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:
Abstract

Action and event recognition from video require com-
paring temporal sequences of images, or of intermedi-
ate representations derived from them. Such a compari-
son should be insensitive to intrinsic temporal variations
within the same class – for instance the speed of execu-
tion of a particular gesture – and at the same time retain
the discriminative power that enable classifying differ-
ent actions. In this paper, we propose a technique to
compare temporal sequences that accounts for dynamic
constraints implicit in the data generation process. Our
technique is more flexible than those previously used for
quasi-periodic actions such as walking gaits, but more
discriminative than others based on dynamic time warp-
ing that do not satisfy dynamic constraints. We illustrate
our approach on public datasets including stationary
and non-stationary actions, using both motion-capture
and image data. In all the experiments we have con-
ducted, our approach outperforms competing ones. We
highlight experiments where it exhibits limitations.

1. Introduction
Comparing time series is a problem of critical im-

portance in the analysis of video for the detection and
classification of actions or events of interest. These in
turn are relevant to surveillance, environmental moni-
toring, and human-machine interfaces. In addition to
the challenges of geometric and photometric variability
common to other visual classification tasks, video anal-
ysis requires dealing with temporal variability, whereby
the same event can occur at a variety of speeds, start-
ing from a variety of initial instants and following a va-
riety of velocity profiles. While geometric and photo-
metric information present in one image is undoubtedly
important (and indeed often sufficient) to recognize ac-
tions and events, the temporal evolution contains a sig-
nificant amount of information, as illustrated eloquently

by [9]. In this manuscript, therefore, we concentrate on
the classification of events that have distinct temporal
signatures. Comparison of time series is also key in
a number of other disciplines, where a variety of tools
have been developed from “dynamic time warping” in
speech recognition [19] and temporal data mining [18]
to Lyapunov exponents and non-linear embedding in
chaotic physical and financial systems [10], to stochas-
tic realization theory for control systems [6]. We argue,
however, that the analysis of motion imagery requires
the development of dedicated tools, because the mod-
els underlying other disciplines are either too restrictive
or much too general. In fact, the assumption underly-
ing most data-driven models in system identification is
stationarity [14], which is obviously violated except for
quasi-periodic gaits. On the opposite end, dynamic time
warping (DTW) [18] reparametrizes the temporal axis
in a way that is not compatible with physical constraints
implicit in the data formation process. When we im-
age the physical world, actions are performed by objects
with masses and inertias, so their behavior can only gen-
erate velocity profiles that obey the resulting dynamic
constraints.1 Therefore, in this manuscript we introduce
a time warping model that accounts for dynamic con-
straints intrinsic in the hidden generative model of an
action or event. We call this time warping under dy-
namic constraints (TWDC).

1.1. Prior work

The comparison of time series takes a different form
in different disciplines, and we refer the reader to text-
books cited above. Here we discuss the specific case
of the analysis of video, where temporal variability can
be addressed in the representation, by devising statistics
of a video snippet that does not depend on its temporal
evolution, or as part of the matching process, by defining

1Needless to say, even the whackiest actions we are likely to ob-
serve in applications to security, monitoring and surveillance are un-
likely to approach the chaotic nature implicit in models for finance
forecasting and astrophysics.
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suitable distances or other discrepancy measures. Exam-
ples of the first approach include averaging statistics,
where the video (or some pre-processing of it that re-
duces the effects of photometric variability, typically the
extraction of silhouettes from background subtraction)
is integrated against a kernel to arrive at a static feature
[27]. These methods are specific to a particular image
statistic (e.g. the silhouette) and do not generalize easily
to other models (say affine moments). Another example
is instantaneous statistics, where the value and deriva-
tive of a feature vector is computed at each instant and
then quantized over time using a hidden Markov model
[20]. These methods represent a coarse decimation of
the original signal, so much of the information implicit
in the dynamics is lost. Yet another example is to de-
sign invariants of the sequence. For instance, transfer
functions are shift-invariant and are sufficient statistics
for stationary processes [4, 2], but these methods do not
generalize to non-stationary actions.

The alternate approach consists of representing the
video as just a collection of ordered frames (or some
statistics of it), and then devise methods to compare
video snaps that minimizes the effects of temporal
variations. These include the Kullback-Leibler diver-
gence between the sample video distributions, which are
frought with computational difficulties, although recent
advances make them more efficient [5], correlation ker-
nels [25], and direct block-correlations [22, 27], also
rather computationally intensive. These methods could
be considered discriminative in the sense that they com-
pare time series without regards to how they are gener-
ated, and the underlying model is implicit in the com-
parison algorithm. Dynamic time warping (DTW) [18]
falls in this category, in that it mods out temporal vari-
ations as part of the matching process. It has been used
successfully in other domains of vision research, from
epipolar matching in calibrated stereo [17] to discrete-
time action modeling [26], to handwriting [15] among
others.

In between these two approaches there are likelihood
methods that use one sequence to infer an underlying
model, and then use this model to explain the data of
the other sequence. In this approach, the more data are
available (hence the better the estimate of the model) the
worse the classification error is – an apparent paradox
induced by the fact that the generalization model under-
lying this approach is trivial: Each realization models
one sequence and noisy versions of it, without regard
for the structure of the intrinsic variability that different
realizations of the same process exhibit

More importantly, none of the methods proposed so

far compare temporal sequences in a way that explicitly
takes into account the dynamics of the hidden process
that generate the data, though capturing those dynamics
has been shown to lead to more robust classification re-
sults [16, 1]. Therefore, in this manuscript we propose a
time-warping distance, following the lines of [18], that
however takes into account dynamic constraints. Our
work also relates to [23] who propose characterizing the
space of activities as the quotient of a time series under
time warpings, and from [11], who extend dynamic time
warping to include temporal derivatives.

2. Formalization
The simplest instantiation of our problem can be for-

malized as searching for a distance d(y1, y2) between
two time series yi = {yi(t) ∈ RN}t=1,...,T . For
simplicity we will assume that the sequences have the
same length, although all considerations extend to al-
low for different lengths. Among the simplest dis-
tances one could define is the L2 norm of the difference,
d0(y1, y2) =

∫ T

0
‖y1(t)−y2(t)‖2dt, which corresponds

to a generative model where both sequences come from
an (unknown) underlying process {h(t)}, corrupted by
two different realizations of additive white zero-mean
Gaussian “noise” (here the word noise lumps all unmod-
eled phenomena, not necessarily associated to sensor er-
rors)

yi(t) = h(t) + ni(t) i = 1, 2; t ∈ [0, T ] (1)

The L2 distance is then the (maximum-likelihood) solu-
tion for h that minimizes

d0(y1, y2) = min
h

φdata(y1, y2|h) .=
2∑

i=1

∫ T

0

‖ni(t)‖2dt

(2)
subject to (1). Here h can be interpreted as the aver-
age of the two time series, and although in principle
h lives in an infinite-dimensional space, no regulariza-
tion is necessary at this stage, because the above has
a trivial closed-form solution. However, later we will
need to introduce regularizers, for instance of the form
φreg(h) =

∫ T

0
‖∇h‖dt. This admittedly unusual way

of writing the L2 distance makes the extension to more
general models simpler, as we discuss in the next sub-
sections.

2.1. Dynamic time warping (review)

In this section we revisit dynamic time warping in a
way that makes it amenable to the extentions we have
discussed in the introduction. Consider an arbitrary
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infinite-dimensional diffeomorphism x of the interval
[0, T ], called a time warping, so that (1) becomes

yi(t) = h(xi(t)) + ni(t) i = 1, 2. (3)

The data term of the cost functional we wish to opti-
mize is still

∑2
i=1

∫ T

0
‖ni(t)‖2dt, but now subject to

(3), so that minimization is with respect to the unknown
functions x1 and x2 as well as h. Since the model is
over-determined, we must therefore impose regulariza-
tion [12] to compute the time-warping distance

d1(y1, y2) = min
h∈H,xi∈U

φdata(y1, y2|h, x1, x2)+φreg(h).

(4)
In order for τ

.= x(t) to be a viable temporal index, x
must satisfy a number of properties. The first is continu-
ity (time, alas, does not jump); in fact, it is common to
assume a certain degree of smoothness, and for the sake
of simplicity we will assume that xi is infinitely differ-
erentiable. The second is causality: The ordering of time
instants has to be preserved by the time warping, which
can be formalized by imposing that xi be monotonic.
Making the constraints more explicit, we can re-write
the distance above as

min
h∈H,xi∈U

2∑
i=1

∫ T

0

‖yi(t)− h(xi(t))‖2 + λ‖∇h(t)‖dt

(5)
where λ is a tuning parameter that can be set equal to
zero, for instance by choosing h(t) = y1(x−1

1 (t)), and
the assumptions on the warpings xi are implicit in the
definition of the set U . This is an optimal control prob-
lem, that is solved globally using dynamic programming
in a procedure called “dynamic time warping” (DTW).

It is important to note that there is nothing “dy-
namic” about dynamic time warping, other than its
name. There is no requirement that the warping func-
tion x be subject to dynamic constraints, such as those
arising from forces, inertia etc. However, some notion
of dynamics can be coerced into the problem by char-
acterizing the set U in terms of the solution of a dif-
ferential equation. Following [18], as shown by [13],
one can represent allowable x ∈ U in terms of a small,
but otherwise unconstrained, scalar function u: U =
{x ∈ H2([0, T ]) |ẍ = uẋ; u ∈ L2([0, T ])} where
H2 denotes a Sobolev space. If we define ρi

.= ẋi then
ρ̇ = uρ; we can then stack the two into ξ

.= [x, v]T , and
C = [1, 0], and write the data generation model as{

ξ̇i(t) = f(ξi(t)) + g(ξi(t))ui(t)
yi(t) = h(Cξi(t)) + ni(t)

(6)

as done by [13], where ui ∈ L2([0, T ]). Here f, g and
C are given, and h, xi(0), ui are nuisance parameters
that are eliminated by minimization of the same old data
term

∑2
i=1

∫ T

0
‖ni(t)‖2dt, now subject to (6), with the

addition of a regularizer λφreg(h) and an energy cost
for ui, for instance φenergy(ui)

.=
∫ T

0
‖ui‖2dt. Writ-

ing explicitly all the terms, the problem of dynamic time
warping can be written as

d3(y1, y2) = min
h,ui,xi

2∑
i=1

∫ T

0

‖yi(t)− h(Cξi(t))‖+

+ λ‖∇h(t)‖+ µ‖ui(t)‖dt (7)

subject to ξ̇i = f(ξi) + g(ξi)ui. Note, however, that
this differential equation is only an expedient to (softly)
enforce causality by imposing a small “time curvature”
ui.

In the next section we discuss how to enforce dy-
namic constraints in the comparison of two time series.

3. Time warping under dynamic constraints

Our strategy to enforce dynamic constraints in dy-
namic time warping is illustrated in Figure 1:

Figure 1. Traditional dynamic time warping (DTW) assumes
that the data come from a common function that is warped in
different ways to yield different time series. In time warping
under dynamic constraints (TWDC), the assumption is that the
data are output of a dynamic model, whose inputs are warped
versions of a common input function.

Now, rather than the data being warped versions of
some common function, as in (3), we will assume that
the data are outputs of dynamical models driven by in-
puts that are warped versions of some common function.
In other words, given two time series yi, i = 1, 2, we
will assume that there exist suitable matrices A,B,C,
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state functions xi of suitable dimensions, with their ini-
tial conditions, and a common input u such that the data
are generated by the following model, for some warping
functions wi ∈ U:{

ẋi(t) = Axi(t) + Bu(wi(t))
yi(t) = Cxi(t) + ni(t).

(8)

Our goal is to find the distance between the time series
by minimizing with respect to the nuisance parameters
the usual data discrepancy

∑2
i=1

∫ T

0
‖ni(t)‖2dt subject

to (8), together with regularizing terms φ̄reg(u) and with
wi ∈ U . Notice that this model is considerably different
from one discussed in the previous section, as the state ξ
earlier was used to model the temporal warping, whereas
now it is used to model the data, and the warping occurs
at the level of the input. It is also easy to see that the
model (8), despite being linear in the state, includes (6)
as a special case, because we can still model the warping
functions wi using the differential equation in (6). In or-
der to write this time warping under dynamic constraint
problem more explicitly, we will use the following nota-
tion:

y(t) = CeAtx(0) +
∫ T

0

CeA(t−τ)Bu(w(τ))dτ
.=

.= L0(x(0)) + Lt(u(w)) (9)

in particular, notice that Lt is a convolution operator,
Lt(u) = F ∗ u where F is the transfer function. We
first address the problem where A,B, C (and therefore
Lt) are given. For simplicity we will neglect the initial
condition, although it is easy to take it into account if so
desired. In this case, we define the distance between the
two time series

d4(y1, y2) = min
2∑

i=1

∫ T

0

‖yi(t)− Lt(ui(t))‖+

+ λ‖ui(t)− u0(wi(t))‖dt (10)

subject to u0 ∈ H and wi ∈ U . Note that we have intro-
duced an auxiliary variable u0, which implies a possi-
ble discrepancy between the actual input and the warped
version of the common template. This problem can be
solved in two steps: A deconvolution, where ui are cho-
sen to minimize the first term, and a standard dynamic
time warping, where wi and u0 are chosen to minimize
the second term. Naturally the two can be solved simul-
taneously.

3.1. Going blind

When the model parameters A,B,C are common to
the two models, but otherwise unknown, minimization

of the first term corresponds to blind system identifica-
tion, which in general is ill-posed barring some assump-
tion on the class of inputs ui. These can be imposed
in the form of generic regularizers, as common in the
literature of blind deconvolution [7]. This is a general
and broad problem, but beyond our scope here, so we
will forgo it in favor of an approach where the input is
treated as the output of an auxiliary dynamical model,
also known as exo-system [8]. This combines standard
DTW, where the monotonicity constraint is expressed in
terms of a double integrator, with TWDC, where the ac-
tual stationary component of the temporal dynamics is
estimated as part of the inference. The generic warping
w, the output of the exo-system satisfies{

ẇi(t) = ρi(t), i = 1, 2
ρ̇i(t) = vi(t)ρi(t)

(11)

and wi(0) = 0, wi(T ) = T . This is a multiplicative
double integrator; one could conceivably add layers of
random walks, by representing vi are Brownian motion.
Combining this with the time-invariant component of
the realization yields the generative model for the time
series yi: 

ẇi(t) = ρi(t), i = 1, 2
ρ̇i(t) = vi(t)ρi(t)
ẋi(t) = Axi(t) + Bu(wi(t))
yi(t) = Cxi(t) + ni(t).

(12)

Note that the actual input function u, as well as the
model parameters A,B, C, are common to the two time
series. A slightly relaxed model, following the previous
subsection, consists of defining ui(t)

.= u(wi(t)), and
allowing some slack between the two; correspondingly,
to compute the distance one would have to minimize the
data term

φdata(y1, y2|u, wi, A, B,C) .=
2∑

i=1

∫ T

0

‖ni(t)‖2dt

(13)
subject to (12), in addition to the regularizers

φ̄reg(vi, u) =
2∑

i=1

∫ T

0

‖vi(t)‖2 + ‖∇u(t)‖2dt (14)

which yields a combined optimization problem

d5(y1, y2) = min
u,∈L2,A,B,C

2∑
i=1

∫ T

0

(‖yi(t)−Cxi(t)‖2+

+ ‖vi(t)‖2 + ‖∇u(t)‖2)dt (15)
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subject to (12). This distance can be either computed in
a globally optimal fashion on a discretized time domain
using dynamic programming, or more simply we can run
a gradient descent algorithm based on the first-order op-
timality conditions. In the next section we report experi-
ments on real and simulated data that illustrate the power
and limitations of the approach proposed.

4. Experiments
We performed several experiments on controlled syn-

thetic datasets (not reported for reasons of space) and
with publicly available sets of real data, both from mo-
tion capture and from image sequences, for both station-
ary and non-stationary actions. Here we report a set of
representative results that illustrate the characteristics of
our approach as it compares with DTW and other pub-
lished results on such public datasets; some of the ex-
periments reported also highlight the limitation of our
approach.

4.1. Stationary sequences

In order to set a baseline and compare our approach
against existing ones, we have first used the popular
CMU MoCap Dataset for the case of quasi-periodic se-
quences. The data is provided as a set of joint angle
trajectories on a skeletal model of the human body, ob-
tained by a motion capture system. It contains instances
of 23 individuals walking and running. We restrict our
observation period to just one walking cycle and we per-
form a variance normalization [21]. Of all the joint angle
trajectories,for simplicity, we have selected a subset of 6,
corresponding to lower-body joints. Despite these dec-
imations, the correct classification rate using a simple
nearest-neighbor classifier based on TWDC was 100%.
The resulting confusion matrix (pairwise distances be-
tween each data pair, organized into a matrix, with dark
intensity indicating low distance) is shown in Fig. 2.
The sequences have been organized so that walking se-
quences occupy the upper quadrant, whereas running se-
quences are in the lower one.

In order to make a baseline comparison with DTW,
we generate a score by looking at the first k nearest
neighbors, and summing the number of classification er-
rors based on the k-th neighbor, instead of the nearest,
with k going from 2 to 10. DTW achieves a cumulative
score of 25, whereas with TWDC it was 13. Although
it should be obvious a-priori that our approach should
improve on DTW, because it includes it as a subset, this
simple experiment suffices to validate this hypothesis.

In the next experiment we used a more challeng-
ing dataset, provided by UCLA [2], which includes
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Figure 2. Confusion matrix for walking/running classification
in the CMU MoCap dataset. The distance between 12 walking
and 11 running sequences is visualized as an intensity value,
with dark being small and light being large. Classification
based on first nearest neighbor yields 100% correct. To com-
pare with DTW, we sum the classification errors obtained by
using the k-th neighbor, instead of the nearest neighbor, with
k = 2, . . . , 10. DTW achieves a score of 25, whereas TWDC
performs better with a score of 13.

sequences of limping that are more subtle and hence
harder to discriminte from walking. Our approach out-
performs both DTW as well as the results reported by [2]
in most cases. The confusion matrix is shown in Fig. 3
and the following table shows correct classification per-
formance for the three actions available: (walking, run-
ning, limping).

Comparison of gait classification performances in k-nearest neighbor matching
Model Used k = 3 k = 5 k = 7
DTW (63.6%, 63.6%, 0) (63.6%, 63.6%, 0) (63.6%, 63.6%, 0)
[2] (86.0%, 98.7%, 15.0%) (88.6%, 98.7%, 15.0%) (93.9%, 98.7%, 17.5%)
TWDC (90.9%, 100%, 33.3%) (90.9%, 100%, 33.3%) (90.9%, 100%, 44.4%)

The table shows the percent correct classification for
three actions (walking, running, limping), for k-nearest
neighbor classification with k = 3, 5, 7 using DTW,
TWDC and the results reported by [2]. Our approach
outperforms both approaches on average, and in every
category and nearest neighbor count, except for walking
with k = 7 where [2] performs better. Note, however,
that such an approach relies on the stationarity assump-
tion, and therefore fails to perform on the scenarios con-
sidered in the next subsection.
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TWDC    UCLA!Mocap    Similarity Matrix
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Figure 3. Confusion matrix for the UCLA dataset [2]. There
are 31 sequences of (walking, running, limping). Classifica-
tion performance using k nearest neighbor is reported in the
previous table.

4.2. Non-stationary sequences

In this section we put to the test the functioning of our
approach on sequences of non-stationary actions such
as dancing, jumping, kicking, limping and skating, also
taken from the CMU MoCap dataset. Here, algorithms
that rely on the assumption of stationarity cannot be em-
ployed; because we are not aware of other published re-
sults on this section of the MoCap dataset, we simply
report our results, summarized in the confusion matrix
in Fig. 4 as well as the following table.

Results obtained in the classification of non stationary signals
of the MoCap Dataset in k-nearest neighbor matching (k=3)

Dance Jump Kick Limp Skate
100% 100% 50% 25% 100%

The table shows that some actions are rather simple
to classify. Others, however, are more subtle, for in-
stance limping and kicking. The latter in particular is
quite short, so partial matching with other actions (such
as dance) reveals considerable similarity that only pho-
tometric context (e.g. the presence of a ball) can dis-
ambiguate. Furthermore, as we discuss in the next sec-
tion, there are range (scale) transformation that we do
not model explicitly – for we decide to concentrate on
time domain transformations – that play a confounding
role in classification.

TWDC    CMU!NonStationaryData    Similarity Matrix
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Figure 4. Confusion matrix for 19 sequences and 5 different
activities (dancing, jumping, kicking, limping, skating) from
the CMU MoCap dataset. Numerical classification scores are
reported in the previous table.

In the next experiment we tested our algorithm on
the dataset presented by [3], that consists in binary se-
quences of images obtained from background subtrac-
tion from a stationary camera pointed in front of a
scene where subjects were performing a series of non-
stationary actions. Direct comparison with the metric
used by [3] is not possible, since they employ a repre-
sentation that compounds temporal information via av-
eraging, rather than by warping. Therefore, classifica-
tion results are affected by the representation as well as
by the metric, and there is no way to disentangle the two.
Nevertheless, we can compare the overall classification
results, summarized in the confusion matrix in Fig. 5.
For simplicity we have used only 3 coarse features, cor-
responding to the height and to the width of upper and
lower part of a bounding box of the silhouette . Despite
this brutal simplification, we achieve classification rates
comparable with [3] summarized in the following table.

Results obtained in the classification of non stationary signals
of the Weizmann Database in k-nearest neighbor matching (k=3)

Run 66.7% Jump 55.6% Wave1 77.8%
Walk 88.9% pJump 33.4% Wave2 100%
Side 88.9% Jack 100% Bend 100%

Additionally, our results are obtained without any
particular attention to spatial modeling to spatial model-
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TWDC  Weizmann!Action Dataset  Similarity Matrix 
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Figure 5. Confusion matrix for 81 sequences and 9 different
activities (run, walk, side, jump, pjump, jack, wave1, wave2,
bend) from the Weizmann dataset. Numerical classification
scores are reported in the previous table.

ing and normalization, just by considering deformations
of the temporal axis. Clearly, there is a lot to be gained
from the use of more sophisticated representations such
as those used by [3, 24], but this simple experiment suf-
fices to validate the flexibility and power of our approach
on image-based data sets.

5. Discussion

We have introduced “time warping under dynamic
constraints” that is an optimization scheme to find the
time domain deformation of a time series that best fits
another time series while respecting their intrinsic dy-
namics. This is achieved by modeling each time series
by a different realization of a dynamical model driven by
time-warped versions of the same unknown input. We
have illustrated the relationship to standard “dynamic
time warping” and shown empirically that classification
performance is improved when dynamic constraints are
taken into account.

On publicly available datasets, our approach mostly
performed as well as expected. On some tasks, how-
ever, performance was unexpectedly low. This was due
in part to sampling issues, as some of the non-stationary
actions were available over a long sequence, whereas
others were available in short snippets. Another short-
coming of our approach, just because we have decided
to focus on time domain deformations, is the fact that we
do not explicitly model range (amplitude) transforma-
tions. It is obvious that these should also be taken into
account, and there are many ways to do so, depending
on the domain and on the data representation selected.

For instance, for image sequences one can pre-process
them to normalize for contrast scalings, and again one
could do so as part of the representation or as part of the
matching process. This of course is not an issue on bi-
nary images since the range is normalized, but it is an
issue on geometric conversions of the silhouette where
there are, for instance, scale or affine variations. Again,
one could employ affine-invariant representations (e.g.
Fourier-Mellin moments) or optimize with respect to the
best matching affine transformation during matching (or
average with respect to a given procrustean distribution).

Our contribution is obviously only a piece of the puz-
zle of building an effective, robust and reliable machine
to classify actions and events from video, but we feel
that our handling of time domain transformations is well
suited for this task as it represents a sound tradeoff be-
tween the simplicity of the model and its flexibility: It
is not as simple as simple linear stationary models, but
it is not as general as fully non-linear models of chaotic
dynamics that are employed in other disciplines such as
finance or astrophysics.
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