019, Goyal et al. 2019]. 

All this is still in its infancy, and the above account is personal and thus biased— 

I apologize for any omissions. With the current hype around machine learning, 
there is much to say in favor of some humility toward what machine learning can 

do, and thus toward the current state of AI—the hard problems have not been 

solved yet, making basic research in this field all the more exciting. 
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40
Why Did They Do That? 
Ross Shachter (Stanford University), 
David Heckerman (Amazon, Seattle) 

Abstract 
Judea Pearl argues that people as well as machines with artificial intelligence must 
have the ability to apply causal reasoning to make decisions and to explain or justify 
those decisions. We wholeheartedly agree with Judea on this point, but show that 
the ability to identify available alternatives and the ability to express preferences 
are also necessary for making and explaining decisions. We briefly review the basic 
principles of decision theory, showing how these three abilities come together in 

decision-making. We illustrate these principles with examples including Judea’s 
incisive depiction of the story of Adam and Eve. 

40.1 Introduction 
At the start of The Book of Why, Judea Pearl places us in the Garden of Eden [Pearl 
and Mackenzie 2018]. When God asked Adam, “Have you been eating of the tree I 
forbade you to eat?” Adam replied, “It was the woman you put with me; she gave me 

the fruit and I ate it.” Eve added, “The serpent tempted me, and I ate” [Jones 1971]. 
Judea notes that instead of responding “Yes” or “No” to God’s questions, they gave 

excuses, explanations of why they ate the fruit, attempting to shift the blame from 

themselves to others. They knew that they had disobeyed God and they hoped they 
could avoid the consequences that God declared, “of the tree of the knowledge of 
good and evil you are not to eat, for on the day you eat of it you shall most surely 
die.” 

Judea argues that asking “Why did they do that?” is a natural question and 

argues that causal reasoning, the second level of his ladder of causation, is a nec
essary tool to answer this question. We wholeheartedly agree with these points 
[Heckerman and Shachter 1995]. In particular, in order to know why Adam and Eve 

ate the fruit, we need to know how they thought about the causal consequences of 
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their possible actions, and the probabilities of those consequences are obtained 

through causal reasoning using methods such as those pioneered by Judea. Judea 

also argues that machinery for causal reasoning is a necessary component of true 

artificial intelligence. We agree with this point as well. That said, we use this article 

to argue that there are two additional machineries needed to answer the question 

of “Why did I do that?” and further argue that these machineries are equally impor
tant components of a true artificial intelligence. The first additional component is 
the ability to identify available alternatives—that is, what an entity can do in a given 

situation. The second component is the ability of the entity to express preferences 
over the possible outcomes. Together, these three components allow us to choose 

the best available alternative. 
These three components for answering the question “Why did I do that?” are 

precisely the key aspects of decision theory [Ramsey 1926, von Neumann and 

Morgenstern 1947, Blackwell and Girshick 1954, Savage 1954, Raiffa 1968, Howard 

1970]. It is from this perspective that we explore the story of the Garden of Eden to 

illustrate the approach. (We do not intend to convey any theological insight.) Before 

we return to their decision and a description of how they could use decision the
ory to give a more complete explanation of why they ate the fruit, let’s consider a 

simple decision problem and how it is represented by decision theory. 

40.2 Some Examples 
Consider whether to pay for parking if we expect to be staying for only a short 
time to run an errand. This situation is represented by the decision tree shown 

in Figure 40.1. 
We can choose to pay for the parking or we can choose to not pay for it. These are 

our alternatives. If our violation is detected, then we will receive a ticket and have to 

pay a fine, but if it goes undetected, then we will have parked for free. For many peo
ple, parking for free is the best outcome and paying a fine is the worst outcome, 

Feed
the Meter

Don’t Feed
the Meter

Ticketed

Not
Ticketed

Pay for Parking

Park for Free

Pay Parking Fine

Figure 40.1 We can choose to feed the meter and pay for parking, or choose not to feed it and then 
either pay a fine or park for free, depending on whether our car is ticketed. 
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so there is some tradeoff involving the cost of parking, the cost of the fine, and 

the probability that our violation will be detected. This probability is determined 

through causal reasoning. 
While we don’t want to get much into the details of decision theory, we note that, 

once the ingredients of alternatives, probabilities over possible outcomes (from 

causal reasoning), and preferences are specified, the theory offers a prescription 

to act. In this simple example, we should pay for parking if 

P{detection}(Cost of Fine) > (Cost of Parking). 

Another important feature of decision theory is that different decision makers 
can have different alternatives, probabilities, and preferences. For example, a deci
sion maker may know there is free parking nearby and add that as an alternative, 
may be uncertain about the cost of the fine if they fear their car might be towed, or 
prefer not to park without paying. These differences among decision makers can 

lead them to make different choices, even if they agree on the causal reasoning. 
The determination of probabilities through causal reasoning, the identification 

of alternatives, and the assessment of preferences are all important ingredients to 

making a decision, and answering the question “Why did I do that?” In a recent 
CACM article, Judea talks about how causal reasoning can help someone who asks 
“I am about to quit my job, but should I?” [Pearl 2019]. We agree that causal reason
ing is an important component to answering their question. But it is not enough. 
Are they considering another job or going back to school? Is the issue salary, work 

situation, family, health, or commute? Causal reasoning lets us consider the effects 
of each alternative on these different concerns. However, to answer their question, 
we also need to know their preferences and the alternatives available to them. 

40.3 Back to the Garden of Eden 
Now let us return to Adam and Eve’s decision, viewing it from their perspective 

before they ate the fruit. (In this story, we are in a very unusual situation where 

eating the fruit actually changes who they are, potentially changing their ability 
to identify alternatives and to reason causally, and potentially changing their pref
erences. So, we must be careful to look at their decision before they ate the fruit.) 
Their situation is represented by the decision tree shown in Figure 40.2. Their alter
natives are to eat the fruit or to not eat it. Thinking about the consequences about 
their possible actions—that is, thinking causally—they reason that, if they don’t 
eat the fruit, everything will remain as it has been. If they eat the fruit and God 

finds out, God has said that they shall most surely die, presumably by God’s hand. 
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Eat the Fruit

Don’t Eat
the Fruit

God knows

God doesn’t
know

Die Today

No Fruit

Enjoy the Fruit

Figure 40.2	 Adam and Eve can choose to eat the fruit and then either die or live having enjoyed the 
fruit, depending on whether God finds out, or they can choose not to eat the fruit and 
never get to enjoy it. 

In contrast, the serpent has said “No! You will not die! God knows in fact that on 

the day you eat it your eyes will be opened and you will be like gods, knowing good 

and evil.” So they reason that there are two possibilities: either God will find out 
and they will die, or God won’t find out and they will get to enjoy the fruit and 

any knowledge that comes with it. “The woman saw that the tree was good to eat 
and pleasing to the eye, and that it was desirable for the knowledge that it could 

give.” Therefore, enjoying the fruit is the best outcome and dying is the worst out
come, and they need to think about how likely it is that God will find out and how 

desirable the fruit must be to take that risk. 
We know that they ate the fruit. Perhaps they had considered other 

alternatives—for example, pleading with God if God were to find out. Or perhaps 
they considered other outcomes—for example, that they might not die if God finds 
out. However, the Bible is silent on these other possibilities, so we leave the rep
resentation of their decision—“Why did they do that?”—as shown in the decision 

tree in Figure 40.2. 

40.4 Decision Theory and Decision Analysis 
There are other interesting aspects surrounding the story of Adam and Eve, but 
before we return to these, let us consider decision theory in more detail. Decision 

theory is a normative theory for decision-making . That is, its principles follow from 

a small set of axioms that a decision maker should follow. For example, one of 
the axioms is that a decision maker’s preferences over the possible outcomes are 

totally ordered. If not, for example if A is preferred to B, B is preferred to C, and C 

is preferred to A, then a third party could extract money from the decision maker 
by getting him to pay for a preferred outcome over another, until he is back with 

the outcome he started with, but with less money. Decision theory is not a descrip
tive theory of decision-making—that is, it does not accurately describe how people 

actually make decisions. 
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Prospect theory is such a theory, attempting to explain and characterize the pro
cesses people use in decision-making, incorporating their biases and heuristics 
[Kahneman and Tversky 2006]. Prospect theory would be an appropriate theory 
for artificial intelligence if our goal were merely to simulate human decision mak
ers. However, it seems more compelling to consider the normative decision theory 
developed to explain and characterize the processes humans might want to use for 
important decisions. 

Decision analysis, developed by Ron Howard and Howard Raiffa, is a discipline 

centered on the application of decision theory to real decisions in practice. One of 
the fundamental distinctions in decision analysis is between the quality of a deci
sion made and the quality of the resulting outcome. Although it is commonplace 

in our society to judge a decision by the outcome, they are quite different, as good 

decisions can have bad outcomes and bad decisions can have good outcomes. We 

use decision analysis to help us make a decision before we act, improving the qual
ity of our decision. Using decision analysis only to explain our decision later leaves 
most of its benefits on the table. 

Unfortunately, it is when a decision maker experiences a bad outcome that they 
are most likely to ask themselves (again) “Why did I do that?” That leads to the 

question “What would have happened had I made another choice instead?” This 
is often how we learn to make better decisions, and it is the type of counterfactual 
reasoning on the third level of Judea’s ladder of causation. 

Yet another important notion from decision analysis is that, in any given sit
uation, a pure Do(X = x) alternative might not be available, and the decision 

maker must choose from the limited set of realistic alternatives. For example, con
sider the decision made by a patient and their physician about which treatment 
they should receive for a serious disease. Ideally, they would like the alternative 

Do(disease = false) with no side effects, but this is rarely available as an alternative. 
When we consider the treatment options actually available, we need to integrate 

those side effects into our causal reasoning. 
An extreme example of side effects can be found in the classic horror story of 

“The Monkey’s Paw” [Jacobs 1902]. In that story, each owner of a monkey’s paw was 
granted three wishes. Although their wishes were fulfilled, it was not done so as the 

wisher had intended, such as when his wish for money was fulfilled by the death 

of his son leading to an insurance payout. 
Indeed, identifying realistic alternatives can be difficult. Nonetheless, this iden

tification is a necessary component for answering the question “Why did I do 

that?” and a necessary component for true artificial intelligence. In humans, the 

process of identifying alternatives seems to arise naturally from the experience 

of free will. Interestingly, recent experiments in neurobiology [Soon et al. 2008] 
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and physics [Proietti et al. 2019] cast doubts on whether humans actually have 

free will or merely perceive that we do. Nonetheless, many researchers, including 

Judea, believe that at least the perception of free will offers advantages to artificial 
intelligence. 

We agree and offer the following observations. With regard to taking action, a 

very different alternative to decision theory is the use of situation–action rules. 
Such rules are evolutionarily built in to almost all forms of life, even reflexive 

actions in humans. A key advantage of situation–action rules is computational 
simplicity, and hence ease of implementation within a biological or human-made 

system. In contrast, a key advantage of decision theory, where many complex alter
natives and their consequences are imagined (afforded by the perception of free 

will) and then selected, is improved quality of action, leading to increased chances 
of survival. Furthermore, decision-theoretic thinking has an important property 
that makes implementation feasible. 

That property is modularity or decomposability of its parts. In particular, as 
illustrated in our examples, decision-theoretic thinking flows naturally in the 

sequence: (1) identify available alternatives, (2) consider the causal effects of those 

alternatives on the possible outcomes, and (3) consider preferences over those 

possible outcomes. The causal effects flowing from each alternative and the result
ing preferences on those effects can be considered separately for each alternative. 
Finally, causal reasoning itself is modular in that cause–effect relationships can 

be pieced together to form other relationships. As a simple example, if we know X 

causes Y, and Y causes Z, it is usually safe to conclude X causes Z. 
In summary, decision-theoretic thinking offers strong survival advantages, 

and its modularity permits feasible implementation. Furthermore, the percep
tion of free will permits such thinking. A key unanswered question is whether the 

perception of free will is necessary for decision-theoretic thinking. 

40.5 Back Again in the Garden of Eden 
Now consider when God asks Adam and Eve “Have you been eating of the tree I for
bade you to eat?” Adam blames Eve, who looks back at her decision-making and 

uses causal reasoning to recognize that the serpent’s words led her to both lower 
her probability that God would find out and increase her preference for the fruit, 
together causing her to choose to eat the fruit. Eve summarizes this to God, say
ing “The serpent tempted me, and I ate.” Of course, Eve leaves out the important 
details of the temptation, which she must have surmised—with her new knowl
edge of good and evil—that God would not appreciate. Interestingly, the serpent’s 
statement turned out to be true, if misleading: Adam and Eve did not die that day, 
as God had threatened, and they indeed gained the knowledge of good and evil. 
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40.6 Conclusion: God’s Decision 
We conclude by thinking about the decision that God made after confronting Adam 

and Eve from the perspective of decision theory. When God created them, we learn 

“Now both of them were naked, the man and his wife, but they felt no shame in 

front of each other.” However, when God found them in the Garden of Eden after 
they ate the fruit, Adam says “I was afraid because I was naked, so I hid.” God’s 
causal model kicks in: “Who told you that you were naked? … Have you been eating 

of the tree I forbade you to eat?” 
It might not have taken any inference, as some believe that God is all knowing 

and can predict the future as well. Hence they believe that God knew all along that 
Adam and Eve would eat the fruit. However, others believe that when God created 

Adam and Eve, he endowed them with curiosity and free will. God could only con
trol their behaviors imperfectly and indirectly through punishment and reward. 
And to do so perfectly, God would have needed to understand their alternatives, 
their causal reasoning, and their preferences! 

Once God confirmed with Adam and Eve that they ate the fruit, there was a deci
sion to be made about their punishment. If they died that day, then God’s promise 

would have been fulfilled. If nothing happened, then God had fears: “See, the man 

has become like one of us, with his knowledge of good and evil. He must not be 

allowed to stretch his hand out next and pick from the tree of life also, and eat some 

and live forever.” It would seem that God had decided that they should die. 
However, God introduced a new alternative of banishing them to a life of suffer

ing as mortal humans, as shown in Figure 40.3. But why? God makes it clear that it 
was neither forgiveness nor mercy, for he cursed them and all of their descendants 
with lives of pain and suffering. Did God merely threaten death to dissuade them 

from eating the fruit knowing that otherwise they could not resist the temptation? 
If only we knew God’s available alternatives, causal reasoning, and preferences well 
enough to understand “Why did God do that?” 

Adam and Eve Die Today

They are Banished from
the Garden of Eden

God Does Nothing

They Suffer as Mortals

God’s Promise Kept

They Live Forever in
the Garden of Eden

Figure 40.3	 Knowing they have eaten the fruit, God has three choices: either Adam and Eve die 
as God promised, they are banished from the Garden of Eden to a life of suffering as 
mortals, or they will live forever in the Garden of Eden. 
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Among Judea Pearl’s many contributions to causality and statistics, the graphical d-
separation criterion, and the do-calculus stand out. In this chapter we show that d-
separation provides direct insight into an earlier causal model originally described in 

terms of potential outcomes and event trees. In turn, the resulting synthesis leads to 

a simplification of the do-calculus that clarifies and separates the underlying concepts, 
and a simple counterfactual formulation of a complete identification algorithm in causal 
models with hidden variables. 

Multivariate 
Counterfactual Systems 
and Causal Graphical 
Models 
Ilya Shpitser (Johns Hopkins University),
 
Thomas S. Richardson (University of Washington),
 

41.1 Introduction 
For the last three decades, Judea Pearl has been a leading advocate for the adoption 

of causal models throughout the sciences. Pearl [1995] introduced causal models 
based on non-parametric structural equation models (NPSEMs).1 NPSEMs encode 

direct causal relations between variables. More precisely, each variable V is mod
eled as a function of its direct causes and an error term εV ; this is the “structural 
equation” for V ; see Table 41.2. These causal relationships can be represented 

1. See also Pearl [2009, p. 69]. More recently Pearl has used the term (Structural) Causal Model 
(SCM) to refer to NPSEMs; see Pearl [2009, p. 203, Definition 7.1.1]. However, (S)CM is sometimes 
also used to denote NPSEMs in which, in addition, the error terms are assumed to be independent 
either explicitly (see Pearl [2009, p. 44, Definition 2.2.2] and Forré and Mooij [2019]) or implicitly 
(see Lee et al. [2020]). For this reason, we prefer to use Pearl’s earlier terminology. 
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naturally by the directed arrows on a directed acyclic graph (DAG) in which there is 
an edge X → V if X is present in the structural equation for V. The resulting graph is 
often called a causal DAG or diagram. However, further probabilistic assumptions 
are required to link the NPSEM to the distribution of the data. 

Pearl has often considered a submodel of an NPSEM, hereafter referred to as 
the NPSEM-IE, which assumes the Independence of Error terms. NPSEM-IEs typ
ically include both observed and hidden variables.2 Thus, although these models 
assume that errors are independent, they still allow a modeler to postulate non-
causal dependence between observed variables X and Y by including a hidden 

variable X ← H → Y (instead of allowing errors εX and εY to be dependent). 
Under the NPSEM-IE the distribution over the factual (i.e., hidden plus 

observed) variables factorizes according to the causal DAG. This allows one to rea
son about conditional independence in the distribution for the factual variables 
via d-separation relations on the causal graph. Based on this insight, Pearl devel
oped an influential reasoning system called the do-calculus that allows complex 
derivations to be made linking causal and observed quantities by appealing to 

d-separation in graphs derived from the causal DAG. 
Causal graphs plus d-separation turn a difficult mathematical problem into a 

simple one of graph topology. The use of causal DAGs, as championed by Pearl, 
has revolutionized causal reasoning in many fields, including fields such as epi
demiology and sociology, precisely because causal reasoning based on DAGs and 

d-separation is so “ user-friendly.” That is, individuals lacking the necessary math
ematical background to understand probabilistic inference based solely on an 

NPSEM-IE have been given a tool with which they can solve subtle problems in 

causal inference. In fact, even the mathematically sophisticated find causal rea
soning with graphs to be much easier than algebraically manipulating the under
lying structural equations. As Pearl emphasizes, this is largely because causal DAGs 
faithfully represent the way humans, including scientists and mathematicians, 
encode causal relations. 

The use of DAGs to encode causal relationships dates back to the work of the 

geneticist Sewall Wright [Wright 1921] in the 1920s, who used a special case of 
the NPSEM associated with linear structural equations, and Gaussian errors for 
pedigree analysis among other applications in biology. These ideas were further 
developed and applied by Wright, Haavelmo, the Cowles Commission, Strotz & 

Wold, and Fisher [Wright 1921, Haavelmo 1943, Simon 1953, Strotz and Wold 1960, 
Fisher 1969, 1970]. 

2. Causal DAG models with unobserved variables are also referred to as “semi-Markovian” by Pearl 
[2009, pp. 69 and 76]. 
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In statistics, (non-graphical) causal inference models have a long history also 

dating back to the 1920s [Neyman 1923, Rubin 1974, Robins 1986]. These models are 

based on counterfactual variables (potential outcomes) that encode the value the 

variable would have if, possibly contrary to fact, a particular treatment had been 

given. Causal contrasts in these models compare the distributions of potential 
outcomes under two or more treatments. 

In general, these counterfactual models considered treatments or exposures at 
a single point in time. Extending the framework introduced by Neyman to allow for 
treatment at multiple time-points, Robins introduced causally interpretable struc
tured tree graph (CISTG) models. These counterfactuals models, which were repre
sented using event tree graphs, extended the point treatment model of Neyman 

[1923] to longitudinal studies with time-varying treatments, direct and indirect 
effects, and feedback of one cause on another. 

Pearl has noted that an NPSEM (even without assumptions on the distribu
tion of the errors) implies the existence of potential outcomes and thus an NPSEM 

model also allows reasoning about counterfactuals; see Halpern and Pearl [2001, 
2005]. Indeed, Robins and Richardson have shown that in fact a particular finest 
CISTG model (“as detailed as the data”) is mathematically isomorphic to an NPSEM 

model in the sense that any such CISTG model can be written as an (acyclic) NPSEM 

model and vice versa. A finest CISTG “as detailed as the data” is a counterfac
tual causal model in which all the underlying variables can be intervened on—an 

assumption that Pearl has sometimes also adopted.3 Other versions of CISTG mod
els, unlike the NPSEM, assume that only a subset of the variables can be thought 
of as treatments with associated counterfactuals; thus, interventions and causal 
effects are only defined for this subset. Henceforth, unless stated otherwise, the 

term “CISTG model” will be used to denote a “finest CISTG model as detailed as 
the data.” 

Since counterfactual variables are not directly observed, assumptions are 

needed to link counterfactuals and their distributions to those of the factual data. 
A necessary assumption is consistency, which states that for a unit their observed 

outcome (Y) and their potential outcome (Y(a)) had a particular treatment a been 

3. See Galles and Pearl [1998], Definitions 2 and 3 and Footnote 2, also Pearl [2009] Definitions 7.1.2 

and 7.1.3. However, in more recent work, Pearl [2018, 2019] has made a further distinction between 

hypothetical interventions and a concept of causation based on variables that “listen to others.” 
Pearl continues to assume that for every variable there are counterfactuals associated with apply
ing the do operator to that variable. However, the model resulting from applying the do operator 
and removing structural equations need no longer correspond to an actual intervention. This 
leaves open the question as to whether there are predictions made by these removals and, if so, 
how they can be validated. 
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assigned, will coincide, if in reality the treatment they received (A) is a. How
ever, since both counterfactuals are not directly observed for any individual—the 

fundamental problem of causal inference—distributions of causal effects are not 
identified without additional assumptions, beyond consistency. 

These assumptions typically take the form of Markov (conditional indepen
dence) assumptions that link the distribution of the factual data to that of the 

counterfactuals, as further discussed below. The simplest example is a randomized 

clinical trial that assigns treatment via the flip of a coin, and thus treatment is inde
pendent of the potential outcomes, so for all a, A ⊥⊥ Y(a). Together, consistency and 

Markov assumptions allow population-level causal contrasts to be identified from 

observed data. In contrast, individual-level effects are not typically identifiable. 
Under the NPSEM-IE model, the additional Markov assumptions follow from 

the assumption that the errors in the structural equation for each variable (hidden 

or observed) are independent of the errors in the structural equations for the other 
variables. 

Robins [1986] similarly added independence assumptions to the CISTG model. 
Robins referred to the version of this model in which all variables can be inter
vened on as the “finest fully randomized CISTG model as detailed as the data,” 
which we henceforth refer to as the “FFRCISTG model,” unless stated otherwise. 
Interestingly, the NPSEM-IE implies many more counterfactual independence 

assumptions than does the corresponding FFRCISTG model. In fact, if we consider 
complete graphs on p binary variables, then the difference between the number of 
assumptions implied by the NPSEM-IE and the FFRCISTG model grows at a doubly 
exponential rate.4 

The NPSEM-IE allows the identification of certain causal effects—the pure 

and total direct and indirect effects and more generally path-specific effects5—by 
making use of additional independence assumptions that cannot be confirmed, 
even in principle, by any experiment conducted using the variables represented 

on the graph. In contrast, under the less-restrictive FFRCISTG model all coun
terfactual independence assumptions are in principle experimentally testable,6 

and the pure and total direct effects are not identifiable (from the variables on 

the graph). However, ordinary intervention distributions of the type that arise in 

Pearl’s do-calculus are identifiable under the FFRCISTG model. 

4. With three binary variables, the difference in the dimension of the two models is 94, with four 
it is 32,423 [Richardson and Robins 2013]. 

5. See Chapter 38 of this volume for more detail on these effects. 

6. This assumes that it is possible to observe the natural value of a variable and then intervene on 

it an instant later; see discussion in Section 41.2. 
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Many statisticians and econometricians exclusively use counterfactuals (with
out graphs) when carrying out causal data analyses. Pearl has developed purely 
graphical criteria to reason about confounding and many other causal questions. 
Since graphical criteria, such as Pearl’s do-calculus, make no reference to coun
terfactuals, they can appear confusing to those unused to causal graphs. Indeed, 
only factual variables typically appear on Pearl’s causal diagrams so any connec
tion between Pearl’s graphical criteria and the statistician’s counterfactual criteria 

appear at first glance to be obscure. This is true even though Pearl and others have 

shown mathematically that the two approaches to evaluation of confounding are 

effectively logically equivalent. 
In this chapter, we will describe an approach that unifies the graphical and 

counterfactual approaches to causality, via a graph known as a Single-World 

Intervention Graph (SWIG).7 The SWIG is defined by the counterfactual indepen
dencies implied by the FFRCISTG model. The nodes on a SWIG correspond to the 

counterfactual random variables present in these independences. Furthermore, 
Pearl’s d-separation criterion can be applied to the SWIG to read off counterfactual 
independences implied by the FFRCISTG model. In fact, we will show that SWIGs 
lead directly to a simpler reformulation of the do-calculus in terms of potential 
outcomes that allows a considerable simplification of Rule 3. This reformulated 

calculus, which we term the potential outcome calculus or po-calculus, is also 

strictly stronger than Pearl’s in that it may be used to infer equalities that are not 
expressible in terms of the do(⋅) operator. We use the po-calculus to derive a new 

simple formulation of an extended version of the ID algorithm for identification of 
causal queries in the presence of hidden variables. The extended algorithm iden
tifies joint distributions over sets of counterfactual outcomes, where some out
comes are the “natural” values that treatment variables would take were they not 
intervened on. 

7. The approach taken here is inspired by, but distinct from, earlier approaches to combining 

graphs and counterfactuals such as Pearl’s twin network approach [Balke and Pearl 1994, Shpitser 
and Pearl 2008, Pearl 2009, Section 7.1.4]. However, the d-separation criterion on twin networks 
is not complete as there are deterministic relationships that are present—but not represented 

graphically—among the variables in a twin network. Consequently, it is possible for there to be 

a d-connecting path and yet the corresponding conditional independence holds for all distribu
tions in the model; see the Appendix for a simple example. In contrast, d-separation is complete 

for a SWIG. However, it should be noted that twin networks are addressing a harder problem 

than SWIGs since their goal is to determine all independencies implied by an NPSEM-IE model, 
including “cross-world” independencies. 
Finally, we note that twin-network graphs have not typically used (minimal) labelings, which turn 

out to be important in some applications; see Section 41.2.3. 
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41.2 Graphs, Non-parametric Structural Equation Models, and the 
g-/do Operator 
Fix a set of indices V ≡ {1, … , K} under a total ordering ≺, define the sets prei ≡ 

{1, … , i − 1}. For each index i ∈ V , associate a random variable Xi with state 

space i; the ordering here could be given by temporal ordering but need not 
be.8 Given A ⊆ V , we will denote subsets of random variables indexed by A as 
XA ∈ A ≡ ×i∈A i. For notational conciseness we will sometimes use index sets 
to denote random variables themselves, using V and A to denote XV and XA, respec
tively, and similarly using lower case a to denote xA ∈ A. Similarly, by extension, 
we will also use VA to denote XA and Vi to denote Xi. 

We assume the existence of all one-step-ahead potential outcome (also called 

counterfactual) random variables of the form Vi(xpai ), where pai is a fixed subset 
of prei, and xpai is any element in pai .

9 The variable Vi(xpai ) denotes the value of 
Vi had the set Vpai of direct causes of Vi been set, possibly contrary to fact, to val
ues pai. The existence of a total ordering ≺ on indices and the fact that pai ⊆ prei 
precludes the existence of cyclic causation. That is, we consider causal models that 
are recursive. Vi(xpai ) may be conceptualized as the output of a structural equation 

fi : (xpai , εi) ↦ xi, a function representing a causal mechanism that maps values 
of xpai , as well as the value of a variable εi, to values of Vi. Specifically, we may 
define the error term 𝜀i to be the vector comprising the set of random variables 
{Vi(xpai )|xpai ∈ pai } and fi to be such that fi(xpai , εi) ≡ (εi)xpai = Vi(xpai ). 

We define NPSEMs as sets of densities over the set of random variables 

V ≡ {Vi(xpai )|i ∈ V , xpai ∈ pai }. 

Note that V includes variables Vi which have no parents, and which are thus fac
tual. For simplicity of presentation, we assume i is always finite, and thus ignore 

the measure-theoretic complications that arise with defining densities over sets of 
random variables in the case where some state spaces pai are infinite. 

Given a set of one-step-ahead potential outcomes V, for any A ⊆ V and i ∈ V , the 

potential outcome Vi(a), the response of Vi had variables in VA been set to a ∈ A, is 
the one step ahead counterfactual Vi(pai) ∈ V if VA = Vpai , and is otherwise defined 

via recursive substitution: 

Vi(a) ≡ Vi (apai , Vpai ⧵A(a)) . (41.1) 

8. If some variables do not affect variables later in time, then many non-temporal orders may be 

used; see Robins [1986, Chapter 11] and later. 

9. pa here is short for “parent,” which will be motivated subsequently when we later build a 

connection to directed graphs. 
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In other words, this states that Vi(a) is the potential outcome where variables in 

both pai and A are set to their corresponding values in a, and all elements of pai 
not in A are set to whatever values their recursively defined counterfactual ver
sions would have had had VA been set to a. This is well defined because of the 

requirement that pai ⊆ prei. 
Equivalently, Vi(a) is the random variable induced by a modified set of structural 

equations: specifically the set of functions fj for Vj such that A∩paj ̸= ∅ are replaced 

by modified functions fj
a : (xpaj ⧵A, 𝜀j) ↦ xj that are obtained from fj : (xpaj , 𝜀j) ↦ xj 

by always evaluating paj ∩ A at the corresponding values in a. 
We will extend our notational shorthand by using index sets to denote sets 

of potential outcomes themselves. Thus, for B ⊂ V , we let B(a) denote the set 
of potential outcomes VB(a). We denote by V* the set of all variables derived by 
Equation (41.1) from V, for all possible choices of the set A (together with the set V 

itself).10 

While the potential outcome and the structural equation formalisms both yield 

the same causal model, there are some differences regarding the way in which 

the frameworks are typically presented. Specifically, regarding which “objects” are 

taken as primitive and which are derived. 
The counterfactual formalism here starts with one-step-ahead counterfactuals 

that intervene on every parent (direct cause) of every variable, and constructs all 
other counterfactuals by means of recursive substitution. Recursive substitution 

implies, in particular, that A(a) ≡ A. This accords with the substantive claim that 
it is possible to first learn the “natural” value a variable A would take on, and then 

an instant later intervene setting it to a specific value a, resulting in all subsequent 
variables Vi behaving as counterfactual variables Vi(a). 

On the other hand, the structural equation formalism typically starts with a set 
of unaltered structural equations that yields the observed data distribution (via 

substitution). Counterfactual distributions representing an intervention that sets 
elements in A to a are generated by replacing structural equations correspond
ing to elements in A by degenerate functions that yield constants in a [Strotz 
and Wold 1960, Pearl 2009]. The resulting modified equation system thus repre
sents the set of variables (including A) after the action of setting A to the value 

a. Consequently, there are two subtle but important notational (not conceptual) 
distinctions: 

∙	 Under the standard presentation of structural equation models, used by 
Pearl, the meaning of a variable such as A, Y, or L, is dependent on the set 

10. The set V* corresponds to Robins’ Finest Causally Interpreted Structured Tree Graph as Detailed 

as the Data. See Appendix C in Richardson and Robins [2013]. 
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of equations in which it appears. For example in Table 41.2, Y in the left 
(unmodified) display corresponds to the natural value; in the middle display 
Y corresponds to the value after intervening on a or Y(a) in counterfactual 
notation; in the right display Y denotes the value after intervening on A and 

L, or Y(a, l). In contrast, in the potential outcome framework, variables that 
are affected by an intervention take on a new name. 

∙	 Second, in the standard presentation, the variable “A ” in the modified set of 
equations represents the variable after it has been intervened on. Thus, for 
Pearl, do(A = a) implies that A = a, a property he terms “effectiveness.”11 

In this chapter, we will follow the notation conventions that are used in the 

potential outcome framework, but we stress that formally, NPSEMs and one-step
ahead counterfactuals are equivalent conceptually.12 See the Variables rows in 

Tables 41.1 and 41.2 to see the correspondence between sets of one-step-ahead 

counterfactuals and systems of structural equations; see Pearl [1995] and Imbens 
[2014] for further discussion of the representation of structural equations via 

potential outcomes. 
Given a set A ⊆ V , the distribution on V⧵A resulting from setting A to a by inter

ventions has been denoted in Robins [1986] by p(V⧵A | g = a), and subsequently as 
p(V⧵A | do(a)) [Pearl 2009]. The potential outcome view also allows us to consider 
distributions p(V(a)) for any A ⊆ V . In such a distribution, variables in A occur 
both as random and intervened on versions. We later consider identification the
ory for distributions of this sort, where the set of treatment variables and outcome 

variables may intersect. 
Recursive substitution in NPSEMs provides a link between observed variables 

and potential outcomes. In particular, it implies the consistency property: for any 
disjoint A, B ⊆ V , i ∈ V⧵(A ∪ B), a ∈ A, b ∈ B, 

VB(a) = b implies Vi(a, b) = Vi(a).	 (41.2) 

See Robins [1986, 1987] and, for a proof using notation similar to this chap
ter, Richardson and Robins [2013] and Malinsky et al. [2019]. Consistency is 

11. If we were to use A(a) to designate the value taken by a variable A after an intervention on A, 
then we could express this as A(a) = a. However, as noted, we use A(a) to designate the value taken 

by a variable A immediately prior to the intervention. 

12. However, as described below, structural equation models are often used under an addi
tional (strong) assumption of independent errors. Since this is a stronger assumption than typ
ically used in the potential outcome framework, we use the acronyms NPSEM and NPSEM-IE to 

distinguish whether this additional assumption is being made. 
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often phrased in a simpler form where A = ∅, yielding the identity Vi(b) = Vi if 
VB = b. 

Equation (41.1) also implies the causal irrelevance property, namely that every 
Vi(a) can be written as a function of a unique minimally causally relevant subset of 
a, as follows. (See Robins [1986] and Richardson and Robins [2013] and, for a for
mulation similar to that used here, Malinsky et al. [2019].) Given V* derived from 

V via Equation (41.1), let Vi(a) ∈ V*, and let A* be the maximal subset of A such that 
for every j ∈ A* there exists a sequence w1, … , wm that does not intersect A, where 

j ∈ pa , wi ∈ pa , for i = 1, … m − 1, and wm ∈ pai. Then, Vi(a) = Vi(a *).w1 wi+1 

As an example, given the indices {1, 2, 3}, under the ordering 1 ≺ 2 ≺ 3, if pa2 = 

{1} and pa3 = {2}, we have one-step-ahead potential outcomes V1, V2(v1), V3(v2), for 
any values v1, v2. We can define other counterfactuals via Equation (41.1), for exam
ple V3(v1) ≡ V3(V2(v1)). Consistency implies statements of the form V1 = v1 ⇒ V2 = 

V2(v1), while causal irrelevance implies V3(v2, v1) = V3(v2). 
Both consistency and causal irrelevance hold in any NPSEM in the sense that 

these properties are implied by the existence of a total order on variables we wish 

to consider, the existence of one-step-ahead counterfactuals, and Equation (41.1). 
While useful, these properties on their own fail to capture many of the hypotheses 
that arise in causal inference problems (either by design or assumption). These 

additional constraints correspond to conditional independence restrictions con
cerning the error terms in non-parametric structural equations. Although causal 
models are well defined without reference to graphs, much conceptual clarity may 
be gained by viewing them graphically. Thus, before describing causal models in 

detail, we introduce graphs and graphical models. 

Graphical Models 
Statistical and causal models can be associated with graphs, where vertices repre
sent variables and edges represent (potential) statistical or causal relationships. 
Formally, random variables are indexed by vertices. However, when we depict 
graphs we will display them with the random variables as vertices. 

We will consider graphs with either directed edges only (→), or mixed graphs 
with both directed and bidirected (↔) edges. Bidirected edges naturally arise as 
a way to represent (classes of) DAGs with latent variables; see Section 41.4.1. In all 
cases we will require the absence of directed cycles, meaning that whenever the 

graph contains a path of the form Vi → ⋯ → Vj, the edge Vj → Vi cannot exist. 
Directed graphs with this property are called DAGs, and mixed graphs with this 
property are called acyclic directed mixed graphs (ADMGs). We will refer to graphs 
by 𝒢(V), where V is the set of random variables indexed by {1, … , K}. We will write 

𝒢 in place of 𝒢(V) when the vertex set is clear. We will use the following standard 
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definitions for sets of vertices in a graph: 

𝒢pa ≡ {j | Vj → Vi in 𝒢} (parents of Vi)i 
𝒢an ≡ {j | Vj → ⋯ → Vi in 𝒢, or Vj = Vi} (ancestors of Vi)i 

de𝒢 ≡ {j | Vj ← ⋯ ← Vi in 𝒢, or Vj = Vi} (descendants of Vi)i 

dis𝒢 ≡ {j | Vj ↔ ⋯ ↔ Vi in 𝒢, or Vj = Vi} (the district of Vi)i
 

mb𝒢 ≡ {j | Vj ↔ ⋯ ↔ Vi in 𝒢}∪
i 

13{j | Vj → ◦ ↔ ⋯ ↔ Vi in 𝒢} (the Markov blanket of Vi). (41.3) 

We will generally drop the superscript 𝒢 if the relevant graph is obvious. By def
inition, an𝒢 ∩ de𝒢 ∩ dis𝒢 = {Vi}. We define these relations on sets disjunctively.i i i 

𝒢For example, an𝒢 ≡ ⋃Vi∈A an .A i 

Given a DAG 𝒢(V), a statistical DAG model (also called a Bayesian network) asso
ciated with 𝒢(V) is a set of distributions that factorize (equivalently are Markov) 
with respect to 𝒢(V): 

K 

p(V) = ∏ p(Vi | V 𝒢 ). (41.4)pai
i=1 

Given a distribution p(V) that factorizes relative to a DAG 𝒢(V), conditional inde
pendence relations that are implied in p(V) by Equation (41.4) can be derived using 

the well-known d-separation criterion [Pearl 1988]. More precisely, if p(V) is Markov 
relative to 𝒢(V), then the following global Markov property holds: for any disjoint 
X, Y , Z (where Z may be empty) 

(X ⊥⊥dY | Z)𝒢(V) ⇒ (X ⊥⊥ Y | Z)p(V). 

Here (X ⊥⊥dY | Z)𝒢(V) denotes that X is d-separated from Y given Z in 𝒢(V); 
(X ⊥⊥ Y | Z)p(V) indicates that X is independent of Y given Z in p(V). 

The global Markov property given by d-separation allows reasoning about con
ditional independence restrictions implied by the statistical DAG model using 

qualitative, visual reasoning on paths in the graph. 

41.2.2 Causal Models Associated with DAGs 
NPSEMs may be associated with directed graphs as well, by associating vertices 
with indices, and edges with relations given by pai, i ∈ {1, … , k}. Specifically, given 

13. Other authors often define the Markov blanket for a variable to be the minimal set M that 
makes Vi m-separated from V⧵({Vi} ∪ M). Our definition corresponds to the minimal set M such 

that Vi is m-separated from its non-descendants. 
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Figure 41.1	 (a) A DAG representing a simple NPSEM. (b) A simple causal DAG 𝒢, with a treatment 
A, an outcome Y, a vector C of baseline variables, and a mediator M. (c) A SWIG 𝒢(a) 
derived from (a) corresponding to the world where A is intervened on setting it to 
value a. 

a (recursive) NPSEM defined on V given the sets {pai|i ∈ {1, … , k}}, we construct a 

causal diagram, a DAG 𝒢(V) with a vertex for every Vi, i ∈ {1, … , k}, and a directed 

edge from Vj to Vi if j ∈ pai. In other words, 𝒢(V) is defined by the NPSEM by letting 
𝒢pa ≡ pai for every i. As an example, the NPSEM defined on the indices {1, 2, 3}i 

described in the previous section corresponds to the DAG in Figure 41.1(a). See 

the Graph rows of Tables 41.1 and 41.2 for graphs corresponding to one-step-ahead 

counterfactuals and structural equations. 
Substantive knowledge may motivate additional independence assumptions 

relating to the set of one-step-ahead counterfactuals V. As we will show below, 
such assumptions may also allow causal effects to be identified even when hidden 

variables are present. Below we introduce two sets of such assumptions. 

41.2.2.1 Non-parametric Structural Equations with Independent Errors 

A non-parametric structural equation model with independent errors, or NPSEM-IE, is 
the set of distributions such that the K different sets of one-step-ahead variables 
satisfy: 

{ } { }
{V1} ⊥⊥ V2(xpa2 

) | xpa2 
∈ pa2 

⊥⊥ ⋯ ⊥⊥ VK (xpaK 
) | xpaK 

∈ paK 
(41.5) 

so that they are mutually independent of one another. Phrased in terms of struc
tural equations fi : (xpaj , 𝜀i) ↦ xi for each Vi, the NPSEM-IE states that the 

joint distribution of the disturbance terms factorizes into a product of marginals: 
p(ε1, … , εK ) = ∏K

i=1 p(εi). 
NPSEMs with independent errors arise naturally as putative data-generating 

processes for a closed system. For example, if we are simulating every variable in 

a model, then it is natural to do this in a stepwise process by specifying a set of 
structural equations. The equations provide recipes for generating a value for each 
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variable in turn, given the previous values that have already been simulated plus 
an independently simulated error term.14 See Table 41.2 for an example. 

However, from an empiricist point of view the assumption of independent 
errors may be regarded as stronger than necessary. In particular, this assumption 

permits the identification of causal contrasts that are not subject to experimen
tal verification even in principle;15 see the discussion in section 38.1 in Chapter 38 

in this volume. At the same time, many causal contrasts of interest, including 

all intervention distributions, may be identified under a much smaller set of 
assumptions. 

41.2.2.2	 A Less Restrictive Model: Non-parametric Structural Equations with 

Single-World (FFRCISTG) Independences 

The above observations motivate an alternative approach based on the finest fully 
randomized causally interpretable structured tree graph (as detailed as the data), or 
FFRCISTG model of Robins [1986]. 

The FFRCISTG model is ontologically liberal but epistemologically conserva
tive. Specifically, all the counterfactual queries that may be formulated within the 

scope of an NPSEM are still well defined under this alternative, but, in contrast 
to the NPSEM-IE, only those contrasts that could in principle be experimentally 
verified by experiments on the variables in the system are identified. 

An NPSEM with FFRCISTG independences is the set of counterfactual distribu
tions satisfying 

For each xV ∈ V , we have V1 ⊥⊥ V2(xpa2 
) ⊥⊥ ⋯ ⊥⊥ VK (xpaK 

); (41.6) 

see Robins and Richardson [2010]. Thus, for each xV ∈ V there is a set of K ran
dom variables (the K one-step-ahead counterfactuals associated with XV) and the 

variables within each such set are assumed to be mutually independent. As V1 is 
first in the ordering, it has no parents. 

The FFRCISTG assumptions could be empirically verified in a set of randomized 

experiments, one for each XV, under which we intervene on every variable in turn, 
setting Vi to the value xi, but just before doing so, we are able to observe the random 

variable Vi(xpai ), resulting from our earlier interventions. (Here it is assumed that 
because we intervene to set Vi to xi an instant after it is measured, the value Vi(xpai ) 

14. Note that an NPSEM-IE may also contain unobserved variables, so that they include models 
described by Pearl as semi-Markovian [Pearl 2009]. 

15. Specifically, even if it were possible to carry out a randomized experiment manipulating 

any subset of the variables in the system, we could not directly observe certain counterfactual 
contrasts that are identified via an NPSEM-IE. 
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does not causally influence any subsequent variable.) Note the counterfactual ran
dom variables in Equation (41.6) all refer to a specific set of values XV, which thus 
correspond to a single counterfactual “world.” Note that Equation (41.5) imposes 
all restrictions in Equation (41.6), and in general exponentially many more.16 Thus 
the FFRCISTG is less restrictive than the NPSEM-IE model; in other words, the 

NPSEM-IE is a strict submodel of the FFRCISTG. 
As an example, the NPSEM associated with Figure 41.1(b) is defined using one-

step-ahead counterfactuals C, A(c), M(c, a), and Y(c, a, m), for every value set c, a, m. 
Then the FFRCISTG model restrictions for this NPSEM imply that 

For each set of values c, a, m, C ⊥⊥ A(c) ⊥⊥ M(a, c) ⊥⊥ Y(c, a, m), (41.7) 

while the NPSEM-IE restrictions for the NPSEM state that 

For each set of values c, c ′ , c ′′ , a, a ′ , C ⊥⊥ A(c) ⊥⊥ M(a, c ′) ⊥⊥ Y(c ′′ , a ′ , m). (41.8) 

The restrictions in Equation (41.7) are a strict subset of the restrictions in 

Equation (41.8), which are themselves a subset of the restrictions defining the 

NPSEM-IE. 
Interventional distributions of the form p(V(a)), for A ⊆ V in both of the above 

models, may be represented in graphical form by a simple splitting operation on 

DAGs. The graphs resulting from this operation will be called SWIGs [Richardson 

and Robins 2013] for reasons that will be described below. 

Single-World Intervention Graphs 
SWIGs were introduced in Richardson and Robins [2013] as graphical representa
tions of potential outcome distributions that help unify the graphical and potential 
outcome formalisms. Given a set A of variables and an assignment a to those vari
ables, a SWIG 𝒢(V(a)) may be constructed from 𝒢(V) by splitting all vertices in A 

into a random half and a fixed half, with the random half inheriting all edges with 

an incoming arrowhead and the fixed half inheriting all outgoing directed edges. 
Then, all random vertices Vi are re-labeled as Vi(a) or equivalently (due to causal 
irrelevance) as Vi(aan * ), where an* consists of the fixed vertices that are ancestors 

i i 

of Vi in the split graph; the latter labeling is referred to as the minimal labeling 
of the SWIG. By using minimal labeling the SWIG encodes the property of causal 
irrelevance, so that, for example, if Y(x) appears in 𝒢(x, z) then Y(x, z) = Y(x). 

16. In fact, in the case where all variables are binary, the fraction of experimentally untestable con
straints implied by the NPSEM-IE rises at a doubly exponential rate in the number of variables. 
See Richardson and Robins [2013, Section 41.5.], and footnote 4. 
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Fixed nodes are enclosed by a double line. For an example of a SWIG repre
senting the joint density p(Y(a), M(a), C(a), A(a)) = p(Y(a), M(a), C, A), under the 

FFRCISTG model (and thus under an NPSEM-IE) associated with the DAG of 
Figure 41.1(b), see Figure 41.1(c). If the vertex set V is assumed or obvious, we will 
denote 𝒢(V(a)) by 𝒢(a), just as 𝒢(V) is denoted by 𝒢. 

Thus a SWIG 𝒢(V(a)) is a DAG with vertex set V(a) ∪ a; the vertices in V(a) 
correspond to random variables while vertices in a are fixed, taking a specific value. 

In a SWIG, every treatment variable has two versions: a fixed version represent
ing the intervention on that treatment, and a random version (which corresponds 
to measuring the treatment variable just before the intervention took place). This 
feature of SWIGs allows them to directly express, using d-separation, indepen
dence restrictions linking observed versions of treatments, and counterfactual 
variables representing responses after treatments have been set. 

Restrictions of this type, which generalize the well-known conditional ignor
ability restriction,17 will be used later to reformulate the second rule of the do-
calculus, using the language of SWIGs and potential outcomes. 

Pearl’s “mutilated graphs,” which are an alternative graphical representation 

of interventional distributions, only contain the fixed versions of treatments. This 
makes it difficult to express restrictions such as conditional ignorability. Instead, 
the do-calculus uses a variant of the mutilated graph where certain outgoing 

edges are also removed. An additional difficulty with this variant, though it is 
formally correct, is that vertices on it are not labeled as counterfactual random 

variables. 
Tables 41.1 and 41.2 illustrate, via simple examples, how SWIGs and mutilated 

graphs differ. 
The edges among random variables on the SWIG encode the factorization of 

the joint distribution p(V(a)). More precisely, the FFRCISTG model (and thus the 

NPSEM-IE) imply that for any A ⊆ V , and a ∈ A, the distribution p(V(a)) factorizes 
with respect to 𝒢(V(a)). In other words, 

K 

p(V(a)) = ∏ p (Vi(a) || Vpai⧵A(a)) . (41.9) 
i=1 

Fixed nodes do not occur in the conditioning sets for the terms in Equation 

(41.9) and thus the presence or absence of edges (ai → Vi(aj)) from fixed nodes to 

random nodes in 𝒢(V(a)) are not reflected in this expression (41.9). However, the 

fact that a random node is not a descendant of a fixed node does encode infor
mation about causal irrelevance. Specifically, if there is no directed path from the 

17. Specifically, Y(a) ⊥⊥ A|C, for some set of baseline covariates C. 
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fixed node aj to Vi(a) then Vi(a) = Vi(aA⧵{j}), hence under minimal labeling aj will 
not appear in the label for the vertex Vi(aan * ) in 𝒢(V(a)).18 Thus, as noted earlier, by

i 

causal irrelevance, Vi(a) = Vi(a an * ), where an* consists of the fixed vertices that are 
i i 

ancestors of Vi(a) in 𝒢(V(a)). Thus Equation (41.9) may be expressed as: 

K { } 
p(V(a)) = ∏ p (Vi(aani 

* ) Vj(aanj * ), for j ∈ pai⧵A ) 
. 

i=1 

|||| 

More generally, paths commencing with a fixed node but on which every other 
node is random also encode information about functional dependence. A path 

𝜋 in a SWIG 𝒢(a) is said to be Markov relevant if at most one endpoint is a fixed 

vertex, and every non-endpoint is random. A Markov relevant path 𝜋 in 𝒢(a) is d-
connecting given VZ(a) if every collider on 𝜋 is an ancestor of a vertex in VZ(a) and 

every non-collider on 𝜋 is not in VZ(a). 
It follows directly from Equation (41.9) that if VX (a) is d-separated from VY (a) 

given VZ(a) in 𝒢(a) then VX (a) ⊥⊥ VY (a) | VZ(a) in p(V(a)), so that d-separation rela
tions among random variables encode conditional independence. In addition, the 

absence of any d-connecting path in 𝒢(V(a)) between a fixed node aj and a set 
of random vertices VY (a), given a (possibly empty) set of random variables VZ (a), 
encodes that p(VY (a) | VZ(a)) does not depend on the value of aj. Thus we allow d-
separation statements of the form (aj ⊥⊥ d VY (a)|VZ(a))𝒢(V(a)).19 More generally, given 

three disjoint subsets Y , X, Z ⊆ V , where Z may be empty, and a set A ′ ⊆ A, 
then 

(VY (a) ⊥⊥d VX (a), aA ′ | VZ (a))𝒢(V(a)) (41.10) 

if in the SWIG 𝒢(V(a)) there is no path d-connecting a random vertex Vi(a) with i ∈ X 

or a fixed vertex aj with j ∈ A ′ to a random vertex in Vj(a) with j ∈ Y given VZ (a). 
Note that, by definition, fixed vertices may only arise on one side of a d-separation 

statement [Equation (41.10)]. Conversely, a possibly d-connecting path may only 
contain at most one fixed node in which case it is an endpoint vertex (thus, as in 

18. In the Appendix we briefly consider using the SWIG to make inferences about weaker causal 
models, including the agnostic causal model, and models in which the absence of a directed edge 

corresponds to the absence of a population-level direct effect. In the latter models, the equality 
Vi(a) = Vi(a∩an *) would no longer hold, and minimal labelings are constructed using a (possiblyi 

strict) edge super-graph of the graph used for the factorization (Equation (41.9)); see Section 7 in 

[Richardson and Robins 2013]. 

19. This represents an extension of the notion of d-separation in Richardson and Robins [2013]. 
Our extension here consists only in allowing fixed vertices to appear in, at most, one side of a d-
separation statement (not the conditioning set). The semantics for these extended d-separation 

statements are given in Equation (41.11). 
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Richardson and Robins [2013], fixed nodes never arise as non-endpoint vertices on 

d-connecting paths). 
Results for DAG models with fixed nodes [Richardson et al. 2017] imply the 

following: 

Proposition 41.1 SWIG Global Markov property 
Under the FFRCISTG for 𝒢, for every set A, disjoint sets of random vertices VX (a), 
VY (a), VZ (a) and a set of fixed nodes aA ′ , where A ′ ⊆ A, 

if (VY (a) ⊥⊥d VX (a), aA ′ | VZ (a))𝒢(V(a)) then, for some f (⋅), 

p(VY (a) = vY | VZ (a) = vZ, VX (a) = vX ) = p(VY (a) = vY | VZ(a) = vZ ) 

= f (vY , vZ, aA⧵A ′ ).	 (41.11) 

Example 41.1	 Consider the global Markov property associated with the SWIG 𝒢(a) in Fig
ure 41.2(b), corresponding to the FFRCISTG model shown in Figure 41.2(a). Since 

a is d-separated from Y(a) given M(a) in 𝒢(a), 

p(Y(a) = y|M(a) = m) = f (y, m).	 (41.12) 

Hence this distribution is not a function of a, even though M(a) and Y(a) are min
imally labeled, so M(a) ̸ M(a ′) and Y(a) = Y(a ′) for a ≠ a ′ . In addition, it is well= ̸
known that in the FFRCISTG model corresponding to Figure 41.2(a), 

p(Y(a) = y | M(a) = m) = ∑ p(y | m, a ′)p(a ′), 
a ′ 

A M Y
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A a M(a)
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Y(a)

Y(a)
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Figure 41.2	 (a) A hidden variable causal model. (b) A SWIG corresponding to an intervention that 
sets A to a in the causal model represented by (a). (c) A SWIG corresponding to an 
intervention that sets A to a and M to m. (d) A latent projection of the DAG in (a). (e) A 
latent projection of the SWIG in (b). (f) A latent projection of the SWIG in (b) onto an 
ancestral set of vertices A, M(a) and a. 
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which is not equal to p(y | m) under the given model. Hence, the function 

f (vY , vZ, aA⧵A ′ ) is not necessarily equal to the conditional distribution p(VY (aA⧵A ′ ) | 
VZ (aA⧵A ′ )). 

Since, by construction, all edges in 𝒢(V(a)) are directed out of aj, in the case where 

Z is the empty set, there is a d-connecting path between aj and Vi(a) if and only if 
aj is an ancestor of Vi(a) in 𝒢(V(a)); as noted earlier, this is automatically reflected 

with the minimal labeling of the vertices. 

In Equation (41.12) we see an example where p(Y(a) | M(a)) does not depend on 

a, even though Y(a) and M(a) are minimally labeled. One might wonder whether it 
is possible to have the converse situation whereby a conditional distribution does 
depend on a fixed vertex that is not present in any minimal label. The Proposition 

41.2 shows that this cannot arise: 

In a minimally labeled SWIG 𝒢(a), if a fixed vertex ai is d-connected to Vj(aan * ) given 
j

{Vk1 (aan * ), … , Vkp (aan * )} then either i ∈ anj 
* or i ∈ ank

* 
s 
for some s. 

k1 kp 

In other words, if a fixed vertex is d-connected by a path to a random vertex 
given some conditioning set, then the fixed vertex either appears in the minimal 
label for the other endpoint, or a vertex in the conditioning set. This follows since if 
there is a d-connecting path on which ai is an endpoint then, since ai only has chil
dren in 𝒢(a), the path is directed out of ai. The conclusion then follows since if the 

path contains no colliders then Vj(aan * ) is a descendant of ai; if the path contains a 
j 

collider then ai is an ancestor of that collider, which, by definition of d-connection 

is itself an ancestor of a vertex in Vks (aan * ). 
ks 

Factorization Associated with the SWIG Global Markov Property 
As noted earlier, the factorization [Equation (41.9)] corresponds solely to the 

induced subgraph of 𝒢(a) on the random vertices. We now derive the factoriza
tion corresponding to the SWIG global Markov property. Consider a single term in 

Equation (41.9): 

p(Vi(a) = vi | Vpai ⧵A(a) = vpai⧵A) 

= p(Vi(a, vpai⧵A) = vi | Vpai⧵A(a, vpai ⧵A) = vpai⧵A) 

= p(Vi(a, vpai⧵A) = vi) 

= p(Vi(apai ∩A, vpai⧵A) = vi) (41.13) 

= p(Vi(apai ∩A, vpai⧵A) = vi | Vpai∩A(apai∩A, vpai ⧵A) = apai∩A, 

Vpai ⧵A(apai ∩A, vpai⧵A) = vpai ⧵A) 

= p(Vi = vi | Vpai∩A = apai ∩A, Vpai ⧵A = vpai ⧵A). (41.14) 
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Proposition 41.3 

Here the first equality follows from consistency; the second follows from Equation 

(41.9) for 𝒢(a, vpai ⧵A). The third equality follows from causal irrelevance since if we 

intervene on all the parents of Vi then no other variables have a causal effect on Vi. 
The fourth line follows from Equation (41.9) for 𝒢(apai∩A, vpai ⧵A). The fifth line again 

follows from consistency. Thus, we have: 

Under the FFRCISTG models associated with a graph 𝒢, we have the following 

identification formula: 

K 

p(V(a) = v) = ∏ p(Vi(a) = vi | Vpai⧵A(a) = vpai ⧵A) (41.15) 
i=1 
K 

= ∏ p(vi | apai∩A, vpai ⧵A). (41.16) 
i=1 

Thus p(V(a)) is identified if all of the conditional distributions in Equation (41.16) 
are identified.20 

Now consider a DAG 𝒢*(V ∪ A*) containing disjoint sets of vertices V and A* , 
with the same set of edges as in 𝒢(a) under the natural correspondence: Vi ⇔ Vi(a) 
and A* ⇔ ai. Then Equation (41.16) corresponds syntactically to the (subset of) i 

terms in the DAG factorization for 𝒢* associated with the variables in V. This then 

establishes the SWIG global Markov property via results on conditional graphs 
[Richardson et al. 2017].21 

The modified factorization [Equation (41.16)] is known as the extended g-formula 

[Robins et al. 2004, Richardson and Robins 2013]. Like the original factorization 
22(41.4), Equation (41.16) has a term for every Vi ∈ V not merely for every Vi ∈ V⧵A. 

An alternative proof of the extended g-formula is given in Richardson and Robins 
[2013]. 

Proposition 41.4 follows directly from Equation (41.16) and is included here 

because a generalization of this result, Proposition 41.5 below, plays an important 
role in the identification of causal effects in DAGs with hidden variables. 

20. This may not hold in the absence of positivity; see Section 41.2.1 for further discussion. 

21. For the sole purpose of establishing the SWIG global Markov property, it is sufficient to show 

that p(Vi(a) = vi | Vpai⧵A(a) = vpai ⧵A) is not a function of the fixed nodes that are not in pai, that is 
aA⧵pai . This is established by Equation (41.13). Under the FFRCISTG, p(Vi(apai ∩A, vpai⧵A)) exists even 

if p(apai∩A, vpai ⧵A) = 0. 

22. This is because the extended g-formula includes the value a variable takes on just before it is 
intervened upon and set to a constant ai. 
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Proposition 41.4 If 𝒢 is a DAG with SWIG 𝒢(a) then for all ck ∈ k 

p(V(a, ck) = v) 

p (Vk(a) = vk V pa 𝒢(a) (a) = v pa 𝒢(a) ) 
||||= p (V−k(a) = v−k, Vk(a) = ck) × 

k k 
, 

p (Vk(a) = ck V pa 𝒢(a) (a) = v pa 𝒢(a) ) 
|||| k k 

where V−k ≡ {V1, … , Vk−1, Vk+1, … , VK }, provided the conditional probability in the 

denominator is positive. 

41.2.5 SWIG Representation of the Defining FFRCISTG Assumptions 
Consider the special case in which A = V ; in the resulting graph 𝒢(V(v)) every vari
able (in V) has been split and thus no pair of random variables are joined by an 

edge. The factorization [Equation (41.9)] then becomes: 

K K 
* p(V(v *) = v) = ∏ p (Vi(v *) = vi) = ∏ p (Vi(vpai ) = vi) , (41.17) 

i=1 i=1 

and thus for a fixed v * ∈ V the one-step-ahead counterfactuals V1(v * ), … , VK (v * )pa1 paK 

are independent. Note that Equation (41.17) holding for all v * ∈ V is equivalent to 

Equation (41.6) and thus defines the FFRCISTG model. 

41.3 The Potential Outcomes Calculus and Identification 
Pearl presented the three rules of do-calculus as an inference system for deriving 

identification results for causal inference problems. The do-calculus is stated as 
three identities involving (conditional) interventional distributions, with precon
ditions given by d-separation (or m-separation) statements on graphs derived from 

the causal diagram 𝒢(V). 
Here we reformulate and extend these three rules as a “potential outcomes 

calculus” or “po-calculus” for short. The rules are as follows: 

1: p(Y(x)|Z(x), W(x)) = p(Y(x)|W(x)) if (Y(x) ⊥⊥ Z(x)|W(x))𝒢(x), 

2: p(Y(x, z)|W(x, z)) = p(Y(x)|W(x), Z(x) = z) if (Y(x, z) ⊥⊥ Z(x, z)|W(x, z))𝒢(x,z), 

3: p(Y(x, z)) = p(Y(x)) if (Y(x, z) ⊥⊥ z)𝒢(x,z), 

where 𝒢(x) and 𝒢(x, z) are SWIGs describing interventions on X and X ∪ Z. The sets 
Z, Y, and W are assumed to be disjoint; X may overlap with the other sets, but if 
Z ∩ X ̸ = zX∩Z, so that the assignments are consistent.= ∅ then we require xX∩Z 
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Rule 1 can be viewed as the part of the SWIG global Markov property pertaining 

to random (rather than fixed) variables. 
Rule 2 can be viewed as a kind of generalized conditional ignorability rule 

which follows from Rule 1 and recursive substitution. Specifically, by recursive 

substitution or minimal labeling Z(x, z) = Z(x); further, 

p(Y(x, z) | W(x, z)) = p(Y(x, z) | W(x, z), Z(x) = z) 

= p(Y(x) | W(x), Z(x) = z) 

here the first equality follows by the given d-separation and Rule 1, while the sec
ond follows from consistency (or recursive substitution) since Y(x, z) = Y(x) and 

W(x, z) = W(x) given that Z(x) = z. 
Rule 3 expresses the property of causal irrelevance that interventions only affect 

descendants: Note that the Rule 3 condition (Y(x, z) ⊥⊥ z)𝒢(x,z) is, by definition, 
equivalent to the fixed vertex (or vertices) z not being an ancestor of any vertex in 

Y(x, z) in the SWIG 𝒢(x, z) where the vertices in X and Z have been split. 
Further, if a variable Y(x) appears in the SWIG 𝒢(x, z) (with minimal labeling), 

23then there is no directed path from any fixed vertex in z to Y(x), and Y(x) = Y(x, z). 
Thus the minimal labeling of the SWIG implicitly encodes all applications of Rule 

3, in the sense that if the (minimally labeled) vertex Y(x) is present in the SWIG 

then for any set Z, disjoint from X, p(Y(x)) = p(Y(x, z)). 
As we have shown here, the po-calculus directly follows from the SWIG global 

Markov property, which is implied by both the FFRCISTG model (and thus the 

NPSEM-IE), consistency, and causal irrelevance, where the latter two hold for any 
NPSEM. 

Rule 3, as stated here,24 simply states that interventions only affect descendants 
and thus is simpler than Rule 3 in the original formulation of the do-calculus. It 
is proved in Malinsky et al. [2019] that this reformulated Rule 3, in conjunction 

with the other two rules, is equivalent to Pearl’s do-calculus in the sense that the 

three rules stated here imply the original three rules. The rules stated here are 

more general in that we allow X to overlap with Y, Z, and W, which is not possible 

within the framework and notation of the original do-calculus. As a consequence, 
as we will show below, there are additional identification results that follow from 

the po-calculus, but not the do-calculus. However, if we restrict the po-calculus 

23. Thus under the counterfactual model, as defined by one-step-ahead counterfactuals, Vi(apai ) 
and recursive substitution (41.1), we have a stronger implication than Rule 3: if (Y(x, z) ⊥⊥ z)𝒢(x,z) 

then Y(x, z) = Y(x). Notwithstanding this, we formulate Rule 3 in terms of the equality of distri
butions because we wish these rules to be logically equivalent to the original do-calculus and also 

apply to weaker causal models; see Footnote 17 and Section 41.A.2. 

24. Rule 3 in this chapter is called Rule 3* by Malinsky et al. [2019]. 
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rules to the case where X does not overlap with Y , Z then they are equivalent to 

the do-calculus. 
It may also be noted that the po-calculus is formulated using a uniform type of 

graph, the SWIG, for displaying the preconditions for each rule.25 

Remark 41.2	 We note that there are other types of equality between distributions that do 

not correspond to a single application of the po-calculus rules. For instance, in 

Example 41.1 it follows that 

′ p(Y(a) | M(a)) = p(Y(a ′) | M(a ′)) for a, a ∈ A. (41.18) 

This holds even though Y(a) and M(a) depend on a and p(Y(a) | M(a)) ̸ p(Y | M).= 

This is a form of independence.26 Such constraints are captured by the full global 
Markov property for SWIGs: notice that a is d-separated from Y(a) given M(a) in 

the SWIG shown in Figure 41.2(b). However, the equality in (41.18) may be derived 

from three applications of the po-calculus (or the do-calculus) rules. 

41.4 Identification in Hidden Variable Causal Models 
If some variables in an NPSEM are unobserved, identification becomes more com
plicated, and some interventional distributions become non-identified. Identifica
tion theory in NPSEMs associated with 𝒢(V ∪ H), where H are hidden variables, is 
often described in terms of a special ADMG 𝒢(V) obtained from 𝒢(V ∪ H) via the 

latent projection operation [Verma and Pearl 1990]. Any two distinct hidden variable 

DAGs 𝒢1(V ∪ H1), 𝒢2(V ∪ H2) that share the latent projection 𝒢(V) = 𝒢1(V) = 𝒢2(V) 
also share all equality constraints on the observed marginal distribution [Evans, 
2018], as well as non-parametric identification theory, in the sense that effects are 

identified in 𝒢1 if and only if they are identified in 𝒢2, and by the same functional 
[Richardson et al. 2017]. 

In cases where p(V(a)) is identified, the functional is a kind of modified fac
torization associated with nested Markov models of ADMGs [Richardson et al. 
2017]. 

41.4.1 Latent Projection ADMGs 
Given a DAG 𝒢(V ∪ H), where V are observed and H are hidden variables, a latent 
projection 𝒢(V) is the following ADMG with a vertex set V. An edge A → B exists 
in 𝒢(V) if there exists a directed path from A to B in 𝒢(V ∪ H) with all intermediate 

25. Whereas the original do-calculus involves three different constructions: GX , GXZ , and GX(Z(W)). 

26. Formally we may think of P(Y(a) | M(a)) as forming a kernel q(y | m, a), which is a set of 
conditional distributions indexed by a. The constraint is then an independence in this kernel 
[Richardson et al. 2017]. 
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vertices in H. Similarly, an edge A ↔ B exists in 𝒢(V) if there exists a path without 
consecutive edges → ◦ ← from A to B with the first edge on the path of the form 

A ←, the last edge on the path of the form → B, and all intermediate vertices 
on the path in H. Latent projections of hidden variable DAGs may be viewed as 
graphical versions of marginal distributions, in the following sense. Just as condi
tional independences may be read off a DAG using d-separation, they may be read 

from an ADMG via the natural extension of d-separation to ADMGs, which is called 

m-separation [Richardson 2003]. 
If p(V ∪H) factorizes with respect to 𝒢(V ∪H), then for any disjoint subsets A, B, C 

of V, if A is m-separated from B given C, then A is independent of B conditionally on 

C in the marginal distribution p(V). Since latent projections define an infinite class 
of hidden variable DAGs that share identification theory, identification algorithms 
are typically defined directly on latent projections for simplicity. 

Given A ⊆ V in a hidden variable DAG 𝒢(V ∪ H), we can construct the latent 
projection of the SWIG 𝒢(V(a) ∪ H(a)) directly from the ADMG 𝒢(V), we denote 

the resulting ADMG (with fixed nodes) by 𝒢(V(a)). We can extend d-separation 

on SWIGs constructed from DAGs to m-separation on SWIGs constructed from 

ADMGs, and define the SWIG global Markov property on SWIG ADMGs analo
gously to the SWIG global Markov property on SWIG DAGs. Similarly, we can restate 

po-calculus rules using m-separation on SWIG ADMGs. 
As an example, the latent projection of the hidden variable DAG in Figure 41.2(a) 

is shown in Figure 41.2(d), while the latent projection of the SWIG in Figure 41.2(b) 
is shown in Figure 41.2(e). 

All vertex relations defined in (41.3) translate without change to any SWIG 

𝒢(V(a)), except by convention dis𝒢(V(a)), mb𝒢(V(a)), and pre𝒢(V(a)) may only contain i i i 

random vertices, in other words, they are subsets of V(a). 
We will describe a complete identification algorithm in hidden variable DAG 

models for all distributions of the form p(Y(a)), where Y may potentially intersect 
A. The original formulation of the problem in Tian and Pearl [2002], Shpitser and 

Pearl [2006a], and Richardson et al. [2017] assumed Y ∩ A = ∅, and yielded the ID 

algorithm. 
We call our version of the algorithm the extended ID algorithm, by analogy with 

the extended g-formula [Equation (41.16)]. The extended ID algorithm will be formu
lated using SWIGs defined on latent projection ADMGs of the underlying hidden 

variable DAG. The algorithm will take advantage of the fact that under certain 

assumptions given by the causal model, a single splitting operation that defines a 

counterfactual distribution in a SWIG can be phrased in terms of the observed data 

distribution. This insight can be applied inductively to obtain results of multiple 

splitting operations as functionals of the observed data distribution. 
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Proposition 41.5 
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The extended ID algorithm expresses the functional for p(Y(a)) as a counter-
factual factorization in a certain SWIG ADMG, where terms of the factorization 

correspond to districts in the SWIG. It then aims to identify each term by finding a 

sequence of splitting operations, possibly interleaved with marginalization opera
tions. Perhaps surprisingly, this always suffices to obtain identification whenever 
identification is possible. 

The Identified Splitting Operation in a SWIG 
A general identification algorithm for interventional distributions in hidden vari
able DAG models involves, as an essential step, expressing the counterfactual dis
tribution p(V(a, ck)) as a function of another counterfactual distribution p(V(a)), 
where one fewer variable (Vk) has been intervened on, using restrictions in 𝒢(V(a)). 
Specifically, we have the following generalization of Proposition 41.4: 

Given an ADMG 𝒢(V) with SWIG 𝒢(V(a)), if Vk(a) is not split, so k ∉ A, and Vk(a) is 
such that there is no other random vertex that is both a descendant of Vk(a) and in 

the same district as Vk(a) then for all ck ∈ k: 

p(V(a, ck) = v) 

p (Vk(a) = vk Vmb𝒢(V(a)) (a) = v mb𝒢(V(a)) 
|||| k k )

= p (V−k(a) = v−k, Vk(a) = ck) × , 
p (Vk(a) = ck V mb𝒢(V(a)) (a) = vmb𝒢(V(a)) 

|||| k k ) 

where V−k ≡ {V1, … , Vk−1, Vk+1, … , VK }, provided the conditional probability in the 

denominator is positive. 

In other words, this proposition states that if Vk(a) satisfies the graphical condi
tion in 𝒢(V(a)) then p(V(a, ck)), the joint distribution over all variables (including 

A and Vk) resulting from intervening to set A to a and Vk to ck, may be obtained 

from p(V(a)) by evaluating at Vk(a) = ck and multiplying by a ratio of conditional 
densities for Vk(a). 

The graphical condition may be interpreted as requiring that in the world where 

we have already intervened on A, there is no sequence of variables between Vk 

and any of its causal descendants such that there is an unmeasured confounder 
between each pair. 

There exist counterfactual distributions which are identified, but where the 

above proposition does not directly apply to the observed data distribution. For 
example, in the graph in Figure 41.3(a), p(Y1(a)) = p(Y1|a), and p(Y2(a)) = p(Y2). 
Nevertheless, the preconditions to applying Proposition 41.5 do not apply to 

the original graph, meaning that the distribution represented by the SWIG in 
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Figure 41.3 (a) A graph where p(Y1(a)) and p(Y2(a)) are identified, but Proposition 41.5 may not be 
applied. (b) A SWIG showing a splitting operation that is not identified according to 
Proposition 41.5. 

Figure 41.3(b) is not equal to the functional of the observed data distribution 

described in the proposition. In fact, the joint distribution associated with this 
SWIG is not identified at all, as was shown in Tian and Pearl [2002]. Neverthe
less, identification of p(Y2(a)) and p(Y1(a)) may be obtained by the identification 

algorithm we describe below. 
In the next section, we will apply the proposition iteratively, in conjunction with 

marginalization steps, in order to obtain a complete algorithm for identifying a 

margin p(Y(a)). 

Proof. Fix an ordering ≺ ′ on vertex indices such that ≺ ′ is topological in 𝒢(V(a)) 
and such that no element in the district of Vk(a) occurs later in the ordering than 

Vk(a). Such a topological ordering exists because, by hypothesis, no vertex in the 
′ district of Vk(a) is a descendant of Vk(a). For any index j, define pre j to be the set of 

predecessor indices according to ≺ ′ . 

p(V(a, ck) = v) 

= ∏ p(Vi(a, ck) = vi | Vpre ′ (a, ck) = vpre ′ ) × p(Vk(a, ck) = vk | V pre ′ (a, ck) = vpre ′ )i i k k
′ i∈prek 

× ∏ p(Vj(a, ck) = vj | Vpre ′ (a, ck) = vpre ′ ) 
′ j∉{k}∪pre 

j j 

k 

= ∏ p(Vi(a) = vi | Vpre ′ (a) = vpre ′ ) × p(Vk(a) = vk | Vpre ′ (a) = vpre ′ )i i k k
′ i∈prek 

× ∏ p(Vj(a, ck) = vj | Vpre ′ (a, ck) = vpre ′ ) 
′ j∉{k}∪pre 

j j 

k 

= ∏ p(Vi(a) = vi | Vpre ′ (a) = vpre ′ ) × p(Vk(a) = vk | Vpre ′ (a) = vpre ′ )i i k k
′ i∈prek 

× ∏ p(Vj(a) = vj | Vpre ′⧵{k}(a) = vpre ′ , Vk(a) = ck) 
′ j∉{k}∪pre 

j j 

k 

= ∏ p(Vi(a) = vi | Vpre ′ (a) = vpre ′ ) × p(Vk(a) = ck | Vpre ′ (a) = vpre ′ )i i k k
′ i∈prek 

× ∏ p(Vj(a) = vj | Vpre ′⧵{k}(a) = vpre ′ , Vk(a) = ck) 
′ j∉{k}∪pre 

j j 

k 

× p(Vk(a) = vk | Vpre ′ (a) = vpre ′ )/p(Vk(a) = ck | Vpre ′ (a) = vpre ′ )k k k k 



41.4.3
 

41.4 Identification in Hidden Variable Causal Models 839 

= p (V−k(a) = v−k, Vk(a) = ck) 

× p(Vk(a) = vk | Vpre ′ (a) = vpre ′ )/p(Vk(a) = ck | Vpre ′ (a) = vpre ′ )k k k k 

p (Vk(a) = vk Vmb𝒢(V(a)) (a) = vmb𝒢(V(a)) 
|||| k k )

= p (V−k(a) = v−k, Vk(a) = ck) . 
p (Vk(a) = ck Vmb𝒢(V(a)) (a) = vmb𝒢(V(a)) 

|||| k k ) 

Here the first identity is via the chain rule of probability applied to p(V(a, ck)) using 

the ordering ≺ ′ , the second by Rule 3 (causal irrelevance) applied to elements 
′ indexed by {k} ∪ prek in 𝒢(V(a, ck)), the third by Rule 2 (generalized ignorability) 

applied to every term in the second product in 𝒢(V(a, ck)), and the assumption on 

≺ ′ that all elements of dis𝒢(V(a)) are in Vpre ′ (a), the fourth by multiplying and dividk k 

ing by p(Vk(a) = ck|Vpre ′ (a) = vpre ′ ), the fifth by the chain rule, the sixth by Rule 1 
k k 

(m-separation) applied to 𝒢(V(a)) and the definition of mb𝒢(V(a)). ■k 

The Extended ID Algorithm 
There are SWIGs 𝒢(V(a)) for which, for some variable Vk(a) we are not able to apply 
Proposition 41.5, but where it may be applied to a SWIG 𝒢(Y(a)), where Y(a) is an 

ancestral subset of V(a) in 𝒢(V(a)). Here a set Y of vertices in a (SWIG) ADMG 𝒢* is 
said to be ancestral if Vi ∈ Y implies an𝒢* ⊆ Y .i 

Marginal distributions p(Y(a)) obtained from p(V(a)) that correspond to ances
tral sets in 𝒢(V(a)) have the nice property that a latent projection 𝒢(Y(a)) is always 
equal to an induced subgraph (𝒢(V(a)))Y(a) of a SWIG 𝒢(V(a)), with 𝒢(Y(a)) having 

strictly fewer vertices and edges than 𝒢(V(a)) if Y(a) ⊂ V(a). For example, given 

the SWIG in Figure 41.2(e), the latent projection onto the ancestral subset A, M(a) 
and a yields the SWIG shown in Figure 41.2(f). We describe the precise way in 

which splitting and ancestral margin operations are used to obtain identification 

below. 
Specifically, complete non-parametric identification for intervention distribu

tions associated with the FFRCISTG model may be obtained from: (i) the dis
trict factorization in the appropriate SWIG, (ii) the identified splitting operation 

described in the previous section, and (iii) marginalization steps that lead to 

marginal distributions corresponding to ancestral sets of vertices in SWIGs. All 
of these steps may be justified via the po-calculus. 

For any (possibly intersecting) subsets Y , A of V in a latent projection 𝒢(V) rep
resenting a causal DAG 𝒢(V ∪ H), define Y*(a) to be the random ancestors of Y(a) 
in 𝒢(V(a)). Clearly, if p(Y*(a)) is identified, then we may recover p(Y(a)) since: 

P(Y(a) = y) = ∑ p(VY (a) = y, VY*⧵Y (a) = u). (41.19) 
u∈ Y*⧵Y 
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Though less obvious, extensions of results in Shpitser and Pearl [2006a] imply that 
the converse also holds, so that if p(Y(a)) is identified (for all parameter values) 
then p(Y*(a)) is identified. Consequently, in the foregoing we will assume that Y(a) 
is an ancestral set of (random) vertices in 𝒢(V(a)). 

If p(Y(a)) is identified, then this may be obtained by breaking this joint distri
bution into districts in 𝒢(Y(a)). For each such district D(a), define the set of strict 

𝒢(Y(a)) 𝒢(Y(a))(random) parents as pasD(a) ≡ paD(a) ⧵(D(a) ∪ a). 
First, we show that p(Y(a) = y) can be factorized into a set of terms of the form 

p(D(a, v 𝒢(Y(a)) )), as follows. pasD(a) 

p(Y(a) = vY ) 

= ∏ p (Vi(a) = vi || VY∩prei (a) = vY∩prei ) (41.20) 
i∈Y 

= ∏ ∏ p (Vi(a) = vi || VY∩prei (a) = vY∩prei ) 
D∈𝒟(𝒢(Y(a))) i∈D 

= ∏ ∏ p(Vi(a, v 𝒢(Y(a)) ) = vi | VD∩prei (a, v 𝒢(Y(a)) ) = vD∩prei ) (41.21)pas pasD D
D∈𝒟(𝒢(Y(a))) i∈D 

= ∏ p (VD(a, v 𝒢(Y(a)) ) = vD) . D
D∈𝒟(𝒢(Y(a))) 

pas 

Here the first two lines follow by the chain rule of probability, term grouping, and 

the fact that in any ADMG, including a SWIG ADMG, the set of districts partitions 
the set of random vertices. The third equality follows because of the following: 

p (Vi(a) = vi|VY∩prei (a) = vY∩prei ) 

= p (Vi(a) = vi || Vmb𝒢(Y(a))∩prei 
(a) = vmb𝒢(Y(a))∩prei ) . (41.22)

i i 

= p (Vi(a) = vi || VD∩prei (a) = vD∩prei , 

V 𝒢(Y(a)) (a) = v 𝒢(Y(a))pas ∩prei pas ∩prei )D D 

= p (Vi(a, bi) | VD∩prei (a, bi) = vD∩prei ) 

= p (Vi(a, v 𝒢(Y(a)) ) || VD∩prei (a, v 𝒢(Y (a)) ) = vD∩prei ) (41.23)pas pasD D 

where bi = v 𝒢(Y (a)) , and D = dis𝒢(Y(a)). Here the first equality follows from pas ∩prei iD 

Rule 1;27 the second follows from the definition of the Markov blanket of Vi(a) in 

𝒢(Y(a)); the third follows from Rule 2 since Vi(a, bi) is m-separated from Bi(a, bi) ≡ 

27. Note that the Markov blanket of i in the subgraph of 𝒢(Y(a)) restricted to predecessors of i is, in 

general, a strict subset of the predecessors of i in the Markov blanket of i in 𝒢(Y(a)). Consequently, 
the conditioning set in the terms of (41.22) may not be minimal. 
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V 𝒢(Y(a)) (a, bi) in 𝒢(a, bi); the fourth is an application of Rule 3 since vertices in pas ∩preiD 

V 𝒢(Y(a)) are ordered after Vi and hence are not ancestors of Vi in 𝒢, and thus pas ⧵preiD 

also in 𝒢(a, bi). 
Next, we consider whether each term of the form p(VD(a, v 𝒢(Y(a)) )) is identified pasD 

from p(V) by inductively applying the identified splitting operation in Proposi
tion 41.5 to every element Vj in A ∪ (V⧵D) in a sequence such that the precondition 

of Proposition 41.5 is satisfied at every step, and marginalizing Vj(a) at every step 

whenever Vj ∉ D. (Hence Vj will be split unless Vj ∈ D ⧵ A.) p(Y(a)) is identified if for 
every district D ∈ 𝒟(𝒢(Y(a))), the corresponding term p(VD(a, v 𝒢(Y(a)) )) is identified pasD 

in this way. In fact, the above method of identification is sufficient and necessary 
for identification of p(Y(a)). See the Appendix for details. 

For the special case where Y ∩ A = ∅, the resulting identified functionals were 

first described as an algorithm in Tian and Pearl [2002], and proven to be complete 

in Huang and Valtorta [2006] and Shpitser and Pearl [2006a]. In both versions of 
the algorithm, the identifiable terms corresponding to districts D(a) in 𝒢(Y(a)) form 

parts of the nested Markov factorization of an ADMG, and the algorithm may thus be 

viewed as giving a modified nested factorization of an ADMG, just as the extended 

g-formula is a modified DAG factorization. For more details, see Richardson et al. 
[2017]. 

41.4.4 Identification of Conditional Interventional Distributions 
Targets of inference in causal inference are often functions of conditional counter-
factual distributions p(Y (a) | Z(a)) rather than marginal distributions p(Y(a)). Such 

targets arise, for instance, when effects within certain subgroups are of interest, 
or when investigating relationships between primary and secondary outcomes. A 

straightforward modification of the above algorithm yields identification in such 

settings. 
Fix Y , Z, A where Y , Z are disjoint, but may both intersect A. Fix the largest 

subset W ⊆ Z, with Z ′ = Z⧵W , such that Z ′(a, z ′) is m-separated from 

Y(a, z ′) given W(a, z ′) in 𝒢(V(a, z ′)). Then, by Rule 2, p(Y(a) | W(a), Z ′(a) = 

z ′) = p(Y(a, z ′)|W(a, z ′)). Next, let A ′ be a maximal subset of Z ∩ A such 

that A ′(a, z ′) ⊥⊥ Y(a, z ′) | {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}. Then p(Y(a) | Z(a)) is identified if 

A M

Y

Figure 41.4 A simple DAG containing a treatment A, an intermediate M, and a response Y. 
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p(Y(a, z ′), {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) is identified. In fact, we have: 

p(Y(a, z ′), {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)})
p(Y(a) | Z(a)) = . 

p({W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) 
||||Z⧵A ′ =zZ⧵A ′ 

As we show in the Appendix, this condition is also necessary since if 
p(Y(a, z ′), {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) is not identified, p(Y(a)|Z(a)) is also not 
identified. 

41.4.5 Representing Context-specific Independence using SWIGs 
We now discuss an extension of SWIGs due to Dahabreh et al. [2019] and Sarvet et al. 
[2020] who demonstrate that SWIGs have greater expressive power than standard 

causal DAGs because of their ability to represent interventional context-specific 
conditional independence. 

Consider the causal DAG shown in Figure 41.5(a) where A, M, and Y are observed 

and U, R, and S are unobserved. The latent projection is given in Figure 41.5(a*). 
The SWIG resulting from a joint intervention setting A to a and M to m is shown 

in Figure 41.5(b); the latent projection of this SWIG is shown in Figure 41.5(b*). 
The distribution of Y(a, m) is not identified owing to the presence of the edges 
M → Y ↔ M (also called a bow arc). 

However, suppose that additional context-specific subject matter knowledge28 

implies that the following counterfactual independences hold: 

U ⊥⊥ R(a = 0, m); U ⊥⊥ M(a = 1). 

As a consequence, the edges U → R(0, m) in 𝒢(0, m) and U → M(1) in 𝒢(1, m) may be 

removed, leading to the SWIGs shown in Figure 41.5(c) and (d), with corresponding 

latent projections shown in Figure 41.5(c*) and (d*). 
Applying d-separation to the latent projections in Figure 41.5(c*) and (d*), we 

see that29 

Y(a, m) ⊥⊥ M(a), A for a = 0, 1. (41.24) 

Consequently, 

P(Y | A = a, M = m) = P(Y(a, m)), (41.25) 

so that the joint effect of A and M on Y is identified for both a = 0 and a = 1. 

28. See the ivermectin study described in the companion paper Robins et al. [2021], Chapter 38 in 

this volume. 

29. Recall that when testing d-separation in SWIGs, fixed nodes such as a = 0 in Figure 41.5(c*) 
and a = 1 in Figure 41.5(d*) always block paths on which they occur as non-endpoint vertices. 
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S(a)

M(a) m

U R(a, m)

Y(a, m)

(b)

A a

M(a) m Y(a, m)

(b*)

A a = 0

M(0) m

S(0)U R(0, m)

Y(0, m)

(c)

A a = 0

M ( 0 ) mM(0) m Y(0, m)
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A a = 1

S(1)

M(1) m

U R ( 1 , m )

Y(1, m)

(d)

A a = 1

M(1) m Y(1, m)

(d*)

Figure 41.5	 (a) A DAG 𝒢 representing two studies of river blindness, described in Section 38.2.1 
in Chapter 38 in this volume. (b) The SWIG 𝒢(a, m) resulting from 𝒢; (c) and (d) show 
SWIGs 𝒢(a = 0, m) and 𝒢(a = 1, m) that incorporate additional context specific causal 
information. (a*), (b*), (c*), (d*) show the corresponding latent projections. 

Given solely the DAG in Figure 41.5(a), with the latent projection in Figure 

41.5(a*), the equality (41.25) would not be expected since it does not follow from 

existing methods such as the do-calculus, the ID algorithm, or the back-door cri
terion [Pearl 2009], though see the recent work by Tikka et al. [2019]. However, 



844 Chapter 41 Multivariate Counterfactual Systems and Causal Graphical Models 

A

X

Z

Y

(a)

A

X

Z

Y

U
A

U
X

U
Z

U
Y

A(z)

X(z)

z

Y(z)

(b)

A

X

Z

z
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Figure 41.6	 (a) A DAG 𝒢. (b) The twin network arising from intervening to set Z to z. (c) The SWIG 
𝒢(z). 

Equation (41.25) has a structural explanation in terms of the SWIGs corresponding 

to different treatment values of A. 
In particular, the context-specific SWIG independences U ⊥⊥ R(0, m) | A, M(0) 

and U ⊥⊥ M(1)|A, coupled with consistency, imply, respectively, the context-specific 
independences U ⊥⊥ R|A = 0 and U ⊥⊥ M|A = 1 on the factual distribution. These 

independences cannot be read off from the standard causal DAG shown in Figure 

41.5(a). This is because the absence of the U → M edge when A is set to 1 and the 

U → Y path when A is set to 0 are not represented in this DAG. 
Since, in addition to Equation (41.24), we also have M(a) ⊥⊥ A for a = 0, 1, it 

follows that the distribution of the counterfactuals {A, M(a), Y(a, m) for all a, m} 

obeys the FFRCISTG model associated with the graph shown in Figure 41.4 in which 

there are no bidirected edges. However, interestingly, the distribution of these 

counterfactuals does not obey the NPSEM-IE associated with Figure 41.4, though 

the distribution does obey the NPSEM-IE (hence also the FFRCISTG) associated 

with Figure 41.5(a*).30 

41.5 Conclusion 
We wholeheartedly applaud Judea Pearl for his development and advocacy of 
graphical approaches to causal modeling. His approach represents a fundamen
tal advance leading to many new insights and methods, including complete 

30. See Section 38.2.6 in chapter 38 of this volume. 
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identification theory for causal queries of all types, and extensions of d-separation 

to complex questions in causal modeling and missing data. 
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41.A Appendix 

41.A.1	 Incompleteness of d-Separation in Twin Networks due to Deterministic 
Relations 
Twin networks [Balke and Pearl 1994] are an alternative way to combine graphs 
and counterfactuals that allow some of the counterfactual independence relations 
implied by the NPSEM-IE to be read off via d-separation; see also Shpitser and Pearl 
[2008] and Pearl [2009, Section 7.1.4]. However, d-separation is not complete for 
twin networks [Richardson and Robins 2013] since, as a consequence of consis
tency, certain variables in a twin network may be deterministically related. Conse
quently, it is possible for there to be a d-connecting path in a twin network and 

yet the corresponding conditional independence holds for all distributions in the 

model. 
To see a simple example, consider the DAG shown in Figure 41.6(a), with the 

twin network and SWIG associated with intervening to set Z to z, shown in Fig
ure 41.6(b) and (c), respectively. Note that A and Y(z) are d-connected given X in 

the twin network by two different d-connecting paths.31 However, in spite of this 
A ⊥⊥ Y(z) | X under the associated NPSEM-IE because X(z) = X, and A and Y(z) are 

d-separated given X(z) in the twin network. The SWIG 𝒢(z) shown in Figure 41.6(c) 
makes manifest that A is d-separated from Y(z) given X, hence A ⊥⊥ Y(z) | X under 
the FFRCISTG, hence also under the NPSEM-IE. 

In addition, it may also be inferred from the SWIG that A(z) ⊥⊥ Y(z) | X, 
A ⊥⊥ Y(z)|X(z), and A(z) ⊥⊥ Y(z)|X(z) hold under the FFRCISTG (and hence also the 

NPSEM-IE). This is because it follows from causal irrelevance that, given a SWIG 

31. Precisely: A ← UA → A(z) → X(z) → Y(z) and A → X ← UX → X(z) → Y(z). 
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𝒢(a), if a label ai is present on some random node (equivalently if the SWIG con
tains a fixed node ai), then ai may always be added to the label of any random 

node on which it is not already present. Consequently, we are free to add z to the 

label for X and A in 𝒢(z), from which these independences follow. Note that in the 

twin network, although A and A(z) are d-separated from Y(z) given X(z), the path 

A(z) → X(z) → Y(z) d-connects A(z) and Y(z) given X, hence we cannot read off 
A(z) ⊥⊥ Y(z)|X from the twin network. 

Shpitser and Pearl [2008] provide an algorithm for merging nodes in a twin 

network, under a particular instantiation of the variables. This algorithm is con
jectured to be complete for checking equality of the probability of counterfactual 
events. A conditional independence statement corresponds to a (potentially expo
nential) set of equalities between probabilities of events. Thus, if the conjecture 

holds, then the algorithm of Shpitser and Pearl [2008] provides a way to check 

counterfactual conditional independence implied by an NPSEM-IE. Though this 
approach is more involved, as noted earlier in Footnote 6, it addresses a harder 
problem than SWIGs since it is determining all independencies implied by an 

NPSEM-IE model that also includes “cross-world” independencies. 

41.A.2 Weaker Causal Models to Which the po-Calculus Also Applies 
In Section 41.3, we chose to express Rule 3 of the po-calculus on the distribu
tion level: p(Y(x, z)) = p(Y(x)), although the equality holds on the individual level: 
Y(x, z) = Y(x) under the FFRCISTG, see also Footnotes 18 and 23. We chose to do so 

for several reasons. First, this form is closer in spirit to Pearl’s original formulation 

of the do-calculus. 
Second, the weaker equality is expressible in the language of interventions, say 

via the do operator: p(Y |do(x, z)) = p(Y |do(x)). This allows us to apply this rule and 

other rules of po-calculus to causal models that are not counterfactual, but which 

allow discussion of interventional distributions, such as the agnostic causal model 
of Spirtes et al. 2001, which is defined by the relationship between the observed 

data distribution and interventional distributions given by the extended g-formula 

[Equation (41.16)] re-expressed via the do operator. Indeed, the FFRCISTG and the 

NPSEM-IE imply all distribution-level interventional statements that hold under 
the agnostic causal model, and these are the only statements that are relevant 
for the purposes of identification of interventional quantities expressible by the 

do operator. Note that the distribution-level equality has a graphical representa
tion via population SWIGs in which missing edges correspond to the absence of 
population-level direct effects, whereas the individual-level counterfactuals are not 
necessarily the same. See also Section 7 of Richardson and Robins [2013]. 
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Completeness Proofs 
Here we describe a number of completeness results referred to in the main body 
of the chapter. Before doing so, we state necessary preliminaries. Given an acyclic 
directed mixed graph (ADMG) 𝒢(V) and a set S ⊆ V , an induced subgraph 𝒢(V)S is 
defined to be a graph containing vertices S, and all edges in 𝒢(V) between elements 
in S. 

Given an ADMG 𝒢(V), we define a set W ⊆ V to be fixable if W = 

∅, or W = {W1, W2, …} and there exists a set of ADMGs 𝒢0(V), 𝒢1(V⧵{W1}), 
𝒢2(V⧵{W1, W2}), … , 𝒢k(V⧵W), such that 

∙	 𝒢0(V) = 𝒢(V). 

∙	 For every i = 0, … , k − 1, Wi+1 has no element Vj ∈ V⧵{W1, … , Wi, Wi+1} with a 

directed path from Wi+1 to Vj and a path consisting exclusively of bidirected 

edges from Wi+1 to Vj in 𝒢i. 

∙	 For every i = 1, … , k, 𝒢i(V⧵{W1, … , Wi}) is obtained from 𝒢i−1(V⧵{W1, … , Wi−1}) 
by removing Wi and all edges adjacent to Wi. 

If W ⊆ V is fixable, the set S ≡ V⧵W is said to be reachable. A set S reachable in 𝒢(V) 
is said to be intrinsic if the vertices in 𝒢(V)S form a bidirected connected set. Note 

the relationship between reachable sets and the precondition for Proposition 41.5. 
We have the following result. 

Fix possibly intersecting sets Y , A such that Y(a) is ancestral in the SWIG 𝒢(V(a)). 
Then 

p(Y(a) = vY ) = ∏ p (VD(a, v 𝒢(Y(a)) ) = vD) ,D
D∈𝒟(𝒢(Y(a))) 

pas 

and p(Y(a)) is not identified if there exists D ∈ 𝒟(𝒢(Y(a))) such that no induc
tive sequence of applications of Proposition 41.5 exists where every element Vj ∈ 

A ∪ (V ⧵ D) is split such that the precondition of Proposition 41.5 is satisfied at every 
step, and Vj(a) is marginalized from the resulting SWIG whenever Vj ̸∈ D. 

Proof. Assume such a set D exists. Assume D is not a reachable set in 𝒢(V). Then 

the results in Richardson et al. [2017] imply that there exists a hedge for p(Y(a)) and 

that p(Y(a)) is not identified [Shpitser and Pearl 2006a]. 
Assume D is a reachable set, but some element Ai ∈ D cannot be split by 

applying Proposition 41.5. This implies there exists a set of vertices W1, … , Wk in 

D that are bidirected connected, and Wk is a child of Ai in 𝒢(V). Since W1, … , Wk, 
being elements of D, are in the set of ancestors of Y in 𝒢(V(a)), the sets {Ai}, and 

{Ai, W1, … , Wk} form a hedge for p(Y(a)), so p(Y(a)) is not identifiable. ■ 



848 Chapter 41 Multivariate Counterfactual Systems and Causal Graphical Models 

Theorem 41.2	 Fix subsets Y , Z, A of V, in some ADMG 𝒢(V), where Y , Z are disjoint, but may both 

intersect A. Fix the largest subset W ⊆ Z, with Z ′ = Z⧵W , such that Z ′(a, z ′) is m-
separated from Y(a, z ′) given W(a, z ′) in 𝒢(V(a, z ′)), and let A ′ be a maximal subset of 
Z∩A such that A ′(a, z ′) is m-separated from Y(a, z ′) given {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}. 
Then p(Y(a)|Z(a)) is identified if p(Y(a, z ′), {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) is identified. 
If identification holds, we have: 

p(Y(a, z ′), {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)})
p(Y(a) | Z(a)) =	 . 

p({W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) 
||||Z⧵A ′ =zZ⧵A ′ 

Proof. If the stated assumptions hold, and p(Y(a, z ′), {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) is 
identified, the conclusion follows by definition of conditioning. 

Assume p(Y(a, z ′), {W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) is not identified. It suffices to con
sider the case where p({W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) is not identified. The proof then 

follows the proof structure for analogous results in Shpitser and Pearl [2006b] and 

Malinsky et al. [2019], with the fact that A ∩ Y is potentially not an empty set not 
influencing the structure of the proof. 

Non-identification of p({W(a, z ′): W ∈ Z⧵(Z ′ ∪ A ′)}) implies the existence of 
a hedge, and the preconditions of the theorem imply the existence of an 

m-connecting (given W) path from an element in W in the hedge to some element 
in Y. Non-identification is established by induction on the structure of this path. 
Specifically, fix an element L on the path such that the inductive hypothesis that 
p(L(a, z ′) | W ′(a, z ′)) is not identified holds, where W ′ is the subset of W involved 

in the hedge, or in the m-connecting path from the hedge to L. Thus, there exist 
two elements of the causal model that disagree on this distribution, but agree 

on the observed data distribution. The induction then establishes that the dis-
W ′′(a, ztribution p(L ′(a, z ′) | ′)), where L ′ is the next element on the m-connecting 

path, and W ′′ are all elements of W that are either in the hedge, or witness 
m-connection of the path from the hedge to L ′ , is also not identified. This is estab
lished by extending the existing two elements with an appropriate distribution that 
yields a one-to-one mapping from distributions p(L(a, z ′) | W ′(a, z ′)) to distributions 
p(L ′(a, z ′) W ′′(a, z| ′)).	 ■ 
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causal and counterfactual inferences. This chapter summarizes some of what is 
known about whether people obey these prescriptions when making inferences. 
CBNs do model some aspects of human reasoning well, but fall short in certain 

respects: Physical causal reasoning takes advantage of mental simulations not cap
tured by CBNs. There is evidence that people are sensitive to a causal Markov 
condition, but it requires assuming that people make up their own causal struc
ture to some extent. People do tend to explain away as the CBN formalism pre
scribes, but often insufficiently. Much of human reasoning appears qualitatively 
but not quantitatively similar to CBN reasoning. CBNs capture how people rea
son about action, but counterfactual inference presents a much bigger problem. 
Further developments are also necessary to capture the fact that human knowl
edge is distributed; it resides across a community of knowledge. This raises deep 

and difficult questions about mental representation. 

One of Judea Pearl’s great achievements was to win cognitive science’s most presti
gious award, the Rumelhart Prize, in 2010, for computational contributions to the 

study of the mind. Pearl has been making a convincing case that people think in 

terms of causal relations from the time that he began his work on causal models 
(and before, see Pearl [1988]). His argument is essentially that core assumptions of 
CBNs1 are inference schema that people find highly intuitive. The Markov property, 

Causal Bayes Nets as
 
Psychological Theory
 
Steven A. Sloman (Brown University) 

Abstract 
Causal Bayes nets (CBNs) have offered deep and lasting insights about how to make 

1. I use the term CBN to describe a framework for reasoning about both interventions and counter
factuals. Pearl [2000] distinguishes between the two, reserving the term “CBN” for interventions 
and “Causal Diagrams” to represent counterfactuals. 
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for instance, describes an inference that people make naturally, at least when they 
are reasoning about causal chains. It seems obvious that A and C are rendered inde
pendent if the only variables that connect them are held constant. And who could 

doubt explaining away? Clearly, learning that one explanation for an effect is true 

makes other explanations less likely for they are unnecessary. Moreover, everybody 
recognizes the difference between intervention and observation. Observing that 
the ground is wet suggests different precursors than making the ground wet your
self. And the fact that the basic elements of the causal modeling framework seem 

so intuitive make their product—causal models—seem equally good descriptors of 
human causal reasoning. 

So what do CBNs really have to do with the mind? Is human knowledge—at 
least, human causal knowledge—structured like a CBN? I will address this ques
tion in three parts. First, are people as sensitive to causality as Pearl suggests? Do 

people structure events around causal relations? Second, I will offer a brief history 
of tests of CBNs as psychological theory. Do the core assumptions of CBNs match 

human intuition? Finally, I will address the question from a broader perspective. Is 
the psychological evidence consistent with the view that people walk around with 

CBNs that represent the causal structure of the world in their brains? 

42.1 The Human Conception of Causality 
Philosophers have offered a variety of interpretations of what it means for A to 

cause B. One, celebrated by philosophers like Woodward [2003] is that A causes B if 
and only if a sufficiently strong intervention on A would affect B. From a psycholog
ical perspective, it is self-evident that this hypothesis offers a sufficient definition 

of causality. However, it is not necessary. There are other conceptions of causality 
that do not depend on intervention. For instance, young infants perceive launch
ing events (like one billiard ball hitting another) causally even though no agent is 
in any obvious way intervening on the cause [Bechlivanidis et al. 2019]. More gener
ally, events that involve forces in either a literal or metaphorical sense (like a road 

sign forcing a driver to turn) are perceived causally in the absence of an intervening 

agent [Wolff 2007]. The perception of appropriate temporal relations among events 
induce a causal interpretation. If A happens and then B does followed by C, people 

will perceive a causal chain A B C as long as the temporal delays are consistent 
with whatever causal mechanism is likely to relate the variables [Buehner and May 
2002, Lagnado and Sloman 2006]. So, intervention is a strong cue for causality, but 
there are others. 

If intervention is not necessary for people to conceive of a causal link, is correla
tion sufficient? On the one hand, there is no question that people can misinterpret 
correlations as causal. It is true that coffee consumption is correlated with reduced 
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mortality [Loftfield et al. 2018], but nobody has shown a causal relation. Neverthe
less, the causal interpretation is compelling because of the ease of imagining a 

mechanism relating cause and effect. People are willing to assume causation when 

they think they can generate a story about why the cause would lead to the effect 
[Heider and Simmel 1944]. On the other hand, people seem to be largely unable to 

infer causal structure from merely correlational data (without helpful temporal or 
spatial information or prior knowledge). Simply showing people mounds of data 

displaying correlations and conditional correlations does not induce an impres
sion of causality. The converse is sufficient: If the impression of causality is already 
there, then people will see correlations that do not exist [Chapman and Chapman 

1969]. 
Human conceptions of causality are guided by beliefs about operating mech

anisms. Causality is generally understood, not in terms of correlation, but in 

terms of process. The perception of physical causality requires some quantity 
(like energy) that travels continuously from cause to effect through space and 

time [Dowe 2000]. People are not satisfied by explanations that appeal to cor
relations, they want knowledge about specific mechanisms [Ahn and Bailenson 

1996]. People will only describe an event as causal if they can imagine a quantity 
being transferred from cause to effect; correlations between cause and effect are 

not enough [Wolff 2007]. When attributing cause, people insist that some entity 
travel along a spatiotemporal pathway. The fact that the entity makes a differ
ence to the outcome—that the outcome would have been different if not for the 

putative cause—is not good enough [Walsh and Sloman 2011]. Causal inferences 
about the physical world appeal to mechanisms, not to knowledge that entities are 

associated. 
This is not true when putative causes are intentional [Lombrozo 2010]. When an 

agent achieves an outcome because they desire the outcome and are able to make it 
happen, then the specific mechanism is less important. If an outcome is desired by 
an intelligent agent, the agent can generally achieve it using an alternative mech
anism if necessary. If the army can’t get the territory through negotiation, they 
can resort to force. Because they are intentional agents, they will create an alter
native causal pathway if necessary, and thus, the event seems causal even if one 

doesn’t know the specific process that led to the outcome. Therefore, intentional 
causation does not require a mechanistic process in the same way that physical 
causation does; an appeal to the counterfactual “if the agent had not acted, then 

the outcome would have been different” is generally sufficient. 
In sum, causal Bayes nets (CBNs) are rich ways to represent causal structure. 

Pearl and many others have demonstrated their value in machine learning, sug
gesting that it is often useful to reduce causality to probability relations with an 
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intervention operator. But that is apparently not how people think about causality. 
In the physical domain, people want to know the process that unfolds continuously 
over space and time that leads from cause to effect. In the intentional domain, 
CBNs are closer to being right: People want to know that the appropriate coun
terfactual is supported, that the effect would not have occurred but for the cause. 
CBNs might capture how people represent causal structure, but there’s more to 

how people think about causality itself than the CBN framework captures. 

42.2 Core Properties 
I now briefly summarize some of the key evidence regarding people’s sensitivity to 

three of the core properties of CBNs. 

Core property 1: The Markov property. A number of studies have examined whether 
people’s judgments satisfy the Markov property associated with causal graphical 
models for three-variable common cause structures. This condition requires that 
a variable be statistically independent of its non-descendants conditional on the 

state of its immediate parents. For common cause situations, this means that one 

effect should be independent of the other effect given that the (common) cause has 
been conditioned on, whatever its value. The common finding is that people vio
late this condition, instead treating the two effects as conditionally correlated such 

that movement in one variable leads to corresponding movement in judgments of 
the other variable (see Rottman and Hastie [2014] and Hagmayer [2016] for reviews). 

In the many experiments reviewed, participants are presented with or infer a 

causal structure from supporting data. Park and Sloman [2013, 2014] argue that 
people don’t rest with the causal structures they are given, rather they import more 

structure based on prior knowledge. The structure they import depends on the 

nature of the mechanisms represented by the causal model. For instance, when 

relations are probabilistic, people will explain a cause’s intermittent failure to pro
duce an effect by appealing to a disabling condition. Thus, they import disabling 

conditions that they were not told about. In the case of a common cause structure, 
there are two relevant mechanisms, one for each cause. If those mechanisms are 

different, then participants will import two disablers, one to explain the probabilis
tic functioning of each mechanism. Consider a model with smoking as a common 

cause of both impairment of lung function and of an additional financial burden 

on the family budget. Smoking can have both of these effects, but it produces them 

in very different ways via different mechanisms. Disablers of each mechanism are 

likely to be different (e.g., smoking a lower tar brand vs. buying a cheaper brand). 
But if the mechanisms are the same, then one disabler will do, for it could disable 

both mechanisms. If the two effects in the model were impairment of lung function 
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and damage to blood vessels, then the lower tar brand might prevent both. But if 
only one disabler is introduced, then that also introduces another common cause 

of both effects, a backdoor path from one to the other. This will introduce a new 

dependence explaining the violation of the Markov condition. Accordingly, Park 

and Sloman show that Markov violations only occur when people treat the mecha
nisms represented by a common cause model as the same, and not when they are 

different. 
The implication is that people do seem to be responsive to the logic of CBNs. 

However, it’s not trivial to determine which CBN an individual is using to make 

a judgment. People have a habit of elaborating what they are told by importing 

causal knowledge into their representations. 

Core property 2: Explaining away. Another central idea of CBNs is explaining away: 
When two independent causes have a common effect that they independently con
tribute to, the causes become dependent conditional on the effect. Specifically, 
conditional on the values of one cause and the effect, the probability of the other 
cause should be discounted. It is no longer helpful in explaining the effect; it has 
been explained away. 

People were shown to be responsive to this inference schema many years ago in 

social psychology (e.g., Kelley [1973]). The focus in the social psychological litera
ture was on how people explain other people’s behavior. Do they appeal to the other 
person’s personality or the environment of the behavior? The data show that telling 

them that one of these causes occurred reduces judgments of the probability of the 

other. Using a large variety of other scenarios including non-social ones, research 

on causal reasoning has largely validated this type of inference (see Rottman and 

Hastie [2016] and Liefgreen et al. [2018] for reviews). 
However, although people do engage in explaining away, they generally dis

count insufficiently and, in a few cases, not at all (reviewed in Rottman and Hastie 

[2016]). A potential reason for insufficient discounting is that people may some
times answer the wrong question. In a standard experiment, people are told the 

probability that each cause produces the target effect in general and then are asked 

to judge the probability that the cause produced the effect in a particular (token) 
case, one where the other cause and the effect are known to have occurred. In some 

cases, people may be judging the cause’s general propensity, a value that doesn’t 
change over the course of the experiment, rather than the updated probability for 
the target event. For instance, if one cause is that the outcome of a flip of a fair coin 

determines whether one wins or loses, then instead of judging the probability that 
the coin came up heads on the last trial given that one won, people might judge the 

propensity of the coin to deliver heads (0.5 as the coin is fair; Liefgreen et al. [2018]). 
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People may be answering a question about type, rather than the question that was 
asked, about a token event. People are known to have a tendency to substitute easy 
questions for hard ones [Kahneman and Frederick 2002]. 

Core property 3: Seeing versus doing. The hallmark of CBNs, what distinguishes 
them from run-of-the-mill probabilistic models, is the “do” operator, the means 
to represent intervention. Intervening on a variable in a CBN both changes the 

value of that variable and breaks the edges pointing to it; that is, the interven
tion is determining the variable’s value, so its normal causes are not. According to 

Pearl [2000], such an operation is a means to represent both action and counterfac
tual thoughts, interventions on the actual world and on other possible worlds. As 
Halpern [2016] shows, such interventions are critical for explaining how to attribute 

cause to outcomes. 
Psychological data are not required to conclude that people represent inter

vention correctly when making inferences about their own actions. Anybody who 

chokes somebody to death and then concludes the person died from lack of oxy
gen is understood to be either a liar, a tyrant, or psychotic. Even young children are 

sensitive to the logic of intervention [Schulz et al. 2007]. 
The situation is much less clear regarding counterfactual inference. Pearl [2000] 

proposes a three-step procedure to model counterfactual inference of Y = y given 

a counterfactual assumption X = x and new evidence e: 

Step 1 (abduction): Update one’s causal model to accommodate e. 

Step 2 (action): Apply the do(X = x) operation to construct a causal model 
that represents the counterfactual world. 

Step 3 (prediction): Use the modified model to compute the probability of 
Y = y. 

A number of experiments have been run to evaluate the psychological reality of 
Pearl’s procedure (e.g., Sloman and Lagnado [2005], Rips [2010], Han et al. [2014]). 
The results are decidedly mixed. Most of the work focuses on counterfactual back
tracking, people’s willingness to make a diagnostic inference from a counterfactu
ally assumed effect to its cause. Pearl’s theory clearly disallows such an inference 

because Step 2 (action) involves breaking the edges to the counterfactual effect, yet 
people make it on occasion. There are cases when such an inference would be sen
sible. For instance, a physician might say to medical students “if the symptoms 
were different, then the disease would have been different” as a way of teaching 

the relations between diseases and symptoms. Or a counterfactual claim might be 

best interpreted as a request to treat the statement as diagnostic. If someone says, 
“if only the trees were green and flowers blooming,” a reasonable interpretation is 
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that the person wishes winter were over and spring had arrived. In other words, they 
are intending for the listener to change the values of the causes of their counterfac
tual statement. The do operation is just not always what counterfactual inference 

calls for. 
Other theories have emerged as competitors to Pearl’s [2000]. Hiddleston’s 

[2005] minimal network theory claims that when reasoning counterfactually, the 

changes introduced to one’s representation of the actual world in order to repre
sent the counterfactual world should be minimal in violating as few causal laws 
that govern the system as possible; the counterfactual model should be kept as sim
ilar as possible to the actual model, with the minimal number of edge breaks and 

the maximum number of intact variables. Rips [2010] offers evidence in support of 
this theory and against Pearl’s. Another theory has been offered by Lucas and Kemp 

[2012] who propose a double modifiable structural model. They propose that rea
soners hold essentially two representations, one with and one without edges into 

the counterfactually assumed variables. In other words, they define an augmented 

twin network that includes the original observational or world causal model, plus 
a copy with intervention implemented. This allows inference from both interven
tion and observation. A free parameter represents the degree of mutability of the 

counterfactual model, and helps produce reasonable fits to the published data on 

counterfactual backtracking. 
In sum, CBNs do an excellent job of modeling human reasoning about action. 

But they are incomplete representations of the subtle and complex world of coun
terfactual reasoning. In favor of CBNs, not only do competitor models also face 

challenges, but humans themselves often disagree about which counterfactual 
world is at issue and about the correct response to a counterfactual question. 

42.3 The Broader Perspective: The Community of Knowledge 
Large amounts of data from the study of human judgment, reasoning, and 

decision-making show clearly that causal inference is central to human thought 
[Sloman 2005, Sloman and Lagnado 2015]. However, data also show that causal 
inference tends to be based on very limited and coarse knowledge; people’s causal 
representations are remarkably superficial [Rozenblit and Keil 2002, Fernbach et al. 
2013]. People are unable to explain how very basic artifacts operate and they are 

remarkably ignorant about the consequences of social policy [Zaller 1992] and 

about the causal models underlying common events [Zemla et al. 2017]. 
So, most causal models of most things are surprisingly superficial. Yet humans 

have developed science, arts, and technology that are rich, deep, and mind-
numbingly complicated. How can relatively ignorant individuals create and survive 

in such a sophisticated environment? It is because most of the knowledge people 
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use resides in other people’s heads. We live and operate in a community of knowl
edge [Clark and Chalmers 1998, Sloman and Fernbach 2017]. Causal inference, 
like all cognition, should be conceived as a collective enterprise, not an individual 
endeavor. 

This collective view of causal inference has ramifications for how we should 

understand representations of causal knowledge. Pearl may well be right that 
knowledge should be represented using causal models, but those models need a 

certain kind of hierarchical structure, not only because causal systems in the world 

have a hierarchical structure, but also because the only way to get a community of 
knowledge off the ground is to distribute knowledge in a way that conforms to a 

hierarchical principle. 
What does it mean to “know gardening?” There are aspects of gardening that 

every independent, functioning member of society knows: It involves soil, water, 
sunshine, and plants. Everybody even has a causal structure to relate these entities: 
soil, water, and sunshine together produce plants. To actually engage in gardening 

requires more causal knowledge though: You have to know about seeds, that they 
get planted, that they need water to grow, that they become specific plants, and 

that plants require sunshine. A better gardener will have detailed knowledge about 
some plants and what they require. A scientific gardener might know exactly how 

much sun and water each plant requires and what the soil should be composed 

of, or even that soil isn’t strictly necessary (as in the case of hydroponics). In sum, 
pretty much everyone shares a basic superficial causal model of gardening. This 
is common ground, and allows broad conversation and humor about gardening. 
Then there are different levels of expertise that involve having unpacked versions 
of common ground, more detailed causal models that unpack common ground 

using more variables and their causal relations to one another. 
Experts themselves differ in what they know. Some expert gardeners know more 

about flowers and others know more about edible crops. And within each group, 
expertise varies. The expertise of someone who grows potatoes in the Andes is not 
the same as someone who grows cannabis hydroponically. Then there are experts 
on the components of gardening: those who know about irrigation, experts on 

tractors and harvest equipment, masters of pollination, and so on. 
A representation of human knowledge requires a theory of how this all fits 

together. How are causal models nested within one another? The topmost— 

common ground—is the least articulated. That superficial knowledge is what most 
people know, other than the fact that there is more to know. People know that oth
ers can unpack their superficial knowledge into complete mechanisms. So, each 

component of common ground is really a placeholder, a gesture to something 

richer. Those placeholders get cashed out in the minds of experts. And each expert 
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can only cash out so much, perhaps one or two mechanisms. The experts them
selves need placeholders that indicate that their knowledge can also be unpacked 

(by other experts). Those placeholders represent both the aspects of common 

ground that they are not expert in, as well as the expertise they have that could 

be further cashed out by someone else. For instance, a soil expert might know 

the constituents of a good soil, but they might need a biochemist to explain 

how those constituents interact to produce growth. Expert knowledge can almost 
always be unpacked into the more detailed knowledge of someone with deeper (but 
narrower) expertise. 

42.4 Collective Causal Models 
This hierarchy of causal models suggests some constraints on how to represent 
knowledge. The claim is that higher-level knowledge is (i) sparse and (ii) a rep
resentation of more detailed knowledge that sits elsewhere. (ii) has at least two 

interpretations. The first is that the detailed knowledge is a set of lower-order ele
ments that constitute the higher-level object in the sense that individual water 
molecules taken together comprise a set that constitutes the “water” that, at a 

higher-level, has causal force (by serving to wash a dirty dog or to slake thirst). 
Chalupka et al. [2017] propose an algorithm that partitions lower-level data to find 

causally relevant partitions of both putative causes and effects and then uses the 

intervention operator to bin resulting partitions to create a higher-level represen
tation of causal structure and test its viability. Chalupka et al. note that, in some 

cases, the linkage between higher and lower levels is causal, not constitutive. For 
instance, psychometric models assume latent variables like intelligence that are 

measured through a set of questions given to test takers. The assumption is that 
the higher-level entity, intelligence, generates performance on the test, not that 
the questions constitute intelligence. Chalupka et al.’s algorithm does not directly 
apply to such cases. 

For some applications, identifying a causal structure through the constituents 
of its variables is useful. Conceptually, however, constituents have causal struc
tures of their own. Water molecules are not static but rather causal entities them
selves. In other words, objects at the lower level are not a mere set, but should 

be represented as causal structures themselves. To model such constituent struc
ture, Casini et al. [2011] propose a recursive Bayesian network (RBN) formalism. 
In RBNs, variables at higher levels represent Bayes’ nets that reside at a lower 
level. In other words, higher-level causal structures can be unpacked such that each 

variable is itself a causal structure at a lower level. Gerharter [2014] proposes a dif
ferent model, multi-level causal models. These are similar except that, instead of 
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unpacking high-level variables into causal structures, arrows representing causal 
dependencies are unpacked. Casini [2016] argues in favor of unpacking variables 
rather than arrows. 

These kinds of models offer a first pass for representing a community of 
knowledge. The idea would be that common ground is represented at the highest 
level, and that knowledge would serve as a pointer to progressively more detailed 

unpackings at levels underneath. Those more detailed unpackings would sit in the 

heads of experts. Each expert might be responsible for a single or a small num
ber of such lower-level representations. Experts might have different models of the 

causal structure of the situation. In that case, how one makes use of expert opin
ion depends on whether the experts’ causal models are compatible or not [Alrajeh 

et al. 2018]. 
To use RBNs to model a community of knowledge, a number of independence 

assumptions would be required in the lower-level knowledge. If high-level causal 
knowledge carries any value, then the sets corresponding to lower-level knowl
edge must be (relatively) independent of one another conditional on the high-level 
variables. For instance, if I believe that water slakes thirst, then the set of water 
molecules must be independent of the set of biological entities corresponding 

to thirst conditional on the higher-level representation “water” and “thirst.” If 
they are not, then the higher-level structure cannot offer predictions and explana
tions on its own and becomes redundant because lower-level considerations would 

always be necessary. 
These independence assumptions are especially important if we are using RBNs 

to represent a community of knowledge. In a community of knowledge, different 
causal structures representing the lower-level knowledge of different higher-level 
variables sit in the heads of different experts. Such structures are thus useless if 
they are not in some sense independent of one another; too much dependence 

would prevent the individual using them to make inferences. Experts presum
ably carry useful knowledge that does not depend on the knowledge carried by 
a different expert. 

Such a representation leaves many open questions. Glymour [2007] offers an 

insightful discussion of some of the philosophical and scientific issues that arise 

when attempting to aggregate variables into a causal structure. One concerns the 

nature of the links between levels. Casini [2016] argues that the links are consti
tutive and not causal. This is important as it allows interventions on variables at 
the lower level to affect variables at the higher level. If the links were causal and 

descending from higher to lower levels, then Pearl [2000] would require that an 

intervention at the lower level would render lower-level variables independent of 
everything at the higher level. But if we assume that intervention does not break 
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constitutive edges—only causal ones—then a lower-level intervention could still 
influence effects at the higher level. 

But what about Chalupka et al.’s [2017] observation that sometimes links are 

causal, not constitutive, as in the case of intelligence? Then a lower-level inter
vention should break edges and render the variable independent of higher-level 
effects. Actually, this does not appear to be a problem, at least for the example. 
Intervening on an intelligence test by having an outside agent answer a ques
tion does not increase intelligence and would not affect whatever effects intelli
gence is supposed to have. Indeed, the example suggests that constitutive relations 
between higher and lower levels, and not causal ones, are what is needed to distin
guish the knowledge of different individuals within a community of knowledge. 
An expert on intelligence would not be distinguished from a non-expert merely by 
their ability to enumerate the questions on an intelligence test. They would pre
sumably know something about the constituents of intelligence that govern the 

choice of questions. And an intervention on those constituents would indeed affect 
intelligence. 

42.5 Conclusion 
CBNs have been invaluable in the study of how people make causal inferences. 
However, CBNs are not the whole story. People reason by mentally simulating how 

a mechanism unfolds over time and space. CBNs don’t capture this dynamic pro
cess. Nevertheless, many of CBNs’ inference schema do seem available to mere 

mortals. Once we take people’s tendency to make up their own causal structure, 
there is evidence that people are sensitive to a Markov condition. People do tend 

to explain away as the CBN formalism prescribes, but often insufficiently. In both 

cases, much of human reasoning appears qualitatively similar to CBN prescrip
tion, but not quantitatively similar, and certainly not probabilistically coherent. 
While the notion of intervention is critical for capturing reasoning about action, 
we are a long way from understanding counterfactual inference. How people agree 

on which world they’re talking about—when they do—remains an open question. 
Other open questions concern how to represent a community of knowledge. 

Recursive structures with constituent relations provide a starting point, but serious 
modeling is yet to be done. Another big open question concerns the justification 

for belief. If people know so little as individuals, why are they so sure about so many 
things? It is not merely hubris. In many cases, people should have confidence even 

without knowledge. If people don’t take a firm stand on issues like war and climate 

change, catastrophe can result. Our knowledge representations are responsible for 
maintaining accurate knowledge, even if the details are distributed throughout a 

community. 
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43
We, and scientific practice, tend to conceive of causation as an objective relation 

characterizing the external world. Philosophy has been more ambiguous. This 
chapter intends to renew the doubts. If causation is only a model-relative notion 

and if causation is tightly entangled with notions that are best understood in a 

subject-relative way, then the objectivity of causation is at least undermined. The 

paper discusses these doubts and concludes that the objectivity of causation must 
not be presupposed, but must be constructively earned. 

Causation: Objective or 
Subjective? 
Wolfgang Spohn (University of Konstanz) 

Abstract 

43.1 Causation: A Bunch of Attitudes 
I am glad that philosophy’s voice is to be represented in this volume as well—after 
all, Judea Pearl not only won the Turing Award but also the Lakatos Prize, a highly, 
if not the most highly renowned award in the philosophy of science—and I am 

honored that I am invited to contribute as a philosopher. However, philosophy is 
different; with its more distant view it is prone to have a more critical perspective. 
Indeed, I feel that this perspective is wanting nowadays. 

After the eventual breakdown of positivism, behaviorism, and similar doctrines 
around 1960, great methodological uncertainty spread, and philosophy, or at least 
the philosophy of science, seemed much needed. This has thoroughly changed 

over the past 20 to 30 years. Not that the problems have been solved in a gener
ally accepted way. Philosophy certainly has not solved them; to expect so would 

be a misunderstanding of the nature of philosophy. Rather, the natural and social 
sciences have consolidated. They are just no longer irritated. Solving foundational 
problems has little impact on scientific practice. And methodological problems 
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have shifted. Data is all-important, but it is also overwhelming, and so data mining, 
data analysis, machine learning, and computer science in general are the new 

methodological aids. Philosophical aid seems outmoded. 
I can understand this development to some extent, but it is detrimental. I would 

like to exemplify this with causation, the “cement of the universe.”1 There is hardly 
any other notion that is of such universal scientific importance than that of cau
sation. Sciences struggle with it every day. It is thus useful to take again the more 

distant, 2,500-year-old perspective of philosophy. This is not philosophy’s private 

perspective. Rather, almost every cognitive enterprise used to run under the label 
of philosophy. It’s the common heritage of all sciences. Today, though, it’s only 
philosophy that cultivates this heritage. And it is worth doing so. (Of course, if 
philosophy would do only this, it would be doomed.) 

Aristotle, the first and still most embracive universal scientist, distinguished 

four notions of causes, which would be better called grounds nowadays. A thou
sand years later, one of them, the notion of efficacious cause—that’s our modern 

notion of causation—took center stage. However, it remained under almost com
plete theological control for another thousand years. Allah or God is the sole or 
the ultimate cause of everything. And who would dare question Allah’s or God’s 
ways? 

The modern discussion starts with David Hume’s Treatise of Human Nature, Vol. 
I, in 1739, which he wrote at the age of 28. Well, he did not merely start it; he pre
pared the entire playing ground on which we still move today. Of course, this is 
a forbiddingly rough summary.2 The all-importance of Hume, though, cannot be 

understated. He confusingly offered two definitions of causation. One, the reg
ularity view, is highlighted as an advent of science, although it is recognized as 
insufficient. The other one is not the counterfactual view, as Lewis [1973b] and his 
readers, including Pearl [2000, p. 238, 2018, p. 20] state. It is rather what I like to call 
the associationist view. It seems repressed nowadays. According to it, causation is 
in the eye of the beholder, a habit of thought. This is a gross oddity, it is natural 
to discard it as a misunderstanding. Hume himself says about it: “I am sensible 

that of all paradoxes, which I have had, or shall hereafter have occasion to advance 

in the course of this treatise, the present one is the most violent” (1739, p. 166). In 

effect, he is so ambiguous about it that interpreters have puzzled over the relation 

of his two definitions till the present day (see, e.g., Beebee [2006]). 

1. This is the phrase of Hume [1740]. More precisely, he says that the “principles of association … 

resemblance … contiguity … causation… are really to us the cement of the universe.” So, actually, 
and interestingly, he is talking about “epistemic cement.” 

2. The epilogue of Pearl [2000] gives a much longer, but still brief and very entertaining overview. 
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“A habit of thought,” this sounds so understated. In the more elevated German 

way, Kant [1781] turned this into a pure category of thought. What a label. The idea, 
though, is basically the same as Hume’s. Causation is a relation we impose on the 

world. It is not a notion we acquire from experience, not an idea of sensation, but 
rather an idea of reflection, in Hume’s words—although, of course, experience is 
required to learn how the relation realizes. I think Kant is right. However, I will 
not use this chapter to positively defend this claim. The only aim I am pursuing in 

this chapter is to create some awareness of the fact that contemporary theories of 
causation are not safe at all from being infected by these old and important ideas 
about causation. 

For, what is the contemporary attitude toward causation? In the positivistic 
times mentioned above, causation was a shunned notion, bad metaphysics, not 
imposed by our mind—this would be preposterous—but also not to be found in 

the world. This changed with Hempel and Oppenheim’s [1948] theory of deductive
nomological explanation, which was, in nuce, Hume’s regularity theory of causa
tion. The irony was: there was no causation in that theory, as became clear about 
15 years later. But the ban was broken, and causation is continuously among the 

hottest topic in the philosophy of science up to the present day. It was not so dif
ferent in the various sciences, although each has its own speed. Pearl [2018] tells 
impressive stories about how obstinate the community of statisticians was and 

still is. 
So, the importance of causation is acknowledged almost everywhere now. The 

natural and social sciences came up with a really surprising variety of ideas and 

conceptions. If you study them, it’s hard to believe that they all talk about the 

same thing. The goal was to have specific and useful accounts, not just sublime 

philosophy. However, the matter turned out very difficult, and the ideas were quite 

idiosyncratic and tentative. 
The field is still scattered. However, a certain paradigm emerged around thirty 

years ago, which by now seems to be the dominating one, sharing wide agree
ment and applicability. I am referring to the interventionist theory of causal Bayes 
nets, the cornerstones of which are Pearl [1988, 2000], Spirtes et al. [1993], and 

Woodward [2003]; it was substantially adumbrated, though, in Spohn [1978, 1980]. 
The three are by no means identical; there is quite a lot of divergence in detail. Still, 
it is legitimate to subsume them under one broadly conceived heading. And there 

is no doubt that no one did more than Judea Pearl to familiarize other disciplines 
with this doctrine and to convince them of its wide applicability—perhaps because 

as an AI researcher he is closer to the needs of the sciences. 
This is tremendous progress and unprecedented success. However, when it 

comes to the nature of this doctrine, its contenders are surprisingly silent, Judea 



870 Chapter 43 Causation: Objective or Subjective? 

Pearl included. Unlike many predecessors, starting with Hume, they don’t try to 

define causation. This may be plausible. There must be some basic concepts, and 

then causation is likely to be one. Glymour [2004] emphasizes the liberating effect 
of this move. Similarly, Pearl [2018, p. 27]: His approach, which he attributes to 

Alan Turing, “is exceptionally fruitful when we are talking about causality because 

it bypasses long and unproductive discussions of what exactly causality is and 

focuses instead on the concrete and answerable question ‘What can a causal rea
soner do?”’ However, this strategy does not avoid conceptual issues. If not defin
able, causation is at least closely related to other basic notions and thus at least 
infected by their character, as we will see below. 

Instead, the main interest was to build causal models, to study their behavior, 
and to say how they can be tested. This was explored in great constructive detail; 
only thereby could wide applicability be acquired. What does this procedure leave 

to be desired? The background ideology certainly is that there are sort of objectively 
true causal models. This much seems to be tacitly understood, even if one is mod
est in claiming truth for the models one entertains. And the account of Pearl and 

others is the best way to get on to the track of the true models. Pearl [2018] does not 
explicitly speak of true causal models, but he explains the many inferences causal 
models allow, provided—that’s a recurring phrase—“your causal model accurately 
reflects the real world” (p. 335). 

Whenever I talk to scientists, this seems to be their common attitude as well. 
Of course, causation is an objective feature of the world, and science is there 

to uncover it. Anything else would undermine the self-conception of science as 
truth-seeking. And now we finally have a grip on how to do it. 

Really? Are Hume and Kant thereby refuted? And the positivists defeated? I 
would like to cast doubt on this attitude. The objectivity of the notion of causation 

is not guaranteed at all. A crucial quote from Pearl [2018, p. 21] is: “If I could sum up 

the message of this book in one pithy phrase, it would be that you are smarter than 

your data. Data do not understand causes and effects; humans do.” But what is it 
that makes us smarter than the data? The answer Pearl [2018] unfolds is that it is the 

second and the third rung of his so-called ladder of causation, acting/intervening 

and imagining the counterfactual. Maybe, though, we are smarter not because of 
being able to represent more objective truth than the data, but because we are able 

to add something to the data? 
As said, I do not want to defend an answer to this question. But I want to suggest 

that objectivity must not be simply assumed and is not so easily earned. Subjectiv
ity creeps in from at least two directions, which I want to briefly discuss in this 
paper. One point is the model relativity of the notion of causation, and the other 
is the potential subject-relativity of the notions with which causation is at least 



43.2 The Model Relativity of Causation 871 

intrinsically related. This does not yet confirm Hume or Kant; but it shows that 
matters are less clear than scientists wish. 

43.2 The Model Relativity of Causation 
Even if there is no general agreement, we have a fairly good conception of what 
causal models are and how they behave. Thus, we know what causation is, what the 

causal relations are within those models: they are either directly given by the arrows 
between the nodes or the variables of a causal graph, or they consist in certain 

probabilistic conditional dependencies among those variables, or they lie in the 

structural equations relating those variables, and so on. This is our grasp of causa
tion. It is, however, only a model-relative grasp. Is causation hence a model-relative 
notion? 

I observe a profound ambiguity concerning this question. On the one hand, I 
sense an implicit inclination toward model relativity, although it’s hard to find it 
explicitly endorsed. Perhaps I get this sense because people are only dealing with 

causal models; this is the only frame within which they talk of causation. On the 

other hand, this attitude clearly won’t do. Causation can’t be only a model-relative 

notion. 
Compare this with the notion of truth, another notion of utter fundamentality. 

There, Tarski has provided us with the model-theoretic notion of truth, of what 
it means that a sentence is true in a model.3 Thereby we have gained a rigorous 
grip on truth theory, for the first time in history. However, this can’t be the full 
truth about truth. We also have a notion of absolute truth or truth simpliciter. “The 

sun is shining.” That’s true—full stop (when I am writing this sentence). Relatively 
speaking, it’s only true in one model and false in another (and doesn’t get any truth 

value in a third). So, what’s absolute truth? One is tempted to say: absolute truth is 
truth relative to the true model. But that’s blatantly circular. 

I won’t try to resolve this predicament of truth theory; it’s a serious problem. 
However, the analogy is illuminating. Clearly, acquiescing in the model relativity 
of causation would introduce an intolerable amount of subjectivity. Causal rela
tions cannot be this way or that way, depending on the causal model we choose; 
we cannot have it both ways. This would undermine scientific objectivity. Thus, at 
least implicitly scientists presuppose an absolute notion of causation, and this is 
what their modeling activities try to capture. What is it? 

3. Sometimes, people speak only of truth in an interpretation. In any case, this notion of a 

model differs from, and is much more general than, the notion of a model used in the theory 
of causation. 
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The literature, not only in the applied sciences but also in philosophy, hardly 
comments on this question. To be honest, I find this shocking. Apparently, the 

question is not really relevant. Somehow, the causal models fit better or worse; so, 
we know in which direction to improve our causal models; thereby we approach the 

true causal model; and that’s the one that grasps causation in the absolute sense. 
Thus, there is really no more than the model-relative notion of causation, amended 

only by the notion of fit or truth of a model. This seems to be the general attitude, 
and it is certainly the one displayed in Pearl [2018]. 

I have offered two terms here, “fit” and “truth.” “Fit” sounds more cautious, 
perhaps this is all scientists expect of causal models. However, they cannot waive 

truth. They may be modest in not claiming to possess the truth. Still, truth must be 

their guiding aim. Hence, the present discussion is really about the truth of causal 
models. The general attitude parallels the blatantly circular answer in the case of 
truth theory. For causation, however, it does not sound circular. But is it any better? 

I don’t think so. One needs to understand that the truth of a causal model is 
never a relation between the model as such and reality, as it were. A causal model 
may fit the data very well, and then there is no reason for suspicion. It may even 

overfit the data. Often, though, the fit is not so good. One may then adapt the 

parameters of the model or take similar moves, without essentially changing the 

model. Usually this won’t do, however. Criticism of the model takes the form of an 

enlarged model accounting for more variables. Almost all discussions are about 
neglected variables which disturb the picture in one or the other way and because 

of which all those partial regression and correlation coefficients are misleading. 
There are common causes, there are confounding variables and selection vari
ables, there are unmeasured and latent variables, Simpson’s paradox lurks more 

often than expected, and so on. By making those neglected variables explicit in the 

enlarged model one may reach a better fit. This is always a possibility, even if the 

original model fits very well and does not raise suspicion. Surprises can never be 

excluded. 
Of course, practicing scientists rarely aim for perfect models. There is always 

some slack between the model and the data. Scientists are content when they 
can be confident to have identified the main causes. They would admit that there 

always are a lot of further causes blurring the picture. But if they blur it only a lit
tle bit, we need not worry. One must always think where to spend one’s efforts, 
and to explore those residual causes may not be worth the efforts. Again, though, 
surprises can never be excluded. So, this attitude of the practicing scientist only 
confirms the fact that the truth rather lies in an enlarged model. 

Note, however, where this takes us. Isn’t this to say that a causal model is true 

if it is part of an enlarged model, not any enlarged model, of course, but a true 

enlarged model? And now we are caught again, not in a circularity, but in an infinite 
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regress. No model is large enough to decide about the truth. We are deferred in the 

end to what may be called the universal model containing all variables whatsoever, 
so that no variable is neglected, no further confounding or otherwise disturbing 

variable can turn up. Surely, though, that’s completely ill-defined speech. The uni
versal model is at best a fictitious ideal of which we have no more than the faintest 
grasp. 

For this reason, I am claiming since Spohn [2001] that causation in the intended 

absolute sense is a model-transcendent notion. Limited causal models do intend 

it, but whether they grasp it cannot be decided by any other limited model, how
ever enlarged. I want to briefly indicate that this model-transcendence transpires 
through all of the current theories of causation. 

Spirtes et al. [1993, pp. 44f.], for example, make very clear that their basic causal 
axioms, the causal Markov, minimality, and faithfulness condition apply only to 

causally sufficient causal models—where, roughly, a model is causally sufficient if 
it contains all common causes of any two variables in the model. Clearly, if this is 
taken literally, this means that any causal model must contain the Big Bang, which 

surely is a remote common cause of any earthly matters. Fairness requires to say 
that Spirtes et al. have done a lot to weaken this presupposition by exploring how 

much we can still infer about causal relations in its absence; see, in particular, their 
second edition. 

Woodward [2003] perfectly displays the interventionist agenda on causation. 
However, if one looks closely, his notion of intervention is model-transcendent, 
too. If we intervene on the variable X in order to find out whether it is a cause of 
the variable Y, he requires the intervention on X to be statistically independent 
of any variable that causes Y along some causal path that does not go through X; 
this is condition I4 in Woodward [2003, p. 98]. Here, “any variable” must be taken 

as quantifying not only about the variables in the causal model but also about all 
variables outside the model. This is his way of model-transcendence. 

The same remarks apply to Pearl’s do-operator. The model-immanent function 

of do(X) is to causally separate the variable X from all its causal predecessors in 

the model. However, this separation is to hold for any enlarged model as well. 
That is, although do(X) is explained by Pearl as just another variable with a spe
cial behavior within causal models, it really has a model-transcendent function. 
Or in more general words: The truth claim of any causal model always carries 
the implication—“and there are no further neglected variables, confounding or 
otherwise, which change the causal picture.” This is clearly a model-transcendent 
implication.4 

4. This is not to say that by using the relative notion of causation we are bound to make the closed-
world assumption (see, e.g., Pearl [2000, pp. 252f].). As such, relative causation is just causation 
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Where does this leave us? We are not forced to acquiesce in the model relativ
ity of causation. We can get rid of it, but not in the way commonly assumed. The 

truth of a causal model is not a local affair that could be locally settled. Rather, 
we are referred to ever larger causal models, but nothing is ever settled due to the 

model-transcendence of absolute causation. So, in a way, we indeed deal only with 

model-relative causation; it’s always more of the same in ever larger models. But it 
is important to be clear on what we are up to with causal models, to be clear about 
what truth could mean for them. 

43.3 Laws 
We may thus have banned the subjectivity entering through the model relativity of 
causation, though in a somewhat unexpected way. Let me turn, hence, to the other 
potential source of subjectivity, the nature of the concepts with which causation 

is closely connected, even if one should have given up defining causation by them. 
When one surveys theories of causation, the connection always refers to one of two 

kinds of concepts, either to something like regularities, laws, structural equations 
etc., or to probability, which is the central notion in all statistical contexts. 

Of course, causation is essentially connected to still further notions: action (this 
relation is perhaps sufficiently reflected in interventionist theories of causation), 
order (if this is explicated as entropy, one may subsume this under the probabilis
tic connection), and most importantly, space and time. For physicists this relation 

is absolutely central. In the social sciences it is often marginal. Surely, if we are to 

model climate change or the proliferation of a pandemic, space and time are indis
pensable categories. Often, though, these categories do not even play an implicit 
role. The reason is clear. There is often no temporal order in the data and hence 

none in the causal model representing the data.5 Still, I am wondering how one 

can ever do causal theorizing while neglecting its first axiom, namely that causes 
temporally precede their effects. 

In the present context, however, we may neglect these other connections 
because they do not endanger the objectivity of causation. Let me therefore focus 
on the two connections initially mentioned and first on laws and its ilk. The law 

connection is the one originally claimed by Hume’s regularity of causation. If it 
would be appropriate, it would bar subjectivity. However, it is not appropriate, for 
various reasons. 

relative to the model. Only when we claim that model-relative causation amounts to absolute 

causation do we claim the closed-world assumption to be true. 

5. See also Pearl [2000, section 7.5.1] for a discussion of this point. 
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First, Hume was not so sophisticated to distinguish between accidental regular
ities and genuine laws. Certainly, only the latter create causal relations. Although 

the natural sciences take it to be clear what they are after when they are after laws, I 
can only warn the reader to enter the philosophical discussion about what laws are; 
it’s a quagmire.6 One certainly finds various opinions giving up on the objectivity 
of laws and thus of causation. 

However, that’s presently only a side issue. There are two more important con
cerns. One concern is that laws by themselves cannot tell about causal relations. 
As has often been observed, the counterfactuals describing causal relations really 
are counternomologicals; they refer to which laws still hold when some laws are bro
ken. The laws can never tell this by themselves. Let’s consider a simple example 

and assume that the co-occurrence of falling air pressure, the falling of the barom
eter, and a thunderstorm were sort of a strict law. Now we break the law between 

air pressure and barometer by manipulating the barometer. The question deter
mining the causal relations then is: which law still holds, that between barometer 
and thunderstorm, or that between air pressure and thunderstorm? Not both can 

still hold. The answer is obvious to us. The point is only that the question and 

the answer are counternomological ones. The example makes clear that interven
tions are also invoking counternomologicals; they introduce small miracles, in the 

terminology of Lewis [1973a, pp. 75ff.]. 
The next question is: what governs those counternomologicals? The answer 

is not clear at all. Perhaps a similarity ordering à la Lewis [1973a] does the trick, 
perhaps some epistemic entrenchment order is working in the background (see, 
e.g., [Gärdenfors 1988, chapter 4]). Something of this sort is required. However, the 

objectivity of all these auxiliary notions is at least doubtful. I don’t want to say 
that they are hopelessly subjective. Prima facie, though, they do look subjective. 
We might reach intersubjective agreement concerning similarity, entrenchment, or 
whatever, though we would have to study on which grounds we can do so. Possibly 
we can even claim some kind of objectivity for our agreement in the end; but again 

the question would be on which grounds we are able to do so. 
What I want to emphasize: The issues I am raising here are not issues of the ordi

nary scientists. They usually proceed from a tacit understanding and agreement. 
However, if they reach agreement, it’s not due to collectively grasping what is objec
tively there. It’s not like: “Why does (almost) everybody say that 2 + 3 is 5? Because 

2 + 3 is 5.” Rather, agreement comes about in some other way. And if it can claim 

objectivity, it is not the objectivity of ordinary facts. Our dealings with similarity or 
entrenchment orders and the like are not a scientific but an epistemological issue 

6. If you want to disregard my warning, you may start with van Fraassen [1989]. 
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that requires a different sort of study. The point then is: if causation is essentially 
entangled not just with laws but with all this additional machinery of doubtful 
objectivity, then causation is deeply infected by this machinery as well. The objec
tivity of causation cannot be presupposed, but must be earned and constructed in 

the way required for this machinery. 
The other important concern is that we all have this noble ideal of a natural 

law, allegedly explored in basic physics. But of course, the laws investigated in the 

social sciences, economics, geology, biology, even in most parts of physics, and so 

on, are not of that ideal kind at all. The ideal is very misleading. Rather, they some
how are soft, non-strict laws; they are, as we say today, ceteris paribus (cp) laws. A 

simple physical example is Hooke’s law about the proportionality of the extension 

of a spring and the weight attached to it, which, of course, has countless excep
tions. To be sure, all structural equations are of the same kind, wherever they are 

formulated. This fact is certainly clear to the working scientists, even though they 
may not have fathomed its epistemological implications. For philosophers of sci
ence the insight came quite late; too long were they attached to the ideal. But once 

they started thinking about them, cp laws turned out to be an utter mystery (see, 
e.g., Reutlinger et al. [2019]). 

Look at “cp, (all) Fs are G” (e.g., “cp, birds fly,” or “cp, prices go up, when demand 

rises”). What does this claim? How must the world look like for this to be true? 
It’s very unclear. Polemically, one might say that it doesn’t claim anything at all; it 
simply says: “all Fs are G, unless they aren’t.” This is unfair; scientists don’t claim 

platitudes. But it is very hard to avoid this unintended answer. Another reply is that 
cp laws are statistical laws. Judea Pearl seems to tend to this answer.7 Most people, 
however, would reject it. Hooke’s law is not a tacitly statistical law about the man
ufacture and use of springs. Our schematic law doesn’t say “most or 99% Fs are G.” 
It rather says “normally or typically, Fs are G.” And normality or typicality is not 
just a matter of proportions. But what is it? 

The core problem is that we slip into a similar open-ended situation as we did 

with causal models in the previous section. We might start with saying: “cp, Fs 
are G” means “under normal conditions, Fs are G,” leaving the task to specify the 

normal (and the exceptional) conditions. Maybe we can confirm good hypothe
ses: “whenever normal conditions N hold, Fs are G,” and “whenever E (= not-N), 
Fs are not G.” But of course, these hypotheses are not literally true. They are cp 

laws in turn, and we will find further exceptional conditions E ′ and E ′′ such that: 

7. In Pearl [2000], he explains right on pp. 1f why he turns to probabilities. One reason he gives is 
that “causal expressions in natural language are subject to exceptions,” as are cp laws, and that 
“probability theory” is “especially equipped to tolerate unexplicated exceptions.” 
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“whenever N and E ′ , Fs aren’t G, either” and “whenever E and E ′′ , Fs are G, after 
all.” And so on. With a little phantasy, you can easily take three or four rounds of 
this game with my sample laws. This process is non-monotonic, as logicians say; 
strengthening the conditions may always reverse the law. And, in analogy to causal 
models, the process is open-ended; you are never in a position to say: “Now I have 

exhausted all conditions under which Fs are, or are not, G.”8 

The upshot is that by claiming a cp law we do not make a claim with a plain 

truth condition to be ascertained or confirmed in familiar ways. The dialectics of 
normal and exceptional conditions is a different epistemic game. Of course, it is 
legitimate to play this game; it’s the way of science. However, its rules are quite 

unclear. It’s not an ordinary search for truth. How could it be, when the claims 
made are qualified by cp clauses and thereby lose a plain truth condition? Again, 
it seems to be the task of the epistemologist to clarify the matter and to find out 
about the underlying methodology of this cp science. 

It is not so clear what the epistemologist will find. To be sure, nothing is objec
tively normal or exceptional. Normality is, to put it vaguely, an anthropocentric 
notion. So, subjectivity lurks again. In scientific contexts we can perhaps restrict 
the notion of normality to its epistemic uses.9 But even in this case it is basically 
subjective, and we must again find a different explanation for reaching consensus 
than that the consensus agrees on objective truth. 

Thus, my point is the same as above: If causation is closely entangled with soft 
cp laws, then it is also entangled with this non-objectivity, with this absence of 
truth conditions just observed. If so, the objectivity of causation can again not be 

presupposed. Rather we have to study, by studying the epistemology of cp science, 
how causation may, perhaps only partially, acquire objectivity. 

Where do we stand? If we should have hoped to somehow anchor causation in 

objective lawhood, this has ended in disappointment; cp laws are not the kind of 
laws to satisfy our idea of objectivity. And even if they were, laws only would not do; 
they would have to be amended by some machinery answering counternomolog
ical questions. Maybe, though, we can avoid this muddle by taking the turn that 
most sciences have taken, anyway. Maybe we can avoid all reference to laws and 

the like and instead look at the connection between causation and probability.10 

8. As indicated in the previous footnote, this analogy is one motive for Pearl to resort to probabil
ities. For Woodward [2002] it is a reason to try to analyze cp claims as causal claims. Either way, 
the problems I am about to display persist. 

9. In Spohn [2014] I have tried to explicate this epistemic use in terms of ranking theory, which, I 
argue, is ideally suited for this job. 

10. Van Fraassen [1989] is not about causation. However, it is precisely the probabilistic turn that 
he propagates there in order to escape the muddle of laws. 
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This may look promising. However, I would like to indicate in the rest of this paper 
that we thereby move out of the frying pan into the fire. 

43.4 Probability 
When one looks at contemporary causal theorizing, one is overwhelmed by its 
probabilistic character. A hundred years ago, this was unthinkable. Causality was 
firmly tied to deterministic theorizing. Causes were mostly conceived as necessary 
and sufficient causes. Things changed when physics turned out to be irreducibly 
probabilistic. At first, it seemed that we had entirely lost causation in the physi
cal realm. But then it became ever clearer that probabilistic causation makes good 

sense as well. Nowadays we find this attitude also in all of the social sciences. Our 
data is probabilistic, and when we hope to find causal relations in it, it can only be 

in the form of probabilistic tendencies. So, it’s not surprising that probability now 

is the key notion with which causality is wedded.11 

However, what do we mean by probability? In philosophy we discuss several 
different interpretations—five? or more?12 It should make a big difference for our 
understanding of causation with which of these interpretations it is connected. 
Again, I am surprised how little this is discussed in the relevant philosophical and 

scientific literature. Is it not important? Is it clear, anyway? 
Well, whatever the other interpretations may be, the social sciences (medicine, 

etc., always included) obviously speak of statistical probabilities. This appears to 

be taken as the only relevant interpretation. However, do we know what statistical 
probabilities are? Did we check whether they are suitable for connecting up with 

causation? Again, the literature appears to take this as settled. Let me approach 

these questions by first briefly explaining how rich and unclear the concept of 
probability is despite the fact that its mathematical structure is unequivocally 
fixed.13 

The clearest interpretation is the subjective or Bayesian one. According to it, 
probabilities are rational degrees of belief. There are a lot of arguments why ratio
nal degrees of belief must take the form of probabilities. We may leave it open 

how cogent these arguments are and whether there might be other reasonable 

11. What is surprising is the far-reaching marginalization of deterministic causation. I find it very 
unlikely that we searched for a chimera for 2,000 years. 

12. Galavotti [2005] and Gillies [2000] are two very commendable presentations of this confusing 

field. 

13. Well, almost. There is some uncertainty concerning σ-additivity and concerning the repre
sentation of conditional probabilities via Renyi and Popper measures. This need not worry us 
here. 
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conceptions of degrees of belief.14 There is no doubt, though, that probabilities 
are by far the most familiar conception of these degrees. Subjectivists, Bruno de 

Finetti ahead, claim that this is indeed the only intelligible interpretation of prob
ability. However, we need not go so far; it suffices to say that it is at least one good 

and reasonable interpretation. 
I was surprised to read in Pearl [2000], right on p. 2: “We will adhere to the 

Bayesian interpretation of probability, according to which probabilities encode 

degrees of belief about events in the world and data are used to strengthen, update, 
or weaken those degrees of belief.” This is a resolute Bayesian avowal extending 

over the entire book. However, I suspect that he is not consistent in that avowal. 
The book’s later parts are about statistics, and statistics don’t refer to single events 
in the world, as I will point out below.15 

And the avowal betrays the quest for objectivity. There are no true subjective 

probabilities. They can and should be well-informed by the data; but then they can 

change to being even better informed. They might be called true if they conform to 

objective probabilities. However, this idea is highly problematic. One reason is that 
objective probabilities themselves are highly problematic, as we shall see. Another 
reason is that there is more to know about a fact than its objective probability (if 
it has one), for instance, the fact itself. Thus, perhaps, only a probability of 1 for 
the fact can be called true?16 I conclude: we better abstain from calling subjective 

probabilities true or false or taking them as representing reality. 
For causation this entails that there are nothing but causal beliefs, which may be 

more or less well-informed, which, however, cannot be called true. They do not rep
resent any causal reality. This runs counter to the general attitude we meet in the 

sciences. And it seems to run counter to Pearl’s own attitude that I have quoted in 

Section 43.1. Time and again, he slips into realistic talk, from causal beliefs to belief 
in causal facts. However, within the Bayesian interpretation this is an illegitimate 

14. For decades I have been propagating ranking theory as another model of degrees of belief. Not 
the least of my reasons is that ranking theory allows to state a theory of deterministic causation 

(which speaks of causes making their effects possible or necessary) in close parallel to proba
bilistic theories (which speak of causes making their effects more probable). See Spohn [2012], in 

particular chapter 14. 

15. For instance, Pearl [2000, section 7.5.4] discusses singular versus general causes. But his dis
cussion refers to statistical probabilities concerning populations and not to subjective probabil
ities about single events. 

16. Neither does it help to say that the proper probability is true only before the fact in question 

realizes, and probability 1 is true only after the fact. This would make truth time-dependent in 

unwanted ways. 
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move.17 So, it seems we should attempt to avoid the Bayesian interpretation in our 
context. 

But beware. Whenever we get into trouble with other interpretations, the sub
jective interpretation is the only one that always works, that makes sense in every 
application. We can always resort to making assertions only about our and other 
people’s (causal) beliefs. So, whenever a fallback position is needed, we may well 
be forced back into the subjective interpretation. 

Let me add a few remarks about Bayesian statistics. Bayesian statisticians, or 
Bayesians for short, are not subjectivists; they certainly grant objective probabil
ities in some sense. They only claim that in doing statistics we need to consider 
our prior assumptions as well, represented by our subjective probabilities. The tra
ditional Neyman–Pearson school hopes to do without these subjective elements. 
What sounds like a principled disagreement—it indeed is—apparently turns into 

a fair cooperation in practice. 
However, I think Bayesians have a delicate standing in our present context.18 

It won’t do for Bayesians just to use subjective as well as objective probabilities. 
For, each probability measure must have a uniform interpretation; one cannot mix 
different interpretations within one measure. So, the Bayesian needs to assume 

bridge principles translating between objective and subjective probabilities. Such 

principles are not hard to come by. For instance, if all I know about a given event 
is that its objective probability is x, my subjective probability for that event should 

obviously also be x. By introducing his so-called Principal Principle, Lewis [1980] 
has initiated a big philosophical discussion about such bridge principles; they may 
need generalization and modification. 

This is, however, not a satisfactory rescue for the Bayesian. One problem is that 
not all kinds of objective probability are equally suited for such bridge principles. 
We shall see below that the so-called statistical probabilities are indeed ill-suited. 
Another problem is that we cannot turn all probabilities the Bayesian refers to into 

objective ones. The required uniform interpretation of probabilities can only be a 

17. More generally, the tendency to slip from conditional belief to belief in conditional propo
sitions is ubiquitous. This step is so easy. However, the move hides all ambiguities between 

epistemic and realistic world conceptions. It is not innocuous at all. Stalnaker [1984, chapters 6 

and 7] is a paradigmatic, but in my view unsuccessful, struggle with what is going on in this move. 

18. Pearl [2018, p. 90] complains that “Bayesian subjectivity in mainstream statistics did nothing 

to help the acceptance of causal subjectivity.” The latter means for Pearl that each causal inquiry 
must start with positing a subjective causal model and must grant the possibility that data may 
not decide between two different causal models subjectively posited. This sharply differs from 

the subjectivity I am discussing here. 



43.4 Probability 881 

subjective one. This point then extends to his account of causation, which must be 

similarly subjective. Thus, we are back at the position above which Pearl avowed, 
but which we might want to avoid. 

Let’s turn, hence, to objective probabilities. Here, interpretational variance 

starts. Still, there is a common anchor. Everybody agrees that probabilities some
how ground in relative frequencies; that’s their connection to reality. However, 
this even holds for the Bayesian interpretation; of course, well-informed subjective 

probabilities listen, and are usually close, to observed frequencies. In particular, 
though, it holds for all objective probabilities. This grounding is spelled out in the 

fundamental law of large numbers, proved by Jacob Bernoulli already in 1689 and 

called the “Golden Theorem” by him. It guarantees that the relative frequencies in 

infinite independent repetitions converge to the single-case probabilities—though 

only in a probabilistic sense. This means that some notion of probability is already 
presupposed by the law of large numbers, and it says then how those probabilities 
probably manifest in frequencies. 

Frequentism, which has been very popular among working probability theorists, 
wants to turn around the relation. It is the doctrine that probability is defined as 
the limit of relative frequency in random sequences, where random sequences 
are subject to further qualifications, most notably complexity-theoretic ones. Fre
quentism’s crucial problem, with no good answer to date, is that it applies only 
to infinite sequences, strictly speaking. It cannot be employed for the single case, 
which is the one we are interested in. We want to know the probabilities governing 

the next throw of the coin, and this is about the next throw, not about an infinity 
of throws. Thus, frequentism is not supported by the law of large numbers, which 

already presupposes those single-case probabilities. 
Or to address our present concern: Suppose we could isolate a causal system 

modeled with its probabilities, what does it teach about the causal relations, if 
we run the system very often and speculate about the limiting frequencies? These 

relations are in the system, and they are somehow connected with the probabili
ties in the system and not with the frequencies in the repetitions. With respect to 

causation, too, we need a notion of objective probability that applies to the single 

case. 
There is such a notion that serves our purpose; philosophers call it the propen

sity interpretation. According to it, the objective probability of, for example, a 

die showing a 6, is something attributable to the die as such, an intrinsic fea
ture of the die and its set-up, the throwing device, a disposition that can only be 

described probabilistically and not deterministically, viz. a propensity. The single-
case propensity is basic, but it entails, of course, a long-run propensity, which 
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converges as described by the law of large numbers. A die or a roulette wheel are 

already good examples, although one may argue about whether they “really” are 

deterministic devices. 
The ultimate examples can be found in quantum and nuclear physics. Radium 

atoms, for example, have a propensity to decay. We could say that there are many 
different kinds of radium atoms, each with a different deterministic decay time. 
Determinism saved. However, this would make no sense at all, since there is no 

way to tell the kinds apart; it would be a distinction without a difference. Hence, 
it is much more reasonable to say that all radium atoms have the same irreducibly 
probabilistic propensity to decay governed by an exponential distribution. This is 
a genuine statistical law: all objects of a certain kind show the same stochastic 
behavior. 

The decay propensity of radium atoms is not immutable. It can change. For 
instance, we can excite the nucleus by various kinds of radiation and thereby accel
erate its decay in various ways. We may set up causal models representing these 

propensities and their potential changes. Such a model would describe genuine 

probabilistic causal laws applying to each single case in the same way. Under
standing probabilities objectively in this way would thus allow us understanding 

of causality in the same objective way. 
This is what we were looking for. However, the crucial point for the rest of the 

paper is: Success does not extend; propensity is not the kind of probability referred 

to in most applications of causal models discussed in the literature. These applica
tions belong to the social sciences, medicine, epidemiology, for example, and the 

statistical probabilities they refer to are not propensities as just described. Let me 

explain. 
Many of those models are a matter of life and death. I certainly have a deter

ministic propensity to die sometime. But it does not make sense to speak of any 
propensity of mine to die before 80 or after 80. There are millions of potential 
causes of my death, most of which are not within my reach. The chance set-up in 

which my future death is located spreads more or less over the entire surface of the 

earth and further. The hope that a universal wave function could decide about this 
propensity would be nothing but a silly reductionist phantasy. 

However, aren’t there mortality tables? Sure. They don’t tell anything, though, 
about my propensity. They tell how likely men in my age are to reach 80. But I am 

not an average man, nobody is. It is entirely unclear which specific subgroup would 

consist of the men relevantly similar to me, and if it were clear, there would defi
nitely not exist any statistics for that subgroup. This is the well-known problem of 
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the reference class, which has no good answer.19 It prevents transferring statistics to 

the single case; we can’t statistically infer single-case propensities. 
Certainly, though, we are inclined to reason as follows: If 60% of the men in 

my age group reach 80, and if you have no information about me that makes me 

in any way special, then your subjective probability for my reaching 80 should be 

60%, too. This reasoning applies a kind of bridge principle relating objective and 

subjective probability, or perhaps relating only frequency and subjective probabil
ity. Presumably, we use this kind of reasoning, at least roughly, whenever we read 

a statistic.20 But note that we thereby return to subjective probabilities about the 

single case, which always make sense. And note that the premise of the argument, 
the absence of special knowledge, is, strictly speaking, almost never satisfied. Usu
ally, we do have special knowledge about a given single case, which we reasonably 
conjecture to be statistically relevant, a bit at least, even though we do not have a 

relevant statistic. 
Note how different this is from my physical example. There we could legit

imately assume single-case probabilities that entail the statistical behavior of 
large samples. Here we only have the statistical behavior of large samples with
out any underpinning by objective single-case probabilities; only shaky subjective 

inferences about the single case are feasible. This is a world of difference. 
Of course, I have chosen a graphic example, the probability of death, something 

potentially caused in more ways than anything else. My point seems obvious in 

this example. However, the radium atom was an equally clear example for objec
tive propensities. Where on the scale from the one to the other example do the 

propensities get lost? I do not know; it seems very hard to say. They do get lost 
through the multitude and the externality of the causes of the object’s states to be 

probabilistically assessed. In view of this multitude what can we still attribute to 

the object itself? Already a person’s propensity to recover from a certain disease 

after taking a certain drug is a very unclear case, I think. Moreover, the onus is not 
on me to say where propensities are lost. The onus is on the friend of objective 

probabilities to show that he is still legitimately speaking of them. 
Perhaps, though, he is not speaking of propensities at all. The scientists fitting 

their causal models to statistical data refer to statistical probabilities; that’s what 
they would say. Let’s finally ask, then: what are statistical probabilities? Primarily, 

19. Probably, the reference class relevant for me consists only of myself—not good for doing any 
statistics. 

20. For an affirmative discussion of this statistical bridge principle, see Schurz [2019, pp. 57–68]. 
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they are just relative frequencies in a given population, which behave like mathe
matical probabilities. But frequencies are not probabilities. Genuine probabilities 
enter only through the random mechanism by which individuals are selected from 

the population. If each individual has an equal chance (= objective probability 
= propensity) to be selected, then the chance that an individual with a certain 

feature is selected is the same as the relative frequency of that feature in the pop
ulation. However, speaking of probabilities in this sense is only a roundabout way 
of speaking of the frequencies. 

Usually, the procedure is the other way around. We cannot register the entire 

population; we can only observe a representative sample, which is selected by such 

a random mechanism. Then inferential statistics is needed to probabilistically 
infer the distribution of the features in the population from that in the sample. 
But note that these inferred probabilities are not objective probabilities for the 

shape of the population; they are subjective probabilities expressing our expecta
tions about this shape. Of course, this does not mean that they are arbitrary. They 
proceed from an objective base in the representative selection mechanism by sta
tistical inference. However, making a random selection from the population does 
not make the population itself in any way chancy. 

Where does this leave us with respect to a causal model? It contains a set of 
variables that characterize the shape of the population, it contains causal arrows 
between those variables, and it contains many quantities that look like absolute 

and conditional probabilities. But these quantities are either observed frequen
cies in the sample or estimated frequencies in the population. And they confirm, or 
do not confirm, the causal arrows via the methods of causal inference. However, it 
must be clear that causes and effects in the model are nothing but relative frequen
cies in the population. By changing the relative frequencies for the cause variable 

one can change the relative frequencies of the effect variable. This is most useful 
information, for sure. But it is this kind of information and nothing else. And, I 
find, it makes the causal model appear quite mysterious because the causal story 
it delivers is a brute story about the population level without any underpinning 

from causal stories on the individual level. 
This may appear as a very unfair presentation of what is going on in causal 

models. In particular, my claim about the missing underpinning from the indi
vidual level rests on my claim that it rarely makes sense in the applications in 

the social sciences to speak of individual propensities. I suspect that the gen
eral attitude rather is to simply postulate those individual propensities. We may 
not know much about them, and they may have considerable variance. But we do 

know that they generate the frequencies we observe in the samples or estimates for 
the population. Hence, what we observe and estimate is an (statistically qualified) 
average individual propensity. 
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For instance, if 60% of the men of my age reach 80, then the average propen
sity of men of my age to reach 80 is 60%. The individual propensities diverge in 

unknown ways, but they must (roughly) have this average. If a certain drug raises 
the recovery rate for a certain disease from 20% to 50% in a sample (or in the test 
group as compared with the control group in a randomized controlled trial) or 
probably in the population, then the average recovery propensity of those having 

the disease is raised by the drug from 20% to 50%. Again, the individual propen
sities will diverge, but they must (roughly) have this average. As stated above, 
however, any inference to those individual propensities almost inevitably results 
in subjective probabilities about the individual cases. I have more than 60% con
fidence to reach 80, and if a person recovers after taking the drug, this is perhaps 
not just because a 50% propensity has played out well. 

This is in no way to question the great value of knowledge about average propen
sities (= observed or estimated frequencies) and about how to change these aver
age propensities. However, what is the conceptual gain of this move? We now 

have a hypothetical individual underpinning of the population frequencies. This 
is indeed a causal underpinning by hypothetical causal stories about hypotheti
cal individual propensities adding up to average propensities. However, we do not 
know much about that underpinning beyond the frequencies to which it leads. 
We do not have any statistical laws for the individual cases. And as explained, this 
underpinning is at best hypothetical and at worst meaningless. 

Let me make clear once more what my dialectics on the previous pages was sup
posed to be. I started out saying that a subjective interpretation of probabilities 
can be applied everywhere. This would be fine—except that it does not satisfy our 
objectivistic intuitions concerning causation. This motivated the search for suit
able, more objective interpretations that could save the objectivity of causation. 
This search was perhaps not entirely negative, but the objectivists can hardly be 

pleased by its weak and problematic results. 
My general moral hence is: We must not presuppose the objectivity of causation 

and of the notions with which it is related. The safe fallback position is always the 

subjectivistic one; perhaps we should indeed start with Pearl’s avowal of Bayesian-
ism. And starting from there, we must work hard to earn and establish objectivity, 
without guarantee of success. I don’t claim that Hume and Kant are thereby con
firmed. However, I hope I have succeeded in pleading for more openness toward 

their doctrines. 
This need not undermine the self-conception of scientists as truth seekers. It 

only suggests a more complicated picture of truth-seeking. Truth seeking is not 
just somehow adequately representing reality. It has much more to do with subjec
tive belief, with intersubjective agreement, with rational belief and belief change, 
guided by principles of epistemic rationality, which must be agreed upon in turn. 
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All of this must be made explicit. When we do so, we may (have to) take recourse to 

another kind of objectivity, the objectivity of rationality. This is of a normative kind 

and as such delicate, contested, and not secured at all. It must be earned as well. 
This picture of science is more complicated, also more difficult to explain to the 

public than the simple picture of just objectively representing reality. In the end, 
though, it is a more honest picture. 

Acknowledgments 
This research was supported by the DFG Cluster of Excellence “Machine 

Learning—New Perspectives for Science,” EXC 2064/1, project number 390727645. I 
am most grateful to Judea Pearl for 30 years of partnership. We never did joint work, 
but we extensively worked at common themes, to my great benefit. Concerning this 
paper, I am indebted to Eric Raidl for the support and many helpful comments. 

References 
H. Beebee. 2006. Hume on Causation. Routledge, London. 

P. Gärdenfors. 1988. Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, 
Cambridge, MA. DOI: https://dx.doi.org/10.2307/2275379. 

M. C. Galavotti. 2005. Philosophical Introduction to Probability. CSLI Publications, Stanford. 
DOI: https://doi.org/10.1007/s10670-007-9083-9. 

D. Gillies. 2000. Philosophical Theories of Probability. Routledge, London. DOI: https://doi. 
org/10.4324/9780203132241. 

C. Glymour. 2004. Critical notice on: James Woodward, making things happen. Br. J. Phil. 
Sci. 55, 779–790. DOI: https://doi.org/10.1093/bjps/55.4.779. 

C. G. Hempel and P. Oppenheim. 1948. Studies in the logic of explanation. Phil. Sci. 15, 
135–175. DOI: https://doi.org/10.1086/286983. 

D. Hume. 1739. A Treatise of Human Nature, Vol. I: Of the Understanding. (Page numbers 
refer to the edition of L.A. Selby-Bigge, Oxford: Clarendon Press 1896.) 

D. Hume. 1740. An Abstract of ‘A Treatise of Human Nature.’ DOI: https://doi.org/10.1093/oseo 
/instance.00046221. 

I. Kant. 1781. Kritik der reinen Vernunft. 

D. K. Lewis. 1973a. Counterfactuals. Oxford, Blackwell. DOI: https://doi.org/10.2307/2273738. 

D. K. Lewis. 1973b. Causation. J. Phil. 70, 556–567. DOI: https://doi.org/10.2307/2025310. 

D. K. Lewis. 1980. A subjectivist’s guide to objective chance. In R. C. Jeffrey (Ed.), Studies in 
Inductive Logic and Probability, Vol. II. University of California Press, Berkeley, 263–293. 

J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 
Morgan Kaufmann, San Mateo, CA. 

J. Pearl. 2000. Causality: Models, Reasoning, and Inference. Cambridge University Press, 
Cambridge. 

https://dx.doi.org/10.2307/2275379
https://doi.org/10.1007/s10670-007-9083-9
https://doi.org/10.4324/9780203132241
https://doi.org/10.4324/9780203132241
https://doi.org/10.1093/bjps/55.4.779
https://doi.org/10.1086/286983
https://doi.org/10.1093/oseo/instance.00046221
https://doi.org/10.1093/oseo/instance.00046221
https://doi.org/10.2307/2273738
https://doi.org/10.2307/2025310


References 887 

J. Pearl and D. MacKenzie. 2018. The Book of Why: The New Science of Cause and Effect. Basic 
Books, New York. 

A. Reutlinger, G. Schurz, and A. Hüttemann. 2019. Ceteris paribus laws. In E. Zalta (Ed.), 
Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/ceteris-paribus/. 

G. Schurz. 2019. Hume’s Problem Solved: The Optimality of Meta-Induction. MIT Press, 
Cambridge, MA. 

P. Spirtes, C. Glymour, and R. Scheines. 1993. Causation, Prediction, and Search. (2nd. ed.). 
Springer, Berlin. 2000, MIT Press, Cambridge, MA. 

W. Spohn. 1978. Grundlagen der Entscheidungstheorie. Kronberg/Ts.: Scriptor, out of print, 
pdf-version: http://www.uni-konstanz.de/FuF/Philo/Philosophie/Mitarbeiter/spohn.shtml. 

W. Spohn. 1980. Stochastic independence, causal independence, and shieldability. J. Phil. 
Log. 9, 73–99. DOI: https://doi.org/10.1007/BF00258078. 

W. Spohn. 2001. Bayesian nets are all there is to causal dependence. In M. C. Galavotti, 
P. Suppes, and D. Costantini (Eds.), Stochastic Dependence and Causality. CSLI
 
Publications, Stanford, 157–172.
 

W. Spohn. 2012. The Laws of Belief: Ranking Theory and Its Philosophical Applications. Oxford 
University Press, Oxford. 

W. Spohn. 2014. The epistemic account of ceteris paribus conditions. Eur. J. Philos. Sci. 4, 
385–408. DOI: https://doi.org/10.1007/s13194-014-0093-6. 

R. C. Stalnaker. 1984. Inquiry. MIT Press, Cambridge, MA. 

B. C. van Fraassen. 1989. Laws and Symmetry. Oxford University Press, Oxford. DOI: 
https://doi.org/10.1093/0198248601.001.0001. 

J. Woodward. 2002. There is no such thing as a ceteris paribus law. Erkenntnis 57, 303–328. 
DOI: https://doi.org/10.1023/A:1021578127039. 

J. Woodward. 2003. Making Things Happen: A Theory of Causal Explanation. Oxford 
University Press, Oxford. DOI: https://doi.org/10.1093/0195155270.001.0001. 

http://plato.stanford.edu/entries/ceteris-paribus/
http://www.uni-konstanz.de/FuF/Philo/Philosophie/Mitarbeiter/spohn.shtml
https://doi.org/10.1007/BF00258078
https://doi.org/10.1007/s13194-014-0093-6
https://doi.org/10.1093/0198248601.001.0001
https://doi.org/10.1023/A:1021578127039
https://doi.org/10.1093/0195155270.001.0001




Editors’ Biographies
 

Hector Geffner 
Hector Geffner was born and grew up in Buenos 
Aires, Argentina. He received a BSc in Electrical 
Engineering from the Universidad Simón Bolívar, 
Caracas, in 1983, and a PhD in Computer Science 

from UCLA in 1989. He then worked at the IBM 

T.J. Watson Research Center in New York for 2 

years, and at the Universidad Simon Bolivar, in 

Caracas, Venezuela. Since 2001, Hector has been 

a researcher at the Catalan Institute of Advanced 

Research (ICREA) and a professor at the Universi
tat Pompeu Fabra, Barcelona. Currently, he is also 

a Guest Wallenberg Professor at the University of 
Linköping, Sweden. 

Hector’s major research interests are in computational models of reasoning, 
action, learning, and planning. His research group pioneered a number of ideas 
in these areas including the formulation of planning as heuristic search, the for
mulation of goal recognition as planning, and formulations and methods for 
learning generalized plans. Currently, he is leading a project on representation 

learning for planning (RLeap) which is funded by an advanced grant from the 

European Research Council and that is aimed at bringing together model-free and 

model-based methods for acting and planning. 
Hector is a Fellow of AAAI and EurAI, and was an associate editor of the Artificial 

Intelligence journal and of the Journal of Artificial Intelligence Research. 
Among the awards he has received, he won best paper awards for papers pub

lished at JAIR and at the planning conference (ICAPS), three ICAPS Influential 
Paper Awards, and the 1990 ACM Dissertation Award for a thesis supervised by 
Judea Pearl. He is the author of the book Default Reasoning: Causal and Conditional 



890 Editors’ Biographies 

Theories (MIT Press, 1992), and with Blai Bonet of A Concise Introduction to Mod
els and Methods for Automated Planning (Morgan and Claypool, 2013). Together 
with Rina and Joe, Hector edited another book for Judea: Heuristics, Probability, 
and Causality: a Tribute to Judea Pearl (College Publications, 2010). Hector teaches 
courses on AI, logic, and social and technological change. 

Rina Dechter 
Rina Dechter is a Distinguished Professor of Com
puter Science at University of California, Irvine. She 

holds a PhD in Computer Science from UCLA (1985), 
an MS in Applied Mathematics from the Weizmann 

Institute, Rehovot, Israel (1975), and a BS in Mathe
matics and Statistics from the Hebrew University in 

Jerusalem (1973). 
Dechter’s research centers on computational 

aspects of automated reasoning and knowledge rep
resentation including search, constraint processing 

and probabilistic reasoning. She is the author of 
Constraint Processing published by Morgan Kauf

mann (2003), and of Reasoning with Probabilistic and Deterministic Graphical Models: 
Exact Algorithms published by Morgan and Claypool Publishers (2013, second ed. 
2019). She has authored and coauthored almost 200 research papers. 

Dechter is a Fellow of the Association for the Advancement of Artificial Intel
ligence (AAAI) (1994), of the Association for Computing Machinery (ACM) (2013), 
and the American Association for the Advancement of Science (AAAS) (2021), and 

was a Radcliffe Fellow from 2005 to 2006. She received the Association of Con
straint Programming (ACP) Research Excellence Award (2007), and a Classic AI 
Paper Award for a paper co-authored by Itay Meiri and Judea Pearl. She served as 
a co-editor-in-chief of Artificial Intelligence from 2011 to 2018. She also served on 

the editorial boards of Artificial Intelligence, Constraints Journal, the Journal of Arti
ficial Intelligence Research, and the Journal of Machine Learning Research. Dechter 
served as program chair or conference chair of several conferences including Con
straint Programming in 2000, AAAI in 2002, and Uncertainty in AI (UAI) in 2006 

and 2007. She is the conference chair-elect of International Joint Conference on 

Artificial Intelligence (IJCAI)-2022. 



Editors’ Biographies 891 

Joseph Halpern 
Joseph Halpern received a BSc in Mathematics from 

the University of Toronto in 1975 and a PhD in math
ematics from Harvard in 1981. In between, he spent 
2 years as the head of the Mathematics Department 
at Bawku Secondary School, in Ghana. After a year 
as a visiting scientist at the Massachusetts Institute 

of Technology (MIT), he joined the IBM Almaden 

Research Center in 1982, where he remained until 
1996, also serving as a consulting professor at Stan
ford. In 1996, he joined the Computer Science 

Department at Cornell University, where he is cur
rently the Joseph C. Ford Professor and was depart
ment chair from 2010 to 2014. 

Halpern’s major research interests are in reasoning about knowledge and 

uncertainty, security, distributed computation, decision theory, and game the
ory. Together with his former student, Yoram Moses, he pioneered the approach 

of applying reasoning about knowledge to analyzing distributed protocols and 

multi-agent systems. He has coauthored five patents, three books (Reasoning About 
Knowledge, MIT Press 2003; Reasoning about Uncertainty, MIT Press 2003; and Actual 
Causality, MIT Press 2016), and over 360 technical publications. 

Halpern is a Fellow of the AAAI, the American Association for the Advancement 
of Science (AAAS), the American Academy of Arts and Sciences, ACM, IEEE, the 

Game Theory Society, the National Academy of Engineering, and the Society for 
the Advancement of Economic Theory (SAET). Among other awards, he received 

the Kampe de Feriet Award in 2016, the ACM SIGART Autonomous Agents Research 

Award in 2011, the Dijkstra Prize in 2009, the ACM/AAAI Newell Award in 2008, 
and the Godel Prize in 1997, and was a Guggenheim Fellow from 2001 to 2002, 
and a Fulbright Fellow from 2001 to 2002 and 2009 to 2010. Two of his papers 
have won best-paper prizes at the IJCAI (1985 and 1991), and another two received 

best-paper awards at the Knowledge Representation and Reasoning Conference 

(2006 and 2012). He was editor-in-chief of the Journal of the ACM (1997–2003) and 

has been program chair of a number of conferences, including the Symposium 

on Theory in Computing (STOC), Logic in Computer Science (LICS), UAI, Princi
ples of Distributed Computing (PODC), and Theoretical Aspects of Rationality and 

Knowledge (TARK). He started and continues to be the administrator of CoRR, the 

computer science section of arxiv.org. 





Index 

A* algorithm, 108 

AAAI. See Association for the 

Advancement of Artificial 
Intelligence (AAAI) 

Abduction, 327, 692 

Absolute notion of causation, 871 
Actions, 321–325, 327 

Active learning, 600 

Actual causation, 625–626 

causal models and but-for 
causation, 626–631 

intransitivity and 

overdetermination, 634–636 

Pearl’s achievement, 642–643 
Pearl’s definitions, 637–642 

pre-emption and Lewis, 631–634 

Actual causes 
desert traveler, 359–360 

from necessity and sufficiency to, 
354 

singular sufficient causes, 
356–359 

structural information, 354–356 

sufficiency and necessity given 

forensic reports, 361–364 

Acyclic directed mixed graphs 
(ADMGs), 724, 823, 847 

latent projection, 835–837 

nested Markov factorization of, 
841 

Acyclic model, 516 

Add-list, 114 

Additive noise model, 781 
ADJ(y, z) condition, 115–116 

Adjacency, 225 

Adjustment, detecting heterogeneity 
through, 492–494 

Admissibility, 108 

heuristic, 108 

Admissible heuristics, mechanical 
generation of, 114–117 

Admissible sequence, recoverability 
in absence of, 418–419 

Admissible sets, 486–488 

Adversarial attacks, 786 

Adversarial vulnerability, 769, 786–787 

Agnostic causal model, 846 

AI. See Artificial intelligence (AI) 
Algebraic reduction method, 307 

Algorithmic independence, 778 

Algorithmic information theory, 778 

Algorithms, 611–612 

Alpha–Beta procedure (𝛼-𝛽 

procedure), 85 

branching factor of, 85–88 

𝛼-𝛽 pruning algorithm, 91 
analysis, 94–101 



894 Index 

analytical results, 93–94
 

binary game tree, 93
 
evaluation of 𝛼-𝛽, 97–101
 
informal description, 92–93
 
integral formula for Nn,d, 94–96
 

Analogical models, 114
 

Analysis by synthesis, 787
 

Ancestral graph, 559
 

Anticipatory node, 135, 160
 

Arbitrary equation, 351
 
Arbitrary graph, 194
 

Arithmetic peculiarity, 403
 
Armistead’s critique, 408–409
 

Artificial intelligence (AI), 4, 59, 125,
 
318, 767
 

community, 217
 

renaissance, 600
 

researchers, 130
 

revolution, 766
 

Association, 191
 
Association for the Advancement of
 

Artificial Intelligence (AAAI),
 
11, 396
 

proceedings, 12
 

Associationist view, 868
 

“Assumption-based” reasoning, 169
 

Assumptions, 310, 452–454
 

Asymptopia, 599
 

Asymptotic behavior, 63
 
Atomic intervention, 261
 
Attention mechanism, 791
 
Attrition, 422–423
 
Augmented DAGs, 566–567
 

Automatic problem-solvers, 117
 

Autonomous propagation as
 
computational paradigm,
 
148–151
 

Autonomy, 672
 

Average controlled direct effect, 381
 

Average indirect effect, 386–387
 

Average natural direct effect, 382
 

Back-door criterion, 258, 262–264, 282,
 
302–303
 

Balke, Alexander, 12
 

Baseline bias, 489
 

Bayes inference, 131
 
Bayes network, 145–146, 240
 

structure, 147
 

topology, 145
 

Bayes’ rule, 34, 164, 598
 

Bayesian networks (BNs), 3, 6–7,
 
33–34, 50–51, 125–126, 144,
 
217–218, 249, 534, 692, 824
 

Bayesian probabilities, 878
 

Bayesian statistics, 880
 

Bayesian tree, 132
 

Bayesian updating, 34
 

“Bayesian” approach, 598
 

Bayesianism, 616–617
 

BDDs. See Binary decision diagrams
 
(BDDs)
 

Belief propagation, 6
 

data fusion, 154–156
 

flow of belief, 162–163
 
propagation mechanism, 157–162
 

properties of updating scheme,
 
163
 

in trees, 151
 
Beliefs, 130
 

maintenance architecture, 130
 

networks, 125, 141–145
 

Bell Labs, 30
 

Berkson’s paradox, 407, 460n9
 

Bi-directional link, 227
 

Big Bang, 873
 
Big data revolution, 766
 

Binary decision diagrams (BDDs), 700
 



Blocking, 407
 

BNs. See Bayesian networks (BNs)
 
Boltzman machines, 168, 173
 
Bonawitz, Elizabeth, 600
 

Book of Why, The (Pearl), 36–37, 43–47,
 
805
 

Bottom-up inferences, 151
 
Bottom-up propagation, 135, 159
 

Bounding function, 106
 

Brak, Bnei, 29
 

Branching factor, 70, 92, 94
 

of alpha–beta (𝛼-𝛽) procedure, 
85–88 

of SOLVE algorithm, 73, 75
 

Brooklyn Polytechnic Institute, 30
 

But-for causation, 626–631
 

Calculus of intervention, 265
 

causal inference by surrogate
 

experiments, 269
 

inference rules, 265–267
 

preliminary notation, 265
 

symbolic derivation of causal
 
effects, 267–268
 

CAR. See Coarsened at random (CAR)
 
Carey, Susan, 594
 

Causal analysis, 614–616
 

Causal Bayes nets, 595, 855
 

collective causal models, 861–863 
community of knowledge, 

859–861 
core properties, 856–859 

human conception of causality, 
854–856
 

Causal Bayesian Network (CBN), 514,
 
537–539
 

CBN-Semi-Markovian, 546–547
 

Index 895 

cross-layer inferences through 

CBNs with latent variables, 
547–551 

with latent variables, 545–547 

Causal blocking, 607
 

Causal calculus, 458–460 

Causal DAG, 814
 

Causal diagram, 256–257, 537,
 
542–543, 825
 

calculus of intervention, 265–269
 

confounding bias, 262–265
 

formal semantics of, 258
 

graphical models and
 

manipulative account of
 
causation, 258–262
 

graphical tests of identifiability,
 
269–275
 

Causal Diagrams for Empirical
 
Research’ (Pearl), 218,
 
282–313
 

“Causal discovery” methods, 565, 682
 

Causal effects, 261–262, 267, 457–458 

recoverability of, 444–447 

symbolic derivation, 267–268 

transportability of, 471–475 

Causal factorization, 772–773, 776
 

Causal graphs, 577–579, 655, 774, 814
 

missingness graphs, 656–657
 

recoverability, 658–664
 

testability, 664–666
 

Causal hierarchy, 514–524
 

Causal Hierarchy Theorem (CHT),
 
528–533
 

Causal inference, 255, 258, 287, 511,
 
533, 860
 

with interference between units,
 
650–651 

via ℒ2-constraints, 535–551 
logical foundations of, 454–461 



896 Index 

notation, 514
 

for ODE-based systems, 681–682
 

with panel data, 648–649
 

Pearl hierarchy, 524–551
 
roadmap, 512–514
 

structural causal models and
 

causal hierarchy, 514–524 

successful and unsuccessful, 
296–297 

by surrogate experiments, 269
 

Causal information, 510
 

Causal irrelevance property, 823
 
Causal kinetic models, 677
 

causal kinetic models with 

driving noise, 678–679 

causal kinetic models with 

measurement noise, 677–678 

causal models for dynamical 
systems and related work, 
681
 

interventions, 679–680
 

Causal learning, 772, 789
 

Causal Markov condition (CMC),
 
538n30, 771
 

Causal mechanisms, 772
 

Causal modeling, 765
 

Causal models, 222, 293–295, 321–325,
 
626–631, 705, See also 

Structural causal models 
(SCMs) 

applications to synthesis of, 
231–234
 

associated with DAGs, 824
 

embedded, 227–231
 
as inference engines, 454–456
 

less restrictive model, 826–827
 

levels of, 773–774
 

methods driven by independent 
and identically distributed 

data, 769–771 
non-parametric structural 

equations with independent 
errors, 825–826 

patterns of, 224–226
 

SCM, 771–773
 
from statistical to, 769
 

Causal network, 144
 

Causal power, 320, 338
 

Causal queries, recovering, 420–422
 

Causal reasoning, 15–16, 805–807
 

Causal representation learning, 790
 

learning disentangled
 

representations, 792–793
 
learning interventional world
 

models and reasoning, 793
 
learning transferable
 

mechanisms, 790–791
 
Causal Revolution, 46, 652
 

Causal sufficiency, 355
 

Causal theory, 222, 246
 

Causality, 6, 15, 51–53, 145, 169–173,
 
600, 608–609, 671–672, 765,
 
878
 

human conception of, 854–856
 

from invariance to causality and
 

generalizability, 682–683 
relating causality to traditional 

statistical philosophies and 

“objective” statistics, 616–618 

theory, 617
 

Causality (Pearl), 13, 36, 219, 400, 593,
 
597
 

Causality into statistics, 612–613
 
Causally interpretable structured tree
 

graph models (CISTG
 

models), 817
 



Causation, 35, 191, 217, 310–311, 318, 
339, 607, 805, 867–868, See 
also Actual causation 

in 20th-century statistics, 613–614 

contemporary theories of, 869 

laws, 874–878 

model relativity of, 871–874 

notion of, 870–871 
probability, 878–886 

Cause-effect, 310 

discovery, 780–782 

puzzle, 39 

relationships, 35, 40, 255 

CBN. See Causal Bayesian Network 

(CBN) 
CDE. See Controlled direct effect 

(CDE) 
Centrally organized architecture, 170 

Ceteris paribus laws (cp laws), 876 

Chain-rule formula, 142 

Chemical reaction networks and 

ODEs, 675–677 

Child machine, 13 
CHT. See Causal Hierarchy Theorem 

(CHT) 
Cigarettes, 39 

CISTG models. See Causally 
interpretable structured tree 

graph models (CISTG 

models) 
City-block distance, 105 

CLEAR (predicate), 115 

CLEAR(z) condition, 115–116 

CLOSED node, 108 

Closed path, 578 

“Closest world” approach, 238 

Cluster assumption, 785 

CMC. See Causal Markov condition 

(CMC) 

Index 897 

Co-training theorem, 786 

Coarsened at random (CAR), 423 
Cognitive development, 593, 600 

Cognitive enterprise, 868 

Cognitive Systems Laboratory, 4 

Collapse, 528 

Collective causal models, 861–863 
Collider, 578 

Common Cause Principle, 770 

Community of knowledge, 859–861 
Commutativity, 119 

Compact ranking, 212 

Compatibility, 538n29 

Competitive training, 791 
Complete case analysis, 659 

Completed pattern, 226 

Completeness, 141–142 

proofs, 847–848 

Computation, 510 

Conceptual analysis. See also Formal 
analysis 

descriptive interpretation of 
indirect effects, 378–380 

descriptive vs. prescriptive 

interpretation, 376–377 

direct vs. total effects, 375–376 

policy implications of descriptive 

interpretation, 377–378 

Concomitants, 262, 289–290 

Conditional dependence, 141 
Conditional entailment, 210–211 
Conditional ignorability, 47, 550n39 

Conditional independence, 5, 132, 
145–148, 169–173, 258–259, 
534 

in probability theory, 191 
Conditional interventional 

distributions, identification 

of, 841–842 



898 Index 

Conditional path-specific
 
distributions, 753–754
 

Conditional probability, 140–141, 143,
 
150
 

Conditioning, 168
 

Confounded component, 543–545
 

Confounding, 319, 434, 488–489
 

Confounding bias, 262
 

back-door criterion, 262–264 

front-door criteria, 264–265
 

Connectedness, 191
 
Consequence relations, 204–206, 213
 
Consistency, 108–109, 141–142, 202,
 

823
 
property, 822
 

Constraint-propagation mechanisms,
 
150
 

Constructivism, 594
 

Context-specific independence using
 

SWIGs, 842–844
 

Controlled direct effect (CDE),
 
380–381, 715
 

in river blindness studies,
 
719–722
 

Controlled distribution, 458
 

Controlled effect, 376
 

Coronary Drug Project, 297
 

Correlational graphoids, 198
 

Counterfactual queries, 240
 

evaluating, 245–248 

linear-normal models, 250–252 

notation, 240–241 
party example, 241–242, 248–250 

probabilistic vs. functional 
specification, 242–245 

Counterfactuals, 19, 23–24, 304–306, 
321–325, 457–458
 

analysis, 304
 

empirical content of, 365–368
 

form, 365
 

formalism, 820
 

interpretation of counterfactual
 
antecedents, 240
 

model, 859
 

sentence, 237
 

structural origin of, 503–505
 

training, 792
 

triumph, 25
 

Counternomologicals, 875
 

Covariate adjustment, 581
 
Covariate-induced heterogeneity, 485
 

assessing, 485–486 

special cases, 486–488
 

Covariate-specific methods, 484
 

cp laws. See Ceteris paribus laws (cp
 

laws) 
Cross-layer inferences through CBNs 

with latent variables, 547–551 
Cybernetic governance mechanisms, 

768
 

D-map. See Dependency map (D-map) 
d-separation, 259, 278, 458–460, 559
 

criterion, 223, 714, 819
 

incompleteness in twin networks
 
due to deterministic 
relations, 845–846
 

d* separation, 421
 
DAGs. See Directed acyclic graphs
 

(DAGs)
 
Dangerous graphs, myth of, 312–313
 
Daniel Pearl Foundation, 8
 

DARPA machine common sense
 

program, 600
 

Darwiche, Adnan, 12
 

Data, 611–612, 868
 

data-driven causal methods, 794
 

data-driven sciences, 672
 



data-generating model, 435
 

data-node, 135
 

data-sharing philosophy, 476
 

fusion, 154–156
 

node, 160
 

Data Fusion theory, 396
 

Dawid, Phil, 7
 

Decision analysis, 606, 808–810
 

Decision makers, 807
 

Decision theory, 807–810
 

“Decision-theoretic” approach, 565
 

Decomposability, 117
 

Deduction, 327
 

Deep learning, 34, 38, 600
 

“Deep reinforcement” learning, 600
 

DeepMind, 39
 

DeepQ agent, 788
 

Defense mechanisms, 770
 

Degree, 205–206
 

Delete-list, 114
 

Dependence, 141, 310–311
 
Dependency equivalence, 224
 

Dependency map (D-map), 193–194
 

Descriptive interpretations, 374–377
 

of indirect effects, 378–380 

policy implications, 377–378
 

Desert traveler, 359–360
 

Design of Experiments (Fisher), 614
 

Deterministic algorithm, 69–70
 

Deterministic causal kinetic model,
 
677
 

Deterministic necessity, 357
 

Deterministic SCM, 672
 

Deterministic sufficiency, 357–358
 

Deterministic systems, 693–694
 

Developmental psychology, 593–594
 

Diagnostic rules, 5
 

Diagram, 814
 

Differential equation, 773
 

Index 899 

Differential treatment effect bias, 489
 

Digital goods, 768
 

Digital revolution, 766
 

Dimensionality of augmented space,
 
692
 

Direct effects, 25, 374–376
 

Direct transportability, 470
 

Directed acyclic graphs (DAGs), 142,
 
222–223, 246, 404, 557, 649,
 
656, 814
 

Dag-isomorphic distribution, 231
 
doing, 564–569
 

imagining, 569–571
 
ladder of causation, 558–559
 

model, 824
 

properties, 226
 

seeing, 560–564
 

syntax, 559–560
 

use of, 222, 259
 

Directed graph models, 285
 

Directional algorithm, 70, 73
 
Disentangled factorization, 774
 

Distributed hierarchical approach
 

combining top and bottom 

evidences, 132–133 
definitions and nomenclature, 

131
 
propagation of information 

through network, 134–135 

properties of updating scheme, 
136
 

structural assumptions, 131–132
 

summary of proofs, 136–137
 

token game, 135–136
 

Divide-and-conquer’ principle, 118
 

Do calculus, 7, 12, 405–406, 514,
 
548–551, 596, 814, 819, 833
 

evolution, 19
 

rules of, 460–461
 



900 Index 

Do-formalism, 672 

Doing, 519–522, 564 

augmented DAGs, 566–567 

downsizing and upsizing, 568 

empirical assessment, 567–568 

functional intervention DAGs, 
568–569 

intervention DAGs, 565–566 

Double modifiable structural model, 
859 

Downsizing, 563–564, 568 

Driving noise 

causal kinetic models with, 
678–679 

SCMs with, 673–674 

Dummy node, 160 

Eberhardt, Frederick, 600 

Edge expanded graph, 739 

Effect identifiability, 547–548 

Effectiveness, 822 

8-puzzle problem, 109–110, 114 

8-queens problem, 108 

Electronic Memories, 31 
EM algorithm. See Expectation 

Maximization algorithm 

(EM algorithm) 
Embedded causal models, 223–224, 

227–231 
Embedded pattern, 228 

Emotion Machine, The (Minsky), 40–41 
Empirical assessment, 562 

Encoder, 793 
“End-means” strategy, 118 

Energy, 766, 767 

revolution, 767 

Entangled factorizations, 772 

Epidemiology, 318 

Epistemic rationality, 885 

Equivalence, 231 
of counterfactual and structural 

analyses, 306–308 

“Equivalence and synthesis of causal 
models” paper (Verma), 218 

Error variables, 557–558 

Evidence, 140, 153 
Evidential reasoning, 151 
Excess-risk-ratio, 337 

Exclusion, 579 

restriction, 291, 306, 454 

Exogeneity 
bounds and basic relationships 

under, 334–336 

identifiability under, 336–339 

Exoplanet detection, 782–783 
Expanded graph 

direct and indirect effects via, 
731–738 

identification of cross-world 

nested counterfactuals of 
DAG 𝒢 under FFRCISTG 

model for, 742–747 

interventional interpretation of 
PDE under, 726–730
 

for single treatment, 738–739
 

Expectation Maximization algorithm
 

(EM algorithm), 703 
“Experience replay”, 769 

Experimental identification, 382–383 
“Experimental” distribution, 458 

Expert system, 5n1 
“Explaining-away” phenomenon, 5 

Explanation, 24 

Extended g-formula, 836 

Extended ID algorithm, 836, 839–842 

External data 

recoverability with, 440–444 

recoverability without, 437–440 



External Validity, 395
 

External validity, 452
 

formalizing transportability,
 
465–470
 

inference across populations,
 
461–465 

preliminaries, 454–461 
threats vs. assumptions, 452–454 

transportability of causal effects, 
471–475 

Factorization
 

associated with SWIG global
 
Markov Property, 831–833
 

implied by semi-Markov
 
condition, 545
 

Fair coin toss, 342–344 

Faithfulness condition, 285–286, 780
 

Faraday’s law, 30
 

FFRCISTG model. See Finest fully 
randomized CISTG model 
(FFRCISTG model) 

FFRCISTG models. See Finest fully 
randomized causally 
interpretable structured tree 

graph models (FFRCISTG 

models) 
Finest fully randomized causally
 

interpretable structured tree
 

graph models (FFRCISTG
 

models), 713–714, 725
 

identification of cross-world
 

nested counterfactuals of
 
DAG 𝒢 under, 742–747
 

proof of PDE bounds under,
 
754–755
 

Finest fully randomized CISTG model
 
(FFRCISTG model), 818, 819
 

NPSEM with, 826–827
 

Index 901 

SWIG representation of defining 

FFRCISTG assumptions, 833
 
Firing squad, 344–346
 

Fixed conditional-probability matrix,
 
165
 

Ford, Martin, 29
 

interview by, 29–42
 

Formal analysis
 
controlled direct effects, 380–381
 
natural direct effects, 381–385
 

natural indirect effects, 386–388
 

notation, 380
 

path-specific effects, 388–390
 

Formal semantics of causal diagrams, 
258
 

4-tuple topology, 181
 
Frequentism, 616, 881
 
Front-door criteria, 264–265
 

Functional DAGs, 562
 

Functional intervention DAGs,
 
568–569
 

Functional specification, 242–245
 

Fundamental laws of physics, 767
 

Fusion, 126
 

Fusion, 148
 

data fusion, 154–156
 

equations, 164–166
 

g-/do operator, 820
 

G-computation algorithm, 286
 

Galles, David, 23
 
Game searching methods, 93
 
Game trees
 

with arbitrary distribution of
 
terminal values, 65–69
 

solving, testing, and evaluating,
 
75–78
 

Garden of Eden, 805–808
 

back again in, 810
 



902 Index 

Gaussian errors for pedigree analysis, 
814 

Geffner, Hector, 7 

Gelman, Susan, 594 

General ordered factorization, 417 

Generalizability, 682–683 
Generalization, 452, 741–742, 766 

Generalized conditional ignorability 
rule, 834 

GeNIe, 561 
Genuine cause, 233–234 

Geographical information systems 
(GIS), 652 

Gestalt psychology, 788 

GIS. See Geographical information 

systems (GIS) 
Global Markov property, 824 

Glymour, Clark, 22, 595, 597 

Golden Theorem, 881 
Goodman, Noah, 597–598 

Gotlieb, Kelly, 11 
Graph separability, 145–148 

Graph-induced graphoids, 196–197 

Graphical approach, 47 

Graphical causal models, 647–648, 815 

applications, 648–651 
Graphical counterfactual models, 713 
Graphical formalism, 285–286 

Graphical identification criterion, 
384–385 

Graphical inference rules, 293 
Graphical models, 767, 823 

and manipulative account of 
causation, 258–262 

theory of, 404–405 

Graphical tests of identifiability, 269 

identifying models, 271–273 
nonidentifying models, 273–275 

Graphoids, 195–196 

and open problems, 196–198 

probabilistic dependencies and 

graphical representation, 
192–195 

theory of, 126, 191 
Graphs, 190, 258–259, 304–306, 820 

as models of interventions, 
259–262 

Greedy algorithm, 116, 119 

Griffiths, Tom, 597–599 

Half-sibling regression, 782–783 
Halpern, Joe, 23 
HEARSAY system, 130 

Hernan, Miguel, 46 

Heterogeneity, 483–484 

assessing heterogeneity in 

structural equation models, 
503–506 

covariate-induced heterogeneity, 
485–488 

latent heterogeneity between 

treated and untreated, 
488–490 

in recruitment, 495–497 

three ways of detecting, 490–495 

Heuristics, 31 
Heuristics, 49–50, 109–114 

goal tree in 8-puzzle, 104 

mechanical generation of 
admissible heuristics, 
114–117 

program, 117–119
 

properties, 107–109
 

search, 59
 

uses, 103–111
 
Heuristics: Intelligent Search Strategies 

for Computer Problem Solving, 
4 



Hidden causes, 148, 180–181 
Hidden variable causal models, 830 

extended ID algorithm, 839–842 

identification in, 835 

identification of conditional 
interventional distributions, 
841–842 

identified splitting operation in 

SWIG, 837–839 

latent projection ADMGs, 835–837 

representing context-specific 
independence using SWIGs, 
842–844 

Hierarchical inference systems, 130 

Hooke’s law, 16–17 

Human conception of causality, 
854–856 

Humans’ inferential reasoning, 140 

Hume, David, 868 

Hybrid graph, 227 

Hybridization, 793 
Hypotheses, 140 

Hypothetical interventions, 308–309 

“Hypothetical” reasoning, 169 

I-map. See Independency map (I-map) 
i-mapness, 538n29 

IBAL. See Integrated Bayesian Agent 
Language (IBAL) 

IBM, 30 

IC-algorithm. See Inductive causation 

algorithm (IC-algorithm) 
ICM. See Independent causal 

mechanisms (ICM) 
Identifiability, 263, 334, 459, 725–726 

under monotonicity and 

exogeneity, 336–339 

under monotonicity and 

non-exogeneity, 339–342 

Index 903 

Identification, 458–460, 809 

bounds and basic relationships 
under exogeneity, 334–336 

of conditional interventional 
distributions, 841–842 

conditions, 331 
definitions, notations, and basic 

relationships, 331–334 

in hidden variable causal models, 
835 

theory, 714 

Identifying models, 271–273 
Ignorability, 302–303 
IID problems. See Independent and 

identically distributed 

problems (IID problems) 
Imagined space, 793 
Imagining, 569–571 
Imputation based methods, 423 
In-depth understanding, 172 

Incompleteness of d-separation in 

twin networks due to 

deterministic relations, 
845–846 

Independence restrictions, 306 

Independency map (I-map), 193–194, 
196 

Independent and identically 
distributed problems (IID 

problems), 769 

Independent causal mechanisms 
(ICM), 774–779 

Indirect effects, 25, 374 

descriptive interpretation of, 
378–380 

Inducing path, 228–229, 421 
Induction problem, 594 

Inductive causation algorithm 

(IC-algorithm), 232–234 



904 Index 

Industrial revolutions, 766, 768
 

Inference, 700–702
 

net, 131
 
across populations, 461–465
 

rules, 265–267
 

Infinitessimal analysis, 209
 

Influence networks, 144
 

Information, 766
 

revolution, 767
 

Instrumental variable analysis (IV
 

analysis), 575–576, 579–580 

causal graphs, 577–579 

qualitative analysis, 580–581 
quantitative analysis, 581–588 

Integrated Bayesian Agent Language 

(IBAL), 700
 

Interpretation process, 148–149
 

Interval truncation, 580
 

Interventional interpretation of PDE
 

under expanded graph, 
726–730
 

Interventional SCM, 519
 

Interventionally equivalent
 
distribution, 674
 

Interventionist theory of causal Bayes
 
nets, 869
 

Interventionist theory of mediation,
 
726
 

direct and indirect effects via 

expanded graph, 731–738 

expanded graphs for single 

treatment, 738–739 

generalizations, 741–742 

identification of cross-world 

nested counterfactuals of 
DAG 𝒢 under FFRCISTG 

model, 742–747 

interventional interpretation of 
PDE under expanded graph, 
726–730 

on substantive relationship 

between different 𝒢ex graphs 
and 𝒢edge, 739–741 

Interventions, 457–458, 628, 674
 

as conditionalisation, 309–310
 

DAGs, 565–566
 

Intransitivity, 634–636 

Intrinsic motivation, 789
 

Intuition, 5
 

Invariance, 672, 783–789 

criterion, 777n8 

Inverse Probability Weighted
 

Methods, 423
 
Israel Institute of Technology, 30
 

IV analysis. See Instrumental variable 

analysis (IV analysis) 

Jeffrey’s rule, 162
 

Joint distribution, 175, 264, 458
 

Joint probability distribution, 19, 143,
 
517
 

Kepler space telescope, 782
 

Knowledge. See also Learning
 

community of, 859–861
 
knowledge-based systems, 5
 

Kolmogorov complexity, 778
 

ℒ2 connection, 539
 

Ladder of causation, 558–559 

“Language of thought” probabilistic
 
logics, 599
 

Languages, 701
 
Latent heterogeneity 

extreme case, 501–503 
between treated and untreated, 

488–490 



Latent variables, 415
 

Laws, 874–878
 

Learning, 703–704
 

disentangled representations, 
792–793
 

methods, 794
 

transferable mechanisms,
 
790–791
 

Legal reasoning, 318
 

Legal responsibility from
 

experimental and 

nonexperimental data, 
349–351 

Lewis, David, 25, 631–634
 

chain criterion, 355
 

relation to Lewis’
 
counterfactuals, 327
 

Likelihood, 141
 
ratio, 133, 154
 

Linear difference equation, 82
 

Linear-normal models, 250–252
 

Linearity, 288
 

Listwise deletion, 659
 

Local compactness, 212
 

Local invertability, 353–354
 

Loop-cut conditioning, 126
 

Lotka–Volterra model, 676, 677
 

Low-density separation assumption,
 
785
 

Machine learning, 34, 593–594,
 
765–766, 782
 

causal representation learning,
 
790–793 

cause–effect discovery, 780–782 

half-sibling regression and 

exoplanet detection, 782–783 
independent causal 

mechanisms, 774–779 

Index 905 

invariance, robustness, and 

semi-supervised learning, 
783–789 

levels of causal modeling, 
773–774 

mechanization of information 

processing, 766–769 

from statistical to causal models, 
769–773
 

Magic Shield of David, 668–669
 

Magic square, 668
 

Manhattan distance, 105
 

Manifest distribution, 416
 

Manipulated graph, 266
 

MAR. See Missing At Random (MAR)
 
Marginal probability, 143
 
Markov assumption, 328–329
 

Markov boundary, 195
 

Markov chain, 147
 

Markov chain Monte Carlo statistical
 
inference algorithms
 
(MCMC statistical inference
 

algorithms), 51, 702
 

Markov equivalent, 560
 

Markov fields approach, 144
 

Markov Fields theory, 194
 

Markov network, 232
 

Markov property, 171, 853–854,
 
856–857
 

Markov relative, 545
 

Markov relevant path, 829
 

MARKOV-NET, 194
 

Markovian Causal Bayesian Networks,
 
535–540
 

Markovian models, 341–342, 385, 516
 

MAX nodes, 92, 95
 

Maximum Likelihood method, 423
 
Maximum-entropy approach (ME
 

approach), 208–210 



906 Index 

MCAR. See Missing Completely At 
Random (MCAR)
 

McDonnell Foundation, 597
 

MCMC statistical inference
 

algorithms. See Markov 
chain Monte Carlo statistical 
inference algorithms 
(MCMC statistical inference 

algorithms) 
ME approach. See Maximum-entropy 

approach (ME approach) 
Mean complexity of solving 

(h, d, P0)-game, 69–75 

Measurement noise 

causal kinetic models with, 
677–678 

SCMs with, 672–673 
Mediating instruments, detecting 

heterogeneity through, 
494–495 

Mediation, 24
 

formula, 713
 
Mediation analysis, 25, See also
 

Conceptual analysis
 
approaches to mediation based 

on counterfactuals defined 

in mediator, 715–726 

FFRCISTG models, 713–714
 

interventionist theory of
 
mediation, 726–747
 

path-specific counterfactuals,
 
747–754
 

path-specific distributions,
 
714–715
 

Mediator (M), 714
 

approaches to mediation based
 

on counterfactuals defined
 

in, 715
 

FFRCISTG model, 723–725 

PDE, 715–716 

PDE and CDE in river blindness 
studies, 719–722 

PDE identification via mediation 

formula under NPSEM-IE, 
722
 

testable vs. untestable 

assumptions and 

identifiability, 725–726 

two hypothetical river blindness 
treatment studies, 717–719
 

Message passing scheme, 136
 

Meta-analysis, 26
 

Meta-transportability, 476
 

Metaphorical models, 114
 

Michaelis–Menten kinetics, 677
 

Microscopic models, 790
 

Microscopic structural equation
 

models, 790
 

MIN nodes, 92, 95
 

Mind Magazine, 12
 

Mini Turing Test, 13
 
Minimal labeling, 827, 834
 

Minimal network theory, 859
 

Minimal ranking function,
 
uniqueness of, 211–213
 

Minimum spanning tree (MST), 107
 

heuristic, 111
 
Minimum-spanning-tree problem, 118
 

Minsky, Marvin, 40
 

Miraculous Analysis (Lewis), 240
 

Missing At Random (MAR), 420, 423,
 
655
 

recoverability in, 658–660
 

Missing Completely At Random
 

(MCAR), 420, 423, 655
 

recoverability in, 658–660
 

Missing data, 423–424
 



Missing Not At Random (MNAR), 424,
 
656
 

Missingness Graphs (m-graphs), 414,
 
424, 656–657, 660–664
 

graphical representation, 657
 

and recoverability, 414–416
 

Missingness process, 426–427 

MNAR. See Missing Not At Random 

(MNAR) 
Model, 202
 

model-immanent function, 873
 
relativity of causation, 871–874
 

Modelling errors, 311–312 

Modern probabilistic programming 

systems, 706
 

Modern production languages, 706
 

Modularity, 672
 

advantage of, 33
 
feature of, 34
 

Money, 766
 

Monotonicity
 
assumption, 291
 
identifiability under, 336–342
 

Moralization, 559–560
 

MOVE(X1, Y1, Z1) operator, 115
 

MST. See Minimum spanning tree
 

(MST)
 
Multi-level causal models, 861
 
Multi-task learning, 787–788
 

Multidirectional propagation process,
 
149
 

Multiply connected networks, 
summary and extensions 
for, 167–169 

Multivariate Gaussian, 672
 

Mutilated graphs, 828
 

Mutual information, 770
 

n-cycle tree, 79
 

Index 907 

NASA. See National Aeronautics and 

Space Administration 

(NASA) 
National Aeronautics and Space 

Administration (NASA), 782
 

Natural direct-effect (NDE), 381–385
 

Natural effect, 376
 

Natural indirect effects, 386–388
 

Nature, 17–18, 20–21
 
NDE. See Natural direct-effect (NDE)
 
Necessary causes, 331–342
 

Necessary-and-sufficient cause, 318
 

Negative causal assertions, 257
 

Neighbor system, 196
 

Neighborhood, 191
 
Nested Markov factorization, 841
 
Neural networks, 40
 

Neuron diagrams, 321n5
 

Neyman–Rubin model, relation to,
 
330–331
 

Neyman–Rubin–Holland model, 304
 

Nobel Prize of Computing, 11
 
Nodes, 131, 415
 

processors, 134
 

Noise inputs, 697
 

Noisy AND gates, 145, 353
 
Noisy OR gates, 145, 353
 
Non-directional algorithm, 88
 

Non-exogeneity, identifiability under,
 
339–342
 

(Non-graphical) causal inference
 

models, 817
 

Non-monotonic models,
 
identification in, 351–354
 

Non-monotonic reasoning, 126
 

Non-parametric identification, 551
 
Non-parametric structural equation
 

models (NPSEMs), 293, 295,
 
713, 813–814, 820
 



908 Index 

Non-parametric structural equations
 
with independent errors
 
(NPSEM-IE), 814, 824–826
 

PDE identification via mediation
 

formula under, 722
 

Non-recoverability, 664
 

criteria for joint and conditional
 
distributions, 419
 

Nonexperimental identification,
 
383–384
 

Nonidentifying models, 273–275
 

Nonparametric analysis, 484
 

Nonparametric models, assumptions
 
in, 456–457
 

Nonparametric structural equations,
 
259
 

with single-world
 

independences, 826–827
 

Normality, 641
 
Normative decision theory, 809
 

Normative theory, 808
 

NPSEM-IE. See Non-parametric
 
structural equations with
 

independent errors
 
(NPSEM-IE)
 

NPSEMs. See Non-parametric
 
structural equation models
 
(NPSEMs)
 

Objective probabilities, 881
 
Observational distribution, 672
 

Observational studies, 46
 

Observationally equivalent
 
distribution, 674
 

Observed data distribution, 657
 

ODEs
 
challenges in causal inference for
 

ODE-based systems, 681–682
 

chemical reaction networks and,
 
675–677
 

Ohm’s law, 365
 

Olendorf, Franz, 4
 

OLS. See Ordinary least squares (OLS)
 
1-entailment, 205–208
 

“One-hot encoding”, 700
 

OPEN node, 108
 

Open path, 578
 

Optimal assignment problem, 107
 

Optimal branching factor, 74, 77
 

Ordinary differential equations, 790
 

Ordinary least squares (OLS), 575
 

Overdetermination, 634–636
 

Parent–child distributions, 561
 
Partial correlation coefficient, 198
 

Partial interference assumption, 650
 

Partially-directed graphs, 226–227
 

Passive observational studies, 616
 

Path, 578
 

models, 300
 

parameter, 577
 

Path-specific counterfactuals, 747–754
 

conditional path-specific
 
distributions, 753–754
 

edge consistent, 749–751
 
NPSEM-IE model associated with
 

DAG, 751–752
 

potential outcome, 748
 

Path-specific effects, 375, 388–390
 

Patterns of causal models, 224–226
 

Paz, Azaria, 126
 

PCH. See Pearl Causal Hierarchy
 
(PCH)
 

PD. See Probability of disablement
 
(PD)
 

PDE. See Pure direct effect (PDE)
 



PE. See Probability of enablement 
(PE) 

Pearl, Judea, 3, 7–8, 11–12, 29–42,
 
59–60, 125–126, 217–219,
 
395–396, 510, 512, 625
 

annotated bibliography by, 49
 

Bayesian networks, 6–7, 50–51
 
causal, casual, and curious, 53–55
 

causality, 51–53
 
search and heuristics, 49–50
 

teaching courses, 5
 

vortex, 4, 30
 

Pearl, Ruth, 7
 

Pearl Causal Hierarchy (PCH), 512,
 
515, 526–528 

doing, 519–522 

imagining counterfactual worlds, 
522–524
 

seeing, 517–519
 

Pearl hierarchy, 524
 

graphical perspective, 533–551
 
logical perspective, 524–533
 

Pearl-y Cognitive Science, 598
 

Pearl’s theory, 858
 

Pedigree analysis, 814
 

Philosophy, 867
 

of science, 593–594
 

Physical good, 768
 

Piaget, Jean, 594
 

Pilot randomized experiment,
 
495–496 

PN. See Probability of Necessity (PN) 
PNS. See Probability of necessity and 

sufficiency (PNS)
 
po-calculus, 819
 

Pohl, Ira, 5
 

Poincaré Equation, 98
 

Point truncation, 580
 

proof of adjustment as, 590–591 

Index 909 

Polytree, 33
 
Population SWIGs, 846
 

Postintervention distribution, 458
 

Potential cause, 233–234
 

Potential outcomes (po), 820, 833
 
calculus, 833
 
and identification, 833–835
 

weaker causal models to, 846
 

Potential response, 519–520 

variables, 244
 

Practical interventions, 308–309
 

Pre-emption, 631–634
 

Precondition-list, 114
 

Predictive form, 365
 

Preferential selection, 434–435
 

Preliminaries, 454–461
 
Preprocessing approach, 169
 

Prequential model, 284
 

Prescriptive interpretations, 374–377
 

Primitive predicates, 114–115
 

Primitive processors, 167
 

Principal Principle, 880
 

Probabilistic causal model, 323–325
 

Probabilistic causality, relation to,
 
328–330
 

Probabilistic DAG, 561
 
Probabilistic dependencies and
 

graphical representation, 
192–195 

“Probabilistic evaluation of
 
counterfactual queries”
 
paper (Balke), 218
 

Probabilistic graphoids, 197–198
 

Probabilistic Horn abduction, 705
 

Probabilistic independence demands
 
physical independence, 
strength of, 609–610
 

Probabilistic methods, 5
 

Probabilistic models, 113
 



910 Index 

and deterministic systems, 
693–694 

Probabilistic programming 

languages, 691–692
 

causal models, 705
 

inference, 700–702
 

learning, 703–704
 

other issues, 704–705
 

possible worlds semantics,
 
694–700 

probabilistic models and 

deterministic systems, 
693–694 

Probabilistic Reasoning (Pearl), 13
 
Probabilistic Reasoning in Intelligent
 

Systems, 6, 217
 

Probabilistic semantics, 561
 
Probabilistic specification, 242–245
 

Probability, 607, 612, 874, 878–886
 

distribution, 165
 

theory, 33, 140, 876n7
 

tree, 299–300
 

of winning standard h-level game
 

tree with random WIN 

positions, 62–65 

Probability of causation, 319 

examples and applications, 
342–351 

identification in non-monotonic 
models, 351–354 

necessary and sufficient causes, 
331–342 

from necessity and sufficiency to 

“actual cause”, 354–364 

structural model semantics, 
321–331
 

Probability of disablement (PD), 332
 

Probability of enablement (PE),
 
332–333 

Probability of Necessity (PN), 319–320,
 
331
 

Probability of necessity and
 

sufficiency (PNS), 332, 524
 

Probability of Sufficiency (PS),
 
319–320, 331–332
 

ProbLog, 700, 705
 

ProbTorch, 706
 

Processor, 134
 

Propagation, 148
 

autonomous propagation as 
computational paradigm, 
148–151 

belief propagation in trees, 
151–163 

equations, 166–167 

of information through network, 
134–135 

in singly connected networks, 
163–167
 

Propensity interpretation, 881
 
Proposition, proof of, 760–761
 
Prospect theory, 809
 

PROSPECTOR, 5
 

PS. See Probability of Sufficiency (PS)
 
Pseudo-Simula program, 698
 

Psychology, 318
 

Purcell, Ed, 7
 

Pure direct effect (PDE), 713, 715–716,
 
743–747 

detecting confounding via 

interventions on A and S, 
759–760 

interventional interpretation of 
PDE under expanded graph, 
726–730 

PDE identification via mediation 

formula under NPSEM-IE, 
722
 



proof of PDE bounds under 
FFRCISTG model, 754–755 

proof of PDE not identified in 

river blindness study, 
756–759 

proof of proposition, 760–761 
in river blindness studies, 

719–722 

Purple expressions, 24 

PyProb, 706 

Qualitative analysis, 580–581 
Qualitative controlled unit-level 

direct-effect, 380 

Qualitative unit-level indirect effect, 
386 

Qualitative unit-level natural direct 
effect, 381–382 

Quantifier, 150 

Quantitative analysis, 581 
selection as function of mediator, 

584–586 

selection as function of 
treatment, 581–584 

selection on treatment and 

unobserved confounder, 
587–588 

Quantitative controlled unit-level 
direct-effect, 380–381 

Query, 427 

Radiation effect on leukemia, 346–349 

Rajchman, Jan, 30–31 
Random variables, 288, 820 

Randomized clinical trials (RCT), 46 

Randomized trials, detecting 

heterogeneity in, 491–492 

Ranking 

function, 211–212 

Index 911 

theory, 879n14 

Rational closure, 205 

Rational constructivism, 598 

Rational monotony, 206 

Rational monotony of admissible 

rankings, 213 
RBN. See Recursive Bayesian network 

(RBN) 
RCA Laboratories, 30 

RCT. See Randomized clinical trials 
(RCT) 

Realistic statistical analysis, 611 
Recanting district criterion, 752 

Recoverability, 414–416, 658 

in absence of admissible 

sequence, 418–419 

of causal effects, 444–447 

without external data, 437–440 

with external data, 440–444 

as guide for estimation, 659–660 

of joint distribution in MCAR 

and MAR models, 658–659 

in MAR and MCAR problems, 
658–660 

in MNAR problems, 660–664 

Recruitment, heterogeneity in, 
495–497 

Recursive Bayesian network (RBN), 
861–862 

Recursive model. See Acyclic model 
Recursive substitution, 820 

Reference class, 883 
Reflection, 869 

Regularity theory of causation, 869 

Regularity view, 868 

Reinforcement learning, 39–40 

Reinforcement learning (RL), 788–789 

Relaxed models, 111–112 

Relaxed N × N-puzzle, 118 



912 Index 

Relevance, 190–191, 579
 

boundary, 196
 

sphere, 196
 

Reliable independence, 234
 

Reparametrization trick, 790
 

Response function, 243
 
Response-function variable, 244
 

Risk-difference, 337
 

River blindness studies, 744–745
 

PDE and CDE in river blindness 
studies, 719–722 

proof of PDE not identified in, 
756–759 

two hypothetical river blindness 
treatment studies, 717–719
 

RL. See Reinforcement learning (RL)
 
Road map, shortest path in, 105
 

Robot planning, 107–108
 

Robustness, 783–789
 

Ron, Amiram, 4
 

Root node, 160
 

Rosenbaum, Paul, 219
 

Rubin’s model, 260
 

for causal inference, 301
 
Rudimentary pattern, 226
 

Rule-based systems, 5
 

Rule-priority relation, 210
 

Run-of-the-mill probabilistic models,
 
858
 

S-admissibility, 471–475
 

s-Recoverability, 437–444
 

Scenarios invite reversals, 404–405
 

Scheines, Richard, 22, 595, 597
 

Schulz, Laura, 600
 

Scientific inference, 606–608
 

SCMs. See Structural causal models
 
(SCMs)
 

SCOUT, 94
 

algorithm, 78–79, 85, 88
 

analysis of SCOUT’s expected
 

performance, 79–85
 

asymptotic performance, 86
 

flow-chart, 80
 

Screening neighborhood, 147
 

Search, 49–50
 

Seeing, 517–519, 560
 

downsizing and upsizing, 
563–564
 

empirical assessment, 562, 564
 

functional DAGs, 562
 

qualitative structure, 560–561
 
quantitative structure, 561
 

Selection bias, 396, 433, 576
 

recoverability of causal effects,
 
444–447
 

recoverability with external data,
 
440–444
 

recoverability without external
 
data, 437–440
 

related work and contributions,
 
435–437 

Selection diagrams, 396, 465–468 

Selection variables, 465–468 

Selection-backdoor adjustment, 
446–447
 

Selection-backdoor criterion, 445–446
 

Self-consciousness, 793
 
Semantics, 694–700
 

Semi-decomposable models, 118
 

Semi-Markov relative, 545
 

Semi-Markovian causal Bayes
 
networks, 540–551 

Semi-Markovian models, 516, 814n2 

revisiting locality in, 543–545 

Semi-supervised learning (SSL), 
783–789 



Semi-supervised smoothness
 
assumption, 786
 

SEMs. See Structural equation models
 
(SEMs)
 

Sensible interpretation, 400
 

Sensitivity to generative process, 319
 

Separable effects, 739
 

Separation, 147, 560
 

Sequential factorization, 417–418
 

recovering probabilistic queries 
by, 416–418
 

Short-term success, 33
 
Shortest path in road map, 105
 

Simple Attrition, 422
 

recovering causal effects under, 
423
 

recovering joint distributions 
under, 422
 

Simpliciter, 871
 
Simpson, Edward H., 400
 

Simpson’s paradox, 46, 395, 399
 

Armistead’s critique, 408–409 

correct decision, 405–408 

history, 399–402 

resolution, 402–408 

scenarios invite reversals, 
404–405 

surprise, 403–404
 

Simula program, 691, 701
 
Single-world intervention graphs
 

(SWIGs), 714, 819, 827–831,
 
See also Directed acyclic
 
graphs (DAGs)
 

context-specific independence 

using, 842–844 

factorization associated with 

SWIG global Markov 
Property, 831–833 

global Markov Property, 830
 

Index 913 

identified splitting operation in,
 
837–839
 

representation of defining
 

FFRCISTG assumptions, 833
 
Singly connected networks
 

derivation of updating rules for,
 
181–183
 

propagation in, 163–167
 

Singular sufficient causes, 356–359
 

Singular-event sufficiency, 358–359
 

Social networks, 652
 

Social psychology, 857
 

Social sciences
 
future of causal research in, 652
 

research, 647–648
 

Solution tree, 69
 

SOLVE, 70–73
 
structural identity, 75
 

Sparse causal shift training, 792
 

Sparse mechanism shift, 776
 

Specific evidence, 153
 
Speech recognition, 107–108
 

Spirtes, Peter, 22, 595, 597
 

Spurious correlation, 171, 434
 

SRI. See Stanford Research Institute
 

(SRI) 
SSL. See Semi-supervised learning 

(SSL)
 
STAN, 706
 

Stanford Research Institute (SRI), 5n1
 
Star distribution, 173
 
Star-decomposability, conditions for,
 

183–185 

Star-decomposable
 

distribution, 173
 
triplets, 176–178
 

State, 171
 
State-approach, 107
 

Statistical analysis, 288
 



914 Index 

Statistical learning theory, 769 

Statistical probabilities, 878, 883 
Statistical structure, 778 

Statistical tasks, 395 

Statistics, 35–36, 606–607 

Stochastic causal kinetic model, 679 

Stochastic relaxation, 168 

Stochastic SCM, 673 
Strategic behavior, 787 

Stratified protocol, 223 
Strict exogeneity, 649 

STRIPS (robot-planning program), 
114, 118 

Structural assumptions, 131–132 

Structural causal models (SCMs), 
454n3, 511, 514–524, 672, 765, 
771–773, 789, 813 

with driving noise, 673–674 

interventions, 674 

with measurement noise, 672–673 
time-dependent data, 675 

Structural constraints, 534 

Structural equation formalism, 820 

Structural equation models (SEMs), 
300–301, 373–374, 453–454, 
456–457, 626, 648, 816, 822 

assessing heterogeneity in, 
503–506 

Structural equations, 263, 304–306, 
820 

Structural error, 577 

Structural information, 354–356 

Structural models, 321 
causal models, actions and 

counterfactuals, 321–325 

examples, 325–327 

relation to Lewis’ 
counterfactuals, 327 

relation to Neyman–Rubin 

model, 330–331 
relation to probabilistic causality, 

328–330 

semantics, 321 
Structure learning, 682, 703 
Structuring causal trees, 169 

causality, conditional 
independence, and tree 

architecture, 169–173 
open questions, 180–181 
problem definition and 

nomenclature, 173–175 

star-decomposable triplets, 
176–178 

tree-reconstruction procedure, 
178–180 

Subjective probabilities, 878 

Submodels, 322–323 
Successors, 108 

Sufficient causes, 318, 331–342 

Superconducting supercollider of 
selection, 610–611 

Superconductivity, 30–31 
Surrogate endpoint, 464 

Survival of the fittest method, 13 
Susceptibility, 338 

SWIGs. See Single-world intervention 

graphs (SWIGs) 
Symbolic languages, 525–526 

Symmetric overdetermination, 635 

Syntax, 559–560 

System-Z, 126 

conditional entailment, 210–211 
consequence relations, 204–206 

illustrations, 206–208 

ME approach, 208–210 

Systematic relaxations, 112 



Technion Magazine, 3
 
Tel Aviv, 3
 
Temporally aggregated time series,
 

790
 

Tenenbaum, Josh, 597–598
 

TEST, 75
 

flow-chart, 76
 

optimality, 78
 

structural identity, 75
 

superiority, 79
 

Testability, 664–666
 

Testable assumptions, 725–726
 

Testing, 310
 

compatibility between
 

underlying and manifest
 
distributions, 427
 

Theorem proving, 107–108
 

Theory of mind, 598
 

“Theory theory”, 594
 

Thinking, 793
 
Threats, 452–454
 

Time-dependent data, 675
 

Token game, 135–136
 

Toleration, 202
 

Top-down inferences, 151
 
Top-down propagation, 135, 159
 

Total effect, 374–376
 

Traditional statistical analysis,
 
614–616
 

Transparency, 33, 142
 

“Transparent” revision process, 149
 

Transportability, 24–25
 

of causal effects, 471–475 

definitions and examples, 
468–470 

formalizing, 465–470 

selection diagrams and selection 

variables, 465–468 

Index 915 

Traveling Salesman Problem (TSP), 
106–107 

Treatise of Human Nature, Vol. I
 
(Hume), 868
 

Treatment effects, 256
 

Treatment on the treated, 488
 

Treatment-dependent sample, 435
 

Treatment-induced IV selection bias,
 
576
 

Tree architecture, 169–173
 
Tree dependence, 172
 

Tree-decomposable distribution, 174
 

Tree-dependent random variables, 173
 
Tree-reconstruction procedure,
 

178–180 

Tree-structured influence networks, 
151
 

Trivial transportability, 470
 

Trivially recoverable query, 420
 

True distribution, 657
 

Truncated factorization product,
 
539–540
 

Truncation, 580
 

Truncation bias expressions, 589–590
 

TSP. See Traveling Salesman Problem
 

(TSP)
 
Turing Award Lecture (Pearl), 11
 

Bayesian nets to causality and
 

counterfactuals, 19
 

causal calculus, 24
 

causal hierarchy and physics, 17
 

causes, counterfactuals, and
 
sense of justice, 16
 

child machine, 13
 
counterfactuals, 23
 
logic and experiment for science
 

of cause and effect, 26
 



916 Index 

structured causal models and
 

truncated factorization, 20,
 
22
 

Turing Test and plurality of
 
mini-Turing Tests, 15
 

Turing machine, 692
 

Twin network approach, 819n7
 

incompleteness of d-separation
 

in twin networks due to
 

deterministic relations,
 
845–846
 

Two hypothetical river blindness
 
treatment studies, 717–719
 

Tyranny of Euphonious
 
Monosyllable, 598
 

UCLA, 126, 667
 

Underlying distribution, 416
 

Undirected graph, 193
 
Untestable assumptions, 725–726 

Updating scheme, properties of, 136,
 
163
 

Upsizing, 563–564, 568
 

Variable-effect bias, 489
 

separating fixed-effect from,
 
489–490
 

Verma, Thomas, 218
 

Virtual evidence, 153
 
Visual processing algorithms, 791
 
Vortex Theory of Superconductive 

Memories, 4 

Warranted inferences, 297–298 

Weaker causal models to po-calculus, 
846
 

Wellman, Henry, 594
 

WIN–LOSS
 

assignment, 63
 
status, 59
 

Winship, Chris, 7
 

Woodward, James, 596
 

Wright, Sewall, 36
 

Xu, Fei, 598
 

Z-ordering, 203
 
Z-ranking, 203, 205
 

0-entailment, 204–205
 



ACM Books is a series of high-quality books 
published by ACM for the computer science 
community. ACM Books publications are widely 
distributed in print and digital formats by major 
booksellers and are available to libraries and 

library consortia. Individual ACM members may access ACM 
Books publications via separate annual subscription.
BOOKS.ACM.ORG • WWW.MORGANCLAYPOOLPUBLISHERS.COM

ABOUT ACM BOOKS

Professor Judea Pearl won the 2011 Turing Award “for fundamental 
contributions to artificial intelligence through the development of a calculus for 
probabilistic and causal reasoning.” This book contains the original articles that 
led to the award, as well as other seminal works, divided into four parts: heuristic 
search, probabilistic reasoning, causality, first period (1988–2001), and causality, 
recent period (2002–2020). Each of these parts starts with an introduction 
written by Judea Pearl. The volume also contains original, contributed articles by 
leading researchers that analyze, extend, or assess the influence of Pearl’s work 
in different fields: from AI, Machine Learning, and Statistics to Cognitive Science, 
Philosophy, and the Social Sciences. The first part of the volume includes a 
biography, a transcript of his Turing Award Lecture, two interviews, and a 
selected bibliography annotated by him.


	Probabilistic and Causal Inference: The Works of Judea Pearl
	Contents
	Preface
	Credits
	I INTRODUCTION
	1 Biography of Judea Pearl by Stuart J. Russell
	References

	2 Turing Award Lecture
	References

	3 Interview by Martin Ford
	References

	4 An Interview with Ron Wassertein on How The Book of Why Transforms Statistics
	5 Selected Annotated Bibliography by Judea Pearl
	Search and Heuristics
	Bayesian Networks
	Causality
	Causal, Casual, and Curious


	II HEURISTICS
	6 Introduction by Judea Pearl
	References

	7 Asymptotic Properties of Minimax Trees and Game-Searching Procedures
	Abstract
	7.1 The Probability of Winning a Standard h-level Game Tree with Random WIN Positions
	7.2 Game Trees with an Arbitrary Distribution of Terminal Values
	7.3 The Mean Complexity of Solving (h, d, P0)-game
	7.4 Solving, Testing, and Evaluating Game Trees
	7.5 Test and, if Necessary, Evaluate—The SCOUT Algorithm
	7.6 Analysis of SCOUT's Expected Performance
	7.7 On the Branching Factor of the ALPHA–BETA (α–β) procedure
	References

	8 The Solution for the Branching Factor of the Alpha–Beta Pruning Algorithm and its Optimality
	8.1 Introduction
	8.1.1 Informal Description of the α-β Procedure
	8.1.2 Previous Analytical Results

	8.2 Analysis
	8.2.1 An Integral Formula for Nn,d
	8.2.2 Evaluation of Rα-β

	8.3 Conclusions
	References

	9 On the Discovery and Generation of Certain Heuristics
	Abstract
	9.1 Introduction: Typical Uses of Heuristics
	9.1.1 The Traveling Salesman Problem (TSP)
	9.1.2 Some Properties of Heuristics
	9.1.3 Where do these Heuristics Come from?

	9.2 Mechanical Generation of Admissible Heuristics
	9.3 Can a Program Tell an Easy Problem When It Sees One?
	9.4 Conclusions
	9.4.1 Bibliographical and Historical Remarks

	References


	III PROBABILITIES
	10 Introduction by Judea Pearl
	References

	11 Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach
	Abstract
	11.1 Introduction
	11.2 Definitions and Nomenclature
	11.3 Structural Assumptions
	11.4 Combining Top and Bottom Evidences
	11.5 Propagation of Information Through the Network
	11.6 A Token Game Illustration
	11.7 Properties of the Updating Scheme
	11.8 A Summary of Proofs
	11.9 Conclusions
	References

	12 Fusion, Propagation, and Structuring in Belief Networks
	Abstract
	12.1 Introduction
	12.1.1 Belief Networks
	12.1.2 Conditional Independence and Graph Separability
	12.1.3 An Outline and Summary of Results

	12.2 Fusion and Propagation
	12.2.1 Autonomous Propagation as a Computational Paradigm
	12.2.2 Belief Propagation in Trees
	12.2.2.1 Data Fusion
	12.2.2.2 Propagation Mechanism
	12.2.2.3 Illustrating the Flow of Belief
	12.2.2.4 Properties of the Updating Scheme

	12.2.3 Propagation in Singly Connected Networks
	12.2.3.1 Fusion Equations
	12.2.3.2 Propagation Equation

	12.2.4 Summary and Extensions for Multiply Connected Networks

	12.3 Structuring Causal Trees
	12.3.1 Causality, Conditional Independence, and Tree Architecture
	12.3.2 Problem Definition and Nomenclature
	12.3.3 Star-Decomposable Triplets
	12.3.4 A Tree-Reconstruction Procedure
	12.3.5 Conclusions and Open Questions

	12.A Appendix A. Derivation of the Updating Rules for Singly Connected Networks
	12.A.1 Updating BEL
	12.A.2 Updating π
	12.A.3 Updating λ

	12.B Appendix B. Conditions for Star-decomposability
	Acknowledgments
	References

	13 GRAPHOIDS: Graph-Based Logic for Reasoning about Relevance Relations Or When Would x Tell You More about y If You Already Know z?
	Abstract
	13.1 Introduction
	13.2 Probabilistic Dependencies and their Graphical Representation
	13.3 GRAPHOIDS
	13.4 Special Graphoids and Open Problems
	13.4.1 Graph-induced Graphoids
	13.4.2 Probabilistic Graphoids
	13.4.3 Correlational Graphoids

	13.5 Conclusions
	References

	14 System Z: A Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning
	Abstract
	14.1 Description
	14.2 Consequence Relations
	14.3 Illustrations
	14.4 The Maximum Entropy Approach
	14.5 Conditional Entailment
	14.6 Conclusions
	Acknowledgments
	14.I Appendix I: Uniqueness of The Minimal Ranking Function
	14.II Appendix II: Rational Monotony of Admissible Rankings
	References


	IV CAUSALITY 1988–2001
	15 Introduction by Judea Pearl
	References

	16 Equivalence and Synthesis of Causal Models
	Abstract
	16.1 Introduction
	16.2 Patterns of Causal Models
	16.3 Embedded Causal Models
	16.4 Applications to the Synthesis of Causal Models
	IC-Algorithm (Inductive Causation)
	Acknowledgments
	References

	17 Probabilistic Evaluation of Counterfactual Queries
	Abstract
	17.1 Introduction
	17.2 Notation
	17.3 Party Example
	17.4 Probabilistic vs. Functional Specification
	17.5 Evaluating Counterfactual Queries
	17.6 Party Again
	17.7 Special Case: Linear-Normal Models
	17.8 Conclusion
	Acknowledgments
	References

	18 Causal Diagrams for Empirical Research (With Discussions)
	Summary
	Some key words
	18.1 Introduction
	18.2 Graphical Models and the Manipulative Account of Causation
	18.2.1 Graphs and Conditional Independence
	18.2.2 Graphs as Models of Interventions

	18.3 Controlling Confounding Bias
	18.3.1 The Back-Door Criterion
	18.3.2 The Front-Door Criteria

	18.4 A Calculus of Intervention
	18.4.1 General
	18.4.2 Preliminary Notation
	18.4.3 Inference Rules
	18.4.4 Symbolic Derivation of Causal Effects: An Example
	18.4.5 Causal Inference by Surrogate Experiments

	18.5 Graphical Tests of Identifiability
	18.5.1 General
	18.5.2 Identifying Models
	18.5.3 Nonidentifying Models

	18.6 Discussion
	Acknowledgments
	18.A Appendix
	Proof of Theorem 18.3

	References
	18.I Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.II Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.III Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.IV Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.V Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.VI Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.VI.A Introduction
	18.VI.B Task 1
	18.VI.B.1 General
	18.VI.B.2 A Causal Model
	18.VI.B.3 Relationship with Pearl's Work

	18.VI.C Task 2

	18.VII Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.VII.A Successful and Unsuccessful Causal Inference: Some Examples
	18.VII.B Warranted Inferences

	18.VIII Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.IX Discussion of ‘Causal Diagrams for Empirical Research’ by J. Pearl
	18.IX.A Introduction
	18.IX.B Ignorability and the Back-Door Criterion

	18.X Rejoinder to Discussions of ‘Causal Diagrams for Empirical Research’
	18.X.A General
	18.X.B Graphs, Structural Equations and Counterfactuals
	18.X.C The Equivalence of Counterfactual and Structural Analyses
	18.X.D Practical Versus Hypothetical Interventions
	18.X.E Intervention as Conditionalisation
	18.X.F Testing Versus using Assumptions
	18.X.G Causation Versus Dependence
	18.X.H Exemplifying Modelling Errors
	18.X.I The Myth of Dangerous Graphs

	Additional References

	19 Probabilities of Causation: Three Counterfactual Interpretations and Their Identification
	Abstract
	19.1 Introduction
	19.2 Structural Model Semantics (A Review)
	19.2.1 Definitions: Causal Models, Actions and Counterfactuals
	19.2.2 Examples
	19.2.3 Relation to Lewis' Counterfactuals
	19.2.4 Relation to Probabilistic Causality
	19.2.5 Relation to Neyman–Rubin Model

	19.3 Necessary and Sufficient Causes: Conditions of Identification
	19.3.1 Definitions, Notations, and Basic Relationships
	19.3.2 Bounds and Basic Relationships under Exogeneity
	19.3.3 Identifiability under Monotonicity and Exogeneity
	19.3.4 Identifiability under Monotonicity and Non-Exogeneity

	19.4 Examples and Applications
	19.4.1 Example 1: Betting against a Fair Coin
	19.4.2 Example 2: The Firing Squad
	19.4.3 Example 3: The Effect of Radiation on Leukemia
	19.4.4 Example 4: Legal Responsibility from Experimental and Nonexperimental Data

	19.5 Identification in Non-Monotonic Models
	19.6 From Necessity and Sufficiency to “Actual Cause”
	19.6.1 The Role of Structural Information
	19.6.2 Singular Sufficient Causes
	19.6.3 Example: The Desert Traveler (after P. Suppes)
	19.6.3.1 Necessity and Sufficiency Ignoring Internal Structure
	19.6.3.2 Sufficiency and Necessity given Forensic Reports
	19.6.3.3 Necessity Given Forensic Reports


	19.7 Conclusion
	19.A Appendix: The Empirical Content of Counterfactuals
	References

	20 Direct and Indirect Effects
	Abstract
	20.1 Introduction
	20.2 Conceptual Analysis
	20.2.1 Direct versus Total Effects
	20.2.2 Descriptive versus Prescriptive Interpretation
	20.2.3 Policy Implications of the Descriptive Interpretation
	20.2.4 Descriptive Interpretation of Indirect Effects

	20.3 Formal Analysis
	20.3.1 Notation
	20.3.2 Controlled Direct Effects (review)
	20.3.3 Natural Direct Effects: Formulation
	20.3.4 Natural Direct Effects: Identification
	20.3.5 Natural Indirect Effects: Formulation
	20.3.6 Natural Indirect Effects: Identification
	20.3.7 General Path-specific Effects

	20.4 Conclusions
	Acknowledgments
	References


	V CAUSALITY 2002–2020
	21 Introduction by Judea Pearl
	References

	22 Comment: Understanding Simpson's Paradox
	22.1 The History
	22.2 A Paradox Resolved
	22.2.1 Simpson's Surprise
	22.2.2 Which Scenarios Invite Reversals?
	22.2.3 Making the Correct Decision

	22.3 Armistead's Critique
	22.4 Conclusions
	References

	23 Graphical Models for Recovering Probabilistic and Causal Queries from Missing Data
	Abstract
	23.1 Introduction
	23.2 Missingness Graph and Recoverability
	23.2.1 Recoverability

	23.3 Recovering Probabilistic Queries by Sequential Factorization
	23.4 Recoverability in the Absence of an Admissible Sequence
	23.5 Non-recoverability Criteria for Joint and Conditional Distributions
	23.6 Recovering Causal Queries
	23.6.1 Recovering P(y|do(z)) when Y and Ry are inseparable

	23.7 Attrition
	23.7.1 Recovering Joint Distributions under Simple Attrition
	23.7.2 Recovering Causal Effects under Simple Attrition

	23.8 Related Work
	23.9 Conclusion
	Acknowledgments
	References
	23.A Appendix
	23.A.1 Missingness Process in Figure 23.1
	23.A.2 Testing Compatibility between Underlying and Manifest Distributions
	23.A.3 Proof of Theorem 23.1
	23.A.4 Recovering P(V) when Parents of R belong to Vo U Vm
	23.A.5  Proof of Theorem 23.2
	23.A.6 Example: Recoverability by Theorem 23.2
	23.A.7 Proof of Corollary 23.1
	23.A.8 Proof of Theorem 23.3
	23.A.9 Proof of Corollary 23.2
	23.A.10 Proof of Theorem 23.4
	23.A.11 Proof of Theorem 23.5
	23.A.12 Proof of Theorem 23.6


	24 Recovering from Selection Bias in Causal and Statistical Inference
	Abstract
	24.1 Introduction
	24.1.1 Related Work and Our Contributions

	24.2 Recoverability without External Data
	24.3 Recoverability with External Data
	24.4 Recoverability of Causal Effects
	24.5 Conclusions
	Acknowledgments
	References

	25 External Validity: From Do-Calculus to Transportability Across Populations
	Abstract
	Key words and phrases
	25.1 Introduction: Threats vs. Assumptions
	25.2 Preliminaries: The Logical Foundations of Causal Inference
	25.2.1 Causal Models as Inference Engines
	25.2.2 Assumptions in Nonparametric Models
	25.2.3 Representing Interventions, Counterfactuals and Causal Effects
	25.2.4 Identification, d-Separation and Causal Calculus
	25.2.5 The Rules of do-Calculus

	25.3 Inference Across Populations: Motivating Examples
	25.4 Formalizing Transportability
	25.4.1 Selection Diagrams and Selection Variables
	25.4.2 Transportability: Definitions and Examples

	25.5 Transportability of Causal Effects—A Graphical Criterion
	25.6 Conclusions
	25.A Appendix
	Acknowledgments
	References

	26 Detecting Latent Heterogeneity
	Abstract
	Keywords
	26.1 Introduction
	26.2 Covariate-Induced Heterogeneity
	26.2.1 Assessing Covariate-Induced Heterogeneity
	26.2.2 Special Cases

	26.3 Latent Heterogeneity between the Treated and Untreated
	26.3.1 Two Types of Confounding
	26.3.2 Separating Fixed-Effect from Variable-Effect Bias

	26.4 Three Ways of Detecting Heterogeneity
	26.4.1 Detecting Heterogeneity in Randomized Trials
	26.4.2 Detecting Heterogeneity Through Adjustment
	26.4.3 Detecting Heterogeneity Through Mediating Instruments

	26.5 Example: Heterogeneity in Recruitment
	26.6 Conclusions
	Acknowledgments
	Declaration of Conflicting Interests
	Funding
	References
	Author Biography
	26.A Appendix A (An Extreme Case of Latent Heterogeneity)
	26.B Appendix B (Assessing Heterogeneity in Structural Equation Models)
	26.B.1 The Structural Origin of Counterfactuals
	26.B.2 Illustration



	VI CONTRIBUTED ARTICLES
	27 On Pearl's Hierarchy and the Foundations of Causal Inference
	Abstract
	27.1 Introduction
	27.1.1 Roadmap of the Chapter
	27.1.2 Notation

	27.2 Structural Causal Models and the Causal Hierarchy
	27.2.1 Pearl Hierarchy, Layer 1—Seeing
	27.2.2 Pearl Hierarchy, Layer 2—Doing
	27.2.3 Pearl Hierarchy, Layer 3—Imagining Counterfactual Worlds

	27.3 Pearl Hierarchy—A Logical Perspective
	27.4 Pearl Hierarchy—A Graphical Perspective
	27.4.1 Causal Inference via L2-constraints—Markovian Causal Bayesian Networks
	27.4.2 Causal Inference via L2-constraints—Semi-Markovian Causal Bayes Networks
	27.4.2.1 Revisiting Locality in Semi-Markovian Models
	27.4.2.2 CBNs with Latent Variables—Putting All the Pieces Together
	27.4.2.3 Cross-layer Inferences through CBNs with Latent Variables


	27.5 Conclusions
	Acknowledgments
	References

	28 The Tale Wags the DAG
	Abstract
	28.1 Introduction
	28.2 The Ladder of Causation
	28.3 Ground Level: Syntax
	28.4 Rung 1: Seeing
	28.4.1 Qualitative Structure
	28.4.2 Quantitative Structure
	28.4.3 Empirical Assessment
	28.4.4 Functional DAGs
	28.4.5 Downsizing and Upsizing
	28.4.6 Empirical Assessment

	28.5 Rung 2: Doing
	28.5.1 Intervention DAGs
	28.5.2 Augmented DAGs
	28.5.3 Empirical Assessment
	28.5.4 Downsizing and Upsizing
	28.5.5 Functional Intervention DAGs

	28.6 Rung 3: Imagining
	28.7 Conclusion
	References

	29 Instrumental Variables with Treatment-induced Selection: Exact Bias Results
	29.1 Introduction
	29.2 Causal Graphs
	29.3 Instrumental Variables
	29.4 Selection Bias in IV: Qualitative Analysis
	29.5 Selection Bias in IV: Quantitative Analysis
	29.5.1 Selection as a Function of Treatment Alone
	29.5.2 Selection as a Function of a Mediator
	29.5.3 Selection on Treatment and the Unobserved Confounder

	29.6 Conclusion
	29.A Appendix
	29.A.1 Proof of Truncation Bias Expressions
	29.A.2 Proof of Adjustment as Point Truncation (Proposition 29.3)

	References

	30 Causal Models and Cognitive Development
	References

	31 The Causal Foundations of Applied Probability and Statistics
	Abstract
	31.1 Introduction: Scientific Inference is a Branch of Causality Theory
	31.2 Causality is Central Even for Purely Descriptive Goals 
	31.3 The Strength of Probabilistic Independence Demands Physical Independence 
	31.4 The Superconducting Supercollider of Selection
	31.5 Data and Algorithms are Causes of Reported Results 
	31.6 Getting Causality into Statistics by Putting Statistics into Causal Terms from the Start
	31.7 Causation in 20th-century Statistics
	31.8 Causal Analysis versus Traditional Statistical Analysis
	31.9 Relating Causality to Traditional Statistical Philosophies and “Objective” Statistics
	31.10 Discussion
	31.11 Conclusion
	31.A Appendix
	31.A.1 A Counting Measure for the Logical Content of a Finite Exchangeability Assumption

	Acknowledgments
	References

	32 Pearl on Actual Causation
	Abstract
	32.1 Introduction
	32.2 Actual Causation
	32.3 Causal Models and But-for Causation
	32.4 Pre-emption and Lewis
	32.5 Intransitivity and Overdetermination
	32.6 Pearl's Definitions of Actual Causation
	32.7 Pearl's Achievement
	References

	33 Causal Diagram and Social Science Research
	33.1 Graphical Causal Models and Social Science Research
	33.2 Two Applications of Graphical Causal Models
	33.2.1 Causal Inference with Panel Data
	33.2.2 Causal Inference with Interference between Units

	33.3 The Future of Causal Research in the Social Sciences
	References

	34 Causal Graphs for Missing Data: A Gentle Introduction
	34.1 Introduction
	34.2 Missingness Graphs
	34.2.1 Graphical Representation of Missingness Categories

	34.3 Recoverability
	34.3.1 Recoverability in MAR and MCAR Problems
	34.3.1.1 Recoverability of Joint Distribution in MCAR and MAR Models
	34.3.1.2 Recoverability as a Guide for Estimation

	34.3.2 Recoverability in MNAR Problems
	34.3.2.1 Recovering P(X, Y) Given the m-graph G in Figure 34.2(a)
	34.3.2.2 Recovering P(X, Y) Given the m-graph in Figure 34.2(b)
	34.3.2.3 Recovering P(X, Y) Given the m-graph in Figure 34.2(c)
	34.3.2.4 Recovering P(X, Y) Given the m-graph in Figure 34.2(d)
	34.3.2.5 Recovering P(X) Given the m-graph in Figure 34.2(e)

	34.3.3 Non-recoverability

	34.4 Testability
	References

	35 A Note of Appreciation
	35.1 A Magic Square
	35.2 A Magic Shield of David

	36 Causal Models for Dynamical Systems
	Abstract
	36.1 Introduction
	36.1.1 Structural Causal Models with Measurement Noise
	36.1.2 Structural Causal Models with Driving Noise
	36.1.3 Interventions
	36.1.4 Time-dependent Data

	36.2 Chemical Reaction Networks and ODEs
	36.3 Causal Kinetic Models
	36.3.1 Causal Kinetic Models with Measurement Noise
	36.3.2 Causal Kinetic Models with Driving Noise
	36.3.3 Interventions
	36.3.4 Other Causal Models for Dynamical Systems and Related Work

	36.4 Challenges in Causal Inference for ODE-based Systems
	36.5 From Invariance to Causality and Generalizability
	36.6 Conclusions
	Acknowledgments
	References

	37 Probabilistic Programming Languages: Independent Choices and Deterministic Systems
	37.1 Probabilistic Models and Deterministic Systems
	37.2 Possible Worlds Semantics
	37.3 Inference
	37.4 Learning
	37.5 Other Issues
	37.6 Causal Models
	37.7 Some Pivotal References
	37.8 Conclusion
	References

	38 An Interventionist Approach to Mediation Analysis
	38.1 Introduction
	38.2 Approaches to Mediation Based on Counterfactuals Defined in Terms of the Mediator: The CDE and PDE
	38.2.1 Two Hypothetical River Blindness Treatment Studies
	38.2.2 The PDE and CDE in the River Blindness Studies
	38.2.3 Identification of the PDE via the Mediation Formula under the NPSEM-IE for Figure 38.3(a)
	38.2.4 Partial Identification of the PDE Under the FFRCISTG for Figure 38.3(a)
	38.2.5 An Example in Which an FFRCISTG Model Holds, but an NPSEM-IE Does Not
	38.2.6 Testable Versus Untestable Assumptions and Identifiability

	38.3 Interventionist Theory of Mediation
	38.3.1 Interventional Interpretation of the PDE Under an Expanded Graph
	38.3.2 Direct and Indirect Effects via the Expanded Graph
	38.3.3 Expanded Graphs for a Single Treatment
	38.3.4 On the Substantive Relationship between Different Gex  Graphs and Gex 
	38.3.5 Generalizations
	38.3.6 Identification of Cross-world Nested Counterfactuals of DAG G under an FFRCISTG Model for its Expanded Graph Gex 

	38.4 Path-Specific Counterfactuals
	38.4.1 Conditional Path-specific Distributions

	38.5 Conclusion
	Acknowledgments
	38.A Appendix
	38.A.1 Proof of PDE Bounds under the FFRCISTG Model
	38.A.2 Proof that the PDE is Not Identified in the River Blindness Study
	38.A.3 Detecting Confounding via Interventions on A and S
	38.A.4 Proof of Proposition 38.3

	References

	39 Causality for Machine Learning
	Abstract
	39.1 Introduction
	39.2 The Mechanization of Information Processing
	39.3 From Statistical to Causal Models
	39.3.1 Methods Driven by Independent and Identically Distributed Data
	39.3.2 Structural Causal Models

	39.4 Levels of Causal Modeling
	39.5 Independent Causal Mechanisms
	39.6 Cause–Effect Discovery
	39.7 Half-sibling Regression and Exoplanet Detection
	39.8 Invariance, Robustness, and Semi-supervised Learning
	39.8.1 Semi-supervised Learning
	39.8.2 Adversarial Vulnerability
	39.8.3 Multi-task Learning
	39.8.4 Reinforcement Learning

	39.9 Causal Representation Learning
	39.9.1 Learning Transferable Mechanisms
	39.9.2 Learning Disentangled Representations
	39.9.3 Learning Interventional World Models and Reasoning

	39.10 Personal Notes and Conclusion
	Acknowledgments
	References

	40 Why Did They Do That?
	Abstract
	40.1 Introduction
	40.2 Some Examples
	40.3 Back to the Garden of Eden
	40.4 Decision Theory and Decision Analysis
	40.5 Back Again in the Garden of Eden
	40.6 Conclusion: God's Decision
	References

	41 Multivariate Counterfactual Systems and Causal Graphical Models
	41.1 Introduction
	41.2 Graphs, Non-parametric Structural Equation Models, and the g-/do Operator
	41.2.1 Graphical Models
	41.2.2 Causal Models Associated with DAGs
	41.2.2.1 Non-parametric Structural Equations with Independent Errors
	41.2.2.2 A Less Restrictive Model: Non-parametric Structural Equations with Single-World (FFRCISTG) Independences

	41.2.3 Single-World Intervention Graphs
	41.2.4 Factorization Associated with the SWIG Global Markov Property
	41.2.5 SWIG Representation of the Defining FFRCISTG Assumptions

	41.3 The Potential Outcomes Calculus and Identification
	41.4 Identification in Hidden Variable Causal Models
	41.4.1 Latent Projection ADMGs
	41.4.2 The Identified Splitting Operation in a SWIG
	41.4.3 The Extended ID Algorithm
	41.4.4 Identification of Conditional Interventional Distributions
	41.4.5 Representing Context-specific Independence using SWIGs

	41.5 Conclusion
	Acknowledgments
	41.A Appendix
	41.A.1 Incompleteness of d-Separation in Twin Networks due to Deterministic Relations
	41.A.2 Weaker Causal Models to Which the po-Calculus Also Applies
	41.A.3 Completeness Proofs

	References

	42 Causal Bayes Nets as Psychological Theory
	Abstract
	42.1 The Human Conception of Causality
	42.2 Core Properties
	42.3 The Broader Perspective: The Community of Knowledge
	42.4 Collective Causal Models
	42.5 Conclusion
	Acknowledgments
	References

	43 Causation: Objective or Subjective?
	Abstract
	43.1 Causation: A Bunch of Attitudes
	43.2 The Model Relativity of Causation
	43.3 Laws
	43.4 Probability
	Acknowledgments
	References

	Editors' Biographies
	Index


	tip: 
	0: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	28: 
	27: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 
	37: 
	38: 
	39: 
	40: 
	41: 
	42: 
	43: 
	44: 
	45: 
	46: 
	47: 
	48: 
	49: 
	50: 
	51: 
	52: 
	53: 
	54: 
	55: 
	56: 
	57: 
	58: 
	59: 
	60: 
	61: 
	62: 
	63: 
	64: 
	65: 
	66: 
	67: 
	68: 
	69: 
	70: 
	71: 
	72: 
	73: 
	74: 
	75: 
	76: 
	77: 
	78: 
	79: 
	80: 
	81: 
	82: 
	83: 
	84: 
	85: 
	86: 
	87: 
	88: 
	89: 
	90: 
	91: 
	92: 
	93: 
	94: 
	95: 
	96: 
	97: 
	98: 
	99: 
	100: 
	101: 
	102: 
	103: 
	104: 
	105: 
	106: 
	107: 
	108: 
	109: 
	110: 
	111: 
	112: 
	113: 
	114: 
	115: 
	116: 
	117: 
	118: 
	119: 
	120: 
	121: 
	122: 
	123: 
	124: 
	125: 
	126: 
	127: 
	128: 
	129: 
	130: 
	131: 
	132: 
	133: 
	134: 
	135: 
	136: 
	137: 
	138: 
	139: 
	140: 
	141: 
	142: 
	143: 
	144: 
	145: 
	146: 
	147: 
	148: 
	149: 
	150: 
	151: 
	152: 
	153: 
	154: 
	155: 
	156: 
	157: 
	158: 
	159: 
	160: 
	161: 
	162: 
	163: 
	164: 
	165: 
	166: 
	167: 
	168: 
	169: 
	170: 
	171: 
	172: 



