
UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

Ensuring Consistency in Long Running Transactions

UCLA Computer Science Dept. Technical Report TR-070011

Jeffrey Fischer Rupak Majumdar
Department of Computer Science, University of California, Los Angeles

{fischer,rupak}@cs.ucla.edu

ABSTRACT

Flow composition languages permit the construction of long-
running transactions from collections of independent, atomic
services. Due to environmental limitations, such transac-
tions usually cannot be made to conform to standard ACID
semantics. We propose set consistency, a powerful, yet in-
tuitive, notion of consistency for long-running transactions.
Set consistency specifications are written as predicates over
the atomic actions of a process and require that the set of
atomic actions executed along any system trace must satisfy
the set consistency requirement. Set consistency generalizes
cancellation semantics, a standard consistency requirement
for long-running transactions, where failed processes are re-
sponsible for undoing any partially completed work, and can
express strictly stronger requirements such as mutual exclu-
sion or dependency. We believe that such predicates are
both intuitive for developers and useful for representing real
world constraints.

We formalize a core calculus for representing long-running
transactions, providing sequential and parallel composition,
as well as exception-handling and compensation actions,
within the language. We show that the set consistency ver-
ification problem for processes in our core language against
consistency requirements given as boolean predicates is co-
NP complete and present an algorithm for verifying set con-
sistency by reduction to propositional satisfiability. We have
implemented this algorithm and demonstrate the value of
our approach on three real-world case studies. In each case
the consistency requirements can be verified within a second,
demonstrating the practicality of our approach.

1. INTRODUCTION
In Web Services and Service Oriented Architectures, flow

composition and orchestration languages [12, 1, 2] are used
to combine disparate services into unified applications. Un-
like monolithic applications built on a single database, such
composite applications cannot take advantage of atomic
transactions to ensure that changes are not partial or lost
completely. Such applications generally recover using com-
pensation — actions that are applied to undo other pre-
viously committed actions. Flow compensation languages
may provide compensation operators, which associate com-
pensation actions with completed actions and automatically
run them in the event of a failure.

Existing work on using flow composition languages to im-
plement transactions has focused on formalizing the seman-
tics of compensation [6, 7, 8, 5, 4]. However, less effort has
gone into defining a notion of correctness appropriate for

long-running transactions. Standard, atomic transactions
have a well-defined, application independent, criterion for
correctness: the ACID (Atomicity, Consistency, Isolation,
and Durability) properties [14]. However, ACID transac-
tions are not suitable for flow composition. First, a transac-
tion which composes web services is usually long-running —
it takes a substantial amount of time to complete, because of
asynchronous interactions across many systems, possibly re-
quiring human intervention. Thus, the holding of locks and
tight coordination of the participating systems is not feasi-
ble. Second, web services rarely expose distributed trans-
action interfaces, due to organizational boundaries, proto-
col limitations, and application limitations. Therefore, one
must look for looser notions of correctness.

One such notion is cancellation semantics [8]: a long-
running transaction should either complete successfully or
undo all its observable results. The undo mechanism is a
programmer-specified compensation action. For example,
sagas [13] are two-level transactions with compensation ac-
tions for each forward action. Sagas achieve atomicity while
relaxing the other requirements: either the entire transac-
tion commits or any partial results are undone through run-
ning the compensation for each committed action.

Unfortunately, cancellation semantics is insufficient for
many real-world scenarios. First, due to application require-
ments or the limitations of the actual systems, a process
may contain non-compensatable actions and may need to
continue execution even if certain actions fail. Thus, it is im-
portant to define a notion of correctness which accounts for
“partial completion” of processes. Second, cancellation se-
mantics cannot represent many application specific require-
ments, such as the mutual exclusion of two actions. With
asynchronous interactions, parallel processing, and compen-
sation, it is difficult to determine which actions actually
completed.

We define an extended notion of correctness for long run-
ning transactions, called set consistency. Since the web ser-
vices called by a flow composition are usually independent of
each other, we consider only whether services are called, not
their respective execution orderings. Like Sagas, we assume
individual service calls are atomic and thus treat failure the
same as if a service was never called. Rather than defin-
ing correctness with respect to a process trace, we define
it with respect to an execution — the set of actions which
completed successfully during a run of a process. A set con-
sistency specification is a set of executions corresponding to
correct runs of a process. We show how such a specification
can be compactly represented using propositional logic.

1

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

Set consistency specifications can represent cancellation
semantics as well as stronger restrictions on such processes.
In addition, they can specify behaviors which relax the self-
cancellation requirement. If the web services called by a flow
composition are independent, set consistency can capture
many requirements currently modeled using temporal logic.
We believe that set consistency predicates are more intuitive
than temporal logic specifications for developers.

We formalize the notion of set consistency using a core
calculus for process composition. Our core language com-
poses atomic actions using sequential and parallel compo-
sition, choice, compensation, and exception handling con-
structs, and is an abstraction of common flow composition
languages such as BPEL. Then, the set consistency verifica-
tion problem checks that all feasible executions of a process
are contained in the set of executions defined by the set con-
sistency specification. We show that this problem is co-NP
complete and present an algorithm for verifying set consis-
tency by constructing a predicate representing all feasible
process executions. This reduces the verification problem to
propositional validity which can be checked using an off-the-
shelf SAT solver.

In contrast to temporal logic model checking of processes,
which is undecidable [11], set consistency is a powerful, yet
tractable class of properties that can already capture many
interesting notions of correctness. We have implemented the
algorithm for set consistency verification and applied it to
three case studies, including a real-world CRM system which
contained a consistency bug and was the inspiration of our
work (see Section 2). The verification problems resulting
from our case studies can each be discharged within a sec-
ond, showing that the technique is feasible for real-world
applications.

This is a longer version of our conference paper. It in-
cludes outlines for the proofs and extended examples.

2. EXAMPLE
We now informally describe set consistency using an ex-

ample inspired by a bug actually seen in a production sys-
tem. One of the authors of this paper previously worked
for an enterprise applications vendor. Once, when visiting a
customer (a large bank), the author reviewed a set of the cus-
tomer’s business processes, which integrated a mainframe-
based financial application with a CRM (Customer Rela-
tionship Management) application. When an account was
created or changed in the financial application, a message
containing the account was sent to the CRM system via a
transactional queue. The CRM system took the message
from the queue and updated its version of the account ac-
cordingly. When examining the business process run by the
CRM system, the author found a consistency bug, which
inspired the work in this paper.

Upon taking a message from the queue, the CRM system
executed a business process which transformed the message
to its internal account representation, performed other book-
keeping, and saved the account. If the account was saved
successfully, the CRM system should commit its transac-
tion with the queue, to avoid duplicate messages. If the
account save failed, the CRM system should abort its trans-
action with the queue, to avoid losing the update entirely.
Upon the abort of a message “take”, the message was au-
tomatically put back on the queue, unless a retry threshold
was exceeded. In this case, the message went to a special
“dead-letter” queue, to be investigated by an administrator.
We can model the interactions of the CRM system with the

queue as the following process:

AcctRecv = TakeMsg; (body � (Abort; throw));Commit

Here, bold fonts represent atomic actions (the implemen-
tation of body is not shown). The “;” operator composes two
actions or processes sequentially: it runs the first process,
and if it is successful, runs the second. The “�” operator
catches exceptions: it runs the first process, and, only if
it fails, runs the second. throw is a special built-in action
which throws an exception. The TakeMsg process takes a
message off the queue. The subprocess body handles each ac-
count. If body fails, then the message transaction is aborted
(by calling Abort), putting the message back on the queue.
Otherwise, Commit commits the message transaction, per-
manently removing it from the queue. Ignoring all the im-
plementation details of body, we want to ensure that, if the
action SaveAcct is called within body, then Commit is
called, and if SaveAcct is not called, then Abort is called.

Deep within the body subprocess, the author found the
equivalent of the following code:

SaveAcct � LogErr

where SaveAcct performs the actual account write. Some-
one had added an exception handler which, in the event of
an error in saving, logged a debug message. Unfortunately,
they left this code in their production system. The exception
handler “swallows” the error status — Commit will always
be called, even if the save fails, violating our correctness re-
quirement. If, due to a data validation error or a transient
system problem, the CRM system rejects an account, bank
tellers will not be able to find the customer!

Traces. Executing a process gives rise to a trace. A trace is
the sequence of successfully executed actions invoked by the
process, along with the final status of the run (either X or
×). For example, if the SaveAcct action fails, we get the
following trace:

T = TakeMsg,Preprocess,LogErr,Commit〈X〉

The Preprocess action represents the preprocessing which
occurs in body before SaveAcct is called. The error from
SaveAcct is not propagated to the outer process, and
thus the queue transaction is committed. Note that the
failed invocation of SaveAcct does not appear between
Preprocess and LogErr. We leave out failed invocations
as they have no permanent, observable effect on the system.

Set Consistency. Our first observation is that the bug
in AcctRecv can be caught if we know that there exists a
feasible trace in which Commit is executed and SaveAcct
is either not called or is invoked, but failed. That is, we can
abstract away the relative order of individual actions, and
only consider the set of actions that executed successfully.
Accordingly, we define an execution as the set of actions
which appear in a trace. The execution E associated with
the above trace is:

E = {TakeMsg,Preprocess,LogErr,Commit}

A set consistency specification defines a set of “good” ex-
ecutions. For example, correct executions of our account
process either:

1. include both SaveAcct and Commit, or
2. include Abort, but not SaveAcct.

We write set consistency specifications in a predicate nota-
tion, where the literal a means that action a is included in
the execution, and ¬a means that action a is not included
in the execution and literals are combined using the boolean

2

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

∧ (and), ∨ (or), and ¬ (not) operators. A set consistency
predicate is interpreted over the actions which appear in the
process. It represents a set consistency specification which
contains exactly those executions that satisfy the predicate.
To represent the above two conditions, we can define the
specification predicate ϕq1 as follows:

ϕq1 = (SaveAcct ∧ Commit) ∨ (¬SaveAcct ∧ Abort)

Other consistency predicates can be specified for our pro-
cess. For example, we might want to ensure that Abort
and Commit are never called in the same run:

ϕq2 = (Abort ∧ ¬Commit) ∨ (¬Abort ∧ Commit)

We can check both requirements simultaneously by taking
the conjunction of the two predicates: ϕq3 = ϕq1 ∧ ϕq2.

Verification. The set consistency verification problem
takes as input a process P and a consistency predicate ϕ
and asks if all feasible executions of P satisfy ϕ. If so, we
say that the process satisfies the specification. Clearly, the
process AcctRecv does not satisfy the specification ϕq1 —
a counterexample is the execution E above, which clearly
does not satisfy ϕq1. However, the process does meet the
specification ϕq2.

In Section 4, we show that one can check a specification by
constructing a predicate φp that represents all the feasible
executions for the process P . Then, P satisfies the specifica-
tion ϕ if φp implies ϕ, which is a propositional satisfiability
check. We have built a verifier, described in section 6, that
verifies set consistency by this method. If we run AcctRecv
through our verifier, using specification ϕq3, it returns the
execution E above as a counterexample.

Note that we can fix the problem by either removing the
exception handler in body or re-throwing the exception af-
ter calling LogErr. With either of these fixes, the process
passes our verifier.

Other Features. In practice, business process flows con-
tain, in addition to sequencing and exception handling, par-
allel composition (where processes execute in parallel) and
compensations (processes that get executed to undo the ef-
fect of atomic actions should a subsequent process fail). Our
process language (and verifier) allows us to write both par-
allel composition and compensation actions.

As an example, consider an alternative version of body
which saves the account in two steps. First, it writes a
header using the action SaveHdr and then writes contact
information using the action AddContact. Both of these
actions can fail. If SaveHdr succeeds, but AddContact
fails, we undo the account change through the compensating
action DelHdr, which never fails. In our process language,
we specify a compensation action using the “÷” operator.
Our new process is written as:

AcctRecv2 = TakeMsg; (body2 � (Abort; throw));Commit

body2 =(SaveHdr ÷ DelHdr);AddContact

A set consistency requirement for AcctRecv2 states that if
both the account header and contact actions are successful,
then Commit should be run. Otherwise, Abort should be
run. That is,

(SaveHdr ∧ AddContact ∧ Commit)∨
(¬SaveHdr ∧ ¬AddContact ∧ Abort)

The negated action ¬SaveHdr captures the scenarios
where either SaveHdr is not run, or it is run but subse-
quently compensated by DelHdr. We capture the effect of
compensations using a programmer-defined normalization

Atomic Action A ::= skip | throw built-ins
| Ai ∈ A defined actions

Process P ::= A atomic actions
| P; P sequence
| P ‖ P parallel
| P � P choice
| P ÷ P compensation
| P � P exception handler

Figure 1: Syntax of process calculus.

set C = {(SaveHdr,DelHdr)} that encodes that the effect
of running SaveHdr can be undone by running its compen-
sation DelHdr. Given the predicate and the normalization
set, our verifier automatically expands the predicate to

(SaveHdr ∧ ¬DelHdr ∧ AddContact ∧ Commit) ∨

((¬SaveHdr ∨ (SaveHdr ∧ DelHdr)) ∧ ¬AddContact ∧ Abort)

This expanded specification predicate is then used by our
algorithm, which shows that process AcctRecv2 satisfies this
set consistency specification.

3. PROCESS CALCULUS
We use a simple process calculus to describe long-running

transactions. The operators in our calculus correspond to
similar concrete operations in web service orchestration lan-
guages like BPEL.

Syntax. Figure 1 defines the syntax for our language. Pro-
cesses are constructed from atomic actions, using a set of
composition operations. Atomic actions are indivisible op-
erations which either succeed completely or fail and undo all
state changes. There are two built-in actions: skip, which
always succeeds and does nothing, and throw, which throws
an exception. We use A for the set of atomic actions defined
by the environment and Σ for the set of all atomic actions:
Σ ≡ A ∪ {throw, skip}.

A process is either an atomic action or a composition of
atomic actions using one of five composition operators. The
sequence operator “;” runs the first process followed by the
second. If the first fails, the second is not run. The paral-
lel operator “‖” runs two processes in parallel. The choice
operator “�” non-deterministically selects one of two pro-
cesses and runs it. The compensation operator “÷” runs the
left process. If it completes successfully, the right process is
installed as a compensation to run if the parent process ter-
minates with an error. The exception handler “�” runs the
left process. If that process terminates with an error, the
error is ignored and the right process is run. If the left
process terminates successfully, the right process is ignored.
Our core language does not include iteration operators —we
will add iteration to our language in section 5.

In our examples, we also use named subprocesses — sub-
processes which are defined once and then appear as atomic
actions in the overall process — as syntactic sugar to en-
hance readability. Named subprocesses are not true func-
tions — they are simply inlined into their parent. Thus,
recursive calls are not permitted.

We define |P |, the size of process P , by induction: the
size |A| of an atomic action in Σ is 1, and the size |P1 ⊗ P2|
for any composition operation ⊗ applied to P1 and P2 is
|P1| + |P2| + 1.

3

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

Process form Π
Γ ⊢ A : {X,×} {(A〈X〉, skip), (〈×〉, skip)}

Γ ⊢ A : {X} {(A〈X〉, skip)}

Γ ⊢ A : {×} {(〈×〉, skip)}

P; Q {(pq〈s〉, Q′; P ′) | (p〈X〉, P ′) ∈ Π(P), (q〈s〉, Q′) ∈ Π(Q)} ∪ {(p〈×〉, P ′) | (p〈×〉, P ′) ∈ Π(P)}

P ‖ Q {(r〈s&t〉, P ′ ‖ Q′) | r ∈ p ⊲⊳ q, (p〈s〉, P ′) ∈ Π(P), (q〈t〉, Q′) ∈ Π(Q)}
∪ {(p〈×〉, P ′) | (p〈×〉, P ′) ∈ Π(P)} ∪ {(q〈×〉, Q′) | (q〈×〉, Q′) ∈ Π(Q)}

P � Q {(p〈s〉, P ′) | (p〈s〉, P ′) ∈ Π(P)} ∪ {(q〈t〉, Q′) | (q〈t〉, Q′) ∈ Π(Q)}

P ÷ Q {(p〈X〉, Q) | (p〈X〉, P ′) ∈ Π(P)} ∪ {(p〈×〉, P ′) | (p〈×〉, P ′) ∈ Π(P)}

P � Q {(p〈X〉, P ′) | (p〈X〉, P ′) ∈ Π(P)} ∪ {(pp′q〈t〉, Q′) | pp′〈×〉 ∈ JP K, (q〈t〉, Q′) ∈ Π(Q)}

Figure 2: Trace semantics.

Trace Semantics. We now define a trace-based seman-
tics for processes. A run is a (possibly empty) sequence of
atomic actions from Σ. A trace is a run followed by either
〈X〉 or 〈×〉, representing successful and failed executions,
respectively. For example, if action A1 is run successfully
and then action A2 fails, the corresponding trace would be
A1〈×〉. In the following, we let the variable A range over
atomic actions; the variables P , P ′, Q, Q′, and R range over
processes; the variables p, q, and r range over runs, and the
variables s and t range over X and ×.

We define an operator “&” which combines two process
status symbols (X, ×). Given s&t, if both s and t are X,
then s&t = X. Otherwise, s&t = ×. For the parallel com-
position rules, we introduce an operator ⊲⊳: R × R → 2R,
where, given two runs p and q, p ⊲⊳ q produces the set of all
interleavings of p and q.

We use the symbol Γ to represent an action type environ-
ment, which maps each action to a set of possible results
2{X,×} = {{X}, {×}, {X,×}} from running the associated
action. This allows us to distinguish actions which may fail
from actions which never fail. The result set {×} is for the
special action throw, which unconditionally throws an error.

For each process form P , we define using mutual induc-
tion two semantic functions Π(P) and JP K. The rules for

Π : P → 2(T ,P), found in figure 2, define a set of pairs.
Each pair (p〈s〉, Q) ∈ Π(P) consists of a trace p〈s〉, repre-
senting a possible execution of the process P , and a process
Q, representing a compensation process associated with the
trace that will get run on a subsequent failure.

The function JP K : P → 2T , maps a process P to a set of
feasible traces of P . To compute the actual traces possible
for a top-level process, this function must consider the suc-
cessful and failed traces independently. Compensation pro-
cesses are dropped from successful traces. For a failed trace
p〈×〉, one computes all possible compensation traces for the
associated compensation process P ′ and appends these to p.
JP K is defined as follows:

JP K = {(p〈X〉|(p〈X〉, P ′) ∈ Π(P)} ∪

{pp′〈×〉|(p〈×〉, P ′) ∈ Π(P), p′〈s〉 ∈ JP ′K}

We now describe the rules in Figure 2 in more detail.

Atomic Actions. For atomic actions, we enumerate the

possible results for each action. Individual atomic actions
use skip as a compensation process, since no compensation
is provided by default. Compensation for an atomic action
must be explictly defined using the ÷ operator.

Sequential Composition. For a sequential composition
P ; Q, we consider two cases. If P succeeds, we have a suc-
cessful trace p〈X〉 for P , after which we concatenate a trace
q from Q. The status for the overall trace is then 〈s〉, the
status from the trace q. The compensation process (if Q
fails) invokes the compensation for Q first, followed by the
compensation for P . On the other hand, if P fails, we have
a failed trace p〈×〉 for P . The process Q is not run at all.

Parallel Composition. For parallel composition, we first
consider the case where both sub-processes run. If both are
successful, the entire process is successful. If one fails, the
process throws an error. We simulate the parallel semantics
by generating a possible trace for all interleavings of the two
subprocesses. The compensation for the two sub-processes
is also run in parallel. Note that, if a sub-process fails, the
other sub-process runs to completion, unless it also encoun-
ters an error. However, if the second sub-process has not
started yet, and the first fails, an implementation can avoid
running the second at all. This is handled by the last two
sets in the union.

Choice Composition. The traces for P � Q are simply
the union of the traces for P and Q.

Compensation. The compensation operator P ÷ Q runs
P and then sets up process Q as compensation. If P is
successful, Q overrides any previous compensation for P —
e.g. P ′ if Π(P) = (p〈X〉, P ′). If P fails, then the original
compensation process returned by Π(P) is instead returned.
In this case, the process Q is never run.

Exception Handler. The rule for the exception handling
operator has two scenarios. Given P � Q, if P is successful,
Q is ignored. If P fails, the compensation for P is run and
then process Q is run. To express this, we use JP K to obtain
a full trace for P , including compensation. This makes the
J·K and Π functions mutually recursive.

Example 1. To demonstrate these rules, we compute the

4

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

set of feasible traces for the SimpleOrder process defined as:

SimpleOrder =Billing ;ProcessOrder

Billing =Charge ÷ Credit

This process first calls the Billing sub-process. This sub-
process invokes the Charge action to bills the customer’s
action. If this fails, the process terminates. If the charge
succeeds, Credit is registered as a compensation action.
Next, ProcessOrder is run to handle the actual order. If
ProcessOrder is successful, the process terminates success-
fully. Otherwise, the Charge compensation is run and the
process terminates with an error.

We assume that the Charge and ProcessOrder atomic
actions both can fail, but the Credit compensation never
fails. Thus, we obtain the following definition for Γ:

〈Charge 7→ {X×}, Credit 7→ {X},ProcessOrder 7→ {X,×}〉

If we apply the rules for atomic actions to each action in
this process, we get the following values for Π:

Π(Charge) ={(Charge〈X〉, skip), (〈×〉, skip)}

Π(Credit) ={(Credit〈X〉, skip)}

Π(ProcessOrder) ={(ProcessOrder〈X〉, skip), (〈×〉, skip)}

To compute the feasible traces for the Billing subprocess,
we apply the rule for compensation, with P = Charge and
Q = Credit, obtaining the following:

Π(Billing) = {(Charge〈X〉,Credit), (〈×〉, skip)}

To compute the feasible traces for SimpleOrder we use the
sequential composition rule, using P = Billing and Q =
ProcessOrder:

Π(SimpleOrder) ={(Charge ProcessOrder〈X〉, skip;Credit),

(Charge〈×〉,Credit), (〈×〉, skip)}

Finally, we compute the feasible traces JSimpleOrderK by
dropping compensation for successful traces and computing
the compensation traces for failed traces:

{Charge ProcessOrder〈X〉,Charge Credit〈×〉, skip〈×〉}

Trace composition. We end this section by looking at
how the composition of processes affects the composition of
traces. Given a process R and trace Tr = rfrc〈s〉, where
Tr ∈ JRK, (rf 〈s〉, R

′) ∈ Π(R), and rc〈s
′〉 ∈ JR′K, we call

the trace rf 〈s〉 the forward sub-trace of Tr and rc〈s
′〉 the

compensation sub-trace of Tr. We write rfrc〈s〉 for a trace
r with forward sub-trace rf and compensation sub-trace rc

and status 〈s〉. Note that the overall status of the trace is
always equal to the status of the forward sub-trace.

Let R = P ⊗ Q, where ⊗ is one of the composition oper-
ators. For each feasible trace Tr of R, either P is not called
(e.g., if ⊗ = � and Q is chosen), or there is a trace Tp of
P such that the forward subtrace of P occurs within the
forward subtrace of Tr and the compensation subtrace of Tp

appears in the compensation subtrace of Tr.

Theorem 1. Let R = P ⊗ Q, pfpc〈t〉 ∈ JP K, and
rfrc〈s〉 ∈ JRK such that rf = rf0

pfrf1
(the run pf appears

within rf), and rc = rc0pcrc1 (the run pc appears within
rc). The forward sub-trace rf1

〈s〉 of R following the call to
P depends only on 〈t〉 (the forward status of P), not on the
individual actions in pf . Likewise, the compensation sub-
trace rc1〈s

′〉 of R following the call to P ′ depends only on
the compensation status of P ′, not on the individual com-
pensation actions in pc.

Proof Outline: The proof is by induction on the deriva-
tion of JRK, using a case analysis on the syntactic forms
of each subprocess. For each composition operator, inspec-
tion of the corresponding rules of Figure 2 show that, in
each case, there is no dependency on the individual actions
called by the subprocesses and the status of the parent pro-
cess depends only upon the status of the subprocesses.

4. SET CONSISTENCY
We can now formalize our notion of consistency with re-

spect to our process calculus.

Executions. For a trace p〈s〉 ∈ JP K, we define the
execution for p〈s〉 as the set πp ⊆ Σ of atomic ac-
tions that appear in p, that is, the execution e(p) =
{a ∈ Σ | ∃p1, p2.p〈s〉 ≡ p1ap2〈s〉}. For a process P , let
execs(P) ⊆ 2Σ represent the set of all executions of P , de-
fined by execs(P) = {e(p) | p〈s〉 ∈ JP K}.

Example 2. If we drop calls to skip, the set of feasible
executions execs(SimpleOrder) for SimpleOrder is

{{Charge,ProcessOrder}, {Charge,Credit}, ∅}

Set Consistency Specifications. A set consistency spec-
ification S ⊆ 2Σ is a set of action sets representing the per-
missible executions for a given process. A process P is set
consistent with respect to a set consistency specification S
if all executions of P fall within the set consistency specifi-
cation: execs(P) ⊆ S.

Set consistency specifications are semantic objects. We
use a boolean predicate-based syntax for describing sets of
executions. Given a set of atomic actions Σ, a set consis-
tency predicate is an expression built from combining atomic
predicates Σ with the logical operators ¬ (not), ∧ (and), and
∨ (or). The size |ϕ| of predicate ϕ is the defined by induc-
tion: |a| = 1 for a literal, and |ϕ1 ⊗ ϕ2| = |ϕ1| + |ϕ2| + 1
for a logical operator ⊗. To evaluate a predicate ϕ on an
execution e ∈ 2Σ, we assign the value true to all atomic
actions that occur in e and false to all the atomic actions
that do not occur in e. If the predicate ϕ evaluates to true

with these assignments, we say the execution e satisfies the
specification ϕ, and write e |= ϕ. The set consistency spec-
ification S defined by the set consistency predicate ϕ is the
set of satisfying assignments of ϕ:

spec(ϕ) = {e ∈ 2Σ | e |= ϕ}

Normalization. When defining set consistency specifica-
tions, we wish to treat the compensated execution of an
action as equivalent to an execution where the action (and
its compensation) never occurs. If A◦ is a compensation ac-
tion for A, then the term ¬A in the specification predicate
should yield two executions in the final, expanded specifi-
cation: one with neither A nor A◦, and one with both A
and A◦. We call a specification that has been adjusted in
this manner a normalized specification. Normalization is
performed with respect to a programmer-specified normal-
ization set C ⊆ {(a, a◦)|a, a◦ ∈ Σ} of atomic action pairs,
where the second action in each pair is the compensation
action for the first action. Given the consistency specifica-
tion predicate ϕ and a normalization set C, we apply the
function spec norm(ϕ, C). This function uses DeMorgan’s
laws and the normalization set to convert the predicate to a
form where (1) the negation operator only appears in front

5

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

of literals, and (2) given a pair (a, a′) from C, each occur-
rence of ¬a is replaced with (¬a ∧ ¬a′) ∨ (a ∧ a′) and each
occurrence of a is replaced with a ∧ ¬a′.

For successful executions of an action, the normalized
specification asserts that the compensation action was not
run. For failed executions, spec norm changes the specifica-
tion to treat equivalently the following three scenarios:

1. Actions a and a′ are never run.
2. Action a is executed but fails, undoing any partial

state changes. Action a′ is never run.
3. Action a is executed successfully, but compensation a′

is later run to undo the effects of a.

Example 3. We consider a specification for the
SimpleOrder process. We assume the action typing
Γso of example 1 (in which the Credit action never fails)
and the normalization set Cso = {(Charge,Credit)}.

We wish to have cancellation semantics, where either both
Charge and ProcessOrder complete successfully, or, in a
failed execution, any completed actions are undone. Given
the normalization set, we do not need to distinguish between
failure cases. Thus, we can write a set consistency predicate
ϕso for SimpleOrder as:

(Charge ∧ ProcessOrder) ∨ (¬Charge ∧ ¬ProcessOrder)

We now expand ϕso to get spec norm(ϕso, Cso). It is al-
ready in the form we need for substitution (negation only
of literals). We replace all occurrences of ¬Charge with
(¬Charge∧¬Credit)∨ (Credit∧Charge) and all occur-
rences of Charge with (Charge ∧ ¬Credit):

(Charge ∧ ¬Credit ∧ ProcessOrder) ∨
`

(¬Charge ∧ ¬Credit) ∨ (Charge ∧ Credit)
´

∧ ¬ProcessOrder

Set consistency verification. For a process P , a nor-
malization set C, and a set consistency predicate ϕ, the
set consistency verification problem is to check if all the
executions of P w.r.t. C satisfy ϕ, that is, if execs(P) ⊆
spec(spec norm(ϕ, C)).

Theorem 2. The set consistency verification problem is
co-NP complete.

Proof Outline: Verification is in co-NP, as finding a coun-
terexample is in NP. To find a counterexample, we nonde-
terministically enumerate feasible executions of a process
using the trace semantics. At each possible decision point
(e.g. success or failure of actions and the choice operator),
we guess an outcome. We track only the set of actions
which were called successfully, and, upon termination, check
whether this execution is a satisfying assignment of the spec-
ification predicate. An execution is polynomial in the size
of the process, since it includes each action at most once.
Checking whether the execution satisfies the specification
predicate ϕ is polynomial with respect to |ϕ|.

To show that verification is co-NP hard, we reduce check-
ing for tautology to set consistency verification. To de-
termine whether a predicate φ, consisting of literals from
the set Σφ, is a tautology, we first construct a process P
whose feasible executions are the powerset of Σφ. One
such process is A1 ‖ A2... ‖ An where A1, ...An ∈ Σφ and
∀i . Γ ⊢ Ai : {X,×}. Now, we interpret φ as a set consis-
tency predicate: If process P satisfies the specification φ,
then φ is a tautology.

Predicate-based verification. We now give an algorithm
for verifying set consistency. We define a syntax-directed

analysis which takes a process as input and constructs a
predicate φ whose satisfying assignments precisely represent
the feasible execution set. The predicate, φ is composed
from atomic predicates Σ using logical operators ¬, ∧, ∨,
→, and ↔. For the moment, we assume that a given action
A is referenced only once in a process. Later, we will extend
our approach to remove this restriction. A predicate φ over
atomic predicates in Σ defines a set of executions E(φ) =
{e ∈ 2Σ | e |= φ}.

Execution Predicate Construction. We create the
predicate φ by recursively applying the rules of Figure 3,
based on the form of each sub-process. These rules define
seven mutually-recursive functions: φX0, φXX , φX×, φ×0,
φ×X , φ××, and φ00, all with the signature P×G → Φ, where
P is the set of all processes, G is the set of all action type
environments, and Φ the set of all predicates. The two sub-
scripts of each function’s name represent the forward and
compensation results of running the process, respectively,
where X is a successful execution, × is a failed execution,
and 0 means that the process was not run. For example,
φX×(P, Γ) returns a predicate representing all executions of
process P where the forward process completes successfully
and the compensation process (whose execution must be ini-
tiated by the failure of a containing process) fails, given a
type environment Γ. As a shorthand, we use terms of the
form PX× to represent the function φX×(P, Γ). We also
leave out the conjunction symbol (“∧”) when it is obvious
from the context (e.g. PX0QX0 for PX0 ∧ QX0).

Given these functions, we compute the predicate φ, repre-
senting the possible executions of a process, using the func-
tion pred : P × G → Φ, defined as:

pred(P, Γ) ≡ φX0(P, Γ) ∨ φ×X(P, Γ) ∨ φ××(P, Γ)

Example 4. We illustrate the predicate generation algo-
rithm by constructing a predicate for the SimpleOrder pro-
cess. We start from the execution predicate definition:

pred(SimpleOrder, Γso) = φX0 ∨ φ×X ∨ φ××

and iteratively apply the appropriate sub-predicates from
Figure 3. We show the steps of the computation in Figure 4.
We obtain step (2) from step (1) in Figure 4 by substituting
each term with the sub-predicates from the sequence rule,
since the top-level process is a sequence. Next, from step
(2) to step (3), we use the atomic action rules to simplify
the predicates for ProcessOrder. Notice that the fourth
conjunction in (3) can be dropped since it conjoins false.
Now, we expand the predicates for Billing using rules for the
compensation operator to get step (4). Finally, we expand
the Charge and Credit predicates again using rules for
the atomic actions to get (5). Simplifying, we get (6), the
execution predicate for SimpleOrder .

Note that the three conjunctions in the final predicate
correspond to the three possible executions of SimpleOrder:

1. The actions Charge and ProcessOrder are success-
ful, and the compensation Credit is not run.

2. The action Charge completes successfully, but
ProcessOrder fails. Then, Credit is run to com-
pensate for Charge.

3. The action Charge fails, and the actions
ProcessOrder and Credit are never run.

Memoization. As usual, one can memoize each compu-
tation by giving names to sub-predicates. While generat-

6

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

Predicate Γ ⊢ A : {X} Γ ⊢ A : {X,×} Γ ⊢ A : {×}
φX0 A A false

φXX A A false

φX× false false false

φ×0 false ¬A ¬A
φ×X false ¬A ¬A
φ×× false false false

φ00 ¬A ¬A ¬A

Predicate P;Q P‖Q P�Q

φX0 PX0QX0 PX0QX0 P00QX0∨ PX0Q00

φXX PXXQXX PXXQXX P00QXX∨ PXXQ00

φX× PX0QX×∨ PX×QX0 PX0QX×∨ PXXQX×∨ PX×QX0∨ P00QX×∨ PX×Q00

PX×QXX∨ PX×QX×

φ×0 PX0Q×0∨ P×0Q00 P00Q×0∨ PX0Q×0∨ P×0Q00∨ P00Q×0∨ P×0Q00

P×0QX0∨ P×0Q×0

φ×X PXXQ×X∨ P×XQ00 P00Q×X∨ PXXQ×X∨ P×XQ00∨ P00Q×X∨ P×XQ00

P×XQXX∨ P×XQ×X

φ×× PX0Q××∨ PX×Q×X∨ P××Q00 P00Q××∨ PX0Q××∨ PXXQ××∨ P00Q××∨ P××Q00

PX×Q×0∨ PX×Q×X∨ PX×Q××∨
P×0QX×∨ P×0Q××∨ P×XQX×∨
P×XQ××∨ P××Q00∨ P××QX0∨
P××QXX∨ P××QX×∨ P××Q×0∨
P××Q×X∨ P××Q××

φ00 P00Q00 P00Q00 P00Q00

Predicate P÷Q P�Q

φX0 PX0Q00 PX0Q00∨ P×XQX0

φXX PX0QX0 PXXQ00∨ P×XQXX

φX× PX0Q×X∨ PX0Q×× PX×Q00∨ P×XQX×

φ×0 P×0Q00 P×XQ×0

φ×X P×XQ00 P×XQ×X

φ×× P××Q00 P×XQ××∨ P××Q00

φ00 P00Q00 P00Q00

Figure 3: Inference rules for computing φ

ing the execution predicate, we name each non-atomic sub-
predicate, using the names as literals instead of expanding
the sub-predicates of φ. The resulting execution predicate
is then conjoined with a definition (n ↔ φn) for each name
n and its definition φn.

Using memoization, the execution predicate of our previ-
ous example becomes:

(SimpleOrderX0 ∨ SimpleOrder×X)

∧ (SimpleOrderX0 ↔ BillingX0 ∧ ProcessOrder)

∧ (BillingX0 ↔ Charge ∧ ¬Credit)

∧ (SimpleOrder×X ↔

(BillingXX ∧ ¬ProcessOrder ∨

Billing×X ∧ ¬ProcessOrder))

∧ (BillingXX ↔ Charge ∧ Credit)

∧ (Billing×X ↔ ¬Charge ∧ ¬Credit)

Although the memoized execution predicate for this par-
ticular example is larger than the non-memoized predicate,
in general, the worst-case size of the memoized predicate is
polynomial in the size of a process, whereas the size of a
non-memoized predicate can be exponential.

Theorem 3. For any process P and action type environ-
ment Γ,

1. The execution set obtained from P ’s execution pred-
icate is equal to the set of all P executions:
E(pred(P, Γ)) = execs(P, Γ).

2. |pred(P, Γ)| is polynomial in |P |.

Proof Outline:

Execution predicate soundness. We prove the first as-

sertion by induction on the derivation of pred(P), first con-
sidering direct generation of the execution predicate, with-
out memoization. The base cases are each of the atomic
action rules. For each rule, we show that the satisfying as-
signments to the predicates correspond to the feasible exe-
cutions. The inductive cases are the compositional operator
rules. We can simplify the proof for these cases using theo-
rem 1, which shows that, when composing subprocesses, one
can compose the traces, only considering the status (success
or failure) of the subtraces. For each operator, we show that,
assuming that the component predicates (e.g. PXX , etc.)
are correct, then the predicate constucted for the operator
has satisfying assignments corresponding to the executions
obtained from the associated trace semantics rule.

Memoization. To prove that our memoization algorithm
is correct, we show a more general property for an arbitary
predicate φ containing a sub-predicate ϕ. An assignment A

of values to the variables of φ is a satisfying assignment for φ,
if and only if it is satisfying assignment for (φ[C/ϕ])∧ (C ↔
ϕ), where C is a literal not appearing in φ. To see this, we
use several boolean algebra identities. We convert φ[C/ϕ]
to disjunctive normal form, yielding φdnf .

We assume without proving here that replacing each oc-
currance of C with ϕ in φdnf would yield a predicate equiv-
alent to φ. Given this, we only need to show that conjoining
φdnf with C ↔ ϕ is equivalent to performing this substitu-
tion. We conjoin each term ti of φdnf with C∧ϕ ∨ ¬C∧¬ϕ,
creating terms tC

i and t¬C
i . If C and not ¬C appear in ti,

7

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

pred(SimpleOrder , Γso) = φX0 ∨ φ×X ∨ φ×× (1)

= BillingX0ProcessOrderX0 ∨ BillingXXProcessOrder×X ∨

Billing×XProcessOrder00 ∨ BillingX0ProcessOrder×× ∨

BillingX×ProcessOrder×X ∨ Billing××ProcessOrder00 (2)

= BillingX0 ∧ ProcessOrder ∨ BillingXX ∧ ¬ProcessOrder ∨

Billing×X ∧ ¬ProcessOrder ∨ BillingX0 ∧ false ∨

BillingX× ∧ ¬ProcessOrder ∨ Billing×× ∧ ¬ProcessOrder (3)

= Charge
X0 ∧ Credit00 ∧ ProcessOrder ∨ Charge

X0 ∧ CreditX0 ∧ ¬ProcessOrder ∨

Charge×X
∧ Credit00 ∧ ¬ProcessOrder ∨

(Charge
X0Credit×X ∨ Charge

X0Credit××) ∧ ¬ProcessOrder ∨

Charge×× ∧ Credit00 ∧ ¬ProcessOrder (4)

= Charge ∧ ¬Credit ∧ ProcessOrder ∨ Charge ∧ Credit ∧ ¬ProcessOrder ∨

¬Charge ∧ ¬Credit ∧ ¬ProcessOrder ∨ (Charge ∧ false ∨ Charge ∧ false) ∧ ¬ProcessOrder ∨

false ∧ ¬Credit ∧ ¬ProcessOrder (5)

= Charge ∧ ¬Credit ∧ ProcessOrder ∨ Charge ∧ Credit ∧ ¬ProcessOrder ∨

¬Charge ∧ ¬Credit ∧ ¬ProcessOrder (6)

Figure 4: Computing pred(SimpleOrder , Γso)

then tC
i = ti∧ϕ and t¬C

i is unsatisifiable. When considering
satisfiability, we can ignore the term C in tC

i , since it is a
free variable in φdnf . The case where ti contains ¬C but not
C is similar. If ti contains C and ¬C, then ti and ti[ϕ/C]
are unsatisfiable. Thus, φdnf ∧ (C ↔ ϕ) is equivalent to
φdnf [ϕ/C].

Execution predicate size. To show that the execution
predicate’s size is polynomial with respect to the original
process, we use induction on the structure of processes. The
base causes are atomic actions which all have predicates of
one term. For the inductive case, we consider an abitrary
subprocess P ⊗ Q where the predicates φX0(P), ...φ00(P)
are all polynomial in the size of P and the predicates
φX0(Q), ...φ00(Q) are all polynomial in the size of Q. Using
memoization, we need only reference each of these predi-
cates once. The predicates φX0(P ⊗ Q), ...φ00(P ⊗ Q) are
thus independent in size from the sizes of P and Q. The
largest possible size is, in fact, 67 for φ××(P ‖ Q).

Checking Consistency. We check a specification by
checking if the execution predicate pred(P, Γ) implies the
normalized specification predicate spec norm(ϕ, C). If the
implication is valid, then all executions satisfy the specifica-
tion and the solution to the consistency verification problem
is “yes.” Otherwise, there is some execution that does not
satisfy the consistency specification. Therefore, to check a
process for consistency, we can build the execution and nor-
malized specification predicates and check the implication
by a Boolean satisfiability query.

Theorem 4. For any process P and specification predi-
cate ϕ, with action type environment Γ and normalization
set C,

1. execs(P, Γ) ⊆ spec(spec norm(ϕ, C)) iff pred(P, Γ) →
spec norm(ϕ, C) is valid.

2. The consistency verification problem can be solved in
time exponential in some polynomial function of |P |,
|Γ|, |ϕ|, and |C|.

Proof Outline: This follows from the previous theorems.
If the execution predicate is a sound and complete represen-
tation of a process’s executions, then the process satisifies
a specification only if the execution predicate implies the
specification.

The verification predicate can be generated in polynomial
time with respect to the algorithm’s inputs: only one pass
must be made through the process and the size of the gen-
erated predicate is polynomial with respect to |P |, |Γ|, |ϕ|,
and |C|. From theorem 3 we know that the execution predi-
cate is polynomial in size with respect to P . |Γ| and |C| are
not larger than the number of unique actions in P and |φ|
is independent from Γ. Finally, spec norm causes at most a
polynomial expansion of the specification predicate.

Example 5. Given the previously computed values of
pred(SimpleOrder, Γso) and spec norm(ϕso, Cso), the verifi-
cation problem for process SimpleOrder may be reduced to
checking the validity of the following predicate:

`

Charge ∧ ¬Credit ∧ ProcessOrder ∨

Charge ∧ Credit ∧ ¬ProcessOrder ∨

¬Charge ∧ ¬Credit ∧ ¬ProcessOrder
´

→
`

(Charge ∧ ProcessOrder) ∨
`

(¬Charge ∧ ¬Credit) ∨ (Charge ∧ Credit)
´

∧ ¬ProcessOrder
´

Multiple Calls to an Action. So far, we have assumed
that each action in A is called at most once in a given pro-
cess. If an action may be called multiple times by a process,
we do not distinguish the individual calls. Given an action
A, which appears more than once in the text of the pro-
cess P , the specification predicate A is true if A is called
at least once, and false if A is never called. This follows
directly from our definition of a process execution, which is
a set of called actions, rather than a bag. These semantics
are useful for situations where an action may be called in

8

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

one of several situations, and we wish to verify that, given
some common condition, the action is called. For example,
in OrderProcess of section 6.1, the action MarkFailed must
be called if the order fails, either due to a failed credit check
or to a failed fulfillment subprocess.

If an action is called more than once, pred(P, Γ) may pro-
duce an unsatisfiable predicate. For example, φX0(A�A) =
(A ∧ ¬A) ∨ (¬A ∧ A), which is clearly unsatisfiable. We
solve this by applying the function trans calls : P → P × Φ,
which takes as input a process P and returns a translated
process P ′ along with a predicate φtc. Given a set of actions
{A1, ...An} ⊆ A, which occur more than once in P , each oc-
currence of these actions the translated process P ′ is given
a unique integer subscript. For example, given the process
P = (A; B) � (A; B), trans calls(P) will return the process
P ′ = (A1; B1) � (A2; B2). The predicate φtc = φ1

tc ∧ ...φn
tc,

where φi
tc uses the boolean ↔ operator to associate the

atomic predicate Ai with the disjunction of the predicates
for each subscript. For example, φtc for P = (A; B)�(A; B)
will be (A ↔ (A1∨A2))∧(B ↔ (B1∨B2)). We now re-define
our predicate function pred, to combine trans calls with
predmem, our original predicate generation function:

pred(P, Γ) = let (P ′, φtc) = trans calls(P) in

predmem(P ′, Γ) ∧ φtc

Lemma 1. For any process P , which may contain multi-
ple calls to the same action, and atomic action typing Γ, the
execution set obtained from applying pred to P and Γ is equal
to the set of all P executions: E(pred(P, Γ)) = execs(P, Γ).

Proof Outline: We show this through boolean algebra
identities. Assume that process P contains an action A
which is called n times. Thus, trans calls(P) = (P ′, A ↔
(A1 ∨ A2... ∨ An)) and φp′ = predmem(P ′), where P ′ has
actions A1, A2, ...An substituted for each occurrance of A.
We convert φp′ to disjunctive normal form, yielding φdnf

p′ .

We state, without proving here, that each term of φdnf

p′ will

contain all actions of P ′, either directly or in negated form.
We conjoin each term ti of φdnf

p′ with A ↔ (A1 ∨ ...An).

This yields the terms tA1

i = ti ∧ A ∧ A1, tA2

i = ti ∧ A ∧ A2,

... tAn

i = ti ∧ A ∧ An, and t¬A
i = ti ∧ ¬A ∧ ¬A1... ∧ ¬An.

The terms t
Aj

i are satisifiable if ti satisfiable, A is assigned
true, and ti contains Aj as a conjunct (and thus not ¬Aj).
The term t¬A

i is satisfiable if ti is satisfiable, A is assigned
false, and ti contains ¬A1, ...¬An as conjuncts. If we view
the terms ti as possible executions for P , this matches our
intuition: if any of the subscripted actions Aj are included
in the execution, then we include A.

Named subprocesses. As mentioned in section 3, named
subprocesses are simply expanded at each callpoint. This is
done before running trans calls, since expansion may intro-
duce actions which are called more than once.

5. ITERATION
We now extend our core process language to support itera-

tion by introducing two new process composition operators,
“∗∗” and “∗|”, with the following syntax:

Process P ::= ...

| ∗∗P sequential iteration
| ∗|P parallel iteration

The sequential iteration operator runs a process one or more
times, one copy at a time. The parallel iteration operator
runs one or more copies of a process in parallel. For both
operations, the number of copies is not known a priori —
this is determined at runtime.

We define the trace semantics of these operators by taking
the fixpoint of the following two equations:

Π(∗ ∗ P) = Π(P) ∪ Π(P ; (∗ ∗ P))

Π(∗|P) = Π(P) ∪ Π(P ‖ (∗|P))

The sequential iteration operator generates a sequence of
traces from Π(P), where all but the last trace must corre-
spond to successful executions. As with pairwise sequential
composition, the compensation process for sequential itera-
tion runs the compensation processes for each action sequen-
tially, in reverse order from the forward execution. Parallel
set iteration interleaves traces of P arbitrarily. If any of
these traces fails, the parent has a failed status. As with
parallel composition, processes may not be interrupted in
the event of a failure, but may be skipped if they have not
started. Compensation is run in parallel as well.

We wish to generalize set consistency predicates to pro-
cesses with iteration. We encounter two problems with iter-
ation. First, the set of potential traces for a given process
now becomes infinite. Second, consider two atomic actions
A and B, which occur within an iterated subprocess. The
specification A ∧ B will be true for all traces where both A
and B are called at least once, even if A and B are never
called in the same iteration. This is usually too weak. In
an executable process, an iterated subprocess would likely
be parameterized by some value (dropped when abstracting
to our core language), which changes each iteration. Thus,
one is more likely interested in checking if, whenever A is
called, B is also called within the same iteration. We will
see an example of such a process in section 6.1.

Quantified specification predicates. We now generalize
the semantics of specification predicates to permit specifying
that all iterations of an subprocess obey a constraint. As a
running example, we use the following process:

P = (∗ ∗ (A; B)); (∗|(C � D))

First, we augment process traces to uniquely identify each
call to an action within iterative subprocesses. We num-
ber the iterations of each iterative subprocess, starting at 1.
We add this iteration number as a subscript to the actions
called within each iteration. For example, given an run of
process P which executes the A; B iteration twice and runs
two copies of C and one copy of D for the parallel iteration,
we obtain the trace: A1 B1 A2 B2 C1 C2 D3. For parallel
iteration, since subprocesses may be interleaved, the map-
ping of subprocess executions to iterations is arbitrary. If an
iterative subprocess is nested within another iterative sub-
process, we subscript each inner subprocess’s actions with a
sequence of iteration numbers, starting with the outermost
subprocess. We extend the trace semantics function J·K to
produce traces of this form for iterative subprocesses.

The execution for an iterative trace is simply the set of
actions called, propagating the iteration subscripts. Thus,
the actions of each iteration are distinguished. For exam-
ple, execution for the above trace of process P would be:
{A1, A2, B1, B2, C1, C2, D3}. We extend the execution func-
tion execs : P → 2A to produce executions of this form.

9

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

Next, we extend the specification semantics function spec :
Φ × P → E to permit specification predicates over iterative
executions. As discussed above, we wish to consider whether
a property holds over all iterations. Therefore, we forbid the
use of specific iteration subscripts in the specification pred-
icate. Instead, we assign a unique index variable to each it-
erative subprocess and universally quantify the specification
predicate over all index variables. For example, to specify
that, for each sequential iteration in process P , the execu-
tion of B implies the execution of A, we write ∀i(¬Bi ∨Ai).
We write ϕ∀ to represent a quantified specification predi-
cate. Predicates outside any iteration are not subscripted.
Thus, given the process P ′ = (∗ ∗ (X; Y)); Z, the predicate
∀i(¬Z ∨ (Xi ∧ Yi)), means “in all executions of the process
where Z is called, X and Y are called together for all itera-
tions.”

We can now define the semantics of an execution pred-
icate, given a universally quantified specification predicate
ϕ∀ and a process P :

spec
∀(ϕ∀, P) = {e ∈ execs(P) | e |= ϕ∀}

Verification. Clearly, if a quantified specification predi-
cate is satisfied by all possible iterations of a process, then
any single iteration will satisfy the predicate as well. More
importantly, the reverse is also true. To show this, we first
define a function erase : P → P, which removes the iteration
operators from a process, replacing them with the underly-
ing subprocess:

erase(P) =

8

>

>

>

<

>

>

>

:

erase(P ′) if P = ∗ ∗ (P ′)

erase(P ′) if P = ∗|(P ′)

erase(Q) ⊗ erase(R) if P = Q ⊗ R

A if P = A

Given a specification predicate ϕ∀, we write ϕǫ for the pred-
icate obtained by removing the universal quantifier and any
iteration subscripts on literals.

Theorem 5. Given a process P , a normalization set C,
and quantified specification predicate ϕ∀, iff erase(P) is cor-
rect with respect to ϕǫ, then P is correct with respect to ϕ∀.

Proof Outline: Assume that process P contains an it-
erative subprocess Q = ∗ ∗ (R) or Q = ∗|(R).

The function select iters : 2A → E takes an execution E
of P and returns the set of executions E1, E2, ...En where
each Ei substitutes the execution Eqi

of Q iteration i for
the execution Eq of all Q iterations. We can lift select iters

to sets of executions by applying it to each execution in
the input set and accumulating all resulting executions in a
single set.

We may evaluate a feasible execution set execs(P) of pro-
cess P against the quantified execution predicate ϕ∀ by eval-
uating each execution in select iters(execs(P)) against ϕǫ. If
all these executions satisfy ϕǫ, then P satisfies ϕ∀.

Lemma 2.

∀e∈select iters(execs(P)) . (e |= ϕǫ) →

∀e′∈execs(P) . (e′ |= ϕ∀)

From the trace definitions for iteration, we can see that
the possible traces for an single iteration of Q are the same

Process Spec Proc Spec Pred Time
size size size (ms)

AccountReceive ϕq1 13 8 124 120
OrderProcess ϕo1 26 21 247 124
OrderProcess ϕo2 26 20 236 130
BrokenOrder ϕo2 22 20 198 157
Travel ϕt1 13 24 181 119
Travel ϕt2 13 39 210 127

Figure 5: Experimental Results. “Spec” is the con-

sistency specification, “Spec size” is the size of the

specification, “Pred size” is the size of the execution

predicate.

as if the subprocess R is run standalone. In other words,
iterations are “stateless.” Thus, the possible executions and
forward/compensation status pairs for any one iteration of
Q are the same as those for R. From theorem 1, we know
that the trace of the process calling Q depends only on the
status of Q, not the individual actions. Thus, the set of
feasible executions we get when replacing Q with R are the
same as when we select each iteration from the executions
of P . More formally:

Lemma 3. execs(erase(P)) = select iters(execs(P)).

Theorem 5 follows from lemmas 2 and 3.
Thus, we can check an iterative process by simply erasing

the iterative operators, and checking against the associated
unquantified specification.

6. EXPERIENCES
To demonstrate the viability of our approach, we have

implemented a verifier for our process language, based on
the predicate-generation algorithm of section 4. We then
modeled the example of section 2 and two additional case
studies in our language and verified them using our tool.
The source code for our verifier and examples may be found
at http://cs.ucla.edu/~fischer/code/trans.

We implemented the predicate generation algorithm in
Objective Caml. To determine the validity of verification
predicates, we use the Simplify theorem prover [9]. The
predicate generator and Simplify are separate executables
—the predicate is passed to Simplify via an operating sys-
tem pipe. While this is inefficient, and Simplify’s SAT capa-
bilities are far behind modern SAT solvers, the performance
of our verifier has not been a problem in our case studies.

Figure 5 shows the results of running our verifier on the
example of section 2 and the two case studies below. The
run times are for a 1.6Ghz Pentium M laptop with 512 MB
of memory, running Windows XP. The runs all complete in
less than 160 milliseconds. The verification predicates are
approximately 10 times larger than the original processes.
Since process languages are intended for composing lower-
level services, the size of real-world processes are usually not
more than an order of magnitude larger than our examples,
well within the capabilities of SAT solvers.

6.1 Case Study: Order Process
[8] presents a simple order fulfillment transaction which

has cancellation semantics, and thus compensation is suf-
ficient for expressing the required error handling. Figure 6
shows a more complex order fulfillment transaction, inspired

10

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

OrderProcess =SaveOrder; CreditCheck;

SplitOrder; FulfillOrder; CompleteOrder

CreditCheck =(ReserveCredit � (Failed; throw))

÷ OrderFailed

OrderFailed =RestoreCredit;Failed

FulfillOrder = ∗ |(ProcessPOi)

ProcessPOi =(FulfillPOi � (MarkPOFailedi; throw))

÷ CancelPOi

CompleteOrder =BillCustomer;Complete

Figure 6: Order management process

by the example application in [18], which does not have can-
cellation semantics.

The process OrderProcess receives a customer’s order
and makes a reservation against the customer’s credit
(ReserveCredit). If the customer does not have enough
credit, the order is marked failed (Failed) and processing
stopped. Otherwise, if the credit check was successful, the
subprocess OrderFailed is installed as compensation for the
credit check. Then, the order is broken down into sub-orders
by supplier, and these sub-orders are submitted to their
respective suppliers in parallel (subprocess FulfillOrder).
Upon completion of the sub-orders, if all are successful, the
subprocess CompleteOrder finalizes the credit transaction
with a call to BillCustomer and marks the order as com-
plete (Complete).

Failure semantics. There are two types of errors that may
occur in the order transaction. If the ReserveCredit call
fails (e.g. due to insufficient credit), the order is marked
as failed and execution is terminated before submitting any
purchase orders. Alternatively, one or more purchase orders
may be rejected by the associated suppliers. If any orders
fail, the credit reservation is undone and the order marked
as failed. Note that neither error scenario causes the entire
transaction to be undone. This is consistent with real world
business applications, where many transactions have some
notion of partial success and records of even failed transac-
tions are retained.

We assume the normalization set

{(ReserveCredit,RestoreCredit), (FulfillPO,CancelPO)}

and that the actions SaveOrder, RestoreCredit,
CancelPO, Failed, and Complete never fail.

The order should always be saved. If the order process is
successful, the customer should be billed, all the purchase
orders fulfilled, and the order marked complete. If the or-
der process fails, the order should be marked as failed, the
customer should not be billed, and no purchase orders ful-
filled. These requirements are written as the following set
consistency predicate ϕo1:

SaveOrder ∧
`

(BillCustomer ∧ FulfillPO ∧ Complete ∧ ¬Failed) ∨

(¬BillCustomer ∧ ¬FulfillPO ∧ ¬Complete ∧ Failed)
´

When checked with our verifier, OrderProcess does indeed
satisfy this specification.

Next, we consider an alternative, orthogonal specifica-
tion. Assume that the ReserveCredit, RestoreCredit,

and BillCustomer actions all belong to an external credit
service. We wish to ensure that our process always leaves the
service in a consistent state: if ReserveCredit succeeds,
then either RestoreCredit or BillCustomer (but not
both) must eventually be called. Also, if ReserveCredit
fails, neither should be called. We model these requirements
with the predicate ϕo2:

(¬ReserveCredit → (¬RestoreCredit ∧ ¬BillCustomer)) ∧

(ReserveCredit → (RestoreCredit ⊕ BillCustomer))

where → and ⊕ are syntactic sugar for logical implication
and logical exclusive-or, respectively. Since we are referenc-
ing RestoreCredit directly in our specification, we remove
the pair (ReserveCredit,RestoreCredit) from our com-
pensation set. Our verifier finds that OrderProcess satisfies
this specification.

Finally, we consider the process BrokenOrder, a variation
of OrderProcess where the OrderFailed compensation is
left out of the CreditCheck subprocess:

CreditCheck = ReserveCredit � (Failed; throw)

When checking this process, our verifier finds that the
ϕo2 specification is not satisfied and returns the following
counter-example execution:

{SaveOrder,ReserveCredit,SplitOrder,Failed}

This execution corresponds to a trace where the pro-
cess runs successfully until it reaches FulfillPO, which
fails. The exception handling for FulfillPO runs Failed,
but RestoreCredit is never run to undo the effects of
ReserveCredit.

6.2 Case Study: Travel Agency
Many real world applications involve mixed transactions.

A mixed transaction combines both compensatable and non-
compensatable subtransactions [10]. Frequently, these pro-
cesses involve a pivot action [17], which cannot be compen-
sated or retried. To obtain cancellation semantics, actions
committing before the pivot must support compensation
(backward recovery) and actions committing after the pivot
must either never fail or support retry (forward recovery).

Set consistency specifications can capture these require-
ments and our verifier can check these properties. To illus-
trate this, we use a travel agency example from [15]. We
model it in our core language as follows:

Travel = ((BookFlight ÷ CancelFlight;

(RentCar ÷ CancelCar)) � ReserveTrain);

(ReserveHotel1 � ReserveHotel2)

In this transaction, a travel agent wishes to book trans-
portation and a hotel room for a customer. The customer
prefers to travel by plane and rental car. These reservations
can be canceled. If a flight or rental car is not available, then
the agent will book a train ticket to the destination. Once
made, the train reservation cannot be canceled. There are
two hotel choices at the destination. The first hotel may be
full and a reservation may fail, but the second hotel reser-
vation is always successful. We can model the failure and
compensation properties of these services as follows:

Γt = 〈BookFlight 7→ {X,×},CancelFlight 7→ {X},

RentCar 7→ {X,×},CancelCar 7→ {X},

ReserveTrain 7→ {X,×},

ReserveHotel1 7→ {X,×},ReserveHotel2 7→ {X}〉

C = {(BookFlight,CancelFlight), (RentCar,CancelCar)}

11

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

The ReserveTrain action is a pivot action, as it has no
compensation or exception handler. From inspection, we see
that the requirements for cancellation semantics are met:

• If ReserveTrain is called, then the actions BookFlight

and RentCar have been compensated by CancelFlight

and CancelCar, respectively.
• If ReserveHotel1 fails, we recover forward by calling

the alternate action ReserveHotel2, which cannot fail.

We can check this with our verifier using the following spec-
ification predicate:

ϕt1 = (((BookFlight ∧ RentCar) ∨ ReserveTrain)∧

(ReserveHotel1 ∨ ReserveHotel2)) ∨

¬(BookFlight ∨ RentCar ∨ ReserveTrain∨

ReserveHotel1 ∨ ReserveHotel2)

The process does indeed satisfy this specification. We can
use consistency specifications to check stronger properties as
well. For example, we can alter the specification predicate
to check that the process does not book both the flight/car
and the train and that it only books one hotel:

ϕt2 = (((BookFlight ∧ RentCar) ⊕ ReserveTrain)∧

(ReserveHotel1 ⊕ ReserveHotel2)) ∨

¬(BookFlight ∨ RentCar ∨ ReserveTrain∨

ReserveHotel1 ∨ ReserveHotel2)

7. RELATED WORK
Flow Composition Languages. Many formalizations of
flow composition languages that support composition and
compensation have been proposed in the literature [6, 7, 5].
These formalisms such as STaC [6], the saga calculus [5],
and compensating CSP [8] formalize process orchestration
using atomic actions and composition operations similar to
ours. They differ mostly in the features supported (e.g.,
whether recursion is allowed, whether parallel processes can
be synchronized, or whether there are explicit commit mech-
anisms), in assumptions on atomic actions (whether or not
they always succeed), and in the style of the semantics (trace
based or operational).

We chose a core language that includes only the features
relevant to our exposition. However, we borrowed exten-
sively from the above languages and believe that similar re-
sults hold in the other settings. Like the Saga Calculus, we
assume that atomic actions can succeed or fail, as this more
closely matches the semantics of industrial languages such
as BPEL [12]. We support all the composition operators of
the Saga Calculus and Compensating CSP, except that we
automatically apply compensation in the event of an error,
rather than requiring a transaction block. Our sequential
and parallel iterations are inspired by STaC’s generalized
parallel operator. However, our core language does not sup-
port interruptible recovery of parallel processes or recursion.

Notions of Correctness. The usual notion of correct-
ness is cancellation semantics [8]. One can ensure that a
process is self-canceling by restricting processes to have a
compensation action for each forward action where com-
pensations cannot fail and are independent of any other
compensations running in a parallel branch [8]. Although
order-independence between compensations is a realistic re-
striction, requiring a compensation for each action seems

limiting. Verification becomes more involved when this
restriction is relaxed. [15] describes an algorithm which
checks that an OPERA workflow, potentially containing
non-compensatable actions and exception handling, satis-
fies cancellation in O(n2) time. In [19], cancellation is
checked on collections of interacting processes by creating an
atomicity-equivalent abstraction of each process and check-
ing the product of the abstractions.

Set consistency specifications can capture cancellation se-
mantics. In addition, such specifications can model scenar-
ios where self-cancellation is not desired (e.g., the order case
study of section 6.1) and can capture stronger requirements
than cancellation (e.g., mutually exclusive actions in the
travel agency case study of section 6.2).

Other specification approaches have been suggested for
composing web services, independent of compensation and
transactional issues. For example, [3] proposes consistency
interfaces, which define, for a method m of the service and
result o of calling that method, the methods called by m
and their associated results which lead the result o. The
specification language for method calls includes union and
intersection, thus providing similar capabilities as a set con-
sistency specification. Consistency interfaces do not treat
non-execution of an action the same as atomic failure, and
there is no compensation. This precludes the use of negation
in specifications and the interpretation of satisfying assign-
ments as executions of the process. Our algorithm can be
applied to check processes against consistency interfaces.

Finally, temporal logic specifications, frequently used by
model checking tools, can also be used for compensating pro-
cesses. The problem of checking recursive processes against
regular sets of traces is undecidable [11]. Thus, model check-
ers (e.g., XTL for STaC [16]) usually bound the recursion
depth. While temporal logic is a more powerful specification
language, set consistency can already model many properties
of interest and provides a useful, tractable, and expressive
formalism between cancellation and full temporal logic.

8. CONCLUSION
Set consistency is a powerful, yet intuitive, approach to

model the correctness requirements of long-running transac-
tions. It permits the modeling of strong consistency require-
ments such as cancellation, mutual exclusion, and implica-
tion. For atomic actions, the equivalence of non-execution,
failed execution, and compensated execution is built into
the semantics of consistency predicates, making the specifi-
cations compact.

The set consistency checking problem is co-NP complete,
and can be reduced to checking propositional logic valid-
ity. Our verifier generates a predicate from a process def-
inition and specification, which can then be passed to an
off-the-shelf SAT solver. We demonstrated the usefulness
and tractability of set consistency by running our verifier
on three case studies: in each case, the consistency checks
could be discharged within a second.

Future work. We plan to extend our core language to in-
clude boolean variables, whose values can be tracked by the
execution predicate. This permits the modeling and verifi-
cation of correlated paths in our processes. With this, our
core language will be expressive enough to represent BPEL
processes, using standard boolean abstraction techniques for
data. We are also investigating the extension of set consis-

12

UCLA Computer Science Dept. Technical Report TR-070011 April 6, 2007, revised May 11, 2007

tency to collections of interacting processes interacting via
asynchronous messages.

9. REFERENCES
[1] Business process modeling language (BPML).

http://www.bpmi.org.

[2] Web services conversation language (WSCL) 1.0.
http://www.w3.org/TR/wscl10.

[3] D. Beyer, A. Chakrabarti, and T. Henzinger. Web service
interfaces. In WWW ’05, pages 148–159. ACM, 2005.

[4] R. Bruni, M. Butler, C. Ferreira, C.A.R. Hoare,
H. Melgratti, and U. Montanari. Comparing two approaches
to compensable flow composition. 3653:383–397, 2005.

[5] R. Bruni, H. Melgratti, and U. Montanari. Theoretical
foundations for compensations in flow composition
languages. In POPL ’05, pages 209–220. ACM, 2005.

[6] M. Butler and C. Ferreira. A process compensation
language. In IFM ’00: Integrated Formal Methods, pages
61–76. Springer, 2000.

[7] M. Butler and C. Ferreira. An operational semantics for
stac, a language for modelling long-running business
transactions. In Coordination ’04, volume 2949 of LNCS,
pages 87–104. Springer, 2004.

[8] M. Butler, C. A. R. Hoare, and C. Ferreira. A trace
semantics for long-running transactions. In Communicating
Sequential Processes: The First 25 Years, volume
3525/2005 of LNCS, pages 133–150. Springer, 2004.

[9] D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005.

[10] A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz.
A multidatabase transaction model for interbase. In VLDB
’90, pages 507–518. Morgan Kaufmann, 1990.

[11] M. Emmi and R. Majumdar. Verifying compensating
transactions. In VMCAI ’07. ACM, 2007.

[12] Tony Andrews et al. Business process execution language
for web services, May 2003.
http://dev2dev.bea.com/webservices/BPEL4WS.html.

[13] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD ’87,
pages 249–259. ACM, 1987.

[14] J. Gray and A. Reuter. Transaction processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[15] C. Hagen and G. Alonso. Exception handling in workflow
management systems. IEEE Trans. Softw. Eng.,
26(10):943–958, 2000.

[16] J.Augusto, M. Leuschel, M. Butler, and C. Ferreira. Using
the extensible model checker xtl to verify stac business
specifications. In AVoCS ’03, 2003.

[17] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek.
Atomicity and isolation for transactional processes. ACM
Trans. Database Syst., 27(1):63–116, 2002.

[18] I. Singh, S. Brydon, G. Murray, V. Ramachandran,
T. Violleau, and B. Stearns. Design Web Services with the
J2EE 1.4 Platform. Addison-Wesley, 2004.

[19] C. Ye, S.C. Cheung, and W.K. Chan. Publishing and
composition of atomicity-equivalent services for b2b
collaboration. In ICSE ’06, pages 351–360. ACM, 2006.

13

